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Abstract

This thesis combines biological experiments, computational analyses and software

development in order to gain new knowledge of microorganisms that could be of

benefit to industrial biotechnology processes. It has three linked components.

The main part involves the identification of genomic locations in a dataset of

Whole Genome Sequenced (WGS) Saccharomyces cerevisae strains that correlate with

furfural resistance, a chemical common in treated lignocellulosic waste biomass.

The project comprises both experimental data gathering and computational analysis

of the resulting datasets. Following an association analysis of the strains’

phenotypes and genome-wide genotypes, directed evolution (DE) experiments are

carried out to assess the impact on the strains’ genomes. The sequence composition

of the resulting strains is then compared to their states prior to the DE experiments

in order to assess potential evolutionary paths, and to discover whether multi-strain

resistance analysis is comparable to the directed evolution of select strains.

In the second part, diverse yeast strains are grown in YNB media, with

subsequently obtained Nuclear Magnetic Resonance (NMR) spectra analysed

computationally to quantitatively assess metabolite concentrations. Various

Saccharomyces cerevisiae strains are also grown in malt extract media. The results

of both analyses are examined and, where possible, compared in order to assess the

relative potential of the strains in various industrial brewing processes. A Genome

Wide Association Study on the malt datasets indicates genes potentially involved in

metabolite quantity, that may taken forward in future research activities.

The final part of this thesis considers the computational prediction of specific

cytochrome operons in all bacterial CDS genomes in the RefSeq database (2020).

A new software program, ETMiner, is introduced and illustrated through its

application to datasets with potentially interesting industrial profiles.

Github link for additional resources: https://github.com/Joenetics/PhD_Thesis.git
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5.4.1 Creation of DB for ETMiner app

The RefSeq CDS genomes were downloaded and placed into a single

file (RefSeq CDS DB). The data was too large to host on the server,

so it was reduced (700+Gb to 300Gb) by concatonating headers

(Concatenated Headers) in Step 1. In Step 2, this was fractured

into multiple smaller databases to be small enough to BLAST on

available HPC cores. In Step 3, BLASTn was used for queries against

the fractured databases, and hits stored. In Step 4, the hits were

reinserted into their putative genomic operons, converted to protein

sequences and then joined together into a single database (Database

RefSeq). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7.1 Basic data workflow of ETMiner app.

ETMiner requires Haem and TM strand datafiles to predict

transmembrane porin cytochrome complexes in bacterial operons

(here RefSeq DB from figure 5.4.1). ETMiner uses the following

Python Packages: Bio, reportlab, guizero, EasyTKinter, datetime,

numpy, math, pandas, glob2, pillow, openpyxl, matplotlibmath . . . . 142

5.7.2 Operon figures classified according to the ETMiner rules

The figures illustrate circularised operons (NOT PLASMIDS) crafted

from RefSeq protein CDS location information.Blue represents

TM-containing proteins, red is haem=containing proteins while

purple sections are proteins with fusions of the two. Grey sections are

intergenic regions or proteins without either TM strands or haems.

The raw file is an SVG and nearly infinitely scalable for HQ images. . 144

5.7.3 Scatterplot with weight per haem (log10 (kDa/haem)) plotted

against total haems in protein.

X-axis ticks automatically selected to be a broad spread to reduce

cluttering. All proteins have 12 or more TM strands. Actual

organisms (each dot) can be pulled from a related XLSX file sat beside

the output plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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5.7.4 Heatmap of TM strands in an operon’s putative porin vs number of

hemes predicted from a cytochrome sequence

Using this heatmap, it is possible to see what TM & haem numbers

are most common in bacteria. The clusters might indicate something

fundamental about structure and function. Dark blue square

indicates a high number of bacterial cytochrome operons in our

analysis have that specific TM-Haem count. The specified bacterial

operons, and host species, can be found in an accompanying XLSX. . . 147

5.7.5 Histogram showing occurrence of Haem numbers in operons with

18 TM strands

Automatically generated by ETMiner, the figure’s graphics are not

optimal and simply act as a quick at-a-glance guide of the raw data

which is also available in a CSV. . . . . . . . . . . . . . . . . . . . . . . 148

5.7.6 Interactive Tree of Life of all cytochrome operon types across the

entire bacterial kingdom

Not all bacterial species are included; only those we have identified

(through Taxon ID) as possessing at least one cytochrome operon

were included- with more cytochromes indicated by a longer

radiating bar (indicating a higher operon count). Type of operon

identified is illustrated by colour (see legend).

Blow-up shows a list of species from the Alphaproteobacterial class

(red).

Species lineage is denoted by bacterial class and were split

into separate colours; green for Gammaproteobacteria, red for

Alphaproteobacterial, blue for Betaproteobacteria, purple for

Epsilonproteobacteria, orange for Deltaproteobacteria, pink for

Bacteroides and black for everything else. . . . . . . . . . . . . . . . . 150

5.8.1 Main ETMiner GUI

The main window as seen when ETMiner is opened. It holds options

such as range of TM/Haems to count in the analysis, weight ratio per

haem, colour of resultant heatmaps and more.

The File menu allows selection of the Haem/TM count files, as well

as the sequence/operon file. . . . . . . . . . . . . . . . . . . . . . . . . 151
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5.8.2 ETMiner image creation from operon

Allows the conversion of a text-based operon descriptor (CSV format)

to be turned into an operon image. Useful for printing out an operon

for easier visualisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8.3 ETMiner custom operon type prediction

Add custom operon format to search for. For example, a haem

flanked by two porins (P-H-P). The haem must be within the

boundaries set in figure 5.8.1, and the TM counts for the porin must

also be within the range set in 5.8.1 . . . . . . . . . . . . . . . . . . . . 152

5.8.4 ETMiner example output (single row)

An operon printed out automatically using figure 5.8.2’s

functionality. Linear format is shown, but circular is also output.

Asterix (*) on operon protein accession indicates match to query

protein in BLAST search. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8.5 ETMiner output operon barcode explanation

An explanation of how the barcode in the CSV operon files work.

The red is the non-redundant (NR) WP protein accession, followed

by it’s genomic location in grey and then the number of CXXXCH

motifs (haem section), number of TM strands (for porin) and then

the molecular weight (MW) in yellow. . . . . . . . . . . . . . . . . . . . 153

6.0.1 Recursive improvement of model for trait prediction for

high-throughput preparation . . . . . . . . . . . . . . . . . . . . . . . 160
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Chapter 1

Introduction

1.1 The need for renewable metabolites

Human societies rely on numerous chemical compounds to function on a day-to-day

level, with a total of 8,300 million metric tons of virgin plastic having been

produced to date. As pressure increases to reduce fossil fuel use, any industrial

chemicals currently relying on a supply of crude oil for their plastic production

will undoubtedly face scrutiny. Therefore, biological systems that replace crude

oil with simple sugars as a feedstock will become crucial to the future of chemical

production in a range of industries [2, 3].

Yeasts, and Saccharomyces cerevisae (brewer’s yeast) in particular, have been

a platform for chemical production in industry for many years due to their

well-established functional and safety profile. While other strains of yeast

within genera such as Candida, Endomycopsis, and Kluyveromyces as well as other

microorganisms, are important and might gain in popularity, S.cerevisiae strains

will likely always be a major player due to their extensive safety profile in the food

industry, their high fermentation rates and their superior ability to perform as a

model organism for non-fungal eukaryotes [4, 5, 6, 7].

1.2 Mining the depths of microbial genomic data

For decades, a major focus of research was the accumulation and analysis of

complete genomic data for species. This made sense, data were scarce and there was

much left to learn. These early, species-level investigations were achieved through

high-quality Sanger sequencing.
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While Sanger sequencing remains the gold-standard for confirming sequence

[8], it is prohibitively expensive. The original ’draft’ human genome sequence was

created through Sanger sequencing at a cost of $300 Million [9]. The cost is now,

through Next Generation Sequencing (NGS) technologies, closer to $1000 [9].

Today’s NGS reads are often of lower confidence than first generation reads,

particularly in the 3’ region of Illumina reads affected by phasing[8]. Phasing

is an inherent risk in Illumina sequencing. It occurs after signal detection (for

base calling) when the blocker is not correctly removed from the read and leads

to the entire read being a base call behind and thus ’out of phase’ with the other

reads. Short reads, coupled with reduced quality as the read elongates, results in

Illumina relying on reference genomes assembled through Sanger sequencing for

completion (Nanopore[10] technologies and others promise to bridge this technical

gap). Moreover, NGS can struggle in specific areas such as DNA regions with highly

repetitive sequence motifs/structures (microsatellites, ...), high GC content or other

idiosyncrasies [8, 9]

Despite its shortcomings, NGS has enabled the exploration of sub-species level

genomes and population genomes. Now the focus is on analysing, or ’mining’, large

datasets consisting of tens or even thousands of genomes. This analysis encapsulates

a variety of methodologies; from counting Copy Number Variations (CNVs) [11]

and other repetitive regions, to assessing specific Single Nucleotide Polymorphisms

(SNPs) [12] that may affect organism function, to predicting the structure [13] and

function [14] of proteins produced by genomic regions.

This thesis will discuss some of these methodologies as systems to identify

specific genes involved in key metabolic pathways with the ultimate goal of

improved renewable sources of metabolite production. Using SNP-based Genome

Wide Association Studies (GWAS) [12], we delve into the high-quality sequenced

genomes of various yeast from the National Collection of Yeast Cultures (NCYC)

[1]. Moreover, we use Gene Ontology (GO) [14] and manually curated experimental

data to further predict resultant functional changes of said SNPs. Additionally, we

use tools including BLAST [15], PRED-TMBB [16], Protsite [17] and the interactive

Tree of Life (iTOL) [18] to predict and visualise cytochrome operons (including type

and general structure) from bacterial genomic data.

Both of these methodologies utilise large databases of under-characterised

genomic information and computational tools to infer the genetic basis of various
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metabolic phenotypes. Whether raw sequencing data or curated CDS DNA data,

all deal with raw DNA sequences that are analysed by unbiased algorithms. This

ensures that the current analysis is unaffected by previous characterisations.

All these tools and analyses are of vital importance if we are to begin to make

sense of the enormous quantities of genomic data publicly available. The ability

to conduct preliminary categorisation and assessment of genomic elements based

entirely on computational methodologies is vital to reduce the targets of potential

experimental interest.

With accurate predictions, it is possible to both identify genomic regions of

interest and prepare appropriate experimental methodologies in advance. The

potential cost-saving effects of such predictions can be invaluable. They also provide

an avenue for direct mutational experiments- including the use of plasmids with

regions of genomic interest.

1.3 Yeast as a platform chemical production system

1.3.1 Yeast diversity and utility

As this body of work will discuss the usage of various yeast strains, it is first

necessary to provide a definition of yeast. Yeast are single-celled eukaryotic

organisms within the kingdom Fungi that derive their name from the foamy

product of their anaerobic digestion of sugars. They are divided into two phyla;

Ascomycota and Basidiomycota (see Figure 1.3.1), with Ascomycota - the ‘true

yeasts’ - containing the Saccharomyces genus, some of whose ten species are widely

used in industrial processes. While yeast genomes are more complex than those of

single-celled prokaryotes, sharing genomic features and phenomena such as introns

and polyploidy with other eukaryotes, in terms of genome size they are similar

to prokaryotes- with only moderate quantities of intergenic DNA [19]. Found in

almost every environment in the wild, various yeast have been found to digest

a wide array of feedstocks, while capable of producing the metabolic chemicals

characteristic of eukaryotes [20].

Approximately 1,500 yeast species are currently defined, estimated to be ∼ 10%

of those yet to be discovered, and while ’yeast’ is a non-scientific name without

a specific definition, its holders usually share similarities. For example, species
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Figure 1.3.1: Overview of fungal phyla. Yeasts are
found in the Ascomycota and Basidiomycota. Taken from
https://courses.lumenlearning.com/suny-osbiology2e/chapter/classifications-of-fungi/.

defined as yeast most often undergo mitosis for cell division, but rely on meiosis

during times of stress to acquire novel genetic variants and increase cell adaptability

[21].

Within this project, yeast strains from over 200 yeast species - along with their

genome sequences - were potentially available for analysis, with each species dataset

ranging from one to 200 strains. However, with the aim of minimising background

genetic ‘noise’, it was deemed beneficial to select a sizeable set of strains with a

high degree of genomic similarity between them, not least because yeast are known

for a high frequency of aneuploid/polyploid genomes. The final dataset chosen for

analysis comprised approximately 200 Saccharomyces cerevisae strains. Firstly, this

was the largest within-species group of strains available to the project. Secondly,

the strains are known to share a common out-of-China ancestral origin [22]. As

such, they can be relied upon to be highly genetically similar and for a larger

share of the phenotypic differences between strains to be attributable to discrete

Single Nucleotide Polymorphisms (SNPs) rather than Copy Number Variations

(CNVs) or other genomic variations (e.g, inversions, translocations, ploidy). Thirdly,

and potentially most importantly, this species has been used for millennia as a

production platform for alcoholic beverages. Furthermore, yeasts, and specifically

Saccharomyces cerevisae, have an extensive safety profile as metabolic platform

chemical producers [4]. Used widely in industry to produce everything from

food additives such as acidity regulators (Succinate [23]) and ethanol to plastics

[24] and antibodies [25], they are reliable, safe and generally non-pathogenic.

Succinate holds particular focus for research as a highly versatile molecule that
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is generally considered to be safe. However, it has also been implicated in gut

inflammation and tumorgenesis- such as when produced by gut microflora in

dietary fibre digestion [23, 26]. Regardless of succinate’s eventual regulatory fate,

the final methodology for SNP elucidation would remain the same as for any other

metabolite or phenotype [27, 28].

Due to ecological and environmental concerns, yeast have stepped in as a prime

production platform for chemical production for industry [29]. Unfortunately, in

the early days of large-scale biofuel development (largely ethanol), in order to

produce the quantities necessary to satisfy human requirements, a sizeable portion

of farmland was devoted to providing the feedstocks for industrial fermenters

instead of humans[30]. To combat this, and any conflicts of interest between

consumers and industrial giants, an alternative source of feedstock was required;

lignocellulosic waste biomass.

The use of lignocellulosic waste biomass in biofuel and biochemical production

ensures that arable land suitable for farming is utilised in growing crops for human

consumption. The by-products that would otherwise be wasted are then repurposed

as a yeast feedstock for industry. This creates value for farmers, which can then be

invested in further productivity gains in feeding the human population.

Unfortunately, the inedible sections of plants (stalks/leaves/roots) are usually

composed of harder-to-digest sugars in complex, tight compositions. As such,

pre-treatments to the feedstock are necessary to release the simpler sugars needed

for yeast growth. This pre-treatment often releases growth inhibiting chemicals

that limit yeast growth. Notable among these chemicals is furfural, released from

the heated acid-pretreatment of lignocellulosic waste biomass [31]. This thesis will

largely discuss how to evaluate genetic variants linked with phenotypic resistance

to furfurals, which act as broad-spectrum growth inhibitors [32].

1.3.2 Yeast metabolism

Yeast is almost unique in that it serves as a model of metabolism for eukaryotes

while also being single-celled. This allows for the relatively easy modelling of a

eukaryotic metabolic system using a rapidly evolving/adapting organism. Yeasts

produce highly similar secondary metabolites to other eukaryotes - including

humans - for example through the shared TCA cycle (see Figure 1.3.2, [33]).
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Furthermore, yeasts are widely used as model production vectors amenable to

protein over-expression, highly useful in research [34].

Figure 1.3.2: TCA cycle, glycolysis and their metabolites
The citric acid/tricaboxylic acid cycle (TCA cycle) common to most eukaryotes on left (blue). Top
to bottom shows the fermentative pathway (red). Succinate, with energy molecules ADP/ATP and
GDP/GTP (orange) and NADH generation (green) illustrated on the TCA cycle which is used in
hydrogenation to detoxify furfuraldehyde to furfuryl alcohol.

As can be seen in figure 1.3.2, NADH is generated through glycolysis to form

pyruvate. In anaerobic, or Crabtree conditions, Ethanol formation is used as

an electron donor to allow oxidation of NADH back to NAD+, which allows

further energy production (ATP, orange, figure 1.3.2) from glycolysis. However,

Furfuraldehyde detoxification requires NADH and is therefore a competitor for

NADH. The result is that furfuraldehyde is used as an alternative sink for NADH

in place of glycerol production [35, 36]. Furfural also acts as a replication limiter,

but does not limit cell activity and consumes less glucose which is proportional to

growth [35, 36].

In high-glucose environments, yeast behave as if they were under anaerobic

conditions. Referred to as the Crabtree effect, it causes lower yields of desired

metabolic chemicals due to excess carbon being shuttled to ethanol production

pathways. Recent metabolomics approaches have attempted to harness yeast

biology to avoid the Crabtree effect and maintain high metabolite productions in

elevated glucose media to fully utilise high-energy environments. Raised levels of

fumaric and malic acid appear to be the trigger that inhibits the Crabtree effect [37].

This approach is of interest to this thesis for a variety of reasons. For one, it

could validate the metabolomics approach to microbiological production platforms.
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Additionally, part of this thesis focusses on low-ethanol DNA variants as a field of

commercial interest. Lastly, any production platform that can reduce its ethanol

production and more efficiently utilise its carbon source for metabolite production

is of high commercial value.

As a point of interest, could a strain be engineered to have high fumaric and

malic acid production (to avoid the Crabtree effect [37]) and lowered glycerol

production (to maximise furfural detoxification [35, 36])? As a point of metabolomic

interest, could such a strain hold the ’key’ to high furfural resistance, high

metabolite production in high carbon, low oxygen environments?

While the answer is not known yet, fortunately the yeast proteome is understood

to a relatively high degree of quantitative accuracy [20] which could aid any such

metabolomic efforts. In regions where this well-characterised proteome’s protein

sequences translate directly into DNA, sequence reads derived from shotgun

sequencing experiments can be mapped with high fidelity. Focussing on these

genomic regions, we can zero in on mutations directly affecting protein AA

composition and, therefore, likely function (assuming the mutation is not silent nor

frame-shifting).

Using such as strategy, sequence reads generated or obtained within this study

were mapped to a coding sequence (CDS) pan-genome constructed from 1,011 yeast

strains collected across the globe [22]. In this CDS-centred pangenome, we exclude

intergenic regions which may contribute more noise than signal in their mutations.

This high-fidelity reference allows the accurate identification of variants in newly

sequenced genomes and the prediction of phenotypic variations that might arise as

a result of them, due to reliable Gene Ontology (GO) data for each yeast CDS gene.

For example, a free-floating protein might have a strong sequence similarity to a

known membrane-bound enzyme. Using this knowledge, the free-floating protein’s

function may be predicted by comparing its sequence to that of the enzyme, as

depicted in Figure 1.3.3. With three bp per codon and 4 possible nucleotides in

each position, there are 64 (43) possible nucleotide combinations. With only 21

base amino acids, less than a third of mutations are likely to affect protein sequence

and, therefore, function.

This approach has both strengths and weaknesses. A common weakness is the

ignoring of genetic variations outside of the coding regions. It also cannot capture

ploidy or CNVs, which often lead to expression changes or phenotypic novelty. Yet
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Figure 1.3.3: Process for predicting the function of a newly identified protein sequence, using the
Gene Ontology (GO) of a protein with a similar underlying sequence

the technique is very effective in identifying proteins, usually enzymes involved in

metabolic processes, that lead to varied phenotypes. These mutations can then be

identified, effects predicted and protein variants tested in vitro with relative ease,

particularly when compared to expression levels, for example, whose effects can be

hard to measure outside the cell and its system.

1.3.3 Respiration and photosynthesis

In order to achieve renewable metabolite sources, researchers subvert respiration

and photosynthesis processes. Respiration is within microbial systems a series of

energy-transferring redox reactions that can be aerobic or anaerobic. In aerobic

conditions, di-oxygen is reduced as a terminal electron acceptor to form water. In

anaerobic respiration, the electrons are passed to other molecules or iconic elements

[38].

