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Abstract 

A novel method for solving thickness shear vibration in an AT-cut quartz plate with partial 

irregularly-shaped electrodes is proposed. Firstly, two-dimensional scalar differential equations 

derived by Tiersten and Smythe are adopted and transformed into the polar coordinate system. 

Secondly, displacement patterns for the electroded and unelectroded regions are assumed as a 

series of converging and outgoing cylindrical wave in the form of Bessel functions, where 

Sommerfeld radiation conditions at infinity can be satisfied automatically. Finally, circumferential 

functions at interface are decomposed into Fourier series in order to deal with continuous 

conditions. It should be stressed that the general formulation proposed in this paper has a higher 

calculation accuracy, which can satisfy continuous conditions in an integrated manner over the 

whole interface or boundary. Resonant frequencies and mode shapes of different electrode shapes 

including circular, equilateral triangle, rectangular, elliptical, and pentagonal electrodes are 

numerically calculated and compared with FEM simulations, which efficiently validate high 

precision and wide applicability of this method. Utilizing this method, the influence of 

irregularly-shaped electrodes on the working performance of the AT-cut quartz resonator is 

investigated systematically. The qualitative analysis and quantitative results obtained in this paper 



 

 

can provide the theoretical guidance for the design, measurement and manufacturing optimization 

of quartz crystal resonators. 

Key words: Quartz resonator; Thickness shear vibration; Irregularly-shaped electrodes; Fourier 

series; Energy trapping. 

1. Introduction 

Due to the high sensitivity and stability, piezoelectric crystals have been widely used in 

electronic devices, such as acoustic wave resonators for time-keeping, generators in 

telecommunications for frequency control, harvesters for energy transformation and collection, 

mass and liquid sensors for performance estimation, and so forth. Quartz crystal is the most 

favorable piezoelectric material for manufacturing resonators because of its superior properties, 

including the outstanding piezoelectric abilities, high quality factors, good temperature stabilities 

and long service life. Therefore, the working performance of quartz crystal resonators (QCRs) has 

been extensively concerned in the academic research and engineering applications, and the 

research priorities mainly focus on the new-type structural design, frequency stability, sensitivity 

on some external stimulus (temperature, humidity, and electromagnetic field), the quality factor 

and potential applications in the micro-nano scale [1, 2]. 

Generally speaking, resonators and acoustic wave devices made of quartz are very thin, with 

the thickness is much smaller than the other size in length and width directions. Correspondingly, 

some working modes exist in plate-type structures, such as thickness extensional (TE) modes, 

thickness-shear (TSh) modes [3], thickness-twist (TT) modes, and so on. Mostly, these modes are 

coupled together because of the anisotropy. However, some pure working modes can be generated 

successfully in some frequency regions via properly designing the crystal size and optimizing the 

electrodes attached on the plate surface. For instance, TSh modes that have slow in-plane 

variations and sometimes are termed as transversely varying modes [4], can be decoupled from 

others and viewed as the main operating modes of QCRs. 

For resonators based on TSh vibration, the electrode partially distributed on the plate surface 

plays an important role. Modes are generated via the electric fields imposed on the electrodes. 

Additionally, the energy trapping phenomenon can also be realized via partial electrodes [5]. After 



 

 

properly choosing the working frequency, the TSh vibration energy can be trapped in the region 

with electrodes and decays rapidly when departing from electrodes. It is crucial for the mounting 

and installing of wave devices. Based on the energy trapping phenomenon, the terminal pins or 

holders can be fixed far away from the electrode region, and the central TSh vibration hardly 

affect them. For achieving excellent trapped modes [6], more and more contributions are 

concerning the electrode design and optimization. 

Most of electrodes in QCRs are rectangular. In recent years, circular [7], polygonal [8], 

elliptical [9, 10] or other electrodes with different profiles [11] are introduced into the resonators, 

which also exhibit good performances at trapping vibration energy. Not limited by this, the 

electrodes with complex profile can efficiently suppress spurious modes unwanted. For example, 

Wu et al. [12] analyzed the thickness-shear vibrations of an AT-cut quartz piezoelectric crystal 

plate with elliptical ring electrodes to realize the desired trapped mode with suitable center 

convexity for wave sensing. He et al. [13] studied the TSh vibration of a QCR with rectangular 

electrodes. However, owing to the anisotropy of piezoelectric materials and the electro-mechanical 

coupling effect, finding a theoretical solution of QCRs with irregular electrodes is very difficult 

