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Abstract

This thesis begins by assessing the current state of marine mammal detection, specif-

ically investigating currently used detection platforms and approaches of detection.

The recent development of autonomous platforms provides a necessity for automated

processing of hydrophone recordings and suitable methods to detect marine mammals

from their acoustic vocalisations. Although passive acoustic monitoring is not a novel

topic, the detection of marine mammals from their vocalisations using machine learning

is still in its infancy. Specifically, detection of the highly endangered North Atlantic

right whale (Eubalaena glacialis) is investigated. A large variety of machine learning

algorithms are developed and applied to the detection of North Atlantic right whale

(NARW) vocalisations with a comparison of methods presented to discover which

provides the highest detection accuracy. Convolutional neural networks are found to

outperform other machine learning methods and provide the highest detection accuracy

when given spectrograms of acoustic recordings for detection.

Next, tests investigate the use of both audio and image based enhancements method

for improving detection accuracy in noisy conditions. Log spectrogram features and

log histogram equalisation features both achieve comparable detection accuracy when

tested in clean (noise-free), and noisy conditions.



ix

Further work provides an investigation into deep learning denoising approaches,

applying both denoising autoencoders and denoising convolutional neural networks

to noisy NARW vocalisations. After initial parameter and architecture testing, a full

evaluation of tests is presented to compare the denoising autoencoder and denoising

convolutional neural network. Additional tests also provide a range of simulated

real-world noise conditions with a variety of signal-to-noise ratios (SNRs) for evaluating

denoising performance in multiple scenarios. Analysis of results found the denoising

autoencoder (DAE) to outperform other methods and had increased accuracy in all

conditions when testing on an underlying classifier that has been retrained on the

vestigial denoised signal. Tests to evaluate the benefit of augmenting training data

were carried out and discovered that augmenting training data for both the denoising

autoencoder and convolutional neural network, improved performance and increased

detection accuracy for a range of noise types.

Furthermore, evaluation using a naturally noisy condition saw an increase in

detection accuracy when using a denoising autoencoder, with augmented training

and convolutional neural network classifier. This configuration was also timed and

deemed capable of running multiple times faster than real-time and likely suitable for

deployment on-board an autonomous system.
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Chapter 1

Introduction

1.1 Motivation

Cetacea is the phylogenetic infraorder that contains all species of cetaceans, otherwise,

known as whales. North Atlantic right whales (NARWs) from the baleen family are

currently among the most endangered cetaceans, with fewer than 400 remaining [61].

Although North Atlantic right whales pose no threat to human life and feed on zoo-

plankton [61], their population has declined since 2010 after an initial reduction in

numbers prior to 1935 when the United States outlawed whaling [61, 78]. A recent

report [147] has found deaths of NARWs since 2010 to be predominately caused by

entanglements with fishing equipment, and a small percentage due to ship strikes.

Since the human population is increasing year on year [57], there has been a noticeable

increase in food production [47], leading to increased fishing efforts [21]. Delivery and

movement of goods worldwide have also seen huge increases, and as such, shipping

traffic has soared, causing a severe impact on the population of NARWs and other

species [159]. With the number of breeding female NARWs estimated at less than

100 [61], it is essential that protection and mitigation efforts are put in place to ensure
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the long-term survival of the species.

1.2 Methods of North Atlantic right whale detec-

tion

Observations via ships [23] and aircraft [60], or acoustic recordings to listen for vo-

calisations, are all examples of traditional techniques to monitor NARWs. With the

development of smaller and more affordable computer components, monitoring efforts

have shifted to a more automated approach with human observers analysing recordings

after collection from buoys or autonomous vehicles [15, 192, 40]. In addition, a shift

to computerised data collection has highlighted the requirement for automated data

processing, aiming to match the performance of a human observer. This work explores

techniques to automatically process recordings and provide accurate feedback, much

like that given by a human expert. The automated system aims to process data in real-

time so feedback can be instant and ensures a backlog of unprocessed data is not created.

Techniques for detecting whales have varied dramatically in recent years, with

a traditional system focused on monitoring amplitude rises within audio [229, 70]

to indicate the presence of a whale. More advanced systems have aimed to track

frequency contours within the spectral-domain of a signal [154] or use pre-existing

speech recognition techniques such as hidden Markov models (HMMs) [7] or Gaussian

mixture models (GMMs) [168, 235]. The early 2010s has seen the rise of neural network

based classifiers for image classification [106, 82], with expansion into many other

domains gaining traction [76].
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1.3 Aims and objectives

In order to take advantage of these techniques, this work aims to apply neural network

approaches, amongst more traditional machine learning classifiers, to provide the best

solution for detecting NARWs. A gain in performance that neural network classifiers

have shown in other areas could be vital in creating a robust NARW detection system

for use in real-world conditions.

Although the problem of acoustically recognising NARWs is both a detection and

classification problem, this work focuses on classifying NARW vocalisations from

other background sources, either natural or anthropogenic. The problem of acoustic

detection more closely investigates how a constant stream of audio is processed in order

to alert a user of a noise presence. The problem of acoustic classification therefore

aims to distinguish specific classes from the detected audio. The aim of the system

built and developed throughout this work is to process segments of audio to make a

classification of whether a NARW vocalisation is present. As this work is primarily

aimed at developing and refining the proposed classification system it is standalone

for use within a wider range of use cases. For example it could be adapted for marine

mammal collision avoidance, population monitoring, or event classification, however

exploring further implementation of the classification system falls outside the boundary

of this work and should be explored in future projects.

1.4 Structure of thesis

The remainder of this thesis will be structured as followed.

Chapter 2: This chapter provides a background for the application of NARW clas-

sification. First, the Cetacea infraorder is explored, analysing each suborder and its
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vocalisation characteristics. The motivation behind the project then follows, with a

review of current detection platforms. Finally, the data used throughout this project is

detailed.

Chapter 3: In this chapter, a range of baseline machine learning methods are applied

to the problem of NARW detection. Applied algorithms are split into two groups, time

series and deep learning. Time series methods are used as a benchmark to compare

against the more exploratory deep learning methods; the performance from these

algorithms are well documented, however, the most suitable configurations of deep

learning architectures are still being researched. A range of deep learning approaches

are reviewed with experimental architectures considered for each method. Lastly, a

comparison of the top performing algorithms are presented, discussing the best overall

method for NARW detection.

Chapter 4: This chapter begins by focusing on the effect of noise within acoustic

recordings and the effect this can have on the performance of a detection system.

Chapter 4 tests a range of conventional image and audio enhancement methods, to

explore their impact on reducing noise within recordings. The suitability of each noise

reduction technique is assessed by monitoring the performance of the detection system,

which mimics real-world use, expecting detection accuracy to increase with a higher

reduction of noise. Finally, audio enhancement methods are compared against image

enhancement methods applied to spectrograms to investigate whether noise reduction

should occur before conversion to the spectral domain, or not.

Chapter 5: This chapter builds on work from Chapter 4 and explores the use of

autoencoders for noise reduction. Autoencoders are a neural network architecture

which provides self-feedback between input features, output features and target features.

First, autoencoders are trained to output clean (non-noisy) spectrograms from noisy

spectrograms. Further developments use denoising autoencoders (DAE) which utilise
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noisy-clean pairs, and aim to learn the difference between the clean and noisy and

produce denoised spectrograms for more accurate classification.

Chapter 6: This chapter introduces a noise reduction technique called denoising

convolutional neural network (DNCNN). This algorithm uses a similar approach to the

autoencoder, utilising convolutional layers to encode the input features. Instead of using

a specific compression architecture like the autoencoder, the DNCNN aims to predict

noise within the noisy segment using a convolutional neural network architecture; noise

can then be subtracted from the noisy segment with the aim of producing a denoised

spectrogram.

Chapter 7: This chapter investigates both the DAE from Chapter 5 and DNCNN

from Chapter 6 across a range of noise corruptions and signal-to-noise ratios. Both

methods are also investigated with the use of augmented training to discover the

optimal denoising and classification system for NARW vocalisations in noisy conditions.

Two methods of classifier training are also evaluated. Using clean data and using

vestigial data that has been previously denoised and likely matches the test data more

closely.

Chapter 8: An unsupervised method of domain adaptation is investigated in this

Chapter, to assess performance in changing conditions when augmentation of a current

model or training a new model is infeasible.

Chapter 9: This thesis concludes with a summary of the experiments carried out,

what has been learnt from these tests, and what it means for current NARW detection.

Finally, this chapter ends with a discussion of future work and how this work can be

built upon in subsequent research.



Chapter 2

Background

2.1 Introduction

This chapter provides the background and motivation for the technical work presented

within this thesis. Initially, the Cetacea infraorder within the phylogenetic tree is

explored. This lays out the biological order of cetaceans, which encompasses two

suborders: Mysticeti and Odontoceti. Finally, traversing the Cetacea order provides

insights into similarities between species and influences suitable detection methods to

later explore.

In Section 2.3 the motivation for the project is detailed. Specifically, this examines

the need for an autonomous method of marine mammal detection and why acoustic

methods are the most suitable and sustainable. Anthropogenic factors, such as fishing

entanglement and vessel strikes [61], currently threaten marine mammal populations

to critically low levels [147]. Mitigation measures try to reduce, avoid and offset the

adverse effects of human interactions to improve population numbers. As populations

of many marine mammals continue to fall [141], a constant review of current mitigation
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methods is essential to ensure protection efforts are optimal.

A review of detection platforms is discussed next; focusing on currently used plat-

forms, what form future platforms could take, how they would work and why they

could be more suitable than the current solutions. As advancements in autonomous

technologies emerge and computing hardware becomes smaller, cheaper and more

power efficient, it is important to revise previous solutions in order to gain the benefits

from new technologies.

To set out the data used within this thesis, Section 2.6 details the NARW vocal-

isation data used, where the data has been collected and how it has been used or

manipulated for later experiments. Explicitly detailing information about the data

enables tests to be repeatable whilst also making the difference between each corpus

clear when trying understand variation in test results. In order to generate an in-depth

analysis and provide more insightful experimental results, much of the data used has

been augmented with noise. Noise augmentation can be carried out in a number of

ways and Section 2.6.4 explains the process taken to ensure noise is added appropriately,

reflecting real world environmental noise conditions.

Finally, Section 2.7 reviews techniques that have been traditionally used to survey

areas of ocean and detect marine mammals. Traditional detection methods rely less on

modern machine learning approaches and make use of fundamental signal processing

practices to detect cetaceans.
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2.2 Cetacea phylogenetics

The phylogenetic tree is a tree diagram that depicts the evolutionary descent lines for

different species [13]. Phylogenies help map the structure and groupings of specific

species. The scope of this thesis is exclusively concerned with the Cetacea order.

Cetacea defines the order at which all marine mammals are collected and mapped.

Within this order, suborders exist to categorise cetaceans into two additional feature

defining groups: Mysticeti and Odontoceti [63]. Mysticeti cetaceans are also known

as baleen whales and Odontoceti, known as toothed whales [63]. The main difference

between the suborders is their feeding mechanism, with baleen whales using baleen

plates to filter food whilst toothed whales have teeth [131].

Baleen whales are some of the largest inhabitants of the modern ocean, weighing

up to 190 tonnes and ranging in length from 6.5m to 33m in the largest mammals [131].

The number of baleen whale species is dramatically less than toothed whales, with

16 species in existence compared to 76 species of toothed whales. Baleen whales lack

teeth and instead use a comb-like structure called baleen. The water inside the mouth

is pushed through the baleen, filtering out vast amounts of prey [131] during feeding.

Figure 2.1 depicts the size of many cetaceans and puts the size of baleen whales into

perspective compared to humans and other land mammals. Baleen whales, unlike

toothed whales, do not use echolocation for hunting [227]. The production mechanism

for how cetaceans produce sound is highly debated; however, vocal folds are present

within the animal’s larynx and are commonly thought to be responsible for sound

production [227]. All baleen whales produce low-frequency sounds (<10kHz) compared

to the highest frequency produced by toothed whales that can reach 130kHz. In general,

however, excluding minke whales [19] and some singing whales [33], baleen whales use
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Fig. 2.1 A cetacean size comparison chart created by the American Cetacean Society
to represent the scale of cetaceans [127]. For comparison a human, elephant and
brontosaurus are included. The chart is divided into Odontocetes (left) and Mysticetes
(right).



2.2 Cetacea phylogenetics 10

frequencies in the 5Hz - 1kHz range.

Toothed whales are a much larger suborder, with 76 species currently in existence.

All dolphins, porpoises and beaked whales are included within this suborder, mak-

ing it more diverse than the baleen whale group; however they are much smaller in

physical size ranging from 1.5m to 20m [228]. One of the key differentiators between

these Cetacea suborders is the large ovoid melon in the anterior part of the facial

region that toothed whales possess [134]. This fatty tissue is suspected to be a vital

component of the echolocation system of which the baleen whale equivalent is dra-

matically smaller [228]. Toothed whales are thought to have developed specialised

sound production and reception mechanisms for handling sonar signals much like those

found on bats [228]. These mechanisms are responsible for producing clicks, pulses and

whistles. Clicks are known to be used for echolocation [98], whilst pulses and whistles

for communication [228]. Furthermore, sound production from toothed whales are

significantly more varied than baleen whales, with frequencies up to 130kHz for some

species of dolphin.

Understanding the differences between cetacean species is crucial for evaluating

suitable detection methods. Since certain baleen whale calls operate within a similar

frequency range, it indicates that a singular method to detect their vocalisations could

be successfully applied to multiple species without further manipulation, or species

specific parameterisation.
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2.3 Motivation

The North Atlantic right whale (NARW) is the main focus of this thesis, with algo-

rithmic development and experimental results reflecting this. The decision to focus on

NARWs is made up of two factors; first, in 2020, NARWs were one of the most critically

endangered marine mammals [147]; second, due to their extinction risk they have

been extensively investigated - subsequently, well documented, accurate and structured

data-sets exist of their vocalisations, providing a strong starting point for acoustic

experimental work.

The North Atlantic right whale has the scientific name Eubalaena glacialis, and

is part of the Balaenidae family and is 1 of 16 current baleen whales. NARWs are

among the largest marine mammals growing up to 15.5m in length and weighing up

to 65 tonnes [61]. They generally have a lifespan up to 70 years; however, human

activity can drastically reduce this life expectancy [61]. As previously mentioned,

NARWs are currently critically endangered, with an estimated 360 remaining and have

a declining population [147]. The decline of the NARW population was largely due to

commercial whaling bringing the species close to extinction before being declared illegal

in 1935 by the U.S. government [61]. In 1992, it was estimated that only 295 were

alive; however, numbers increased year on year until 2010 when the population began

to decline again [61], this trend can be seen in Figure 2.2. Of recent NARW deaths,

humans are thought have caused all of them, mainly through fishing entanglement and

vessel strikes [61]. In contrast, the population of southern right whales (SRWs) has

increased in recent years [10]. It is hypothesised that their habitat contains far less

human activity and therefore chance of death.
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Fig. 2.2 A chart created by the Anderson Cabot Center for Ocean Life [78] detailing
the North Atlantic right whale population trend from 1990-2019.

2.3.1 Extinction

North Atlantic right whales are protected under both the Endangered Species Act

(ESA) [194] and Marine Mammal Protection Act (MMPA) [48] since the current

population count is critically low [62]. Since the North Atlantic ocean is also shared

with Canada, the Canadian government have also recently introduced measures with

the aim of preventing harm to NARWs. One of these is an interim order to protect

NARWs [27]. Although the NARW has been on the ESA since 1970 [62], numbers

have further declined since 2010, emphasising that protection is necessary to save them

from extinction. Due to their recent decline in numbers it is more important than

ever to develop reliable methods of detection that can be used in harsh environmental

conditions, in all hours of the day, where humans cannot operate.
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To fight extinction of any species, conservation efforts must be bought into place

in order to help the species prosper and breed healthy numbers of offspring. Since

NARWs have long lifespans, ensuring populations rise is centered around keeping those

remaining, alive and healthy. A report by the Woods Hole Oceanographic Institution

(WHOI) collated research surrounding the deaths of NARWs from 1970-2015, finding

that 85% of deaths from 2010-2015 were due to entanglement with fishing ropes, with

the remaining 15% caused by vessel strikes [147]. As 100% of deaths from 2010-2015

were due to anthropogenic activities, reducing needless deaths is solely down to chang-

ing human behaviour and its effect on the oceanic environment. This can either be done

by stopping all human-lead oceanic events such as shipping, fishing, and construction,

or by monitoring the location of NARWs to mitigate the effect that human activities

previously had on them.

Although serious mitigation techniques may be necessary, current mitigation mea-

sures are less dramatic than complete operation shutdowns and include techniques such

a reduced speed for shipping lanes, closures at specific times and designated shipping

lanes that must be adhered too.

In order to decrease the number of NARW deaths, the National Oceanic Atmospheric

Administration (NOAA) is responsible for planning and implementing recovery of the

NARW population, “with an interim goal of down-listing its status from endangered

to threatened” [62]. Within the NOAAs plan for recovery of the species, key points

include [62]:

• protection of habitats to ensure breeding safety

• minimal effect of vessel activity

• monitoring of population size and movement trends
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This recovery plan relies heavily on monitoring populations and accurately detecting

the presence of a NARW in any given location. Being able to accurately detect NARWs

is therefore paramount in the fight to stop their extinction.

2.3.2 Monitoring

NARWs are largely coastal marine mammals but are also known to travel in open

oceans for long periods [61]. The Atlantic ocean is the second largest body of water on

earth and covers 20% of the earths surface [128]. Due to the expanse of the Atlantic

ocean, sighting and counting marine species is an extremely challenging task that

requires expert knowledge, expensive and specialised equipment, and is an impractical

task for regularly monitoring the location and population of marine mammals. With

current detection methods being outdated by the technology they use, it is vital that

new techniques are developed to reap the benefits of new technologies and to keep up

with the growing need to monitor the oceans. As previously mentioned, the recovery

plan set out by the NOAA [62] focuses on being able to accurately detect a NARW

in any given location and provide feedback to enable mitigation techniques to be

actionable. This NOAA recovery plan makes it clear that it is more important than

ever to develop techniques for monitoring marine mammals that are cheaper, more

reliable and more practical than traditional methods, to enable continuous monitoring

to be possible. In Section 2.4.1, traditional methods of detection are reviewed with a

proposed detection platform detailed in Section 2.5.

2.4 Detection platforms

Despite the highly threatened status of NARWs, the platforms used to detect and

monitor populations have changed relatively minimally prior to 2010. Monitoring
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cetaceans is a challenging task due to an exceptionally inaccessible habitat and largely

unknown behavioural patterns [18]. A combination of both robust detection methods

and a reliable detection platform, aim to enable the best coverage of cetacean detection

possible.

2.4.1 Traditional platforms

Traditionally, ship surveys have been the main source of information retrieval and often

focused around sighting cetaceans [11, 23, 85] or recording their vocalisations via a

ship-towed hydrophone array [236, 114].

For larger monitoring efforts, visual surveys involving aircraft flying over regions of

ocean are common [23]. Although manned visual surveys have achieved some success

for monitoring large regions of ocean [60], they, similarly to other techniques, have

drawbacks limiting their detection and classification accuracy. From an aerial view,

cetaceans are most visible at or near the surface, therefore visual surveys can be unreli-

able when cetaceans are deep-diving [137]. Cloud coverage, wave height and sun glare

can all also dramatically affect initial detection results or classification validity [219,

137]. Furthermore surveying is restricted to daylight hours [137] which can significantly

shorten the opportunity to report detections. Due to these limitations it is thought that

some cetaceans in some circumstances, e.g. at night and during inclement weather are

easier to hear than see [230] and consequently using acoustic detection would produce

a higher number of detection events. In order to fully profile and monitor all aspects

of a cetaceans behaviour, a combination of both visual and acoustic monitoring would

provide the most insightful findings. However, for meeting the criteria of the NOAA

recovery plan [62], acoustic monitoring is more suitable.
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As previously mentioned, ships are a current and popular detection platform for

monitoring NARWs. Surveyors use hydrophones in an array formation to record multi-

ple streams of acoustic data [236]. A depiction of this process can be seen in Figure

2.3, showing a survey vessel towing a hydrophone array. This process has been named

passive acoustic monitoring (PAM), where “passive” refers to listening for sounds in a

non invasive manner [137]. Active monitoring is an alternative method of monitoring

where surveyors use active sonar to search for their target [137], but this does not

provide the insightful vocalisation information that PAM does.

PAM has gained popularity in recent years as recording equipment has become

cheaper and more accessible. Furthermore, researchers now fully understand the

benefits of acoustic recordings over visual only surveys. Sound transmission varies

from water to air. However, water has the distinct benefit of being denser than air,

which enables sound to travel further [163], providing acoustic detection from larger

distances. Since many cetaceans are acoustically active [63], detection via PAM is the

best way to gather information on the NARW and passive acoustic monitoring can

be carried out continuously throughout the day and night with the correct equipment.

Acoustic monitoring techniques do however have limitations, most notably differences

in vocalisation behaviour and background noise variability [137]. Recorded data must

also be stored or disregarded and since it is difficult, time consuming and expensive to

obtain, it is likely to be kept and requires sufficient storage. Without an automated

process for analysing the recordings, the data is often kept but not processed and

further findings are more restrictive because of this. Detections are still noted, but

further findings such as frequency, duration and amplitude of calls, can be missed

unless time is spent listening to each recording.
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Hydrophones

Survey vessel

Fig. 2.3 A ocean landscape scene depicting a survey vessel towing a hydrophone array
as would be found during acoustic surveys using ships.

Ships provide a platform for covering regions of ocean and recording data for

observers to listen to. Since the visual and acoustic surveying drawbacks are mutually

exclusive, observers often combine acoustic listening whilst visually scanning the ocean

surface [236, 137] to provide a higher level of accuracy when classifying each detection

event. Whilst ships provide advantages over aircraft-led visual surveys, such as being

able to survey for longer periods, they also have constraints that restrict their output

and make continuous monitoring an infeasible task. Ships are restricted by a number

of factors with the main constraints being; weather that negatively impacts prevailing

ocean conditions and probability of sightings, ability for the ship to travel to the given

location (for example prohibitive environments might include ice), higher running

costs, and inadvertent inclusion of ship related noises corrupting hydrophone recordings

making detection more difficult [114].
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A limitation of all monitoring techniques is the inability to be 100% accurate when

classifying a species. For example, visual surveys can provide visual confirmation that

a species is present, but require an acoustic detection to provide a higher degree of

certainty when classifying vocalisations. Conversely, acoustic surveys can indicate the

presence of a marine mammal but without a matched visual sighting the vocalisation

label is an estimation of the vocalisation source. Therefore it should be noted that all

ground truth can contain a degree of error.

2.4.2 Autonomous platforms

In more recent years there has been a dramatic increase in the number autonomous

ocean vehicles [225, 211]. The invention of static buoys, ocean gliders, and surface

vehicles has contributed to the rise of new platforms for monitoring and researching

the world’s oceans. Although still in their infancy, small ocean vehicles have gained

significant popularity [18, 49, 136, 138, 29, 30, 31, 24] in the marine environment

for their range of improvements over ship and aircraft monitoring. Ocean vehicles

such as gliders and surface vehicles are relatively low cost in comparison to using

ships or aircraft for monitoring. They can also operate in nearly all conditions, and

consequently are able monitor continuously, even when prevailing conditions are too

hazardous for human-based activity. They are mainly powered by long lasting batteries

and surface vehicles can gain power from the sun using on-board solar panels [24].

Battery endurance can range but in ideal conditions can last for 3 months of continuous

surveying before needing replacement [31]. The range of small unmanned vessels

capable of PAM, are broadly categorised into three groups, although many variations

of models and designs exists.
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1. Static buoys

Static buoys, also known as moored buoys, are aimed at providing a clean recording of

ocean sounds, but only in a few cases provide real-time feedback from an on-board

PAM system [17]. This platform for detection uses a sea-floor mounted base containing

hardware for recording and processing audio. The base is tethered to a buoy where

communication hardware is positioned to send data to a shore-side computer via a

satellite [17]. Figure 2.4 shows a depiction of a static buoy setup. Static buoys offer

little operational noise in recordings and provide a stable location for continuous

monitoring. As they are stationary they lack the ability to survey areas of interest,

unless moved, and instead are better for a fixed monitoring environment.

Buoy

Survey vessel

Hydrophone

Antenna

Fig. 2.4 An ocean landscape scene depicting a static buoy with a hydrophone and
communication system. The buoy system is a reconstruction of Figure 1 in [17].
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2. Sea gliders

In the context of this thesis, a glider refers to an ocean vehicle which primarily spends

time below the surface of the water. Many variations of glider exists but one of the

most common is a Seaglider [56], which was developed at the University of Washington.

An ocean landscape containing a glider can be seen in Figure 2.5. The Seaglider uses a

combination of battery movement and oil pumping to generate motion. Buoyancy of

the glider is controlled by pumping oil into and out of a internal bladder, which induces

vertical motion [31]. Guide rails shift the battery mass forwards and backwards within

the unit to enable direction change in tandem with the buoyancy system. Seagliders

are used for a range of scientific research and can be fitted with a fleet of sensors for

varying applications [110, 171, 32, 15]. A PAM system can be attached to a Seaglider

however noise introduced from movement of the battery and operation of the oil pump

can increase noise in recordings. When the glider is either descending or ascending the

water column, noise-free recordings can be attained as the internal components are

stationary.

3. Autonomous surface vehicles

Autonomous surface vehicles (ASVs) are designed to navigate the surface of the

ocean following mapped routes. They provide the benefit of continuous satellite

communications link, which is also present on static buoys. Much like gliders they also

have the ability to survey areas of ocean instead of remaining stationary. ASVs often

carry out PAM similarly to ship surveying by towing a hydrophone array. Baumgartner

et al. found that water flow and vehicle operation noise can appear in recordings,

however with further investigation found that these can be mitigated with hardware

alterations [16]. ASVs use batteries to power on-board equipment with certain designs

incorporating small propellers, whilst others aim to glide on waves and use a rudder
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Survey vessel

Hydrophone

Sea Glider

Antenna

Fig. 2.5 An ocean landscape scene depicting a glider with a hydrophone and commu-
nication system. The glider is a reconstruction of an image taken from [180].

for direction. Another benefit of being surface level is the ability to use solar power to

recoup energy lost. An ocean landscape containing an ASV can be seen in Figure 2.6.

2.5 Investigating autonomous platforms for North

Atlantic right whale detection

Since autonomous platforms (APs) are able to combat many of the shortcomings

present in traditional ship surveys, they provide a potentially more useful platform

for NARW monitoring. APs however do have limitations, mainly because of their size.

When autonomously navigating they can be a victim of oceanic drift, moving off path

due to the ocean current or weather conditions. Whilst out for prolonged periods they

can be a subject of biofouling, leading to the blockage of sensors and reduction in
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Surface Vehicle
Hydrophones

Antenna

Fig. 2.6 An ocean landscape scene depicting an autonomous surface vehicle with a
hydrophone and communication system. The ASV system is a reconstruction of an
image taken from [200].

equipment effectiveness.

A common difficulty when dealing with APs is how to retrieve data from the AP.

In ideal situations the platform would be retrieved after surveying and data collected.

APs are fitted with communication devices to report back to the operator, but if this

system fails, the AP can be hard to locate, leading to a loss of the platform, time and

potentially addition of hazardous material to the ocean. Manually retrieving data also

hinders applications such as NARW real-time mitigation alerts and therefore surface

level APs with continuous connection might be more suitable. Due to the requirement

of real-time monitoring, further work will only consider the use of autonomous surface

vehicles (ASVs) and static buoys. Due to the nature of ASVs and their surface presence
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they can house communication equipment that can maintain a continuous link with

land-based systems, unlike gliders which can only connect when resurfacing.

Sampling Sampling

Detection

Detection

Mitigation alert

communication
channel

ASV

hydrophone

ASV

communication
channel

Mitigation alert

ThinThick

Fig. 2.7 Two proposed approaches for NARW detection systems using PAM.

Two methods for using ASVs as a detection platform for NARW detection are

now proposed. Both methods can be applied to static buoys, however for simplicity

only ASVs will be discussed. Figure 2.7 shows both the “thick” approach on the

left and the “thin” approach on the right. The “thick” system is a self contained

detection platform providing real-time detection on-board the ASV. Using the on-board

computer the “thick” system is designed to read in audio, processing a continuous

stream. Detection occurs during this process and results are send via satellite to the

shore-based receiver. The “thin” system operates a slimmed down pipeline with no
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detection occurring on-board, instead audio is transmitted to land via satellite for

detection. Both systems provide various advantages, for example the “thin” approach

is more lightweight without onboard detection, requiring less power to operate and

can therefore survey for longer periods with the same battery capacity as the “thick”

system. The detection process for “thin” approach can also be refined and updated

without disruption of the survey. However, the “thick” system is the only reliable

method of detecting NARWs and receiving notification in near real-time as satellite

links are expensive, potentially unreliable and have slower transfer speeds, sending

minimal data is preferred. The “thick” system would only need to send notification of

a possible detection for land-based mitigation alerts to be triggered, whereas the “thin”

system would require a stable connection to transmit continuous audio, costing more

in transmission fees and potentially being unreliable in unstable network conditions. A

concern of the “thick” system is the necessary computing power needed to run a robust

NARW detection algorithm in real-time on a system which draws minimal power. This

work will aim to investigate the use of low-powered computing for running a complete

detection system in real-time and will consider not only detection accuracy but also

processing constraints.

2.6 North Atlantic right whale vocalisation data

As previously discussed, labelled recordings of marine mammals are hard to attain

without expensive equipment and expert domain knowledge of each specific marine

mammal. For this reason, data collection does not form part of this work and instead

the data used within this thesis has been collected from existing sources. A breakdown

of all datasets used is detailed within this section.
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2.6.1 Vocalisation behaviour

The vocalisation behaviour of NARWs is an important factor to be considered when

attempting to understand and detect their vocalisations using PAM. The type of

vocalisations an animal produces, the acoustic and time frequency at which they are

produced and their call characteristics are all factors which have the ability to influence

how detection is carried out. It’s currently thought that NARWs do not sing and se-

quences of calls can therefore be non repetitive and irregular [39]. Although knowledge

of NARW call occurrence is sparse it is suspected that call density is low, with only

690 calls recognised in 300 hours of recordings [133]. From this it is not possible to re-

liably establish call rates, however a frequent repetitive calling pattern is highly unlikely.

