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Abstract

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many

challenges, such as signal loss due to local magnetic field inhomogeneities. This issue

can be addressed with slice-specific z-shimming, which compensates for the dephas-

ing effect of the inhomogeneities using a slice-specific gradient pulse. Here, we aim

to address outstanding issues regarding this technique by evaluating its effects on

several aspects that are directly relevant for spinal fMRI and by developing two auto-

mated procedures in order to improve upon the time-consuming and subjective

nature of manual selection of z-shims: one procedure finds the z-shim that maximizes

signal intensity in each slice of an EPI reference-scan and the other finds the

through-slice field inhomogeneity for each EPI-slice in field map data and calculates

the required compensation gradient moment. We demonstrate that the beneficial

effects of z-shimming are apparent across different echo times, hold true for both

the dorsal and ventral horn, and are also apparent in the temporal signal-to-noise

ratio (tSNR) of EPI time-series data. Both of our automated approaches were faster

than the manual approach, lead to significant improvements in gray matter tSNR

compared to no z-shimming and resulted in beneficial effects that were stable across

time. While the field-map-based approach performed slightly worse than the manual

approach, the EPI-based approach performed as well as the manual one and was fur-

thermore validated on an external corticospinal data-set (N > 100). Together, auto-

mated z-shimming may improve the data quality of future spinal fMRI studies and

lead to increased reproducibility in longitudinal studies.
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1 | INTRODUCTION

The spinal cord is one of the key structures linking the brain with the

peripheral nervous system and participates in numerous sensory,

motor and autonomic functions (Hochman, 2007). Noninvasive

approaches to investigate the human spinal cord are therefore of

great interest not only from a basic neuroscientific perspective, but

also with regards to their possible clinical utility in order to understand

pathological mechanisms in motor and sensory disorders such as mul-

tiple sclerosis and chronic pain (Wheeler-Kingshott et al., 2014). Cur-

rently, the main approach to investigate spinal cord function is based

on blood-oxygen-level-dependent functional magnetic resonance

imaging (BOLD fMRI; for reviews see Giove et al., 2004; Stroman

et al., 2014; Summers et al., 2014; Cohen-Adad, 2017). Using conven-

tional BOLD fMRI techniques such as gradient-echo echo-planar

imaging (GE EPI) is however challenging in the spinal cord due to (i) its

small cross-sectional diameter, (ii) prominent physiological noise

from cardiac and respiratory sources, and (iii) magnetic field

inhomogeneities.

In the cervical spinal cord (i.e., the part that is easiest to access

with currently available receive coils at 3 T), inhomogeneities in the

magnetic field occur at both large and small spatial scales (Cohen-

Adad, 2017). While large-scale variations are for example due to the

proximity of the lungs (and can thus vary dynamically; e.g., Verma &

Cohen-Adad, 2014), small-scale variations are due to the interfaces

between vertebrae and connective tissue, which have different mag-

netic susceptibilities (Cooke et al., 2004; Finsterbusch et al., 2012).

These small-scale field inhomogeneities are reproduced spatially along

the superior – inferior axis of the spinal cord and significantly affect

image quality, leading to consistent patterns of signal loss

(Finsterbusch et al., 2012; Maieron et al., 2007). While it would thus

be imperative for reliable and reproducible fMRI of the spinal cord to

mitigate these effects, standard shimming techniques implemented on

common whole-body MR systems are not able to compensate these

spatially repeating inhomogeneities to an adequate degree

(Finsterbusch, 2014).

One method that is commonly employed to overcome through-

slice dephasing is slice-specific “z-shimming” (Constable, 1995; Frahm
et al., 1988; Glover, 1999) where an additional gradient pulse is

applied in the slice-selection direction in order to compensate the

effect of susceptibility-induced gradients and resulting signal loss. In

the brain, z-shimming has been applied in GE EPI studies focused on

susceptibility-prone regions, that is, those that are close to air/bone

interfaces such as the orbitofrontal, the medial temporal, and the infe-

rior temporal cortex (Deichmann et al., 2003; Posse et al., 2003;

Weiskopf et al., 2006; Yang et al., 1997). Finsterbusch et al. (2012)

investigated whether one could use this approach to also compensate

for the periodically occurring signal drop-outs (along the superior –

inferior axis) on T2*-weighted GE EPI images of the spinal cord. By

applying single, slice-specific compensation moments – which were

manually determined based on a reference-scan acquired prior to the

experimental EPI acquisition – they were able to demonstrate an

improvement in spinal cord image quality: reducing the spatially

repeating signal drop-outs via slice-specific z-shimming resulted in an

increase of mean signal-intensity by �20% and a reduction of signal-

intensity variability along the cord by �80%.

While the slice-specific z-shimming protocol developed by Fin-

sterbusch and colleagues has already been used in numerous spinal

(e.g., Sprenger et al., 2012; Geuter & Buchel, 2013; Kong et al., 2014;

van de Sand et al., 2015; Eippert et al., 2017; Sprenger et al., 2018)

and cortico-spinal fMRI studies (e.g., Oliva et al., 2022; Sprenger

et al., 2015; Tinnermann et al., 2017; Vahdat et al., 2020), the impact

of slice-specific z-shimming on EPI time-series data has not been

investigated systematically, as Finsterbusch and colleagues only evalu-

ated its effects on single volumes of GE EPI data, but not on time-

series metrics such as tSNR (Welvaert & Rosseel, 2013). Even more

important – and already argued for by Finsterbusch and colleagues –

would be an automated way to determine the slice-specific z-shims,

as these are currently determined manually by the scanner operator:

either visually by going through each slice and z-shim value obtained

in a reference-scan or by manually placing a region of interest on each

slice of this reference scan and evaluating the extracted signal inten-

sity. This procedure is time-consuming, requires expertise in judging

the quality of spinal EPI data, and contains a subjective component,

thus also limiting its potential in terms of reproducibility.

In this study, we aim to develop an automated and user-friendly

procedure for determining slice-specific z-shims in order to improve

the quality of spinal fMRI. In a first step, we aim to replicate the

results of Finsterbusch et al. using twice the original sample size

(N = 48). Next, we aim to extend their findings by probing the rele-

vance of slice-specific z-shimming for fMRI through investigating its

effects (a) across different echo times, (b) in distinct anatomical

regions, and (c) on a time-series metric (tSNR). Most importantly, we

propose two different automated methods for determining slice-

specific z-shims (each based on a sample size of N = 24). The first

method is based on a z-shim reference-scan acquisition and deter-

mines z-shim values by analyzing EPI signal intensity within the spinal

cord for each combination of slice and z-shim value. The second

method is based on a field map (FM) acquisition and determines z-

shim values by estimating the strength of the gradient field needed to

compensate for the local through-slice inhomogeneity for each slice.

In a final step, we use an independently-acquired external data-set

(N > 100; Oliva et al., 2022) in order to validate our candidate

approach for automating the selection of slice-specific z-shims.

2 | MATERIAL AND METHODS

2.1 | Participants

48 healthy participants (22 females, mean age: 27.17 years, range 20–

37 years) participated in this study. All participants provided written

informed consent and the study was approved by the ethics commit-

tee at the Medical Faculty of the University of Leipzig. The sample

size was determined based on a study by Finsterbusch et al. (2012): as

we wanted to replicate and extend their findings (which were based
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on a sample of N = 24), we chose the same sample size for each of

our two subgroups, resulting in an overall sample size of N = 48.

2.2 | Study design

All participants underwent the following scans in the order described

below (for details of scans, see section “2.3 Data acquisition”).
After an initial localizer scan, the EPI slice stack and the adjust

volume were prescribed and a single EPI volume was acquired in order

to initialize the scanner's “Advanced shim mode” – this shim was then

employed in all the following EPI acquisitions by using the same adjust

volume. The adjust volume had the same angle as the EPI acquisitions,

was centered on the spinal cord in left – right and anterior – posterior

directions and had a volume of 60 � 60 � 130 mm (thus extending

5 mm in superior and inferior direction beyond the EPI slice-stack). An

EPI z-shim reference scan was performed next in order to allow for

the manual as well as EPI-based automated selection of the optimal z-

shim moment for each slice. Two sagittal FMs (vendor-based and in-

house versions, respectively) were then acquired to obtain the B0

static magnetic field distribution, of which the vendor-based one was

used for the FM based automated z-shim selection due to it being

widely available. This was followed by the acquisition of a high-

resolution T2-weighted image in order to allow for spinal cord seg-

mentation as needed for the FM based automated z-shim selection.

In order to compare the signal characteristics under different z-

shimming conditions, EPI data were acquired with three different EPI

protocols for each participant: without z-shim gradient compensation

(condition “no z-shim”), with z-shim gradient compensation based on

manual z-shim selection (condition “manual z-shim”), and with z-shim

gradient compensation based on automated z-shim selection (condi-

tion “automated z-shim”). For one-half of the participants (24 partici-

pants), the automated selection was based on the EPI reference scan,

whereas for the other half, the automated selection was based on the

vendor-based FM. Both single EPI volumes (as in Finsterbusch

et al., 2012), as well as 250 EPI volumes (in order to assess effects on

time-series data), were acquired for each condition; the order of the

EPI scans under different conditions was pseudo-randomized across

participants.

We also wanted to assess the benefits of slice-specific z-

shimming at different echo times (TE), and therefore acquired 25 EPI

volumes under three different TEs (30, 40, and 50 ms, each with a

repetition time [TR] of 2552 ms) for each of the three conditions

(please note that the z-shim indices chosen reflect gradient fields to

be compensated – rather than moments of the compensation gradient

pulse – and thus scale the pulsed gradient moment with the TE such

that a determined index is valid for all TEs). The order of the EPI scans

acquired with different TEs were also pseudo-randomized across

participants.

The EPI reference scan and the in-house FM acquisitions were

repeated at the end of the scanning session in order to assess the sta-

bility of z-shimming across time.

