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Cell plating, the spreading out of a liquid suspension of cells on a surface followed by colony growth, is a

common laboratory procedure in microbiology. Despite this, the exact impact of its parameters on colony growth

has not been extensively studied. A common protocol involves the shaking of glass beads within a Petri dish

containing solid growth media. We investigated the effects of multiple parameters in this protocol: the number

of beads, the shape of movement, and the number of movements. Standard suspensions of Escherichia coli were

spread while varying these parameters to assess their impact on colony growth. Results were assessed by a

variety of metrics: the number of colonies, the mean distance between closest colonies, and the variability and

uniformity of their spatial distribution. Finally, we devised a mathematical model of shifting billiard to explain

the heterogeneities in the observed spatial patterns. Exploring the parameters that affect the most fundamental

techniques in microbiology allows us to better understand their function, giving us the ability to precisely control

their outputs for our exact needs.

DOI: 10.1103/PhysRevE.103.052410

I. INTRODUCTION

A prominent technique in microbiology is cell plating to

enable colony growth on nutrient agar. The goal of cell plating

is to separate cells contained within a small sample volume

by homogeneously distributing the cell suspension over the

surface of a plate. This results in the formation of discrete

colonies after incubation that can be enumerated or subjected

to further analysis. Counting the number of colonies is used

in many cell culture protocols: detection of bacteria in food

samples or clinical specimens [1]; measuring progenitor stem

cell content [2]; constructing gene-knockout libraries [3];

cell-based DNA cloning [4]; testing resistance to drugs [5];

studying evolution of antibiotic resistance [6]; activation of

mucosal-associated invariant T cells [7]. Successful cultiva-

tion of cells depends critically on the choice of appropriate

growth media, cell plating method, and incubation conditions.

A colony is defined as a visible cluster of cells growing

on the surface of a medium, presumably derived from a single

cell. These single progenitor cells are also called colony form-

ing units (CFUs), which provide an estimate of the number

*rr614@cam.ac.uk

of viable cells. The more homogeneously cells are spread on

the surface during plating, the better separated the resulting

cell colonies, leading to a more precise CFU estimation. It is

expected that the number of colonies formed is linearly pro-

portional to the concentration of viable cells in the suspension,

provided that the suspension was mixed and spread well. If the

suspension is not spread well, clusters of cells will be formed

which visually resemble a single colony and therefore will be

enumerated as a single colony [8]; furthermore, bias may be

introduced when analyzing genetic variations and heredity of

such clusters of cells [9]. To proceed with further procedures,

the cells need to be restreaked to get single colonies, which

takes extra incubation time.

There are two strategies for cell plating: spread plating with

a turntable rod or spread plating with glass beads [10,11].

Using the first method, a small volume of a cell suspension is

spread over the plate surface using a sterile bent glass rod as

the spreading device. The second method, which is the subject

of our study, involves shaking glass beads over the surface

of the plate. This technique is also known as the Copacabana

method [12,13].

The protocol for using sterile glass beads for dispersion of

cells on solid media has the following steps [11,12]: (1) a cell

suspension is dispensed onto the middle of a round Petri dish

2470-0045/2021/103(5)/052410(7) 052410-1 ©2021 American Physical Society



ALIDIVINAS PRUSOKAS et al. PHYSICAL REVIEW E 103, 052410 (2021)

containing solid media; (2) spherical glass beads are poured

into the middle of the plate; (3) the plate lid is closed; (4) the

plate is agitated with a shaking motion so that the glass beads

roll over the entire surface of the plate; (5) the plate is then

inverted to remove the beads before incubation.

In this study we investigate how the way a plate is agitated

influences the spread of CFUs. We perform experiments with

the bacteria Escherichia coli and use a model from statistical

mechanics, billiard, to explain heterogeneities in the observed

spatial patterns. Billiard is a type of mathematical model

describing a dynamical system where one or more particles

move in a container and collide with its walls [14]. Billiard

systems based on the wave dynamics in cavities, acoustic

resonance in water, atoms bouncing off a beam of light, and

quantum dots have been studied over several decades both

experimentally and theoretically [15–21]. We introduced a

shifting billiard as a conceptual abstraction of the cell plating

with glass beads. Numerical analysis of the dynamics of this

simple yet efficient billiard, indicated a close relationship

between plate movement and quality of colony distribution.