North Atlantic right whales are known to produce a number of vocalisation with

the upcall (Figure 7.1 left) and gunshot (Figure 7.1 right) sounds the most common.

Upcall vocalisations are produced in the frequency range of 50-400Hz [158] and are

typically seen as a sweep up in frequency over time. The upcall typically has a duration

of approximately 1 second. The second most common NARW vocalisation is the

gunshot. The gunshot is a high amplitude broadband signal which has a duration of

approximately 0.5-1 second [157].

2.6.2 Assessing performance

When aiming to classify vocalisations of NARWs the metrics used to assess performance

of the underlying classification system must be suitable in order to present meaningful

results for evaluation. A number of techniques are used to report the success of a

classification system with accuracy being the most common. In the field of marine

biology, classification metrics such precision-recall curves, receiver operating charac-
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Fig. 2.8 Two example spectrograms showing a right whale upcall (left) and a gunshot
(right). Upcalls are characterised as a tone starting at around 50Hz and ending
around 400Hz, with a duration of one second. Gunshots have less structure and are
characterised as bursts of broadband noise.

teristic curve (ROC curve) and Area under the ROC curve (AUC curve) are all also

frequently used as they give further insight into the confusion matrix of a classifier

instead of evaluating overall performance as is shown with accuracy. Throughout this

work accuracy will mainly be used evaluate performance as this enables test to be more

directly comparable to each other, however for further analysis of experiments in later

sections both precision-recall and ROC curves will be used.

Although the accuracy metric is mainly used throughout this work, the importance

of other metrics is greatly understood. As previous work has shown the NARW to

infrequently vocalise [133], it becomes important to evaluate potential classifiers with

methods that accurately replicate real-world scenarios. Awareness of where the classifier

may be embedded is important factor when designing a full classification system. An
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example of a more relevant metric might be the number of false alarms per hour

as shown in [188], where incorrectly identifying NARWs may lead to serious time

and monetary consequences, such as the closure of shipping lanes or shut down of

off-shore construction sites. When considering the false alarms per hour, context of

the current marine mammal may also be crucial when setting an acceptable alarm

threshold when developing the system. For example as the its not always critical to

classify every upcall correctly, the classification threshold could potentially be lowered

to meet the acceptable false alarm. Although integration of wider context appropriate

metrics is important, for the fundamental investigation and design of the classifier,

the work within this thesis focuses solely on using the accuracy metric for comparable

experiments.

2.6.3 Available datasets

Throughout this thesis three datasets have been used for experimentation work. Below

is a dissection of the available datasets to show where they came from, their size, and

how they have been manipulated before use.

1. Cornell

The Cornell dataset refers to The Marinexplore and Cornell University Whale Detec-

tion Challenge [206] posted on Kaggle, a machine learning competition website. This

dataset was provided by Cornell University for a competition to detect NARWs within

audio segments. The dataset is freely available to download however the competition

closed in 2012. Provided alongside the competition dataset were training and testing

segments of NARW detected events containing the most common NARW vocalise - an

upcall. All training segments had designated label files to indicate whether a NARW

upcall was present or not. The aim of the competition was to generate subsequent

label files for the remaining test segments and to submit predictions to be judged. As
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the competition has closed, the test segments were redundant because related label

files were not accessible and therefore only the training segments were utilised within

the Cornell dataset. Within the training folder, 30,000 segments were present. 22,973

were labelled as “not-NARW” with the remaining 7,027 upcalls labelled as “NARW”.

It should be noted that the “not-NARW” class has the potential to contain anything

that is not a NARW upcall and therefore may contain other marine mammal sounds,

shipping noise or other ocean sounds. Initially the dataset was manually restricted to

a maximum size of 14,054 segments as this maximised the “NARW” segments and

gave an equal class split. Analysis of the segments’ energy content found some to

have vastly different energies, so these were removed for consistency. After extraneous

segments were removed, 14,016 segments remained, these were distributed equally

across “NARW” and “not-NARW” and were split 70:15:15 for training, validation and

test, this breakdown can be seen in Table 2.1. All files were shuffled prior to splitting

to ensure all timesteps were mixed in case the original set were given in chronological

order. All segments are presented as 2-second duration blocks of audio, sampled at 2kHz.

Although this dataset was collected from Kaggle where a number of competition

entries have been made, a direct comparison to results in this thesis cannot be estab-

lished as the labelled test data was unavailable to post-competition users. Entrants

of the Kaggle competition had access to 30,000 labelled training segments with a

further 54,000 used to test their classifier. This work only considered a subset of the

original dataset and instead only used 12,008 labelled training segments with 2,008

reserved for testing. As the training sizes are significantly different, comparison between

competition entries and this work have not been made. Results between competition

entrants and the experiments presented here are also provided using different metrics

and therefore are not directly comparable.
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Dataset Name Train Validation Test No. Classes
Cornell 10,000 2,008 2,008 2
Cape Cod 10,000 2,142 2,142 2
Stellwagen Two 10,000 1,690 2,142 2
Stellwagen Three 2,784 600 600 3

Table 2.1 A table showing the number training, validation and testing segments
available to each dataset used. Classes were evenly distributed for each dataset.

2. Cape Cod

The Cape Cod dataset refers to a set of ∼160,000 audio segments procured from a

NARW monitoring website [205]. Although authorship is lacking, is it presumed that

this service is owned and run by Cornell University bioacoustic department. The

website uses a series of 10 statically moored buoys to report NARW upcalls. This

is a live service and reports NARW upcalls in near real-time with each recorded

segment, corresponding spectrogram and buoy information available to view shortly

after detection. As the audio files are freely available to download, a script was written

to continuously pull files from the server. The files were downloaded with an equal split

between confirmed “NARW” upcall segments and rejected “not-NARW” segments.

This service provides rejected files that mostly contain acoustic events, but have been

rejected as being NARW upcalls for which are then used as “not-NARW” within this

dataset. The labels are originally produced after detection by a frequency contour

algorithm [69] and manually authenticated by a human operator. Cape Cod may

therefore encompass a wider range of bioacoustic events. Table 2.1 gives a detailed

breakdown of the 70:15:15 split of training, validation and testing segments. Originally

a larger corpus of 100,000 training samples was used as it offered a substantial amount

of additional data when compared to other datasets. However, initial tests exploring

training set volumes, discovered that using more than 10,000 training samples provided

a minimal gain in accuracy and therefore a smaller subset of 10,000 training samples

was taken and used for further tests. Cape Cod uses a portion of the full download of
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data and provides a more reasonable amount of data to process and test. Similarly

to Cornell, all files were shuffled prior to splitting to ensure all timesteps were mixed

in case the original set were given in chronological order. All segments are presented

as 2-second duration blocks of audio, sampled at 2kHz. Both Cornell and Cape Cod

datasets have originally been detected using a low threshold amplitude detector [69].

The classification system designed in this work uses the original detector labels with

the aim of producing a superior classification system.

3. Stellwagen

The Stellwagen dataset is a subset of the Detection, Localisation, Classification and

Density Estimation (DCLDE) 2013 conference [193] competition data. DCLDE 2013

hosted a workshop competition and made a dataset of NARW calls available for

participation. Although the conference was in 2013, the dataset and website have

remained active since. The data was collected using marine autonomous recording

units (MARUs) deployed in arrays of between 6 and 10 devices off the North Atlantic

coast at Massachusetts, US. For this dataset, the output of just one channel is taken,

converted to 16 bits per sample and sampled at 2kHz [193]. The audio recordings

have been annotated by human experts using data from all channels to maximise

accuracy [193].

Similarly to the Cornell dataset, training and testing files were available, however

associated log files for the test data were not available so only the training files make

up the Stellwagen dataset presented here. Unlike the previous datasets the competition

made available NARW upcalls and NARW gunshot sounds. Data with no NARWs

was also provided. All recordings were given at a sampling frequency of 2kHz, with

files presented as 15-minute recordings, spanning multiple days worth of continuous

monitoring. Log files were made available and contained a detailed breakdown of
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detection events, giving the start and end time, and lower and upper frequency of each

detection. In order to match this dataset to those previously used, acoustic detection

events were removed from the larger files, centered and padded to give a 2-second block

of audio for each event. It should be noted that padding uses audio from directly before

and directly after the designated event window. Initial analysis of the event files found

both upcalls and gunshot files to often contain noise corruption from a low frequency

stationary source, that is likely caused by the sound of a mechanical hard drive spinning

up. This corruption caused visible horizontal banding in the spectral-domain. Although

a set of dedicated set “not-NARW” files were available, these did not contain the same

corruption as seen in the upcall and gunshot files. In order to combat a classifier simply

learning the difference between the noise corrupted and non-corrupted recordings, the

decision was taken to extract “not-NARW” segments from both the upcall and gunshot

recordings. Instead segments labelled as “not-NARW” were taken 5 seconds after a

real detection event to ensure similarity in background noise. If there was less than 5

seconds between events then the next available gap was used as a “not-NARW” segment.

As gunshots and upcalls were labelled in the dataset, two Stellwagen combinations

were created - Stellwagen Two and Stellwagen Three. Stellwagen Two matches that seen

previously and contains two classes, one for “not-NARW” and another for “NARW”.

Stellwagen Three utilises all available classes, and is made up from {upcall, gunshot,

not-NARW}. A breakdown of the training, validation and testing splits can be seen for

both datasets in Table 2.1. For consistency, the number of Stellwagen training segments

was matched to that of both the Cornell and Cape Cod datasets. As less detections were

available for Stellwagen, the number of test segments were kept consistent with Cape

Cod and roughly Cornell, however a reduction of validation segments was necessary.

All splits contain an equal proportion of each class and were shuffled when finalised.
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2.6.4 Marine and environmental noise

Given the nature of cetacean monitoring, often recordings can be masked by a range

of anthropogenic sounds. Noises from ships, fishing trawlers, or military testing can all

contribute to noisy recordings making detection of NARWs significantly more difficult.

Many datasets provide clean recordings with a high signal-to-noise ratio (SNR) to make

training machine learning models straightforward. These datasets are also the most

accurate as the bioacoustic signal of interest can be clearly heard and often matched

with visual confirmation in the spectral domain. When noise is introduced, detection

and classification becomes more challenging and class labels are less reliable. PAM

recordings are seldom clean and therefore datasets containing majority clean recordings

are not a true-to-life representation of the natural world.

To combat dataset bias, four marine-based noises have been collected and added to

the Cape Cod and Stellwagen corpus, presented in Section 2.6.3, to simulate real-world

noisy conditions. The four noise types considered for the evaluation are; i) tanker noise,

ii) trawler noise, iii) shot noise and iv) white noise. Spectrogram examples of each

of these noise types are shown in Figure 2.9. Tanker and trawler noises were chosen,

as shipping is a common source of marine noise that introduces horizontal bands in

the spectrograms arising from harmonics of rotating machinery within the ship and

low-frequency noise. Additionally, fishing trawler nets and boat strikes are the leading

cause of death and injury to cetaceans; thus, the noises considered are likely found in

mitigation zones, such as shipping lanes, construction sites and designated fishing areas.

These noises were obtained from data that had been collected by the NOAA Northeast

Fisheries Science Center from a passive acoustic monitoring project in the Stellwagen

Bank National Marine Sanctuary. Shot noise is representative of sounds produced

by activities such as piling and seismic exploration and is characterised by a vertical
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structure in the spectrogram. This noise provides likely environments for mitigating

NARW injury in areas surrounding construction or deep-sea exploration. The shot

noise examples were taken from the ‘gun’ samples in the NOISEX-92 database [210].

This noise is impulsive but was arranged so that each two-second recording contained

at least one example of the shot noise. Finally, white noise is included as a more general

noise type that affects all time and frequency regions within the spectrogram, and this

was generated artificially. White noise provides an example of a generally noisy ocean

environment, possibly where multiple noise sources are corrupting PAM recordings

simultaneously. As white noise causes corruptions across the entire spectrogram it also

provides a challenging condition in which noise reduction methods can be effectively

tested. For consistency, all tests used the same noise segments for corruption. One set

of white noise segments were created and the same segments were applied to any tests

using white noise. The same segments were used for training, validation and testing

for each test.
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Fig. 2.9 Spectrograms showing two second examples of white noise, trawler noise,
tanker noise and shot noise that are used in the evaluations in Chapter 7.

To create the noisy audio segments, noise is added to every two-second recording in

the time-domain at SNRs of 5dB, 0dB, -5dB and -10dB. This set of SNRs is chosen to



2.6 North Atlantic right whale vocalisation data 34

cover a range of reception conditions that represent signals received from NARWs at

both close and long range distances. For recordings that contain a NARW vocalisation,

the noise samples are scaled such that when added to the NARW recording, their

subsequent power achieves the target SNR.

To add noise to the “not-NARW” recordings, 2-second segments with no NARW

vocalisation present are extracted from the original recordings at a time 5 seconds after

an upcall or gunshot has occurred. To these “not-NARW” segments, noise samples

are added and scaled so that they have the same noise power as that in the preceding

segment which contained a NARW vocalisation. This ensures that the actual power of

the noise remains consistent across each pair of “NARW” and “not-NARW” examples.

The procedure is illustrated in Figure 2.10. For the context of this work, x is assumed

to be a clean, non-noisy signal with, d representing noise. As shown in Equation

2.1, x and d are added to create a noisy signal, y. Both the signal power and noise

power are calculated using Equations 2.2 & 2.3 respectively and shown in Figure

2.10. The noise scalar shown in Figure 2.10 is represented by α in Equation 2.4 &

2.5. The noise scalar controls the level at which noise is added to the signal, and

enables the noise to be added at the desired SNRs. It should be noted that within a

specific SNR and noise type, the noise examples that are added to the “NARW” and

“not-NARW” examples are not duplicated, so each 2-second segment is contaminated

with unique noise examples. Further, there is no sharing of noise examples used

across the training, validation and testing sets. All noisy dataset variations are clearly

defined in text. If there is no noise mentioned then the original non-noisy dataset is used.

It should be noted that adding noise to a dataset in the above manner is not without

fault. Automatically selecting segments of audio targeted at being “not-NARW” 5
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seconds after a detection event does not ensure that the segment is noise free but

instead each segment has the potential to be corrupted with anthropogenic sound; or

cause further confusion and contain an alternative mammal vocalisation. To combat

this, the “not-NARW” is specifically labelled as such to present the understanding that

samples may contain anything that is not produced by a NARW.

Two problems are understood to be present when detecting NARWs; firstly, a

continuous stream of ocean recording is available which requires events to be detected

prior to classification; and second, classification of detected events. This work and the

results presented, explores the problem of NARW classification as a post-detection

process, at which point each detection event has been determined for further processing

to establish the class of the event.

y = x + d (2.1)

Psignal = 1
N

N−1∑
n=0

x(n)2 (2.2)

Pnoise = 1
N

N−1∑
n=0

d(n)2 (2.3)

α =
√
Psignal

Pnoise

10− SNR
10 (2.4)

y = x + αd (2.5)
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Fig. 2.10 Method of adding noise to the two-second “NARW” and “not-NARW”
segments to create noisy examples at the target SNR. “Not-NARW” examples are
extracted 5 seconds after a NARW vocalisation to give consistency in terms of the
power of the noise examples that are added.

2.7 Traditional detection techniques

This section covers early work implementing methods of detection that were more

traditionally used for cetacean detection, prior to the rise in popularity of time series

classification and deep learning algorithms [109, 199, 226, 4]. Machine learning has

become popular for detection and classification in part due to the growth of data col-

lection and also the availability of high performance computers. Previous to the use of

machine learning, methods to detect cetaceans were largely based on signal processing

methods. Without excessive amounts of data to build complex models, techniques

relied on traditional signal processing operations such as filtering and masking to make



2.7 Traditional detection techniques 37

detection easier. This section explores the use of a traditional detection approaches and

explains methods to analyse ocean recordings when ground truth labels are not available.

2.7.1 Amplitude thresholds

One of the most fundamental functions to detect the presence of a signal within a block

of audio is to use an energy threshold detector (TD). A TD is a method of reporting

energy values within a signal that cross a given detection threshold, TH. Reported

energy values provide samples for when the signal exceeds a threshold, which indicates

that an acoustic event may have occurred. If a segment of audio has an energy which

significantly exceeds the background noise energy, then the segment is considered a

detection. Methods that threshold an acoustic signal do not necessarily need to operate

in the time domain and instead can use features such as spectrograms [69].

Specifically, a TD works well to detect transient calls often seen when monitoring

cetaceans that produce echolocation clicks [229]. However this method can be ap-

plicable to all cetaceans when the SNR of a vocalisation is such that the threshold is past.

Signal processing filters deliver a reliable method to attenuate frequencies within a

given frequency range and can be used in combination with a TD. Prior to using a

TD, the acoustic recording can be filtered to produce a signal with a limited frequency

range, reducing noise and concentrating on frequencies known to contain the cetacean

sound. Filtering in conjunction with using a threshold can yield suitable results for

detecting specific cetacean vocalisations. NARWs however produce upcall vocalisations

in the 50Hz-400Hz band and therefore are difficult to detect, using this method, unless

the SNR is high. Although, filtering provides the ability to mask higher frequencies

which NARWs are known to not vocalise at, which can therefore reduce confusion
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within the detector. [69] found some success for NARW detection using a threshold on

a smoothed spectrogram, however in more noisy condition such a technique may be

inadequate to effectively threshold the NARW vocalisation for detection.

2.7.2 Clustering

Clustering is a unsupervised method of classification that relies solely on the input

data. Attributes of the input data can be extracted and deemed, ‘features’, which

enable the clustering algorithm to operate. Initially two false means can be created

and then centered based on which detections features are closest. This can be repeated

until a desired number of clusters have been created. Calculating standard deviation

and variance of clusters can help to analyse the spread of each cluster. Attaining

a small variance can indicate that clustering might be complete as data points are

closely matched. Data in a more compact region is likely to be similar in nature

and therefore created from the same source. As an example, NARW vocalisations

could be clustered by event duration, event fundamental frequency, and event energy.

Accuracy of clustering does however rely heavily on the reliability of the extracted

features. In noisy conditions the reliability of features may become uncertain as noise

may artificially increase a feature such as event energy or change the fundamental

frequency. Once clusters are formed, each event is labelled with the cluster that it sits

closest to. Self generated labels from clustering can later inform further supervised

algorithms. This pipeline would be entirely unsupervised and may produce initial

classifications without the need for labelled data.

2.7.3 Alternative methods of detection

A range of methods have been explored in the past as techniques for detecting marine

mammals. Mellinger and Clark [140] developed an automatic recognition method for
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transient whale sounds. They use spectrogram correlation with the aim of mapping

distinct spectrogram contours using a recognition score function. Higher peaks within

the recognition score function indicate a correlated spectrogram and thus a detection

event. Results found the correlation function to perform better than more simple

matched filter function, however they acknowledge that neural network methods can

achieve higher accuracies. The combined error rate of the spectrogram correlation

method was 2.5% with a neural network achieving 1.6% although significantly more

training samples were used. Performance in noisy conditions with a low SNR however,

was not tested.

In 2006 and later in 2009, Urazghildiieva and Clark [207, 208] used a gener-

alised likelihood ratio test (GLRT) to evaluate spectrograms of NARW calls within

background noise. They found that using GLRT to detect NARW upcalls worked

reasonably well with some high detection probabilities but this often came at the cost

of an increased false alarm rate. In noisy conditions the results are seen to worsen

and it is suggested that less due to a lack of a priori statistical information, detection

becomes increasingly difficult.

Previous work was then superseded by Baumgartner [14, 18] in 2011 and 2013 with

research aimed at addressing baleen whale detection by developing software called the

low frequency detection and classification system (LFDCS) to detect low frequency

whale vocalisations. The software first smoothed spectrograms of acoustic events using

Gaussian smoothing kernels and attempted to remove tonal noises produced by ships by

subtracting a low-duration mean from each spectrogram frequency band [14]. Potential

calls are first detected using a threshold detector as described above, which are then

mapped along their fundamental frequency to generate pitch tracks. Using each pitch
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track, a set of call attributes are established with these being, “start frequency, end

frequency, frequency range, duration, and slope of frequency variation” [14] and this

informs the final prediction. Call attributes can then also be used within a clustering

algorithm and can help to form natural groupings within the data. Results for the

LFDCS system were promising with performance similar to a human operator.

2.8 Discussion

This chapter has covered the phylogeny of cetaceans and explored why detection of

NARWs is a vital task, and how this is currently carried out. A new detection system

is proposed in Section 2.5, and aims to address many of the limitations present in

current detection systems.

Available data and their sources have been outlined in Section 2.6.3, with analysis of

common noise corruptions discussed in Section 2.6.4. In particular, this work considers

sources of noise that are know to be produced by scenarios harmful to NARW. Once

detection platform limitations are minimised, focus quickly shifts to the reliability and

robustness of the detection method. As previously discussed, there is often large differ-

ences between dataset recordings, often with little background noise, and real-world

recordings, with potentially a wide range of background noises. In order to combat a

mismatch between the experimental and real-world scenarios, oceanic noise corruptions

have been added to the original dataset segments to simulate conditions more similar

to those of the real-world. Four specific noises were chosen which aim to represent a

range of sounds that could be found in the real-world conditions, but also to cover a

wide range of frequencies, causing varying amounts of disruption in the spectral domain.
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One of the largest motivators behind building a robust noise tolerant detector,

is to ensure monitoring efforts are equally as valuable when operating near shipping

lanes or fishing trawlers. The noises chosen aim to cover a range of environments and

represent the harsh conditions that NARW might be in when requiring the highest

level of protection against harm.



Chapter 3

Development of machine learning

methods for classification of North

Atlantic right whale vocalisations

3.1 Introduction

This chapter is concerned with developing and comparing machine learning (ML)

techniques for the classification of NARWs from an acoustic source. Machine learning

is the process of learning and adapting an initial set of model parameters [146] from a

set of training data. Continual learning, without following explicit instruction [177],

consequently informs further adaptation of the machine learning algorithm with the aim

of most accurately predicting which class future unseen data falls into. Classes in the

context of machine learning refer to groupings within the data and are often manually

defined prior to training. For example, for North Atlantic right whale classification

two classes are used, “not-NARW ” and “NARW ”. Prior to running a supervised ML

algorithm, each block of audio will be labelled manually to define which class it belongs

to. Supervised machine learning algorithms build a model based on a subset of the
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data, known as training data. The training data defines data samples for which the

algorithm can see over and over again during a ‘training’ phase. Model training aims

to improve the separation of classes over time and subsequently improve algorithm

accuracy.

The aim of this chapter is to develop and compare a range of machine learning

methods for detecting NARW vocalisations [214]. The machine learning methods

investigated are broadly categorised into two groups; deep learning and time series.

Multiple algorithms from both categories are explored and developed before finally

comparing their performance on a dataset of NARW vocalisations. The deep learning

algorithms all use variations of neural networks to build hierarchical architectures

for processing the acoustic data, with each method fundamentally operating in a

different way. The time series methods cover a broad range of methodologies in order

to find the algorithm most suited to this application. Some of the methods use the

raw time-domain signal without prior processing whilst others first extract features

to use for classification. Investigating a wide range of machine learning methods with

differentiating properties allows for an extensive survey of results and informs the

classification method for future investigations and testing.

Throughout this chapter, both classification accuracy and processing requirements

are considered in order to outline an optimum solution for classification via relatively

low-cost and low-powered hardware such as an ASV. Given the correct hardware and

classification setup, the aim is to process acoustic recordings and predict class labels in

real-time, allowing for the system to run continuously without the need for manual

interference.
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The remainder of this chapter is organised as follows. Section 3.2 reviews previous

methods of ML based classification, with the aim of exploring methods that have

previously been applied to the problem of acoustic classification and also to more

specialist methods used for NARW classification. Section 3.3 evaluates deep learning

techniques and investigates feature extraction to provide the classifier with the most

suitable input. Section 3.4 explores a range of time series based machine learning

techniques and compares their success on NARW classification. A comparison between

the best performing time series and deep learning methods is presented in Section 3.5,

providing discussion and potential avenues for further exploration.

3.2 Background

This section aims to first provide a explanation of terminology used within machine

learning for clarity in future sections. Next, deep learning methods are introduced with

the first widely accepted deep learning architectures discussed. Time series classification

methods are then discussed to explore their success in past classification problems.

Finally, work specifically investigating machine learning for NARW classification is

reviewed to understand what has previously been explored.

Machine learning is a term for incorporating a broad array of algorithms within

the field of computing science that aims to understand the structure of data and build

models that best represent that data for future classification of similarly presented

data. Traditional algorithms operate under an explicit set of instructions to solve

a specific task. For example a sorting algorithm will carry out the same operations

repeatedly until finished. Instead, machine learning algorithms have been developed

to use a learning period to update their internal model based on seen data. This
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learning period enables the algorithm to train a model to best represent the given

data. Learning without following explicit instruction [177] defines these algorithms

as enabling a machine to learn, hence the given name, machine learning. Recently

the use of machine learning algorithms has grown exponentially with uses found in

most modern computing applications [100], for example; facial recognition [156], speech

recognition [162], and autonomous driving [65].

Two widely adopted training methodologies for machine learning algorithms are

supervised learning and unsupervised learning [68]. Supervised learning entails learning

a mapping between a set of input variables x and an output variable ψ and applying

this mapping to predict the outputs of unseen data [28]. This mapping is learnt during

a training period, when the algorithm calculates the difference between ψ and the

ground truth label, g to find mismatches and update the model accordingly to reduce

the error. Using a supervised model therefore requires, g to be present before the

training period can begin. Often obtaining ground truths can be difficult and time

consuming, making supervised learning potentially more costly [231]. However, the

benefits of using supervised algorithms generally outweigh their cost, due to their

reliability and structured learning approach, learning from real world truths [93]. Unsu-

pervised learning equally tries to learn a mapping between x and ψ, however without

knowledge of g [68]. Without prior knowledge of which class the data belongs to, the

algorithm must instead approach the problem by learning relationships within the data.

For example, a clustering algorithm would learn natural groupings within the data

from data features [68]. Unsupervised learning approaches offer a chance to gather data

insights without needing to collect ground truth information. For certain applications

this approach is fundamental, for example when NARW ground truths are missing

or inaccurate, an unsupervised approach might be the only possibility of building a
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classifier. Since the NARW dataset being used has ground truths available, further

investigation will explore supervised learning methods.

Machine learning has become a popular solution for many applications in recent

years [45, 104, 34] and gains popularity each year [100]. A reduction in computer

component size [185] has lead to a surge of low-cost solutions for data collection [185]

and thus methods to process the data and extract the most valuable findings has been

an area of intense research and development. Progression frameworks such as the

Internet of Things (IoT) [172] has also been responsible for making ML solutions more

suited to larger audiences due to the always-connected nature of devices.

Deep learning (DL) as a subject area has advanced considerably over the last 15

years with popularity starting to grow in 2006 [88]. Although early neural networks

date back to 1957 [173], the adoption of such techniques has only occurred more

recently with the advent of deep learning, specifically focusing on creating deeper

neural networks [111]. The deep learning family of algorithms has evolved from feed-

forward networks, to recurrent networks, and convolutional networks. Research in this

area is highly active, with new methods being introduced continuously. Each evolution

has bought a different methodology whilst utilising the familiar underlying hierarchical

architecture to solve a range problems.

The basic idea of a single perceptron (or node) was created in 1957 by Frank

Rosenblatt [173]. Although useful at solving simple problems, they were restricted in

design as they were incapable of learning the XOR function [145, 164]. The multilayer

perceptron (MLP) solved this problem and provided the basis for fully connected neural

networks that are used today [81]. Development from MLPs led to the creation of many

offshoot networks. Recurrent neural networks (RNNs) were first detailed in 1986 [175].
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RNNs were designed to help propagate information further down the network whilst

back-propagating errors in order to learn complex representation of the data. Tasks

such as speech recognition benefited hugely from this type of recurrent structure.

Convolutional neural networks (CNNs), developed simultaneously, focused on image

recognition with LeCun et al. in 1994 providing the first mainstream solution [209].

Despite early proofs [173, 84, 81], widespread deep learning adoption did not occur

until 2010s when deep learning approaches started to outperform other methods. In

2013 the MNIST handwritten digit dataset was classified by a neural network, achieving

the lowest error rate to date [221]. Success continued with AlexNet, a classifier trained

on 1.2 million images was proposed by Krizhevsky et al. [106]. This classifier was

the first of its kind with such a large training set. The proposed approach utilised a

CNN which encompassed 60 million parameters and 650,000 neurons and predicted

1000 classes of image. The dataset in question is known as ImageNet and provided a

platform for researchers to compete in order to achieve the best classifier [52]. AlexNet

indicated a new wave of neural network based deep learning models. Krizhevsky et

al. found their approach to provide considerably better results than the previous

state-of-the-art for the same dataset [106]. ImageNet lay the ground work for a raft of

future convolutional neural network (CNN) based image classifiers besting previous

methods by statistic significance, including the creation of VGG [190], and others [237,

183, 189] in 2014. Later in 2016 [82] pushed the neural network boundaries further,

exploring deeper networks. He et al. found that very deep networks suffered from

vanishing gradients. Gradients between network nodes become increasing small as the

network deepens with network weights having increasingly small effects and subsequent

learning becoming stationary. He et al. found that forcing propagation (through

skip connections) of the higher layer features allowed this problem to be overcome
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and gradients to be maintained in much deeper structures [82]. He et al. coined the

architecture name ResNet, standing for residual network [82]. ResNet development

continued with depths ranging from 18 layers to 152 layers. Success was seen with

ResNet on large scale problems such as ImageNet [82], beating AlexNet in 2015.

Time series algorithms are a different type of classifier that have previously been

developed and studied to solve a range of real world problems. Sempena et al. used

Dynamic Time Warping (DTW) to recognise human body positions and actions from

imagery depth maps [182]. Sempena et al. found that DTW proved effective at recognis-

ing human body shapes when comparing video capture against pre-defined actions [182].

Deecke et al. also used DTW to categorise cetacean tonal sounds [Deecke]. In 2014

Chen et al.[35] used a Bayesian network to accurately classify species of flying insects.

Chen used low cost sensors in order to record laser fluctuations onto a digital sound

recorder. Chen found using a Bayes classifier provided accurate classification results

with minimal CPU and memory requirements, whilst also being easy to implement

and having no parameters to tune [35].

