Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

Oton, Eduard Vico, Quince, Christopher, Nicol, Graeme W., Prosser, James I. and Gubry-Rangin, Cecile (2016) Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME Journal, 10 (1). pp. 85-96. ISSN 1751-7362

Full text not available from this repository. (Request a copy)

Abstract

Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.

Item Type: Article
Additional Information: Funding Information: We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1). Publisher Copyright: © 2016 International Society for Microbial Ecology.
Uncontrolled Keywords: microbiology,ecology, evolution, behavior and systematics,sdg 15 - life on land ,/dk/atira/pure/subjectarea/asjc/2400/2404
Faculty \ School: Faculty of Science > School of Biological Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 09 Sep 2022 09:31
Last Modified: 21 Oct 2022 01:39
URI: https://ueaeprints.uea.ac.uk/id/eprint/88017
DOI: 10.1038/ismej.2015.101

Actions (login required)

View Item View Item