II. CELL PLATING EXPERIMENT

The experiments were performed on circular plates with

88 mm diameter. Sterile 4-mm glass plating beads (manufac-

tured by Sigma-Aldrich) were used for the dispersion of cells

over the surface of a plate. This gives the ratio between glass

bead and plate d = 4/88 = 0.045.

We explored following movement of a plate:

(1) L shape: The plate is moved on a trajectory resem-

bling the horizontally reflected letter “L”: up-right-left-down

(↑→←↓).

(2) Up-down: The plate is moved up and down along the

vertical axes (↑↓).

(3) Hourglass: The plate is moved on a trajectory re-

sembling the hourglass: diagonal up-left-diagonal down-right

(ր←ց).

We called the full cycle of movement, where a plate returns

to its initial position, a loop.

E. coli K-12 MG1655 was incubated in Luria-Bertani (LB)

broth overnight (10 g/L Tryptone, 5 g/L yeast extract, 5 g/L

NaCl, pH 7.0) [22]. A single E. coli colony was sampled from

a streaked plate, placed within the LB broth, and incubated

in a 37 ◦C shaker overnight until saturation. This overnight

stock was serially diluted by factors of 10 in 56/2 salts to the

required dilution. 100 μl of the cell dilution was plated on

LB agar 1.8% W/V, utilizing the above motions, with a vary-

ing number of loops and beads. These plates were incubated

overnight at 37 ◦C and subsequently imaged and shown in

Fig. 8 in Appendix.

III. ASSESSING EFFECTIVENESS OF PLATING METHOD

The colony counts were performed automatically using a

custom-made code for image analysis; more details are given

in the Appendix. We used the following metrics to assess

plating methods: number of CFUs, nCFUs; mean distance to

nearest CFU, dNB; and variability and uniformity in CFU

spatial distribution on a plate. To determine the spatial vari-

ability, we have grouped CFUs into 5◦ intervals, calculated the

FIG. 1. Metrics to assess the effectiveness of cell plating:

(a) Counting the number of CFUs, nCFUs. (b) Calculating the mean

(dashed line) of the distribution of distances to nearest CFUs, dNB.

(c) Dividing the plate into 5◦ arcs, determining the number of

CFUs in that arc, and calculating the coefficient of variation, CVS .

(d) Calculating the mean difference between observed and expected

distances from CFUs and plate center, mS; black line shows fre-

quency based on a triangular distribution.

number of CFUs in that arc, and estimated the coefficient of

variation between these numbers, CVS . Next we have calcu-

lated distances of CFUs to the center of the plate, binned into

1 mm intervals, and calculated an average difference between

observed frequencies and expected frequencies, mS . Expected

frequencies for the latter metrics were assumed to follow the

triangular distribution. Larger values of nCFUs and dNB corre-

spond to a better spread, while smaller values of CVS and mS

indicate a more uniform spread of colonies. Figure 1 shows

a graphical representation of these metrics, which gives the

following values: nCFUs = 335, dNB = 2.8, CVS = 0.46, and

mS = 2.3.

IV. THE MODEL

A. Shifting billiard

First, we start with a circular billiard which is stationary

in space. Without loss of generality, we set the radius of the

circle to be 1. A single particle is moving without friction

between the boundary of the unit circle. Particle movement

is defined by the elastic collision rule: the angle of reflection

is equal to the angle of incidence [23]. The dynamics of parti-

cle movement can be described in terms of collision maps,

where θk denotes the point of the collision and ϕk denotes

the reflection angle for the kth collision, k = 1, . . . , n. We

adopted a system where θ = 0 corresponds to a point (1,0) in

a Cartesian coordinate system. Figure 2(a) shows a collision

of a particle with the boundary at the point θ = π and ϕ = π
3

.