2.3 | Data acquisition

All measurements were performed on a 3 T whole-body Siemens

Prisma MRI System (Siemens, Erlangen, Germany) equipped with a

whole-body radio-frequency (RF) transmit coil and 64-channel RF

head-and-neck coil and a 32-channel RF spine-array, using the head

coil element groups 5–7, the neck coil element groups 1 and 2, and

spine coil element group 1 (all receive-only).

EPI acquisitions were based on the z-shim protocol developed by

Finsterbusch et al. (2012) that employed a single, slice-specific gradi-

ent pulse for compensating through-slice signal dephasing. EPI vol-

umes covered the spinal cord from the second cervical vertebra to

the first thoracic vertebra and were acquired with the following

parameters: slice orientation: transverse oblique; number of slices: 24;

slice thickness: 5 mm; field of view: 128 � 128 mm2, in-plane resolu-

tion: 1 � 1 mm2; TR: 2312 ms; TE: 40 ms; flip angle: 84� (chosen

based on our repetition time of 2312 ms and the cervical cord gray

matter T1 estimate of �1000 ms at 3 T; Smith et al., 2008); GRAPPA

acceleration factor: 2; partial Fourier factor: 7/8, phase-encoding

direction: anterior-to-posterior (AP), echo spacing: 0.93 ms, band-

width per pixel: 1220 Hz/Pixel; additionally, fat saturation was

employed. The EPI reference scan (TE: 40 ms, total acquisition time:

55 s) was acquired with 21 equidistant z-shim moments compensat-

ing field inhomogeneities between +0.21 and � 0.21 mT/m (in steps

of 0.021 mT/m).

The vendor-based FM (total acquisition time: 4.31 min) was

obtained using the 2D GRE sequence provided by Siemens with

two echoes per shot (TE 1: 4.00 ms; TE 2: 6.46 ms; slice orientation:

sagittal (parallel to the normal vector of the axial EPI slices); slice

number: 32; slice thickness: 2.2 mm; field-of-view: 180 � 180 mm2;

in-plane resolution: 1 � 1 mm2; TR: 500 ms; flip angle: 50�, band-

width per pixel of 1030 Hz/pixel). Additionally, an in-house FM

based on a 3D multi-echo FLASH sequence with multiple gradient

echoes acquired at short inter-TEs was acquired, which yielded a

superior signal-to-noise ratio at a reduced overall scan time. This

contained 12 bipolar gradient echoes (which allowed for shorter

inter-echo spacings; note that potential image shifts were avoided

by a multi-echo navigator scan without phase encoding right at the

start of image acquisition; a phase correction between the odd and

even echoes was performed by the vendor's Ice reconstruction

pipeline), a TE increment/difference of 1.3 ms, fat suppression RF

pulses with corresponding spoiler gradients before each slab-

selective excitation, a repetition time of 32 ms, a flip angle of 15�,

bandwidth per pixel of 1030 Hz/pixel, and sagittal slice orientation

(parallel to the normal vector of the axial EPI slices). The in-plane

and partition resolutions of this in-house FM were 1 � 1 mm2 and

2.2 mm, respectively, with corresponding fields-of-view of

180 � 180 � 70.4 mm3. A total scan time of less than 2 min was

achieved by the application of GRAPPA (an acceleration factor of

2 was used in PE dimension). The frequency offset Δν0 in each voxel

was extracted from a linear fit to the unwrapped phases of all echoes

(unwrapping of phase jumps exceeding +/� Pi was performed using a
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simple algorithm; due to the employed short echo and inter-echo

times, this unwrapping could be applied because problems of noisy

phase jumps or an undersampling of the phase evolution were largely

absent).

A high-resolution T2-weighted image was acquired using a 3D

sagittal SPACE sequence as recently recommended (Cohen-Adad

et al., 2021; 64 sagittal slices; resolution: 0.8 � 0.8 � 0.8 mm3; field-

of-view 256 � 256 mm2; TE: 120 ms; flip angle: 120�; TR: 1500 ms;

GRAPPA acceleration factor: 3; acquisition time: 4.02 min).

2.4 | Selection of slice-specific z-shim moments

2.4.1 | Manual selection

The researcher carrying out the data acquisition (MK) determined the

z-shim moment with the highest signal intensity in the spinal cord for

each slice by visual inspection (i.e., for each of the 24 slices, the

researcher looked at all 21 volumes – each volume reflecting an acqui-

sition with one z-shim moment – in order to determine the “optimal”
z-shim moment for each slice). This selection process took �10 min

per participant and was carried out for all 48 participants, that is, in

both subgroups of 24 participants.

2.4.2 | Automated selection

The necessary scans for the automated selection (EPI reference-scan

for EPI-based selection; vendor-based FM and T2-weighted scan for

FM based selection) were sent from the scanner console to the online

calculation computer (OS: Ubuntu 18.04, CPU: Intel Core(TM)

i7-3770K 3.50GHz, RAM: 16 GB, Mainboard: Gigabyte Z77X-UD3H)

using the scanner console's in-built network connection. In-house

MATLAB (The Mathworks Inc., 2019) scripts utilizing tools from

dcm2niix (version 1.0.20180622; Li et al., 2016; https://github.com/

rordenlab/dcm2niix), SCT (version 3.2.7; De Leener et al., 2017;

https://spinalcordtoolbox.com/en/stable/), and FSL (version 5.0;

Jenkinson et al., 2012; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) were

employed to determine the optimal z-shim moment for each slice.

These values were then sent back to the scanner console in a text file

that is read by the z-shim sequence. An overview of the automated

methods is given in Figure 1 (please note that the z-shim selection

process is automated and does not require any input from the user).

EPI-based selection

In a subsample of 24 participants, the EPI z-shim reference-scan was

used to determine the optimum z-shim moments. The EPI z-shim

reference-scan – consisting of 21 volumes (each volume

(a)

(b)

F IGURE 1 Schematic depiction of automated z-shim methods. After the acquisition of the necessary scans for each method (z-shim
reference EPI for EPI-based approach, T2-weighted image and field map for field map based approach), DICOM images were exported to an
online calculation computer, and converted to NIfTI format before further processing. (a) EPI-based selection. The z-shim reference scan was
then averaged across its 21 volumes (one volume per z-shim moment; three volumes are depicted here as mid-sagittal sections to illustrate the
varying signal loss) and the resulting mean image was segmented (the segmentation is shown here as a transparent red overlay for display
purposes). The mean signal intensities for each slice and z-shim moment were extracted from the segmented cord, resulting in a 24 � 21 signal
intensity matrix (slices�volumes). For each slice, the z-shim value (i.e., the corresponding index in the reference scan) resulting in the maximum
intensity was selected. (b) Field map based selection. A high-resolution T2-weighted image was segmented and used to determine the field map

voxels to be included in the fitting procedure (the segmentation is shown as a transparent red overlay for display purposes). The gray and the
black boxes depict the EPI coverage on the T2-weighted image and field map, respectively. Voxels within a 9 mm thick slab (i.e., nine transversal
field map slices, corresponding to a 5 mm EPI slice +2 mm on each side) were included in a slice-wise fitting procedure. The green lines on the
field map indicate the input volume for fitting an exemplary target slice (dashed green line). Exemplary transversal slices are also shown, with the
red line outlining the spinal cord. Slice-wise fitting, including three linear field coefficients (Gx, Gy, and Gz) along the main axes of the imaging
volume and a spatially homogenous field term (field offset), was repeated over slices and the z-shim (Gz) moments corresponding to the center of
the EPI slices were selected
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corresponding to one z-shim moment) with 24 slices each – was then

averaged over the 21 volumes (i.e., over all z-shim moments) and the

resulting mean image was automatically segmented using the PropSeg

approach implemented in SCT (De Leener et al., 2014). Based on

experience from pilot experiments, we built in several fail-safes

(i.e., systematically changing the arguments of SCT's PropSeg function

that affect the propagation in the z-direction) in order to ensure that

the segmentation would propagate across the entire slice stack; this

possibility to automatically adjust parameters in case of failure was

also the reason that – out of SCT's segmentation algorithms – we

chose PropSeg instead of DeepSeg. We used the mean image for seg-

mentation because we wanted to ensure that image quality was suffi-

cient for automatic segmentation of the spinal cord and because the

averaging of volumes acquired during different breathing cycles

avoids a bias towards one respiratory state as could occur with single

volumes. In post hoc investigations regarding the suitability of using

the mean EPI image for segmentation, we (i) used a maximum image

instead of a mean image as the input for segmentation and (ii) used a

segmentation obtained from the T2-weighted image (registered to the

EPI segmentation), but both of these alternative approaches resulted

in highly similar results compared to our original approach (data not

shown). Using the automatically generated spinal cord mask, the mean

signal intensities for each slice and z-shim moment were extracted,

resulting in a 24 � 21 matrix, from which the z-shim moment yielding

the maximum intensity across the cord mask was determined for each

slice. The average run-time for the execution of the selection code

was 15.6 s (range across the entire sample: 7.7–62.3 s), with the varia-

tion mostly being due to the number of PropSeg runs needed to

achieve complete propagation. The interested reader can assess the

quality of the EPI-based spinal cord segmentation via a quality-control

HTML-report shared together with our data-set (see section 2.8).

