Cortical processing of visceral and somatic stimulation:Differentiating pain intensity from unpleasantness

Dunckley, P., Wise, R. G., Aziz, Q., Painter, D., Brooks, J. ORCID: https://orcid.org/0000-0003-3335-6209, Tracey, I. and Chang, L. (2005) Cortical processing of visceral and somatic stimulation:Differentiating pain intensity from unpleasantness. Neuroscience, 133 (2). pp. 533-542. ISSN 0306-4522

Full text not available from this repository. (Request a copy)

Abstract

Visceral and somatic pain perception differs in several aspects: poor localization of visceral pain and the ability of visceral pain to be referred to somatic structures. The perception of pain intensity and affect in visceral and somatic pain syndromes is often different, with visceral pain reported as more unpleasant. To determine whether these behavioral differences are due to differences in the central processing of visceral and somatic pain, non-invasive imaging tools are required to examine the neural correlates of visceral and somatic events when the behavior has been isolated and matched for either unpleasantness or pain intensity. In this study we matched the unpleasantness of somatic and visceral sensations and imaged the neural representation of this perception using functional magnetic resonance imaging in 10 healthy right-handed subjects. Each subject received noxious thermal stimuli to the left foot and midline lower back and balloon distension of the rectum while being scanned. Stimuli were matched to the same unpleasantness rating, producing mild-moderate pain intensity for somatic stimuli but an intensity below the pain threshold for the visceral stimuli. Visceral stimuli induced deactivation of the perigenual cingulate bilaterally with a relatively greater activation of the right anterior insula - i.e. regions encoding affect. Somatic pain induced left dorso-lateral pre-frontal cortex and bilateral inferior parietal cortex activation i.e. regions encoding spatial orientation and assessing perceptual valence of the stimulus. We believe that the observed patterns of activation represent the differences in cortical process of interoceptive (visceral) and exteroceptive (somatic) stimuli when matched for unpleasantness.

Item Type: Article
Additional Information: Funding Information: Dr. Paul Dunckley and Dr. Lin Chang are funded through a grant from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR41622), National Institutes of Health, USA. Dr. Richard Wise is funded through the Wellcome Trust (Advanced Training Fellowship, 067037). Dr. Q. Aziz is funded by the Medical Research Council and Cancer Research Campaign UK. Dr. I. Tracey is funded by HEFCE. The authors would like to thank Rod Hamner, Medical Physics, Hope Hospital, Manchester and Guy Peskett, Atmospheric Physics Department, Oxford University for technical support. The authors would also like to thank Professor Derek Jewell for his guidance and support.
Uncontrolled Keywords: fmri,pain,rectum,somatic,visceral,neuroscience(all) ,/dk/atira/pure/subjectarea/asjc/2800
Faculty \ School: Faculty of Social Sciences > School of Psychology
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 07 Sep 2022 12:31
Last Modified: 21 Oct 2022 01:36
URI: https://ueaeprints.uea.ac.uk/id/eprint/87818
DOI: 10.1016/j.neuroscience.2005.02.041

Actions (login required)

View Item View Item