These forms of respiration have relevance throughout this body of work. Using

anaerobic respiration, yeast strains produce ethanol in a bid to rid themselves of

excess electrons from respiration. Using glucose as a carbon source is simple, yet

economically wasteful. Research is shifting to utilising pre-treated lignocellulosic

waste biomass as the energy source of these metabolite-producing yeasts (Chapter

3). However, this shift often leads to the release of growth-limiting chemicals.

Resisting these compounds that inhibit respiration is vital for higher ethanol yields
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[2, 39, 40, 41, 42].

Moreover, yeast are far from the only anaerobic microbes. Many bacteria and

archaea use anaerobic respiration to survive in oxygen-depleted environments.

However, some employ novel electron acceptors in their respiration. For example,

electrogenic bacteria use extracellular compounds and metals to accept excess

electrons (Chapter 5).

Some bacteria even accept electrons as energy from their environment to form

organic carbon compounds [43]; others still use photosynthesis to extract electrons

from water by leveraging the energy of the sun.

1.3.4 Yeast genetics

The yeast genome is highly varied and complex, with a large accessory gene

complement [44] and some even claiming the presence of entire accessory

chromosomes [45]. Some yeast DNA also shows clear signs of a lateral gene transfer

origin, including from bacteria. These factors result in a genomic composition that

is highly ‘plastic’, with both SNPs and gene content variation common. Moreover,

yeast genetic diversity is further complicated by chromosomal phenomena.

Polyploidy is common in yeast, especially resulting from cross-species

hybridisation, and aneuploidy is frequently seen in some yeast species [45]. This

broad genetic diversity is likely utilised by yeast as an evolutionary strategy in

adapting to new environments [46, 47, 48]. There is also evidence that pure strains

in stable environments tend towards diploidy or other more stable chromosomal

arrangements [49]. For example, the Saccharomyces cerevisiae haploid genome

is approximately 12.1 Mbp in length, with 6,611 open reading frames (OFRS;

Saccharomyces cerevisiae Genome Overview | SGD (yeastgenome.org)). However,

across the global population of this species, huge variation in ploidy is observed,

from haploid, diploid and aneuploid, to tetraploid (common to ale yeasts) and even

higher. This high degree of variation is then a great resource for both the yeast and

those who wish to research it [50]. Higher ploidy levels have also been linked to

faster environmental adaptations [51, 52].

At the chromosomal level, the age of a between-species hybridisation event

can be estimated via ploidy levels. Meanwhile, DNA-level variations can provide

evidence of closer evolutionary relationships, such as recent divergent evolution
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where two sister populations colonised and adapted to different environments.

In order to reduce the influence of between-species hybridisation events from

this study, only Saccharomyces cerevisae strains have been selected for analysis.

Remaining polyploidy and aneuploidy should be mainly the result of within-species

or within-strain events, which can be dealt with to a certain extant by analytical

procedures. Furthermore, the focus on such a dataset then becomes DNA-level

variations that have arisen from recent evolution and adaptation within a set of

closely related strains. This level of evolution and inter-connectedness may be

evaluated through the estimation of a Q-Matrix representing the strains’ descent

from a small number of founder populations (see section 2.2.4).

1.3.5 The National Collection of Yeast Cultures

The strains used in this thesis were all obtained through a collaboration with

the National Collection of Yeast Cultures (NCYC) based at Quadram Institute

Bioscience in Norwich. The NCYC was established in 1951 in order to provide

pure, authenticated yeast strains to the biological community. An example of

NCYC characterisation work can be seen in Figure 1.3.4. In the 70 years since its

establishment, the collection has grown to encompass approximately 4,000 strains

from over 500 yeast species, including strains of taxonomic, scientific, industrial

and environmental importance. A recent effort to sequence the genomes of the

NCYC strains has led to almost 1,000 strain-specific datasets, all of which were

made available to this project. The largest NCYC species group, at over one-quarter

of the collection were Saccharomyces cerevisiae strains, further reflected in the

composition of the sequencing dataset. This species bias represents to a large degree

the collection’s origins as a brewing collection and the general utility of this species

in industry.
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Figure 1.3.4: False-coloured scanning electron microscope image of Saccharomyces cerevisiae by
Kathryn Cross and Carmen Nueno Palop, Quadram Institute Bioscience [1]. The scars left by
daughter cell production by this budding yeast are easily visible.

1.4 Alternative respiration in bacteria

While the previous section discussed Yeasts’ respiration and metabolism, this

section will discuss bacterial respiratory systems. This is to contrast one system

with another, show similarities and demonstrate where these similarities end.

Including the previously mentioned, there are many forms of respiration.

These range from the classic oxygen-dependent aerobic to anaerobic and even

Crabtree fermentative systems. These respirations enable yeast to produce valuable

metabolites and develop techniques for resistance to growth inhibitors. Other forms

of respiration involve photosynthesis and the carbon cycle. However, there exist

many more forms of respiration found solely in bacteria. Many of these ’alternative’

forms of respiration are undergone by specialised bacteria (or archaea) in highly

specific, and often toxic, environmental niches [53].

Bacteria are a hugely varied taxonomic group and can occupy extreme ecological

niches that would have been thought of as unlikely previously. The list of bacteria

with unusual respiratory systems include those that colonise underwater thermal

vents by reducing mercury to its elemental metal [54], those oxidising sulfur in

caves [55], those which respire metals [56, 57] and many more [53]. It is almost

certain that listing environments in which they do not grow is easier; bacteria are

likely to grow anywhere where energy potentials exist (electrical, chemical, light,

radioactive,...) [53].

This thesis will attempt to identify metal-respiring (electrogenic) bacteria as a
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model for identification of alternative respiration in bacteria. The insights gained

by a more comprehensive elucidation of one form of respiration in bacteria could

cast a light on other forms. Moreover, the commercial possibilities of any unusual

microbial respiration are not to be ignored.

1.4.1 Bacterial Genomic Properties

Bacterial genomes are diverse; there are over 50 bacterial phyla with genomes

currently sequenced [58]. Bacterial genomes lack the intergenic ’junk’ DNA of

eukaryotes and have much more compact (and smaller) genomes ranging from a low

of 112kbp to over 14Mbp, but represent a huge diversity with over 89,000 different

gene families [58]. Bacterial genomes are generally smaller than their eukaryotic

counterparts as genome size increases and decreases based on acquisition and loss

of functional accessory gene regions [59], while eukaryotes may increase in size

due to Short Tandem Repeats (STRs), the expansion of intergenic regions, or other

non-coding regions or transposable elements [59]. With the clustered regularly

interspaced short palindromic repeats (CRISPR)-Cas system, bacteria possesses

some resistance to viral infection that could otherwise expand and modify their

genomes [58].

Bacterial genomes are also not as well-defined in structure as eukaryotes; they

possess no nuclear envelope and may be composed of more than one DNA fragment

[60]. Highly adaptive, they rapidly undergo purifying selection in nutrient-poor

environments [59].

The bacterial genes of entire bacterial biochemical pathways are often organised

into clusters, or ’operons’, which work together to perform a function. These

bacterial gene clusters a useful resource for researchers, as they are often

self-contained biochemical pathway units.

1.4.2 Bacterial Gene Clusters

Bacterial genes are not randomly dispersed along their parent genome. Usually,

genes encoding proteins in a common biochemical pathway are found clustered

together as a single ’gene cluster’ along one section of a bacterial chromosome. There

are many possible theories proposed to answer this mystery [61].

The most common theory for the occurrence of bacterial gene clusters is that of
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efficiency of co-regulation; if the genes of a single pathway are clustered, they can

more easily be activated together when needed. This process is more efficient than

transcribing genes from multiple genomic locations at once. This energy saving is

particularly helpful if the genes interact directly [61].

A second theory states that clustering genes is for the benefit of the selfish

operon; inheriting a single section of a biochemical pathway is unhelpful. By having

the genes clustered closely together, it ensures that any horizontal gene transfer is

more likely to include the entire functional pathway of the cluster. The increased

likelihood of the entire cluster being transferred increases the adaptability of the

receiving bacteria and decreases the chance of the received genes being lost to

purifying selection. Therefore, this ’selfish operon model’ is a close contender to

the co-regulation model, if controversial [61].

The final theory states that clustered genes are less likely to be disrupted by a

single mutation along the genome and are therefore more robust [61]. Whichever

the true reason, and it may well be a mix of any of the three theories [62], it is

clear that gene pathways tend to cluster into functional operons within bacterial

genomes. The ability to identify an entire functional operon is therefore essential

to understanding biological functionality. Once identified, an operon must be

extracted whole; a partial operon might not function at all or could even be toxic

to a cell by interfering with other biochemical pathways. Therefore, finding where

the operon begins and ends is crucial to fully characterising the resultant proteins

of the operon.

This whole-pathway-in-one system makes it theoretically easy to isolate an

entire bacterial pathway, transfer it to another bacteria, and to subsequently mutate

it for experimental analyses [63]. With this in mind, identification of bacterial gene

clusters is vital to microbial research and forms a third experimental section to this

thesis.

1.4.3 Gene clusters Mining Within Bacterial Genomes

Gene clusters are an excellent resource for experimental studies. The gene cluster,

or operon, is a single co-regulated self-contained unit for an entire pathway. In

this way, it is possible to isolate and transfer the operon as a whole entity without

needing to identify disparate genes across the bacterial genome. In such an
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approach, the whole gene cluster is isolated and cloned into a plasmid. Occasionally

with the help of a marker gene, the presence and absence of the plasmid can be

explored phenotypically in competent bacteria. Further, once the phenotype is

fully characterised, mutations within the gene cluster can be explored. Identical

bacteria with variants of the same plasmid can be assessed for changing phenotypic

characteristics.

With this knowledge in mind, and by examining available genome sequences

of a range of bacteria, this project aims to elucidate a series of operons involved in

alternative respiration in bacteria (i.e, electrogenic respiration). The methodology

employed could potentially be applied to other gene families to identify novel

operons across the current and future bacterial genomic databases.

1.5 Project Overview

1.5.1 Project Aims

The aims of the project were varied, yet utilised similar bases of knowledge

and understanding. The first aim was to discover the basis for resistance to

lignocellulosic biomass pretreatment products (namely Furfuraldehyde, in our

study). This was be conducted through evaluation and parsing of the wealth

of genetic data available from the sequenced genomes at the NCYC. The results

indicated either the genetic basis of broad-based resistance or indicate regions of

interest within the genome.

Similar tools were used for the identification of the genetic basis of metabolite

production in the yeast strains included in the study. For this study, Succinate was

chosen as a candidate molecule of high interest to industry. Succinate, involved in

ATP production within the TCA cycle, is a useful chemical used in plastics such

as 1,4-butanediol, in acidity regulation in soft drinks, flavouring and even as a

precursor to many pharmaceutical molecules [23].

Lastly, the project utilised similar genetic techniques to elucidate the structure

of as-yet unknown cytochromes operons hidden within widely available public

bacterial databases (RefSeq[64]). It was hoped that the project would uncover novel

and interesting operons and aid in the understanding of cytochromes. Additionally,

the project described a useful methodology applicable to a wider array of future
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operons and aided in the discovery of many operons of interest.

1.5.2 Research Themes

Genome Wide Association Studies (GWAS) attempt to discover the hidden

correlations between a phenotype and its polygenic features through the usage

of many closely related genomes. GWAS are powerful tools for uncovering the

risk scores for complex diseases such as cancer and diabetes to genes involved in

increased crop yields and much more. In these complex diseases, or phenotypes

in the case of this thesis, the traits being investigated are not binary and have

many contributing factors. The resultant strength of the phenotype (metabolite

production, furfural resistance, cancer growth,...) is based on many genomic

locations and therefore must be statistically teased out of the collective organisms’

genomes as a whole. To do this, GWAS correlate genomic features (CNVs, SNPs,

...) to complex phenotypes through various statistical measures such as Linear

Mixed Models (LMMs). While other statistical methods exist, our focus shall be on

LMMs due to both good characterisation and simple integration of random effects

models(section 2.2.4).

LMMs are extended Linear Regression models which attempt to account for

relationships between data points. In our study, the relationships between an

independent variable (here the phenotypic data) and a dependent variable (here

a given genetic variant) while also accounting for random effects (here, population

effects are modelled the form of a Q-Matrix[? ]). Given the focus of the study on

furfural resistance, a single ’resistance score’ was needed to quantify a strain’s utility

in this area.

The GWAS of this thesis makes use of vast quantities of data inaccessible to

human comprehension without computational analysis. As described in Section

3, over 100,000 SNPs are correlated to nearly 200 Saccharomyces cerevisae strains’

phenotypes. Even the phenotypes themselves are computational constructs aiming

to account for the broad-spectrum effects of a lag-phase extending yeast growth

inhibitor. To eliminate subjectivity in resistance phenotype assessments, and to

accomplish the laborious calculations of correlating them to SNPs, computers were

essential (further in section 2.2).

This same method was applied to elucidating the genetic basis of specific
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metabolites produced by the yeast strains (Section 4). The technique’s versatility

is illustrated in its broad applications and utility.

In Section 5, computational models were developed to predict cytochrome

operons hidden within the entire RefSeq database [64] of bacterial genomes.

This necessitated obtaining the raw data, reformatting it to accommodate limited

computer resources, curating it and then finally building the operon predictions.

All sections of this thesis made use of a range of industry-standard software

[15, 65, 66, 67] and bespoke software created through two programming languages

(Python3 [68] and R [69]).

1.6 Summary of thesis

This thesis will focus on many separate parts in turn. Chapter 2 will provide an

overview of terms, and will introduce tools and techniques applied across the thesis.

For example, it will describe which statistical methods were employed, how whole

genome sequencing was performed, how the data were analysed and why specific

analytical models were selected.

Chapter 3 focuses on elucidating the genetic basis of furfuraldehyde resistance

in S. cerevisae strains. These strains were expected to have comparably high

resistances, without the high variability of non-S. cerevisae strains. Furfuraldehyde

is a by-product of the pretreatments necessary to break down the complex sugars

of lignocellulosic waste biomass and is a common growth-limiting chemical in

renewable platform chemical production systems [70, 71, 72, 73]. Gaining

resistance to this inhibitor is crucial to attain the higher carbon conversion

efficiencies necessary to produce desired metabolites from industrial microbial

systems at profitable cost levels [74]. Directed Evolution (DE) experiments were

also carried out to investigate the fates of SNPs with putative furfural associated

phenotypic effects in an evolving population.

Chapter 4 deals with the genetic basis of various metabolite expression levels in

malt media with S. cerevisae strains, and other metabolites in mostly non-S. cerevisae

strains. The results will permit future researchers to select yeast stock strains based

on desired metabolic profiles. The methodologies employed were custom-made to

best suit the data in question and refined from previous sections of the thesis. Using

the same data pipelines, this chapter correlated yeast metabolites (phenotype) to the
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SNPs (genotype) of each strain.

Chapter 5 deals with the prediction of cytochrome operons in bacterial species

through computational analysis of the public RefSeq CDS database. The pipeline

can be applied to other operons requiring investigation. This chapter created a

repository of cytochrome operons across the bacterial genome, allowing future

researchers to gain an insight into which bacteria would be interesting targets

for future experimental research. Many novel operons were discovered; some in

completely unexpected species.

Finally, Chapter 6 discusses the work carried out and suggests future avenues of

research. Drawing together the disparate elements of this thesis, it creates a holistic

view of the research and elucidates the relevance to many fields of human interest,

such as those of human health and medicine.
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Chapter 2

Methods

There exist in this body of work many sections that call upon the same methods.

These methods could either be used within the experimental or bioinformatics

analyses presented. In both cases, several protocols, analytical ideas and approaches

have been used many times, sometimes shared between distinct chapters, and so

have been described here to retain a single point of reference. This arrangement

also works to separate the theory and results of the work from the practical methods

employed to explore them. This chapter may be referred to throughout the thesis.

2.1 Statistical Approaches

2.1.1 P-values for Genome Wide Association Studies

Correlation does not necessarily mean causation. This mantra is known widely

even beyond the scientific community. While true, it is not the whole picture.

Mathematicians have crafted statistical models that specialise in identifying the

proportion of determination (R-squared value) of each variable onto an outcome

(or dependent variable). There are likely innumerable specialised models utilised

in various fields in science, from mouse research to climate modelling, to gather as

much predictive value as possible.

While many statistical values of confidence exist to evaluate models, arguably

the most well-known is the p-value. Simply put, the p-value is the probability of

obtaining a given result, or one more extreme, under a specified null hypothesis. A very

small p-value suggests that the result is very unlikely under that null hypothesis.

Unfortunately, spurious correlations are the norm when considering any dataset.
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As the dataset grows in size, so too does the likelihood of a obtaining a false positive

with a low p-value. This can give a false sense of significance to specific outcomes.

While there are methods to reduce this false positive rate, it is always a concern that

cannot be cleared until ’wet lab’ research validates any correlations. Despite these

shortcomings, the practice is nonetheless common within the GWAS community.

Due to the widespread use of the p-value within the GWAS community, we have

decided to select it as our statistical measure of confidence, particularly as we apply

it to datasets where downstream validation experiments are possible.

Some final considerations include spurious correlations and the false discovery

rate (FDR), which are important to consider when using p-values for large

correlation studies. Q-matrices (section 2.2.4) are employed to reduce the FDR

associated with kinship relationships between species. A simple method employed

here is to divide the p-value threshold (0.05) by the size of the dataset (SNP

number) in a Bonferri correction. However, this can still be confounded by linkage

disequilibrium [75, 76]. In conclusion, even with good data and extensive analysis,

p-values simply a good method to test the Null Hypothesis (that no correlation

exists) but should never be confused as concrete proof of correlation and must be

experimentally validated before any conclusions can be drawn.

2.1.2 E-value for DNA Sequence Comparison

Similar to the p-value, the E-value is often misunderstood or confused. The E-value

is used in pattern-recognition software such as BLAST [15]. The value represents the

number of ’hits’ you would have been likely to receive based on the query sequence

length (m), the size of the database used (n) and the bit score (match score) ’S’.

The bit score (S) increases as sequence similarity between query and target DNA

increases, and is independent of total query sequence length or database size. The

bit score is dependent on the Gumbel distribution (λ), the raw alignment score (s)

and the scoring matrix constant (K, equation 2.1).

The equation for the E-value illustrates its constituent components in a very

intuitive manner (equation 2.1);
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E =
mn

2S
(2.1)

where

S =
λ × s − ln(K)

ln(2)

For example, an e-value of 1 indicates your ’hit’ is likely to have come by chance

as one such hit would be expected by chance from a query of the input size when

matched to the size of the database used. The E-value then reduces exponentially

as the query matches more closely to a sequence in the database. This is expected,

as a random query sequence would not be expected to have a perfect match within

a database. Any matching is likely to be relevant, with sufficient matching making

it significant. Often, when selecting a ’hit’, an e-value of at most 0.01 is preferred.

This indicates a less than 1% chance that the ’hit’ has been found by random chance

matching.

2.1.3 PCA plots

A Principal Component Analysis (PCA) plot attempts to illustrate complex

multidimensional data into fewer combinations of the original variables while

preserving as much variation as possible. The first component displays the highest

proportion of variance to assist in parsing the data and displaying it effectively, with

most users analysing the first two or three components.

For example, in figure 2.1.1, a made-up scenario is created with individuals to

try and identify the differences between two year-groups in a school. After many

variables are measured in the PCA, two main components emerge. One component

could be a combination of height and weight, while the other is of muscle strength

and reaction speed. In the future, we would know that the best way to differentiate

year-groups would be based on these two Principal Components (PCs). The PCA

attempts to illustrate the main components to the variance in the data and thereby

to group the data.

That is to say, the first component attempts to explain the most amount of

variance. The second PC then explains the maximal amount of variance in an

orthogonal direction to the first component (X and Y directions on a 2D plot). Every
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subsequent component attempts to repeat this but for all pre-existing PCs. After

the X and Y comes the Z direction in a 3D map, until we enter more dimensions

(4+) than can be illustrated in a simple 3D plot.

PCA plots, in reducing dimensionality, therefore display the Proportion of

Variance attributable to each component of the analysis. This is helpful, as it

indicates which is the most useful component in parsing the data. It illustrates,

for example, if most of the variance is shown within a single component or if the

total data variation is due to many components efficiently.