FM–based selection

In another subsample of 24 participants, sagittal FMs (acquired with

the same angulation as EPI data) were used to determine the optimum

z-shim moments; note that FMs had anisotropic voxels, as (i) a high

in-plane resolution of the sagittal FM is necessary in order to obtain

sufficient information about the gradient in the through-slice direction

of the EPI (i.e., foot-head) and (ii) the left – right direction (where vox-

els were largest) is expected to have the least field variation and is

thus least sensitive to resolution. First, a spinal cord mask was gener-

ated via a PropSeg-based automatic segmentation of each partici-

pant's T2-weighted image because a high-quality segmentation of the

FM magnitude image was not possible due to the sagittal slice thick-

ness of 2.2 mm as well as the poor image contrast between spinal

cord and cerebrospinal fluid (note that since the T2-weighted image

and FM were well aligned and acquired right after each other we did

not carry out a separate registration step). FM based (from now on

referred to as FM-based) z-shim moments were then calculated for

each EPI slice using a linear least-squares fit of a set of spatial basis

functions to the measured FM (which was smoothed with an isotropic

1 mm Gaussian kernel prior to the calculation). The spatial basis func-

tions consisted of three linear field terms along the main imaging axes

and a spatially homogenous field term, representing a field offset

(although obtaining x- and y-gradients is not necessary for calculating

the through-slice field component, their inclusion can be seen as a

step towards full slice-wise shimming [see also Islam et al., 2019] and

obtaining y-gradients is necessary for determining the effective TE

[see below]). Only voxels within the spinal cord mask contributed to

the fitting procedure, which included voxels within a 9 mm thick slab

(i.e., nine transversal FM slices) centered on the center of the corre-

sponding EPI slice. The slab was chosen to be thicker than the EPI

slice (i.e., an additional 2 mm either side) in order to give more robust

estimates of the through-slice field gradient. The fitted through-slice

linear field term (Gz) was taken to represent the local field gradient

causing through-slice signal dephasing within the corresponding EPI

slice. The resulting dephasing gradient moment of Gz �TE was rounded

to the nearest of the 21 z-shim compensations available in the EPI

protocol and then used for subsequent EPI acquisitions. The average

time for the execution of the selection code was 36.1 s (range across

the entire sample: 31.5–53.3 s).

2.5 | Preprocessing

All images were visually inspected before the analysis for potential

artefacts. Preprocessing steps were performed using MATLAB (ver-

sion 2021a), FSL (version 6.0.3), and SCT (version 4.2.2; please note

that a more recent version of SCT was used for preprocessing (4.2.2)

compared to the automated analysis during data acquisition (3.2.7),

due to the availability of releases at the respective times). The reason

we carried out preprocessing steps and did not work only on the raw

data is two-fold: (i) we were interested in z-shim effects on time-

series metrics (tSNR) and thus needed to motion-correct the EPI time-

series data and (ii) we were performing most analyses in template

space and thus need to bring structural and functional data to this

space (requiring segmentation and registration-to-template steps). We

only carried out the necessary amount of preprocessing (motion cor-

rection and registration to template space) needed to assess the

effects of slice-specific z-shimming and thus refrained from perform-

ing additional steps such as spatial smoothing and physiological noise

correction. Please note that – depending on context – we are using

the terms “fMRI data” and “EPI time-series data” interchangeably.

2.5.1 | Motion-correction of EPI time-series data

A two-step motion correction procedure (with spline interpolation)

was applied to the EPI time-series data. Initially, the mean of 750 vol-

umes (250 volumes under each of the three different conditions, that

is, no z-shimjmanual z-shimjautomated z-shim) was calculated in order

to serve as the target image for the first step of motion correction;

averaging across all three conditions eliminates a bias towards any

one condition with respect to the target image. Based on this mean

image, the spinal cord was automatically segmented in order to pro-

vide a spinal cord centerline that then served as input for creating a

cylindrical mask (with a diameter of 30 mm). This mask was employed

during the motion-correction procedure in order to ensure that
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regions moving independently from the cord would not adversely

affect motion estimation. Slice-wise motion correction with a second

degree polynomial regularization in the z-direction was then per-

formed (De Leener et al., 2017). In the second step, a new target

image was obtained by calculating the mean of motion-corrected

images from the first step and the raw images were realigned to this

new target image, using the identical procedure as described above.

Please note that the data obtained under different TEs (25 images per

TE and condition) were also registered to this target image using the

same procedure.

Under the “no z-shim” condition, especially the inferior slices suf-

fered from severe signal drop-outs that hampered the quality of the

slice-wise motion correction algorithm by inducing “artificial” move-

ments that were indeed not present in the raw data. This could impact

the tSNR calculation negatively by artificially increasing the standard

deviation across time and thus give an inflated estimate of the benefi-

cial effects of z-shimming. Therefore, in a control analysis, we also

performed a “censoring” of outlier volumes before the tSNR calcula-

tion. The outlier volumes were defined using dVARS (the root mean

square difference between successive volumes) and refRMS (root

mean square intensity difference of each volume to the reference vol-

ume) as metrics using FSL's “fsl_motion_outliers” tool. Volumes pre-

senting with dVARS or refRMS values two standard deviations above

the mean values of each run were selected as outliers. These outlier

volumes were then individually modelled as regressors of no interest.

2.5.2 | Segmentation

T2-weighted images were initially segmented using the DeepSeg

approach implemented in SCT (Gros et al., 2019). This initial segmen-

tation was used for smoothing the cord along its centerline using an

anisotropic kernel with 8 mm sigma. The smoothed image was again

segmented in order to improve the robustness of segmentation. The

quality of the segmentations was assessed visually and further manual

corrections were not deemed to be necessary in any participant.

For functional images, a manual segmentation was used instead

of an automated procedure, as the registration to template space

relied on segmentations and we therefore aimed to make this prepro-

cessing step as accurate as possible. For the single-volume EPIs, the

single volumes under the three different z-shimming conditions were

averaged and this across-condition mean image was used to manually

draw a spinal cord mask. For the EPI time-series, all motion-corrected

volumes were averaged and a spinal cord mask was manually drawn

based on this mean image (please note that this mask was also used

for the normalization of the volumes with different TEs). These manu-

ally drawn masks were also used to calculate results in native space.

2.5.3 | Registration to template space

SCT was utilized for registering the EPI images to the PAM50 tem-

plate space (De Leener et al., 2018); PAM50 is an MRI template of the

spinal cord and brainstem available in SCT for multiple MRI contrasts.

The T2-weighted image of each participant was brought into template

space using three consecutive registration steps: (i) using the spinal

cord segmentation, the spinal cord was straightened, (ii) the automati-

cally determined labels of vertebrae between C2 and C7 (manually

corrected where necessary) were used for vertebral alignment

between the template and the individual T2-weighted image, and

(iii) the T2-weighted image was registered to the template using nonri-

gid segmentation-based transformations.

In order to bring the functional images to template space, the

template was registered to the functional images using nonrigid trans-

formations (with the initial step using the inverse warping field

obtained from the registration of the T2-weighted image to the tem-

plate image). The resulting inverse warping fields obtained from this

registration (from native EPI space to template space) were then

applied to the respective functional images (e.g., single EPI volumes,

mean EPI volume, tSNR maps) to bring them into template space

where statistical analyses were carried out.

Finally, we also brought each participant's FM into template space

in order to visualize the average B0 field variation across participants.

Each participant's FM was first resampled to the resolution of the

T2-weighted image before the warping field obtained from the regis-

tration to template space was applied to the FM.

2.5.4 | EPI signal extraction

In order to assess the effects of z-shimming, we obtained signal inten-

sity data from each EPI slice. When analyses were carried out in

native space and were based on the entire spinal cord cross-section,

we used the above-mentioned hand-drawn masks of the spinal cord

and obtained one value per slice (average across the entire slice). In

contrast, when analyses were carried out in template space or were

based on gray matter regions only, we made use of the available

PAM50 template masks of the entire spinal cord or the gray matter

(with the probabilistic gray matter masks thresholded at 90%); again,

we obtained one average value per mask and slice. Please note that in

addition to reporting p values from statistical tests, we also report

(where appropriate) the percentage difference between conditions

and the associated 95% confidence interval (CI) as estimated via

bootstrapping.

2.6 | Statistical analysis

2.6.1 | Replication and extension of previous
findings

Direct replication

In a first set of analyses (across all 48 participants), we aimed to repli-

cate the findings of Finsterbusch et al. (2012). We, therefore, used

template space single-volume EPI data acquired under no z-shim and

manual z-shim conditions, calculated the individual EPI signal intensity
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per slice and reported the mean of signal intensity across all slices as

well as the variation of signal intensity across all slices; for the latter,

we initially used the variance (as done by Finsterbusch et al., 2012),

but after the replication of their results we employed the coefficient of

variation for the remainder of the manuscript (due to it being a stan-

dardized measure of variability). Both descriptive changes (percent

increase / decrease), as well as statistical values (based on paired

t tests), were reported for the condition comparison. To additionally

investigate how robust these findings were, we complemented these

single-volume analyses – that might be affected by various noise

sources – by the same analysis approach, but now carried out on an

EPI volume that is the average of a time-series of 250 motion-

corrected EPI volumes (acquired both for no z-shim and manual z-

shim; Supplementary Material). In order to demonstrate that neither

of these results were impacted by registration to template space, we

also reported native space results in the Supplementary Material.