A broad range of detection and classification methods have been applied more

specifically to cetacean detection in recent years. Edge and threshold detectors have

been used to detect odontocete whistles [70] and NARW upcalls [69]. Time series

methods such as vector quantisation and dynamic time warping have been effective in

detecting blue and fin whales from their frequency contours extracted from spectro-

grams [148]. Hidden Markov models (HMMs) have also been effective at recognising low

frequency whale sounds using spectrogram features [140]. Deep learning investigations

comparing artificial neural networks (ANNs) and spectrogram correlation for NARW

detection [139] have also been made. Further to the use of ANNs, support vector
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machines (SVMs) have been applied effectively to odontocete classification [96]. SVMs

have been compared against Gaussian mixture models for classification of three types

of odontocetes [169]. Classifying NARWs with convolution neural networks (CNNs) has

also been investigated, however using Mel-frequency coefficient input features instead

of standard spectral representations [191]. More recent work in 2020 conducted by Shiu

et al. [188] provides a comprehensive review of neural network techniques for NARW

detection, finding neural networks to be effective at detection with an large increase in

accuracy compared to methods proposed in a 2013 conference challenge. Recent trends

and success in the field of machine learning have influenced the subsequent techniques

used to detect NARWs within this work. This work considers techniques that repre-

sent the acoustic recordings in different forms to understand how best to detect NARWs.

3.3 Development of deep learning algorithms

This section aims to develop and test a range of deep learning approaches for detecting

NARW vocalisations from acoustic recordings. In recent years, deep learning has

seen large improvements in areas where time series traditionally returned the best

results [106, 59]. Computer vision and speech recognition have seen the greatest

advancement from the rise of deep learning algorithms [220] with some applications

outperforming human performance for the same task [121, 233]. Three types of neural

networks will now be developed; fully connected networks (FCNs), recurrent neural

networks (RNNs) and convolutional neural networks (CNNs). As previously discussed

in Section 3.2, FCNs, RNNs and CNNs form the basis for deep learning as they

are known today. FCNs are the simplest and therefore offer the smallest processing

requirements. RNNs have been specifically developed for tasks that benefit from

knowledge of past data. As the problem of NARW classification relies on important
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temporal information, RNNs should provide valuable recurrent properties to facilitate

classification. CNNs are known for their excellent performance in image classification

applications. CNNs provide an alternate transformation of the initial time domain

data. Comparison of these approaches will be invaluable in evaluating the best method

for NARW classification.

The reminder of Section 3.3 is as follows. Section 3.3.1 investigates feature extrac-

tion parameters for NARW vocalisations. Section 3.3.2 explores both time domain and

spectral domain input features, as well as considering a range of network architectures

for fully connected neural networks. Section 3.3.3 similarly investigates time domain

and spectral domain input features but instead develops a recurrent neural network

for classification. Finally, classification from a CNN is then explored in Section 3.3.4,

where a range of feature extraction parameters are examined to provide the most

suitable features for classification.

3.3.1 Feature extraction for North Atlantic right whale vocal-

isations

The purpose of feature extraction is to transform the input audio signal into a repre-

sentation that is more effective for detecting whale sounds. Although many different

methods of audio feature extraction have been developed (for example Mel-frequency

cepstral coefficients [MFCCs], perceptual linear prediction [PLP] and filterbank [143])

a standard power spectral representation was chosen in this work. MFCCs are a

method of representing acoustic frequencies in such a way that aims to mimic the

human auditory system [143]. Frequency bands are equally spaced, however they are

on the Mel-scale [50] instead of being linearly spaced as found on the normal spectrum.
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Feature extraction using MFCCs was designed to produce features that more closely

map human speech and are therefore more suitable for speech recognition tasks. PLP

approach feature extraction similarly [84], designed to produce features most suited to

human speech. Considering the original purpose of these techniques and due to the

unknown differences between the human and cetacean auditory systems these meth-

ods were not investigated further. Using the standard power spectral representation

therefore allows the subsequent networks (FCN, RNN or CNN) to learn discriminative

representations and not remove what could be useful information, such as may happen

when using, for example, a mel-scaled filterbank.

Input features are often dependent on the chosen machine learning technique.

Methods aim to use the most appropriate input features for the chosen classifier. For

example the time series methods all initially use the time domain audio signal as they

have been developed to work best on a time series. Neural networks however are

targeted as generic algorithms aimed at accepting a wide range of input features. It

therefore is crucial to investigate the most suitable input features whilst also assessing

other parameters such as the network architecture. Extraction of the power spectrum

is now explored with further parameter testing in Section 3.3.1.

Power spectrum

The process of feature extraction to create power spectral features (often referred to

as spectrograms, when stacked temporally) uses a sliding window to convert short-

duration frames of the input audio signal into a sequence of log power spectral vectors,

xt. Specifically, an N -point frame of time-domain samples is extracted from the audio,

Hamming windowed and a Fourier transform computed. The upper N/2 frequency

points are discarded and the remaining points logged. An overview of the process



3.3 Development of deep learning algorithms 52

Time Domain
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Fast Fourier Transform

Truncation

Log

Stack Vectors

Combine Frames

Fig. 3.1 Overview of the stages involved when creating a spectrogram comprising a
series of power spectral vectors taken from an audio source. This diagram shows the
processing of one power spectral vector. This process occurs across the entire signal to
produce the final spectrogram seen in the bottom right.

is detailed in Figure 3.1. Analysis windows are advanced by S samples to compute

each new spectral vector. At a sampling frequency of fs Hz, a total of fs−N+1
S

spectral

vectors are computed each second. This gives the total number of time-frequency
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points, L, that are produced each second as

L = fs −N + 1
S

× N

2 (3.1)

Normalisation is applied to the elements of the power spectral vectors such that they

are in the range 0 to 1. The power spectrum offers an enhanced insight into the

frequency of recordings as time progresses. Frequency contours from marine mammals

are often clearly visible within the power spectrum and as such provide a good starting

point for classification rather than from the time domain signal. Figure 3.2 shows a

comparison of the same signal in both the time domain and the spectral domain. In

Figure 3.2 the NARW upcall is clearly visible in the spectral domain (right), whereas

the upcall is not visually present within the time domain (left). In Figure 3.2 the

spectrogram (right) has been extracted with a sampling frequency of 1kHz, and a

32ms time resolution. Typically for automatic speech recognition a frame width of

10-30ms and a 50% frame overlap is common. This is based on the human autonomy

of vocal organs, however it is understood that similar parameters may not be optimal

for NARW vocalisations.
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Fig. 3.2 Comparison of a single audio file shown in the time domain (left) and spectral
domain (right).
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Spectrogram parameters

NARW classification in the spectral domain is based on first extracting a time-frequency

spectral feature from the audio signal and inputting this into a classifier to predict

the presence of a NARW. The time-frequency feature, X is created using the process

detailed in Section 3.3.1. Within X each element xij, represents the energy at time

index i and frequency index j. During the creation of spectral features, N , the window

size, S, the slide of the window and fs, the sampling frequency, are all parameters

that can dramatically alter the generated feature. The first parameter, N , effects the

frequency resolution. Choosing a smaller window length will produce the effect seen in

Figure 3.3 where frequency resolution decreases as N becomes smaller and the frame

is made up of more spectral vectors.
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N = 64
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Fig. 3.3 Spectrograms with their N value set to 1024, 256 and 64 respectively. Other
parameters are S = N with fs = 2000Hz.

The second parameter, S, accounts for the slide of each window. Having a smaller

S means a larger amount of short-duration frames are captured with each frame

overlapping the previous. The spectrograms in Figure 3.4 use a fixed N = 256, with

S = 256, 128, 1. These S values represent a non-overlapping window, a half overlapping

window and a window that advances by only a single frame, causing 255 overlapping

frames. The change of S seen in Figure 3.4 shows the clarity change when using
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overlapping frames, capturing a greater level of temporal detail. Computing more

frames does however lead to increased computation. Therefore a balance between, S

and accuracy can often be found. An increase in S eventually saturates and does not

directly correlate to clearer spectrograms, as can be seen in images 2 & 3 in Figure 3.4.
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Fig. 3.4 Spectrograms with their S value set to 256, 128 and 1 respectively. Other
parameters are N = 256 with fs = 2000Hz.

The third parameter, fs, is the sampling frequency of the audio. Using a smaller

fs requires the original data to first be resampled. Figure 3.5 uses the original fs,

resampled to a half, and resampled to a quarter. Both N = 256 and S = 32 were

fixed for consistency, however N , S and fs have a relational link. They all effect

the number of short-duration frames captured when fs is reduced. The effect seen

in Figure 3.5 is similar to cropping, with higher frequencies discarded. Testing a

reduction in fs indicates the optimum frequency capture range for NARWs but also can

provide potentially faster computation as the lower frequency features will have smaller

dimensions. All plots in Figure 3.5 are stretched to fit the given area, however it should

be noted that the frequency axis (left) is reducing by a factor of 2 on each subsequent

plot. Tests in Section 3.3.4 investigate the most suitable spectrogram parameters for

NARW vocalisation classification.
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Fig. 3.5 Spectrograms with their fs value set to 2000Hz, 1000Hz and 500Hz respec-
tively. Other parameters are N = 256 with S = 32.

3.3.2 Fully connected networks

Fully connected networks (FCNs) are often referred to by their simpler counterpart,

artificial neural networks (ANNs) or deep neural networks (DNN) however deep

networks could refer to any neural structure with more than one hidden layer. In the

context of this thesis FCNs will describe a neural network structure with an input

layer, output layer and one or more dense layers. This structure will reflect many

network types but FCNs specifically only utilise dense (hidden or fully connected)

layers between the input and output layers.

FCN structure

Figure 3.6 provides a visual description of a FCN with two dense layers, fed by an input

layer and returning an output layer (class prediction). A network of this structure

can take input from any source, however the input would need to be first transformed

into vector. For example, an acoustic source is already in the correct form as a one

dimensional signal, however an image such as a spectrogram would first need conversion

into a vector prior to processing. For a spectrogram this could be achieved by stacking
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frequency vectors into one sequence.

Input layer

Dense layer

Output layer

Dense layer

Time-domain 
audio, x

> 0.5

≤ 0.5 0 – Not NARW

Prediction, 𝜓

1 – NARW

Fig. 3.6 Visualisation of a fully connected network fed from an acoustic signal, x.
The network structure contains an input layer connected two dense layers and a single
output node for binary classification.

FCNs are made up from a number of fundamental mathematical operations that

act on a combination of the input data and network parameters. FCNs, compared to

other network types, use the simplest set of operations, with each dense layer taking

input from all nodes on the previous layer. Neural networks contain a vast amount

of user-defined parameters and functions. Understanding the relationship between

these enables a deeper level of exploration when maximising classification accuracy

for NARW classification. A FCN is defined by a number of attributes, such as the

architecture (number of layers and nodes), training process, and optimiser.

1. Architectural elements

A number of different variables contribute to the fully connected network architecture.

These are the layer type and number of nodes. FCNs comprise three layer types, input,

dense and output layers with each responsible for a specific operation.

(a) Input layer

The input layer x[1] defines the size and shape of the network input. Input throughout



3.3 Development of deep learning algorithms 58

the network will be noted as x with x[1] specifically referring to the input of the first

level - the input layer. The input data must conform to the input layer shape otherwise

a mapping from the data to input shape must be defined. The input layer can take

a range of forms for different types of input data [38] or different neural network

architectures, however for an FCN the input will present as a vector. As an example,

in Figure 3.6 the input layer is a (1, 16) vector representing the time domain signal of

an acoustic recording taken from the ocean.

(b) Dense layer

Dense layers are inward facing layers and cannot take input or generate output directly.

Dense layers are often referred to as hidden or fully connected layers however, for

consistency, will be referred to as dense layers. Dense layers take input from all nodes

on the previous layer to produce an output. This flow of data creates a many-to-many

relationship between all nodes on dense layers within the network [166]. This can be

see on Figure 3.6 between the first dense layer and the input, and for a single node in

Figure 3.7.

When designing a network architecture, both the number of dense layers and number

of nodes per layer need to be chosen. Using a large number of nodes and layers will

enable greater granularity of information within the network. However computation

time and size will increase and excess complexity may be introduced into the model.

The term ‘node’ refers to a single position within a layer. Dense layers are formed

from a set of nodes, as can be seen in Figure 3.6. At each node, a combination of the

output from the previous layer, x[l−1]
i , connection weights, w[l]

i , and network bias, b[l]
i

are computed to produce the pre-activation output, z[l]
i , shown in Equation 3.2.

(c) Output layer

The output, ψ normally presents as a layer with the number of nodes matching the
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number of classes for that classification task. Each node represents a class of the

data with the output of all nodes, after application of a sigmoid function, totalling

one. The highest valued node signifies the class that the model predicts the input

data to belong to [38]. For binary problems a network may use a single node with an

output value ψ > 0.5 belonging to class 1 and ψ ≤ 0.5 to class 2. Initial NARW tests

are presented as a binary problem as shown in Figure 3.6. Accuracy of the model is

measured by comparing the model prediction, ψ to the label, g. The percentage of

correctly classified inputs produces the model accuracy.

2. Node components

Nodes sit within each layer of the network and are used to process each data point.

Each node has a number of components that contribute to its activation.

z = x . w + b

𝜓= g(z)

𝜓

x 1

x 2

x 3

w 1

w 2

w 3

Fig. 3.7 A diagram to represent the flow of data within a dense node.

z
[l]
i =

N [l−1]∑
i=1

(x[l−1]
i · w[l]

i ) + b
[l]
i (3.2)

(a) Weights

Connection weights, w[l]
i are present on every internal node connection between

the input and output layers. Weights define the amount of movement each node
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can have when training the model. During each training pass, the model weights

can be updated and subsequently alter the output value of each node.

(b) Bias

A bias, b[l]
i is a constant that is added to the output of each node and ensures the

desired node output is reached to activate each node. This value is again updated

through the training process.

(c) Activation

The activation of a node defines the final node output before ‘firing’ to the next

node. Attaching a function to manipulate the output, enables more complex

patterns within the data to be learnt as non-linearity can be introduced. For

problems where the classes do not separate linearly, a linear output such as z[l]
i

may struggle to differentiate the classes effectively. Providing the introduction of

a non-linearity has shown to be highly effective at enabling the network to learn

more complex structures [124].

For the models in this work, in general, Rectified Linear Units (ReLU) are

used [149]. Activation of a node is shown in Equation 3.3 with the ReLU function

applied to z[l]
i before being passed onto a subsequent layer. ReLU is one of many

non-linear activation functions but is used here as its use within the field of deep

learning is wide spread, with recognition of its ability when dealing with complex

models [152].

x
[l]
i = g(z[l]

i ) = max(0, z[l]
i ) (3.3)

3. Loss function

The loss function provides a method of assessing model performance for each piece of

input data. A loss value, L(ψ, g) is the result of the loss function aiming to provide an

accurate measurement between the class label, g and model prediction, ψ. In this work,
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for two class problems, binary cross-entropy was used as the function to generate L [43].

The aim of the network is to minimise L, indicating that the set of w is producing ψ

that more closely match g. Equation 3.4 describes binary cross-entropy where N is the

number of classes - for NARW classification this is two. For ψ values distant from their

g counterpart, Equation 3.4 will generate a larger L value, which signifies a larger w

shift is necessary in the subsequent update of the model parameters.

L(ψ, g) = − 1
N

N∑
i

[gilog(ψi) + (1 − gi)log(1 − ψi)] (3.4)

4. Training and Optimisation

Training is the process of allowing the network to learn. A defined number of network

passes are allocated for the model to learn from the training data - a subset of the

entire dataset. A further subset is reserved for validating the model’s performance

during training, with a third split separated for testing. Test data is never processed

by the model during training and is therefore entirely unseen; this reflects the real

world situation of processing new acoustic recordings. During training, each piece of

training data will pass through the network, producing a prediction, ψ. In order for

the network to learn and improve, an optimiser is used in conjunction with L during

backpropagation. The network will be trained for a limited number of epochs and the

weights from the best performing model will be used to label new instances of ocean

recordings.

An optimiser aims to change the connection weights, w, to reduce loss and to

produce a higher number of correct classifications, which for NARW detection would

be more NARW vocalisations correctly identified. Different optimisers are available to

use, however throughout testing, Adam [103] was used as it consistently achieves fast
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convergence and excels at finding the global minimum L [153]. Adam calculates the

gradient between each weight, w[l]
i and L by utilising the partial derivative of L with

respect to w[l]
i . Equation 3.5 examines an overview of the Adam algorithm. The result

of Equation 3.5, w[l]
i , provides an updated weight to the network. In Equation 3.5, α

defines the learning rate. The learning rate can be updated manually or automatically

based on the learning speed of the network. Controlling the learning rate allows for

larger or smaller weight changes during backpropagation.

w
[l]
i = w

[l]
i − α

∂L
∂w

[l]
i

(3.5)

Backpropagation is the process of updating network weights during training [75].

Every time a piece of training data passes through the network every activation func-

tion, on each individual node fires, passing values onto the subsequent layer and finally

producing a network prediction, ŷ. Each time this occurs an updated L is generated.

Backpropagation occurs by traversing backwards through the network updating each

connection with an updated w[l]
i calculated using the optimiser. Once the entire network

is updated the next forward pass can occur with a new piece of training data. This

circular loop enables the learning process to take place.

Every time a full pass of the training data occurs, the model is said to have

completed an epoch of training. Deciding on the number of epochs for training is an

important decision when designing a neural network. Using a low number will mean

training takes less time but potentially means the model will not have reached a global

minima L and given more time to train, could become more accurate. Alternatively a

high number of epochs will ensure the model is sufficiently trained with convergence



3.3 Development of deep learning algorithms 63

on a global minima L highly probable, however wasted computation may occur if the

model converges before the end of training.

Time domain testing

The initial experiments into NARW classification utilised the time-domain audio signal

for input in the FCN and use the Cornell corpus as defined in Chapter 2.6.3. Since

the time-domain signal occupies a vector, no manipulation was necessary to process

the raw audio using the FCN. A number of network parameters are available to alter

during testing. Prior to further investigation into each hyper-parameter, the core

parameters; number of dense layers, and number of nodes per layer, are investigated.

Investigating these parameters provides analysis of how the different architectures

perform and subsequently informs if further analysis of network hyper-parameters is

necessary. In order to extensively evaluate performance of the FCN, a range of layers

and nodes were tested. Table 3.1 details an overview of tests, with the number of

layers ranging from 1 to 40 and nodes per layer ranging from 2 to 256. A large range

of architectures were evaluated to enable clear understanding of how the network was

performing and which architecture provided the best results. The best performing

architecture is highlighted in bold. All tests were repeated 10 times as the network

starting weights are randomised for each test. An average of all 10 repetitions is

calculated and presented.

Table 3.1 demonstrates the necessity for FCN architectures to use a sufficient num-

ber of nodes on each layer. Near best network performance can be achieved with only

10 layers and 128 nodes per layer. A further gain in performance can be found when

increasing the number of layers, with the maximum performance found when using

25 layers and 128 nodes per layer. Convergence appears to occur at this point with

further tests showing no improvement in accuracy for the increase in model complexity.
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Nodes per layer
2 4 8 16 32 64 128 256

1 54.17 54.78 51.22 51.73 52.01 51.41 50.97 51.07
5 51.46 57.21 65.08 62.95 62.05 61.25 50.30 50.06
10 50.53 60.51 67.00 62.98 67.93 68.96 69.19 67.67
15 50.00 55.58 67.89 68.53 69.83 69.69 69.33 70.38
20 50.00 55.35 66.27 69.47 69.73 69.59 70.06 70.08
25 50.00 52.70 67.43 69.52 70.20 70.17 70.85 70.65
30 50.00 51.67 62.85 68.95 69.27 69.88 70.31 69.68
35 50.00 50.00 57.56 69.80 69.67 69.22 69.92 68.39

Network
depth
(layers)

40 50.00 51.72 58.67 69.13 70.00 70.23 69.79 69.17

Table 3.1 Accuracies achieved from a wide range of network architectures for FCN.
Network depths range from 1 to 40 dense layers with nodes per layer ranging from 2 to
256.

It is suggested that 128 nodes performs well because this provides enough compression

of the original audio without removing an excess of data points that are necessary to

differentiate the classes. It is also thought that a minimum number of 10 layers is

necessary to accurately model the complexity of the raw audio. Tests with fewer layers

struggled significantly.

Table 3.1 indicates limited performance using a FCN network on the time domain

signal. Previous research in the field of signal processing indicates that the raw audio

signal is unsuitable for speech recognition [113, 99] and potentially therefore poor for

use as an input feature in a FCN for NARW classification. Since the time domain

signal does not include any frequency information, it is understandable that the FCN

performance had a ceiling of 70.85% accuracy. These results provide a platform to

evaluate alternative deep learning methods against.

Spectral domain testing

As previous research concludes [113, 99, 87], power spectral features are effective at

providing frequency analysis of an audio source. Representing this as a spectrogram
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also allows for temporal information to be included and as such could be important for

making classifications. Further tests therefore explore the use of spectrogram features

(Section 3.3.1) for input into the FCN. To match the correct input dimensions the

spectrogram must first be transformed into a vector for computation. Parameters

for spectrogram creation were taken from later work in Section 3.3.4, where a 1kHz

sampling frequency, 3.9Hz frequency resolution and 32ms time resolution performed

best. This spectral resolution gives spectrogram parameters of N = 256 and S = 32

and produces a matrix of 129 × 55 time-frequency points and subsequently produces

a 7,095 point vector when transformed. The same testing framework as first seen in

Section 3.3.2 was used to analyse performance of spectral features.

Table 3.2 shows the accuracy when testing across a range of network depths and

nodes per layer. The highest accuracy is shown in bold. Using the spectral domain

enables far greater accuracies when compared to the time domain with a 16.8%

improvement between the maximum for both methods. Results in Table 3.2 indicate

that spectral features contain more insightful class information as the model can predict

more correct labels, over results for time domain tests in Table 3.1. However, Table 3.2

shows that the architecture is more volatile with many variations unable to produce a

detection rate greater than chance (i.e. 50% for a 2 class problem). Best performance is

found when using 15 layers and 16 nodes per layer, however using a range of 32 to 128

nodes and 2 to 15 layers produced extremely similar accuracies and shallower networks

with less nodes are computationally cheaper, an important requirement for real-time

classification. Since the optimal network for spectral domain features is significantly

smaller in both layers and nodes per layer than that of the best performing time

domain network it is thought that the spectrogram features contain a larger amount
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Nodes per layer
2 4 8 16 32 64 128 256

1 50.00 50.00 53.65 57.48 53.79 72.08 57.50 50.00
2 50.00 53.74 57.41 80.01 87.55 87.50 87.40 87.41
3 50.00 55.61 68.75 80.18 87.52 87.54 87.36 87.40
4 50.00 57.48 61.27 80.18 87.36 87.18 87.49 87.44
5 50.00 57.48 68.76 80.17 87.41 87.29 87.33 87.30
10 50.00 53.74 80.17 83.71 87.39 87.25 87.11 87.26
15 50.00 53.70 72.48 87.65 87.25 87.40 87.33 75.03
20 50.00 50.00 72.55 87.31 87.46 87.18 82.52 53.77
25 50.00 50.00 50.00 68.78 84.07 68.77 57.52 50.00
30 50.00 50.00 50.00 53.71 53.75 53.68 50.00 50.00
35 50.00 50.00 50.00 53.75 53.75 50.00 50.00 50.00

Network
depth
(layers)

40 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Table 3.2 Accuracies achieved from a wide range of network architectures with
flattened spectrograms used as input into a FCN. Network depths range from 1 to 40
dense layers with nodes per layer ranging from 2 to 256.

of discriminative information and therefore requires less nodes and network depth to

differentiate between classes.

3.3.3 Recurrent neural networks

Recurrent neural networks (RNNs) have recently found widespread use in many modern

applications, such as; natural language processing (NLP) [224], language translation [37],

and speech recognition [77] that have temporal structure. The idea of recurrent networks

is not new with the initial concept discovered in 1980 [50], however only since the early

2010s have the real advantages to them been unveiled with the growth of big data [20]

and faster GPU-accelerated computing [187]. The benefit of recurrent networks for

specific applications is that they account for temporal information within the input.

Tasks such as speech recognition therefore greatly benefit from the context of previously

classified speech before making predictions of whole words or sentences. Taking into

account the benefit of RNNs, it was logical that time-frequency feature classification
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could benefit from the temporal learning properties of the network over that of the

static modelling with FCNs [213].

RNN structure

A characteristic of FCNs is that they have no memory. Each input shown is processed

independently, with no state kept in between inputs [38]. To fully understand streams

of information where context is embedded in previous sections, it is essential that a

memory of past events is kept. RNNs adopt this principle by processing sequences of

information whilst concurrently maintaining a state relative to what has been seen so

far [38]. A feedback loop connected to each node allows this to occur, by feeding seen

information back into the current node.

The structure of an RNN comprises of a sequence of recurrent layers, each with a

number of nodes, followed, optionally, by dense layers. A limitation of RNNs is the

diminishing gradients problem [92]. Diminishing gradients occur when the network

weights are updated by small gradients that cause insignificant change for that node.

In the worse case, training would stop as gradients become too small to make any

change. Gradients become small as certain activation functions reduce large input

spaces into small ones, often in the 0 − 1 range. The derivative of these outputs,

used to calculate the gradient, becomes even smaller, in time producing diminishing

gradients [91]. To avoid diminishing gradients each RNN layer is implemented using

a long short term memory (LSTM) cell [90]. All LSTM layers use the hyperbolic

tangent activation function with dense layers using a ReLU activation. LSTM layers

enable data seen previously to be forcefully propagated into deeper nodes [90]. This

propagation helps to increase gradients as the memory of an LSTM cell is not subject

to processing from an activation function and larger input spaces can stay large. LSTM
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layers will now be explored in detail to show the information flows through a LSTM cell.

1. LSTM layer

LSTM layers are a variation on original recurrent layers [175] as they enforce a

continuous memory property, which is a stream of data that passes chosen information

further down the network. This ‘memory cell’, Ci allows each node to see previously

processed data as well as upcoming data. LSTM layers have been widely adopted in

place of recurrent layers as they can achieve higher accuracy [186] due to their ability

to gain discriminative features from temporal information. Therefore only LSTM layers

are used when testing RNN configurations. LSTM nodes contain three main decisions

gates; input, forget and output. Each gate is responsible for including or disregarding

information from the input data. Figure 3.8 shows a diagram of an LSTM node. All

inputs, outputs and gates are shown. The internal memory cell, Ci provides a long term

memory for the network and enables later nodes to see data from previous timesteps.

Each gate works to add or remove information from Ci in order to propagate relevant

features further into the network. Ci thus reduces the effects of short-term memory

when compared with traditional recurrent nodes. Each gate contains a sigmoid function

to reduce values to between 0 and 1 for easier propagation or removal. For simplicity

network weights, wg
i , are not included in the equations below or on Figure 3.8. Each

gate within the node has a set of weights, wg
i , with g defining the gate. Weights work as

they did previously for FCNs with values updated during training and backpropagation

in order to shift importance of information being passed through the node.

(a) Forget gate

The forget gate is responsible for removal of non-relevant information from the memory.

By removing this information a larger proportion of class defining values are kept

and classification becomes easier. Firstly the input, Xi, is concatenated with the
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Fig. 3.8 A diagram of a LSTM module showing the input, output and internal
functions and also detailing the three module gates.

previous output, Zi−1 and passed through a sigmoid function shown in Equation 3.6.

Overtime, the network learns to minimise unwanted values and maximise important

values. Equation 3.7 shows the output of the first sigmoid, fi is then combined with the

Ci−1 to remove values that were minimised. Concatenation of two vectors is represented

with a ⌢ in the upcoming equations.

fi = σ([Xi ⌢ Zi−1]) (3.6)

Ci = Ci−1 · fi (3.7)

(b) Input gate

The input gate defines values that improve performance during training. The input
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gate specifically aims to maximise values which help to separate classes for classification.

The input gate passes a concatenation of the input, Xi and previous output, Zi−1

through a sigmoid function, producing ji, shown in Equation 3.8. The same values are

also passed through a tanh function to produce a candidate memory cell, C̃i (Equation

3.9), which combined with ji, signals which values within C̃i to maximise. C̃i is then

added to Ci to push the new values into memory, shown in Equation 3.10.

ji = σ([Xi ⌢ Zi−1]) (3.8)

C̃i = tanh([Xi ⌢ Zi−1]) (3.9)

Ci = C̃i · ji (3.10)

(c) Output gate

Similarly to the other gates, the output gate applies a sigmoid function to input, Xi

and previous output, Zi−1 to produce oi in Equation 3.11. The output gate decides,

based on the memory cell, what the output of the current node should be. After

producing oi the memory cell has a tanh function applied, before being multiplied by

oi and producing the output, Zi, which is detailed in Equation 3.12. Both Zi and Ci

are passed onto the next node.

oi = σ([Xi ⌢ Zi−1]) (3.11)

Zi = tanh(Ci) · oi (3.12)
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Nodes per layer
4 8 16 32 64 128 256 512

1 80.25 87.41 89.31 90.30 90.52 90.50 90.49 90.35
2 86.55 88.54 89.51 90.43 90.43 90.42 90.37 90.42
3 88.20 88.96 89.71 90.50 90.53 90.50 90.29 84.60
4 88.69 89.37 89.96 90.59 90.78 90.61 90.59 65.24

LSTM
depth
(layers)

5 89.10 89.69 89.92 90.57 90.61 90.62 90.11 50.00

Table 3.3 Tests evaluating a range of LSTM layers and nodes for a RNN classifier.

RNN architecture tests

The same input feature previously used in Section 3.3.2 where N = 256, S = 32 and

fs = 1000Hz is used to test RNN architectures for NARW classification. Testing for

the CNN in Section 3.3.4 found a multi-layered encoder and 2 layer classifier to achieve

the best results. Tests in this section keep the classifier consistent with Section 3.3.4,

whilst manipulating the number of LSTM layers and nodes per layer. Table 3.3 shows

the accuracies reported from these tests. A range of high performing architectures

were found using 1 to 5 layers and between 32 and 128 nodes. The best accuracy

was produced with 4 layers and 64 nodes, with other shallower networks not being

significantly different. This shows that deeper models have less effect than the number

of nodes per layer. It is thought that shallower models could perform well due to the

use of the LSTM cells and their propagating memory. Deeper models are unnecessary

as the latent space can be smaller due to memory cells containing crucial discriminative

information. Through all tests, except those with 512 nodes, a deeper model provided

a minimal gain in accuracy and at times reduced performance. A compromise in the

real world to maximise performance whilst minimised processing requirements would

be to use a network containing a single LSTM layer with 64 nodes, combined with 2

dense layers.
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3.3.4 Convolutional neural networks

Convolutional neural networks (CNNs) have recently become popular due to their

ability to successfully classify large datasets of images [106] such as Imagenet, a

collection of images containing over 1000 classes [52]. CNNs work similarly to FCNs,

utilising a layered structure to process inputs, however convolutional layers are applied

prior to dense layers and these extract features from the input before dense layers

produce a final prediction. Since 2012, image recognition research has been centered

around deep learning and specifically CNNs [190, 189, 82]. It is therefore important

to investigate whether CNNs can be applicable to NARW vocalisation recognition by

treating spectrograms of PAM recordings as images.