Limitations with the use of PCA include hiding the importance of secondary

components, while also struggling with data that has not been standardised. The

benefit of reducing dimensions can also lead to the drawback of information loss if

handled inappropriately. Nonetheless, PCA is a powerful tool that is widely used in

research due to both speed and reliability [11, 77, 78, 79, 80, 81].

Figure 2.1.1: Example PCA
A PCA plot to illustrate a multi-dimensional dataset that has been reduced to two main
components. Messy data on individual samples has been reduced to 2 clear groupings on the
plot which can then be investigated as a way to differentiate the population of individuals into
two groups based on the components extracted.
Note: The plot is for illustrative purposes only, and does not have real-world data.
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2.1.4 K-means Clustering for Phenotypic Datasets

K-means clustering is a method of partitioning n observations into K clusters- where

each observation belongs to the cluster with the nearest mean value. In this way, it

is possible to sort the observations into clusters that best reduces the within-cluster

variance. With the identification of the optimal K value (i.e, the number of clusters),

it becomes possible to sort the observations according to the best cluster points that

already exist hidden within the data.

This technique allows researchers to parse characteristics into intuitive values

on a simple linear scale. That is, a broad range of values can be grouped into a few

clusters- which are easier to understand.

In some broad-spectrum phenotypes, such as resistance to a growth inhibitor,

strains can exhibit highly varied resistance phenotypes and a set of scales relative to

different aspects of resistance (length of lag phase, maximal OD in a time-frame,...).

Using K-means it becomes possible to sum up the individual K-means cluster scores

of these disparate variables into a single holistic ’resistance score’ for each strain.

Figure 2.1.2 gives an example of a hypothetical phenotype that is variable among

specific microorganism strains. The phenotype can then be clustered into groups

that represent its variability. This low-complexity discrete variable is much easier to

sum into a larger score, and tells us immediately of the strain’s phenotype intensity

relative to other strains. I.e, A strain that clusters in the bottom cluster is on the low

end of the phenotype expression.
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Figure 2.1.2: Example K-means
An example plot to illustrate an example phenotype measured from the strains (Y-axis) per strain
(X-axis). The phenotype can then be roughly divided into three clusters (optimal K=3). Whichever
cluster best explains a strain’s phenotype value thenceforth becomes its value (1,2,3). This is also
a useful way to turn continuous variables into low-complexity discrete integers which are much
easier for analysis.
Note: The plot is for illustrative purposes only, and does not have real-world data.

2.2 Genomic methods

2.2.1 GWAS and high throughput genomic assembly

Genome Wide Association Studies (GWAS) use statistical methodologies to search a

moderate to large set of entire genomes for features of DNA that correlate to known

phenotypes and while many rely on SNP data [12], others explore alternative genetic

features such as Copy Number Variations (CNVs) [11]. Studies usually focus on

SNPs within coding regions but may use other features such as gene content or

non-coding SNPs [12]. Thereby, each individual genome’s unique SNP fingerprint

can potentially be correlated to their known phenotype(s). In humans, such a

process can be used to calculate polygenic risk scores for health conditions such as

diabetes and cancer. In agriculture and industrial chemical productions, association

analyses can be carried out to examine traits such as livestock milk yields or crop

yields [82] while genome-scale flux analysis becomes a possibility [83].

It is important to keep in mind that the study size is highly dependent on the

phenotype(s) being investigated. The less clearly grouped phenotypes are between

42



conditions, the greater the number of genomes necessary to obtain the required

statistical power to fully isolate the genomic variants responsible for the phenotype.

For example, the genomic variants responsible for dwarfism are easier to isolate

than the genomic variants causing a height difference of a few centimetres.

In the experiments carried out here, such a broad outlook was taken. The

genomes of the species undergoing analysis were converted to SNP matrices which

could subsequently be correlated to phenotypic datasets such as the production

of specific metabolites and resistance to growth inhibitors. These results could,

hypothetically, be carried forwards in genetic modification experiments with the

strains used, in order to evaluate the functional effects of SNPs highly correlated to

phenotypes of interest.

Such a high throughput genomic pipeline could be used to create models to

predict the phenotypes of sequenced but as yet uncharacterised yeast strains or

species. This would enable researchers to prioritise the experimental testing of

strains that carry a higher likelihood of possessing desirable phenotypes.

2.2.2 SNP genome

The SNP genomes for each strain were assembled using a highly conservative

variant calling pipeline (section 2.4.3) coupled with other usual genomic tools. This

ensured a resultant SNP genome of very high fidelity and low false positive rates-

increasing the likelihood of relevance of any top hits.

The genotypes of the strains are thereby transformed to a list of SNPs. The SNPs

were selected if they were present as alternative alleles in at least 5% of the strains,

known as the Minor Allele Frequency (MAF) percentage, in the study. The SNPs

were then assembled into a linear genome that matched loci (ORFs) on the artificial

yeast pan-genome assembled from 1,011 yeast strains’ collected worldwide [22].

2.2.3 Linear regression and Linear Mixed Models

P-values were obtained through linear regression models known as Linear Mixed

Models (LMMs) that incorporate relationships between phenotypic and genotypic

data, while also accounting for relationships between yeast strains that could

otherwise produce spurious correlations. In this way, we account for evolutionary

relationships between strains through Q-Matrix models. Once the SNP genome of
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each strain has been determined, LMMs are used to then correlated the phenotypes

of the strains to their SNPs.

Our analyses use a Linear Mixed Effects Regression (LMER) model. This is a

Linear Regression that takes into account both the fixed and random effects of the

system phenotypes from the dependant variable of the model, with SNPs modelled

as fixed effects and inter-strain relationships as random effects. This latter part is

crucial to achieving reliable results.

Even in using ’only’ Saccharomyces cerevisiae strains in the input dataset, there

are many micro (SNP/gene level) and macro (chromosomal level) genetic variations

between strains. It is therefore crucial to attempt to account for this by quantifying

the strains’ evolutionary relationships. This is accomplished through incorporating

the Q-Matrix (section 2.2.4) into the LMER model.

This Q-Matrix might raise or lower p-values of specific SNPs when compared to a

LR model. If a variant is found highly correlated to a phenotype in a LR, its p-value

may be significantly reduced in cases where the Q-Matrix shows a high correlation

between sub-population and a given phenotype. This is because the sub-population

may share variants that other sub-populations do not, thereby making it less likely

that a specific variant was causative of the phenotype in question. However, if the

variant is found across all sub-populations (via the Q-Matrix analysis) but always

correlates well with the desired phenotype, its p-value will be raised significantly

as its effect transcends the sub-population level.

2.2.4 Q-Matrix Automation

Within any GWAS analysis (or any correlational study), there exists the issue of false

positives. This is exacerbated in studies with highly related genomes that are likely

to share a greater proportion of SNPs by virtue of genetic relatedness, obscuring

the genomic causes of an investigated phenotype. Without taking relatedness of

genomes into account, a straight forward correlation of genotypes to phenotypes

would present many erroneous results that drew on kinship relationships instead

of the desired phenotypic groupings.

The Q-Matrix is a mathematical structure that attempts to measure the

relatedness of strains within a SNP dataset. This is accomplished by using the

diversity within the SNP dataset to predict the number of founder populations
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necessary to give rise to the distribution of variation seen in the dataset. The

Q-Matrix scores relatedness by attributing proportions of each strain’s genome to

a founder genome. By using the Q-Matrix within an LMER analysis, this allows

the GWAS to exclude many correlations erroneously formed through the Founder

Effect.

The Q-Matrix in this analysis is of three predicted founder populations and

the fraction of each strain’s genome attributable to each founder. In a simplistic

example, a group of strains might be predicted to have evolved from three ancestral

populations (table 2.1). A strain in that group might incorporate all parts of this

ancestral history in its genome and owe 20% of its genome to one ancestor, 60% to

a second and 20% to a third (strain 9, table 2.1). A strain could also have its entire

genome (i.e. 100%) attributable to a single founder (strain 2).

Strain
Number

Founder 1 Founder 2 Founder 3

1 0.4 0.4 0.2
2 1 0 0
3 0.8 0 0.2
4 0.3 0.4 0.3
5 0.1 0.9 0
6 0.1 0.1 0.8
7 0.5 0 0.5
8 0 0.1 0.9
9 0.2 0.6 0.2
10 0.6 0.3 0.1

Table 2.1: Q-Matrix Example
An example of a Q-Matrix, with predicted founder populations (top) and strain numbers (left).
This shows us the predicted distribution of each strain’s genome into the 3 predicted founders.

Any strains that share a similar distribution with respect to their ancestry are less

likely to have shared SNPs counted as significant when correlated to a phenotype.

This is because it becomes difficult to disentangle chance correlation between

highly related species and actual causative SNPs. In our study, the SNP data for

the Q-Matrix underwent two rounds of curation; The first involved reducing any

false positive rates by using very conservative CIGAR strings with the FAT_CIGAR

tool (section 2.4.3). Secondly, any ’unknown’ genes annotated in the reference

pangenome were removed. This ensured any ’accessory’ genes seen in only a few

species were not counted and did not skew our analysis. Further, any genes listed as

part of the ’core’ genome in the reference pangenome were kept while other genes
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were discarded. This was to permit the measurement of evolutionary history in only

highly-conserved genomic regions. All these measures attempted to best quantify

the ’relatedness’ between strains through a single Q-Matrix set of values with a

hypothetical number of founder populations.

2.2.5 PSIKO Q-Matrix

The PSIKO [84] Q-Matrix is a validated algorithm [85, 86] for the prediction

of strain relatedness through a Q-Matrix. PSIKO allows for the inference

of admixture coeffecients through a combination of linear kernel-PCA and

least-squares optimisation. Much faster than most alternative Q-Matrix prediction

software, it is ideal for the analysis of very large next-generation datasets [84].
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2.3 Yeast Experimental Methods

The following section concerns the specifics of the methodology used in this thesis

for chapters 3 and 4.

2.3.1 Strain acquisition, preparation and storage

The yeast strains used in the study were provided by the National Collection

of Yeast Cultures (NCYC) within the Quadram Institute Bioscience (QIB) in the

Norwich Research Park. Each strain has both a corresponding accession number

and taxonomic designation in the NCYC system [1]. Two separate growth medias

were used within experiments using the NCYC yeast strains, as stated.

Unless otherwise stated, and in all furfural experiments in chapter 3, a minimal

Yeast Nitrogen Base (YNB) media was used. This consisted of 6.9g/L YNB media

with 10g/L glucose as a carbon source. Furfural concentrations were varied, as

stated in each experimental section. When maltose media was utilised, the media

contained 100g maltose extract per litre of purified water. Used to replicate

conditions in breweries, it was used for metabolomic analysis of the yeasts’ products

in chapter 4.

2.4 Yeast Whole Genome Sequencing

Following the directed evolution experiment in chapter 3, whole genome short-read

sequencing of isolated single-strains was carried out with an Illumina NextSeq [8]

sequencer to determine the level of evolution and adaptation to the sequential

furfural conditions. This was to continue a project already underway to fully

sequence all the NCYC strains with the same short-read Illumina technology and

to ensure comparability. Strains were plated on YNB agar with 1mg/mL furfural.

Single colonies were extracted and then grown in sterile YNB media.

Whole genomic DNA of each strain was sent for sequencing at the Quadram

Institute. DNA extractions were performed according to a NCYC yeast DNA

extraction protocol (personal communication, Adam Elliston). The main kit used

for the extraction was the Masterpure Yeast DNA purification Kit that contained TE

buffer, Cell Lysis Solution and MPC protein precipitation reagent. Zymolase and

RNAase A were purchased separately.
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2.4.1 NCYC Yeast DNA extraction protocol

Figure 2.4.1 describes the NCYC Yeast DNA extraction protocol modified

cosmetically where appropriate to reflect the specific experiment.
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1. Strains were grown at room temperature in their YNB media for 3-5 days.

2. 1 mL was taken from each of the 8 wells in the first plate with 7 (excluding
the repeated control H) for a total of 15 samples. This was duplicated into 2
technical replicates for a total of 30 samples.

3. Cells were pelleted in 14K rpm for 5 minutes.

4. The supernatant was discarded and the pellets frozen at -20°C.

5. 100 µL of zymolyase (10 mg/mL) was added to each pellet.

6. Samples were incubated for 30 minutes at 37 ºC.

7. Samples were centrifuged for 5 minutes at 14K rpm.

8. The supernatant was discarded again and 300 µL of Cell Lysis Solution added
with 5 µL of RNAse A.

9. Cells were resuspended by gentle vortexing.

10. Cells were incubated at 65°C for 15 minutes.

11. Samples were cooled on ice until the next step for 5 minutes (maximum 1
hour).

12. 150 µL of MPC protein precipitation reagent was added, then the samples
were vortexed again.

13. Cell debris was pelleted away by centrifugation at 14K rpm for 5 minutes.

14. Supernatant was transferred to a clean Eppendorf tube and 500 µL of ice cold
isopropanol was added.

15. Samples were centrifuged at 14K rpm for 10 minutes to obtain DNA pellets.

16. Supernatant was discarded and 500 µL of ice cold 70% ethanol added.

17. Samples were centrifuged at 14K rpm for 5 minutes.

18. Supernatant was discarded and tubes aired for 5 minutes on the bench to allow
any residual ethanol to evaporate.

19. 35 µL TE buffer was added once dry and samples were left in the fridge
overnight for DNA to dilute.

Figure 2.4.1: Protocol for growth and DNA extraction of yeast samples.
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2.4.2 Raw Read cleaning and trimming

Data was cleaned and trimmed with trimmomatic-0.32. In the DE experiments, this

step was preceded by the concatenation of two technical replicates. Trimmomatic

[87] is a tool used to clean up Next Generation Sequencing (NGS) reads by trimming

NGS (usually Illumina) adapter sequences in a read preprocessing step and removes

low-quality regions, particularly of the 3’ region of Illumina reads [87]. In essence,

the tool attempts to remove artefacts of current NGS sequencing technologies. The

removal of duplicate reads, that can occur during the library preparation process,

was achieved through BBTools [88].

Once the raw reads data have been cleaned, they are ready to be processed in

the next step, mapping to a reference genome. Below (figure 2.4.2), we see the

steps involved in trimming the data appropriately. In step 1, we can concatenate

technical replicates into a single file. In 2, we remove duplicate reads. In 3, we use

trimmomatic to trim the reads.

1. cat Raw-reads/S1-R1.fastq Raw-reads/S2-R1.fastq > Raw-reads/S1-R1.fastq
cat Raw-reads/S1-R2.fastq Raw-reads/S2-R2.fastq > Raw-reads/S1-R2.fastq

2. clumpify.sh in1=Raw-reads/S1-R1.fastq in2=Raw-reads/S1-R2.fastq
out1=Raw-reads/S1-dedup-R1.fastq out2=Raw-reads/S1-dedup-R2.fastq
dedupe subs=0

3. java -jar Trimmomatic-0.32/trimmomatic-0.32.jar PE
Raw-reads/S1-dedup-R1.fastq Raw-reads/S1-dedup-R2.fastq
Deduplicated-and-trimmed-reads/S1/S1-forward-paired.fastq
Deduplicated-and-trimmed-reads/S1/S1-forward-unpaired.fastq
Deduplicated-and-trimmed-reads/S1/S1-reverse-paired.fastq
Deduplicated-and-trimmed-reads/S1/S1-reverse-unpaired.fastq
ILLUMINACLIP:Trimmomatic-0.32/adapters/TruSeq3-PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

Figure 2.4.2: Commands used to Trim raw reads from sequenced DNA; clumpify.sh comes from
BBTools.
subs = 0 sets 0 substitutions
LEADING:3 - Removes any bp on 5’ end with less than 3 phred score
TRAILING:3 - Removes any bp on 3’ end with less than 3 phred score
SLIDINGWINDOW:5:15- removes the 5 bp on the 5’ end of read if the average phred score is
lower than 15 (low quality read segment). This often is used in place of LEADING/TRAILING
options
MINLEN:36 sets the minimum read length to 36bp
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2.4.3 Mapping cleaned reads to artificial genome

Once the data has been preprocessed by Trimmomatic [87], it is ready for the reads

to be aligned to the reference genome. For this step, Burrows-Wheeler Alignment

(BWA) [67] was used (BWA mem). This was to make them more directly comparable

with other existing data pipelines. This step allowed the creation of SAM (Sequence

Alignment/Map) files which were duly converted to Binary Alignment/Map (BAM)

files. The BAM files were then sorted and indexed. The pipeline was designed to be

adapted to many various analyses; if files were no longer needed, they were deleted

to save space.

The resulting files (BAM, Sorted BAM and Index BAM) were subsequently

utilised by FreeBayes [66] to create Variant Call Format (VCF) files by mapping each

genome onto the reference (in our case artificial) genome and identifying differences

from it using a statistical model.

The resultant file was then ready for analysis through custom scripts and

software (figure 2.4.3). In step 1, a SAM file is created, showing the alignment

of the reads to the reference, and is converted to binary format in step 2. In step 3,

index files are created. In step 4, the FAT-CIGAR bash script removes reads from the

sorted BAM file that do not perfectly map to the reference genome at both ends (for

a user-specified length, 20bp in this case), thereby reducing false positive variant

calls in downstream analyses. Finally, in step 5, FreeBayes is used to call variants

from the reference genome in VCF format.

1. bwa mem allORFs-pangenome.fasta
Deduplicated-and-trimmed-reads/S1/S1-forward-paired.fastq
Deduplicated-and-trimmed-reads/S1/S1-reverse-paired.fastq >
BWA-alignments/S1.sam

2. samtools view -S -b
BWA-alignments/S1.sam > Samtools-BAM-files/S1/S1.bam

3. samtools index Samtools-BAM-files/S1/S1.sorted.bam

4. FAT_CIGAR script

5. freebayes -f allORFs-pangenome.fasta Samtools-BAM-files/S1/S1.sorted.bam
> freebayes-output/S1-freebayes-SNP-genome.vcf

Figure 2.4.3: Bash Commands for VCF creation
Commands for creating VCF files from Trimmed and deduplicated DNA read files. FAT-CIGAR
script used was a pre-publication version (Prithika Sritharan, personal communication); please
see https://github.com/prithikasritharan/FAT-CIGAR for the most recent version.
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In a final data cleaning step, three R packages were used (snpStats,

VariantAnnotation, GenomicFeatures in a bespoke script CreatingGWAS_Data.r)

to further filter the data in RStudio. This filtered the data based on quality, and

mutation type by only selecting for high-quality, binary SNPs. This resulted in a

high-quality SNP genome for each original Illumina dataset.

2.4.4 SNP Matrix

The data of each SNP ’genome’ in a study was joined together into large

matrices using custom Python3 scripts SNP_and_MAF_finding.py followed by

MatrixMaker.py. This allowed for easier future data accession and for correct

indexing of all mutations with a Minor Allele Frequency of 5% or more (i.e, if an

SNP is present in more than 5% of genomes it was added to the matrix, with any

genome not possessing the SNP assigned the reference allele). This dataset was then

accessed rapidly by any correlation pipelines designed with custom scripts using

RStudio packages.

To construct the data frames necessary for RStudio [69], Bioconductor and

Python3 [68] were used (scripts above). This data from Python3 was also used to

create evolutionary kinship relations (Q-Matrix) based on genetic distance using

PSIKO [84] (section 2.2.4).

The basic pipeline is; CreatingGWAS_data.r, followed by

SNP_and_MAF_finding.py, then the second segment in CreatingGWAS_data.r and

lastly MatrixMaker.py. The work was split into segments to help compartmentalise

processes.

2.4.5 Correlating reads to phenotype

Final SNP genome matrix matching to phenotype was accomplished through a

custom RStudio script ManhattanPlotGeneration.r which allowed allowed each

SNP within the matrix of many genomes to be matched to the phenotype of each

strain. This script allowed for the output of data in Comma Separated Values

(CSVs) format as well as easy-to-understand Manhattan plots for ease of conceptual

comprehension.
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2.5 Metabolic growth protocol

For metabolomic data, each 20µL aliquot of the strains were grown in 96-deepwell

plates with a total volume of 1mL as previously. The plates were sealed with

breathable seals in anaerobic conditions and incubated at 25°C for five days. This

was performed to achieve a final growth spectrum, with complete utilisation of

glucose without entering cell death due to age and/or lack of nutrients.