Slice-by-slice characterization of z-shim effects

Finsterbusch et al. (2012) already demonstrated that the improvement

due to slice-specific z-shimming varies spatially along the rostro-

caudal direction. We therefore reasoned that it might be informative

to also quantify the benefit for slices with various degrees of signal-

loss (obviously, such an analysis could only be performed in native

space). We first did this in a descriptive manner by reporting (i) the

maximally found percentage increase in signal intensity due to z-

shimming and (ii) the proportion of slices that differed by 0, 1, 2, 3,

and >3 z-shim steps from the “neutral” setting of no z-shim (i.e., the

number of slices [divided by the total number of slices] that had (i) a

value of 11 (no z-shim applied) and thus a step difference of 0 com-

pared to the ‘neutral’ value of 11, (ii) a value of 10 or 12 and thus a

step-difference of 1 compared to the ‘neutral’ value of 11, (iii) a value

of 9 or 13 and thus a step-difference of 2 compared to the ‘neutral’
value of 11, etc.). In the Supplementary Material, we then followed

this up more formally with an analysis where we categorized slices

according to the manually chosen z-shim value and compared the

signal intensity in these categories between no z-shim and manual

z-shim both descriptively (using % signal intensity difference) and

inferentially using a 2 � 5 repeated-measures ANOVA (factor 1: con-

dition with two levels: no z-shim, manual z-shim; factor 2:

step-difference with five levels: 0, 1, 2, 3, >3). We tested for a main

effect of condition, a main effect of step-difference and an interaction

between these two factors; post hoc t tests were Bonferroni cor-

rected. To estimate the robustness of the results from these analyses

(which were based on single EPI volumes), we repeated them on the

average across the 250 motion-corrected EPI volumes

(Supplementary Material).

z-shim effects across different TEs

We also aimed to assess the effects of z-shimming at TEs clearly

shorter (30 ms; fastest TE possible with the employed partial-Fourier

factor of 7/8) and longer (50 ms; same distance to our standard TE of

40 ms) than the estimated T2* in the cervical spinal cord at 3 T

(�40 ms; Barry et al., 2019), considering that such choices might often

be necessary in fMRI studies. We, therefore repeated the analyses

described in section “Direct replication” (assessing the mean of signal

intensity across all slices as well as the variation of signal intensity

across all slices for no z-shim and manual z-shim conditions) on the

template-space EPI data obtained with TEs of 30 ms and 50 ms, both

for single-volume data and (in the Supplementary Material) for an

average of the 25 volumes acquired at each of the different TEs.

z-shim effects in gray matter regions

The effects reported in Finsterbusch et al. (2012) were obtained from

averages across the entire cross-section of the spinal cord, thus mix-

ing gray and white matter signals. However, with the availability of

probabilistic gray matter maps (via SCT, see https://github.com/

spinalcordtoolbox/PAM50; De Leener et al., 2017) it is now possible

to investigate whether the signal-drop outs and their mitigation via z-

shimming are also present in the gray matter (which is the relevant tis-

sue for fMRI) and might even vary spatially (i.e., between dorsal and

ventral horns). In order to address these two questions, we ran a

2 � 2 repeated-measures ANOVA (factor 1: condition with two levels:

no z-shim, manual z-shim; factor 2: anatomical location: dorsal horn,

ventral horn) where we tested for a main effect of condition, a main

effect of location and an interaction between the two factors

(Supplementary Material); this was followed up by post hoc

Bonferroni-corrected t tests (where we also report % increase for the

direct comparisons). As underlying metrics, we tested both the mean

of signal intensity across all slices and the variation of signal intensity

across slices. To assess robustness, the above-described analyses

(based on single-volume EPIs) were repeated based on the average

across the 250 motion-corrected volumes. As a negative control, we

also performed the same analyses as above, but now splitting the spi-

nal cord gray matter into left and right parts.

z-shim effects on time-series data

The analyses described above, as well as the results reported by Fin-

sterbusch et al. (2012) were solely based on measures of signal inten-

sity. In order to directly investigate the potential benefit of z-

shimming for spinal cord fMRI, we also investigated its effect on the

temporal signal-to-noise ratio (tSNR, i.e., temporal mean divided by

temporal standard deviation on a voxel-by-voxel basis) of motion-

corrected data (250 volumes). We are aware that effects on tSNR do

not allow for a perfect one-to-one extrapolation to effects on BOLD

sensitivity, but we nevertheless believe this to be an adequate proxy

measure due to the following reasoning (De Panfilis &

Schwarzbauer, 2005; Deichmann et al., 2002; Poser et al., 2006): since

the contrast-to-noise ratio (CNR) of BOLD responses is proportional

to the product of the effective TE and tSNR and the effective TE does

not depend on the magnetic field gradient in the z-direction, any tSNR

gain obtained by z-shimming should reflect a corresponding relative

gain in BOLD-CNR in arbitrary task-based fMRI studies.

Following up on section “z-shim effects in gray matter regions”,
we only assessed this in the region most relevant for fMRI, that is, the

KAPTAN ET AL. 7

https://github.com/spinalcordtoolbox/PAM50
https://github.com/spinalcordtoolbox/PAM50


gray matter of the spinal cord. We compared mean tSNR across all

slices, as well as variation of tSNR across slices, between no z-shim

and manual z-shim conditions: we descriptively reported % increase

and also tested for significant differences using paired t tests.

Since signal loss in the most caudal (inferior) slices in the no z-

shimming condition could negatively impact the motion correction

(as this is regularized along z using a second-degree polynomial), we

performed the above-mentioned analyses also after “censoring” of

outlier volumes (Supplementary Material; see also section 2.5.1).

As we only acquired 25 volumes for the short and long TEs due

to time constraints, we did not calculate TE-dependent z-shim effects

on tSNR (as these would be based on unstable tSNR estimates).

2.6.2 | Automating slice-specific z-shimming

EPI-based automation

Next, we investigated the performance of the EPI-based automated

approach for selecting z-shim values, both in comparison to the condi-

tions of no z-shim and manual z-shim; this was carried out in a sub-

group of 24 participants. For the sake of brevity, we (i) only reported

our effects of interest – signal intensity based on single EPI volumes

(Supplementary Material) and tSNR based on EPI time-series – in the

spinal cord gray matter (i.e., ignoring whole-cord data) and

(ii) employed direct comparisons of conditions without using an initial

omnibus test. Thus, in this subgroup of 24 participants we investi-

gated: (i) no z-shim versus manual z-shim, (ii) no z-shim versus auto z-

shim, and (iii) manual z-shim versus auto z-shim. We reported % dif-

ferences, as well as Bonferroni-corrected p values from paired t tests,

again using mean and variation metrics.

FM-based automation

We investigated the performance of the FM-based automated

approach for selecting z-shim values (based on a different subgroup of

24 participants) using the identical procedure as outlined in the previ-

ous paragraph.

However, since we discovered that the performance of the FM-

based approach was slightly inferior compared to the manual

approach, we followed this up with several post hoc investigations

(detailed in the Supplementary Material). Briefly, we first used the

vendor-based FM and assessed the contributions of (i) the choice of

mask for identifying the spinal cord in the FM phase data, (ii) various

choices of parameters employed in the fitting process of the gradient

field, (iii) field-gradients in the AP-direction, and (iv) inhomogeneity-

induced mis-localizations between EPIs and FM. Second, we

substituted the vendor-based FM by the in-house FM and compared

their performance. Third, we assessed the general reliability of esti-

mating z-shim values from FM data by repeating the fitting process

on a second in-house FM that was acquired at the end of the experi-

ment. While all these attempts aimed to improve the estimation of

the through-slice field inhomogeneity, a final modification of the

approach involved a histogram-based evaluation of the observed field

gradients in order to improve the resulting signal intensity.

Comparing all three approaches

So far, the automated approaches were compared to the manual

approach within each subgroup of 24 participants. We next turned to

directly comparing the approaches, using all 48 participants.

First, we used two-sample t tests (with Bonferroni-corrected

two-tailed p values) in order to assess the following, based on gray

matter tSNR from EPI time-series (using both the mean as well as the

variation of tSNR across all slices): (i) comparing the baselines of no z-

shim between the two groups, (ii) comparing the improvement of

manual z-shim versus no z-shim between the two groups,

(iii) comparing the improvement of auto z-shim versus no z-shim

between the two groups, and (iv) comparing the difference of manual

z-shim versus auto z-shim between the two groups. In complementary

analyses, we also assessed the similarity between the automated

approaches and the manual approach in terms of the actually chosen

z-shim step using rank-based correlation and Euclidean distance

(Supplementary Material).

Second, we assessed the stability of z-shim effects (based on

either of the automated approaches as well as the manual approach)

over time in all 48 participants. We were able to do this since we

acquired an EPI reference-scan not only at the beginning of the exper-

iment, but also at the end (�60 min later). Using these reference

scans, we “artificially reconstructed” an EPI volume from each of the

reference scans by selecting the corresponding volume for each slice

based on the chosen z-shim values, no matter whether a participant

was in the EPI-based or FM-based automation group. Importantly, we

chose the “originally” determined z-shim values to reconstruct “artifi-
cial volumes” from both the first and the second reference scan.

These volumes were then realigned to the mean of the motion-

corrected time series. The warping fields that were obtained during

the normalization of motion-corrected mean image to the template

space were used to bring these volumes to the template space. We

then compared gray matter signal characteristics (mean and variation

of signal intensity across slices, respectively) for both time points

using the various conditions via paired t tests with Bonferroni

correction.

2.7 | Validation of EPI-based automation approach

In order to validate the EPI-based automation method (which per-

formed at least as well as the manual approach), we obtained an inde-

pendent, externally acquired data set of spinal GE-EPI data. These

data were acquired by VO, RHD, and JCWB as part of a larger project

on pharmacological aspects of cortico-spinal pain modulation (Oliva

et al., 2022). Here, we report results based on analyzing the z-shim

reference data from 117 acquisitions (39 participants, each with three

visits).

The EPI reference scan (total acquisition time: 54 s) was acquired

using a 2D EPI sequence with the following parameters: slice orienta-

tion: axial; slice number: 43 (20 slices for the spinal cord and 23 slices

for the brain, that is, concurrent cortico-spinal data acquisition); slice

thickness: 4 mm; slice gap: 25%–50% (depending on the length of
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neck / size of head); field of view: 170 � 170 mm2; in-plane resolu-

tion: 1.77 � 1.77 mm2; TR: 3000 ms; TE: 39 ms; flip angle: 90�;

GRAPPA acceleration factor: 2; z-shim resolution and range: 15 equi-

distant moments between �4.9 and 4.9 mT m�1ms (in steps of 0.7

mT m�1ms). The high-resolution T1-weighted images that were used

for registration to template space were acquired with a 3D sagittal

MPRAGE sequence with the following parameters: 260 sagittal slices;

field-of-view: 320 � 260 mm2; percentage phase field of view:

81.25%; voxel size: 1 � 1 � 1 mm3; TE: 3.72 ms; flip angle: 9�; TR:

2000 ms; inversion time: 1000 ms; GRAPPA acceleration factor: 3. All

measurements were conducted on 3 T whole body Siemens Skyra

system.