The dynamics of a particle in the circle is fully integrable and

is described by the following properties: (i) ϕk = ϕ1, i.e., the

angle of the reflection does not change; (ii) the coordinates

of the point of collision satisfies θk = (θ1 + 2kϕ1) mod 2π ;

052410-2



EFFECTIVENESS OF GLASS BEADS FOR PLATING CELL … PHYSICAL REVIEW E 103, 052410 (2021)

FIG. 2. Billiard with moving boundaries: (a) configuration of the

system: reflection angle ϕ and collision point θ ; (b) shifted circle:

distance of the shift v, angle α, and coordinate v0; (c) reflection angle

after shift v = 0.25; (d) trajectory of the particle for up-down shifting

of the circle; (e) trajectory of the particle for up-right-left-down

shifting of the circle. In (d) and (e), O indicates the original position

(blue circle), U the “up” position (red circle), and the left position

(green circle).

(iii) if ϕ < π and is a rational multiple of π , then the particle

trajectory is periodic with the particle following the sides

of some regular polygon; (iv) otherwise, if ϕ

π
is irrational,

then the particle trajectory densely fills the ring between the

boundary of the unit circle and the boundary of a smaller circle

with radius cos2(ϕ) [14]. For case (iii), the number of polygon

sides depends on the reflection angle. For example, if ϕ1 = π
2

,

the polygon is a square and the particle moves in period-four

orbit along the sides of the square; and for ϕ1 = π the particle

runs back and forth along a diameter of the circle and is locked

in period-two orbit.

Next we introduce a class of billiard—shifting billiard. The

circle is shifted in such a way that its center moves distance

v along the vertical axis, i.e., the coordinates of its center are

(0, v). As the circle boundary is moved, the collision point

also changes. For a particle moving along the x axis and

perpendicular to the vertical axis, i.e., with θ = π and ϕ = π ,

the collision point becomes a′ for v > 0 (the circle shifted

up) or a′′ for v < 0 (the circle shifted down), as shown in

Fig. 2(b). We denote by α the angle between the trajectory of

the particle and the direction of the circle shift, (α ∈ [0, π ]).

We also denote by v0 the coordinate where the line going

through the trajectory of the moving particle intercepts the

circle shift directory. Graphical representation of α and v0 is

shown in Fig. 2(b). If the angle α < π
2

, this indicates that the

particle moves in the same direction as the circle has been

shifted. Otherwise, if the angle α > π
2

, then the particle moves

in the direction which is opposite to the direction that the

circle has been shifted. Potentially, v0 ∈ (−∞,∞), but not all

α-v0 values will give trajectories contained within the moving

circle boundaries. Allowed values of v0 are within the interval

[v1
0, v

2
0], where v

1
0 = v − sin(α)−1 if α �

π
2

, v
1
0 = v − 1, if

α > π
2

; and v
2
0 = 1 if α �

π
2

, v
2
0 = sin(α)−1 if α > π

2
.

As the point of the collision changes, so does the angle

of the reflection. Figure 2(c) shows the reflection angle as a

function of v0 for two values α = π
2

and α = π
4

after the circle

has been shifted up by v = 0.25. For both values of α, the

reflection angle is equal to π
2

for v0 = −v and decreases for

other values of v0.

We assume an arbitrary periodicity of circle shift cor-

responding to a time the particle takes to travel from one

collision to another. Furthermore, change in position is in-

stantaneous. After the first collision, the circle will return

back to its original position with the center located at (0,0).

The trajectory of the particle moving in the shifting circle

is shown in Fig. 2(d). The initial conditions for the particle

are v0 = 0 and α = π
4

, and the circle is shifted by v = 0.25.

For this particular set of parameters, the particle is fixed in a

period-two orbit after six collisions with the boundary of the

circle.

Finally, we introduce a more complex movement of the

circle. The circle is shifted according to the following loop: it

is moved up (the “up” position, U), right (the “right” position,

R), left (returned to the U position), and down (returned to

the O position). Figure 2(e) shows the trajectory for a particle

with the same initial conditions as in Fig. 2(d), only this time

it breaks away from the period-two orbit after the circle is

shifted to the position R.