CNN structure

Figure 3.9 shows a block CNN structure for classifying NARW with convolutional

layers placed before dense layers. The whole structure in Figure 3.9 makes up a CNN

however the convolutional layers specifically make up an encoding block as they learn

to extract data specific features from the input spectrogram to create a compressed

representation. For example, masking background noise within a NARW classification

and only keeping the pixels that pertain to this frequency contour. As an example,

Figure 3.10 shows a comparison of a typical input spectrogram against the output of

a 3rd layer convolutional filter. As Figure 3.10b shows, the network has propagated

the upcall pixels through the layers with the rest of the image becoming unstructured

noise. Extracting data specific feature enables the dense layers to work more effectively

at separating classes for classification.

Many functions within a CNN are the same as their FCN counterpart. For ex-

ample, activations, backpropagation, optimisers, epochs and loss functions. Further
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CNN Encoder
Dense 

Classifier 
(FCN)

0 (Not NARW)

1 (NARW)

Fig. 3.9 A standard CNN structure, defining the position of convolutional layers in
relation to the dense layers.

explanation of CNN specific operations will now be discussed.

1. Convolutional layer

Convolutional layers aim to find features within the input spectrogram, X, and

propagate these deeper into the network. Features found in images are normally details

or edges that define the image class. For example the feature that defines a NARW

upcall is the upsweep in frequency producing a contour seen on Figure 3.10a.

(a) Filters

Filters (or kernels), W are generally small patches of randomly initialised weights [38]

that move over the entire input, X. The aim of using filters is to encode specific

aspects of the input data, such as edges or lines within the image, helping to separate

that image from others [38]. Filter sizes are user defined but are often 3 × 3 or

5 × 5. For specific applications, any filter size can be used, such as 1 × 5 or 5 × 1 to

capture horizontal or vertical detail. Often multiple filters are applied within a single

convolutional layer. Using multiple filters has the advantage of enabling a range of filter

designs to be applied and produces a broad output of feature maps to be propagated

through the network, however too many filters can cause unnecessary complexity for

an unfounded gain in network performance. Previously, w[l]
i defined the weights on
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(a) Input feature (b) Activation output

Fig. 3.10 A comparison of the an input spectrogram against the output of a 3rd
convolutional layer filter operation within a CNN.

connections between nodes within a FCN. For CNNs, W refers to convolutional filter

weights and these are learnt and updated during backpropagation. Updating W allows

the network to stabilise the best performing filters for use on unseen data. Well trained

filters can extract the most appropriate features for classification.

(b) Convolution operation

Each convolutional layer is designed to produce the product of the input and each

filter, in order to generate a feature map, S, related to that filter. The convolution

operation convolves W over X until every pixel has been seen. Each filter operation

produces the product of the filter, W and the pixels of the input covered by the filter.

Equation 3.13 shows this sliding window approach, producing an output feature map

of S(f, h), where f and h represent the output feature map dimensions.

S(f, h) =
∑

a

∑
b

W (a, b) ·X(f + a, h+ b]) for all f and h (3.13)
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Due to the convolution process, S is smaller in both the ith and jth directions

compared to X, with the reduction in size controlled by the size of the filter. To

counteract this, padding can be used to add a single border of zeros, giving X an

artificially larger size. When using padding the subsequent feature map matches the

dimensions of the given input.

(c) Pooling

Pooling is an operation when using a convolutional layer that reduces dimensionality

by pooling together values from a larger input. Multiple types of pooling exist however

commonly used methods are; max and average. Both max and average-pooling

operate in the same manner with max taking the maximum value of a pool, whereas

average-pooling, takes the average value. Pooling aims to reduce dimensionality whilst

maintaining previously extracted features such as edges within the image. Pooling

windows are usually small and often 2 × 2. The pooling process is applied in a similar

way to the convolutional operation, and uses a sliding window across S. Unlike the

convolutional operation, each pool does not overlap but instead moves across S seeing

each value only once. The pooling window moves across S and extracts either the

maximum or average value from the window. The output then creates a smaller feature

map P, usually half the size of S.

CNN input feature

In order to evaluate a range of input features, a baseline CNN setup was used, with

alternate architectures investigated in Section 3.3.4. The CNN consisted of the network

shown in Figure 3.11 and used a binary cross entropy loss and Adam optimiser. The

batch size was 128 with the model trained for 100 epochs. As previously stated, each
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test was repeated 10 times with the average accuracy reported.

Conv – 32 filters, 3x3 

Max-pool – 2x2 

ReLU

Conv – 64 filters, 3x3 

Max-pool – 2x2 

ReLU

Conv - 128 filters, 3x3 

Max-pool – 2x2 

ReLU

Dropout – 0.5

Dense – 512 nodes

ReLU

Input Spectrogram, X

Classification, 𝜓

Dense – 1 node

Sigmoid

Fig. 3.11 CNN architecture consisting of three convolutional layers with max-pool
and ReLU functions, followed by two dense layers, the final used to output the model
prediction.

Tests now examine the trade-off between accuracy and processing time by examining

the time and frequency resolution of the input feature. Frame widths between 256ms

and 16ms are considered first with a fixed 50% overlap of frames which gives a time

resolution, ∆t, between 128ms and 8ms. In terms of the frequency resolution, ∆f , this

varies between 3.9Hz and 62.5Hz, depending on the window size and sampling frequency.
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∆t 128ms 64ms 32ms 16ms 8ms
2kHz ∆f 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5Hz
2kHz L 3584 3840 4032 3968 3984
2kHz Accuracy 91.4% 92.1% 91.6% 90.2% 89.9%
1kHz ∆f 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5 Hz
1kHz L 1792 1920 1952 1984 1992
1kHz Accuracy 91.2% 92.0% 91.6% 90.6% 90.0%

Table 3.4 Classification accuracy and number of points for varying time and frequency
resolution features with 50% frame overlap.

The number of time-frequency points, L, for each configuration is computed using

Equation 3.1. For each time resolution, Table 3.4 shows the resulting frequency resolu-

tion, ∆f , number of time-frequency points, L, and classification accuracy, for sampling

frequencies of 2kHz and 1kHz. A 500Hz sampling frequency was also evaluated, however

accuracy degraded, therefore 500Hz was not included in further testing [214]. Highest

accuracy for both sampling frequencies is found with the 64ms-7.8Hz time-frequency

resolution, with 92.1% for 2kHz and 92.0% for 1kHz sampling frequencies. Considering

the number of points, and hence processing time, the 1kHz system requires half the

computations and gives almost equal performance to the 2kHz system.

The tests in Table 3.4 were performed with 50% frame overlap which means that

frequency resolution deteriorates as time resolution improves. The parameters are now

considered independently by allowing the frame overlap, S, to vary while keeping the

frame width fixed. Specifically, two fixed frame widths are considered to give high and

low frequency resolutions of ∆f={3.9Hz, 15.6Hz} and the frame slide adjusted to give

varying time resolutions, ∆t, from 64ms to 8ms. The resulting accuracy and number

of time-frequency points are shown in Table 3.5 for 2kHz and 1kHz sampling frequencies.

For both frequency resolutions and both sampling frequencies the time resolution

has relatively little effect between 64ms and 16ms, with highest accuracy at 32ms.
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∆t 64ms 32ms 16ms 8ms
2kHz ∆f 15.6Hz 15.6Hz 15.6Hz 15.6Hz
2kHz L 1984 3904 7808 15552
2kHz Accuracy 91.1% 91.6% 91.0% 90.0%
2kHz ∆f 3.9Hz 3.9Hz 3.9Hz -
2kHz L 7168 14080 28160 -
2kHz Accuracy 92.1% 92.3% 91.3% -
1kHz ∆f 15.6Hz 15.6Hz 15.6Hz 15.6Hz
1kHz L 992 1952 3904 7776
1kHz Accuracy 91.0% 91.6% 91.5% 91.0%
1kHz ∆f 3.9Hz 3.9Hz 3.9Hz 3.9Hz
1kHz L 3584 7040 14080 28032
1kHz Accuracy 92.3% 92.5% 91.6% 91.0%

Table 3.5 Classification accuracy and number of points for varying time resolutions
against frequency resolutions of 15.6Hz and 3.9Hz.

In terms of frequency resolution, the finer resolution gives higher accuracy across all

configurations tested, although this comes at the cost of increased processing time.

For example, highest performance of 92.5%, with 1kHz sampling frequency, 3.9Hz

frequency resolution and 32ms time resolution used 7,040 points. This could be reduced

to 1,952 points (corresponding to a processing time three times faster) by using a wider

frequency resolution but with a reduction in accuracy to 91.6%.

CNN architecture tests

NARW classification via a CNN is based on first extracting a time-frequency spectral

feature from the audio signal and then inputting this into a CNN to predict the presence

of a NARW. Spectrogram parameters taken from the previous section provide the

most suitable input features, and tests are now focused on finding the best performing

CNN architecture. To create the input features, parameters of fs = 1000Hz, N = 256,

S = 32 were used. In order to compare architectures, available network parameters

were separated and tested independently to monitor their influence. Tests were carried

out in two stages. First, convolution depth and number of filters per convolutional
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layer were evaluated. Second, tests evaluating the number of dense classification layers

and nodes per layer were performed, similarly to the tests on the FCN in Section 3.3.2.

When first investigating a suitable number of convolutional layers and filters, the

number of dense layers was fixed at two. The first dense layer contained 512 nodes and

the final layer had 1 node and was used to output the classification. Tests explored

network depths of 1 to 5 with deeper models not possible due to the reduction in

feature size caused by the max-pooling operations. Table 3.6 shows the accuracy for

a range of convolutional layer depths and filters per layer. Results in Table 3.6 show

that a network with 3 convolutional layers and 64 filters per layer achieved the highest

accuracy, with 32 and 128 filters also achieving similar accuracies. Peak performance

is seen using 3 convolutional layers with worse accuracy when using fewer layers and

similar accuracies but with extra computation for deeper networks.

Filters per layer
4 8 16 32 64 128

1 83.69 71.97 71.97 86.35 50.00 50.00
2 90.14 90.21 90.41 90.49 90.28 90.35
3 90.91 91.20 91.64 91.78 91.87 91.79
4 90.60 91.29 91.54 91.52 91.78 91.74

Convolutional
depth (layers)

5 89.20 91.31 91.50 91.23 91.32 91.43

Table 3.6 Tests evaluating a range of convolutional layers and filters for a CNN
encoder.

Further testing fixed the convolutional layers to the optimum found in Table 3.6

(3 layers with 64 filters) and varied the number of dense layers and nodes per layers.

The highest accuracy was achieved with 2 dense layers and 256 nodes per layer. The

results in Table 3.7 shows that only a few dense layers following convolutional layers

are required to achieve the highest accuracies. On many tests, a depth of 2 dense layers
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Nodes per layer
4 8 16 32 64 128 256 512

1 87.22 91.46 91.47 91.50 91.41 91.61 91.51 91.87
2 87.26 91.35 91.60 91.53 91.44 91.58 92.03 91.64
3 91.46 87.12 91.32 91.62 91.42 91.41 91.46 91.39
4 87.22 87.35 91.36 91.32 91.39 91.57 91.29 91.37
5 83.15 87.30 91.35 91.40 91.38 91.47 91.61 91.29
10 74.78 87.25 91.38 91.31 91.42 91.52 91.46 88.75
15 58.35 70.81 87.10 91.22 91.34 87.30 66.62 54.06

Dense
depth
(layers)

20 50.00 50.00 66.59 78.92 78.97 54.15 50.80 50.00

Table 3.7 Tests evaluating a range of dense layers and nodes for a CNN classifier.

provided the highest accuracy for the number of nodes.

Summary of deep learning methods

Thorough network testing discovered the highest performing model achieved 92.03%

accuracy however earlier tests, involving the input features, saw a slightly varied

architecture achieve 92.50%. The initial architecture utilised a tiered number filters,

progressing from 32 to 128 over three convolutional layers, as shown in Figure 3.11.

Additional tests found a model combining these two architectures to achieve the highest

performance seen on this dataset. An accuracy of 92.62% was found using three convo-

lutional layers, each followed by a max pooling and ReLU function. In all convolutional

layers, 3 × 3 filters were applied with padding at the edges, with 32, 64 and 128 filters

in each layer respectively. A dropout of 0.5 was used with two dense layers to form the

classifier. The dense layers contained 200 and 50 nodes respectively each with a ReLU

activation function. A final output layer uses a single node with a sigmoid function

to provide predictions. Figure 3.12 shows a visualisation of this CNN architecture.

This model is marked as the proposed CNN for NARW classification and is used to

carry out all further CNN tests. This network is later compared in Section 3.5 against
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the other ML methods to assess which technique is best overall for NARW classification.

Convolutional Encoder Dense Classifier

Input Convolutional Convolutional Convolutional

Dense Dense Output

Fig. 3.12 A diagram to show to the best performing CNN architecture after testing
with activation outputs superimposed onto their location within the network.

3.4 Time series algorithms

The aim of this section is to present a range of time series methods that have been

applied to NARW classification. Time series methods will be compared and their

performance, when detecting NARW upcalls will be analysed. A traditional approach to

audio classification is to use the audio signal directly to form a time series classification

(TSC) problem. The vast majority of TSC algorithms operate on time domain data

as, until recently, the consensus was that a ‘simple nearest neighbour classification is

very difficult to beat’ [12]. As such, much emphasis has been placed on developing

approaches for solving problems in the time domain using alternative elastic distance

measures with nearest neighbour classifiers [195, 101, 129]. However, not all TSC

algorithms actually operate on the time domain data when classifying. Therefore,

for evaluation purposes, two subsets of TSC algorithms are considered; time domain

methods and feature domain methods. Time domain methods utilise the time series
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throughout execution whereas feature based methods apply a transform to the time

domain data before execution.

3.4.1 Time domain methods

The most popular TSC time domain approach is dynamic time warping (DTW) with a

warping window set through cross-validation and 1-nearest neighbour (DTW 1NN).

While it has been shown that ensembling different elastic nearest neighbour classifiers

can be significantly more accurate [116], combining such lazy classifiers increases test

classification run-time. With a large amount of training data, necessary for capturing

the range of NARW signals and background noises, classification processing times are

likely prohibitive for real-time deployment on an ASV, so for this application DTW

1NN is used as a benchmark for the time domain approaches.

3.4.2 Feature domain methods

Feature domain methods operate by transforming the time domain signals into an

alternative representation where discriminatory information is more easily detected. A

recent comparison of approaches [8] demonstrated that best performance is obtained

by combining the output of a range of classifiers built over various representations

of a problem to produce combined predictions from a meta-ensemble [117]. However,

given the processing limitations in implementing classification on ASVs, this would not

be practical but suitable constituent transformation-based approaches may produce

fast, accurate results. In particular, three such constituents are considered: 1) time

series forest which is built on summary features from phase-dependent intervals [51]; 2)

shapelet transform which is a heterogeneous ensemble using data transformed by simi-

larity to phase-independent discriminatory subsequences [86]; 3) RISE, random interval
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spectral ensemble which is a forest-based ensemble classifier that builds constituents

using features extracted from the auto-correlation and power spectral domains [117].

3.4.3 Comparison of time series algorithms

The aim of these experiments is to explore the accuracy of the time series classifi-

cation methods and to consider these in respect to the trade-off against processing

requirements. The methods compared are, i) dynamic time warping (DTW), ii) time

series forest (TSF), iii) shapelet transform (ST) and iv) random interval spectral

ensemble (RISE). DTW provides representation for time domain methods, with TSF,

ST and RISE all operating in the feature domain and covering a range of approaches

for feature transformation algorithms. Figure 3.13 shows classification accuracies for

all four TSC methods across three sampling frequencies; 500Hz, 1000Hz and 2000Hz

to investigate the effect that reducing sampling frequency has on classification ac-

curacy. DTW, the only time domain classifier achieves the lowest accuracy, with

performance consistent across all sampling frequencies. In all cases, the remaining

methods achieve a minimum of a 10% increase in accuracy over DTW with perfor-

mance increasing by as much as 22% in the best case using shapelet transform at

500Hz. ST achieves the highest accuracy overall with RISE and TSF falling in accuracy.

Tests were conducted over a range of sampling frequencies in order to ascertain if a

reduction in data points would decrease accuracy. All feature domain methods saw an

increase in accuracy when using 500Hz recordings. The NARW upcall signal of interest

commonly lies within the 50Hz-250Hz frequency range however can occasionally appear

higher in the frequency spectrum. It is therefore logical that classifier performance

improves with downsampled audio as this removes unnecessary frequencies before

classification and enables a potentially cleaner, more specific model to be generated.
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Fig. 3.13 Comparison of classification accuracies provided by four machine learning
algorithms tested on three sampling frequencies from 500Hz - 2000Hz.

The additional benefits of downsampling are two-fold; firstly, downsampling recordings

compresses the size of data files and hence provides storage benefits when detecting

via an autonomous surface vehicle, reducing necessary physical storage by up to 75%;

secondly, processing requirements are reduced as the signal is downsampled, this allows

for cheaper and less power-intensive hardware to classify the audio in real-time.

3.5 Comparison of machine learning methods

In this section, the FCN, RNN and CNN are compared to investigate which performs

best when detecting NARWs. Other networks such as VGG [190] and ResNet [82]

are well documented and widely used a baseline for image classification performance.
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These networks contain more complex architectures with specific properties, such as

residual learning, and are targeted at large-scale image classification problems such as

the original ImageNet competition [176]. VGG and ResNet are therefore also evaluated

within this work. These network architectures will be referred to as, ‘pre-made’, as

they have already been tested and tweaked for maximum performance. They are used

here as a benchmark for the current state-of-the-art methods. The pre-made networks

operate with starting weights defined by the ImageNet dataset. Each model was trained

for a further 100 epochs from the starting weights to give a final classification accuracy.

Shapelet transform (ST) is also compared as this is the highest performing time series

method from Section 3.4.3.
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Fig. 3.14 Comparison of accuracies for all machine learning methods under test.

Figure 3.14 shows all deep learning networks under test with the best performing

architectures from Sections 3.3.2, 3.3.3 & 3.3.4. For consistency all networks used

the spectrograms parameters discovered in Section 3.3.1 as input and trained for 100

epochs. Each experiment was run 10 times and results shown are the average over the

10 runs. Figure 3.14 shows the CNN achieved the highest accuracy of 92.6% when
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compared to the other methods with ResNet closely behind achieving 92.04%.

3.6 Discussion

A range of deep learning and time-series methods have been applied to the classification

of NARWs with best performance, in terms of both accuracy and processing time,

given by the CNN. Downsampling the audio leaves accuracy almost unchanged but

gives a substantial reduction in processing time which is advantageous for processing

onboard an ASV. Considering time and frequency resolutions reveals that a wide

resolution of 32ms gives good accuracy whilst higher frequency resolutions are better,

albeit at increased processing cost. Many of the classification methods provide high

levels of accuracy with deep learning methods generally performing best. Pre-made

networks attained good results but were far more complex using 50 layers than the

shallower CNN architecture using 3 layers. Since the problem of NARW classification

only contains two classes it is suspected that deeper models are unnecessarily complex

(and computationally expensive) for the required binary class mappings.



Chapter 4

Investigation and application of

conventional methods of audio and

image based noise reduction

4.1 Introduction

This chapter investigates both audio and image based conventional methods of noise

reduction for improving NARW detection in noisy conditions. Noise reduction is aimed

at reducing background noise within a signal to enhance the NARW vocalisation and

ultimately make detection more accurate. In this work, the methods presented are

applied to PAM recordings to enhance the NARW vocalisation for subsequent clas-

sification using a CNN, as this was judged to be the most effective method in Chapter 3.

Tests within this chapter aim to improve system robustness and explore the effec-

tiveness of detection in more noisy conditions. As noise conditions change, a mismatch

between a clean-trained model and data collected in the new noise condition is intro-

duced; this mismatch ultimately leads to a fall in detection accuracy. Performance on
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the system can be improved by training a new model to match to the new conditions,

but this is time consuming and is not always practical in real world situations as con-

ditions change. For example, if a clean-trained model was being used to detect NARW

whilst at sea on-board a ship, a new noise condition could cause a dramatic reduction

in detection accuracy. Retraining a model in this scenario would be impractical as

training a model cannot be carried out in real-time and collecting data takes time to

label accurately before use by the model.

Using noise reduction or an enhancement technique is a potential way of recovering

performance when the audio contains high levels of background noise. This chapter

investigates a range of traditional enhancement techniques to improve the accuracy

of the proposed CNN, developed in Chapter 3.3.4, when new noise conditions are

present. These can be considered as two types of approaches, i) those using traditional

enhancement applied to the audio signal, and ii) those using image enhancement applied

to spectrogram features. The methods investigated have previously been successful in

audio and image based applications and consequently form a good starting point for

this work.

First, Wiener filtering, log spectral amplitude (LSA) estimation and spectral sub-

traction (SS) methods are applied to the original time domain audio. Audio-based

enhancement methods are used here as they are traditionally found in speech enhance-

ment [22] and work effectively to reduce noise and enhance speech [1, 54]. The principle

is similar when applied to the NARW recordings, however the signal of interest is

different to that of human speech.
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The second set of techniques are point processing and histogram equalisation meth-

ods, which are applied to spectrogram image representations of the audio. Image-based

enhancements can be used as the spectrogram features they are applied to can be treated

as images and present visual details of the recorded frequency content. In Chapter

3.3.4 it was discovered that using spectrograms to represent the time-frequency content

of each audio recording worked effectively to detect NARW vocalisations. Image-based

enhancement therefore targets the spectrogram representation to enhance vocalisations

and suppress background noise. Point processing techniques have previously been

successfully used to enhance images for greater human and computer recognition [125].

Histogram enhancement methods are also effective in the field of computer vision

and image processing with methods being successfully applied to many tasks such as

improving image dynamic range in dark conditions [118, 232] and improving contrast

in medical imaging applications to better assess patients [160, 244].

The remainder of this chapter is organised as follows. Section 4.2 gives a in-depth

background into previous methods of audio and image enhancement, specifically ex-

ploring noise reduction for cetacean detection. Audio-based enhancement methods are

then developed in Section 4.3 and their effectiveness when applied to noisy NARW

recordings is investigated. Similarly, image-based enhancements of NARW recordings

are investigated in Section 4.4 with their effectiveness reported. Initial tests examine

the performance of each enhancement technique when using a classifier trained on

noise free data. Subsequent tests examine performance on a model retrained with an

enhanced corpus.
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4.2 Background

Noise reduction is a crucial step in many modern audio processing systems in order to

produce a clean and non-corrupt signal. Noise reduction helps to reduce background

noise for tasks such as; speech recognition [89, 120], audio playback [142] and video

conferencing [83, 155, 198]. These applications all benefit from having noise reduction

applied, either by an increase in performance or improved user experience. Investiga-

tions into the reduction of noise for detection of NARW is however less common, with

automated detection of marine mammals only gaining popularity more recently [97,

188, 71, 14]. Since anthropogenic ocean noise is known to cause to marine mammal

injury and death [25, 55], with prolonged exposure to loud noises increasing the risk

of incident greatly [64], it is of paramount importance to make accurate detections in

areas of noise. Shipping lanes, ports, oil/gas rigs and wind farm construction sites all

generate substantial noise [223, 167] and are areas where mitigation zones for marine

mammals are in place in order to protect their populations [3].

In audio enhancement applications, an input signal, y often contains an element of

noise, d such that

y = x + d (4.1)

where x is the clean signal [122], which in this work is a NARW vocalisation. Previous

work [122] defining noise reduction techniques, reduces the output signal, y, by a noise

estimate, d̂ to give a estimated clean signal, x̂, where

x̂ = y − d̂ (4.2)



4.2 Background 91

The three audio-based enhancement methods evaluated in Section 4.3 are spectral

subtraction [122], Wiener filtering [122], and log spectral amplitude (LSA) [122]. The

objective of these methods is to produce an estimation of the clean signal. This is shown

in Figure 4.1 with the audio enhancement method producing a noise-free estimate that

is subsequently converted to a spectrogram before detection via the proposed CNN

system. Yi Hu and Philipos Loizou [94] carried out an extensive comparison of speech

enhancement techniques, specifically investigating which methods subjectively produce

signals that sound best after processing. These tests evaluated methods in noise

conditions using SNRs of 0dB, 5dB, 10dB and 15dB [94]. Hu and Loizou found that

both Wiener and LSA methods performed well against others within their categories

with LSA performing the best across all noise conditions [94]. Spectral subtraction

did not perform as well as LSA or Wiener [94], however due to its popularity for

audio enhancement it is used in this work as a baseline comparison with the other

methods. Although this chapter considers NARW detection, work based upon speech

enhancement operates within the same domain and should therefore be considered

when analysing techniques to reduce noise. Speech enhancement methods aim to

enhance a signal within noisy audio, this is aligned with the requirements of a robust

NARW detector, aiming to enhance NARW vocalisations.

In Section 4.4, a range of image-based enhancement methods are investigated.

These are split into two groups, point processing methods in Section 4.4.1 and his-

togram equalisation methods in Section 4.4.2. Both sets of methods are applied in

the spectral domain by considering each spectrogram of audio as an image. As an

example, Figure 4.2 shows the process of enhancing the spectrogram of an upcall

using an image enhancement prior to detection via the proposed CNN system. Point

processing methods operate on each point of the input feature, directly relating to
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Fig. 4.1 Diagram to represent the process of audio enhancement prior to detection
via the baseline CNN system. Wiener filtering is used to create the example shown.
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Fig. 4.2 Diagram to represent the process of image enhancement prior to detection
via the baseline CNN system. Histogram equalisation is used to create the example
shown.

a subsequent point of the output. Maini [125] carried out a review of point-based

image enhancement techniques and found although many are primitive operations,

they are fundamental in providing image enhancements, often providing richer contrast

or exposing details in dark or bright regions; which for the spectrograms used in this

work are regions of high or low energy. A range of point processing techniques are

evaluated in Section 4.4.1 to compare their ability of providing enhancements in harsh

conditions, where low energy vocalisations can be masked by high energy background

noise.

Histogram equalisation (HE) is a method applied to the colour spectrum of an

image to equalise the intensity values [74]. HE aims to flatten a histogram of colour

intensities to achieve equal intensity across the image [74]. This has the effect of
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brightening regions of darkness whilst darkening regions of brighter light. HE helps to

evenly distribute colour within the image and often reveals details, otherwise unseen.

This process can often improve visual details in harsh conditions, such as high levels

of noise [74]. Although on an audio application, Schuller et al. [179] used histogram

equalisation to improvement contrast in MFCC feature vectors for speech recognition

in noisy conditions. Schuller et al. found that HE could improve speech recognition

accuracy by adding to the robustness of their system when recognising speech in noisy

conditions [179].

Further work in the histogram equalisation domain by Zuiderveld [245] established

a technique known as contrast limited adaptive histogram equalisation (CLAHE) which

develops upon HE with contrast equalisation occurring over regions (tiles) within an

image. Each tile is individually equalised leading to a higher level of contrast control un-

like HE which is performed across the entire image [245]. Further work analysing human

retinas saw CLAHE to dramatically improved visual image detail when examining reti-

nal scans [184]. Kumar et al. also saw large improvements in SNR when using CLAHE

against other contrast-based image enhancement methods for underwater imagery [108].

4.3 Audio enhancement methods

Three audio-based enhancement methods are now considered for enhancement of

NARW vocalisations. All methods are applied to the time-domain signal and output

an enhanced signal. The aim of these methods is to suppress background noise and

enhance the signal of interest, in this case, the NARW vocalisation.
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4.3.1 Spectral subtraction

Spectral subtraction (SS) is the most simple method of noise reduction considered, as

it only requires a noise spectral estimate [80]. SS can however introduce residual noise,

leaving artefacts after noise removal [26]. SS first transforms the noisy signal, y(n),

into the frequency domain and extracts a magnitude or power spectral representation,

|Y (f)|2. An estimate of the noise magnitude spectrum, using a short duration frame

from the being of the audio, |D̂(f)|2, is then subtracted to give an estimate of the

clean magnitude spectrum, |X̂(f)|2, [107]

|X̂(f)|2 = |Ŷ (f)|2 − |D̂(f)|2 (4.3)

After subtraction, the enhanced power spectrum is combined with the noisy phases

and an inverse Fourier transform applied to return the signal back into the time-domain.

Its effectiveness relies on the accuracy of the noise estimate, and the assumption that

noise is relatively stationary between update periods, and its performance can therefore

vary. Good results have been found in stationary environments, with SS struggling in

more practical non-stationary settings [107].

4.3.2 Wiener filtering

The Wiener filter has a more involved implementation than SS and requires not just a

estimate of the contaminating noise, but an estimate of the SNR at each frequency

bin [80]. The gain of the Wiener filter, W (f), at a frequency, f , is given as

W (f) = |X(f)|2
|X(f)|2 + |D(f)|2 (4.4)

By dividing the numerator and denominator by the noise power spectrum, |D(f)|2,

the Wiener filter can be expressed in terms of the SNR
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W (f) = SNR(f)
SNR(f) + 1 (4.5)

Using the Wiener filter, an estimate of the clean power spectrum is calculated as

|X̂(f)|2 = |Ŷ (f)|2W (f) (4.6)

Following the same procedure as for spectral subtraction, the enhanced power spectrum

can be transformed back to the time-domain through combination with the noisy phase

and an inverse DFT.