As the validation dataset did not include volumes that were

acquired under different z-shimming conditions, for each participant

we “artificially reconstructed” an EPI volume from their reference

scan by selecting the corresponding volume for each slice based on

the chosen z-shim values (see also section “Comparing all three

approaches”). We created three different EPI volumes for each partic-

ipant and visit: (i) a “no z-shim” volume (based on an index of 8 for

each slice, which corresponds to a z-shim moment of 0 mT m�1ms),

(ii) a “manual z-shim” volume (based on the z-shim values manually

selected by VO when the experiment was carried out), and (iii) an

“automated z-shim” volume (based on the above-described EPI-based

automation carried out post hoc).

To bring these volumes to template space for each participant

and visit, we applied the following steps to the T1-weighted anatomi-

cal data: (i) segmenting the T1 image using SCT's DeepSeg approach

(Gros et al., 2019), (ii) automatically labelling the vertebral levels C2–

C7, and (iii) bringing the T1 image to template space using nonrigid

transformations. Then, we applied the following steps to the recon-

structed EPI volumes: (i) calculating the average of these three vol-

umes (one volume for no z-shim, manual z-shim and automated z-

shim each), (ii) segmenting the average (using the PropSeg approach),

(iii) registering this average EPI to the template space (with the initial

step of using the inverse warping field obtained from the registration

of the T1-weighted image to the template image), (iv) registering indi-

vidual EPI volumes to the template space using the warps obtained

from the previous step (in order to be unbiased), and (v) in template

space obtaining the signal over slices using the PAM50 cord mask.

Four individual data sets were excluded due to artifacts in the

images (three data sets) and a wrong placement of the slice stack (one

data set). Our final sample thus consisted of 113 measurements from

38 participants. Please also note that for preprocessing of data from

one individual data set, we used a more recent version of SCT (version

5.2.0) due to a bug present in version 4.2.2.

Finally, we compared whole cord signal characteristics (mean and

variation of signal intensity across slices) for (i) no z-shim versus man-

ual z-shim, (ii) no z-shim versus auto z-shim, and (iii) manual z-shim

versus auto z-shim via paired t tests with Bonferroni-correction and

also reported % differences. For sake of simplicity, we treated each

visit as a separate data point, thus ignoring the within-subject depen-

dency structure. We also reported the results of the same analyses

for gray matter signal characteristics (Supplementary Material).

2.8 | Open science

The code that was run during the experiment for the automated selec-

tion of z-shim moments (both EPI-based and FM-based), as well as all

the code necessary to reproduce the reported results, is publicly avail-

able on GitHub (https://github.com/eippertlab/zshim-spinalcord).

Please also see the file Methods.md in this repository for a version of

the Methods section with links to specific parts of the processing and

analysis code. The underlying data are available in BIDS-format via

OpenNeuro (https://openneuro.org/datasets/ds004068), with the

exception of the external validation dataset obtained by VO, RHD and

JCWB. The intended data-sharing via OpenNeuro was mentioned in

the Informed Consent Form signed by the participants and approved

by the ethics committee of the University of Leipzig.

3 | RESULTS

3.1 | Replication and extension of previous
findings

3.1.1 | Direct replication

Our first aim was to replicate earlier findings that demonstrated a sig-

nificant increase of mean signal intensity and a decrease of signal

intensity variation across slices via z-shimming. In our data set we

were able to replicate these findings (Figure 2a), by also showing a sig-

nificant increase of mean signal intensity (t(47) = 19.97, p < .001, dif-

ference of 14.8%, CI: 13.4%–16.2%) and a significant reduction of

signal intensity variation across slices, either using the variance as a

metric (as the to-be-replicated study did; t(47) = 18.03, p < .001, dif-

ference of 67.8%, CI: 64%–71.2%) or using the coefficient of variation

(as we did in all further analyses; t(47) = 23.97, p < .001, difference of

51%, CI: 47.7%–53.8%).

3.1.2 | Slice-by-slice characterization of z-shim
effects

As depicted in Figure 2a, the improvement afforded by slice-specific

z-shimming periodically varies along the rostro-caudal direction in a

consistent manner across participants (for a depiction of individual

data, see Supplementary Figure S1). In a next step, we thus investi-

gated not only what the average benefit of z-shimming is across the

entire slice-stack, but also quantified the benefit for slices with vari-

ous degrees of signal-loss. We first asked what the maximal signal

intensity gain is per participant and observed that this varied between

72% and 209%, with an average across participants of 122% (note

that this analysis is based on the most-affected slice per participant).

To descriptively characterize how many slices were affected by signal

drop-out to what degree across participants, we quantified for each

slice by how much the manually chosen z-shim value (between 1 and

21) differs from that of the no z-shim condition (a constant value of
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11). We observed that on average 20% of slices had no difference,

32% of slices had a 1-step difference, 22% of slices had a 2-step dif-

ference, 11% of slices had a 3-step difference, and 16% of slices had

more than a 3-step difference. In this last category, the most extreme

possibly value (i.e., a 10-step difference) occurred only in 1% of the

slices across the whole sample, demonstrating that the range chosen

here for the z-shim reference scan is appropriate. As expected, signal

intensity improvements became more pronounced with the increasing

z-shim step size: 0% difference for a 0-step-difference, 5% different

for a 1-step-difference, 18% difference for a 2-step-difference, 41%

difference for a 3-step-difference and 122% difference for a > 3-step-

difference (Figure 2b); a statistical characterization of this relation can

be found in the Supplementary Material.

3.1.3 | z-shim effects across different TEs

In addition to the TE of 40 ms (which was the default across this

study), we also investigated the effects of z-shimming at shorter

(30 ms) and longer (50 ms) TEs. Focusing on mean signal intensity and

signal intensity variation across slices, we observed a beneficial effect

of z-shimming at the TE of 30 ms (mean signal intensity: t(47) = 18.82,

p < .001, difference of 9.5%, CI: 8.6%–10.5%; signal intensity varia-

tion across slices: t(47) = 21.42, p < .001, difference of 48%, CI:

44.2%–50.7%) as well as at the TE of 50 ms (mean signal intensity:

t(47) = 16.09, p < .001, difference of 11.6%, CI: 10.2%–12.9%; signal

intensity variation across slices: t(47) = 22.20, p < .001, difference of

44.7%, CI: 41.4%–47.7%).

(a) (c)

(b) (d)

F IGURE 2 Replication and extension of previous results. (a) Direct replication of Finsterbusch et al. (2012). The mid-sagittal EPI sections
consist of the group-average single volume EPI data in template space of 48 participants acquired under different conditions (no z-shim and
manual z-shim); red lines indicate the spinal cord outline. On the right side, group-averaged signal intensity in the spinal cord is shown for no (red)
and manual (blue) z-shim sequences along the rostro-caudal axis of the cord. The solid line depicts the mean value and the shaded area depicts
the standard error of the mean. (b) Slice-by-slice characterization of z-shim effects. Bar graphs are grouped according to the absolute step size
difference in the z-shim indices (x-axis) between no z-shim (red) and manual z-shim (blue) selections. The bars depict the mean signal intensity in
the spinal cord for 48 participants for no and manual z-shim single volume acquisitions in native space. The vertical lines depict the standard error
of the mean and the gray lines indicate participant-specific mean signal intensity changes between the no and manual z-shim conditions. (c) Z-
shim effects in gray matter regions. Signal intensity changes in different gray matter regions (dorsal horn, ventral horn) under different conditions
(no z-shim, manual z-shim) are depicted via box-plots and raincloud plots. For the box plots, the median is denoted by the central mark and the
bottom and top edges of the boxes represent the 25% and 75%, respectively, with the whiskers encompassing �99% of the data and outliers
being represented by red dots. The circles represent individual participants and half-violin plots show the distribution of the gray matter intensity
values across participants. The thick gray lines show the mean signal intensity across participants in the dorsal and ventral gray matter under
different conditions. (d) Z-shim effects on time-series data. Group-average coronal tSNR maps for the no z-shim and manual z-shim conditions as
obtained from the motion-corrected EPI data in template space. The maps are overlaid onto the group-average mean image of the motion-
corrected EPI data and depict a tSNR range from 11 to 20. The green line marks the outline of the gray matter. In the right panel, the participant-
specific mean gray matter tSNR of the data acquired with and without z-shim are shown. Box plots are identical to those in C, the gray lines
indicate individual tSNR changes between both conditions and the half-violin plots show the distribution across participants
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3.1.4 | z-shim effects in gray matter regions

Next, we assessed whether z-shim effects might be present in the spi-

nal cord gray matter and might even vary between the dorsal and ven-

tral horns. An initially performed analysis of variance already indicated

significant effects of z-shimming in the gray matter, as well as

location-dependent effects of z-shimming (Figure 2c and Supplemen-

tary Material). Direct comparisons via Bonferroni-corrected paired

t tests revealed that there was a significant beneficial effect of z-

shimming on mean signal intensity in the dorsal horn (t(47) = 18.39,

p < .001, difference of 18.2%, CI: 16.3%–20.3%), as well as in the ven-

tral horn (t(47) = 17.05, p < .001, difference of 10.9%, CI: 9.8%–

12.1%), but that the beneficial effect of z-shimming was more evident

in the dorsal horn than in the ventral horn (t(47) = 7.43, p < .001).

These results are also in line with what can be observed visually in

Figure 2a, where drop-outs seem to be most pronounced in the dorsal

part of the cervical spinal cord (with the exception of caudal slices,

where the whole cord is affected). As a negative control, we also per-

formed the same analyses as above, but now splitting the spinal cord

gray matter into left and right parts: as expected, there were no signif-

icant differences between these two regions.