[14]. Indeed, the finite element method (FEM) is usually utilized to capture the vibration 

characteristics [15-17]. In principle, the TSh vibration of quartz crystal plats with any electrodes 

can be solved via FEM. However, there are still many limitations and disadvantages, since the 

FEM consumes a large amount of time for computation, especially for the increased meshes and 

matrix scale when analyzing high-order modes. During FEM simulations, a large number of 

coupled modes and spurious modes exist around the working frequency, which are not convenient 

for data processing. Without theoretical analysis, some physical mechanisms are not easy to reveal 

[18-21]. Therefore, it is necessary to find a general theoretical solution to depict the resonator 

vibration properties, which is suitable for arbitrary electrodes with any profiles. This is the origin, 

as well as the highlight of the present contribution. 

In order to achieve this aim, systematic two-dimensional (2-D) scalar differential equations 

for pure TSh modes derived by Tiersten and his colleagues [22-25] are adopted, which have been 

proved effectively and accurately in analyzing the fundamental and overtone frequencies in an 

AT-cut resonator. The contour of electrodes bonded on the plate surfaces is arbitrary, and defined 



 

 

by a mathematical function during the theoretical analysis. After coordinate transformation, the 

displacement component in different regions is expressed in the form of Bessel functions, and the 

Fourier series expansion is adopted for satisfying the continuous boundary in Section 2. Different 

from the perturbation method developed by Tiersten [23] and the collocation method conducted by 

Wang et al. [7] and Zhu et al. [26], the theoretical solutions proposed in this paper is more rigorous 

with more accuracy, which can strictly satisfy the dynamic governing equations and the 

corresponding boundary conditions. In Section 3, the convergence of this series is illustrated, and 

the theoretical solution is validated by comparing the resonant frequencies and mode shapes with 

those from the COMSOL Multiphysics software. Furthermore, the resonator performance is 

quantitatively demonstrated when pentagonal electrodes are considered. Finally, some conclusions 

are drawn in Section 4. It is anticipated that this method proposed in this paper is still available for 

other electronic devices with the similar configurations, e.g., thin film bulk acoustic resonators 

(FBARs), quartz crystal microbalances (QCMs), and so forth. 

2. Fundamental theory of free vibration analysis 

2.1. Governing equations 

For the theoretical analysis, an infinite AT-cut quartz plate with a pair of symmetrical partial 

electrodes placed on the top and bottom surfaces is considered, such as Figure 2.1. The thickness 

values of the plate and the electrodes are respectively represented by 2h and he. In this paper, the 

electrode is irregular, e.g., circular, elliptical, rectangular, triangle and so forth. For convenience, a 

geometric function R0(x1, x3) is adopted to mathematically describe the electrode profile during 

analysis, i.e., the electrode/unelectroded interface in the x1-x3 plane. Therefore, different 

expressions related to R0 stand for different electrodes. For example, if R0(x1, x3)=x2 

1+x2 

3=C2 with a 

constant value C, the electrode profile is circular. A smooth function of R0 with respect to 

circumferential position  denotes elliptical electrodes. The emphasis of this contribution is 

establishing a theoretical model, which can exactly depict the influence of electrodes with 

arbitrary shape on the TSh waves propagation in the AT-cut quartz plate. 
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Figure 2.1  An AT-cut quartz plate with partial electrodes, in which the left schematic diagram is 

the top view and another is the front view. 

After simplifying assumptions of small piezoelectric coupling and ignoring small elastic 

constant, the dynamic equations that governing coupled TSh vibration in quartz plates can be 

derived as 
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Here, u1 and u2 are displacement components, and  is the electrical potential function. c11, c12, c22, 

c55 and c66 are elastic constants. e26 and 22 respectively denote the piezoelectric and dielectric 

constants. Correspondingly, the constitutive equations related to stress components T21, T22, T11, 

and T13 and electric displacement component D2 are 

 

21 66 1,2 2,1 26 ,2 22 12 1,1 22 2,2

11 11 1,1 12 2,2 13 55 1,3 25 ,2

2 26 1,2 22 ,2

( ) , ,

, ,

.