4.3.3 Log spectral amplitude estimation

Several studies [122] have compared spectral subtraction, Wiener and LSA and have

been in general agreement that LSA gives best performance [54, 144]. LSA uses both a

priori and a posteriori estimates of the SNR to derive a filter for noise reduction. An

estimate of the clean magnitude spectrum for the ith frame, |X̂i(f)|, is computed as

|X̂i(f)| =
[

ξi(k)
1 + ξi(k) exp

(1
2

∫ ∞

vi(k)

e−t

t
dt

)]
|Yi(k)| (4.7)

where |Yi(k)| is the noisy magnitude spectrum and vi(k) is defined as

vi(f) = ξi(f)γi(f)
1 + ξi(f) (4.8)

Variables ξi(k) and γ(f)i are, respectively, the a priori and a posteriori estimates of

the SNR, calculated as

ξi(k) = ζ
|Xi−1(f)|2

|D̂i−1(f)|2
+ (1 − ζ) max[γi(k) − 1, 0] (4.9)
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and

γi(k) = |Xi(k)|2

|D̂i(k)|2
(4.10)

The filtering methods all require statistics of the noise and many methods have been

proposed to provide these and include voice activity detection, minimum statistics and

speech presence probability [130, 165, 197, 67]. In this work, an assumption is made

that the first 100ms of audio contains only noise and the noise spectral estimate was

taken by averaging noise-only vectors extracted from this region.

Spectrograms of all the audio enhancement methods described can be seen in Figure

4.3 with clean and noisy spectrograms shown for comparison. Visually, both SS and

Wiener introduce a large number of artefacts into the spectrogram. LSA provides

no noticeable visual enhancement to the NARW upcall. Wiener filtering looks to

expose the NARW upcall the most albeit with artefacts, with LSA and SS struggling

to enhance the signal.

4.3.4 Experimental setup

The audio enhancement methods discussed previously (in Section 4.3.1, 4.3.2 & 4.3.3)

are now compared to assess which performs best to reduce noise for NARW detection.

Detection accuracy from the proposed CNN system is established after each audio

enhancement method is applied, to understand how well each method works at reducing

noise and improving accuracy.

Tests in this section consider a noisy environment to evaluate the performance of

the audio enhancement methods. The Cape Cod corpus, detailed in Chapter 2.6.3, is

used both in the raw form (labelled as clean, to differentiate from the set with additive
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(d) Wiener
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Fig. 4.3 Spectrograms of a NARW upcall in clean and noisy conditions (top), compared
to audio enhancement methods (bottom).

noise) and with the addition of white noise across all samples. White noise was added

to the data at an SNR of 0dB to simulate a noisy ocean environment, this process is

shown in Chapter 2.6.4. An accuracy of 96.29% is established from the clean Cape Cod

corpus when no enhancement is applied. When white noise is added at 0dB and tested

against the original clean-trained model the accuracy drops to 80.62%. Performance

improves when the model is re-trained using matched noisy data for training and

testing, achieving an accuracy of 87.46%.

Two conditions are considered when evaluating the audio enhancement methods,

clean-trained detector or vestigial-trained detector, with all tests reporting accuracy of

the proposed CNN system after audio enhancement has been applied. First, test data is

passed through the audio enhancement method under evaluation and detection is made

using a clean-trained model. This model is trained with no artificial addition of noise
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and such is called, CLEAN. This test indicates the ability of the audio enhancement

method in a real-world scenario where only a prior clean-trained model is available.

Large decreases in accuracy under this condition indicate that the method has not

been successful at removing noise without damaging the original signal.

Clean, x + en(y)

Noise, d

Noisy, y

Vestigial 
component, v

Enhancement

Vestigial 
signal, !x

+
+-

Fig. 4.4 A diagram to show the processing pipeline of the vestigial signal, x̂ and to
represent the vestigial component, v.

A second novel approach is proposed to address this mismatch. Specifically, audio

enhancement is applied to the noisy training data and a new detection model is trained.

The audio enhancement produces an enhanced signal, x̂, which aims to be as similar

to the original clean signal, x as possible. In theory, the closer the enhanced signal, x̂

is to the clean signal, x, the more noise has been reduced. However, after enhancement

a vestigial component, v, remains on the clean signal. The vestigial component, v,

represents the difference between the clean signal x and the enhanced signal, x̂ where

v = x̂ − x (4.11)

These tests are designed to show the maximum performance in optimal conditions

where it is appropriate to retrain a model under a new condition using data containing

a vestigial component. Figure 4.4 shows this processing pipeline. For clarity, the

vestigial tests refer to the enhanced samples, x̂ which contains the clean signal, x, and
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the vestigial component, v. Detection models trained with this signal are therefore

referred to as VES. When new detection models are trained for VES tests, only data

passed through the enhancement method under test is used to train the model.

4.3.5 Results

Experiments first examine the effect of applying audio enhancement methods on NARW

detection accuracy and consider both CLEAN and VES trained CNN models for detec-

tion. To simulate noisy conditions, white noise at an SNR of 0dB is added to the audio

(shown in Chapter 2.6.4) and noisy samples are processed using the audio enhancement

methods. Figure 4.5 shows a comparison of the three methods within this section

and baseline performance when using no enhancement method. As previous discussed,

CLEAN tests use a model trained on the original, non-corrupted Cape Cod corpus.

VES tests use a new model trained on data after enhancement has occurred. The

first two bars on Figure 4.5 refer to tests with no enhancement (N/E). The singular

MATCH test is a new model trained on the corrupted corpus without any enhancement

applied.

Figure 4.5 shows that performance in noisy conditions, when using no enhancement

method (N/E), drops from 96.29% to 80.62%. This drop of ~16% is not recovered

by any of the audio enhancement methods with all three achieving a lower accuracy.

This is attributed to the large volume of artefacts introduced by each method, which

are shown in Figure 4.3. Performance in VES conditions are however improved with

Wiener attaining an accuracy of 87.01%, similar to the noisy MATCH condition at

87.46%. None of the audio enhancement methods however, exceed performance when

no enhancement is applied. These results establish that traditional speech and audio

enhancements are not suitable enhancements for NARW vocalisations. Listening to
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Fig. 4.5 A bar chart showing the accuracies of the NARW detection system using audio
corrupted with white noise at 0dB. Accuracies show performance when no enhancement
(N/E) has been applied compared to the application of various audio-based enhancement
methods.

the enhanced audio also indicates that these methods are unsuccessful at reducing

noise within the segments as enhanced recordings sounded more distorted than they

did with the white noise at 0dB. All audio enhancements presented rely on a noise

estimate to attempt enhancement, if this included part of the signal or was dispro-

portionately high in amplitude this could have caused more severe noise removal

than intended and removed parts or the entirety of the NARW vocalisation. Alterna-

tively, as shown in Figure 4.3, all methods introduced artefacts from the enhancement

process which mask the NARW vocalisation and can cause the signal to sound distorted.

4.4 Image enhancement methods

In this section, spectrogram features, first discussed in Chapter 3.3.1, are now used as

input into image enhancement methods. When observing spectrograms, the presence
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of background noise can obscure the vocalisation of NARWs which reduces detection

accuracy. Figure 4.6 demonstrates the visual characteristics of an upcall in relatively

clean (Figure 4.6a) and noisy (Figure 4.6b) conditions. Figure 4.6b shows that when

noise corrupts the signal the vocalisation can become masked and therefore harder to

detect. This is supported by the decrease in detection accuracy from 96.29% in clean

conditions to 80.62% in noisy conditions reported in Section 4.3.5
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(a) Clean
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(b) Noisy

Fig. 4.6 A comparison of a single NARW upcall in both clean and noisy conditions.
(a) A spectrogram of an upcall with no addition of noise taken directly from the Cape
Cod corpus. (b) A spectrogram of the same upcall as seen in (a) with the addition of
white noise at an SNR of 0dB.

Image enhancement methods are now investigated, with the aim of enhancing

the NARW upcall for more accurate detection in noisy conditions. Specifically, a

range of point processing operations and histogram equalisation methods are con-

sidered. These methods were chosen as they are unsupervised and require no prior

information for their application. Furthermore the chosen methods are commonly used

for image enhancement tasks [115, 66, 184] and consequently used in this section to

investigate the enhancement of spectrogram images. The spectrogram features used

are created using the parameters outlined in Chapter 3.3.4 with tests finding these
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spectrogram parameters to provide the best detection accuracy for NARW vocalisations.

4.4.1 Point processing

The point processing enhancement methods investigated are the logarithm, exponential

and power law [125]. These operations are applied to each point in each spectrogram

feature, X(i, j) to give the enhanced images, Xlog, Xexp and Xγ.

X log(i, j) = loge(αX(i, j) + 1) (4.12)

Xexp(i, j) = eβX(i,j) − 1 (4.13)

Xγ(i, j) = X(i, j)γ (4.14)

Figure 4.7 shows the effect of these operations on a NARW upcall in both clean and

noisy conditions. The same mix of white noise at an SNR of 0dB is used for evaluation,

matching that seen in Section 4.3. The logarithm and power law (γ = 0.2) expand

lower energy regions and compress higher energy regions and serve to highlight the

vocalisation. The exponential and power law (γ=2.0) perform in an opposite manner

which can make the upcall more difficult to observe. For testing, α and β were set

to one, while γ was varied from 0.1 to 5. These values were chosen as they give a

wide envelope to analyse performance of the methods, specifically both expanding and

compressing values within the spectrogram.
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Fig. 4.7 Examples of clean and noisy spectrograms with a range of unsupervised
image enhancement methods applied. Row (a) displays the clean spectrograms whilst
row (b) displays the noisy. Row (b) spectrograms contain white noise added at an
SNR of 0dB. Each spectrogram shows two-seconds of audio with a sampling frequency
of 1kHz.

From visual inspection, Figure 4.7 shows the logarithm and power law (γ=0.2) to

enhance the upcall more than the other point processing methods. All point processing

methods visually struggle to enhance the upcall in noisy conditions.

4.4.2 Histogram equalisation

Two methods of histogram-based enhancement are applied. The first is standard

histogram equalisation (HE) that aims to increase the global contrast of an image

by flattening the distribution of pixel values [135]. This process can improve visual

details in harsh conditions where parts of an image are under or over exposed. However

this method increases overall contrast within the image and can intensify unwanted

pixels leaving artefacts [161]. The effect of this on NARW upcalls is shown in Figure
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4.7 which illustrates that more spectral detail becomes visible as the range of energy

values is expanded. HE spectrograms in Figure 4.7 do however suffer from heightened

exposure of background noise.

The second method is contrast-limited adaptive histogram equalisation (CLAHE)

[245]. This divides the spectrogram into a grid of patches and performs localised

histogram equalisation. Bilinear interpolation is then used to remove artefacts at patch

borders. A contrast limiting value is used to clip histogram bins at a specific level

to reduce the over exaggeration of noise within the image. CLAHE was originally

developed to improve upon some of the issues that were faced when using HE, such

as over exposure of pixels that were insignificant. By performing localised operations,

background noise could not theoretically be exposed past the maximum of the sur-

rounding pixels. CLAHE with a 4 × 4 grid is illustrated in Figure 4.7 and shows a more

even distribution of energy values across the spectrogram than compared with HE, due

to local time-frequency regions being processed separately. A clip limit is set when

applying CLAHE and restricts values from exceeding a boundary, to limit overexposure

of histogram peaks within the image. Preliminary tests found that a constant clip

limit of 2.0 gave best results and so is used for all further CLAHE tests. CLAHE

spectrograms in Figure 4.7 show a higher level of exposure control whilst providing

less upcall enhancement than HE. Both histogram methods shown in Figure 4.7 in-

dicate the best visual performance in noisy conditions over the other methods under test.

4.4.3 Experimental Setup

Experiments now consider a range of point processing and histogram parameters for

image enhancement spectrogram representation of NARW vocalisations. The following
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tests in Section 4.4.4 investigate 15 parameter sets against a baseline performance when

no enhancement has been applied. Tests follow a similar framework to those in Section

4.3.5 with both CLEAN and VES models being evaluated. A third set of tests are

also introduced to evaluate performance in purely clean conditions, MATCH-CLEAN,

with the original Cape Cod corpus not containing additive white noise for training or

testing. MATCH-CLEAN tests are investigated, as image enhancement methods can

be combined with the extraction of spectrogram features to provide the classifier more

robust training data. Audio enhancement methods, however are specifically targeted at

reducing noise and therefore are not appropriate to use in MATCH-CLEAN conditions.

Table 4.1 provides a breakdown of the training and testing data for each method.

Grey cells indicate where the enhancement under test has been used. MATCH-CLEAN

tests use a model trained on clean data (the same Cape Cod corpus detailed in Section

4.3.4), and test with clean data after having the enhancement under test applied.

CLEAN tests use the same model as MATCH-CLEAN, but instead use noisy data at

a 0dB SNR for testing. This test data first has the enhancement under test applied

prior to detection. In VES conditions tests use a vestigial model trained on the noisy

data at a 0dB SNR after enhancement has been applied. The same test data as used

for CLEAN is also used to test VES.

Similarly to Section 4.3.4, noisy Cape Cod data was used to test the effectiveness

of the image enhancements in noisy conditions. White noise was added to the data

at an SNR of 0dB to simulate a noisy ocean environment, this process is described in

Chapter 2.6.4 and uses the same data for tests as that described in Section 4.3.5.
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Model Training Data Testing Data
MATCH-CLEAN Clean Clean
CLEAN Clean Noisy 0dB
VES Noisy 0dB Noisy 0dB

Table 4.1 Description of each test scenario. For each scenario the data used for
training and testing of the model is shown. Grey cells indicate where the enhancement
method under test has been applied.

4.4.4 Results

Experiments first examine the MATCH-CLEAN condition to analyse performance in

clean conditions without the addition of noise. Table 4.2 shows a full breakdown of

all the test parameters and results. In MATCH-CLEAN conditions, the logarithm

operation achieves the highest overall detection accuracy with 96.29% of 2-second

audio segments correctly classified as either NARW or not. Both HE and CLAHE (2.0

4x4) using log spectrograms as input and power (γ = 0.1) also perform well, correctly

classifying over 96% of NARW upcalls, with all methods improving upon the baseline

accuracy of 93.91%. In the spectrograms from Figure 4.7, the expansion of lower energy

regions made by using γ = 0.2, had the effect of highlighting the NARW vocalisation.

Conversely, exponential and power law methods with γ > 1, all degrade accuracy.

For tests in noisy conditions, using the CLEAN and VES models, Wiener filtering

has been included in Table 4.2 as it achieved the highest accuracy in VES conditions

in Section 4.3.5 and serves as a comparison to the image enhancement methods. Tests

show a large drop in accuracy from MATCH-CLEAN to CLEAN indicating that all

methods struggled to enhance the upcall or that they introduce artefacts into the

image pushing the clean and noisy domains further apart. Table 4.2 shows HE achieves

the highest detection accuracy for both CLEAN and VES tests. In both conditions

multiple methods achieve near maximum performance (CLAHE 2.0 4x4, HE and log)
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Method MATCH
-CLEAN CLEAN VES

Baseline 93.91 80.47 87.65
Logarithm 96.29 80.62 87.46
Exponential 92.38 80.41 86.69
Power (γ = 0.1) 96.03 80.91 87.57
Power (γ = 0.2) 95.98 81.37 87.84
Power (γ = 0.3) 95.80 80.82 87.71
Power (γ = 0.5) 95.50 81.16 87.98
Power (γ = 0.7) 95.06 80.40 87.94
Power (γ = 2.0) 89.78 80.50 85.66
Power (γ = 5.0) 80.59 78.39 78.12
HE 94.70 80.44 87.82
HE (log) 96.04 81.59 88.18
CLAHE 2.0 4x4 93.73 79.84 87.96
CLAHE 2.0 16x16 93.84 77.42 87.64
CLAHE 2.0 4x4 (log) 96.14 80.86 87.22
CLAHE 2.0 16x16 (log) 95.70 79.02 83.58
Wiener – 75.71 87.01

Table 4.2 NARW detection accuracy using image enhancement methods in clean and
noisy conditions.

and show performance can be improved greatly by re-training with the vestigial signal.

4.5 Discussion

In this chapter audio-based and image-based enhancement methods have been applied

to NARW vocalisations to investigate potential improvements to detection accuracy in

noisy conditions. White noise was added to the original corpus at an SNR of 0dB to

simulate a noisy ocean environment and to cause broadband corruption. An SNR of

0dB provides a noise environment with equal power of signal and noise components.

Simulating this noise environment more realistically tests the noise reduction methods

for their ability to enhance the detector in harsh conditions.
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Initially, audio-based methods, previously used for speech enhancement, were inves-

tigated for their potential to improve detection accuracy. Tests evaluated detection

accuracy of the proposed CNN system against both a clean-trained and the proposed

vestigial-trained model. Results found that applying spectral subtraction, Wiener

filtering and log spectral amplitude methods decreased accuracy in noisy conditions

compared to performance when no enhancement had been applied. This is attributed

to the addition of artefacts within the audio introduced by the audio enhancements.

Due to the introduction of artefacts, it is suggested that the enhanced spectrograms

were less visually recognisable compared to the original noisy spectrograms, hence the

reduction in accuracy.

Further experiments investigated image-based enhancements, exploring point pro-

cessing and histogram equalisation methods. Image enhancements were applied to the

spectrograms of each two second audio block. Tests found that applying image-based

enhancement to spectrogram features was able to improve accuracy in both CLEAN and

VES conditions. Of the methods tested, log and histogram equalisation on log features

were found to perform best. Baseline performance, when no enhancement had been

applied, achieved near highest accuracy in both CLEAN and VES conditions. Taking

the logarithm of the spectral values provides a similar performance to the baseline in

both CLEAN and VES tests with a 2.38% increase in accuracy in MATCH-CLEAN

conditions.

Further tests investigating noise reduction of NARW vocalisations should utilise

log or log-HE spectrogram features as these outperformed baseline accuracies across all

tests. The methods tested within this chapter, although preliminary, highlighted the

best performing feature extraction pipeline for further noise reduction tests. Future
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work will investigate more advanced methods of noise reduction that aim to be more

suitable for denoising NARW vocalisations in harsh conditions.



Chapter 5

Application of autoencoders for

denoising North Atlantic right

whale vocalisations

5.1 Introduction

This chapter proposes a robust solution for detecting North Atlantic right whales

in noisy conditions by developing autoencoders methods for noise reduction. Both

autoencoders (AEs) and denoising autoencoders (DAEs) are investigated for reducing

noise in ocean recordings before detection using the proposed CNN system detailed in

Chapter 3.3.4. Autoencoders [174] are a methodology developed to encode an input

feature by restricting the available latent space between input size and output size.

Restriction of the latent space forces data to be lost during encoding. The theory

behind autoencoders is to learn the values that represent the feature and only propagate

these through the latent space. Although information is lost during encoding, it is

intended that the retained data should provide a feature, once decoded, that defines

the class label more closely than prior to encoding. Training an autoencoder allows for
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output features to reflect on their origin in order to more closely resemble the original

feature, with irrelevant information, such as background noise, compressed. Denoising

autoencoders [217] utilise the same data structure albeit with noisy-clean feature pairs.

Noisy features are used as input, with clean features as the target that are used to

optimise the DAE output. During the DAE training, the output feature is compared

to the clean feature with the model parameters updated such that the output more

closely resembles the clean target.

In recent years, autoencoders (AEs) have gained popularity as a data denoising

technique. Originally, they were investigated for use as a compression algorithm [203]

but their performance did not match that of specific compression models, such as

JPEG or MP3 [6]. Autoencoders first require a model to be trained to effectively learn

compression of the input. They often work best in applications with similar targets,

such as images of the same object where a pattern can be learnt, instead of broad

applications such as generic image compression. For this reason autoencoders are a

good candidate for enhancing NARW call spectral images, as dedicated training for the

model is possible. Figure 5.1 shows how the proposed autoencoder fits into the current

CNN detection system (Chapter 3.3.4). Noisy inputs are fed into the AE with denoised

outputs being used for detection via the CNN. When noise corrupt data is applied

to an uncompensated detector, the accuracy falls substantially. This was previously

shown in Chapter 4.4.4 where accuracy of the detector without noise was 96.29%, and

dropped to 80.62% when noise was added. In order to build a more robust solution

to detecting NARW in noisy conditions, both autoencoders and denoising autoen-

coders are applied to denoise noisy spectrogram representations of NARW vocalisations.
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Fig. 5.1 Diagram of the denoising detection system, showing how the autoencoder
attaches to a CNN.

The remainder of this chapter is organised as follows. Section 5.2 gives a background

into the origin of autoencoders, how they operate and previous work. Section 5.3

introduces the proposed autoencoder and denoising autoencoder systems for noise

reduction. In Section 5.3.1 standard autoencoders are tested as a pre-processing stage

to improve detection accuracy in clean conditions, aiming to suppress unwanted ambient

noise whilst emphasising the NARW vocalisation. Section 5.3.2 presents denoising

autoencoders (DAEs) which are investigated with the aim of reducing additive anthro-

pogenic noise. Preliminary experimental results are presented in Section 5.4, with tests

investigating the most suitable model architecture for autoencoders in Section 5.4.1.

Lastly, tests to explore the effectiveness of the DAE are then presented in Section 5.4.2

and evaluated using a range of model architectures.

5.2 Background

Autoencoders [174] are a method of data compression and they aim to learn the most

efficient encoding [88] of an input feature, x, by compression into a latent space, b.

Producing the most efficient encoding is done by maintaining values that represent the

class. Class defining values are discovered by evaluating many input features to learn

which elements appear often. For NARW detection this would be propagating the

vocalisation, whilst ignoring values that change from input to input such as background
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noise. Once compressed the feature is decoded to produce an output, ψ, similar visually

to the input. Autoencoders are a neural network architecture with layers used to com-

press the input feature (encoder). Figure 5.2 shows an example AE architecture using

fully connected layers. Figure 5.2 uses one encoding layer between the input, x, and the

latent space, b. The latent space (often called a bottleneck if smaller in size than the

input) lies equally between the input and output. It is responsible for holding the most

compressed representation of the input feature before being decoded into an output

feature. As discussed previously for other neural networks in Chapter 3.3.2, AEs also

use a period of training to learn the weights and biases for each layer within the network.

For detection, a NARW vocalisation appears in every positive detection event. Using

an AE as a pre-processor aims to encode the class defining features into the bottleneck

before decoding back into the output. During decoding, the network can only use

bottleneck values and weights and biases to up-sample the bottleneck feature in size.

This means that any values not found in the bottleneck cannot be reproduced into the

output feature. This can suppress background noise that changes for every input and

correctly learn the pattern of the NARW vocalisation for propagation. Ultimately this

should produce a cleaner (less noisy) output feature that still resembles the original

vocalisation, with the benefit of creating a more distinct feature for detection. As

previously seen in Chapter 4.4.4, high levels of noise cause a drop in detection accuracy

and therefore highlight the potential benefit of denoising methods that can successfully

reduce noise to subsequently make detection easier.

Autoencoders use the same processing structure as other neural networks, albeit

with some layers reversed for decoding. The architecture in Figure 5.2 shows the

encoding function, enc() and decoding function dec() of an AE. The middle layer,
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b, provides the bottleneck feature. Equation 5.1 & 5.2 show how the input feature,

x, is processed to produce the output feature, ψ. After an output is produced, the

network calculates a reconstruction loss by evaluating the original input, x against the

reconstructed network output, ψ. Throughout the training process the reconstruction

loss is used by an optimisation function to update layer weights, which in turn aims to

minimise the reconstruction loss, this is consistent with the process used in Chapter

3.3.2, for training other neural networks.

b = enc(x) (5.1)

ψ = dec(b) (5.2)

x !x

enc() dec()

b

Encoder Decoder

Bottleneck

Fig. 5.2 Example fully connected autoencoder architecture with one encoding layer.

Denoising autoencoders, a development of autoencoders, first gained popularity

after [217] showed their potential in 2008. Vincent et al. explored the development of

autoencoders by testing their hypothesis to see if partially corrupted inputs could be

recovered via noisy-to-clean network mappings. The architecture of this approach is

similar to that of the standard autoencoder but signifies a shift from a compression

based theory to one of denoising. Vincent et al. [217] uses the MNIST dataset for
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testing and applied a destruction principle to set a proportion of each image to a value

of zero. Tests varied the amount of destruction from 10% to 40% and found the DAE to

outperform other techniques, such as support vector machines (SVMs) and deep belief

networks (DBNs) when classifying the MNIST digits. This work shows early potential

for the use of DAEs in denoising applications. Vincent et al. continued their work in

2010 with further investigation into DAEs [218]. They explore the potential of stacking

DAEs (SDAEs) to create deep architectures for more complex datasets. Their work

however is notably different from creating deep DAEs. SDAEs are a series of stacked

shallow DAEs whilst deep DAEs contain multiple hidden layers. The work presented

within this chapter refers specifically to DAEs and expands on traditional AEs that

use a single hidden layer, and explores the use of multiple hidden layers, instead of

stacking shallow networks such as seen in [218]. Throughout their experiments in [218],

SDAEs consistently perform better than SVMs and DBNs producing a lower error rate

across nearly all tests.

Autoencoders have previously been applied to variety of sound and image applica-

tions, ranging from speech enhancement [123, 5] to sound event classification [243, 170]

and medical imaging [234, 241]. In 2013, [123] used denoising autoencoders for speech

enhancement. They used noisy-clean speech pairs, transformed into spectrograms,

to train a DAE to filter speech prior to speech estimation. Estimating clean speech

from noisy is an important task in speech recognition. Often, operating conditions of

speech recognition systems are less than ideal and subsequently noisy environments

are common. For example, the latest Google Assistant speech recognition systems

need to operate under conditions with music, background noise (TV, hairdryer, kettle

boiling etc) or with competing speakers. Speech recognition systems therefore need

robust techniques to deal with noise. Ocean sounds are similar in principle, and
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classification methods work best under clean conditions with a high SNR. Similarly to

human speech, ocean based acoustics can often suffer from corruption. Other animals,

shipping, construction or a range of other anthropogenic noises can interfere or even

completely mask the signal of interest [212]. Consequently a robust system to deal with

variation in input data is essential for effective operation. Lu et al. found that using

a DAE gave higher performance when compared to using the minimum mean square

error (MMSE) for speech enhancement [123]. Using the DAE produced similar spectral

images to the clean data, and based on the testing results, this provides compelling

evidence for the use of DAEs in denoising applications.

In 2016 [73] used DAEs for denoising of medical images. Image enhancement and

denoising is broad area of research with a range of applications. Medical imaging

is similar to other types of imaging and is susceptible to noise [178]. A limitation

when capturing images is the exposure (or lack of) to light. Bad lighting conditions or

environments with low light often produces images that are underexposed. Modern

cameras can artificially add electrical gain (ISO) to increase exposure when the image

is captured [102]. In medical imagery the process is similar when professionals attempt

to decrease the patients exposure to radiation [73]. In such cases, gain is increased to

compensate for the reduction in radiation granularity and hence exposure across the

frame. Gain is a uniform amplification of the imaging equipment signal which allows

for a better exposed image but can introduce artefacts, often detailed as noise across

the image. In ideal conditions, increased gain would not be required, however when

conditions are poor, gain can provide vital exposure for the medical professional to cor-

rectly analyse the image. Reduction of noise through DAEs can therefore be invaluable

to situations such as these. Noise addition to acoustic recordings can produce a similar

effect when viewed as spectrograms. Depending on the additive noise, corruption across
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the spectrogram can be visible in the image, making detection of the signal significantly

harder, especially for images with low signal levels prior to corruption. [73] found using

a DAE to be effective at denoising medical images. Example images show that visually

the DAE has been effective with results comparing a range of techniques, with the

DAE outperforming a median filter and a non-local mean filter by a large margin. [73]

also supports the use of a DAE for noise removal for noisy NARW spectral images.

AEs and DAEs have never been previously used for NARW detection nor in an

attempt to improved the reliability or robustness of a detection system. Work in this

chapter aims to investigate both to create a more stable platform for detection in

a range of conditions, namely noisy environments where mitigation efforts may be

required.

5.3 Structure of autoencoders and denoising au-

toencoders

This work investigates the use of autoencoders as a precursor to detection, specifically

to remove unwanted background noise. Importantly, this work differs from early

work in this field as deep AEs are employed instead of stacked AEs [217, 218], an

example of which can be seen in Figure 5.2. Deeper AEs are used as previous work

investigating neural network architectures in Chapter 3.3.4 found shallower networks

to produce worse accuracy than deeper structures. Another significant difference is

the use of convolutional layers instead of fully connected layers within the network

architecture. Originally a single hidden layer was used however prior research shows

the powerful encoding capability of convolutional layers for image recognition [106,

214]. Convolutional layers are therefore used as the intermediary network layers, as
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can be seen in Figure 5.3, that illustrates the architecture used.

32 55
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conv1

64 27

64

conv2

128 13
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conv3
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Bottleneck Conv 128 13

32

64 27
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32 55

129

Fig. 5.3 Convolutional autoencoder architecture with three encoding layers and
decoding layers. Encoding convolutional layers can be seen in light orange with max-
pooling shown in dark orange. Dark blue shows convolutional layers for decoding with
light blue indicating the upsampling operation.

Fundamentally, convolutional autoencoders use the same building blocks as convo-

lutional neural networks to create models for processing input data. Autoencoders are

made up primarily of an encoder, bottleneck and decoder. The encoder, responsible for

compressing the input feature, directly reflects those used in the CNN. The encoding

block is comprised of a series of convolutional layers. Each layer extracts information

using the convolutional operation before the max-pooling operation downsamples the

matrix. The bottleneck feature, found equal distance from the input and output of

an autoencoder (Figure 5.3), holds the most compressed representation of the input.

It functions as a standard convolutional layer in this instance however, depending on

the application can be manipulated into a different shape prior to decoding. Finally,

the decoding block can be described as a reversed encoding block with the first layer

taking the bottleneck feature and applying a convolution operation before upsampling
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to a larger matrix. The upsampling layer increases dimensionality within the matrix

by repeating rows and columns of the matrix in order to reach the desired width and

height. Whilst encoding, network weights, W, on each layer, provide opportunity for

the network to learn the best input feature values to propagate deeper. Similarly whilst

decoding, network weights, W, can alter the upsampled values based on the network

loss.

Tests conducted in Section 5.4.1 explore the optimal autoencoder architecture for

improving detection accuracy when using a CNN. The tests vary the number of encoder

and decoder layers to see the effect that network depth has on the reconstructed output.

All input features are produced using the same spectrogram parameters (fs = 1000Hz,

N = 256, S = 32) discovered in Chapter 3.3.4, which create spectrograms of (129, 55)

time-frequency elements. Tested autoencoder architectures compress these spectro-

grams, with the size of the bottleneck feature varying from (64, 27) elements for a one

layer model, to (2, 1) elements for a 6 layer model. Smaller bottlenecks are produced

when more layers are used as max-pooling operations on each convolutional layer halve

the input size. It should be noted that without padding the initial input, or not using

max-pooling, the architecture presented cannot use more than 6 layers as features

become too small.