3.1.5 | z-shim effects on time-series data

Moving away from reporting single-volume signal intensity measures,

we next investigated the effect of z-shimming on the gray matter tem-

poral signal-to-noise ratio (tSNR) of motion-corrected time-series data

(250 volumes, acquired under no z-shim and manual z-shim, respec-

tively). We observed a significant increase in mean tSNR

(t(47) = 10.64, p < .001, difference of 11.9%, CI: 9.7%–14.2%), as well

as a significant reduction of tSNR variation across slices (t(47) = 11.01,

p < .001, difference of 26%, CI: 21.9%–30%), directly highlighting the

benefits for spinal fMRI (Figure 2d). In the most-affected slices, z-

shimming increased the tSNR by 28% on average, ranging from 1% to

155% across participants (this analysis also revealed that there was

one outlier where tSNR decreased by 26% for manual z-shimming

compared to no z-shimming).

3.2 | Automation of z-shimming

The previous results were all obtained using manually determined z-

shim values and we now turn to results obtained when automating

the z-shim selection process, for which we propose two methods: one

is based on obtaining these values from the EPI z-shim reference scan

(EPI-based) and one relies on calculating the necessary z-shim values

based on a FM (FM-based).

3.2.1 | EPI-based automation

In a subgroup of 24 participants, we first confirmed – using gray mat-

ter tSNR as obtained from motion-corrected time-series data – that

also in this sub-sample manual z-shimming resulted in a significant

increase in mean tSNR (t(23) = 7.37, p < .001, difference of 10%, CI:

7.4%–12.7%) and a significant decrease in tSNR variation across slices

(t(23) = 7.03, p < .001, difference of 27.2%, CI: 20.5%–33.8%). Most

importantly, we found a similarly beneficial effect when using our

automated approach (Figure 3 upper panel; see also Supplementary

Figure S3), that is, a significant increase in mean tSNR (t(23) = 8.69,

p < .001, difference of 11.3%, CI: 8.9%–13.9%) and a significant

decrease in tSNR variation across slices (t(23) = 7.04, p < .001, differ-

ence of 26%, CI: 19.4%–32.7%). When directly comparing the two

approaches to determine z-shim values, we observed no significant

difference, neither for mean tSNR (t(23) = 1.23, p = 0.70), nor for tSNR

variation across slices (t(23) = 0.61, p = 1), though a very slight benefit

for the automated compared to the manual method was apparent.

3.2.2 | FM-based automation

FM data demonstrate that the source of the signal drop-outs z-

shimming aims to compensate are B0 field inhomogeneities in the slice

direction that (i) are present where one would expect them based on

anatomical and theoretical grounds (i.e., close to the intervertebral

junctions and at the bottom of the field of view where the shim is

poorer) and (ii) are also consistent across participants (Supplementary

Figure S2). In the FM-based approach, we therefore used FM data for

z-shim calculation in a subgroup of 24 participants (different from the

ones used for the EPI-based approach described above). We first

confirmed – using gray matter tSNR as obtained from motion-

corrected time-series data – that also in this sub-sample manual z-

shimming resulted in a significant increase in mean tSNR (t(23) = 7.99,

p < .001, difference of 13.8%, CI: 10.6%–17.4%) and a significant

decrease in tSNR variation across slices (t(23) = 9.36, p < .001, differ-

ence of 24.6%, CI: 20.4%–29%). As expected, we also observed a ben-

eficial effect of our FM-based approach, which resulted in a

significant increase in mean tSNR (t(23) = 6.41, p < .001, difference of

9.6%, CI: 6.9%–12.9%) and a significant decrease in tSNR variation

across slices (t(23) = 8.30, p < .001, difference of 21.8%, CI:

17.4%–26.2%).

Unexpectedly though, despite this clear benefit, the performance

of the FM-based approach was slightly worse than using manually

determined z-shims (Figure 3 lower panel; see also Supplementary

Figure S3): this occurred for mean tSNR (t(23) = 3.86, p = .002), but

not for tSNR variation across slices (t(23) = 1.07, p = .88); please note

that all p values shown here and in the paragraph above are

Bonferroni-corrected for three tests.

In post hoc analyses carried out after the complete data-set was

acquired, we investigated several possibilities that might account for

this slightly poorer performance – all of these are explained in detail

in the Supplemental Material. Briefly, we investigated the influence of

(i) the choice of mask for data extraction, (ii) the choice of parameters

for the fitting process, (iii) the influence of field-gradients in the AP-

direction, and (iv) inhomogeneity-induced mis-localizations between

EPIs and FM. We also investigated whether the type of FM played a

role and whether z-shims could be reliably derived at all from FM
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data. These investigations aimed to improve the estimation of the

through-slice field inhomogeneities in the FM. However, it should be

noted that compensating the mean through-slice field inhomogeneity

of a slice may not result in the optimum signal intensity: a few

extreme values of the field inhomogeneity may shift the mean value

significantly, thereby decreasing the signal of the majority of these

voxels significantly; on the other hand, this shift may also not recover

significant signal in the voxels with the extreme values, yielding an

overall lower signal amplitude. To address this issue, a different

approach of determining the z-shim value was used that was based on

a histogram of the field gradients and aimed to reduce the influence

of extreme values. This approach led to a consistent improvement in

performance, although even this method still did not achieve the per-

formance of the manual selection.

3.2.3 | Comparing all three approaches

To extend the within-group analyses reported above (each with

N = 24) we next (i) formally compared the three approaches based on

the entire set of participants (N = 48) and (ii) investigated the general

question of how stable z-shim effects obtained via the three methods

are across an experiment.

First, and most relevant for fMRI, we used mean gray matter

tSNR to test for differences between the EPI-based and FM-based

groups. These analyses (using Bonferroni corrected two-sample

t tests) revealed that there was neither a significant difference

between the baselines of no z-shimming in the two groups (p = 1),

nor a significant difference between the improvement compared to

no z-shimming for either the manual (p = 0.38) or the automated

approaches in the two groups (p = 1). However, we did observe a sig-

nificant difference between manual z-shim versus auto z-shim in the

two groups (p = 0.003), indicating the slightly worse performance of

FM-based approach (see also Supplementary Figure S5). A second set

of analyses based on tSNR variation across slices showed no signifi-

cant differences between any of the approaches with all p values > .9.

The results of complementary analyses on how well the selected z-

shim values matched between the manual approach and each of the

automated approaches are reported in the Supplementary Material.

Second, we investigated how stable the beneficial effects of z-

shimming are across time. When comparing how well each of the three

z-shim methods performed against the case of no z-shimming in terms

of mean signal intensity, we observed that despite some differences

the beneficial effect of z-shimming was rather stable across time. More

specifically, we observed that (i) there was a significant difference

between the two time-points in the baseline condition of no z-shim

F IGURE 3 Performance of both automated methods. Top panel. EPI-based automation. Bottom panel. FM-based automation. In both
panels, the left-most plots show the group-averaged gray-matter tSNR for no (red), manual (blue), and automated (green) z-shim sequences along
the rostro-caudal axis of the cord. The solid line depicts the mean value and the shaded area depicts the standard error of the mean. Condition-

wise group-average tSNR maps of the transversal slices at the middle of each segment are shown in the second graphs from the left. The maps
are overlaid onto the group-average mean image of the motion-corrected EPI data and depict a tSNR range from 11 to 20. The outlines of the
thresholded gray matter mask are marked by green lines. The scatter plots to the right show gray matter tSNR for manual (x-axis) and automated
z-shim sequences (y-axis) plotted against each other (N = 24 for each automation subgroup). Bland–Altman plots show the gray matter tSNR for
manual z-shim plotted as the ground truth (x-axis) and the difference in gray matter tSNR between automated and manual sequences plotted on
the y-axis. The horizontal solid gray line represents the mean difference in the gray matter tSNR between the two (automated and manual)
sequences, and the dotted lines show the 95% limits of agreement (1.96 � standard deviation of the differences)
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(t(47) = 5.59, p < .001, with the first time point having significantly

higher mean signal compared to second one), (ii) that there was a slight

degradation in performance when comparing z-shim benefits against

no z-shimming between the second and the first reference scan (man-

ual: t(47) = 8.44, p < .001; EPI-based: t(47) = 9.70, p < .001; FM-based:

t(47) = 9.84, p < .001; thus similar across all three approaches) and

(iii) that all z-shim methods led to significant benefits not only in the

data acquired at the beginning (manual vs. no z-shimming:

t(47) = 22.35, p < .001, difference of 14%; EPI-based vs. no z-shimming:

t(47) = 22.38, p < .001, difference of 14%; FM-based vs. no z-shimming:

t(47) = 19.36, p < .001, difference of 11%) but also in the data acquired

temporally later from when the z-shims were determined (manual

vs. no z-shimming: t(47) = 18.52, p < .001, difference of 11%; EPI-based

vs. no z-shimming: t(47) = 18.63, p < .001, difference of 11%; FM-based

vs. no z-shimming: t(47) = 14.12, p < .001, difference of 8%).

3.3 | Validation of EPI-based automation approach

In order to validate the EPI-based automation approach, we obtained

an externally acquired corticospinal GE-EPI dataset consisting of

113 EPI z-shim reference scans acquired on a different MR-system

(Oliva et al., 2022), which also allowed us to investigate the generaliz-

ability of the EPI-based automated approach in a dataset in which the

manual selection was conducted by a different researcher (VO). Using

this independently acquired data set, we observed that – compared to

no z-shim – manual z-shimming resulted in a significant increase in

mean signal intensity (t(112) = 19.24, p < .001, difference of 22.1%, CI:

19.7%–24.4%) and a significant decrease in signal intensity variation

across slices (t(112) = 8.83, p < .001, difference of 37.1%, CI: 29.7%–

43.9%). Most importantly, the automated EPI-based approach

resulted in a significant increase in mean signal intensity

(t(112) = 25.93, p < .001, difference of 28.3%, CI: 26.2%–30.6%) and a

significant decrease in signal intensity variation across slices

(t(112) = 10.98, p < .001, difference of 43.1%, CI: 36.4%–49.3%).