T c u u e T c u c u

T c u c u T c u e

D e u





 

= + + = +

= + = +

= −

  (2) 

The well-known Tiersten’s 2-D scalar differential equations that control the TSh vibration 

with only one dominate displacement component u1(x1, x2, x3, t) are adopted in this paper. For 

Figure 2.1 concerned, the displacement can be written in the superposition form of all 

anti-symmetric modes and symmetric modes along the x2 direction, i.e. [22, 24] 
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for the electroded region, and 
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for the unelectroded region. Here, n=1 represents the fundamental operating mode, while other 

values of n such as 1,3,5,n =  and 0,2,4,n =  are high-order overtones. For the free 

vibration analysis of quartz resonators with a circular frequency , all variations have the same 

harmonic time factor exp(it), which will be neglected below for simplification. 1 3( , )n x x  and 

1 3( , )n x x  represent the nth order TSh displacement with in-plane variation, which are 

respectively governed by  
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for the electroded and unelectroded regions [22] respectively. Correspondingly, 
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The intrinsic fundamental frequencies 
 or 

 of an infinite electroded or unelectroded 

plate is [24] 
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2

26k  is the electromechanical coupling factor, which can depict the transformation ability between 

the electrical energy and the mechanical deformation. R stands for the mass ratio with  and e 

respectively being the mass density of the quartz plate and electrodes. After introducing a 

coordinate transformation in the x1-x3 plane for both the electroded and unelectroded regions 
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with 
55/nM c = , Eq. (5) can be rewritten as 
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Meanwhile, the boundary function R0(x1, x3) of the electrode is also transformed into R0(y1, y3) 

in the new coordinate system. For instance, an annular boundary x2 

1 +x2 

3 =C2 can be redefined as an 

elliptical boundary 2 2 2 2

1 3/ / ( ) 1y C y C+ =  after the coordinate transformation. Therefore, Eq. 

(11) can be expressed in the following more compact form: 
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with 
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In this paper, the energy trapping phenomenon is considered, i.e., the resonant frequency  

locates in the region      , and thus both 
2  and 

2  are positive. In the following 

section, the solutions of Eq. (12) will be derived for the TSh vibration in the electrode and 

unelectroded regions. 

2.2. Displacement fields in the new coordinate 

Then we model this scattered phenomenon using three-dimensional scattering field theory. 

The solution of the Helmholtz equation (12) can be written as a combination of a radial function 

of r and an angular function of θ. Hence, after the variable separation, a general solution of the 

scalar potential functions ( , )n r   and ( , )n r   in Eq. (12) can be assumed as 
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Here, the -dependency of the fields can also be assumed as cos(m) for symmetric modes and 



 

 

sin(m) for anti-symmetric modes where 0,1,2,m = . Substituting Eq. (14) into Eq. (12), two 

partial differential equations governing the scalar potential functions ( )m r   and ( )m r   can 

be obtained as 
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It should be noted that the two equations in Eq. (15) are the Bessel function and modified 

Bessel function equations of order m, respectively. Hence, the general solutions can be described 

as: 
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Here, Am, Bm, Cm and Dm are undetermined constants that will be determined by boundary 

conditions. Jm and Ym are the mth-order Bessel function of the first and second kind, respectively. 

Correspondingly, Im and Km represent the mth-order modified Bessel function of the first and 

second kind, respectively. 

2.3. Boundary and continuity conditions 

For the TSh vibration, the displacement is finite when r approaches to zero, and it will be 

infinity if r → . Then, the terms containing ( )mY r  in Eq. (16) with singularity at r = 0, and 

those terms containing ( )mI r  which diverge at r →  should be dropped. Therefore, Eq. 

(16) reduces as 
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By virtue of the theoretical solutions above, the continuity of displacement and stress 

components at the electrode/unelectroded interface [27, 28] requires 
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In order to satisfy the boundary conditions above, we substitute Eq. (17) into the boundary 

conditions above, and obtain 
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2.4. Expansion in Fourier series 

Taking the special case of elliptical electrodes for instance, it is assumed that the ratio of the 

major axis to the minor axis is  in the x1-x3 plane. After the coordinate transformation, the 

boundary becomes a circle in the new y1-y3 plane, i.e., y2 

1  + y2 

3  = C2, and then nr() = 1 and n() 

= 0. Under this condition, Eq. Error! Reference source not found. is simplified as 
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After adopting the orthogonality of eim to eliminate the angular coordinate , we get 
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For nontrivial solutions, the determinant of the coefficient matrix about Am and Bm for every m 

should be zero, from which the frequency equation of TSh vibration can be achieved.  