5.3.1 Autoencoder training

Training an autoencoder is similar to that of a CNN. However, unlike the training

process of a CNN, the autoencoder does not require a separate set of distinct target

data, normally termed labels and as such is an unsupervised algorithm. Instead, the

data used as the target matches that of the training data. Training the model is carried



5.3 Structure of autoencoders and denoising autoencoders 120

out over a specified number of epochs in order to update model weights and reduce

the loss.

During training, the model weights are updated via backpropagation. In order

to update weight values in the correct direction, an optimiser function is used. The

optimiser function, Adam [103], utilises a reconstruction loss calculated during each

pass of the network. The reconstruction loss, L(X̂,X), is calculated between the

autoencoder output X̂ and the target, which for this application is the clean data,

X, shown in Equation 5.3, where t and f represent the time and frequency axes

respectively. L(X̂,X) is generated with a binary cross-entropy loss function [43]. The

aim of training the network is to minimise L, by adjusting network parameter values,

indicating that the network can effectively compress the initial input with minimal

loss to quality when reconstructed. A minimal L value will also lead to smaller weight

changes from the optimiser as the model nears minimum reconstruction error.

L(X̂,X) = − 1
t× f

t∑
i

f∑
j

[xij · log(x̂ij) + (1 − xij) · log(1 − x̂ij)] (5.3)

Once the model reaches a local minimum L and accuracy stabilises, training the

model further is unlikely to yield significant improvements in performance. Tests

described in Section 5.4 run for a fixed number of epochs to ensure the network has

sufficient time to find the smallest L possible. All tests are given an equal number

of epochs to make them comparable. Figure 5.4 shows the effect of training on the

autoencoder output. The left spectrogram, Figure 5.4a, shows the noisy model input.

The middle spectrogram, Figure 5.4b, shows the model output after only training for a

single epoch. The right spectrogram, Figure 5.4c, shows the model output after training

for 100 epochs. A vast difference between Figure 5.4b, and Figure 5.4c is noted. A

lack of training time can cause the distorted affect seen, as the network is continuously
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(a) (b) (c)

Fig. 5.4 Spectrograms of a single right whale upcall after a) prior to autoencoder, b)
output from the autoencoder trained for a single epoch, c) output from the autoencoder
trained for 100 epochs.

learning the correct amount to update weights to minimise the reconstruction loss.

Due to the effect seen in Figure 5.4, all tests in Section 5.4 ran for 100 epochs with the

best performing model saved for processing test data.

5.3.2 Denoising autoencoder training

In the previous section, the training process of an autoencoder was detailed. Denoising

autoencoders (DAEs) have the same architecture as AEs, but differ in the way they are

trained. Instead of utilising matched training and target data in order to generate L,

DAEs use noisy-clean pairs to train the model. Noisy-clean pairs are a produced from

a single segment of audio. The clean segment is the original data, whilst the corrupted,

noisy segment is the same audio as the clean with added noise. The standard AE

only uses clean data to train the model. To train the DAE, the original training data

is duplicated and one half corrupted with noise to create noisy segments. The noisy

segments are used as input whilst the clean segments are used as targets or labels for
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the model to learn the correct output.

Tests in Section 5.3.2 initially use white noise as a corruption source due to the

broadband noise that is introduced into the spectral domain. Chapter 2.6 details

the process of corrupting the audio segments with noise. Further tests also explore

multiple signal-to-noise ratios for corruption. This is illustrated in Figure 5.5 which

shows an original spectrogram, without additive noise, compared to varying levels of

noise corruption in the spectral domain. Simulating varying levels of noise corruption

provides a testing framework to evaluate denoising performance across a range of SNRs.

Insight from testing against multiple SNRs also provides a more accurate scenario when

considering real-world performance in noisy conditions. Figure 5.5 clearly highlights

the damage that high levels of noise can have when visually inspecting spectrograms

of NARW upcalls. When the noise level is much higher than the signal, as can be seen

in Figure 5.5e, the NARW upcall becomes disjointed and difficult to identify visually.

(a) Clean (b) +5dB (c) 0dB (d) -5dB (e) -10dB

Fig. 5.5 Comparison of spectrograms of a single NARW upcall when white noise has
been added at varying SNRs.
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Fig. 5.6 A diagram to show the parameters of each layer in the architecture for an
example three layer encoder and decoder denoising autoencoder.

The main difference between the AE and DAE is therefore the difference between

the input and target data. The AE uses matched pairs, whereas the DAE uses noisy-

clean pairs. The loss function shown in Equation 5.3 however is consistent with the

DAE as the loss is still calculated between the clean target feature, X, and the DAE

output feature, X̂. The difference is the DAE takes in a noisy input feature, Y, which

is a corruption of X. An example DAE architecture can be see in Figure 5.6 with

three encoder and decoder layers. Similar to the autoencoder, X̂ represents the DAE

reconstructed output. X̂ aims to match more closely to the clean representation, X,

than the noisy representation, Y. In theory, the closer that X̂ and X are to one

another, the greater the reduction of noise. In practice, the loss between X̂ and X may

not become as small as expected, however this does not indicate that noise has not

been reduced but instead that the background noise of X̂ does not match that of X.
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X̂ potentially benefits from further noise reduction due to the compression effect of

the autoencoder encoding and therefore should still be more suitable for classification

than the original noisy spectrogram, Y. Importantly, the NARW vocalisation is the

target of the denoising autoencoder and achieving a clean reconstructed vocalisation

holds more weight than L reaching zero. Figure 5.7 visually shows this concept, with

Figure 5.7c showing the suppression of background noise over Figure 5.7b and even

the clean spectrogram of Figure 5.7a. Critically however, the NARW vocalisation is

preserved during the denoising process, showing the successful learning taking place

whilst training the DAE.

(a) Clean (b) -5dB (c) DAE output

Fig. 5.7 Spectrograms of a single NARW upcall, (a) before corruption, (b) corrupted
with white noise at -5dB, (c) output from the DAE after processing (b).

5.4 Preliminary experimental results

The aim of these experiments is three-fold. First, Section 5.4.1 explores the effect of

autoencoder architecture depth and analyses the effect this has on detection accuracy

of NARW vocalisations. Second, Section 5.4.2 compares performance of the DAE
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with the AE to assess which provides the highest detection accuracy when testing

under the same noise conditions. Third, a formal analysis of the DAE is presented,

exploring the DAE output during the denoising process and investigating the differences

when varying DAE architecture depths. Performance of DAEs across a range of noise

conditions with varying model architectures is also given to discover which is most

suitable for implementation on a NARW detection system.

5.4.1 Autoencoder architecture tests

Preliminary experiments use the Cape Cod dataset (outlined in Chapter 2.6.3) to eval-

uate the effectiveness of the autoencoder method when detecting NARW vocalisations.

These experiments were aimed to not only see if the autoencoder could be effective at

suppressing background noise but also to compare a range of architectures to create an

optimal model and network structure. All experiments use a convolutional encoder

setup, using a convolutional layer, max-pooling layer and ReLU activation function

to form a single encoding layer. This can be seen in Figure 5.3 and in Section 5.3,

but the tests vary the number of encoder and consequently decoder layers. Previous

work [214] established that architecture depth gave the greatest variation in network

performance when comparing network hyperparameters. Varying the autoencoder

depth should therefore give a strong understanding of how well the architecture can

perform. Tests also use the previously proposed (Chapter 3.3.4) CNN system [212]

for detection, after processing via the autoencoder, with all detection accuracies and

configurations reported in Figure 5.8.

The results in Figure 5.8 show that accuracy degrades when the autoencoder ar-

chitecture deepens, with all tests dropping in accuracy from 96.29% when not using

the autoencoder. This result is surprising and indicates that standard AEs are not
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Fig. 5.8 Detection accuracies of autoencoder performance comparing a range of
network architecture depths.

suitable for producing cleaner features for improved detection. Figure 5.9 shows two

NARW upcalls before and after processing via the AE using a 3 layer encoder/decoder

architecture. Both show loss of detail and contain an overall hazy quality. Figure 5.9

visually indicates why performance when using the AE has dropped slightly. Although

AEs work effectively at compression of data samples, in this case they can not provide

a gain in detection accuracy. It is therefore recommended that since the clean data

contains little unwanted or potentially class misleading information (such as background

noise), that the standard AE is not used as a pre-processing feature enhancement.

5.4.2 Denoising autoencoder architecture tests

Tests in this section now consider the denoising autoencoder across a range of noise

levels for the detection of NARW vocalisations. As DAEs are aimed at creating a model

to denoise the data, it is expected that losing unwanted noise comes as a consequence
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(a) (b) (c) (d)

Fig. 5.9 Spectrograms of two NARW upcalls (a) & (c). Spectrograms (b) & (d)
show the AE output after processing spectrograms (a) & (c) respectively. The AE to
generate these spectrograms had a three layer encoder architecture.

of passing through a bottleneck and forcing a high level of data compression. This is

an advantage of DAEs, however this compression may cause reconstruction artefacts or

poor reconstructed representations, making further detection and classification difficult.

Tests now use the same Cape Cod corpus, however utilise a noisy alternative with

additive white noise ranging from 5dB to -10dB. The processing of adding noise is

described in Chapter 2.6.3. Figure 5.10 shows a comparison between detection accura-

cies when using no pre-processing method, the AE, and the DAE. Figure 5.10 shows

the DAE achieves a higher detection accuracy over the baseline result, whilst the AE

performs similarly or worse than not using the autoencoder. This test demonstrates

the ability of the DAE in noisy conditions to improve detection accuracy. Further

tests continue development of the DAE as it has shown to be successful at denoising

corrupted signals compared to the AE. Figure 5.11 shows a grid of spectrograms prior

to detection. The top row have not been pre-processed, whilst the middle row have
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Fig. 5.10 Comparison of pre-processing techniques by evaluating detection accuracy.
Original data was corrupted with white noise at 5dB, 0dB, -5dB, and -10dB. All tests
used the same underlying clean model for detection and both the AE and DAE use a 3
layer encoder/decoder architecture.

been processed by the AE, and the bottom row processed by the DAE. Figure 5.11

visually highlights the performance of the DAE in all noise conditions, managing to

maintain visibility of the NARW upcall when the SNR is as low as -10dB.

Tests now aim to optimise the DAE architecture. As discussed earlier, white noise

at varying SNRs was added to the Cape Cod dataset before processing with the DAE.

The testing framework was designed to explore a range of DAE architectures and

evaluate performance across a range of noise levels. Four SNRs, 5dB, 0dB, -5dB, -10dB,

were chosen as coverage for these tests. Since these experiments aim to provide a robust

solution for denoising, testing across a range of SNRs gives a more accurate indication

of real-world performance, and therefore an idea of which architecture would be most

suitable for real-world deployment. For each SNR six tests were conducted. The DAE
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(a) N/A

(b) AE

(c) DAE

5dB 0dB -5dB -10dB

Fig. 5.11 Spectrogram evaluation of pre-processing techniques. Original data was
corrupted with white noise at 5dB, 0dB, -5dB, and -10dB. Row (a) shows the original
noise-corrupted spectrograms. Row (b) shows the same upcall after processing via
the autoencoder. Row (c) shows the same upcall after processing via the denoising
autoencoder.

architecture was varied starting at the shallowest position moving towards the deepest.

In this context, shallow refers to a small number of encoding and decoding layers, with

the shallowest utilising a single layer. Similarly, a deep architecture contains multiple

encoding and decoding layers, the deepest possible being six. This particular test is

limited to six encoding layers of depth as the initial input is (129, 55) elements in

frequency and time respectively and therefore becomes too small for processing past

six layers when using pooling operations.
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SNR Accuracy Encoder depth

+5dB 90.35% 2

0dB 85.07% 3

-5dB 75.39% 3

-10dB 64.15% 4

Table 5.1 Detection accuracies across a range of SNRs with additive white noise. The
architecture depth that achieved the highest result are shown for each SNR.
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Fig. 5.12 A comparison of detection accuracy when using no pre-processing method,
against using the DAE with 2, 3, or 4 layers. Tests use white noise at SNRs of 5dB,
0dB, -5dB, and -10dB.

For each SNR, table 5.1 shows the best performing DAE architecture based on

detection accuracy from the CNN system. For reference, Appendix A.1 shows the

extended table of results. Appendix A.1 gives accuracies for all encoder layer com-

binations across all SNRs. Figure 5.12 examines detection accuracy across all SNRs

whilst varying the DAE architecture depth. Both Table 5.1 and Figure 5.12 indicate

that the three layer DAE performed best on average across the SNR tests. Both Table

5.1 and Figure 5.12 show that the detector works best when noise is lowest, however
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when noise is increased a deeper DAE architecture enables a greater reduction in noise,

and consequently accuracy. This is attributed to the need for deeper, more complex

models to remove higher levels of noise successfully. For example the difference, ∆, at

-10dB between no processing and the three layer DAE is much larger than the ∆ at

+5dB, indicating a higher level of noise removal.

Fig. 5.13 Original spectrogram prior to noise corruption - shown in Figure 5.14.

Figure 5.14 shows examples of the DAE input, bottleneck and output features.

By comparing a range of layer depths across a single SNR of 0dB, it is clear that

specific architectures produce cleaner reconstructed outputs. Overall more detail is lost

when using a deeper architecture as the bottleneck becomes smaller and the relative

compression is higher. Even though more detail is lost, features produced by deeper

models often look cleaner than shallower models - Figure 5.14a and Figure 5.14f show

this comparison well. The deeper six layer architecture has more available weights to

tweak during reconstruction of the image throughout training, whereas the shallower

single layer architecture relies more heavily on the bottleneck feature values when

reconstructing the image. Figure 5.13 shows the clean non-corrupted feature used in

Figure 5.14. After analysis of results in Table 5.1 it is presumed that a mid-depth

three layer architecture performs best because the output (Figure 5.14c) most closely
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matches that of the original clean representation shown in Figure 5.13. As Figure

5.12 shows, the DAE architecture that performs best is not consistent across the tests.

However, since the three layer was the highest on average and achieved the best result

in 50% of the tests, it was decided that further tests involving the DAE would utilise a

three layer encoder and decoder structure.

5.5 Summary & discussion

Previous work involving autoencoders has been sparse within the domain of marine

mammal detection. Other domains have benefited from research involving autoencoders

such as, medical imaging [73] including histopathology image detection [234, 241],

speech enhancement [123], speech recognition [5], and acoustic event classification [243].

Whilst other domains have found success with AEs, marine mammal detection has been

absent from this work. Traditionally, detection of marine mammals has been manual,

with many studies using basic automated detectors [211] and only recently have more

modern automated methods of detection been introduced. Using autoencoders for the

application of denoising marine mammal sound events is therefore in its infancy.

A range of tests have been carried out to explore the model architectures of autoen-

coders for pre-processing spectral images of NARW vocalisations. Tests initially used a

standard autoencoder and subsequently developed into using a denoising autoencoder.

Implementation of the DAE led to further exploration of noise corruption on clean

signals. A range of white noise corrupted signals were created at SNRs of 5dB to

-10dB. These tests aimed to provide representation in conditions more closely matched

to the real-world where noise levels can vary. It was first discovered that standard

AEs could not improve detection accuracy in clean or noisy conditions (Table 5.1 &
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(a) 1 Layer (b) 2 Layer

(c) 3 Layer (d) 4 Layer

(e) 5 Layer (f) 6 Layer

Fig. 5.14 Breakdown of the input, bottleneck and output features of a successfully
denoised sample. Figures compare a number of DAE architectures, ranging from using
one to six encoding layers. All figures use the same audio file with additive white noise
at 0dB.
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Figure 5.10), tests then focused on DAEs and understanding the relationship between

detection accuracy and model architecture (Appendix A.1). Tests involving the DAE

showed it to improve detection accuracy when used as a pre-processing method prior

to detection. Performance on average improved by over 3% across all SNRs and conse-

quently validated the process of pre-processing with a DAE. It is recommended that a

three layer encoder and decoder DAE is used for NARW vocalisation denoising as this

provided the best performance on average in noisy conditions. To further illustrate the

effect of the DAE, Appendix A.2 shows spectrograms of 50 2-second blocks containing

NARW vocalisations, before adding noise, after noise as been added and after the DAE

has processed the noisy spectrograms.



Chapter 6

Application of convolutional neural

networks for denoising North

Atlantic right whale vocalisations

6.1 Introduction

This chapter aims to further explore robust noise reduction to increase detection

accuracy of NARWs in noisy conditions by denoising spectrograms using a CNN to

generate estimates of the noise. These noise estimates can then be subtracted from the

noisy signal to provide a denoised spectrogram. This approach, named the denoising

convolutional neural network (DNCNN), provides a structurally different process of

noise removal compared to the autoencoders examined previously. The DAEs that

were investigated in Chapter 5 are based on a neural network encoder-decoder struc-

ture aimed at compressing each input feature before expanding back to the original

size without unwanted noise. In contrast, the DNCNN does not use max-pooling

layers to compress the input and consequently does not reduce the input feature size

when processing spectrograms. Denoising CNNs have previously been investigated
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for their potential improvement to classification systems in noisy conditions however

the architecture and design often vary for each proposed technique [201]. Zhang et al.

proposed the DNCNN architecture [239] that aims to predict the residual noise, which

is said to be easier and faster to learn than a fully denoised image. The residual signal

is an estimation of the noise within the original noisy signal. For denoising NARW

spectrograms, this would be the noise present in a spectrogram. It is termed residual

as any estimate of the noise is unlikely to produce the exact noise signal and therefore

residual refers to the signal that is estimated to be the noise.

An important consideration when developing automatic detectors is the likelihood

that NARW recordings will be corrupted by noise from various sources at differing

signal-to-noise ratios. Depending on the distance of the NARW and location of the

noise source from the receiving hydrophone, recordings can become unsuitable for

detection methods, as vocalisations can be masked. Noise presents a challenge to most

classification problems, from speech recognition to image identification [181, 119], and

consequently many different compensation techniques have been previously proposed.

These can broadly be categorised into those that attempt to match the underlying

model to the characteristics of the noisy input data and those that remove noise before

classification [151, 123]. This chapter solely considers the removal of noise prior to

classification, with later work in Chapter 7 providing investigation and analysis of

model augmentation.

The remainder of this chapter is organised as follows. Section 6.2 explains the

DNCNN process and reviews literature for other denoising methods. Section 6.3

describes the process of predicting the residual noise spectrogram from the DNCNN

and how this differs to predicting a denoised signal, as shown with the DAE in Chapter
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5. Section 6.4 then applies the DNCNN system to NARW vocalisations, analysing a

range of network parameters and their effect on classification accuracy.

6.2 Background

This section first provides a background on current image denoising techniques using

the DNCNN and then details how its use of a neural network architecture is unlike

other methods reviewed. Next, the process of denoising from a DNCNN is introduced

with details on how the DNCNN works, with specific emphasis on how the original

creators, Zhang et al. [240], intended on learning the residual signal instead of learning

a denoising mapping.

Image denoising is an essential part of many computer vision processing pipelines,

with removal of noise a critical task for many applications, such as for smartphone

photography [2] and medical imaging [58]. The aim of image denoising is to recover

or reconstruct a clean image, X, from a corrupt image, Y when noise, D is added.

Often for image denoising, during algorithmic development, D is assumed to be white

noise. However, realistic ocean corruptions are not always broadband in frequency and

are instead often transient sounds. Consequently, work within this chapter analyses

acoustic recordings corrupted with white noise, with work in Chapter 7 evaluating a

wider range of real-world conditions.

Currently, a range of image-based denoising methods are widely used, such as

block-matching and 3D filtering (BM3D) [46], weighted nuclear norm minimisation

(WNNM) [79], local spatial-spectral correlation (LSSC) [126] and non-locally centralised

sparse representation (NCSR) [53]. Although the denoising potential of these methods
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is high, they suffer from two fundamental drawbacks. First, they are optimised to work

best on Gaussian noise, commonly seen in photographic gain (a large research area

of image denoising) and therefore generalisation to ocean sounds is not guaranteed.

Second, each method requires optimisation and hyper-parameter searches before the

optimum parameters can be used and performance can be maximised. Whilst neural

networks often also require parameter setting, it is intended that once an optimum

architecture is realised, further denoising will not require additional parameter changes.

The concept of the DNCNN, exploits and combines some of the most effective

architectures that have been proposed for image recognition and denoising. This

includes using deep architectures that are effective at increasing the learning capacity

and flexibility of the model [190, 105, 240]. To improve the learning of such deep models,

residual learning methods have been shown to be more effective than attempting to

learn a direct mapping [82, 239]. Batch normalisation is also commonly applied and

through the scaling and shifting applied at each layer, any internal covariate shift can

be mitigated [72, 95]. Based on these factors, the approach taken in this chapter for

denoising spectrograms of NARW vocalisations is based on a DNCNN framework that

employs residual learning [239].

Convolutional neural networks have previously been discussed in Chapter 3.3.4

where they proved to give the highest accuracy for detecting NARW vocalisations.

Using CNNs to extract features other than NARW vocalisations, is therefore logical

and supported by the use of CNNs in many denoising applications [202, 238, 36, 112,

240]. CNNs for denoising operate similarly to those used earlier in Chapter 3.3.4 as

a classifier, albeit without the need to compress the input spectrogram using max-

pooling operations or to apply dense layers to produce predictions. The DNCNN
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stacks convolutional layers each with a ReLU activation function, to provide a network

of filters which extract features from the input spectrograms. During training, the

network learns the most suitable filter values for the extraction of noise features. Rather

than directly outputting a denoised image X̂, the DNCNN predicts the noise D, the

difference between the noisy spectrogram, Y and the clean spectrogram X. This can

be seen in Equation 6.1.

D = X − Y (6.1)

D̂ = DNCNN(Y) (6.2)

However in practice, predicting the noise can introduce artefacts of the noise removal

process as well containing parts of the original clean signal. Due to this, the DNCNN

predicts the noise estimate, D̂, which is termed the residual signal. The residual signal,

D̂, aims to be as similar to the original noise, D as possible, as this would cause all

the noise to be removed from the noisy spectrogram, Y. Equation 6.2 details how the

residual signal is produced. Unlike the DAE which predicts a denoised spectrogram, X̂,

learning the residual is faster and creates a more generic denoising model compared to

predicting a more specific denoised image for each output [240]. Since a noise estimate

is likely less complex than a full vocalisation spectrogram, convergence of model is

likely to occur faster when attempting to predict noise. For NARW denoising, the

residual spectrogram, D̂ is then subtracted from the noisy spectrogram, Y to produce

a clean estimate, where

X̂ = Y − D̂ (6.3)

The estimated clean signal, X̂ can then be used for classification via the CNN classifier

proposed in Chapter 3.3.4. Figure 6.1 shows the full denoising and classification process.

In circumstances where only a clean-trained CNN classifier exists, the ability to use

denoised spectrograms aims to improve classification accuracy when compared to using
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noisy spectrograms without denoising applied.

DNCNN

0 (Not NARW)

1 (NARW)

Convolutional 
Encoder

Dense 
Classifier 
(FCN)

CNN

Noisy, Y

Residual, !D

Vestigial, !X

⨁
+

−

Fig. 6.1 Overview of the processing pipeline when using a DNCNN for denoising
spectrograms and a CNN for classification.

6.3 Subtraction of residual noise for denoising

The aim of this section is to investigate the process of using both linear and log

spectrogram features for the residual noise estimates produced by the DNCNN. Sec-

tion 6.3.1 first details how noise subtraction operates when spectrograms are created

linearly. Section 6.3.2 then details the process of subtracting noise estimates using log

spectrograms. Finally, Section 6.3.3 provides configurations for testing both linear and

log methods of noise subtraction. Analysis of the tests conducted for both are shown

in Section 6.4.

In Chapter 4 a range of point processing methods were investigated to increase

accuracy of the NARW detector in clean conditions. Tests found that log spectrogram

features provided the highest detection accuracy in clean conditions and these have

therefore been used in Chapter 5 for testing the DAE. When considering the subtraction

of noise, as is required to denoise using the DNCNN, the method of noise subtraction can
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dramatically effect the resulting denoised spectrogram. For example linear spectrograms,

can be subtracted from one another to produce the difference between them. To produce

an equivalent subtraction for log spectrograms, the log operation must be accounted

for. Due to this difference, both linear and log spectrograms will be considered as input

features into the DNCNN.

6.3.1 Linear noise subtraction

Considering first spectrogram features that are extracted from noisy audio as described

in Chapter 3.3.1 without the log operation being applied to their amplitudes. The noisy

spectrogram, Y, can be assumed equal to the sum of the clean and noise spectrograms

(ignoring cross-spectral terms), X and D, as

Y = X + D (6.4)

Figure 6.2 shows the full DNCNN and classification process for a linear input spec-

trogram. For a traditional denoising algorithm, F(), a direct mapping from the noisy

spectrogram to an estimate of the clean spectrogram would be found, i.e. X̂ = F(Y).

Instead, when this is reformulated into the residual learning framework, a residual

mapping, D̂ = RLIN (Y), is instead learnt, where RLIN () is the DNCNN taking a linear

spectrogram. This makes an estimation of the noise spectrogram, D̂ (i.e. residual) and

when subtracted from the noisy spectrogram gives an estimate of the clean spectrogram,

X̂, as

X̂ = Y − RLIN(Y) (6.5)
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Noisy spectrogram, Y
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Fig. 6.2 A diagram of the DNCNN and classification pipeline using linear features for
input into the DNCNN. All convolutional layers use filter sizes of 3 × 3.
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6.3.2 Log noise subtraction

The alternative spectrogram feature is represented by log spectral amplitudes, which is

common practice for audio processing applications. Figure 6.3 shows the DNCNN and

classification process for a log input spectrogram. In this case the noisy log spectrogram,

log(Y), is expressed as,

log(Y) = log(X + D) (6.6)

To calculate the same residual signal as for the linear method, a different equation is

required to account for the log operation. In this case the residual signal is a subtraction

of the clean spectrogram, log(X), against the noisy spectrogram, log(Y). Since the

spectrograms have had the log operation applied, simply subtracting their values would

result in a skewed clean estimate. To account for log, the clean estimate representation

is obtained by expanding the log operation in Equation 6.6 to

log(Y) = log
(

X
(

1 + D
X

))
= log(X) + log

(
1 + D

X

) (6.7)

and so the residual mapping, RLOG(Y), is

RLOG(Y) = log(Y) − log(X) = log
(

1 + D
X

)
(6.8)

This residual signal is significantly different to that using linear spectral amplitudes

in Equation 6.5 and no longer comprises just a noise component. Instead, it is a

combination of the noise and clean spectrogram components.

With these two formulations for the residual, two slightly different architectures for

denoising the spectrogram features are required and shown in Figures 6.2 & 6.3. Both
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Fig. 6.3 A diagram of the DNCNN and classification pipeline using log features for
input into the DNCNN. All convolutional layers use filter sizes of 3 × 3.
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ultimately provide estimates of the clean log spectrogram for the CNN to classify.

6.3.3 Noise subtraction configurations

To perform the residual mapping, the DNCNN architecture is initially based on an

approach developed for image denoising and uses a model with 17 convolutional lay-

ers [239]. The first layer has 64 filters and outputs these into a ReLU activation

function [150]. The next 15 convolutional layers also use 64 filters but now incorporate

batch normalisation before outputting into a ReLU activation function [72, 95]. The

final layer excludes the batch normalisation and ReLU operations and outputs a pre-

diction of the residual spectrogram elements. No pooling layers are used, so deeper

models have a wider receptive field as the input is not reduced in size. With 17 layers,

this corresponds to a receptive field of 35 × 35. For the spectrogram features this

equates to a receptive field of 1.27 seconds and bandwidth of 137Hz which is broadly

the duration of a NARW upcall and the frequency range of an upcall. All spectrograms

are initially extracted using, N = 256, S = 32 and fs = 1000Hz which were the best

performing parameters from Chapter 3.3.4.

The DNCNN is trained using pairs of spectrogram features with a noisy spectro-

gram used as the input and a noise spectrogram forming the training target. This

matches the process used to train the DAE in Chapter 5.3.2. Noisy spectrograms for

training are produced by adding the desired noise type at the required SNR to the

clean time-domain signal and extracting spectrogram features. The method of noise

addition was initially described in Chapter 2.6.4 and used by methods in Chapter 4 &

5. Matching the DAE in Chapter 5.3.2, white noise is used as the noise corruption in

this chapter. The mean squared error is used as the loss function between the noise
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spectrogram and predicted spectrogram features, along with an Adam optimiser [103].

Training was performed over 50 epochs as model convergence was often fast and larger

models with greater than five convolutional layers were computationally intensive.

The CNN classifier, C(), from Chapter 3.3.4 requires a log spectrogram as input.

For the DNCNN that uses log spectrogram features, RLOG() from Section 6.3.2, the

residual output is subtracted from the log noisy spectrogram to give the clean log

spectrogram estimate, ̂log(X), that is input into the classifier, where ψ represents the

final classifier prediction value,

̂log(X) = log(Y) − RLOG(log(Y)) (6.9)

ψ = C( ̂log(X)) (6.10)

For the DNCNN using linear spectrogram features, RLIN(), the residual output is

subtracted from the linear noisy spectrogram to give the estimate of the clean linear

spectrogram and this is then logged before being input into the classifier, where ψ

represents the final classifier prediction value,

X̂ = Y − RLIN(Y) (6.11)

ψ = C(log(X̂)) (6.12)

6.4 Preliminary experimental results

The aim of these experiments is two-fold. First, Section 6.4.1 explores the use of both

log and linear spectrogram features when subtracting the residual noise from the noisy

spectrograms. Second, Section 6.4.2 investigates a range of DNCNN architectures
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and analyses the effect this has on the detection accuracy of NARW vocalisations.

Tests in Section 6.4.2 use a vestigial model, the same type used in Chapter 5.4.2. The

vestigial model is trained using data that has first been denoised by the method under

test. Vestigial-trained models enable the test data to match more closely to the model,

meaning results can be analysed more accurately removing data mismatching as a

variable of change.