When we directly compared the automated and manual approaches,

we observed that the automated method performed significantly bet-

ter than the manual method both for mean signal intensity

(t(112) = 11.85, p < .001), and signal intensity variation across slices

(t(112) = 4.79, p < .001), demonstrating that the proposed EPI-based

automated method can even outperform the manual selection

(Figure 4).

4 | DISCUSSION

One of the main challenges in fMRI of the human spinal cord is the

occurrence of spatially varying signal loss due to local magnetic field

inhomogeneities. Here, we addressed this issue by employing the

technique of slice-specific z-shimming. First, we aimed to replicate the

results from the initial study on z-shimming in the spinal cord by

investigating whether slice-specific z-shims mitigate signal loss in spi-

nal cord GE-EPI data. Next, we probed the direct relevance of z-

shimming to studies measuring spinal cord activity with fMRI, by

investigating its benefits with respect to different TEs, gray-matter

signals and EPI time-series metrics. Most importantly, we aimed to

improve upon the typical implementation of slice-specific z-shimming

(user-dependent shim selection) by developing two automated

approaches: one based on data from an EPI reference-scan and one

based on data from a FM acquisition.

F IGURE 4 Validation of EPI-based automation on an independent data-set. The mid-sagittal EPI sections on the left consist of the group-
average reconstructed z-shim reference scan EPI data in template space for the three different conditions (note that “EPI reconstruction” was
carried out via creating a single volume for each participant from the corresponding 15-volume z-shim reference scan by selecting for each slice
the volume in which the z-shim moment maximized the signal intensity; for no z-shim reconstruction, the 8th volume of the z-shim reference
scan was selected, which corresponds to the central/neutral z-shim moment, as this acquisition had a range of 15 moments). The line plots in the
middle depict the group-averaged spinal cord signal intensity (obtained from the reconstructed z-shim reference-scan EPIs) along the rostro-
caudal axis of the cord for the different conditions. The solid lines depict the group-mean values and the shaded areas depict the standard error
of the mean. The box plots on the right show the group-mean spinal cord signal intensity averaged over the entire slice-stack. The median values
are denoted by the central marks and the bottom and top edges of the boxes represent the 25% and 75%, respectively. The whiskers encompass
approximately 99% of the data and outliers are represented by red dots. The gray lines indicate the participant-specific data (N = 113) upon
which the box-plots are based
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4.1 | Replication and extension of z-shim effects

The first demonstration of the benefits obtainable with slice-specific

z-shimming in T2*-weighted imaging of the human spinal cord was

provided by Finsterbusch et al. (2012), who developed a z-shim proto-

col tailored to the peculiarities of spinal cord imaging and assessed its

effects on single volume GE-EPI data. Here, our first aim was to pro-

vide a direct replication of their results in a larger cohort of partici-

pants (N = 48) on a different MR-system. Similar to Finsterbusch and

colleagues, we observed that z-shimming led to a significant and

meaningful increase of average signal intensity (15%) and decrease of

signal intensity variation over slices (68%) compared to the baseline of

no z-shimming. In order to provide some detail on the expected bene-

fits afforded by this method, we also performed a slice-by-slice char-

acterization: while in �20% of the slices no z-shimming was needed,

in the rest of the slices the application of a slice-specific z-shim

resulted in a significant signal increase which could be as large as

�200% in the most extreme cases. Comparing these effects to those

obtained with slice-specific z-shimming in the brain (Deichmann

et al., 2003; Volz et al., 2019; Weiskopf et al., 2006)–where z-

shimming is critically important for signal recovery in susceptibility-

prone regions such as the orbitofrontal cortex – it becomes clear that

they are at least as prominent in the spinal cord and their compensa-

tion is thus critical in spinal cord fMRI.

The above-discussed results were obtained with a TE of 40 ms in

order to be close to the estimated T2* in the gray matter of the cervi-

cal spinal cord at 3 T (41 ms; Barry et al., 2019) and the TE considered

by Finsterbusch and colleagues (44 ms). Similar to Finsterbusch et al.

(2012), we however also investigated the effect of z-shimming over

different TEs (30 ms, 40 ms, 50 ms), though now quantitatively and at

the group-level. We observed that the beneficial effect of z-shimming

was present to a similar degree across TEs, which is of direct rele-

vance for fMRI. Longer TEs may be hard to avoid when covering

lower cord sections due to the larger field of view required to avoid

aliasing, in particular as higher in-plane acceleration factors may not

be reasonable for the standard receive coils available. Conversely,

shorter TEs might be desirable with respect to increasing the temporal

resolution or optimizing BOLD sensitivity (Gati et al., 1997; Menon

et al., 1993). In this respect, the consistent effect across TEs bodes

well for using this technique flexibly in various settings.

In addition to the choice of TE in different scenarios of spinal

fMRI, another important factor to consider is the anatomical region-

of-interest. While this is typically the gray matter of the spinal cord –

with studies on motor function likely focusing on the ventral horn and

studies on somatosensation likely focusing on the dorsal horn – the

specific effects of z-shimming on these structures are currently

unclear, as Finsterbusch et al. (2012) only evaluated the entire spinal

cord cross-section, thus averaging gray and white matter signals.

There is indeed the possibility that z-shim effects might be rather neg-

ligible for the spinal cord gray matter, considering that field variations

are most pronounced at the edge of the cord (Cooke 2004, Finster-

busch 2012, Cohen-Adad, 2017), which largely consists of white

matter. With the recent availability of probabilistic gray matter maps

via SCT (De Leener et al., 2018), we were in a position to address this

question in this study. We observed that the beneficial effects of z-

shimming were highly significant and of appreciable magnitude in the

gray matter. While these effects were already prominent in the ven-

tral horns (11% increase), they were much stronger in the dorsal horns

(18% increase) where signal losses were more severe (see also Cooke

et al., 2004). Together, these results demonstrate the relevance of z-

shimming for spinal fMRI and highlight its necessity specifically in

studies of dorsal horn function, such as somatosensation and nocicep-

tion. It should be mentioned though that it is currently unclear

whether such a pattern will also hold outside of the cervical spinal

cord, that is, in thoracic and lumbar segments (see

e.g., Finsterbusch, 2014). It is also important to note that in the cur-

rent study, we aimed to optimize the signal in the entire spinal cord

cross-section, but one might also consider optimizing the z-shim

moments based on a gray matter region of interest. However, this

approach would be more time-consuming (and might require user

intervention), as for obtaining the gray matter masks it is necessary to

first register the participant's native-space data to template space and

then warp the probabilistic gray-matter masks back to native space.

Such a two-step approach is necessary since with the current spatial

resolution and signal quality of EPI data at 3 T it is not possible to

automatically segment the gray matter robustly in every slice of every

participant (in our experience, this also holds for T2*-weighted ME-

GRE protocols in lower cervical segments).

The improvement in signal intensity we have discussed so far

might in the worst case not directly translate into improved fMRI

data quality (as indexed e.g., by tSNR): this might for example happen

if physiological noise dominates the time-series or if participants

move strongly in the z-direction and thus render the chosen z-shim

moment for a slice incorrect. We therefore quantified the beneficial

effect of z-shimming on gray matter tSNR, by acquiring time-series

data under different z-shimming conditions, and observed a 12%

increase in the mean tSNR and a 26% decrease of tSNR variability

over slices. It is important to note that as none of the data analysed

here were high-pass filtered or corrected for the presence of physio-

logical noise (Brooks et al., 2008), it is likely that the absolute tSNR

values observed (range across participants for manually z-shimmed

data in template space: 11.4–18.1) represent a worst case. By acquir-

ing z-shim reference scans at the beginning and at the end of our

experiment (separated by �60 min), we were furthermore able to

demonstrate that the effect of z-shimming was sufficiently stable

across time, which is another important consideration for fMRI stud-

ies, as they usually require long scanning sessions. It should be men-

tioned however that participant-movement in the slice direction may

reduce the performance of the z-shim compensation, although we

deem this unlikely to happen frequently, considering the slice thick-

ness used (5 mm) and the distance of the vertebral disks that define

the modulation of the magnetic flux density (�15 mm, see e.g., Wilke

et al., 1997 for an overview and Busscher et al., 2010 for more recent

data).
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4.2 | Automation of z-shimming

While the above-mentioned results demonstrate the utility of z-

shimming for fMRI of the spinal cord, this approach requires detailed

manual intervention in order to select the slice-specific z-shim

moments. In order to overcome this drawback, in this study, we devel-

oped two different automated methods for the selection of the z-shim

moments. Although such approaches have been developed for fMRI

of the brain (Marshall et al., 2009; Tang & Huang, 2011; Volz

et al., 2019; Weiskopf, Hutton, & Deichmann, 2007), they are lacking

for fMRI of the spinal cord (with one notable exception to be dis-

cussed later, that is, Islam et al., 2019) despite being desirable for a

number of reasons. First, an automated method would be more time-

efficient by reducing the time needed for selecting the z-shim

moments. Second, it might enable more sites to perform spinal fMRI

studies, as it reduces the need for extensive experience in judging spi-

nal cord EPI data quality. Third, due to its automated nature it would

eliminate the subjective (and error-prone) component involved in z-

shim selection and thus increase reproducibility, which is especially

important in longitudinal or multi-center studies. In the following, we

describe the two different automated z-shim approaches we devel-

oped, with one being EPI-based and the other being FM based.