The supernatant media was then analysed through NMR to quantitatively

measure the metabolic products of the yeast. This allowed us to compare the output

of each strain; any error in the buffer was removed by using a single master mix.

2.5.1 NMR Preparation and data analysis

The strains, once in their final state after 5 days of anerobic growth, were spun

down at 3000rpm for 15 minutes. The pellets were discarded, with 400µL of

supernatant added to a new 1mL deepwell plate. The 400µL of supernatant was

subsequently mixed thoroughly with 400µL of Nuclear Magnetic Resonance (NMR)

buffer (section 2.5.2). When thoroughly mixed, the plate was re-spun at 3000rpm

for 15 minutes. Finally, 600µL of supernatant from each well was taken and placed

in NMR tubes.

Following 500mHz proton-NMR, the data was curated with TopSpin (command:

apk0.noe) and analysed quantitatively with CHENOMX Profiler software. This

allowed, using TSP as a reference peak of known concentration, the quantification

of many metabolites (figures 4.2, 4.3) in the sample. Additionally, NMR allowed us

to return to the raw data at will to add to our list of analysed metabolites.

The strengths of NMR include high reproducibility, a broad range of molecule

detection, the sample being unaffected by the analysis, with sensitivity (mmol)

that can be increased with a higher field strength and highly accurate for smaller

inorganic molecules (as in this study with 1H resonance).[89].

2.5.2 NMR buffer

The Nuclear Magnetic Resonance (NMR) buffer contained:

• NaH2PO4.H20 42g/L

• K2HPO4 16.5g/L

53



• 0.5mM TSP 86mg/L

• Sodium Azide 200mg/L

• 100mM EDTA 1mL/L for final 100nM solution (100 mM EDTA-0.372g in

10mL D20)

• Made up to 1L with D2O

The Sodium Phosphate Hydrous and Di-Potassium Phosphate Anhydrous were

pH buffers to balance the pH to roughly 7pH. The EDTA ensured free metal

ions were bound and removed in the centrifuging step to limit future NMR

interference/noise. Sodium Azide acted as an anti-microbial agent to ensure growth

had stopped in the media. D2O acted as the 0-point of the spectra. Finally, the TSP

(Trimethylsilylpropanoic acid) was used as a reference peak for NMR analysis which

would allow the quantification of other metabolites based on the TSP peak intensity

with a known concentration.

2.5.3 YNB Media

When YNB is referred to within the context of this thesis, the following recipe

shown in table 2.2 is to be kept in mind. The YNB product code was discontinued

from Formedium, but any YNB without glucose (or other carbon source) but

containing vitamins, amino acids and minerals should be sufficient to replicate the

media.
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FORMULA FINAL CONTENT (mg/L)
Histidine HCl 10
Methionine 20
Tryptophane 20
Biotin 0.002
Ca-Panthotenate 0.4
Folic acid 0.002
Inositol 2 Nicotinic Acid,
(Niacin)

0.4

p-Aminobenzoic Acid 0.2
Pyridoxine HCl 0.4
Riboflavin 0.2
Thiamine HCl 0.4
Boric Acid 0.5
Copper Sulfate 0.04
Potassium Iodide 0.1
Ferric Chloride 0.2
Manganese Sulfate 0.4
Sodium Molybdate 0.2
Zinc Sulfate 0.4
Potassium Phosphate,
monobasic

1000

Magnesium Sulphate. anh 500
Sodium Chloride 100
Calcium Chloride.anh 100
Ammonium Sulphate 5000

Table 2.2: Yeast Nitrogen Base media components- Formedium product code CYN02.
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Chapter 3

Predicting and Increasing Furfural

Resistance using GWAS Approaches

3.1 Furfurals explanation- a lignocellulosic metabolic

hurdle

3.1.1 The microbial challenge

As finite oil reserves deplete and governments mandate the usage of fuels and

chemicals derived from bio-sustainable sources, the case for microbial platforms

for metabolite production is strong [90]. Recently, the focus of these platforms

has broadened from the initial replacement of fossil fuels to include fossil-fuel

derivatives (e.g. plastics, succinate, tar), such that a wide range of metabolic

products are becoming increasingly viable [91]. Oil-derived chemicals can be

highly long-lasting and polluting, particularly in the case of plastics. The

development of biodegradable plastics, derived from non-fossil sources, is therefore

of high scientific interest. For example, microbially-derived and biodegradable

polymers such as polyhydroxyalkanoates (PHAs) have been identified as potential

alternatives to oil-based plastics [91] and are the focus of a growing number of

initiatives.

A key aim of sustainable bio-production efforts is to use plant biomass

as a biochemical production vehicle. Such a system draws together farmers,

microbiologists, brewers, and many other disciplines, to enable the conversion of

live biomass into biofuels and other platform chemicals. First generation biofuel
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programs used edible crop seeds as feedstocks. Easily digestible by microorganisms

and rich in sugars, seeds provide an ideal environment for microbial growth.

Unfortunately, while such a microbial system efficiently converts simple sugars

into the desired platform chemicals, it was also found to have deleterious societal

impacts. When farmland is dedicated to producing feedstocks for industrial

processes, the land (and crops) cannot simultaneously provide sustenance for the

human population. As a consequence, farmland for food becomes scarcer and food

prices increase. Additionally, farmers in poorer countries encounter the dilemma of

feeding their populace or earning more money by selling their cash crops to overseas

biotech companies. As farmland is occupied by bio ‘cash’ crops, a hungry populace

would need to plant new acreage; deforestation might then become the temporarily

optimal path to food security [2, 40, 92, 93, 94].

These factors, among others, made it difficult to permit the usage of foodstuffs

as feedstocks for biochemical production. Other methods were then required that

utilise renewable, sustainable sugars without impacting current food supply-chains.

As such, the focus of biofuel and biochemical production efforts shifted towards

the use of plant biowaste, often the inedible parts of plants produced for food.

Lignocellulosic waste, lignin- and cellulose-rich biomass from inedible parts of

plants such as the stalks, has subsequently become of high interest to industry as a

carbon source for industrial fermentation [40, 95].

3.1.2 Furfural Production Through Pretreatments

When attempting to utilise lignocellulosic waste biomass in bioproduction

processes, it is necessary to extract the full range of sugars found therein. The

stalks, leaves and other inedible sections of plants are composed of cellulose,

hemi-celluloses and lignin arranged in rigid structures. Within these structures, the

sugars are bound tightly together and are therefore inaccessible for most microbes.

Consequently, it is necessary to break down these strong bonds and release the

carbon necessary for the microbes to grow and produce their platform chemicals

[96].

To reach the more-accessible cellulose, it is first necessary to solubilise the lignin

and hemi-celluloses. This is often done through heat and/or acid pre-treatment,

efficient but expensive techniques [40, 97]. The acid, and elevated temperatures,
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hydrolyse the release of sugars such as xylose and pentose. Other well-known

sugars released by such pretreatments include monosaccharides such as glucose

and galactose, along with their respective disaccharides and oligosaccharides. These

sugars are then metabolised by the microbial production platforms to produce the

desired platform chemical metabolite [97].

However, pre-treatments can also release growth-inhibiting chemicals that slow

microbial growth and, as a consequence, decrease metabolic outputs [31]. In

particular, lignin degradation releases antimicrobial phenylic compounds. While

microbes are known to digest some of these compounds, such as benzoic acid [98],

others such as cinnamic acid are digestible only by a limited range of microbes, for

example non-brewing yeasts [99]. Other phenolic compounds (coniferyl aldehyde,

ferulic acid and 4-hydroxybenzoic acid) are well known microbial inhibitors [100].

Taken as a whole, lignin degradation is highly inhibitory to microbes such as

yeast. In addition, the xylose and pentose sugars released in the acid catalysis

of the hemicelluloses and cellulose can be dehydrated to form furan compounds,

including furfuraldehyde, hydroxymethylfurfural (HMF) and furoic acid [40].

These last compounds are of particular concern due to their broad-spectrum

inhibitory effects.

In summation, heat and acid are necessary for the hydrolysis of complex bonds

in the inedible parts of plants into simple sugars. However, this pretreatment

also releases various inhibitory factors, ranging from phenylic compounds from the

plants’ lignin, to furans from the same sugars it was designed to release [97, 101]. As

such, the identification or development of microbial strains capable of both utilising

the extracted sugars while also being resistant to the wide range of inhibitory factors

is crucial. This section of the thesis focusses on the discovery of yeast strains

resistant to the inhibitor furfuraldehyde [97, 101, 102].

3.1.3 Lignocellulosic Pretreatments and Furfural Origins

As previously mentioned, heat and acid pre-treatments are often used for the

catalysis of complex starches into simple sugars. The sugars are subsequently

converted by microorganism production platforms into various metabolite

chemicals of interest. However, this pre-treatment also causes the release of growth

inhibitors, such as furfuraldehyde.
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As we proceed it is important to fully understand the function of furfuraldehyde

(and other furfurals). Furfurals are lag phase extenders for yeast growth, inhibiting

growth through a broad spectrum of effects. They are known to damage DNA,

proteins and membranes through an increase in Reactive Oxygen Species (ROS)

as well as increasing the yeast cells’ sensitivity to osmotic stresses [103, 104]. As

such, they cause great stresses on the yeast cells. This is exacerbated by the fact

that the yeast cells expend NADH as an electron donor to reduce the furfural to

the less-toxic furfural alcohol anaerobically in fermentation reactions, as shown in

figure 3.1.1 [101, 105].

Figure 3.1.1: Furfuraldehyde detoxification through NADH-mediated hydrogenation of
furfuraldehyde.

This NADH sink means that a smaller pool of NADH is available for growth and

replication and therefore the stress caused by furfurals is increased. A resistance

to the effects of furfurals might therefore involve a host of methods such as; DNA

protective measures, increased NADH availability for detoxification of furfurals,

membrane changes to shuttle more furfurals out/ protect from osmotic stresses as

well as other broad-spectrum ROS-mediating proteins [101, 106].

To produce the aforementioned sugar-rich feedstocks necessary for industry,

lignocellulosic waste is often treated in a myriad of ways [96]. One common method

is to provide sufficient heat and acid to break up the long inaccessible carbohydrate

chains into free-floating sugars for use by the microbial production platforms.

Unfortunately, due to the elevated temperature and acidity, factors antagonistic to
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yeast growth are produced from the hemicelluloses, glucoses and xyloses. In the

conditions necessary to release the sugars, such as diluted sulphuric acid coupled

with high temperatures, the xylose and glucose released can be dehydrated to

hydroxymethylfurfural (HMF) and other furfurals. This makes furfuraldehyde

a useful model inhibitor of yeast growth where furfuraldehyde represents an

exogenous inhibitor to which yeast will have adaptated little [7, 32, 101, 107].

A resistance to the toxic and lag-phase extending effects of furfural, which is

present in much treated lignocellulosic waste, is therefore of significant importance

for industry. Production of any chemicals using yeast as a production vehicle and

pre-treated waste biomass as a feedstock is greatly reduced as the cells struggle to

resist the damage from furfural even as they sink significant amounts of NADH

to detoxify it [101]. Often, to find a mechanism for resistance to chemicals,

researchers focus on a single, promising biomolecular pathway or enzyme. Due to

furfuraldehyde’s unspecific wide-ranging effects [106], it is difficult to accomplish

this within an individual study of distinct genes. This difficulty might be attributed

to furfuraldehyde not being present in ’natural’ environments where yeast are

found, so there is no specific naturally evolved stress response.

3.1.4 Investigating natural and forced resistance to furfurals in

yeast strains

In this chapter, experiments to understand the genetic basis of furfural resistance

in Baker’s yeast Saccharomyces cerevisiae will be carried out. First, a set of over one

hundred S. cerevisiae strains obtained from the NCYC are tested for their ability

to grow in the presence of furfuraldehyde. Then, using various statistical models,

the contributing factor of each single SNP is measured against the strain’s overall

resistance to furfural. In the manner of table 3.3, each SNP’s variation profile across

the entire strain set is matched to that of the computed resistance score. The higher

the correlation between the two, the lower the p-value of the SNP and the likelier

it is to be causative for the phenotype. In the second experiment, the results of

the first study are used to design and conduct a directed evolution experiment

where both single strains and strain mixes are challenged with furfural doses in the

expectation that evolved strains will show high resistance to this growth inhibitor.

The prevalence of key SNPs will be compared between the two datasets. Prior to
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describing the experiments, two new computational methods developed and used

within this work will be introduced, for both phenotype classification and yeast

genomic structure analysis.

3.2 A Novel, Automated Method for Quantifying

Resistance Phenotypes from Yeast Growth Curves

3.2.1 Preparing strains for OD growth curve analysis

For OD growth analysis, a 20µL aliquot of each strain was grown in 96-deepwell

plate with a total volume of 1mL. Plates were sealed with breathable seals in

anaerobic conditions and incubated at room temperature for three days. This

allowed for a suitable stock for future aliquot to be produced, while also providing

sufficient supernatant for metabolite profiling via NMR analysis.

Once three days of growth had been achieved, a 20µL aliquot was removed from

each well and placed in a new 96-well micro-plate with a final volume of 200µL. The

strains were then grown for 24 hours at 25°C in a FLUOstar Omega plate reader

(BMG Labtech) with a 600nm OD reading taken every 30 minutes and used as a

biomarker for cell growth and density. OD values were used as a measure of cell

biomass/number and therefore a high OD value would be expected to correlate with

higher resistance.

3.2.2 Measuring resistance phenotypes

To acquire the resistance score/growth phenotype for each yeast strain from the

described OD readings, a consistent, automated way to measure resistance was

necessary. Notably, the method developed was general and therefore could be used

for any growth inhibitor, rather than being limited to furfuraldehyde.

When graphs of the 49 half-hourly OD readings are compared visually, it can be

easy to discern a highly resistant strain (fast growth leading to high cell biomass)

to a highly sensitive strain (very little or no growth). However, it can be difficult

to assign values to resistance on a discrete linear scale; this is especially true when

comparing medium-resistance strains. This task becomes increasingly subjective,

such that different people could classify the same strain as differently resistant.

61



For example, looking at the 96-well plate in figure 3.2.1, we can see how difficult

it would be to discern levels of ’resistance’ between strains. To solve this issue,

computational analysis of the OD growth curves is necessary.

Figure 3.2.1: 96-well plate example, with growth in furfural media (blue) and growth in control
YNB media (red) shown with full biological triplicates superimposed onto each relevant well.
Displays plate ’1’ from figure 2 in the appendix. Control well without strains (H12) replaced with
Plate 1 well H12 from separate excel growth file. The graphs show, for example, that the yeast
strain in well A4 grows well in the presence of furfural whereas the strain in well C1 does not.

3.2.3 OD growth curve feature selection

To analyse the growth curves computationally, it was first necessary to determine

which features of growth could be calculated algorithmically. The Maximal OD

value of the growth curve (MaxOD) was the obvious first characteristic and easiest

to measure. As the name indicates, it is simply the highest Optical Density reading

of a given growth curve. Next, the timepoint along the curve at which its slope

µ is highest was calculated. To find the various values for µ along the curve,

several ’windows’ of 9 time points (representing a four-hour period) were taken

across the growth curve. For each window, a linear regression of the 9 OD values

was conducted, and the slope µ attributed to the 5th (middle) timepoint. The 37

different values of µ were then compared, with the timepoint at which the highest

slope (µmax) was observed denoted as Tµmax (Equation 3.1a).

The Inflection Point of the curve was also measured. First, the average of the 2nd,

3rd and 4th OD values (i.e. 0.5hr, 1hr, 1.5hr timepoints) was calculated, creating

a ’baseline’ minimal OD value (OD0) that ignored the initial, highly variable first
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Figure 3.2.2: Parameters from equation 3.2.2 illustrated on an example of a growth curve.
MaxOD = Maximal OD of graph, OD0 = OD baseline (i.e. average OD value of 2nd, 3rd and 4th
timepoints), µmax = highest slope (i.e. growth rate), Cµmax

= intercept with y-axis of the regression
line of the maximum slope, T = timepoint of maximal µMax, µMax = maximal growth rate (red
line), Tip = predicted end to lag phase.

value. A horizontal line was then established with this value at all timepoints

(equation 3.1b). Then, by equating this baseline with the line of maximum slope

(equation 3.1a), the inflection point TIP could be found (equation 3.1c).

y1 = µmax × T + cµmax
(3.1a)

y2 = OD0 (3.1b)
µmax × TIP + cµmax

= OD0 (3.1c)

3.1: Deriving the Inflection Point of the growth curve shown in Figure 3.2.2 by equating the
regression line of the maximum slope (equation 3.1a) with the horizontal OD baseline (equation
3.1b). µmax = highest slope (i.e. growth rate), cµmax

= intercept with y-axis of the regression line of
the maximum slope, OD0 = OD baseline (i.e. average OD value of 2nd, 3rd and 4th timepoints),
TIP = Inflection Point

As a final characteristic, the C-value (i.e. cµmax) was extracted from the growth

curves. The is simply the y-axis intercept of the regression line for the maximum

slope µmax (equation 3.1a). These values, and various ratios between control media

growth and growth under an inhibitor, were selected as they are easily recognisable

to biologists, visually identifiable on a graph, and represented core parameters of

a growth curve. Figure 3.2.2 illustrates how these different features account for

much of a growth curve’s characteristics and how they inter-relate. Collectively,

they draw together much of the information stored on a growth curve to inform us
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of the overall resistance of a strain.

3.2.4 Growth curve feature distributions

To determine which features were useful discriminators of the growth phenotype,

their distributions across an experiment are measured (see Section 3.4 for the

description of an experiment leading to the growth curve data seen in figure 3.2.3).

Unfortunately, these features are difficult to analyse collectively; they have widely

varying means, variance and units. To rank them on a single scale of relative

resistance, it is necessary to relate all the features and strains to each other. This is

done using the k-means [108] algorithm. The k-means algorithm allows us to cluster

each feature individually on a linear scale. Those features which display a uniform

distribution across the strain set would be particularly suitable for resistance score

binning using such an approach and could be carried forward for further analysis.

From the graphs in figure 3.2.3, we see a range of very different distribution

shapes. The graph of Tµmax in figure 3.2.3a, the timepoint at which the slope µ is

at its highest for a given strain, displays a highly uniform distribution. This allows

for excellent clustering into ’highly resistant’ to ’highly sensitive’ strains, as we can

assume that having an early Tµmax means fastest growth was achieved very quickly,

as expected of a highly resistant strain. Conversely, late highest growth would

indicate a highly furfural-sensitive strain as it took a protracted period of time for

the strain to begin growing fully. Two other features, MaxOD (figure 3.2.3c) and

TIP (figure 3.2.3d), gave distributions that were next closest to uniform, particularly

within a reduced range of values. These two features were therefore also deemed

suitable for further analysis.

We also see in figure 3.2.3b that the C-value of a graph looks to be normally

distributed and to be a poor discriminator of resistance. Most strains possess an

intermediate C-value, which does not enable us to precisely differentiate between

strains. This feature was therefore disqualified from the final analysis. However,

in future a transformed C-value could be considered and tested. The two ratio

features (figures 3.2.3e and f) showed highly right-skewed distributions and were

again disqualified from further analysis.

It is interesting to note that the maximal y-values of the graphs illustrate the

suitability of a feature distribution. In graphs A, C and D, we see no frequency bar
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Figure 3.2.3: Frequency Distribution histograms of six curve features in an exemplar experiment
measuring resistance to furfural: a) timepoint at which the maximim growth rate was observed
(Tµmax

), b) the intercept of the maximum-slope regression line with the y-axis (C-value), c) the
maximum OD value (MaxOD), d) Inflection Point (TIP), e) ratio of growth rate, µ, between
strains in control media (no furfuraldehyde) and furfural media (furfuraldehyde), f) ratio
of inflection ratio between strains in control media (no furfuraldehyde) and furfural media
(furfuraldehyde).

reaching above 50 (i.e. the value is seen in fewer than 50 strains), while a single

very high bar is present in graphs B, E and F. This example highlights how the

distributions of three of the characteristics tested are highly non-uniform, with over

30% of strains in the study showing values grouped tightly together.