B. Model for plating with glass beads

Let Ŵ denote the unit disk, and ∂Ŵ denote its boundary.

Particle movement within a billiard is defined by the elastic

collision rule: the angle of reflection is equal to the angle of

incidence [14,23]. Denote by qt = (xt , yt ) the coordinates of

the moving particle at time t , and by νt = (ut ,wt ) its velocity

vector. Then its position at time t + �t can be computed by

xt+�t = xt + �tut , (1)

yt+�t = yt + �twt . (2)

When the particle collides with the boundary ∂Ŵ, its ve-

locity vector ν gets reflected across the tangent line to ∂Ŵ at

the point of collision and the new postcollision velocity vector

can be computed as

ν
new = ν

old − 2〈νold, n〉n, (3)

where n is the unit normal vector to the boundary and 〈ν, n〉

denotes the scalar product. For an arbitrary collision between

two particles, the postcollisional velocities are given by

ν
new
1 = ν

old
1 + 0.5(1 + r)

(

ν
old
2 − ν

old
1

)

· kk, (4)

ν
new
2 = ν

old
2 + 0.5(1 + r)

(

ν
old
2 − ν

old
1

)

· kk, (5)

where 0 � r < 1 is the normal coefficient of restitution,

which is typically 0.8 for glass beads [24]; ν · k denotes the

vector product, and k is the collision vector, directed from the

center of the second particle to that of the first particle:

k = (q1 − q2)/‖q1 − q2‖. (6)

We have the following setup for the model: there are N

glass beads which at a time t are randomly distributed within

a unit circle in such a way that they do not overlap, i.e., the

Euclidean distance between beads centers is larger than 2d .

We assumed that the plating dish is shifted a unit distance (i.e.,
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corresponding to a diameter of the plate) within each step of

a loop. All particles are stationary at the start of a simulation,

and start moving after collision with the moving boundary ∂Ŵ.

For an arbitrary time unit T = 1, we further assume that the

boundary is moved with a velocity V . Simulations are run at

discrete time intervals with a fixed time step �t = 0.01 × T .

At each time step, we calculate if any particle is close enough

to the boundary, or any two particles are close to each other,

and create a list of collision events. After each collision, the

direction and velocity of the involved particle are updated.

We assume that velocities of particles are reduced with each

time state by a constant, cv , due to the presence of growth

media. After running pilot simulations, we found that values

V = 3 and cv = 0.99 produced trajectories consistent with the

experiment data. During simulations we track the position of

each particle with respect to the center of the plating dish.

Next, we formulate a stochastic spatially explicit model of

cell dispersal via the movement of glass beads. At time t = 0

there are n viable cells in suspension which is dispensed onto

the middle of the plate. The positions of cells within the plate

are modeled using a Gaussian distribution with mean at the

center of the plate and variance equal to half of the plate’s

radius. Next, we considered two stochastic events: (i) a cell

is attached to a bead which is passing within d/2 distance

from the cell; and (ii) a cell is detached from the bead and

is deposited on the surface of the plate. We assume that the

probabilities of these events at time t are

pon(t ) = exp(−ront ), (7)

poff(t ) = exp(−rofft ). (8)

After simulating the dispersal of cells, we calculated which

cells were within 1.5 μm of other cells, forming clusters. We

further assumed that detectable individual CFUs are formed

by either separated cells or these clusters.

TABLE I. Results of the dilution experiment.

Five loops Ten loops

Metrics 10−5 10−6 10−7 10−5 10−6 10−7

nCFUs 964 286 59 1050 382 71

dNB 1.3 2.1 8.5 1.5 2.0 8.3

CVS 0.59 0.75 1.2 0.45 0.62 0.97

mS 7.76 3.39 1.09 8.77 3.59 1.34

Parameter inference was performed using an adaptive mul-

tiple importance sampling framework [25]. The likelihood

was obtained by assuming that the observed number of

colonies is Poisson distributed:

L(	|nobs) =

n
∏

i=1

Poisson
(

ni
obs

∣

∣ni
sim

)

, (9)

where 	 = {n, ron, roff}; nobs is the observed number of

colonies; nsim is the number of colonies obtained after sim-

ulating the model with parameter set 	.