The first automated method is based on the acquisition of an EPI

z-shim reference scan – which is also employed for the manual

selection – and relies on finding the z-shim moment that leads to the

highest spinal cord EPI signal in each slice. This simple method

achieved an at least identical performance in terms of all the investi-

gated signal characteristics compared to the manual z-shim moment

selection. In addition to that, the EPI-based approach was much faster

compared to the manual selection: the calculations were completed in

15 s on average, whereas the manual selection took approximately

10 min for our set-up (24 slices and 21 z-shim values). The acquisition

time of the z-shim reference scan was 55 s, but this could be short-

ened by limiting the range of the acquired z-shim moments. With the

current set-up, we observed that the range of the acquired z-shim

moments could indeed be restricted to achieve shorter acquisition

times, as the most extreme z-shim moments were chosen quite rarely

(lower-most moment of z-shim range chosen only in 1% of the slices,

upper-most moment never). A drawback of the EPI-based approach is

that it does not provide the flexibility to obtain slice-specific x- and y-

shim settings at the same time in order to account for field gradients

in the read and phase direction simultaneously (Volz et al., 2019). To

obtain those, additional reference scans would be necessary and thus

prolong the scan-time significantly (Finsterbusch et al., 2012). This

drawback could be overcome by basing the slice-specific shim selec-

tion on a FM, which would allow for estimating x-, y-, and z-shims for

each slice simultaneously – as already suggested by Finsterbusch et al.

(2012) and Islam et al. (2019)–and this was the second approach we

employed.

The FM-based approach was motivated by the fact that the

source of the signal drop-outs which slice-specific z-shimming aims to

compensate are B0 field inhomogeneities in the slice direction. The

optimum z-shim value should thus be derivable from a FM, and we

therefore fit a spatially linear gradient field in the slice direction to the

measured FM data in order to estimate the gradient moment that will

compensate the local through-slice field inhomogeneity. This FM-

based approach provided highly significant benefits when compared

to no z-shimming in terms of all the investigated signal characteristics.

Similar to the EPI-based approach, the FM-based approach was clearly

advantageous over manual z-shim selection in terms of the selection

time (36 s on average). Compared to the EPI-based approach, it was

however more time-consuming in terms of the time needed to acquire

the different scans. First, we acquired a vendor-based FM, which took

�5 min (though quicker FM acquisitions could be used). Second, we

acquired a standard high-resolution T2-weighted image (which also

took approximately 5 min to acquire; Cohen-Adad et al., 2021) for

automated segmentation of the spinal cord, instead of the magnitude

image from the FM. This choice was motivated by not wanting our

results to be affected by the quality of the segmentation as neither

the image resolution, nor the contrast of the magnitude image was

optimal for the currently employed automated segmentation. How-

ever, the increased acquisition time for FM and T2-weighted image

should be considered against the background that such images are

acquired routinely in spinal fMRI experiments (e.g., for registration

purposes). We thus believe that in typical research settings (where a

few additional minutes of scan time might be negligible), the choice

between the EPI-based and FM-based should in principle be guided

by the slice-specific shim sets one needs to obtain (z-shim only: EPI-

based; x-, y-, and z-shim: FM-based, though one would ideally want to

acquire a FM with higher resolution in the x-direction than

done here).

However, we currently recommend using the automated EPI-

based approach, as the performance of the automated FM-based

approach was slightly inferior compared to the manual approach.

While this difference was significant, it was small (�4%) and limited to

only some of the investigated metrics. We initially investigated several

possibilities for this slightly worse performance (such as [i] the choice

of mask for data extraction, [ii] the choice of parameters for the fitting

process, [iii] the influence of field-gradients in the AP-direction,

[iv] inhomogeneity-induced mis-localizations between EPIs and FM,

and [v] the reliability of FM-based z-shim calculation), but were not

able to determine any factor that would improve the FM-based

approach meaningfully. A slight but noticeable improvement was

however brought about when substituting the vendor-based FM with

a more robust in-house FM. A more significant improvement could be

obtained by employing a histogram-based evaluation of the field gra-

dients. Approximating the most probable field gradient values, this

method aims to optimize the compensation for the majority of the

voxels that contribute most to the signal, at the expense of more

extreme values for which a significant compensation could only be

achieved by sacrificing the compensation of most other voxels. While

an improvement with this approach is observed, it still does not per-

form as well as the approach based on the reference scan which may

have several reasons. On one hand, the relative intensities of the vox-

els as relevant in the EPI images are not appropriately considered. On

the other hand, while the EPI-based approach is based on the same

pulse sequence and has identical acquisition parameters as the target

data (i.e., it exactly reflects the signal intensity achieved with the fMRI
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protocol), the FM-based approach is based on a different pulse

sequence that is less prone to artifacts, but comes with a different

voxel size as well as image orientation and position. These data could

thus theoretically be expected to have a better quality and be more

accurate, but may be less consistent with the EPI data (e.g., in terms

of effects arising from in-plane field gradients) (Deichmann

et al., 2002; Weiskopf, Hutton, Josephs, et al., 2007) or slice thick-

ness/profile modifications due to field inhomogeneities (Epstein &

Magland, 2006) and most importantly are not determined from the

EPI signal intensity.

It is also important to note that there are several ways of calculat-

ing the optimal z-shim moments from FM data and other approaches

have for example taken the route of directly optimizing BOLD sensi-

tivity in the brain based on EPI BOLD contrast models (e.g., Balteau

et al., 2010; Volz et al., 2019). In the spinal cord, Islam et al. (2019)

recently proposed an FM-based automated z-shim selection method

for simultaneous brain and spinal fMRI. However, their implementa-

tion was aimed at compensating spatially broader field variations, as

they fit a quadratic field term using voxels from slices that were

± 4 cm distant from the target slice (which would cover 16 EPI slices

in our case). In our study, we aimed to compensate for more localized

field variations along the superior – inferior axis of the cord and there-

fore only included voxels from slices that were ± 4 mm distant from

the target slice. While comparing the performance of our approach

directly to these approaches is beyond the scope of the current work,

with the open availability of our code and data, this should be possible

for the interested reader.

4.3 | Validation of EPI-based z-shim automation

Finally, we demonstrated the validity of our EPI-based automation

approach in an independently acquired large-scale cortico-spinal data-

set (N > 100; Oliva et al., 2022). In this case, the automated approach

exceeded the performance of manual selection (though we were not

able to test this performance advantage in a further independent

data-set). Such a pattern of results might be expected for studies

where manual z-shim selection has to be performed rather fast due to

time constraints (such as in the validation dataset, where a pharmaco-

logical challenge of the opioidergic and noradrenergic systems took

place) – in our methodologically oriented study, particular emphasis

was placed on the manual z-shim selection being as precise as possi-

ble, thus making the advantage of the automated approach possibly

less apparent. This also hints at the potential of this approach to make

z-shim selection more reliable and homogenous in complex studies

where personnel might vary (e.g., in longitudinal or multi-site projects)

and thus have different levels of experience that could detrimentally

influence manual z-shim selection. Finally, since the cortico-spinal

dataset naturally suffered from more severe signal drop-outs and

acquisition artefacts such as ghosting (e.g., due to the large acquisition

volume), the performance of the EPI-based automation approach

demonstrates the robustness of this method with regards to varying

levels of data quality.

4.4 | Limitations

We would also like to point out several limitations of the presented

work. First, the slice-wise z-shim approach is only applicable to axially

acquired single-shot GE-EPI data. While this type of acquisition is used

by numerous groups when studying somatomotor (e.g., Kinany

et al., 2019; Maieron et al., 2007; Vahdat et al., 2015; Weber

et al., 2016), somatosensory (Brooks et al. 2008; Tinnermann

et al., 2017; Weber et al., 2020; Oliva et al., 2022) or resting-state spi-

nal cord responses (Kong et al., 2014; San Emeterio Nateras, 2016;

Kinany et al., 2020), there is also a strong tradition of using spin-echo

approaches (for reviews, see e.g., Stroman, 2005 and Powers

et al., 2018) and a more recent development in using multi-shot acqui-

sitions (e.g., Barry et al., 2014; Barry et al., 2021; note that while the

use of short TEs makes these acquisitions less affected by signal-drop-

out, in principle z-shimming might also be beneficial here). Second,

although previous studies have demonstrated a high correlation of

tSNR and signal intensity with BOLD sensitivity (particularly when

effects of echo shifting are considered; for example, Deichmann

et al., 2003; Weiskopf et al., 2005; Poser et al., 2006), we cannot make

direct extrapolations from the here-observed beneficial effects of z-

shimming on tSNR to similar effects on task-based BOLD responses. In

future methodological studies, it would thus be interesting to also

acquire task-based spinal fMRI data under different z-shimming condi-

tions to demonstrate the effect of z-shimming on the detection of

BOLD responses – while this has been demonstrated in brain fMRI

studies (Du et al., 2007; Gu et al., 2002), such evidence is currently

lacking for the spinal cord (for a first step in this direction, see Islam

et al., 2019). Third, the FM-based approach could be optimized for

example, by improving FM quality to a degree where an automated

segmentation of the magnitude image is possible (thus precluding any

possible mismatch between the FM and the T2-weighted image that is

used for spinal cord identification) and increasing the spatial resolution

of the FM (currently limited at �2 mm in x-direction) in order to allow

for full xyz-shimming (see also Islam et al., 2019).

5 | CONCLUSIONS

Spinal cord fMRI suffers from magnetic field inhomogeneities that

negatively affect data quality, particularly via signal loss. In the cur-

rent study, we extensively characterized the performance of slice-

specific z-shimming in mitigating the effects of these inhomogenei-

ties and developed two automated slice-specific z-shim approaches.

We believe that our automated approaches will be beneficial for

future spinal cord fMRI studies since they (i) are less time-consuming

than the traditional approach, (ii) do not require extensive experi-

ence in judging data quality, and (iii) are expected to increase repro-

ducibility by eliminating the subjective component in the z-shim

selection processes. This latter point is particularly important for lon-

gitudinal fMRI studies as they could be envisioned in the clinical set-

ting where disease progression and treatment effects could be

monitored.
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