In conclusion, three graph features were chosen for inclusion in a resistance

phenotype score for this particular experiment; the Maximal OD value (MaxOD)

of the growth curve, Tµmax (the time-point in the graph at which the growth rate µ

is highest)), and the Inflection Point (TIP), or end of lag phase growth. However, the
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chosen features are not necessarily fixed but could be varied to suit the experiment

in question.

3.2.5 Selection of k

As we saw above, three growth features (MaxOD, Tµmax and TIP) were selected for

use within a resistance phenotype score based on our ability to bin their frequency

distributions evenly. Subsequently, the optimal number of bins (k) for each of the

three features was identified using the gap statistic [109]. The highest of the three

k values was then used to bin each of the three features. This highest value was

chosen so that there would be an equal number of bins for each feature, which

would mean that their contributions to the resistance score would be weighted

equally. Furthermore, when selecting k, it is preferable to over-fit a little, rather

than under-fit and fail to explain data variation. A resistance score on a scale of

1 to k was then attached to each strain for each feature, depending on the values

extracted from its growth curve. Finally, the three resistance scores (for the three

features) were summed - on a scale of 3 to 3×k - to provide a holistic phenotype

measurement.

To calculate the value of k for a given dataset, the gap statistic is used. The

method proceeds as follows, according to a custom R script (Dr Jo Dicks, personal

communication). For each feature and for each possible value of k (from 1 to 20),

k-means clustering (see Chapter 2) was used to bin strains into k groups for the

given feature. Then, for each of the k groups, the distance between each pair of

points in the group was calculated and summed, to give a value Dr (for group Gr),

as shown in equation 3.2a. The distance used for this calculation was the Modified

Rogers’ distance, a popular choice for genetic datasets. The k values of Dr were then

combined, as shown in equation 3.2b, to find the within-group dispersal measure

Wk, where mr is the number of data points within Gr . For spatial datasets, where

Euclidean distances between data points can be used in equation 3.2a, Wk is equal to

the pooled within-group sum of squares measure about group means. The dispersal

statistic describes how well a clustering fits a set of data points. The smaller the

value, the closer points within each group are to one another. Therefore, a low Wk

score indicates a tight grouping. Next, for each value of k a specified number n of

random datasets with similar features to the initial, real dataset were generated. The
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Dr =
∑

i,i′∈Gr

Dii′ (3.2a)

Wk =
k∑

r=1

1
2mr

Dr (3.2b)

Gapn(k) = E∗n{log(Wk)} − log(Wk), (3.2c)

W
′

k =
k∑

r=1

2
mr(mr − 1)

Dr (3.2d)

3.2: Gap statistic equations, which can be used to identify the number of groups k within a
dataset.

random dataset generation process, inspired by Jonathan Marchini’s nps function

within the R popgen package, creates datasets with allele frequencies identical

or near-identical to those in the real dataset. The final step of the gap statistic

estimation is to find the distance (the ‘gap’) between logarithms of the within-group

dispersal measures for the expected value of the randomly generated dataset and

the real dataset, as shown in equation 3.2c. The chosen value for the number of

groups is either the value of k which maximises the gap function between real and

random datasets, or one which shows a high gap value within a suitable range of

values for k.

The Wk and weighted Wk (W
′

k, defined in equation 3.2d) values were also plotted

and visualised for each value of k (k = 1 to 20) and each feature. In particular, the

’elbow’ or ’inflection’ of each graph was noted, the point after which increasing the

number of groups for that feature only reduces the within-groups dispersal measure

incrementally. This point is often used in data clustering as an alternative measure

for the number of groups.

3.3 A Novel Method for Estimating the Genetic

Contribution of Founder Populations to a

Microbial SNP Dataset

As described in Chapter 2, understanding the contributions of founder populations

to the genomes of microbial strains used within a Genome Wide Association Study

is important. This information, in the form of a Q-Matrix, can be used to remove
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spurious correlations between genotypes and phenotypes that arise when closely

related organisms have similar phenotype values but where less closely related

organisms have dissimilar phenotype values, both as a result of their ancestry.

Various software, such as PSIKO, have been developed to estimate such a Q-Matrix.

Within this project, the SANE (Simulating Ancestry through Nucleotide Equations)

software for Q-Matrix estimation was developed using the principles of genetic

distance between DNA segments (see figure 3.3.1). SANE is a Python 3 program,

the source code for which can be found on github (link in abstract).

SANE begins by first finding the k strains (for a chosen number of groups, k) that

are most dissimilar and distant genetically (figure 3.3.1 step 1). To find distances

between pair of SNP genomes (see Chapter 2 for a definition) it uses the TamD

[110] genetic distance measure. These strains are then counted as the ’seeds’ for

predicting k ancestral founder population genomes (at the defined SNP sites).

Next, each strain is added to its nearest genetic neighbour (using the same

measure of distance) within ’seed trees’, one for each of the initial ’seed’ genomes,

until a final set of trees has been built with all the strains in the study (figure 3.3.1

step 2). This means that the number of trees k depends on the initial number of

’seed’ strains - and there could be a tree composed of only the ’seed’ strain, if no

other strain was similar enough to it. Then a founder ’average SNP genome’ is

constructed from each seed tree. This average genome is built simply by finding

the most frequently observed SNP per SNP site across all strains in the tree. If, at

any site, there is an equal number of two variant SNPs within strains in a seed tree

(a ’tie’), a SNP is picked at random from the two possibilities for the average SNP

genome (figure 3.3.1 step 3).

Subsequently, each SNP genome in the study (including the ancestral average

genomes) is fractured into a number of segments (haplotypes), n (chosen manually).

For a given strain, each segment is compared (again, using genetic distance

calculations) to each analogous segment within the k average SNP genomes to find

which is most similar to it. The number of segments within a strain’s SNP genome

that match to average SNP genome i is mi (for i = 1 to k). The strain is therefore

found to contain ( (mi/n) * 100)% of average SNP genome i (figure 3.3.1 step 4).

Making a list of the percentage similarity of each strain’s SNP genome to the k

average SNP genomes, we can build a Q-Matrix (figure 3.3.1 step 5). This Q-Matrix

can then be employed in the same manner as the PSIKO Q-Matrix, using a linear
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mixed model to find associations between the SNPs within the SNP genome and

phenotypic values.
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Figure 3.3.1: SANE Q-Matrix estimation
Workflow of the 5 SANE steps where the number of groups k is chosen to be 3. In step 1, the 3
most distantly related strains from a given dataset are identified. In step 2, all other strains in
the dataset are grouped with those most similar to it. In step 3, strains in a group are ‘averaged’
to find SNP genomes representative of a group. In step 4, the SNP genome of a chosen strain is
broken into segments and each segment is matched to the averaged SNP genomes in step 3. The
contribution of each averaged SNP genome to the SNP genome of the strain is identified and a
row of the Q-matrix is calculated. In step 5, step 4 is repeated for all strains, resulting in a full
Q-matrix.
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3.4 A Genome Wide Association Study for resistance

to furfuraldehyde in Saccharomyces cerevisiae

3.4.1 The Strain Set

The yeast strains selected for the study originally included the approximately

four thousand strains within the National Collection of Yeast Cultures (NCYC

[1]). However, the dataset was quickly reduced to those whose genomes had been

whole genome sequenced (965 distinct strains). Subsequently, we selected only

the Saccharomyces cerevisae (406 strains) within our dataset as these were most

likely to have adaptations to commercial fermentation conditions and reduce FDR

effects due to distant kinship relationships between species. However, some of

these strains’ WGS reads had been subject to inter-strain contamination, adapter

contamination or were low depth (here less than 30). After removing these datasets

from the study, there remained 168 Saccharomyces cerevisae strains with read dataset

of sufficient depth and quality to enable high-quality downstream analysis.

For a full list of the NCYC sequencing plates and the Saccharomyces cerevisae

strains used within this study, see table 2 of Chapter 6.1. The Saccharomyces cerevisae

and other strains were taken from these plates.

3.4.2 OD analysis for resistance phenotype elucidation

To identify the resistance profiles of the chosen yeast dataset, each strain was grown

for 24 hours and the OD was measured at each 30-minute time interval, using the

method described in Section 3.2.1. OD readings were plotted using RStudio [69]

scripts, producing 96-well graphs such as that seen in figure 3.2.1 (the negative

controls without any yeast cells were removed from the figure for visualising the

data).

For the furfural resistance study, it was essential that resistance could be

quantified as accurately as possible. For this, visual checks of OD curves across

time were insufficient; comparing hundreds of curves to identify resistance on a

multi-point scale is impossible to conduct with adequate precision. Identifying

resistant from sensitive strains is possible, yet the wide-spectrum resistance to

furfuralaldehyde was likely to be highly variable. To resolve this, the computational

method described in Section 3.2 was used to analyse the hundreds of curves in a
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reproducible, reliable and verifiable manner. When a model is proven insufficient

to the task, it is easy to update with the new understanding to encompass previous

failures. In fact, the very model itself can tell us important things about resistance;

for example, if the lag phase is the most variable factor, it is likely the most impacted

by furfural and, consequently, the best for measuring resistance to furfural.

As described in Section 3.2.3, several features of each OD curve were initially

identified, but the curve data for the 168 Saccharomyces cerevisiae strains (see figure

3.2.3) indicated that only three of the six measured characteristics were suitable

for calculating a resistance score. These features were the Maximal OD reading

(MaxOD) of a curve, the time at which the steepest slope (indicating the fastest

growth rate, µmax) was observed in a sliding 4.5-hour window and the end of lag

phase, calculated by working from the time where µ is highest and working back

to the baseline OD value. In this way, we can explain a curve in the language of

characteristics; when does growth start (end of lag phase, TIP ), where is it highest

(Tµmax
), and what is the maximal OD reached, indicating highest call mass (MaxOD).

3.4.3 Calculating a resistance score

Once the three growth curve features had been chosen, the best choice for the

number of groups k needed to be identified. This was done in two ways, as described

in Section 3.2.5. Firstly, the Gap statistic was calculated for the three features using

100 randomly generated datasets. For time of maximum slope, the highest value of

the Gap statistic in the range k = 1 to 10 was k = 4, as shown in figure 3.4.1A, and

with a secondary peak at k=7. For MaxOD, the Gap statistic indicated a non-trivial

(i.e. after k = 2) maximum value at k = 6 (figure 3.4.1B), with a secondary peak

at k = 4. For time of Inflection Point, the Gap statistic gave a non-trivial local

maximum of k = 3, with a subsequent secondary peak at k = 6 in the range k =

1 to 10. In general, high secondary (or tertiary peaks etc.), even if they are not

maximal values can represent group structure in the dataset.

Secondly, we plotted the within-group dispersal measure (Wk, a measure of how

’tight’ a cluster is) and its weighted version for k = 1 to 20 to see where ‘elbow

points’ could be seen in the graphs (figure 3.4.2). These turning points could be

seen at k = 4, k = 6 and k = 3 for the time of maximum slope (Tµmax
), maximum

OD reading (MaxOD) and time of inflection point (TIP ), respectively, mirroring the
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results seen for the Gap statistic. A sudden change in the dispersal measure would

indicate the newly-selected k number significantly changes how the data clusters

and is thus an important k number.

Figure 3.4.1: Gap statistics for growth curve features.
Gap and statistics for k=1 to 20 with 100 randomly generated datasets for A) Time of highest slope
Tµmax

, B) Maximum OD reading (MaxOD) and C) Time of Inflection Point (end of lag phase; TIP ).
Values of k = 4, k = 6 and k = 3 (denoted with red circles) were chosen for these three features,
respectively.
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Figure 3.4.2: Within-group dispersal values for the three growth curve features.
Y1 = K-means sum of squares, Y2 = Weighted K-means sum of squares for the time of maximum
slope, MaxOD and time of inflection point features, respectively.
A sudden drop in the sum of squares (SS) value, indicating the ’elbow’ of a figure, would indicate
the new k number clusters the data much tighter and is therefore a k value of interest. Here, we
try to find differences between the unweighted (Y1) and weighted (Y2) SS calculations.
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Collectively, these results indicated that k = 6 was the optimal number of groups

for this dataset. To confirm this, distributions of the three chosen growth curve

features were binned using k-means clustering for k = 5,6,7. Examining figure

3.4.3, we can see that each feature selected is roughly balanced across the strains,

except for the first group (lowest values) of the Inflection Point feature, which is

under-represented and moderately skews other clusters. Further, we can see the

differences in strain distribution depend on the value of k. When k = 5 (black bars),

the strains group tightly with the mode in cluster 4 for all three features (figure

3.4.3). This is undesired, as a bias towards a single cluster would skew the resulting

phenotype scores.

Figure 3.4.3: Frequency distributions of grouped features
Numbers of strains within each growth curve feature group (for k = 5 to 7) across the 168
Saccharomyces cerevisae strains within the study. Clustered features were; Inflection Point for
start of growth (end of lag phase), Maximal OD, Time-point of highest growth µmax.
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However, when k = 7 the variance of cluster strain frequencies is high. For

example, the MaxOD characteristic displays this point, with clusters 1, 2 and 7

under-represented. The within-cluster frequencies for the Inflection Point feature

also fluctuate between clusters when using k = 7. Setting k = 6 produces the most

balanced frequency distributions; there is little bias for a specific cluster while none

(barring cluster 1 of Inflection Point for all values of k) of the clusters are wildly

under-represented. In this way, the data is parsed more effectively and differences in

strains are recognised more accurately without an overly-elevated k number causing

fragmentation of phenotype.

With a final value for k now chosen, resistance scores could be determined. For

each of the three features binned into k = 6 groups, each strain was ranked from

1-6 for each feature and these values summed to produce a final resistance score

of 3-18. For example, a strain with a very high MaxOD, low Tµmax
and low (early)

inflection point will score a ’6’ for its MaxOD, ’5’ for its low Tµmax
, and ’5’ for its low

(early) inflection point TIP . Summing the three values, we can see the strain has a

high resistance score of 16 - which would be expected as the strain’s growth curve

characteristics were each expected in a strain of high furfuraldehyde resistance.

The concern of a unified resistance score would be the disguising of interesting

results in a single characteristic. However, unless we wished to triple the

outputs, it presents a reasonable solution to concatenating disparate growth curve

characteristics and, potentially, genes variants affecting all the characteristics. There

are outliers for all characteristics (figure 3.4.3), however by joining them it is hoped

that individual outliers in a single characteristic doesn’t play an undue role in

skewing the data.

Categorising the entire dataset in this way gives a holistic resistance score to

each strain, with values ranging from a minimum of 3 to a maximum of 18. A

Principal Component Analysis was carried out on the three initial variables of

MaxOD, Inflection Point and Tµmax
for all 168 Saccharomyces cerevisiae strains. The

results of the PCA analysis were then plotted according to the first three Principal

Components (see figure 3.4.4). A K-means clustering of the overall resistance scores

into four resistance categories (Highly sensitive, Sensitive, Resistant and Highly

resistant) was then conducted, with all points in the PCA plot coloured according to

these groups. The resulting figure, which shows similarly coloured strains close in

3D space, gives a clear view of how the raw data can be partitioned into the various
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Figure 3.4.4: PCA plot of the 168 Saccharomyces cerevisiae strain dataset, with initial variables
the three chosen growth curve characteristics (Tµmax

, MaxOD, Inflection Point). Colouring based
on holistic K-means resistance scoring. Dark red = Highly sensitive (3-6), Red = Sensitive (7-10),
Blue = Resistant (11-14), Cyan = Highly resistant (15-18)

resistant vs non-resistant strains.

Furthermore, we can plot the number of strains for each Resistance Score to help

parse the data and see how the strains end up clustering on the 3D plot (figure

3.4.5). On this figure, we can see how there are few strains at the tail ends of

resistance, with most being intermediate through the sum of their growth curve

characteristics’ scores. This highlights the importance of determining the correct

value of k to properly parse the highly clustered strains of intermediate resistance,

since even using the measures described above, we fail to get a uniform distribution

for overall resistance.

Table 3.2) shows basic information on the nine strains with resistance scores of

16 or 17 (the ‘top strains’). It is immediately evident from the Habitat field that

the strains in the study come from disparate backgrounds. Some strain origins are

medical, while many are brewing strains, with origins of many of the older strains

unknown. Similarly, table 3.1 shows the same information for the six strains with

resistance scores of 3 or 4 (the ‘bottom strains’). From both table 3.2 and table 3.1,

we can see some expected results in terms of presence or absence of appearance of

the strain in the fermentation literature. This is examined in more detail below.
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Figure 3.4.5: Histogram of strain resistance scores
Histogram showing strain distribution per Resistance Score, coloured to match the 3D plot in
figure 3.4.4
Colour scheme is based on holistic K-means resistance scoring. Dark red = Highly sensitive (3-6),
Red = Sensitive (7-10), Blue = Resistant (11-14), Cyan = Highly resistant (15-18)

Strain
Number

Alternative
Names

Deposit Name Resistance
Score

Habitat Fermentation
Literature

620 CBS 3012 Saccharomyces
cerevisiae

4 Jerez Sherry
production
yeast from
Feduchy

0

776 ATCC
12341, H.P.
Klein strain
LK2G12

Saccharomyces
cerevisiae

4 Unknown 0

1444 Saccharomyces
cerevisiae

Saccharomyces
cerevisiae

4 Ale
production
strain

0

3313 OS 92/A,
Single spore
isolate of
DBVPG
1853

Saccharomyces
cerevisiae

4 White tecc,
Ethiopia

0

3612 Mat alpha
derivative of
YIIc17_E5

Saccharomyces
cerevisiae

4 Unknown 0

3265 0S17/A,
Single spore
isolate of
SK1

Saccharomyces
cerevisiae

3 Lab strain,
USA

0

Table 3.1: Bottom Scoring Strains
Six Saccharomyces cerevisiae strains with lowest resistance scores of 3 or 4 identified through
K-means clustering of three growth curve features
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Strain
Number

Alternative
Names

Deposit Name Resistance
Score

Habitat Fermentation
Literature

200 NCTC 608 Sternberg
’675’

17 Unknown 0

70 NCTC 3864 Saccharomyces
anamensis

16 Unkown 0

74 ATCC
9080/24904,
CBS 2354,
NCTC
7014,
Hillman
hospital
4228

Saccharomyces
carlsbergensis

16 Hillman
Hospital,
Birmingham,
Alabama,
USA

0

196 NCTC 3966 Yeast Race V 16 Uknown 0
221 A38/3,

S. spore
isolate
from NCYC
213

Saccharomyces
cerevisiae

16 Hybrid
brewing
strain

0

2798 MAS 6 Unknown 16 Mouth
of AIDS
patient

0

2826 CECT
1483, IFI
649

Saccharomyces
cerevisiae

16 Grape Must [42, 101,
111, 112,
113]

3467 OS281,
S. spore
isolate of
W303

Saccharomyces
cerevisiae

16 Unknown 0

3557 Mat
a/alpha
derivative
of
DBVPG6040

Saccharomyces
cerevisiae

16 Uknown 0

Table 3.2: Top Scoring Strains
Nine Saccharomyces cerevisiae strains with highest resistance scores of 16 or 17 identified through
K-means clustering of three growth curve features

3.4.4 Linking identified strains to past studies

A standard method of validation for any model is to verify if any outputs align with

previous experimental evidence. As such, the top scoring strains were investigated

for their past impact on the scientific literature. Many NCYC strains have been used

for a diverse range of research. Tables 3.2 and 3.1 do not display papers unrelated to

the study in question. For example, NCYC 74 has no literature listed in table 3.2, yet
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has been used in a paper involved in mapping the transcripts of the mitochondrial

genome [114]. This literature filtering was done in an effort to reduce ’noise’ and a

false sense of significance for strains with many publications of an unrelated nature.

