Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27

Lawley, Trevor D., Gilmour, Matthew W., Gunton, James E., Tracz, Dobryan M. and Taylor, Diane E. (2003) Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27. Journal of Bacteriology, 185 (2). pp. 581-591. ISSN 0021-9193

Full text not available from this repository. (Request a copy)

Abstract

The transfer 2 region (Tra2) of the conjugative plasmid drR27 (derepressed R27) was analyzed by PSI-BLAST, insertional mutagenesis, genetic complementation, and an H-pilus assay. Tra2 contains 11 mating-pair formation (Mpf) genes that are essential for conjugative transfer, 9 of which are essential for H-pilus production (trhA, -L, -E, -K, -B, -V, -C, -P, and -W). TrhK has similarity to secretin proteins, suggesting a mechanism by which DNA could traverse the outer membrane of donors. The remaining two Mpf genes, trhU and trhN, play an auxiliary role in H-pilus synthesis and are proposed to be involved in DNA transfer and mating-pair stabilization, respectively. Conjugative transfer abilities were restored for each mutant when complemented with the corresponding transfer gene. In addition to the essential Mpf genes, three genes, trhO, trhZ, and htdA, modulate R27 transfer frequency. Disruption of trhO and trhZ severely reduced the transfer frequencies of drR27, whereas disruption of htdA greatly increased the transfer frequency of wild-type R27 to drR27 levels. A comparison of the essential transfer genes encoded by the Tra2 and Tra1 (T. D. Lawley, M. W. Gilmour, J. E. Gunton, L. J. Standeven, and D. E. Taylor, J. Bacteriol. 184:2173-2183, 2002) of R27 to other transfer systems illustrates that the R27 conjugative transfer system is a chimera composed of IncF-like and IncP-like transfer systems. Furthermore, the Mpf/type IV secretion systems encoded by IncH and IncF transfer systems are distinct from that of the IncP transfer system. The phenotypic and ecological significance of these observations is discussed.

Item Type: Article
Uncontrolled Keywords: microbiology,molecular biology ,/dk/atira/pure/subjectarea/asjc/2400/2404
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 14 Sep 2022 10:32
Last Modified: 23 Sep 2022 02:57
URI: https://ueaeprints.uea.ac.uk/id/eprint/88278
DOI: 10.1128/JB.185.2.581-591.2003

Actions (login required)

View Item View Item