V. RESULTS

First, the plating was carried out with different concentra-

tions of E. coli cells. We used the L-shape movement with

ten glass beads, and either five or ten loops. The results of

experiment are shown in Table I. As cell concentration de-

creased, the mean distance between the closest CFUs, nCFUs,

and spatial variability of colonies, CVS , increased. The num-

ber of colonies was 950–1050 for 10−5 dilution, 280–380 for

10−6 dilution, and 50–70 for 10−7 dilution. It is suggested that

for manual counting, the best range of a number of colonies

should be between 30 and 300 [26]. Therefore, for further

analysis we have chosen 10−6 dilution as this gives a good

distribution of colonies.

FIG. 3. Experimental results. Methods analyzed are as follows: hourglass (HG: ր←ց), L shape (L: ↑→←↓), and up-down (UD: ↑↓).

Each row corresponds to a particular experimental setup. The first two columns show the number of beads used and the number of loops in

each experiment. Red arrows indicate direction from less uniform to more uniform distribution of CFUs.
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FIG. 4. Experimental images of E. coli CFUs and density his-

tograms of simulated particle trajectories for the up-down movement.

Columns correspond to a different number of glass beads. Blue

circles indicate the initial positions of particles.

Figure 3 displays a summary from the experiments: each

row corresponds to a different method of cell plating, number

of glass beads, and number of loops. We have analyzed 40

configurations in total. We observed that the number of CFUs

increased when the number of loops increased from 5 to 25.

Most of the experiments produced a consistent number of

colonies. The exceptions were for cells spread using either

100 loops, or 25 beads and 25 loops, which gave much lower

colony numbers. Methods producing the smallest amount of

CFUs also had the largest values of dNB and CVS .

We could identify three groups of configurations, which

produced nCFUs > 300: (i) L-shape movement with 2–10

beads and 25 loops; (i) L-shape movement with 10–25 beads

and 5 loops; and (iii) up-down movement with 3–25 beads

and 50 loops. However, the latter configuration performed

quite poorly with respect to other metrics, especially dNB and

mS . In terms of the number of steps the plate is moved, 50

up-down moves are equivalent to 25 L-shape moves. The

mean distance to the nearest CFUs for the up-down method

had the smallest values overall. The hourglass movement has

performed well for 10 loops and 3–25 glass beads in terms

of the values of nCFUs, and had one of the lowest values of

FIG. 5. Experimental images of E. coli CFUs for the L-shape

movement. Columns correspond to a different number of glass beads,

and rows correspond to a different number of loops.

FIG. 6. Density histograms of simulated particle trajectories for

the L-shape movement. Columns correspond to a different number

of glass beads, and rows correspond to a different number of loops.

Blue circles indicate the initial positions of particles.

spatial variability, CVS; however, the number of CFUs was not

as high as for L-shape or up-down trajectories. Interestingly,

the most natural way to move plates, i.e., wrist movement,

was not performing as well as the other methods of plate

movement.

Next, we used the model of shifting billiard to investi-

gate the observed spatial patterns in the up-down movement.

Figure 4 shows experimental images of E. coli CFUs and

density histograms of simulated particle trajectories for the

up-down movement. For model simulations with N beads, we

have added an extra bead N , but kept the initial positions of

the 1 . . . (N − 1) beads the same as in simulations with N − 1

beads. It can be seen then even with 50 loops, the trajectories

FIG. 7. Stochastic model of cell dispersal. Log-likelihood values

of sampled parameters: gray shows values less than −300; red di-

amond shows MLE. (b)–(d) Comparison between simulations and

experimental data for L-shape trajectory with (b) two beads, (c) five

beads, and (d) ten beads.
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of beads follow the movement of the plate. This mimics ex-

actly how the CFUs are positioned in experiments, i.e., along

and parallel to a vertical axis. As the number of beads is

increased, there is a possibility of a glass bead escaping the

expected trajectory due to a random collision with other glass

beads.