Literature was searched with NCYC numbers through Google Scholar.

Other strains display desired phenotypes in specific papers. For example, NCYC

2826 has been identified as possessing a desired function in the highest number of

papers. It has been tested experimentally for its fermentative success to grow on

specific carbon sources [112], as well as its ability to grow on various lignocellulosic

waste biomass (rice stalks [112], wheat straw hydrolysate [101]), and has been

assessed for its metabolic products [112]. While displaying an extended lag phase

in response to furan compounds (particularly furfural [101]), it nonetheless showed

specific resistance to furfurals [101] and ethanol [42].

In a previous study to experimentally test furfural resistance, six tested NCYC

strains were shown to display furfural resistance (NCYC 3451, NCYC 3284, NCYC

3290, NCYC 3312, NCYC 3277 and NCYC 2826) [101]. The only one of these

six strains present in our study, NCYC 2826, is similarly shown here to be highly

resistant (see table 3.2). In a separate study, NCYC 2826 (Resistance Score 16) and

NCYC 3445 (Resistance Score 13) were both found to be high ethanol producers in

minimal fermentation media conditions [115].

Furthermore, while much information is lacking on the bottom scoring strains

(table 3.1), it still provides useful clues. One of the strains (NCYC 620) is a sherry

brewing yeast strain. Under environmental conditions of readily-available sugars in

grapes, sherry strains have likely been selectively bred to produce vast amounts of

ethanol. As a trade off, they might suffer reduced viability in higher temperatures,

lignocellulosic breakdown by-products or acidic environments. However, one of the

strains (NCYC 1444) is an ale strain - well used to indigestible sugars, even if brewed

at colder temperatures (3-4°C [116]) and is thus unsuited to higher fermentation

temperature pre-treatments.

The positioning of strains NCYC 620 and NCYC 1444 (of which we have habitat

information) in the bottom of the resistance bands can be explained logically. Both

are unsuited to the high temperature, low Ph and lignocellulosic byproduct-rich

fermentative environments of industrial metabolite production systems.
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3.4.5 GWAS analysis to identify S. cerevisae SNPs involved in

furfuraldehye resistance

In the present study, the raw phenotypic data is multivariate. With some variables

continuous (MaxOD) and others discrete (TIP , Tµmax
), it can be difficult to directly

compare variables. Additionally, the variables had highly differing means and

variances, with some being inversely correlated (i.e. high Maximal ODs should

correlate with low inflection points to indicate a highly resistant strain). To resolve

this difficulty of analysis, the variables were reduced to single cluster scores (all

growth curve feature distributions as seen in figure 3.4.3 and their sum in figure

3.4.4). The variables were thus linearised to a single discrete holistic resistance

score from the continuous multivariate input data. Although this causes a loss of

information from single characteristics, it is hoped to reduce the noise of outliers

in a single characteristic in a growth curve. E.g, A high final OD is less valuable

in determining resistance if the strain always presents a high OD due to being

an unique colour and there is little change in OD from start to end of growth

(signifying little actual growth).

The SNP genomes of the 168 Saccharomyces cerevisiae strains were generated

using a highly conservative computational pipeline (see Chapter 2). In particular,

the FAT-CIGAR tool, which ensures that reads are mapped exactly to the reference

genome at both ends (for a user-defined base pair length) prior to variant calling,

is effective at reducing the number of false positive SNP calls. Yet even with this

pipeline the study identified 84,046 high-quality SNPs (MAF > 5%) across the

approximately 12.1 million base pairs (i.e. 1 SNP for roughly every 143 bases). To

understand how these SNP genotype data were related to the phenotypic resistance

scores, the correlation type was measured. If a correlation between the reference

allele and the phenotype was negative, then the alternative allele (i.e. the SNP) was

related positively to resistance. Conversely, a positive correlation of the reference

allele with the phenotype indicated the alternative allele was related to a strain’s

sensitivity to furfuraldehyde. This distinction is important, as alternative alleles

have presumably arisen via adaptive evolution. In essence, we would expect most

of our top hits to relate to an alternative allele conferring greater resistance to

furfuraldehyde. In table 3.3, we can see how many of our top 10 hits have alternative

alleles related to furfural resistance.
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The SNP dataset was then correlated to the resistance phenotype dataset,

accounting for strain ancestry with the PSIKO and SANE Q-Matrices via the

method described in Chapter 2. A conservative Bonferroni approach to taking

into account the high number of SNP/phenotype correlations, where we would

expect to see strong false positive correlations arising by chance, would give a

5% significance threshold of 0.05/84046 = 5.95 × 10−7- which would not be quite

accurate a measure due to Linkage Disequilibrium. However, we can also use less

conservative corrections such as the False Discovery Rate (FDR) used commonly in

GWAS analyses. Our analysis did not employ them to remain conservative with the

huge number of potential hits involved[76].

If the SNPs had no ’real’ correlation to the phenotype scores, we could expect

86.5% of the SNPs to be positively correlated to the phenotype in question (total

number of positive/total number of SNPs). However, we find that when using the

PSIKO Q-Matrix 74% of the top 1,000, 80% of the top 500 and 98% of the top 100

SNP hits are negatively correlated with the phenotype. That is to say, the alternative

allele is predicted to be contributing to the desired phenotype that percentage of the

time.

A second Q-Matrix was constructed with the SANE method (see Section 3.3), that

utilised genetic distance estimates based on sequence similarity to predict founder

populations. The genetic distance used in this study was Tamura Distance (TamD)

measure [110], with genomes being fragmented into DNA segments of 5% of the

total number of SNPs and with 3 original founder populations, as indicated by plots

of within-group sums of squares for different values of K , analogous to the approach

taken with resistance score grouping. The TamD distance is highly appropriate for

eukaryotic genomes and differentiating between divergent yeast strains [110], as

we see within the global Saccharomyces cerevisiae populations, many of which are

represented within the 168 strains used here.

The fragment size was chosen to be sufficiently large (60,000bp+) for calculating

genetic distances accurately. With the smallest chromosome (e.g. ChrI in

Saccharomyces cerevisiae) being roughly 230,000bp [117], a fragment size of close to

100,000bp (1% of total) would seem reasonable. These parameters can be modified

and updated as understanding of the dataset develops. For example, if the size of

the genomes change, the fragment size may change or if the base assumption about

the type of mutations present is updated, then the genetic distance method may
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need to be updated.

To compare the Q-Matrices estimated by the PSIKO and SANE algorithms, we

conducted a Mantel test, a statistical method for the multivariate analysis of spatial

genetic matrices [118]. A strong correlation between the two matrices was found,

with a p-value of 0.001 (r=0.4972247). This indicated that the SANE method

has promise, when compared to the more established PSIKO approach. However,

somewhat surprisingly, the GWAS results when using the SANE Q-Matrix were

rather different, with only 58.9% of the top 1,000, 56.2% of the top 500 and 41%

of the top 100 SNPs having negative correlations with the phenotype. This could

indicate the genetic distance method removes fewer false positives correlations than

PSIKO’s half-PCA method if we assume the reduction in negative correlation signal

to be a reduction in FDR. Therefore, while the matrices are highly similar, the small

differences between them are important to the results of the LMM predictions used

within the GWAS (All Matrices in github repository in Abstract).

3.4.6 Specific Hits

The GWAS analysis resulted in many tens of thousands of SNPs, each with a p-value

illustrating its correlation to the phenotype. As a low p-value suggests a more

significant correlation, it can be more intuitive to use the log of the p-values. In this

case, high values indicate high significance. This information is then best illustrated

through a Manhattan plot (figure 3.4.6) that shows each SNP on the x-axis and its

corresponding negative log p-value on the y-axis (high y-axis equating to a high

correlation) [119].

Above the numerous SNPs towards the bottom of this plot that show little

relationship to furfural resistance, peaks of correlation spike for specific genomic

regions and the few top scoring SNPs peak above these. In our plot, colours

correspond to individual ORFs, as our ’genome’ is an artificial construct of ORFs

from 1,011 Saccharomyces cerevisae genomes [22]. In all, the plot is a useful

overview of general p-values across the genomes and how they cluster. However,

to investigate in a granular fashion, it is necessary to create tables to view specific

SNPs, as in table 3.3.

The top GWAS hits in our study of resistance to furfurals are illustrated in table

3.3. While unfortunately none give an FDR-corrected p-value lower than 0.05,
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Figure 3.4.6: GWAS Manhattan Plot
Manhattan Plot illustrating the log p-values (y-axis) of each SNP (x-axis), with SNPs coloured
for each ORF to highlight multiple SNPs within the same ORF.

their status as lowest p-value SNPs means they and their respective ORFs require

further inspection. The top scoring genes are variously important for resistance

to cellular stressors (YOL105C [120]), resistance to anti-fungals (YPL056C [121]),

cell replication (YLR247C [122], YGL093W [123], YOL078 [124]) and sporulation

(YOL016C [125, 126]). Additionally, as an overview, most SNPs of high significance

appear to confer resistance through alternative allelic functionality (positive

correlation). This is seen through 64.4% of the top 500 SNPs being positively

correlated to the final phenotype.

It also becomes evident that the YOL (Yeast, chromosome O/15, Left arm) genes

harbour many SNPs of interest, with 12 of the top 100 SNPs being within the YOL

region of the yeast genome. This includes SNPs within ORFs such as YOL136 [127],

which is involved in glucose sensitivity and YOL126, a malate dehydrogenase [128].

We can therefore make a tentative assessment that this genomic region will be the

site of adaptive mutations in future Directed Evolution experiments. By conducting

such an experiment and sequencing the resulting strains, we could compare the

evolved strains to the reference pangenome to investigate whether mutations in this

region have occurred.
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A second method of examining the GWAS results is to investigate only those

SNPs that correlate with higher resistance in their non-reference (alternative) allelic

state. In table 3.4, we can see a snapshot of this information. While the ORFS

in which some of these SNPs reside appear likely to have no function on the

phenotype, such as YNL054W, others show highly interesting results. For example,

YOL105C appears to be involved in cell wall synthesis in stressor environments,

perhaps indicating that the wrong mutation would limit its usual furfuraldehyde

detoxifying potential due to the inability of the cell wall to be modified in response

to furfural stress.

Previous research has identified YKL071W as involved in furfuraldehyde

detoxification [129]. While a SNP (at bp 290) within this gene gave a negative

correlation with the phenotype (alternative allele confers increased furfural

resistance) for the GWAS with the PSIKO Q-Matrix, its uncorrected p-value was

high, at 0.046. Interestingly, the same analysis performed with the SANE Q-Matrix

and the Tamura Nei (TN) genetic distance [110] gave a p-value of 7.5174 x 10-4 for a

SNP in this gene (bp 616→C), perhaps indicating a similarity between PSIKO and

TN distance.

YOL genes appear frequently (12 of the top 100 SNPs) in these results. Genes

within this region of the yeast genome (chromosome 15, left arm) have been

implicated in various functions such as Alcohol Dehydrogenases [130], cell DNA

replication [131] and cytoskeleton [131]. All these functions have potential to be

implicated in resistance to furfuraldehyde’s broad-spectrum effects. However, some

reports indicate the deletion of the region is rescued by gene duplicates elsewhere

in the genome [132], suggesting that key variants may be spread more widely.

Although a SNP within the YKL071W gene was observed and found to be

correlated with the phenotype in the expected direction, its p-value using the PSIKO

Q-Matrix was lower than expected. Therefore, using YKL071W as a starting point,

we investigated whether we could find other genes that could have ’replaced’ that

gene’s function as the main furfuraldehyde detoxifyer. Using the YeastGenome

data repository, genes with similar Gene Ontology (GO) terms to YKL071W were

identified through the shared GO listed under YKL071W. Subsequently, these genes

were investigated to discover whether any harboured SNPs used in the GWAS

analysis (tables 3.5, 3.6). We confirmed this to be the case after checking the results

of the searching process.
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The YKL071W Gene has two main GO-linked functions; alcohol dehydrogenase

activity and oxidoreductase activity. Searching for these two GO functions, we

found interesting results within our SNP dataset. Additionally to these two

GO searches, we also identified a related NADPH-dependent aldo-keto reductase

(YDR368W). Indeed, many related genes were present that were likely involved in

the detoxification of aldehyde-like compounds, some of which gave moderately low

p-values.

There are six other SNP-bearing genes within the study that share YKL071W’s

Alcohol Dehydrogenase (NAD+) activity (YeastGenome GO:0004022). Table 3.5

illustrates the GWAS results for these genes. As can be seen in the table, some

of the genes with a GO term for Alcohol dehydrogenase activity have SNPs with

moderately low p-values. YOL086C (Alcohol Dehydrogenase 1) has the lowest

p-value in the PSIKO analysis, with YGL256W the lowest when using the SANE

Q-Matrix. We can also see that p-values and their ranks differ between the two

analysis methods.

A secondary GO term for YKL071W is oxidoreductase activity. In table 3.6, we

can see SNPs within genes that share this GO term. In both GO-related sets of genes

(tables 3.6, 3.5), we can see some genes possess SNPs with moderately low p-values.

This is more pronounced for the SANE Q-Matrix analysis, where p-values for these

genes are mostly lower.

Finally, we see different p-values across many genes with more than one SNP.

For example, the gene YKR090W has many alternate alleles positively correlated

with resistance such as YKR090W at bps 436, 591, 1289 and 1824 - though all

with moderately high uncorrected p-values between 0.000611 and 0.00393. It also

has one negatively correlated SNP (YKR090W at bp 1576, p-value = 3.1 × 10−2)

to resistance. While these p-values are not low, this is an interesting finding that

perhaps could be followed up in a larger study.

3.4.7 SANE Specific hits

As an alternative method to PSIKO (or other software such as STRUCTURE etc.)

for calculating population structure within a set of strains, the Simulating Ancestry

through Nucleotide distance Equations (SANE) Q-Matrix was created. Using the

sequences of each SNP genome, it attempts to predict ancestral populations based

86



on the input sequences and attributes a fraction of each strain’s genome to a specific

ancestor (see section 3.3). The TamDdistance measure was selected as most suitable

for the yeast dataset and a Mantel test indicated the Q-Matrix was highly similar,

though not identical, to that estimated using the PSIKO software.

The GWAS analysis was repeated using SANE, with results being compared

to those found with PSIKO. As PSIKO possesses a well-documented and verified

methodology cited by the scientific community [85, 86], it provide a useful

baseline for comparison. Furthermore, given the high correlation between the two

Q-Matrices, similarities and differences between the top hits identified by the two

approaches will be interesting to uncover. In table 3.7, we see the top 10 hits

identified with the SANE Q-Matrix which uses a genetic distance measurement

(TamD [110] here) to determine founder populations.

From the top hits in table 3.7, we see several interesting points. Firstly, all

genes are different from those in table 3.3. Secondly, all correlations are negative

ones. Thirdly, the FDR-corrected p-values are all lower than 0.05 and their

analogous values within the PSIKO Q-Matrix analysis. Finally, and perhaps most

interestingly, we see 60S ribosomes are being identified on four occasions in three

genes, YHL033C, YDR012W and YHL033C. This suggests that the method could be

identifying real effects, although negative correlations. This indicates that these WT

alleles may be better suited to furfural resistance.
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ORF/SNP p-value FDR +/- ORF function
3249-YEL016C:745-G/ 4.11-6 0.345 - Nucleotide

pyrophosphatase/
phosphodiesterase; activity
and expression enhanced
during conditions of
phosphate starvation;
involved in spore wall
assembly

3306-YEL072W:309-G/ 1.47-5 0.618 - Protein required for
sporulation

3951-YGR051C:286-A/ 9.53-5 0.826 + Dubious open reading
frame; unlikely to encode a
functional protein

5704-YLR247C:759-T/ 9.64-5 0.826 - E3 ubiquitin ligase and
putative helicase; involved
in synthesis-dependent
strand annealing-mediated
homologous recombination

3738-YGL093W:1905-C/ 9.78-5 0.826 - Subunit of a
kinetochore-microtubule
binding complex

2849-YDR159W:1747-T/ 1.05-4 0.826 - mRNA export factor;
required for biogenesis of the
small ribosomal subunit

4325-YHR072W:1047-C/ 1.05-4 0.826 + Lanosterol synthase; an
essential enzyme that
catalyzes the cyclization
of squalene 2,3-epoxide

6903-YOL105C:714-T/ 1.06-4 0.826 + involved in response to heat
shock and other stressors;
regulates 1,3-beta-glucan
synthesis

6903-YOL105C:717-C/ 1.15-4 0.826 + involved in response to heat
shock and other stressors;
regulates 1,3-beta-glucan
synthesis

7405-YPL056C:228-G/ 1.16-4 0.826 + Putative protein of unknown
function; deletion mutant
is fluconazole (anti-fungal)
resistant and has long
chronological lifespan

Table 3.3: Top hits from the furfural GWAS (PSIKO Q-Matrix)
First column combines the ORF ID with the systematic yeast gene name (with any gene duplicates
denoted NOG) and the location and reference allele of the SNP. The second column displays the
p-value of the SNP. The third columns gives the adjusted p-value using the FDR correction.
The fourth column denotes whether the alternative allele is positively (+) or negatively (-)
correlated with resistance. The fifth column gives a brief description of ORF function, taken from
Alliancegenome.org.
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ORF/SNP p-value FDR +/- ORF function
3951-YGR051C:286-A/ 9.53-5 0.826 + Dubious open reading

frame; unlikely to encode a
functional protein

4325-YHR072W:1047-C/ 1.05-4 0.826 + Lanosterol synthase; an
essential enzyme that
catalyzes the cyclization
of squalene 2,3-epoxide

6903-YOL105C:714-T/ 1.06-4 0.826 + involved in response to heat
shock and other stressors;
regulates 1,3-beta-glucan
synthesis

6903-YOL105C:717-C/ 1.15-4 0.826 + involved in response to heat
shock and other stressors;
regulates 1,3-beta-glucan
synthesis

7405-YPL056C:228-G/ 1.16-4 0.826 + Putative protein of unknown
function; deletion mutant
is fluconazole (anti-fungal)
resistant and has long
chronological lifespan

2699-YDR009W:579-C/ 1.43-4 0.826 + Transcriptional regulator;
involved in activation of the
GAL genes in response to
galactose

6447-YNL054W:3231-T/ 2.04-4 0.826 + Transposable element gene
5045-YJR138W:687-A/ 2.15-4 0.826 + Iml1p/SEACIT complex

is required for
non-nitrogen-starvation
(NNS)-induced autophagy

4325-YHR072W:126-C/ 2.31-4 0.826 + Lanosterol synthase; an
essential enzyme that
catalyzes the cyclization
of squalene

7406-YPL057C:945T/ 2.56-4 0.826 + Mannosylinositol
phosphorylceramide (MIPC)
synthase catalytic subunit

Table 3.4: Top, positively correlated hits from the furfural GWAS (PSIKO Q-Matrix)
First column combines the ORF ID with the systematic yeast gene name (with any gene duplicates
denoted NOG) and the location and reference allele of the SNP. The second column displays
the p-value of the SNP. The third column gives the adjusted p-value using the FDR correction.
The fourth column denotes whether the alternative allele is positively (+) or negatively (-)
correlated with resistance. The fifth column gives a brief description of ORF function, taken from
Alliancegenome.org.
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ORF PSIKO
bp &
Reference
Variant

PSIKO
p-value

SANE bp &
Reference
Variant

SANE
p-value

YOL086C 382-C 9.2 x 10-3 382-C 2.4 x 10-2

YBR145W 817-G 2.4 x 10-2 817-G 6.4 x 10-2

YGL256W 1044-A 7 x 10-2 179-A 2.6 x 10-3

YDL168W 457-G 8.1 x 10-2 457-G 0.33
YMR303C 416-A 0.14 416-A 4.6 x 10-2

YMR083W 620-C 0.21 620-C 0.35

Table 3.5: Alcohol dehydrogenase-related genes with SNPs
Genes with GO terms suggesting an Alcohol dehydrogenase function that possess SNPs in the
GWAS. Locations of SNPs and their p-values are shown, both when using the PSIKO and SANE
Q-Matrices.