All tests with this section use the Cape Cod corpus, outlined in Chapter 2.6.3, to

evaluate the effectiveness of the DNCNN. Consistent with tests described in Chapter

5.4, tests used white noise at SNRs from 5dB to -10dB to corrupt the Cape Cod

corpus. White noise was chosen as it provides corruption across the entire frequency

spectrum and is consequently a challenging environment to denoise. If denoising

improves classification accuracy in white noise conditions it suggests that the DNCNN

could be successful for denoising alternative corruptions.

6.4.1 Noise subtraction analysis

As a preliminary test to establish the most suitable method of noise subtraction for

the DNCNN, the accuracy of the system using log spectrogram denoising, RLOG() was

compared, with that using linear spectrogram denoising, RLIN(), shown in Figure 6.3

& 6.2. Tests used the 17 layer CNN and all training parameters were as stated in

Section 6.3.3.

As an example of the visual difference between linear and log noise subtraction,

Figure 6.4 shows two NARW vocalisations using both the linear (Figure 6.4a & 6.4b)

and log (Figure 6.4c & 6.4d) methods. Figure 6.4a & 6.4c use the same input, similarly
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(a) Linear 1 (b) Linear 2

(c) Log 1 (d) Log 2

Fig. 6.4 Four figures containing the DNCNN input spectrogram (left), DNCNN output
of the residual noise spectrogram (middle), spectrogram after residual subtraction
from the input (right). Figures (a) & (b) show two different vocalisations using the
linear subtraction method. Figures (c) & (d) show matching vocalisations from (a)
& (b) respectively, using the log subtraction method. The original spectrograms are
corrupted with white noise at an SNR of -5dB.

for Figure 6.4b & 6.4d. Figure 6.4 visually indicates that the log pipeline produces

slightly cleaner denoised representations after residual noise removal.

Analysis of the results found an average of a 3% increase when using log spectrogram

features over linear spectrogram features for all test SNRs. Tests established that using

log spectrogram features for denoising achieved higher classification accuracy, which is

attributed to the better conditioned spectral values the log provides, making learning

the residual function more effective. For clarity, all further tests use log spectrogram

features as input into the DNCNN.



6.4 Preliminary experimental results 149

6.4.2 DNCNN architecture tests

This section develops on the previously proposed 17 layer DNCNN architecture [239],

exploring alternative denoising architectures and uses NARW detection accuracy to

monitor performance. Further tests in Chapter 7 evaluate the DNCNN for testing in a

wider range of noise conditions.

5dB 0dB -5dB -10dB

(a) Noisy

(b) Denoised

Fig. 6.5 A comparison of spectrograms in (a) noisy conditions and (b) after denoising
using the DNCNN. The noisy spectrograms are corrupted with white noise at the
SNRs shown.

Investigation of the original architecture is now conducted by exploring the effect

of a different number of convolutional layers and convolutional filters per layer. Tests

use 50 epochs to train the DNCNN and mean squared error to calculate the loss as

these worked well previously in Section 6.4.1. Tests evaluate a range of network depths
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to find the most suitable architecture for denoising NARW vocalisations. If networks

that were shallower or had less filters could achieved comparable performance to the

originally proposed 17 layer architecture, it would be beneficial to use those instead as

they would require less computation and subsequently less power to process each PAM

recording.

Table 6.1 shows accuracy after denoising via the DNCNN using a vestigial-trained

model. Although tests were run against a range of SNRs, white noise at -10dB was

used for all tests in Table 6.1. An SNR of -10dB was chosen to analyse DNCNN

architectures as it represents the harshest conditions for noise removal and spreads

performance of each model. When conditions are less noisy many architectures per-

formed similarly and therefore distinguishing the most suitable denoising architecture

was difficult. Figure 6.5 shows an example of the denoising result using the DNCNN

at all noise levels originally tested. Figure 6.5 clearly shows the more demanding con-

ditions when the original vocalisation is corrupted with white noise at an SNR of -10dB.

As a benchmark result, an accuracy of 54.77% was attained when using a clean-

trained model on the denoised data using the previously proposed DNCNN architecture

of [239]. This result gives performance when the SNR is at -10dB, the most severe

condition under test and the underlying model is trained on clean data. It was observed

that all tests using the DNCNN on a vestigial-trained model dramatically improved

performance over the clean-trained model with large increase in performance found

when using both more convolutional layers and filters. This improvement is attributed

to the superior mapping capability of the larger network for estimating noise. Table

6.1 identifies the best performing model to match that of [239] with 17 layers and 64

filters. Architectures with a small number of layers and filters struggled significantly.
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Filters per layer
2 4 8 16 32 64 128 256

3 64.33 64.98 65.74 66.32 68.83 67.24 68.33 70.33
5 67.17 69.85 69.80 70.00 70.17 70.00 69.83 70.33
10 67.50 69.86 70.65 70.00 71.33 72.00 70.17 70.17
15 68.50 70.30 70.46 70.17 72.03 72.17 70.33 70.67

Network
depth
(layers)

17 69.50 70.78 70.05 70.33 72.5 72.83 72.67 71.00

Table 6.1 Test accuracies are presented for evaluating a range of convolutional layers
and filters per layer for the denoising convolutional neural network. Input data used
for denoising was contaminated with white noise at -10dB.

Table 6.1 shows that detection accuracy reaches near maximum with 32 filters and

peaks at 64, dropping off past 128. Architectures with 17 layers in general outper-

form shallower networks however accuracy using 10 layers and 64 filters is close to

maximum. As the highest performing DNCNN architecture used 17 convolutional lay-

ers and 64 filters, this architecture is now used for further testing involving the DNCNN.

Figure 6.6 provides a visual comparison of four architectures tested in Table 6.1.

Figure 6.6 visually demonstrates the effect of using a deeper DNCNN architecture with

each increase in depth removing more noise. The 17 layer DNCNN that produced

Figure 6.6e has visually the least noise and clearest NARW upcall and demonstrates

why the 17 layer model provided the highest detection accuracy in tests.

6.5 Summary & discussion

This chapter has investigated the application of a denoising convolutional neural net-

work to detect NARWs in conditions of high noise corruption. White noise was added

to PAM recordings from the Cape Cod corpus at SNRs ranging from +5dB to -10dB.

Two methods of DNCNN configuration where investigated. First, the method of noise
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(a) Input (b) 3 Layers (c) 5 Layers (d) 15 Layers (e) 17 Layers

Fig. 6.6 A comparison of a single NARW vocalisation after processing via the DNCNN
with four different network architectures. (a) shows the original spectrogram input
corrupted with white noise at an SNR of -10dB. (b) used a DNCNN with 3 layers
and 2 filters per layer. (c) used a DNCNN with 5 layers and 4 filters per layer. (d)
used a DNCNN with 15 layers and 32 filters per layer. (e) used the best performing
architecture from Table 6.1 with 17 layers and 64 filters per layer.

subtraction from a noisy input. Second, development of the DNCNN architecture to

find the highest performing model. Best performance was found using log features

for subtraction of predicted residual noise. Using log spectrograms instead of linear

spectrograms for use in the DNCNN improved detection accuracy by a maximum

of 3%. Log spectrograms were then used in further experiments to identify the best

DNCNN architecture. Overall the highest detection accuracy was found using a 17

layer DNCNN with 64 filters per layer. This aligned with previous work that proposed

the DNCNN by Zhang et al. [239]. Changes in the architecture all made performance

worse however architectures that used above 10 layers and 32 or 64 filters still performed

well. It is recommended that a denoising system for use onboard an ASV, use the 17

layer DNCNN if computational overhead allows, however a shallower 10 layer DNCNN

might be more useful in more computationally restrictive situations.
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Future work investigating the DNCNN for denoising NARW vocalisations could

compare detection accuracy when predicting the residual noise spectrogram against

prediction of a denoised spectrogram. Up until this point the residual noise spectrogram

has been used to remove noise from the noisy spectrogram when using the DNCNN.

Testing the inverse could provide a potentially higher detection accuracy as the DNCNN

might be better at learning the underlying NARW vocalisation signal structure than

the less structured noise.



Chapter 7

Investigation of neural network

denoising techniques in real world

conditions

7.1 Introduction

This chapter aims to further develop the denoising autoencoder (DAE) presented

in Chapter 5 and the denoising convolutional neural network (DNCNN) presented

in Chapter 6. This is done first in a range of noise conditions and across varying

signal-to-noise ratios using the Stellwagen dataset, described in Chapter 2.6.3 with

addition of noise described in Chapter 2.6.4. This investigation incorporates the CNN

classifier, first proposed in Chapter 3, to develop a noise robust North Atlantic right

whale classification system that achieves the highest possible classification accuracy

across all noise conditions [216]. Tests introduce augmented training to explore how

retraining with a new noise environment can effect detection accuracy. Tests also

examine the computational speed of all proposed systems to ensure compatibility with

operation from an autonomous surface vehicle as described in Chapter 2.4, is possible.
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Secondly, the more naturally noisy Cape Cod corpus is used to evaluate the models

developed in Section 7.3 in a blind test on a real-world noisy condition not seen by the

classifier.

The remainder of this chapter is as follows. Section 7.2 describes the experimental

setup of the subsequent tests, with Section 7.2.1 detailing the data and noise corruptions

used in this chapter, Section 7.2.2 describes how the vestigial signal is used and the

setup of both the DAE and DNCNN methods using the vestigial signal, and Section

7.2.3 provides the system configurations used to produce the experimental results.

Section 7.3 presents the results of the tests explained in the previous section, across all

noise types and SNRs. Specifically, Section 7.3.1 investigates augmented training across

the available noise types and SNRs, with Section 7.3.2 analysing detection accuracy of

both the DAE and DNCNN in the new noise conditions, Section 7.3.3 then investigates

the use of augmented training, combined with the denoising methods. Finally, tests in

Section 7.4 evaluate performance of the denoising methods in a new unseen condition

that has naturally occurred, unlike the previously simulated noisy environments.

7.2 Vestigial classifier and denoising configurations

Work exploring the suitability of both the DAE and DNCNN methods is now carried

out. In this chapter a larger range of noise corruptions are investigated to better

understand how the DAE and DNCNN perform in conditions more similar to those

found in the real-world. This section is used to describe the setup and structure of the

tests carried out in Section 7.3.
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7.2.1 Data & noise

The NARW recordings used within this section for evaluation were taken from the

DCLDE 2013 workshop detailed in Chapter 2.6.3 and is referred to as Stellwagen.

Two different problems are described in Chapter 2.6.3, a two class detection between

{not-NARW, NARW} where either an upcall is detected or not, and a three class clas-

sification between {upcall, gunshot, not-NARW} where two classes represent different

NARW vocalisations and third represents all other sounds. All tests prior to Section

7.4 use the three class variant and are a classification task. Tests within Section 7.4

use the two class variant as the unseen test data is from the Cape Cod corpus which

only contains two classes.

The Stellwagen recordings are relatively noise-free, as example spectrograms in

Figure 7.1 show, but they do contain some low amplitude noise. For the purposes of

the evaluation in this chapter, the recordings are considered as clean and subsequently

noise is added to simulate noisy audio. Given the low frequency of NARW vocalisations

the audio was downsampled to 1 kHz, as previous work showed this introduces no loss

in accuracy [214].

Four noise types are considered for this evaluation - tanker noise, trawler noise,

shot noise and white noise. Chapter 2.6.4 describes each noise type in detail and

explains how the noisy audio segments under test in Section 7.3 were created. A set of

each noise type were also created for each SNR under test. In total from the original

Stellwagen corpus, 16 new noisy mixtures were created for testing. Four sets for each

of the four noise types at SNRs of 5dB, 0dB, -5dB, and -10dB.
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Fig. 7.1 Two example spectrograms showing a NARW upcall (left) and a NARW
gunshot (right), both taken from the Stellwagen corpus.

7.2.2 Vestigial denoising setup

The vestigial, first introduced in Chapter 4.3.4 describes the signal left after denoising

has taken place. As previously discussed, this is termed vestigial as the signal likely

contains parts of additive noise not fully removed, and any artefacts introduced during

the denoising process. For the DAE this is the spectrogram output of the DAE method.

For the DNCNN this is the spectrogram produced when the residual noise is subtracted

from the noisy spectrogram.

This work proposes two methods of classification using this vestigial signal. The

first uses the original CNN classifier from Chapter 3.3.4, C() trained on clean, non-noisy

spectrograms from the Stellwagen corpus. The second retrains the CNN classifier on

the vestigial signal left after denoising noisy training data. This therefore matches

the denoised, vestigial test data more closely. For the DAE this would create a DAE

vestigial classifier, CDAE() and for the DNCNN a vestigial classifier, CDNCNN(). Both
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vestigial classifiers are then trained with training data from the Stellwagen corpus first

processed by the respective denoising technique.

7.2.3 System configurations for testing

The aim of the experiments presented in Section 7.3 is four-fold. First, examine the

effectiveness of augmenting clean training data with noisy data for testing in noisy

conditions. Second, compare classification accuracy when using training data aug-

mentation against the explicit denoising methods of the DAE and DNCNN. Third,

establish when using the DAE or DNCNN whether the classifier is best trained on

clean data, C(), or retrained on vestigial data, CDAE() or CDNCNN(). Finally, consider

how classification accuracy is affected when the noise condition in testing is unseen in

training and to investigate if denoising or augmentation can improve performance in

unseen conditions.

Within this section, Table 7.1 defines a set of system configurations for testing

the denoising-classification pipeline. Three grouped scenarios are considered during

evaluation, i) augmentation of the training data with new noise conditions with no

explicit denoising applied (top four lines of Table 7.1), ii) applying the DAE prior

to classification (middle four lines of Table 7.1), iii) applying the DNCNN prior to

classification (bottom four lines of Table 7.1).

For each method in Table 7.1, the columns show the denoising method (i.e. none,

DAE or DNCNN), the training data used for denoising (if applied) and the training

data used to train the CNN classifier. The final column shows the mean classification

accuracy, measured across all noise types and SNRs, and summarises the results in
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Configuration CLEAN MATCH GENERIC UNSEEN
Size of CNN
classifier training set 10,000 10,000 160,000 120,000

Table 7.2 Number of training data samples used to train the CNN classifier for each
method shown.

Section 7.3.

From Table 7.1, the first four configurations use no explicit denoising and instead

differ in how the classifier is trained with regard to the test condition. Method CLEAN

is the baseline classifier and trained on only clean training data. The classifiers used in

configuration MATCH are trained on data that matches the specific noise type and

SNR that is subsequently used in testing. This requires a set of 16 matched models

that are used individually in each specific noise condition. Augmented training is now

introduced for both GENERIC and UNSEEN methods. Augmented training expands

the original Stellwagen training data to include other noise types and SNRs. The CNN

classifier training set therefore becomes larger based on the number of noise types and

SNRs used. The GENERIC classifier is trained on data contaminated with all four

noises types at all four SNRs. This gives the most generic model for classification. For

this configuration the CNN classifier will use a training set 16 times larger than the

clean-trained CNN classifier. Table 7.2 shows the size of each training set. It should

be noted, all augmented data is a copy of the original Stellwagen corpus and therefore

no new audio segments are included. The UNSEEN classifier is similar to GENERIC,

however the specific noise type under test is excluded from the training data so that

the test noise condition is unseen during classifier training.

The next four methods in Table 7.1 all use the DAE for denoising prior to classifica-

tion. The naming convention for these methods follows the structure DAE-<denoising
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training data>-<classifier training data>. For example method DAE-MATCH-CLEAN

uses the DAE autoencoder that is trained on data matched to the specific noise test

condition, with the CNN classifier trained on clean data. The denoising in method

DAE-MATCH-VES is identical but the CNN classifier is now trained on the vestigial

data. Method DAE-GENERIC-VES uses a DAE trained across all four noise types and

four SNRs and uses a vestigial-trained CNN classifier. Finally, method DAE-UNSEEN-

VES is similar except the DAE is trained on all noise types with the exception of the

specific noise under test, i.e. on three noise types across all four SNRs.

The four final denoising methods in Table 7.1 use the DNCNN and have naming

conventions as DNCNN-<denoising training data>-<classifier training data>. These

four methods follow the same structure as those shown for the DAE.

7.3 Experimental evaluation in simulated noise con-

ditions

The aim of these experiments is to explore the effectiveness of the DAE and DNCNN

methods when denoising under different noise types and SNRs.

7.3.1 Augmented training performance

This first set of tests does not use any DAE denoising and instead examines the

accuracy of the CNN classifier first proposed in Chapter 3.3.4, using the first set of

system configurations from Table 7.1. The evaluation is performed across all four

noise types and SNRs with classification accuracies shown in Figure 7.2. Each noise

condition is evaluated using four different classification models - trained on clean data

(CLEAN), trained on data matched to the specific test condition (MATCH), trained
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Fig. 7.2 NARW classification accuracies of the four different noise types at SNRs
from -10dB to 5dB. The models are trained using different augmentation strategies
with no explicit denoising, with the exception of the LSA method.
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with data augmentation on all four noise types and SNRs (GENERIC) and trained

with data augmentation at all SNRs on three noise conditions excluding the noise type

under test (UNSEEN). To benchmark the effectiveness of these methods against an

existing method of noise reduction, the log spectral amplitude (LSA) estimator was also

evaluated, given its success in denoising audio signals [41]. Using the implementation

in [122], the noisy examples were denoised and the resulting time-domain samples then

input into the spectrogram extraction described in Chapter 3.3.4 and processed using

the same CNN classifier (Chapter 3.3.4) as all other tests in this section. Classification

accuracies are shown for LSA in Figure 7.2.

In noise-free test conditions the CLEAN system attains an accuracy of 94.1%

but falls as SNRs reduce and in general has lowest performance. Testing using the

matched model (MATCH) removes the mismatch between training and test condi-

tions and improves accuracy substantially. However, this does require the model

to be trained under the same noise conditions as seen in testing. Augmenting the

training data to contain all noise types and SNRs (GENERIC) gives accuracy close

to MATCH and occasionally attains higher performance which is attributed to the

broad coverage of the training data. UNSEEN tests that train the CNN classifier on

all but the noise type under test, reduce accuracy considerably and is comparable

to the CLEAN model. LSA denoising performance is similar to that obtained using

the CLEAN model, although in shot noise the performance is substantially worse.

Examining spectrograms of the LSA denoised signals shows the noise to have been

suppressed to a certain extent, but to now also contain short duration artefacts. These

potentially cause confusion with NARW vocalisations in the classifier, particularly

with upcalls, hence the inability of LSA to improve accuracy beyond the CLEAN model.
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7.3.2 Performance of the denoising techniques

The second set of experiments evaluates performance of the DAE and DNCNN in noisy

conditions. These tests use CLEAN and MATCH training data, and also examine how

best to train the CNN classifier, on either clean data or vestigial data. Classification

accuracy is measured across all four noise types and SNRs using the DAE and DNCNN

methods trained on data matched to the specific noise type and SNR under test.

Methods DAE-MATCH-CLEAN and DNCNN-MATCH-CLEAN output their denoised

spectrogram features into a CNN classifier trained on clean data, while methods DAE-

MATCH-VES and DNCNN-MATCH-VES output into a CNN classifier trained on

vestigial data. Table 7.1 shows specific configuration details on these systems. For

comparison, the performance of the clean trained CNN model (CLEAN) and matched

CNN models (MATCH) are included with classification accuracies shown in Figure 7.3.

Figure 7.3 shows that the two denoising methods using the vestigial trained classifier

(DAE-MATCH-VES and DNCNN-MATCH-VES) attain best performance and their

accuracy is almost equal in all noise conditions. When these two denoising approaches

are applied to the clean-trained classifier their performance reduces. This suggests

that the denoising methods are not able to remove the contaminating noise completely.

However, classifying the output spectrograms using a classifier trained on the vestigial

noise is able to recover performance. The results also suggest that the DAE is better

able to remove noise and minimise distortion as its mean performance using the clean-

trained classifier is higher than the DNCNN with the clean classifier as shown in Table

7.1. Methods performing better when evaluated against the clean-trained classifier

indicate that they match the original clean conditions more closely.
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Fig. 7.3 NARW detection accuracies when applying the denoising autoencoder (DAE)
and denoising CNN (DNCNN) to the four noise types at SNRs from -10dB to 5dB.
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Fig. 7.4 (a) shows spectrograms of a single NARW upcall (as displayed in Figure 7.1)
that has been contaminated with white, trawler, tanker and shot noises at an SNR of
-5dB. Row (b) and (c) show the corresponding denoised spectrograms as produced by
the DAE (b) and DNCNN (c) methods. The colourbar displays an amplitude range of 0
to 1 as these spectrograms are output from the denoising methods that are themselves
trained on spectrograms with normalised energies.
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To visually illustrate the denoising ability of the DAE and DNCNN, the top row of

Figure 7.4 shows a single upcall example that has been contaminated by each of the four

noise types at an SNR of -5dB. For comparison, the original noise-free upcall is shown

in Figure 7.1. The bottom two rows show spectrograms resulting from denoising with

the DAE and DNCNN, and all spectrograms are shown using the same amplitude scale.

Figure 7.4 shows that slightly more vestigial components remain after the DNCNN

has been applied which may explain its lower performance compared to the DAE in

Table 7.1.

As a final investigation, the confusions between the three classes {upcall(U), gun-

shot(G) and not-NARW(NW)} are examined across the four noise types. Tables 7.3

and 7.4 show confusion matrices for white noise and shot noise at an SNR of 0dB

with no denoising (i.e. CLEAN). Confusions in tanker and trawler noises were very

similar to those in white noise and so are not shown. In white noise, gunshots are

classified more accurately than upcalls, while in shot noise, upcalls are classified more

accurately. This is attributed to the shot noise having more similar characteristics to

gunshot vocalisations and so introducing more confusion. Tables 7.5 and 7.6 show con-

fusion matrices for the same two scenarios but now with the DAE applied (specifically

DAE-MATCH-CLEAN). The primary effect of denoising in white noise is to reduce the

percentage of not-NARW instances that are misclassified as either upcalls or gunshots,

which represents a reduction in false alarms. This also happens when denoising in shot

noise, but in addition, denoising also reduces the large number of gunshots that were

misclassified as upcalls and are now classified correctly.



7.3 Experimental evaluation in simulated noise conditions 168

Table 7.3 Confusion matrix for no de-
noising on white noise at 0dB SNR.

U G NW
U 76% 6% 18%
G 1% 89% 10%
NW 9% 9% 82%

Table 7.4 Confusion matrix for no de-
noising on shot noise at 0dB SNR.

U G NW
U 58% 3% 39%
G 33% 51% 16%
NW 37% 21% 52%

Table 7.5 Confusion matrix for DAE
on white noise at 0dB SNR.

U G NW
U 75% 2% 23%
G 0% 89% 11%
NW 4% 1% 95%

Table 7.6 Confusion matrix for DAE
on shot noise at 0dB SNR.

U G NW
U 84% 0% 16%
G 0% 81% 19%
NW 24% 1% 75%

7.3.3 Denoising with augmented training

In previous tests the denoising method was trained on the noise condition under test.

In this section, the denoising training is no longer matched to the noise condition under

test and instead is trained on different noise and SNR conditions. Specifically, two

scenarios are considered. First, where the denoiser is trained on all four noises and

four SNRs (DAE-GENERIC-VES and DNCNN-GENERIC-VES) and secondly where

training is on the three noise types that are not under test, which gives an unseen

test condition (DAE-UNSEEN-VES and DNCNN-UNSEEN-VES). Given its superior

performance in the previous section, all tests use the classifier trained on vestigial data

rather than the clean-trained model. For comparison, results with no denoising are

also shown and include the CLEAN model, GENERIC model and UNSEEN model, as

defined in Table 7.1, with results shown in Figure 7.5.

Methods that include training across all noise types and SNRs (GENERIC, DAE-

GENERIC-VES and DNCNN-GENERIC-VES) achieve highest accuracies across all

test conditions. This is attributed to the models having been trained on noise data that
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Fig. 7.5 NARW detection accuracies using denoising autoencoders and denoising
CNNs when testing the four noise types at SNRs from -10dB to 5dB. Results are shown
with the denoising methods trained generically on all noise types or on noises not used
in testing.
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has similar characteristics to the specific test condition, whether it be in the denoising

process (DAE-GENERIC-VES and DNCNN-GENERIC-VES) or during classification

(GENERIC). Moving to the unseen noise situations, where training does not include

examples of the specific noise type under test, this leads to a reduction in accuracy

for all systems (UNSEEN, DAE-UNSEEN-VES and DNCNN-UNSEEN-VES). Whilst

testing in white noise and shot noise, accuracy falls substantially below that of the

equivalent systems trained on all noise types (i.e. the GENERIC systems), while for

tanker and trawler noises the reduction in performance is much less. This is attributed

to the similarity between tanker and trawler noises which allows the methods to learn

at least some characteristics of the unseen noise and thereby perform better than the

clean-trained model. As the performance on tanker and trawler is largely maintained

on the UNSEEN conditions this indicates generic denoising models are effective against

similar noises.

7.4 Experimental evaluation in real noise conditions

The evaluation of the denoising methods in the previous sections used simulated noisy

conditions by mixing clean audio with different noise types at varying SNRs. This

approach is well suited for controlled evaluations of performance. An alternative

scenario is now considered where the performance of NARW detection on real noisy

data is investigated. For this evaluation, data is taken from the Cape Cod corpus

which was described in Chapter 2.6.3 and collected from a marine environment different

from the Stellwagen corpus. Tests now consider this as a detection problem as Cape

Cod only contains two classes and therefore a matched two class Stellwagen corpus is

used. Spectrogram analysis and listening to recordings has revealed them to contain

significant amounts of different noise types which therefore represent a genuine unseen

condition, not a simulated one. To illustrate the recordings from Cape Cod, Figure 7.6a
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shows ten example spectrograms of upcalls. They show that continuous broadband

noise is present in most recordings as well as shorter duration impulses and some tonal

noise, depending on the particular example.

(a) Cape Cod

(b) DAE-GENERIC-VES

(c) DNCNN-GENERIC-VES

Fig. 7.6 Ten example spectrograms taken from the Cape Cod test corpus are show
in row (a). Row (b) displays the same spectrograms after denoising using the DAE-
GENERIC-VES model. Row (c) displays the same spectrograms after denoising using
the DNCNN-GENERIC-VES model.

Based on the evaluation in Section 7.3.3 in the unseen noise condition, performance

of the Cape Cod data is now evaluated using the CLEAN, GENERIC, DAE-GENERIC-

VES and DNCNN-GENERIC-VES configurations. Instead of measuring classification
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Fig. 7.7 Precision-recall curves for the CLEAN, GENERIC, DAE-GENERIC-VES
and DNCNN-GENERIC-VES models that are trained on Stellwagen data and tested
on unseen recordings from Cape Cod.

accuracy, as has been done previously, these tests consider the task of NARW detection

(i.e. detecting whether a NARW is present or not in a recording). For a practical

NARW detection system, knowing the precision and recall performance can be more

useful than classification accuracy. Consequently, the system is evaluated using these

metrics with results shown for the four systems as precision-recall curves in Figure

7.7. As previous tests used the three class Stellwagen corpus, this test trains new

models using a two class Stellwagen corpus. This two class corpus is outlined in

Chapter 2.6.3. The DAE-GENERIC-VES, DNCNN-GENERIC-VES and GENERIC

systems have similar precision-recall profiles. All of the proposed systems outperform

the CLEAN system, particularly at higher levels of recall, where their precision is

substantially better. This is investigated further in Figure 7.6b & 7.6c which shows
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denoised spectrograms from DAE-GENERIC and DNCNN-GENERIC models. Both

denoising methods appear visually to be effective at removing much of the noise present

in the original spectrograms of Figure 7.6a however, both do leave some artefacts from

denoising. This reinforces the benefit of using a classifier trained on the vestigial signal

rather than on clean data. Overall the DAE-GENERIC-VES of Figure 7.6b appears to

be slightly cleaner than the DNCNN-GENERIC-VES of Figure 7.6c. NARW upcalls

do appear to be highlighted in both Figure 7.6b & 7.6c which could make this method

of denoising beneficial when humans are manually processing PAM recordings.

To compare with the previous tests in Section 7.3, the classification accuracy was also

measured for the four methods presented in Figure 7.7 and found that DAE-GENERIC-

VES achieved the highest accuracy of 84.3%, followed by DNCNN-GENERIC-VES

at 83.8%. The GENERIC system attained 81.7% and CLEAN 79.5%. From Table

7.1, the DAE-GENERIC-VES method also outperforms DNCNN-GENERIC-VES, and

both improve over the CLEAN model. These results show the potential performance

increase available when using the DAE to denoise spectrograms of NARW vocalisations.

Figure 7.7 also provides an indirect comparison to results published by Shiu et

al. [188] where they produced a similar precision-recall curve to compare classifiers from

the DCLDE 2013 conference challenge to their own implementation of a neural network

classifier. The results presented in this work are not directly comparable as they have

had noise artificially added and attempted denoising prior to augmented classification

however, they do provide an indication of performance for the same dataset. It should

be noted that the test data used in [188] is from the DCLDE challenge and was not

available outside of the conference period. The test data used for Figure 7.7 is part

of the Cape Cod dataset however comparison of precision-recall results still indicates



7.4 Experimental evaluation in real noise conditions 174

the overall performance of the classifier. Figure 7.7 shows the highest precision-recall

to be 0.90 precision and 0.84 recall. For [188] this is 0.80 precision and 0.89 recall.

Overall each threshold step of the precision-recall plot delivers a close but slightly

varied performance between this work and [188]. As Shiu et al. used non-corrupted

data to train the model and achieved similar or lower precision and recall values, in

comparison this work proves to be successful when dealing with noisy conditions.

7.4.1 Classification processing times

An important consideration when deploying a practical NARW detection system is

the processing time required to make a decision. This is examined by measuring

the time taken from receiving a two-second block of audio to making a classification

decision, which includes computing the spectrogram, denoising (where applied) and

classification. Times were computed by averaging timings for individual two-second

blocks across the entire test set of recordings. The tests were performed on an Intel

Quad Core i7 2.8GHz CPU which is a more realistic test than using a GPU, as was

used in training. Three systems were evaluated: CLEAN, DAE-GENERIC-VES and

DNCNN-GENERIC-VES, with the total time taken to process each two-second block

broken down into the spectrogram extraction, denoising and classification times and

shown in Table 7.7. This shows that all methods can process a two-second recording

well within real-time constraints.