Furthermore, we used the model to explain heterogeneities

in the observed spatial patterns when using L-shape move-

ment. Figure 5 shows representative images of E. coli CFUs

and Figure 6 shows corresponding density histograms of sim-

ulated particle trajectories for the L-shape movement. It can

be seen from the simulations, that when the number of glass

beads or a number of loops is low, the surface of the plate

cannot be fully explored by the moving beads, and particular

areas (top left quarter) are hardly visited by any of the glass

beads at all. In order to improve surface coverage, it is neces-

sary to increase either the number of beads or the number of

loops. For example, 5 glass beads with 25 loops, or 10 glass

beads and 10 loops, produced a reasonable coverage of the

plate surface.

Finally, we have fitted the stochastic model of cell dispersal

to experimental data. After a pilot investigation, we have fixed

n = 500. Sampled parameter sets {1/ron, 1/roff} and corre-

sponding log-likelihood values are shown in Fig. 7(a). We

have calculated the maximum likelihood estimate (MLE) as

ron = 0.010 416 667 and roff = 0.035 714 29 (shown as red

diamond). Using this parametrized model we simulated cell

plating for an L-shape trajectory with two, five, and ten

beads and the number of loops in the range from 5 to 100

[Figs. 7(b)–7(d)]. We have found that 20–30 loops give a

maximum number of nCFUs.

Our full model agreed with experimental observations of

the decrease in the number of colonies when using a very

high number of loops. Similar phenomena have been observed

when plating central memory cells, which was attributed to

cells getting stuck on beads and hence removed during the

debeading process [27].

VI. CONCLUSIONS

In this work we characterize the effectiveness of glass

beads for plating cell cultures. We examined the number of

colonies, the mean distance between closest colonies, and the

variability and uniformity of spatial distribution of colonies.

Our results indicate that the Copacabana method is highly

efficient, although care needs to be taken when choosing the

trajectory of plate movement, number of beads, and number

of loops.

An exploratory look at the experimental data revealed some

interesting attributes that required further investigation using

a mathematical modeling approach. We introduced shifting

billiard as a conceptual abstraction of cell plating with glass

beads. Numerical analysis of the dynamics of this simple yet

efficient billiard indicated a close relationship between plate

movement and quality of colony distribution. Simulations

show that when the number of glass beads or the number of

loops is low, the surface of the plate cannot be fully explored

by the moving beads. This could be improved by increasing

either the number of beads or the number of loops. However,

a very high number of loops (i.e., 100) should be avoided,

as experimental data and simulations showed that the number

of colonies produced was much lower compared to other

configurations.

We have analyzed the properties of cell spread using dig-

itized images and mathematical modeling. Optical density

(OD) readings have been used to evaluate the number of CFUs

based on the time it takes to reach the predetermined OD

of 0.1 when compared with a reference standard curve [28].

However, this technique would not provide the necessary de-

tails for the spatial analysis we performed.

FIG. 8. Flowchart representing image processing. First, the image was analyzed to detect where the plate is. Second, positions of CFUs

were detected by fitting centroids.
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In conclusion, we recommend using an L-shape trajectory

with two to ten beads and 25 loops which should produce good

colony separation in terms of the number and spatial spread

of colonies. Recently, automated systems have been utilized

for high-throughput cell handling and analysis [29]. Manual

transformation and spreading on agar plates are still used

in otherwise fully automated liquid handling platforms [30].

Therefore, we believe that our results should be of interest

when using automated platforms and could guide program-

ming of automatic cell plating protocols.

APPENDIX: IMAGE ANALYSIS

Each image has been binarized with a low threshold in

order to find the boundaries of a plate; this gives scaling

for transforming pixels into millimeters (Fig. 8). Next, we

extracted single-channel images corresponding to each of the

color channels in the image. We have found that working with

the image in the red channel improved the detection of CFUs.

Finally, we have fitted centroids representing CFUs by varying

a threshold of binarization.
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