ORF PSIKO
bp &
Reference
Variant

PSIKO
p-value

SANE bp &
Reference
Variant

SANE
p-value

YMR315W 336-T 3 x 10-2 854-A 8.2 x 10-2

YGL157W 274-G 4.4 x 10-2 666-G 1.0 x 10-4

YOR246C 66-A 6.3 x 10-2 454-A 2.0 x 10-3

YOR120W 297-G 0.12 700-G 0.24
YDL015C 147-A 0.16 609-G 2.0 x 10-3

YKL195W 769-A 0.16 1094-T 1.3 x 10-2

YMR226C 703-C 0.29 564-C 0.35
YOR037W 1001-G 0.30 818-C 0.25

Table 3.6: Oxidoreductase-related genes with SNPs
Genes with GO terms suggesting an Oxidoreductase function that possess SNPs in the GWAS.
Locations of SNPs and their p-values are shown, both when using the PSIKO and SANE
Q-Matrices.
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ORF/SNP p-value FDR +/- ORF function
2362-YCR014C:975-C/ 6.86-7 0.019 - DNA polymerase IV
YIL155C-NOG-2:471-A/ 9.91-7 0.019 - Mitochondrial

glycerol-3-phosphate
dehydrogenase

YIL018W-NOG-2:883-C/ 1.21-6 0.019 - Ribosomal 60S subunit
protein L2B; expression
is upregulated at low
temperatures

YGR161C:601-C/ 1.36-6 0.019 - Retrotransposon TYA Gag
and TYB Pol genes

YIL122W:162-A/ 1.48-6 0.019 - DNA-binding transcriptional
activator; involved in cell
cycle regulation

YBR132C:945-A/ 2.41-6 0.019 - Plasma membrane regulator
of polyamine and carnitine
transport

YHL033C-NOG3:303-T/ 2.85-6 0.019 - Ribosomal 60S subunit
protein L8A; mutation
results in decreased amounts
of free 60S subunits

YDR012W-NOG-2:396-T/ 3.51-6 0.019 - Ribosomal 60S subunit
protein L4B

YGR292W-NOG2:249-T/ 3.51-6 0.019 - Maltase
(alpha-D-glucosidase);
inducible protein involved in
maltose catabolism

YHL033C-NOG3:165-C/ 3.51-6 0.019 - Ribosomal 60S subunit
protein L8A

Table 3.7: Top hits from the furfural GWAS (SANE Q-Matrix with TamD distance measure)
First column combines the ORF ID with the systematic yeast gene name (with any gene duplicates
denoted NOG) and the location and reference allele of the SNP. The second column displays
the p-value of the SNP. The third column gives the adjusted p-value using the FDR correction.
The fourth column denotes whether the alternative allele is positively (+) or negatively (-)
correlated with resistance. The fifth column gives a brief description of ORF function, taken from
Alliancegenome.org.
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3.5 A Directed Evolution study to improve furfural

resistance in Saccharomyces cerevisiae

In an attempt to develop the desired resistance to furfuraldehyde in strains of

the yeast species Saccharomyces cerevisiae, a directed evolution experiment was

designed. In particular, it was hoped that some of the SNPs with low p-values in

the previous GWAS study would be similarly identified within this experiment.

3.5.1 Experimental design

Fifteen NCYC strains were chosen as the basis for a Directed Evolution experiment.

Together, these strains harboured 2,398 of the 84,046 SNPs with a frequency of > 5%

(i.e. MAF SNPs) within the earlier GWAS analysis of 168 strains. The strain cultures

were selected to satisfy a range of criteria, including high and low resistance scores,

high MaxOD values and SNPs of interest (see table 3.8). The strains were arrranged

in eight strain sets, some comprising a single strain culture while others were mixes

of various strains. This design allowed for the possibility that a specific strain, or

group of strains (which could potentially mate), would be optimal for developing a

trait of interest. By allowing for multiple strains/strain sets, we hoped to identify

the optimal mix for successful adaptive evolution.

The strains or strain mixes within table 3.8 were used to inoculate a 96-well

plate as shown in the rows of figure 3.5.1, with each strain set placed in all wells

of the given row. Initially, along each row, the strains were grown in a range of

furfural concentrations, from 0.25mg/ml (column 1) to 6mg/mL (column 12), in

0.25 increments from 0.25mg/ml to 2mg/ml and 1.00 increments to 6mg/mL, with

10g/L of glucose in 6.9g/L YNB media (table 3.9). Strains were made to grow in

the furfural media for 3-4 days (with 48 hours under a plate reader) at 25°C, then

rested for 3-4 days in media without furfurals before repeating the experiment. This

process allowed furfural resistance to develop, while not overly taxing the cells.

To direct the evolutionary paths taken by the yeast strains towards increasing

furfural resistance, we selected the most resistant strains in each cycle of the

experiment. This meant that the well with highest furfural content among those

displaying yeast growth was selected as the best adapted strain and was placed to

’rest’ in the rest media. If there was no replicate more resistant than the others, a
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Set S. cerevisiae strains Rationale for inclusion
A NCYC 221, NCYC

2777, NCYC 2780,
NCYC 2798

Mix of strains with optimal SNPs (best resistance
scores)

B NCYC 357, NCYC
3078, NCYC 3338,
NCYC 3039

Mix of conventional top strains (Highest OD;
5/5/6/8 resistance points)

C NCYC 2967, NCYC
3456, NCYC 3472,
NCYC 2733

Mix of strains which together have all SNPs of
interest (low resistance scores, all top-scoring
SNPs).

D NCYC 221, NCYC
2777, NCYC 2967,
NCYC 3456

Mix of High and Low Resistance strains with
best SNPs (From B & C)

E NCYC 357, NCYC
3078, NCYC 3315,
NCYC 2733

Mix of high and low resistance strains (OD
convention)

F NCYC 2777 Top Strain
G NCYC 3461 Bottom Strain
H NCYC 2777 Control Top Strain

Table 3.8: Strain Mixes for a Directed Evolution experiment
Fifteen strains chosen for a DE experiment based on early results from the GWAS analysis,
including those with high and low resistance scores, high MaxOD values and possession of SNPs
of interest.

mix of all replicates was added to the rest plate. This was to maintain a population

with all potential genetic adaptations to furfural media. After three days in the rest

plate, the colonies were re-established as groups A-G for the 96-well system, placed

back into the various furfural concentrations and the process repeated. In this way,

adaptation was tracked and encouraged, with any evolution in furfural resistance

selected for until the final, adequately resistant, strain was formed. Therefore, if

Culture B (i.e. the second row of the 96-well plate) showed growth at wells B7, B8

and B9), B9 was used as the source well to inoculate the B row in the rest plate.

It was hoped that those cultures growing in higher furfural conditions possessed

better adapted resistance genes, which would be multiplied in rest plate growth.

Optimisation of the experimental design occurred as a result of issues arising

in early experiments. For example, the rest plate was added to the procedure

following early occurrences of entire cultures dying from cell stress if placed in

low furfural media following high furfural conditions. As strains developed better

resistance, the period of rest could slowly be reduced and, finally, removed. In

addition, significant changes were made to the concentration gradient. The initial

stepwise increase from 0.25 to 6mg/mL (table 3.9) was updated as the increases
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Figure 3.5.1: Directed Evolution Workflow
Strains cycled through furfuraldehyde conditions (right) and resting conditions (left). As we
rotate, with a rest plate or the exhausted yeast simply died, the strains gained in resistance
phenotype.

at the start were too gradual, while later ones too steep, particularly as growth

could not be achieved for furfural concentrations much higher than 3mg/mL. The

new concentration gradient comprised just six steps, in increments of 0.5mg/mL.

Firstly, it was hoped that the more incremental increase in furfural concentration

would enable better adaptation and, therefore, resistance. Secondly, it permitted

two biological replicates per plate, with the six concentrations repeated twice along

each row of the 96-well plate. Therefore, for each row, the most resistant strain

among the replicates could be carried forward to grow in the rest plate.

To allow for greater reproducability or possibly more opportunities for

evolution, the whole experiment was run twice, concurrently. While one strain set

rested, another (initially identical) strain set was growing in furfural conditions.

3.5.2 Analysing the results of the DE experiment

Once the two experimental runs had been completed, DNA was extracted from

each final culture using the protocol in Chapter 2, with DNA quantities sought that

would allow two sequencing runs per sample to be achieved. The DNA extractions

were sent for the required duplicate DNA sequencing on the Illumina NextSeq

platform at Quadram Institute Bioscience.

The resulting FASTQ datasets were deduplicated with BBTools and trimmed for

adapter sequences, regions of low quality and low complexity using Trimmomatic

v0.32. The trimmed FASTQ files were then used to identify high-quality

SNPs against the reference pangenome, using the same conservative SNP-calling
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Initial concentrations (mg/mL) Updated concentrations (mg/ml)
0.25 1.5
0.50 2.0
0.75 2.5
1.00 3.0
1.25 3.5
1.50 4.0
1.75 1.5
2.00 2.0
3.00 2.5
4.00 3.0
5.00 3.5
6.00 4.0

Table 3.9: Furfural concentrations used in the Directed Evolution experiment
Furfural concentrations used across 96-well plates in the initial Directed Evolution experiment
(left) and modified concentrations used in the final experiment (right). The initial experiment
was used to identify the conditions in which the yeast grew best; the final experiment used the
updated concentrations once these conditions had been identified. The concentration gradient
employed was modified to both linearise and update the concentration as most yeast were resistant
to 1.5mg/ml of furfural and therefore the lower concentrations did not aid in differentiating the
yeasts’ variable resistance to furfural.

procedure as in the GWAS study. Variant calls that were not shared between

biological replicates were computationally removed.

The OD data for every growth plate were also analysed using software scripts

developed for the previous furfural resistance GWAS, with the same growth curve

measurements taken as before. However, errors in experimental design (corrected

with little time to continue the experiment further) resulted in the summed furfural

Resistance Score increase being minimal.

3.5.3 Allelic Variation within the Directed Evolution strains

Through the final sequencing of the strains having undergone Directed Evolution,

it was possible to compare their allele frequencies at specific SNP loci with those

of earlier datasets. To make such comparisons, we essentially have three groups

of alternate allele frequencies: all 168 NCYC Saccharomyces cerevisiae strains in the

GWAS study (NCYC_Alt), the fifteen NCYC strains in the DE study (Selected_Alt)

and fifteen sequenced strains at the end of the DE study (DE_Alt). The goal of this

analysis was to see if particular allele frequencies either rose to fixation or were lost

as a consequence of furfuraldehyde resistance. In figure 3.5.2, we can see this in

action.
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The genes used in the analysis were those top genes predicted by PSIKO. Namely,

YEL016C (745G), YEL072W (309G), YGR051C (286A), YLR247C (759T), YGL093W

(1905C), YDR159W (1747T), YHR072W (1047C), YOL105C (714T), YOL105C

(717C), YPL056C (228G), YDR009W (579C), YLR305C (1662A), YNL054W

(3231T), YJR138W (687A) and YHR072W (126C).

Figure 3.5.2: Alternative Allele Frequencies Within 3 Different Strain Groupings
NCYC_Alt: All Saccharomyces cerevisae strains (168 strains; blue line)
Selected_Alt: Strains involved in DE (15 strains; orange line)
Evolved_Alt: Sequenced strains at the end of DE (15 strains; grey line)

From the figure, we see that the SNP frequencies of the ‘Selected_Alt’ dataset

strains (orange line) are quite similar to those of the ‘NCYC_Alt’ dataset (blue line).

They show that the Selected dataset represented its parent (NCYC) dataset quite

well for these SNPs, even though it contains fewer than 10% of the total strains.

However, the DE strains showed a quick fixation to WT/ref alleles, as seen by the

‘DE_Alt’ line in figure 3.5.2.

This result could be explained by the stability of the WT alleles, as they were

quickly fixed across the board. However, two SNPs (bp 595, bp 607) within the

YKL171W gene were raised to fixation within the DE dataset. A protein kinase

with links to rapamycin, they could be SNPs linked to cell death (as rapamycin has

anti-fungal effects and links to eukaryotic anti-ageing [133]).

3.6 Discussion

When measuring the broad-spectrum growth-inhibiting effects [102] of a chemical

such as furfuraldehyde it is best to use holistic measures of overall resistance for a

specific strain. In this way, it is possible to capture the overall effects that may be

a mixture of slower growth, delayed growth and less total growth. The solution to
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group and then combine different phenotypes attempts to overcome this limitation

and account for a wider range of broad-spectrum effects. However, different

phenotypes are not all able to be conjoined easily; even when all quantitative, they

have different means, ranges and types (discreet vs continuous). Therefore, a system

to compare like-for-like is necessary for true integration of disparate (but related)

measures of resistance to broad-spectrum growth inhibition.

To create the generalised resistance score that carries across all strains, it

was necessary to compare divergent growth curves. By selecting only for curve

characteristics with a balanced distribution, it became possible to create K-means

strain partitions that better grouped similarly resistant strains. Through the

assembly of a general resistance score (on a scale of 3-18), it is easier to more directly

compare strains in a like-for-like manner, across growth curves that vary greatly in

the characteristics within those curves.

This phenotype construct was central to the approaches taken in this study.

By using a holistic approach, it accounted for more variation within the initial

datasets while also preventing ’true’ resistance being masked by a single strain’s

anomalous characteristics. By adopting an equal number of groups for all growth

curve features, we sought to integrate the many desired phenotypes of a strain and

balance them fairly (i.e. length of lag phase, rate of maximal growth, total growth

after a set time).

Moreover, the genomic component of the study utilised a broad array of software

and tools. The raw read data’s curation and cleaning, including subsequent

filtering (e.g. removing unwanted variants such as indels) were done through

well-referenced software [65, 67, 69, 87]. This ensured that the data was generated

at the scientific standard. However, the final assembly of the gene matrices were

carried out using wholly bespoke software and scripts developed within the study.

Similarly, the software enabling the meshing of phenotype and genotype was a mix

of custom scripts mixed with standard packages within the RStudio environment

[69]. Lastly, the NMR preprocessing was accomplished through TopSpin3.6 using

the apk0 phasing command.

Determining the success of the results relies on many factors. The GWAS

analysis using the Q-Matrix estimated by the well-established PSIKO software did

not indicate SNPs with corrected p-values above the 0.05 threshold. This could be

a reflection of the size of the study, which at 168 strains was fairly small. Adding
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strains would largely confuse the analysis; the only other high-quality sequenced

strains were non-SC and any Q-Matrix would cluster all SC very tightly together

and ignore most of their diversity.

However, in the analogous analysis using the SANE Q-Matrix - which was shown

via a Mantel Test to correlate strongly with the PSIKO Q-Matrix - we did see a small

number of SNPs with potential effects on furfural resistance, albeit connected to WT

alleles. In particular, we saw a several SNPs connected to ribosomal proteins within

the top hits of this analysis. Potential associations of a range of phenotypes with the

ribosomal complex have been noted in previous GWAS analyses of yeast strains, so

this could be related to successful growth under general stress conditions. Future

work on validating the SANE approach would therefore be highly useful.

Despite the moderate p-values observed, viewing the top hits of our study (tables

3.3 and 3.7) could still be of value. The genes highlighted in table 3.3 include

two (YGR051C, YPL056C) of unknown function. The second of these, YPL056C, is

known to be involved in resistance to fluconazole, an anti-fungal agent. A mutation

within the gene (bp 228 in this case) could plausibly confer a broader resistance to

anti-fungals such as furfuraldehyde [121].

We also note that the YKL071W gene appears among the top 3% of hits

within the SANE analysis with an uncorrected p-value of 0.00075174 at BP 616.

YKL071W has been widely implicated in specific furfuraldehyde resistance studies

[129] and was thus an anticipated result in this study. Its presence (bp 616) falls

within the predicted short-chain dehydrogenase region from PANTHER (Accession:

PTHR43544), lending credibility to a potential effect in this case. However, while

YKL071W has been experimentally validated as a detoxifier of furfuraldehyde, an

analysis of SNPs within genes that share its Gene Ontology (GO) terms show only

moderate p-values within this study (tables 3.5 and 3.6). Nonetheless, that the

SANE Q-Matrix identified the SNP is a good validation of strategy.

The Directed Evolution study successfully developed a series of strains that

showed high levels of resistance to furfurals. Early analyses showed that important

effects are related to WT alleles, when compared to the initial strain set or the wider

strain set from which the starting strains were selected. However, the resulting

sequence datasets have yet to be explored fully. In particular, we will investigate the

prevalence of variants highlighted by the GWAS analysis within the highly resistant

strains resulting from the DE experiment.

98



The next step of the overall study would be to build predictive models that utilise

the top hits discovered, for example by engineering chosen variants in a model

yeast strain using CRISPR. In this way, it would be possible to test and refine the

predictions of a computational analysis with results in a living system.

The approaches followed and developed within this study have led to results

that indicate a successful initial GWAS was undertaken. The verification of any

results, either through expansion of the study dataset or via experimental validation

of variants potentially underpinning the desired phenotype, would be a longer and

more complicated process. However, perhaps more importantly, we have developed

a dual computational and biological framework for the analysis of growth inhibitors

in a key yeast species that can be used in future by ourselves or by others.

Even further, this study uncovers many novel results not otherwise discernable

from the NCYC database data. With sparse habitat information, submitter

information and even alternative names (many samples were submitted decades

ago as unknown samples), the study provides new phenotype information to the

NCYC. Another useful addition would be to contact old sample submitters to try

to acquire more detailed strain habitat information. In providing new data, the

methodology utilised to obtain the phenotypic data can be applied to the whole

NCYC collection in a medium-throughput approach. Taking the study even beyond

the scope of Saccharomyces cerevisae would help investigate the extensiveness of

furfural resistance across diverse species. This novel information can also be added

to the NCYC database, to increase interest from commercial buyers searching for

strains with evidence of furfural resistance.

In any future DE experiment for the same phenotype, some corrections would be

necessary. The experiment would have to be carried out for more generations, using

the final stepped-concentration values (table 3.9). Additionally, a fine-tuning of the

’rest’ period and single-strain isolation would have to be performed. Unfortunately,

having carried out the DE at the start of the Covid pandemic, some errors in

experimental design were not picked up upon in the confusion. With reduced lab

time (and booking difficulties), correcting and re-doing experiments took a longer

time than expected until we began to run short of time.
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Chapter 4

Yeast Metabolite production under

varied feedstock conditions

4.1 Introduction

Yeast are used throughout academic and industrial settings to produce platform

chemicals at commercial scale. For example, bioethanol is produced by yeast as a

renewable fuel across a vast array of industrial settings [101, 111, 134, 135].

In addition, yeast are used to produce a vast array of renewable chemicals.

Especially when replacing petrochemical production systems, they present a

renewable bio-based solution to finite, climate-damaging fossil fuels classically

used for their production [95, 136, 137].

In addition to their broad usage in chemical production, yeast such as

Saccharomyces cerevisiae have an extensive safety profile gained from global,

ubiquitous usage for millennia [27, 138] coupled with highly diverse and adaptable

genomes [46, 47, 51]. For these reasons, among others, S. cerevisiae strains are

excellent production platforms for metabolite production. S. cerevisiae also produce

almost all the molecules of larger, multi-cellular eukaryotes but come with the

simplicity of being a uni-cellular species. Adaptable, resilient and relatively

fast-breeding, they are excellent production platforms [6, 22, 28, 139].

The S. cerevisiae strains in this thesis were reduced to the strains with the highest

read quality and depth of sequencing from the National Collection of Yeast Cultures

(NCYC) to test for various metabolite expression patterns. Those strains that failed

to sequence with adequate depth for SNP calling (>30) and high read quality were
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excluded. This helped ensure a high quality in our downstream analysis.

The metabolomic requirements of each strain required by industry and academia

is different. For thousands of years, even the relatively simple demands of brewers

resulted in many different strains, each adapted to the specific needs of the

individual brewers [140]. Further, funders and industrial producers have vastly

different demands to the relatively basic demands of brewers.In academic and

pharmaceutical environments, scientists have used yeast to produce antibodies for a

range of diseases [25, 141]. This antibody production has vastly different demands

on the metabolism of yeast than when S. cerevisiae are used for brewing alcoholic

beverages [25].