However, Eq. (21) is only suitable for elliptical electrodes. For electrodes with arbitrary 

profiles, theoretical solutions are not straightforward anymore. Considering the periodicity of r, 

nr() and n(), we may obtain 
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in which ( )R   and ( )R   respectively denote  and . For solving this problem, the 

-dependent function in the form of Fourier series is developed in this paper, so that 

Eq.Error! Reference source not found. can be expressed as 
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Here q denotes qth term of the Fourier series. The orthogonality of the eiq provides us 

convenience for eliminating the angular coordinate , and then Eq. 

Error! Reference source not found. can be expanded as 
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with the series truncation represented by M. Similarly with the discussion above, the frequency 

equation of TSh vibration can be achieved via letting the determinant of the coefficient matrix in 

Eq. (25) equaling to zero. 

Up to now, the TSh vibration of an infinite AT-cut quartz plate with a pair of symmetrical 

arbitrary electrodes has been theoretically analyzed, and the frequency equation is derived which 

satisfies the governing equations and continuous conditions at the electrode/unelectroded interface. 

Generally speaking, the frequency equation is implicit, from which the resonant frequency can’t 

be obtained directly. In this paper, the modulus convergence method is adopted to numerically 

calculate the resonant frequency from the univariate transcendental equation [31]. After 

discretizing the frequency region concerned into several discrete points, the minimal modulus of 

the equations is determined by comparing the determinant moduli at different discrete nodes. Then, 

the final solutions are distinguished from these points of minimum modulus according to the 

convergence criterion.  



 

 

3. Effect of irregularly-shaped electrodes 

3.1. Numerical validation 

Before numerical simulations, it is necessary to examine the series convergence and validate 

the theoretical model established in the previous section. Without loss of generality, the resonant 

frequencies and mode shapes of an infinite circular AT-cut quartz resonator with different 

electrodes that are calculated via Eq. (25) will be compared with those from FEM simulations. A 

typical quart crystal plate with the thickness 2h = 1mm is chosen as an example with its material 

parameters from Ref. [29], and the mass ratio is taken as R = 0.05. The fundamental operating 

mode with n = 1 that is usually encountered during applications is considered in this paper. For 

convergence, Tables 3.1 and 3.2 illustrate the resonant frequencies after using different M values 

for circular and equilateral triangle electrodes, respectively. The interface of circular electrodes 

can be mathematically depicted using a continuous differentiable function, and then a small M 

value, e.g., 12, can ensure the calculation accuracy. However, for equilateral triangle electrodes, 

the function for mathematically depicting the electrode interface is non-differentiable, which 

needs more terms for obtaining a convergent result. Despite of those, both of tables indicate that 

the series possess a good convergence.  

Table 3.1  Resonant frequencies calculated using different truncated series when circular 

electrodes are attached. 

Truncated series 

 (108 rad/s) 

R0 = 0.4 mm R0 = 0.6 mm R0 = 0.8 mm 

M = 4 1.01443020573 1.00264519552 0.99690995317 

M = 6 1.01443041295 1.00264533555 0.99691004851 

M = 8 1.01443042434 1.00264534285 0.99691005346 

M = 10 1.01443042494 1.00264534321 0.99691005370 

M = 12 1.01443042497 1.00264534322 0.99691005370 

M = 14 1.01443042497 1.00264534322 0.99691005370 

M = 16 1.01443042497 1.00264534322 0.99691005370 



 

 

Table 3.2  Resonant frequencies calculated using different truncated series when equilateral 

triangle electrodes are attached. 

Truncated 

series 

 (108 rad/s) 

Scale up to 1 Scale up to 1.1 Scale up to 1.2 

M = 30 0.99596753497 0.99464819186 0.99358914559 

M = 33 0.99596913917 0.99464958199 0.99359035944 

M = 36 0.99597041165 0.99465068389 0.99359131823 

M = 39 0.99597167542 0.99465179270 0.99359229578 

M = 42 0.99597388048 0.99465276424 0.99359307411 

M = 45 0.99597493628 0.99465336521 0.99359365248 

M = 48 0.99597653285 0.99465338712 0.99359366322 

M = 51 0.99597654286 0.99465339621 0.99359366271 

 

In order to validate the correctness, a two-dimensional (2D) model with different electrodes 

is established in the coefficient-formed Partial Differential Equation (PDE) module of the 

