Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens

Stavrinides, John, Ma, Wenbo and Guttman, David S. (2006) Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathogens, 2 (10). pp. 913-921. ISSN 1553-7366

Full text not available from this repository. (Request a copy)


Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called "terminal reassortment." In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.

Item Type: Article
Uncontrolled Keywords: parasitology,microbiology,immunology,molecular biology,genetics,virology ,/dk/atira/pure/subjectarea/asjc/2400/2405
Faculty \ School: Faculty of Science > The Sainsbury Laboratory
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 12 Sep 2022 12:31
Last Modified: 21 Oct 2022 01:41
URI: https://ueaeprints.uea.ac.uk/id/eprint/88175
DOI: 10.1371/journal.ppat.0020104

Actions (login required)

View Item View Item