The slowest method was the DNCNN-GENERIC-VES, where the majority of

processing is taken by the DNCNN although this is still capable of operating at 35-

times real-time. The DAE-GENERIC-VES method of denoising was substantially

faster, primarily due to the DAE denoising method operating eight times faster than

the DNCNN denoising, which is due to it having fewer layers. Spectrogram extraction
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Method Spectrogram Denoising Classification Total (ms)
CLEAN 0.72 - 2.63 3.35
DAE 0.72 6.40 2.63 9.75
DNCNN 0.72 53.02 2.63 56.37

Table 7.7 Mean processing times (in ms) for the spectrogram extraction, denoising
and classification operations for the CLEAN, DAE and DNCNN methods when applied
to a two-second audio recording.

is the fastest of all stages, requiring just 0.72ms. In a practical deployment, these

very fast classification times would allow a single CPU to process multiple channels of

hydrophone array data simultaneously in real-time, 205 channels for the DAE and 35

channels for the DNCNN, ignoring multiplexing overheads.

7.5 Summary & discussion

This chapter explored the suitability of the DAE and DNCNN methods of denoising in

a range of noise conditions to consider more closely potential ocean noise environments.

Tanker, trawler, shot, and white noise were used to evaluate the DAE and DNCNN in

a series of more in-depth tests. Tests also considered the problem as a classification

task with three classes, compared to a detection task as seen previously. The DAE

and DNCNN were tested with a range of system configurations, detailed in Table 7.1,

where augmented training, denoising and blind testing were all evaluated.

Tests found methods using augmentation outperformed those not augmenting train-

ing data. Similarly, testing using the DAE for pre-processing spectrogram images saw

an increase in detection accuracy in all noise conditions and across all SNRs tested.

Additional tests explored the effect of retraining the CNN classifier with vestigial data,

compared to the use of a clean-trained CNN classifier. Results showed that retraining

on the vestigial signal and using the DAE, provided the highest detection accuracy.
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Overall the system configuration DAE-GENERIC-VES, which used augmented training

for both the DAE and CNN classifier, and used the DAE to pre-process all of the

spectrograms before retraining the CNN classifier on the vestigial signal, gave the

highest accuracy across the largest range of simulated noise conditions and SNRs.

Finally, DAE-GENERIC-VES and DNCNN-GENERIC-VES configurations were

both evaluated in a condition of natural noise using the Cape Cod corpus for testing

and the Stellwagen corpus to train the denoising method and classifier. Denoising using

a real-world unseen condition represents the closest experimental setup possible for

mimicking a real-world scenario. When Cape Cod was used to test the clean Stellwagen

model, a detection accuracy of 79.5% is attained. Using the DAE-GENERIC-VES

configuration, detection accuracy improved to 84.3%, showing the real-world benefit of

using the proposed configuration.

The results presented show the potential effectiveness of using the denoising au-

toencoder and advantage of using augmented data when training. Throughout testing,

augmentation consistently provided an increase in accuracy over methods not using

denoising or augmentation. It was also discovered that classification accuracy increased

with a more varied set of augmented data. For example, using all noise types at all

SNRs did not decrease accuracy and helped to improved performance in many noise

conditions. It is suggested that the collection of a large array of ocean sounds could

allow a completely generic DAE to be trained, where new noises could be successfully

denoised without dedicated retraining on each new sound.

Measurement of processing times revealed the DAE to operate at 205 times real-

time compared to 35 times real-time for the DNCNN. The faster operation and higher
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classification accuracy achieved by the DAE suggest this is a better choice for denoising

within the domain of robust detection of NARWs.



Chapter 8

Unsupervised adaptation of

classification models for new

conditions

8.1 Introduction

This chapter uses unsupervised adaptation on current classification models with the

aim of increasing accuracy when classifying NARW vocalisations in new noise and

environmental conditions, originally unseen. Previous work in this thesis has focused

on developing methods for enhancing, denoising, or augmenting current datasets for

new unseen conditions and retraining the original model to improve accuracy. In

contrast, this chapter uses adversarial discriminative domain adaptation (ADDA) [204]

to update a current model to make it more suitable in new conditions or domains. As

previously seen in Chapter 7, when a classifier processes PAM recordings from a new

condition (normally a change in noise or environment), reported accuracy drops. For

example in Chapter 7.4, performance from the proposed CNN system when trained and

tested with the Stellwagen corpus was 97.91%. Using the same model, this dropped
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significantly to 79.5% when tested with the Cape Cod corpus. In ideal conditions, a

new model matching the new domain could be trained and performance maximised. In

real-world use, generating new models, and collecting and labelling data take time and

resources that are not always available. For example, surveying a new area of ocean

with different environment characteristics could cause a model trained on a previous

domain to perform poorly and miss NARW vocalisations. Domain adaptation aims

to adapt a current model to bridge the gap between a matched condition (where the

model and test data are from the same domain) where accuracy is maximised and a

mismatched condition (where the model and test data are not from the same domain)

where accuracy has dropped.

The aim of this work is to consider scenarios where deployment conditions for

NARW detection are changing and not necessarily matched to the source data used to

train the underlying model [215]. A single adapted model, that can operate effectively

under different operating conditions is proposed. In order to assess the baseline perfor-

mance in both matched and unmatched conditions, a single environment and noise

condition are used with the proposed CNN classifier developed in Chapter 3.3.4. Do-

main adaptation can then be explored to create a new model to restore performance in

mismatched conditions, whilst still retaining equal performance in the original condition.

The remainder of the chapter is organised as follows. Section 8.2 provides a back-

ground on domain adaptation and areas where it has been previously used successfully.

The application of ADDA is introduced in Section 8.3 with Section 8.3.1 exploring the

process of adapting a model from one domain to another. Section 8.3.2 then details

the evaluation carried out in Section 8.3.3 where results are presented in terms of a

change in noise conditions and environmental conditions.
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8.2 Background

Domain adaptation is an active area of research within deep learning [44] with many

applications aiming to transfer knowledge from an existing labeled domain to a new

domain without retraining [242]. A limitation of current deep learning approaches is

that they normally require thousands of labelled examples to train a model accurately.

However, models do not generalise well to new target domains, where input data is

substantially different from the original source domain. Training a new model with

data from a new domain or using augmentation and retraining, as shown in Chapter

7.3.1, is often the only solution to achieve similar performance. In many situations,

when met with a new domain these approaches are not possible, normally due to a lack

of time, resources, or labelled data. For example for when surveying for NARWs in a

new location or with new noise corruptions present, the current model might perform

poorly and miss crucial detections. Domain adaptation works to improve detection

accuracy in new conditions without labelled data, using an unsupervised approach. In

practice using domain adaptation could be crucial in situations where labelled data, or

resources to retrain a model are not available. Once these resources become available

and labels are produced, models can be retrained but domain adaptation could yield

an increase in accuracy before this is possible. Figure 8.1 visually shows the benefit of

using domain adaptation.

Since the early 2010s, the popularity of domain adaptation methods has risen

significantly [242]. Multiple domain adaptation techniques currently exist [222] with

variations in the methodologies used to adapt domains. This chapter focuses on

adversarial discriminative domain adaptation (ADDA) which encourages domain con-

fusion within the model to allow target data to be classified more accurately [222].
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(a) Source classification

ClassifierSource

(b) Target classification without domain adaptation

Target

Source Classifier

(c) Target classification with domain adaptation

Target

Source

Classifier

Fig. 8.1 A visual representation of why classification using domain adaptation can be
beneficial. a) shows the original classification system. b) classification using the original
system now with a new target domain, causing confused in target predictions. c) shows
classification after the classifier has be domain adapted with better performance for
the target domain.

ADDA has worked effectively in a range of image classification tasks, such as increas-

ing accuracy of facial recognition when new images are presented from a different
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domain [132]. Gabriela Csurka also investigated ADDA, surveying a range domain

adaptations problems and found successful domain adaptation solutions present in a

variety of applications such as object detection, object recognition, speech recognition

and sentiment analysis [44]. ADDA is now presented for the task of adapting domains

when detecting NARWs.

When using a model previously trained on a source domain, MS, to predict samples

from a target domain, model performance generally degrades due to domain shift or

dataset bias [242]. Domain shift is a change in the distribution of the model when

compared to the distribution of the test scenario [196]. This occurs when related data

is tested on a high performing model from an alternate domain. In the problem of

NARW detection, two domain shift scenarios are considered, i) noise, ii) environment.

A change in noise could occur due to the current noise level increasing or decreasing

or when a new noise source is present. A change in environment could occur when

surveying in a new location where ambient conditions are different from the source

location. Dataset bias also can lead to in a drop in accuracy when a new domain is

met. Bias within a dataset occurs when the dataset variance is low and generalisation

between the samples is minimal. In a laboratory environment this could have a large

effect when data collection is controlled and recorded samples are extremely similar.

For NARW detection this is less likely, as ocean conditions and NARW vocalisations

are rarely identical.
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8.3 Application of domain adaptation for detection

in changing conditions

This section now investigates the use of domain adaptation for improving detection

accuracy of NARW vocalisations in changing conditions. First, Section 8.3.1 describes

the process of ADDA and how it aims to combine multiple domain distributions. Second,

Section 8.3.2 outlines the experimental approach and setup. Finally, an evaluation of

results in multiple domains is provided in Section 8.3.3. Tests evaluate a change in

conditions for noise level, environment, and both noise level and environment.

8.3.1 Implementation of adversarial discriminative domain

adaptation

For implementation of ADDA it is assumed that target training data is available but

without any labels which makes this method well suited to a new, unknown operating

condition. Implementation of ADDA is a three-stage procedure which is shown in

Figure 8.2. The first stage uses only the source data and associated class labels to

train a CNN encoder, MS, and classifier, C. This is the same procedure used to create

the proposed CNN from Chapter 3.3.4 and is shown in Figure 8.2a. Figure 8.2a simply

represents a separation of the CNN encoder from the classifier.

The second stage creates a target encoder, MT , that aims to transform the target

data into the same feature space as the source data and is illustrated in Figure 8.2b.

This approach enables the same classifier, C, to be used for NARW detection for both

the source and target data. The target encoder, MT , is initialised using the weights

from the source encoder, MS.
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Fig. 8.2 Method of adversarial discriminative domain adaptation (ADDA) applied
to spectrogram-based NARW detection. Gray boxes indicate a network that is fixed
during training.

ADDA uses an adversarial loss to encourage the target encoder distribution to

match the source encoder distribution. This is achieved by using a discriminator

network to separate the domains. The discriminator, D, as shown in Figure 8.2b, is

trained to differentiate the source domain and the target domain. The discriminator

takes in encoded spectrogram features as input (from both MS and MT ) and predicts

the domain that each feature originally belonged too.

The discriminator then uses a loss to provide feedback to the layer weights during

training to learn the differences between source and target domains. Similarly to the
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proposed CNN presented in Chapter 3.3.4, a loss is created to also train the target

encoder, MT , at the same time. However, unlike previous approaches, the loss to

update MT weights is calculated using the predictions from D for the target data, and

an inverse of the target labels passed to D. Providing the inverse of the original target

labels to the loss function will produce a loss between the source domain labels and

the prediction from D of the target data. Theoretically, this loss should get larger

as D gets better at separating the domains. Consequently, as training continues and

optimisation of MT updates weights based on a large loss value, the distribution of MT

will shift closer to that of the source domain. Eventually, predictions from D should

tend to the source domain as both encoder distributions become similar. Subsequently,

the loss for MT will also be minimised and training can finish.

The third stage is shown in Figure 8.2c where testing of the target samples is carried

out. Spectrograms from the target domain are transformed by the target encoder, MT ,

into the source domain space. The classifier, C, then determines whether or not a

NARW vocalisation is present. C is consistent for both the source and target domains,

as adversarial training aims to shift the target domain into the same space as the

source domain. ADDA is crucially an unsupervised method of adaptation and does

not require a labelled target domain. This makes it suitable for use in new conditions

where labels are not available.

For the evaluation of ADDA in Section 8.3.3 the neural network architectures for,

MS, MT and C are consistent with those developed in Chapter 3.3.4 as they achieved

the highest detection accuracy in tests. The discriminator, D uses a 3 layer fully

connected network with 200, 100 & 1 node respectively, with the final layer used for

generating predictions employing a sigmoid function for activation. All models used
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the Adam optimiser and trained for 200 epochs to ensure sufficient time for domain

shift to occur.

8.3.2 Experimental setup

Experiments presented in Section 8.3.3 first examine how effective domain adaptation

is at improving NARW detection in new operating environments. Second, their effect in

new noise conditions is examined. Third, the effect of changing both the environment

and noise is examined. The Cornell corpus, as described in Chapter 2.6.3, is used

as the source dataset throughout testing, unless specifically signified. All tests that

evaluate domain adaptation in Section 8.3.3 use a range of adaptation samples to

assess performance in different situations. This directly relates to real-world use, where

potentially there are only a limited number of a new domain samples available for

adaptation. Tests use 10, 100, 1,000, & 10,000 adaptation samples to analyse the most

suitable amount of adaptation data.

Environment

To examine the effect of changing environment, the Cape Cod corpus is used as a

target environment. The Cape Cod corpus, detailed in Chapter 2.6.3, represents a

different location to that of the Cornell corpus and therefore domain adaptation is

used to maximise performance when only a Cornell-trained model is available for

detection. In Section 8.3.3, multiple baseline accuracies are first recorded prior to

domain adaptation. Firstly, the Cornell test data is evaluated against the Cornell

model to provide detection accuracy in ideal conditions. Next, the same test is carried

out for Cape Cod, with test and training data matched to the Cape Cod corpus. This
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provides the maximum performance for the Cape Cod environment. A mismatched

condition is evaluated next with the Cape Cod test set used to evaluate performance of

the Cornell model in conditions where the environment is not matched. Finally, domain

adaptation is tested with a range of adaptation samples. The adaptation test uses the

Cornell-trained model as the source domain and Cape Cod as the target domain.

Noise

The robustness of the proposed CNN detection system to changing noise conditions is

now examined. As previously discussed, many sources contribute to sub-sea noise and

thereby reduce the received signal-to-noise ratio of NARW vocalisations. Furthermore,

sounds recorded from more distant NARWs will also be received with lower SNRs. To

simulate noisy conditions white noise is used to corrupt the original audio. Specifically,

white noise at an SNR of 0dB is added to the test samples of the Cornell corpus as

this was previously found to have a significant impact on accuracy, and produce an

alternate domain. Section 8.3.3 considers a range of scenarios to assess performance

of the domain adaptation method. Firstly, the clean Cornell test data is evaluated

against the clean Cornell model to provide detection accuracy in ideal clean conditions.

Next, matched conditions are again evaluated but instead with noisy Cornell test data,

against a noisy Cornell model. This provides the maximum performance in noisy

conditions for the Cornell dataset. Detection accuracy in mismatched conditions is

evaluated next with the noisy Cornell test set evaluated against the clean Cornell model.

Finally, domain adaptation is tested with a range of samples available during training.

The adaptation test uses the clean-trained Cornell model as the source domain and

noisy Cornell as the target domain.
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The third test condition that aims to represent both a change in the noise domain

and environment domain, follows the same evaluation structure as described above

and is presented last in Section 8.3.3.

8.3.3 Experimental results

An evaluation of tests described in Section 8.3.2 is now presented. Domain adaptation

for improving the robustness of NARW detection is evaluated for three real-world

scenarios, i) a change in environment, ii) a change in noise level, iii) a change in both

environment and noise level. Domain adaptation tests are performed using 10, 100,

1,000 & 10,000 adaptation samples.
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Fig. 8.3 Detection accuracy of the unsupervised adapted model as the number of
Cape Cod samples is increased. All models start with a baseline of 10,000 samples
from the Cornell set.

Tests in Figure 8.3 consider the use of domain adaptation when the current en-

vironment is different from the environment that was used to originally train the
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classification model. In this scenario the Cornell-trained model forms the source do-

main and increasing amounts of Cape Cod training data are used to create a new

target domain that is tested on the Cornell model. Initially three baselines detection

accuracies are recorded. When tested with Cornell data in ideal matched conditions the

Cornell model achieves a detection accuracy of 91.7%. This drops to 89.23% when the

target domain is tested against the same Cornell model. When using ADDA, as shown

in Figure 8.3 performs improves over the mismatched condition when adaptation is

carried out with as little as 10 samples from the target domain. A further improvement

in accuracy can be found when using the maximum 10,000 samples during adaptation

training, with accuracy increasing to 93.21%, a 4% improvement over the mismatched

condition.
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Fig. 8.4 Detection accuracy of the unsupervised adapted model as the number of
noisy samples is increased. These test use a baseline Cornell model trained on 10,000
samples, before adaptation is applied.
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Tests now consider unsupervised domain adaptation when the noise level has

changed. White noise was added to the Cornell corpus at an SNR of 0dB to simulate

this. As previous tests established, testing with a matched clean Cornell model

achieves a detection accuracy of 91.7%, which decreases to 71.81% when tested in noisy

conditions on the same clean-trained Cornell model. Figure 8.4 shows, in matched noisy

conditions the detection accuracy sits roughly, equal distance between the mismatch

and clean matched performance.

Varying amounts of the noisy Cornell training data are used to adapt the clean-

trained Cornell source model. Figure 8.4 shows detection accuracy as the number of

target samples is increased from 10 to 10,000. With a relatively small number of target

samples, accuracy is increased from 71.81% with no adaptation to 77.13%. Using

the maximum number of 10,000 target samples, accuracy increases to 80.9%, which

provides a 9% increase in detection accuracy when the model is adapted.
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Fig. 8.5 Detection accuracy of the unsupervised adapted model as the number of
noisy Cape Cod samples is increased.
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As a final test, changes to both the environment and noise conditions are considered

together. Target data is created by combining white noise at 0dB with the Cape Cod

data. Figure 8.5 shows the detection accuracy of noisy Cape Cod data when tested

against the adapted clean-trained Cornell model. In either matched clean conditions

for Cornell, or matched noisy conditions for Cape Cod, performance is relatively

strong, achieving 91.7% or 88.52% respectively. When a mismatch occurs, detection

accuracy falls to 73.60%, indicating a large shift in domain between the test set and

the underlying model. As Figure 8.5 shows, when using ADDA to adapt the source

model to the target domain, an initial increase to 80.21% with as little as 10 target

samples is seen. However, further increases in adaptation data give no increase in

accuracy. This is attributed to difficulties in creating suitably stable models.

8.4 Summary & discussion

This chapter has investigated the use of domain adaptation for adapting a series of new

target conditions to an original source condition to create a robust NARW detection

system. The Cornell corpus has been used to represent an original location and fixed

noise profile for which a corrupted noisy version and secondary corpus, have been used

to test performance in changing conditions. When detecting NARWs a range of domain

environments may be met that have not been previously included in classification

models. In scenarios such as this, model adaptation may provide the highest increase

in performance and enable the detection of NARWs that could be otherwise missed.

This investigation has shown that unsupervised adaptation using adversarial dis-

criminative domain adaptation, is able to improve mismatched detection accuracy

when the operating conditions change. Accuracy was increased in all conditions from

the mismatched performance, with a maximum increase of 9% seen when a noisy target
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domain was evaluated. As this method of domain adaptation is unsupervised it does

not require labelled target samples and therefore provides a realistic solution to domain

shift and dataset bias in real-world conditions.

This chapter has considered one of the many domain adaptation methods [222],

however further work in this area could evaluate alternative methods against ADDA

to ensure the most suitable adaptation method for NARW detection is used. Although

higher detection accuracies can be achieved when augmenting or training a new model

for detection. ADDA provides a solution when alternative methods are not appropriate.

Test results have shown domain adaptation to be a valuable addition to the proposed

NARW detection system and the increase in detection accuracies indicate the value

that it can add.



Chapter 9

Conclusion and Future Work

9.1 Overview

This thesis has presented methods to automatically detect the presence of NARW in

a range of ocean conditions. A variety of machine learning methods are presented in

Chapter 3 with the aim of producing a system capable of achieving high detection accu-

racies for use in real-world conditions. Chapter 3 also develops a range of deep learning

algorithms with optimised performance for NARW detection and are subsequently

benchmarked against other industry-standard machine learning techniques to indicate

which methods are best for NARW detection. Chapter 4 introduces the problem of

noise, providing a comparison of classical noise reduction techniques, both audio and

image based, applied to noisy ocean recordings. Chapters 5 & 6 then build upon

Chapter 4 but instead develop two differing deep learning methods of noise reduction

aimed at producing a multi-noise robust NARW detector. A range of simulated noise

conditions are presented in Chapter 7 with both the DAE and DNCNN processing

pipelines further developed, to provide a robust NARW classification solution in all

noise conditions. Further work in Chapter 8 explored unsupervised domain adaptation

with the aim of making deep learning models more robust when augmentation or
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retraining were unsuitable.

9.2 Thesis conclusion

This thesis has been predominantly concerned with improving the automated detection

of North Atlantic right whales from an acoustic source. Research in this area has been

continuously gaining momentum, with the rise of recent NARW deaths [62] and the

growing threat of extinction. Current methods of detection can be slow, manual, time

consuming and require specific expertise. The development of an automated process

aims to give experts more time for less tedious tasks whilst providing a potentially

more accurate, real-time detector that can operate continuously. This thesis also

aims to provide evidence for the suitability of using the developed detection system

with low-powered, low-cost hardware that can run on-board small ocean-deployed

platforms such as buoys or autonomous surface vehicles. Although in its infancy, the

proposition of utilising ASVs to monitor the ocean for NARWs could provide further

insights into their location and movement patterns and could mitigate potential threats.

Theoretically, these factors should directly correlate to reducing NARW deaths and

enable a sustainable increase in population.

The development of new deep learning architectures along with a comparison

against traditional algorithms has shown CNNs to provide the best detection accuracy

when processing ocean recordings containing NARW vocalisations. Analysis has shown

that spectrogram features, presented as images to the CNN, produce the highest

number of correctly detected upcall segments (92.62%). In comparison, detection

accuracy from the time domain signal was substantially lower (70.85%). It is therefore

recommended that detection uses spectrogram features of acoustic recordings when
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monitoring. Although this work found CNNs to perform best, alternative classifiers

such as transformers, or time domain deep learning classifiers such as inception time,

were not evaluated and have the potential to provide high accuracies. Further work

could review additional classification methods for this application.

Investigations exploring noise within marine environments are largely concerned

with the affect that anthropogenic sounds have on marine wildlife [42]. Little research

has been carried out in regards to the best way of dealing with noise when passive

acoustically monitoring. Chapter 4 provides development of noise reduction processing

for NARW detection. Tests found that log features produce the highest accuracy in non-

noisy conditions, with log histogram equalisation performing best in noisy conditions.

Denoising deep learning models are developed in Chapters 5 & 6 to further analyse

noise reduction, with tests evaluating a wider range of noise corruptions in Chapter 7.

Real-world noises were synthetically added to the original dataset to provide a range of

real life use cases. Denoising using the DAE or DNCNN outperformed the traditional

methods investigated, with results demonstrating that the deep learning models provide

the largest increase in detection accuracy, with accuracies after denoising approaching

those observed in clean, non-noisy, conditions.

Finally, naturally noisy test data was evaluated to assess performance against

non-synthetically altered recordings. The DAE and DNCNN were trained on noises

not present within the naturally noisy test set. Both denoising methods were successful

with detection accuracy improving in all cases. The DAE provided the largest improve-

ment with accuracy increasing from 79.5% to 84.3%. These tests indicate that if a

large, diverse collection of representative noises were used to train the denoiser, then

denoising in all conditions could improved accuracy. Processing requirement analysis
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was also carried out and found the DAE to be more efficient than the DNCNN, however

both methods leave sufficient overhead to process in real-time using low-powered and

low-cost hardware. It is therefore expected that the proposed detection system would

meet requirements for embedding on-board an ASV or static buoy.

In Chapter 8, an unsupervised method of adapting underlying CNN models was

investigated. In contrast to other techniques explored within this work, Chapter 8

explores domain adaptation which aims to shift encoder distributions of new envi-

ronments or domains, to match that of a current distribution and therefore improve

accuracy. The evaluation discovered domain adaptation to be successful in a range of

conditions and a valuable addition to a NARW detection system for scenarios where

current and new conditions are significantly varied.

In summary, it is recommended that the developed CNN architecture be used for

detection of NARW vocalisations with a pre-processing DAE layer to reduce noise

within recordings. The DAE should be trained on a large mixed corpus of representative

ocean sounds, as testing has shown that generic models work as well as noise specific

models. Finally, training the CNN with denoised vestigial segments is recommended

as it has proven to provide the highest detection accuracy. The addition of domain

adaptation would further improve performance when accuracy drops due to a mismatch

in PAM conditions.

9.3 Future work

Some of the possible avenues for future work that would compliment this thesis are

now discussed.
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9.3.1 Real-world usage

Whilst consider future avenues for experimentation is also important to consider how

this work can be applied to real-world situations. Much of the current experimentation

does not focus on a real-world situation nor discusses the practise of detecting NARWs

in the field. As stated in Chapter 2.6.1, NARWs are known to infrequently produce

upcalls and therefore consideration of the weighting of classes within this classification

problem should be assessed further. In the tests presented, classes were equally divided

however previous research [133] shows that this is unlikely to occur and weighting

towards “not-NARW” should be addressed as to not receive an overwhelming number

of false alarms. When using a more natural weighting of classes, the results could

be evaluated in regards to a real-world use case, for example using a more useful

metric such as an analyst reviewing detection events per hour [188]. If a classification

system can report less false alarms than a human operator can manage per hour, then

confidence that the system can be used in a laboratory setting can be established.

9.3.2 Generic cetacean classification

Whilst researching cetaceans it has become increasingly clear that availability to access

high quality datasets is incredibly low. High quality in this instance describes accurately

labelled, consistently organised and well documented recordings of cetaceans with as

many repetitive detected vocalisations as possible. Within other fields, datasets are

more widely available either through community distribution [9] or by manual data

collection. Since the latter can be difficult, expensive and provides potential disruption

to cetaceans, it is more important than ever to implement channels capable of sharing

data across all researchers. Overall, the implementation of static buoys and autonomous
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surface vehicles to carry out passive acoustic monitoring provides the best platform for

NARW detection as interference with NARWs is minimal whilst enabling continuous

monitoring. Since reliance on these platforms is growing, the methods to accurately

automate detection (such as the NARW detection system proposed in Chapter 3.3.4)

are becoming fundamental to the success of mitigation projects such as the NOAAs

NARW recovery plan [62].

A large challenge when developing machine learning models is obtaining access

to suitable datasets. Without suitable datasets that provide accurate ground truths

further experiments can be unstable or produce less than satisfactory results. Many

algorithms, such as those used for deep learning, produce better detection accuracies

with larger amounts of training data. The problem of cetacean detection is not only

relevant to NARWs and therefore producing similar systems for the detection of other

species would enable mitigation and research in the same way that it has for NARWs.

In an ideal scenario a single system would be capable of producing multi-species

classifications. Using a single classifier to detect more than one marine mammal would

be a significant step in this direction. As previously discussed in Chapter 2.2 many

baleen whales produce similar frequency vocalisations and therefore could be suitable

candidates for expansion of this proposed NARW detection system. Producing a

multi-species classification system would enable multiple species to be monitored using

one stream of acoustic data and one processing pipeline, in contrast to n number of

systems running over the same data for each species of interest. This would present as

a potentially dramatic reduction in processing costs and detection hardware.
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9.3.3 Noise collection

In Chapters 4, 5, 6 & 7 background noise has been used to simulate a noisy ocean

environment with the aim of creating a more robust detector than one trained in only

clean conditions. Chapter 4 first introduces a single white noise type that was intended

to represent a range of noise corruptions across the frequency spectrum. Further noises

introduced in Chapter 7 were taken from ocean recordings of shipping vessels, fishing

trawlers and a shot noise database. Tests in Chapter 7 discovered that generic noisy

datasets were able to perform better across all noise types when training data was origi-

nally augmented with instances of those sounds. In order to produce a model robust to

a wider range of noise corruptions it is concluded that gathering more ocean representa-

tive sounds and augmenting training data would provide the best approach, potentially

capable of accurately detecting NARWs in a range of noise environments. Furthermore,

tests in Chapter 7 also saw that similar noise corruption can bolster performance when

a similar, but not identical noise is under test in a new environment. Tests to determine

the extent of this finding would be informative, as a generic model may be attainable

once enough noise examples were augmenting the training data. Noise recordings, made

independently of cetacean detections are also of great importance when building a ro-

bust NARW detection system. As well as creating a space for sharing labelled cetacean

recordings, emphasis should also be applied to a wide range of ocean sounds that can

corrupt the clarity of cetacean vocalisations. Building a larger catalogue of ocean

sounds could provide the ability to generate the highest performing noise-robust models.
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9.3.4 Autonomous vehicle trials

The use of autonomous surface vehicles has been discussed in Chapter 2.4.2 where, after

analysis of various data collection platforms, ASVs were found to provide a balance

between cost and the ability to continuously survey regions of ocean without being a

potential hazard to marine wildlife. The use of ASVs in real-world tests is reasonably

limited as minor hardware issues plague widespread use [16]. Future work would benefit

from deploying hardware payloads into the hulls of ASVs and monitoring performance

from the on-board communication and detection systems. Time-to-notify, the time

taken to detect a NARW and receive a notification of detection could be observed

during testing using local and remote timestamps. Although final tests in Chapter 7.4.1

have shown the operation of the detection system to run in real-time with overhead for

concurrent operations, performance in the real-world scenario has not been assessed.

Running tests using accurate hardware and in situ conditions should provide reliable

metrics as to the real-world suitability of the full detection system.
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Appendix A

A.1

SNR (dB)
5 0 -5 -10

Encoder
depth
(layers)

1 89.74% 82.14% 68.86% 57.19%
2 90.35% 84.04% 75.26% 61.14%
3 89.37% 85.07% 75.39% 62.56%
4 89.41% 84.05% 75.05% 64.15%
5 87.49% 82.57% 71.88% 61.89%
6 87.08% 81.36% 72.42% 62.36%

Table A.1 An extended table of all DAE test results. All tests were run with the
addition of white noise at displayed SNRs levels. All DAE architectures were fixed
other than the encoder (and subsequently, decoder) depths, which are shown.
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A.2

(a) Original vocalisations from Stellwagen corpus
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(b) Matched vocalisations to (a), corrupted with white noise at -5dB.
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(c) Spectrograms from (b) denoised via the DAE.

Fig. A.1 50 spectrograms from the test set of Stellwagen. Figure (a) shows the original
spectrograms. Figure (b) shows the same spectrograms with the addition of white
noise at -5dB. Figure (c) shows the denoising spectrograms after processing via the
DAE detailed in Chapter 5.3.2.
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