COMSOL Multiphysics software. Taking the circular electrodes for example, its sketch map is 

shown in Figure 3.1. The center of the quartz plate, yellowed in Figure 3.1, contains the electrode 

which is surrounded by the annular gray unelectroded region. The outer area is set as the infinite 

element domain with its profile set as circular for simplicity, which is used to simulate the infinite 

boundary conditions. Here, the radius of the infinite element domain should be larger than twice 

of wavelength corresponding to the fundamental TSh mode considered here. The eigenvalue 

problem is solved, with the equation in PDE module expressed as 

 ( )2 + +a a

u
e u d c u u u au f

t
    


− +  −  − +  =


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where u represents the scalar displacement function to be solved and  is the eigenvalue 

corresponding for the resonant frequency in this paper. Other coefficients such as ea, da, c, , , , 

a and f are user-defined in which c is a coefficient matrix due to the material anisotropy. Matching 

with Eq. (27), the user-defined parameters in PDE module are listed as 
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respectively for the electroded and unelectroded regions. Additionally, the continuous conditions 

between the electroded and unelectroded regions are satisfied automatically and Dirichlet 

boundary condition is set at the outmost circle boundary to simulate the radiation condition. Tables 

3.3 shows the comparison between the theoretical results and those from FEM corresponding to 

the fundamental TSh modes in an infinite crystal plate covered by circular electrodes with 

different sizes. The theoretical resonant frequencies and modes shapes calculated via Eq. (30) 

coincide very well with those from the commercial software. Not limited by these, the cases of 

spurious TSh modes shown in Figure 3.2 and other electrodes shapes including rectangular, 

equilateral triangle, elliptical and regular pentagonal electrodes shown in Table 3.5 also shown the 

good consistency, which can efficiently validate the correctness of the theory proposed in this 

paper.  

Infinite element domain

or Perfectly matched layer

Continuity conditions

satisfied automatically

Unelectroded

Electroded

Dirichlet

Boundary condition

 

Figure 3.1  Schematic of FEM model 

Table 3.3  The comparison between the theoretical and FEM results corresponding to the 

fundamental TSh mode for circular electrodes 



 

 

 Theoretical results proposed in this paper FEM results from software 

2R0=1.6mm 

 

f = 15.866317 MHz 

 

f = 15.866316 MHz 

2R0=1.2mm 

 

f = 15.957600 MHz 

 

f = 15.957605 MHz 

2R0=0.8mm 

 

f = 16.145162 MHz 

 

f = 16.145167 MHz 

 

Table 3.4  The comparison between the theoretical and FEM results corresponding to spurious 

TSh modes for circular electrodes (2R0 = 1.6 mm) 



 

 

Theoretical results FEM results 

 

f = 16.069722 MHz 

 

f = 16.069720 MHz 

 

f = 16.164994 MHz 

 

f = 16.164999 MHz 

 

f = 16.347239 MHz 

 

f = 16.347236 MHz 

 

Table 3.5  The comparisons between the theoretical and FEM results corresponding to the 

fundamental TSh mode for different electrode shapes 



 

 

 Theoretical results FEM results 

Rectangular 

electrodes 

 

f = 15.869861 MHz 

 

f = 15.869858 MHz 

Equilateral 

triangle 

electrodes 

 

f = 15.851460 MHz 

 

f = 15.851459 MHz 

Elliptical 

electrodes 

 

f = 16.207542 MHz 

 

f = 16.207540 MHz 



 

 

Regular 

pentagonal 

electrodes 

 

f = 15.807354 MHz 

 

f = 15.807360 MHz 

 

3.2. Analysis of irregularly-shaped electrodes 

Reviewing Tables 3.3, 3.4, and 3.5, we can clearly see the energy trapping phenomenon, i.e., 

the vibration mainly concentrates in the electroded region and exponentially decay in the 

unelectroded region. Such as Eq. (10), the intrinsic frequency of fundamental TSh mode in an 

infinite bare plate without electrodes is represented by , and that is 
 if the plate is fully 

covered by electrodes. The final frequency  is larger than 
, which makes the TSh waves 

travelling freely in the plate region with electrodes. However, because it smaller than , the TSh 

wave will decay in the flat plate without electrodes. Finally, the energy trapping phenomenon 

appears. It is very important for the structural design and engineering applications of electrical 

devices. Because of that, some affiliated mountings can be installed far away from the electrodes, 

so that the mutual interference between the vibration and mountings can be eliminated efficiently. 

It is noted from Table 3.4 that the frequency of the second-order TSh mode in the x1 direction is 

16.164994 MHz, which is different from that in the x3 direction, i.e., 16.069722 MHz. The 

discrepancy is caused by the material anisotropy [14]. Actually, because of anisotropy, the 

displacement nephogram of fundamental mode is elliptic rather than circular, with semi-major and 

semi-minor axes lying in the x1 and x3 directions, respectively.  

Theoretically, regular pentagonal electrodes are polygonal electrodes with any two sides not 

parallel to each other. To some extent, the resonant modes cannot interfere in the resonant cavity, 

which has excellent performance in suppressing lateral spurious modes. Therefore, regular 



 

 

pentagonal electrodes are taking into account during the following analysis. When external 

electrodes are attached on the upper and bottom surfaces of the crystal plate, the resonant 

frequency will decrease because of the affiliated inertial effect, such as the variation patterns of 

resonat frequencies with the outer radius R0 and mass ratio R shown in Figs. 4.1 and 4.2. As R0 

and R increases, the resonant frequency decreases, and some new trapped modes appear. 

Physically, the vibration mainly focuses on the region with external electrodes and decays 

exponentially outside, which is the energy-trapping phenomenon. 补充完图 4.1 和 4.2 之后还

要补充一下进一步这两幅图的分析。第一，图 4.1 和图 4.2 新模态的频率都是从 2h = 1mm 及 

R = 0.05 时板的共振频率；其次，两幅图频率的变化趋势不同，频率随厚度的变化量更大，

说明电极厚度的影响比电极长度影响更显著。此外，对于厚度的影响，频率的改变量与厚度

基本上呈准线性，这种变化可以为实验测量提供方便条件。  

 

81.0436927 10 rad/s = 

 

Figure 4.1  Variation patterns of resonat frequencies with the mass ratio R 



 

 

81.0436927 10 rad/s = 

 

Figure 4.2  Variation patterns of resonat frequencies with the outer radius R0 when R =  

 

Generally speaking, higher-order modes, sometimes named as spurious modes have at least 

one nodal line inside the electroded region. The TSh strain changes its sign when encountering the 

nodal line, and then the corresponding charges produced through piezoelectricity will neutralize. 

As a consequence, the charge cancellation on the electrode may lead to a small output, which is 

undesirable during device applications. Therefore, we will concentrate the energy trapping of 

fundamental modes instead of the higher modes or unwanted spurious modes. For the fundamental 

mode, it is anticipated to produce a perfect "piston" mode with uniform displacement distribution 

in the active region. In this case, a uniform mass sensitivity distribution can be obtained, which is 

beneficial for sensing and detection. For qualitative analysis the pentagonal electrodes on the 

displacement distribution, Figs. 4.3 and 4.4 demonstrate effects of R0 and R on the u1 distribution 

along the x1 and x3 directions. For pentagonal electrodes with constant thickness, the electrode size 

in the x1 and x3 direction determine the displacement distribution, such as Fig. 4.3. Smaller 

electrodes will lead to more concentrated vibration near the center. Therefore, for obtaining an 

ideally flat displacement distribution in the center of electrodes, the outer radius R0 should be 

relatively larger. By contrast, for a fixed lateral size R0, the thickness has negligible effect on u1, 

such as Fig. 4.4. It is understandable because the vibration mainly focuses on the electrode region. 



 

 

When the thickness increases homogeneously, the electrode distribution in the x1-x3 plane is not 

changed, which determines the u1 distribution in Fig. 4.4 

 

 

Figure 4.3  Effect of the radius R0 on the distribution of u1 along (a) x1 and (b) x3 directions, in 

which the resonant frequency is MHz, MHz and MHz when R0 is 0.4mm, 0.6mm and 

0.8mm, respectively). 

 

  

Figure 4.4  Effect of the mass ratio R on the distribution of u1 along x1 (a) and x3 directions, in 

which the resonant frequency is 16.144872MHz, 15.807354MHz and 15.459200MHz when R is 

0.03, 0.05 and 0.07, respectively). 

4. Conclusion 

In this paper, a novel analytical approach is presented to analyze the TSh vibration of 

partially-electroded AT-cut quartz resonators with irregularly-shaped electrodes. Five kinds of 

electrodes with different profiles, i.e., circle, ellipse, equilateral triangle, rectangle and regular 

pentagon, are included.  This method exhibits good convergence and high accuracy after 



 

 

numerically verified via FEM simulations. Based on this method, the working performance of this 

quartz crystal plate with pentagonal electrodes, including resonant frequency and mode shape, are 

investigated in detail, and the effects of electrode size and mass ratio are analyzed. The method 

proposed and results obtained provide theoretical guides for the structural design and 

manufacturing of resonators in engineering applications.  

Acknowledgements 

This work was supported by the National Natural Science Foundation of China 

(12061131013, 11972276, 12172171 and 1211101401), the State Key Laboratory of Mechanics 

and Control of Mechanical Structures at NUAA (No. MCMS-E-0520K02), the Fundamental 

Research Funds for the Central Universities (NE2020002 and NS2019007), National Natural 

Science Foundation of China for Creative Research Groups (No. 51921003), the Start-up Fund 

supported by NUAA, National Natural Science Foundation of Jiangsu Province (BK20211176), 

Local Science and Technology Development Fund Projects Guided by the Central Government 

(2021Szvup061), Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan 

(Shuangchuang Doctor Program, JSSCBS20210166), and a project funded by the Priority 

Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Prof. Iren 

Kuznetsova and Dr. Vladimir Kolesov thank Russian Foundation of Basic Research (grant 

#20-07-00139), Russian Ministry of Science and Higher Education (government task) and Russian 

Ministry of Science and Education (#0030-2019-0016) for partial financial supports. 

References 

[1] Plausinaitis D, Sinkevicius L, Samukaite-Bubniene U, et al. Evaluation of Electrochemical 

Quartz Crystal Microbalance Based Sensor Modified by Uric Acid-imprinted Polypyrrole. 

Talanta, 2020: 121414. 

[2] Rianjanu A, Julian T, Hidayat S N, et al. Quartz crystal microbalance humidity sensors 

integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers[J]. 

Sensors and Actuators B Chemical, 2020, 319:128286. 

[3] Tiersten, H.F., Thickness vibrations of piezoelectric plates. Journal of the Acoustical Society 



 

 

of America. 1963, 35, 53–58. 

[4] Tiersten, H.F., A corrected modal representation of thickness vibrations in quartz plates and 

its influence on the transversely varying case. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 2003, 50: 1436-1443. 

[5] Tiersten, H.F., Analysis of trapped-energy resonators operating in overtones of coupled 

thickness shear and thickness twist. Journal of the Acoustical Society of America, 1976, 59(4), 

pp. 879–888. 

[6] Hartz, Jequil S. R., et al. Investigation of Energy Trapping of the Lateral Field Excited 

Thickness Shear Mode in AT-Cut Quartz Crystal Microbalances. IEEE International 

Ultrasonics Symposium, 2019: 596-599. 

[7] Zhu F, Li P, Dai X, Qian Z, Kuznetsova IE, Kolesov V, et al. A Theoretical Model for 

Analyzing the Thickness-Shear Vibration of a Circular Quartz Crystal Plate With Multiple 

Concentric Ring Electrodes. IEEE transactions on ultrasonics, ferroelectrics, and frequency 

control. 2021; 68(5): 1808-18. 

[8] Li Yu, et al. A homotopy shape solution for thickness-vibration of centrally partially electrode 

regular polygonal AT-cut quartz resonators, 13th Symposium on Piezoelectrcity, Acoustic 

Waves, and Device Applications (SPAWDA). 2019. 

[9] Wang, W., Wu, R., Wang, J., Du, J., & Yang, J.. Thickness-shear modes of an elliptical, 

contoured at-cut quartz resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control, 60(6), 1192–1198. 2013  

[10] Tiersten, H.F., On the accurate description of piezoelectric resonators subject to biasing 

deformations. International Journal of Engineering Science, 1995, 33(15), pp. 2239–2259. 

[11] Shi Junjie, Fan Cuiying, Zhao Minghao. Effects of Electrode Off Centre on Trapped 

Thickness-Shear Modes in Contoured AT-Cut Quartz Resonators. International Journal of 

Acoustics and Vibration, vol. 23, no. 4, pp. 423-431, 2018. 

[12] Wu RX, et al. Effects of Elliptical Ring Electrodes on Shear Vibrations of Quartz Crystal 

Plates. International Journal of Acoustics and Vibration, vol. 24, no. 3, pp. 586-591, 2019. 

[13] H. J. He, J. X. Liu and J. S. Yang, Thickness-shear and thickness-twist vibrations of an AT-cut 

quartz mesa resonator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency 



 

 

Control, vol. 58, no. 10, pp. 2050-2055, 2011. 

[14] H. J. He, J. S. Yang, J. A. Kosinski, Shear-horizontal vibration modes of an oblate elliptical 

cylinder and energy trapping in contoured acoustic wave resonators, IEEE Transactions on 

Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, no. 8, pp. 1774-1780, 2012. 

[15] Steward J.T., Yong Y.K. Thickness-shear mode shapes and mass-frequency influence surface 

of a circular and electroded AT-cut quartz resonator. IEEE Transactions on Ultrasonics, 

Ferroelectrics and Frequency Control, 1992, 39, 609–617. 

[16] Liu B., Xing Y.F., Thickness-shear vibration analysis of rectangular quartz plates by a 

differential quadrature finite element method. AIP Conf. Proc. 2014, 41, 41–44. 

[17] Liu, B.; Xing, Y.F.; Wang, W.; Yu, W.D. Thickness-shear vibration analysis of circular quartz 

crystal plates by a differential quadrature hierarchical finite element method. Compos. Struct. 

2015, 131, 1073–1080. 

[18] Mindlin, R.D., High frequency vibrations of crystal plates. Quarterly of Applied Mathematics, 

1961, 19(1): 51-61. 

[19] Tiersten, H.F. and Mindlin, R.D., Forced vibrations of piezoelectric crystal plates. Quarterly 

of Applied Mathematics, 1962, 20(2): 107-119. 

[20] Mindlin, R.D. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates; 

Yang, J., Ed.; World Scientific: Singapore, December 2006. 

[21] Wang, J. and Yang J.S., High-order theories of piezoelectric plates and applications. Applied 

Mechanics Reviews, 2000, 53(4): 87-99. 

[22] Tiersten H.F., Smythe R.C., Coupled thickness-shear and thickness-twist vibrations of 

unelectroded AT-cut quartz plates. Journal of the Acoustical Society of America, 1985, 78, 

1684–1689. 

[23] Zhou, Y.S., Tiersten, H.F.. On the normal acceleration sensitivity of contoured quartz 

resonators stiffened by quartz cover plates supported by clips. Journal of Applied Physics, 

1992, 72(4), pp. 1244–1254. 

[24] Tiersten H.F., Smythe R.C. An analysis of contoured crystal resonators operating in overtones 

of coupled thickness shear and thickness twist. Journal of the Acoustical Society of America, 

1979, 65, 1455–1460. 



 

 

[25] He H.J., Liu J.X., Yang, J.S. Effects of mismatched electrodes on an AT-cut quartz resonator. 

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59, 281–286. 

[26] Feng Zhu, Bin Wang, Xiaoyun Dai, Zhenghua Qian, Iren Kuznetsova, Vladimir Kolesov, and 

Bin Huang, Vibration optimization of an infinite circular AT-cut quartz resonator with ring 

electrodes, Applied Mathematical Modelling, Vol. 72, pp. 217-229, August, 2019. 

[27] Tiersten, H.F., Sinha, B.K., Temperature dependence of the resonant frequency of electroded 

doubly-rotated quartz thickness-mode resonators, Journal of Applied Physics, 1979, 50(12), 

pp. 8038–8051. 

[28] H. He, J. Yang, J. A. Kosinski and H. Zhang, Scalar Differential Equations for Transversely 

Varying Thickness Modes in Doubly Rotated Quartz Crystal Sensors, in IEEE Sensors 

Letters, vol. 2, no. 3, pp. 1-4, Sept. 2018. 

[29] Tiersten, H.F., On the accurate description of piezoelectric resonators subject to biasing 

deformations, International Journal of Engineering Science, 1995, 33(15), pp. 2239–2259. 

[30] Tiersten, H.F., Sinha, B.K., Temperature dependence of the resonant frequency of electroded 

doubly-rotated quartz thickness-mode resonators Journal of Applied Physics, 1979, 50(12), 

pp. 8038–8051. 

[31] Feng Zhu, Bin Wang, Zhenghua Qian, and Ernian Pan, Accurate characterization of 3D 

dispersion curves and mode shapes of waves propagating in generally anisotropic 

viscoelastic/elastic plates, International Journal of Solids and Structures, Vol. 150, pp. 52-65, 

October, 2018. 