A major focus of funders, for example, is the production of antibodies for

medical applications. Most antibodies are produced in mammalian systems,

often as immune responses to specific stimuli but also using human cells in

human-animal chimeras [142]. However, this is not always possible without

manipulating the host’s immune system as well as issues with subsequent

purification from the rest of the blood [142]. These mammalian systems also have

the benefit of correct post-translational modifications such as with glycation and

chaperone-assisted protein folding. However, financial and technical difficulties

mean mammal production systems (cell lines included) make it difficult for

smaller companies to compete [143]. This is where yeast can come in, with more

cost-effective antibody production.

As a whole, yeast platform production systems are inexpensive and interest has

grown in their antibody-producing capabilities that do not suffer from bacterial

systems’ incorrect post-translational modifications of proteins. Issues remain, but

upscaling would be a relatively easy matter [25]. Therefore, S. cerevisiae present a

potential solution to many industrial issues, from pharmaceutical and biomedical

production to secondary metabolite products. This broad adaptability illustrates

the usefulness of S. cerevisiae as a production platform. However, our focus remains

on the small-molecule metabolites produced by the global S. cerevisiae populations.

In contrast to antibody research in S. cerevisiae, many commercial ventures

require high expression rates with efficient feedstock conversion rates to produce

high quantities of relatively low value products. Especially with products generated

from low-cost non-renewable oil, the pricing of the produced chemical can be both

low and fluctuating. This means any bio-based yeast alternative must ultimately
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be both more reliable and cheaper than any oil derivative [95, 134, 137, 30]. This

presents yeast production platforms with divergent needs; flavourful brewing,

high-value biomolecules and low-cost platform chemicals. Even in these vague

fields of interest, there is plenty of diversity. For example, brewers are no longer

caught up in a race for high-efficiency ethanol-producing living machines. The

new goal is for flavourful drinks with low alcohol content to fulfil the more

health-conscious drinking habits of a new generation [144].

This chapter in the thesis, therefore, attempts to measure and predict metabolite

production (especially of flavour and TCA cycle metabolites) in a GWAS setting.

With a desire for low ethanol prevalent, the focus was to identify low-ethanol

genetic markers for Saccharomyces cerevisiae strains that co-coincide with SNPs

for flavour metabolites. As a side interest, it was hoped the entire metabolic

composition of optimal strains could be identified, and their genetic components

elucidated. In conjunction, strains could be created (or predicted) using genetic

data to create low-ethanol producers that maintain a specific flavour profile.

To achieve this goal, it is necessary to measure the metabolic output of each

strain. The supernatant (of strains fully-grown within malt media) of each strain

can be assayed to investigate its components, measuring the metabolic output of

a specific organism. However, traditional assays entail time-consuming, expensive

experiments that struggle with accurate concentration measurement. A faster, more

quantifiable and cheaper method was necessary to analyse the medium-throughput

metabolic data of many S. cerevisiae strains growing in malt media common in the

brewing industry.

To analyse the metabolites from an organism is expensive. Doing it

quantitatively is difficult. In the past, the usual solutions involved assays to detect

the presence of a metabolite or Mass Spectroscopy (MS) to determine the presence of

metabolites in a sample (when coupled with various chromatography techniques).

Although highly sensitive, MS is expensive, can suffer from reproducibility issues

and lacks the quantitative ability of Nuclear Magnetic Resonance (NMR) while

struggling with the similar molecular weight of small molecules [89].

In addition to data concerns, MS requires extra preparation steps such as

separation. All of this takes time and money. In contrast, NMR is much more

successful at quantitative analysis of metabolites with limited lab setup besides

media preparation and centrifugation [89].
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It is also much more amenable to medium-throughput analysis as machine setup

is largely limited to cleaning NMR tubes and setting a program. For this reason, we

selected NMR as the method to analyse the metabolomic state of our yeast media

post-fermentation.

However, not all metabolites are to be analysed with the same purpose of

high-conversion efficiency in mind. Due to increased public health awareness of

the physical damage of alcohol consumption, not least of which relates to obesity

and cancer, consumption of alcoholic drinks has decreased over time [145]. As

people seek to reduce their alcohol consumption, they sometimes wish to maintain

the social aspect of drinking, so beers with minimal alcohol content become

desirable. In the past, many yeast were bred to produce ethanol as a necessary

energy-management step of anaerobic growth. In newer studies, GMO techniques

have been employed to create low-ethanol producing strains that may still be used

for brewing previously alcoholic beverages [146].

When industries produce beer, they encounter the issue of elevated ethanol

content in a period where low-alcohol beers are desired by the consumer market

[145]. Therefore, a search for low-alcohol beers that maintain the same flavour

profile of their more alcoholic cousins is highly desired by industrial brewers. We

attempted to fill this societal niche by identifying low-alcohol genomic traits and

strains in our yeast library.

To best match industrial environments, we chose malt extract media in which

to grow our yeast cells, which were then analysed through quantitative NMR to

measure the quantities of a range of flavour metabolites, including ethanol. We

then made a comparison of growth under Malt conditions to those of laboratory

YNB media with glucose as the carbon source. By comparing the two resulting

datasets, we hoped to identify key differences in metabolites produced.

By the end of the project, it was hoped it would be possible to elucidate various

genes associated with the production of specific metabolites. Matching these genes

back to biomolecular pathways, desirable genetic abilities could then be identified.

Therefore, simply sequencing a genome could be used to predict a given strain’s

general metabolite profile, and allow for rapid identification of strains to study

experimentally.

Additionally, with the low-cost methods utilised, it could become possible to

identify the genetic underpinnings of any metabolite. Therefore, with amply
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available genetic tools, it could become possible to mutate any strain to possess the

desired traits. Alternatively, it could be used to elucidate biomolecular pathways

involved in the metabolic flux of the cells in question. Besides general research, this

could aid in understanding the total metabolic flux of an entire cell culture.

Therefore, the aim of this research would ultimately be to find or create

yeast strains capable of producing high yields of flavour compounds and other

metabolites while maintaining low ethanol content. Perhaps the low ethanol status

of these strains would also push more carbon towards production of the other

desired metabolites.

4.1.1 Strains in study

To discuss what was done with the data, it is important to mention the strains

included within the study. The full data is available in the GitHub repository, with

full metabolite data. In the lists below, the ’NCYC’ designation is excluded from

each strain number but is common to every strain used.

Full strain lists used for each study (YNB/Malt) is included in the Appendix

(table 3). Species is included for clarity; there were 168 S. Cerevisiae strains in the

Malt study, with 50 strains shared with the YNB strain dataset which contains 362

total strains.

4.2 Metabolite Laboratory and Computational

Methods

4.2.1 Mapping and matching SNPs with phenotypes

The mapping of genome specific SNPs to the metabolic profiles of each strain was

done by borrowing the GWAS methodology used in Chapter 3. The full genomic

process is explained in the Methods chapter, in Section 2.2.

Rather than a weakness of analysis, this usage illustrates the versatility of

the methodology and highlights its scalability. Similarly, this allows like-for-like

comparison of SNPs highlighted in the furfuraldehyde resistance study. Using the

same method, and base DNA data, we ensure that any differences or similarities

identified are not due to changes in the underlying data.
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4.2.2 Yeast protocol

The protocols for growing the NCYC yeast strains in both YNB and Malt media were

identical. This was to reduce the amount of variability between strains’ expression

patterns. The only variable changed within any experiment carried out in this

section was the media in which each strain was grown- with only Saccharomyces

cerevisiae grown in the malt media and not all Saccharomyces cerevisiae grown in

the YNB. This partitioning was due to time constraints, whereby we attempted

to prioritise a broad spectrum of strains for the YNB growth, while ensuring all

Saccharomyces cerevisiae strains were grown in malt media. This allowed for the

focussing on important results required by researchers and industry, respectively.

The protocol was fairly straight-forward, outside of creating buffers and media.

The 96-well plate was grown with 31 yeasts in triplicate for 5 days anaerobically at

25°C, with media as either YNB or malt extract as appropriate. This time period

allowed for the yeast strains to achieve their final growth stage. The media was then

ready for extraction.

The plates were subsequently centrifuged at 3000rpm for 15 mins (cells sink to

bottom as pellets) and 400µL of supernatant from the wells was added to individual

micro centrifuge tubes. 400µL NMR buffer was added to each sample (section 2.5.2)

micro centrifuge tube to a total volume of 800µL. Tubes were then centrifuged

at 3000rpm for 15 mins again (insurance). The top 600ul of the supernatant was

moved to a clean NMR tube and placed in the 500 MHz NMR machine. The spectra

were then cleaned on TopSpin (Bruker NMR Software) and then quantified with the

CHENOMX software (CHENOMX Inc, Canada).

The protocol demanded 5 days of growth to reach the predicted end of growth

stage, and to use most of the energy source. This functioned well for the YNB media

with low glucose. However the maltose was not completely metabolised due to its

very high concentration. The culture was nonetheless pelleted, mixed with buffer

solution in a 1:1 mix and then centrifuged again before being placed in the NMR for

quantification. The buffer was essential as it provided a reference compound (TSP)

of a known final concentration (2.5mM) with D2O to calibrate the NMR spectra

(section 2.5.2).

The pelleting used within the protocol might have compressed and extracted

some content from within cells, but likely most of the metabolites quantified were
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those secreted into the supernatant. This is important, as any chemicals essential for

cell life are unlikely to be fully secreted and would skew any quantification analysis.

This probability was tested with ATP/ADP; if the energy carrier, ATP, was found in

the supernatant this would only have been the product of cell lysis. Consequently

ATP was used as a biomarker for cell lysis.

4.2.3 OD analysis for confirmation of growth

For the malt metabolite experiment, a simple binary test of growth/lack thereof

was necessary. Therefore, visual checks were all that were necessary to verify

each strain could grow in the media. Once a strain was confirmed to grow in

the malt media, it could be (in separate replicates) quantitatively measured for

its metabolic production. It was discovered that a slight alteration in temperature

(27°C compared to 25°C) resulting from a faulty incubator significantly affected

the strains’ glucose metabolism, so the corresponding datasets were discarded.

Subsequently, once a strain was demonstrated to grow adequately within the malt

media, the experiment to quantitatively measure the metabolic products of the

strains in malt media could be commenced.

4.2.4 Gene variant identification

Comparing the metabolite expression levels (tables 4.2 and 4.3) of each strain

mapped to their SNP genomes, it is possible to identify SNPs correlated with specific

metabolite production. Using this technique, a list of SNPs could be generated

for each metabolite. Subsequently, a strain’s metabolic profile could be predicted

based on the presence or absence of said SNPs. Potentially, a strain could also be

engineered to possess desirable SNPs in a quick, single-generation mutation.

Therefore, with a full SNP map for yeast strains, it could be possible to identify

strains of metabolic interest based upon a SNP profile. This first computational

step would massively reduce the number of strains to analyse experimentally. With

a library of sequenced strains, a predicted metabolite profile could be constructed

for each strain. By then refining through each experimental validation, the model

would build in accuracy and predictive value. For metabolites where there was a

limited cross-over between genes involved in each metabolite, the SNP profile could

potentially more easily predict the metabolic profile.
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Any company with sufficiently large genome databases might then assess yeast

strain suitability for a specific metabolic profile based on genomic data alone. For

example, a brewer might choose to create a beer with low ethanol, high acetoin and

low acidity compounds by selecting for or breeding/engineering a strain with the

desired allelic combination.

However, for predictions of genomic variations to be of the highest accuracy

and quality, other genomic variation should be included within the predictive

model if possible. For example, the Copy Number Variations of specific genes

or the aneuploidy of entire chromosomes, both of which have broad phenotypic

effects in various organisms. These factors are known to have large effects on yeast

phenotypes and should be carefully considered and integrated into any model for

the full predictive effects of genomic variations to be utilised [11, 22, 46, 47, 51].

4.2.5 Metabolite GWAS

To perform a GWAS on the metabolite data to pinpoint SNPs potentially involved

in each metabolite’s level, it was necessary to couple the genetic data of each

strain to their metabolite quantity. The SNP data used in this study was simply a

re-usage of pipelines constructed for the elucidation of the genetic basis for furfural

resistance (section 2.2). Therefore, it had few issues in implementation, validation

and analysis.

With over 80,000 SNPs used as inputs to the GWAS, a broad swathe

of Saccharomyces cerevisiae’s biological pathways were tested for correlation to

the phenotypes. Reference alleles were again being quantified as ’0’, while

non-reference (alternative) alleles were ’1’. Therefore, a positive correlation to

increasing metabolite quantity indicates the alternative allele at a specific locus was

potentially contributing to increased metabolite quantities.

An interesting note would be the potential cross-over between metabolites

within strains. For example, two metabolites with the same genes (and

perhaps SNPs) contributing to their quantity would complicate future metabolome

engineering. A mutation for one desired phenotype (e.g, high succinate) might

cause an undesired phenotype (e.g, high ethanol). This would make all future

implementation more difficult.

However, as the metabolome is one whole system, some overlap is unavoidable.
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With finite carbon sources, an increase in one metabolite necessitates a decrease

in others. Avoiding a single pathway that directly affects two metabolites might

also be undesirable; a SNP in a single gene might, in some cases, confer more

than one desired phenotype. For example, it could reduce an enzyme’s specificity

for one metabolite’s precursor while increasing the specificity for another. This

would shuttle carbon from a more even distribution towards producing mostly one

outcome. Therefore, overlap of genes or SNPs is not necessarily good or bad; it is

the effect of an SNP on all metabolites that is of interest.

4.3 Media Usage

This study attempted to evaluate the metabolic productions of diverse yeast strains

in two different media. In practice, this involved pelleting the cell biomass, and

extracting supernatant to mix with a sterilising NMR buffer (section 2.5.2). The

samples were then analysed with a 500MHz NMR machine to obtain spectra peaks

which were cleaned with topspin3.6 using the ’apk0.noe’ command. The cleaned

spectra were in turn analysed with CHENOMX.

CHENOMX is a software package for analysing NMR spectra from a range

of frequencies with standard libraries provided with hundreds of chemicals.

When given a reference compound, and its concentration (e.g, TSP), spectra can

be measured quantitatively. CHENOMX is a versatile tool that is capable of

automatically assigning concentration values to spectra peaks. However, it can

struggle with automatic peak assignments for compounds of smaller concentrations

or unexpected media properties (e.g, incorrect pH input) where the NMR spectra

may deviate from the norm. It is thus necessary to manually curate areas of

low-fidelity.

This limitation is not an issue for high-concentration compounds within a

media. For example, ethanol is usually highly expressed in yeast strains (especially

within the Saccharomyces cerevisiae species) and thus easily identified through

automatic annotation through CHENOMX. However, ’flavour’ compounds and

other secondary metabolites are usually present in lower concentrations and are

thus occasionally miss-annotated in the automatic spectra-fitting.
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4.3.1 Metabolomic Variation in YNB Media

Each strain was grown in 6.9g/L Yeast Nitrogen Base (YNB) media with 10g/L

glucose. In table 2.2, we can see the components of the media when made up to the

required concentration. The metabolome was subsequently analysed quantitatively

to measure the variation of each metabolite per strain. Using CHENOMX

(CHENOMX Inc) ensured accurate, unbiased metabolite quantification. Performed

through medium-throughput NMR analysis of the supernatant, it permitted a

holistic view of each strain’s metabolome.

With the YNB media, and diverse yeast strains employed, we hoped to gain a

broad view of the metabolome in academic/industrial research environments. With

everything needed to grow, but falling short of thriving, the YNB media should give

us a good ’baseline’ production. Every strain should comfortably grow in the media

and provide good metabolic overviews.

The extensive list of maxima, minima and the standard deviation of expression

between all strains’ metabolite expression is displayed in table 4.2.

4.3.2 Metabolomic Variation in Malt Media

With a view to analyse the quantitative metabolome of Saccharomyces cerevisiae,

168 S. cerevisiae strains were grown in malt media. These strains were then

analysed for metabolites to then attempt to identify SNPs correlated with the

phenotypes of interest. The malt media was chosen to represent conditions seen

in the brewing industry, who desire a low-ethanol malt-metabolising strain. The

Saccharomyces cerevisiae strains had little issue metabolising the abundant maltose

(glucose disaccharide). However, the remnant amount of maltose, and glucose,

varied per strain.

The extensive list of maximums, minimums and the standard deviation of

expression between all strains’ metabolite expression is displayed in table 4.3.

This makes it easier to visualise the breadth of variation present even within this

Saccharomyces cerevisiae dataset.
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4.4 Metabolomic profiles of the Yeast Strains

When considering an ’optimised’ strain, there are multiple factors to take into

consideration. We will focus on three main factors; carbon source metabolism,

major metabolite production (ethanol/glycerol/methanol/...) and all other, often

nearly trace, metabolite concentrations. The data from table 4.2 had anomalously

high metabolite-concentration strains removed as a precaution against NMR errors.

While all biological triplicates were comparable, there was not time to re-run all the

samples.

From tables 4.2 and 4.3, we see a broad view highlighted within the specific

examples above (all SNPs and metabolite tables provided on GitHub). The

Malt media yeast strains produced higher amounts of flavour compounds (citrate,

acetoin) and had the stronger statistical correlations to illustrate it. This is expected,

as brewers would select conditions that increase the production of these rarer

flavour compounds, from selectively growing specialised S. cerevisiae strains to

creating media better suited to producing these rarer metabolites (malt media). The

diverse, largely non-S. cerevisiae strains grown in YNB media could not compete

with the generations of selective breeding in optimised media for the production of

rarer flavour compounds.

4.4.1 Carbon source efficiency

An important metric when evaluating a strain as a production platform is its ability

to efficiently metabolise various sugars. A strain’s ability to produce a maximal

amount of a desired metabolite might depend heavily on its ability to metabolise its

carbon source. A sugar poorly matched to a strain would result in low output yields,

giving an unfavourable view of the strain as a production platform. Maximising

carbon metabolism is essential to pursing high yields [2, 42, 113, 135, 147].

This is doubly important, as often an industrial process will capitalise on a

cheap feedstock to increase its margins of profitability. Feedstocks can vary widely,

with various characteristics (e.g, lignocellulosic, whole-crop wet mill and green

grass feedstock) and methods to pre-treat them (heat, acid, long water baths, alkali

treatments). All of these different feedstocks and pre-treatments result in greatly

varied potential feedstock mixes (and hurdles for growth) for any organic system

[148].
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When using a living production platform it is important to ensure that the

organism is able to readily digest the input energy source. Growth of an organism

on one media is not indicative of growth on another media. For example, it is not

necessarily true that Actinosynnema pretiosum optimised to produce ansamitocin

with fructose will be able to do so with glucose [6]. This is important because as

feedstock prices change, it becomes more attractive to investigate the adaptation

of strains to alternate carbon sources, and the interest in organisms capable of

digesting a wide array of feedstocks becomes highly desired [147].

Lately, volatility in renewable feedstock prices is un unavoidable fact. Weather

such as rainfall, snow depth, soil temperature, and soil moisture content, and

many other factors influence the final cost of feedstocks [149]. Prices of feedstocks

therefore vary (costing up to 38% more when weather is ignored [149]), and being

able to not only manage these changes but benefit from them would be a great

support to the economic viability of any organic chemical production system.

For example, woody residues dominate the biomass market but, as prices rise

above 50 USD per dry ton, the economic feasibility of value extraction is greatly

reduced and industries pivot to other carbon sources that are easier to digest- such

as corn stover and wood itself. Therefore, it is essential to be able to either use

many feedstocks as standard (to reduce price volatility from any one feedstock price

fluctuation) or possess the ability to quickly pivot to other, cheaper sources [150].

For these reasons, we include in our analysis the final concentration of the

carbon source (glucose/maltose), as it is an important variable; how effectively can

the strain utilise our carbon source? A strain with little carbon digestion and low

desired metabolite production is not necessarily ruled out as being of interest.

4.4.2 Major metabolite production

Each strain’s metabolome is highly complex and variable in expression levels [147].

However, there are some metabolites that are produced by most yeast strains that

represent most of their carbon output. The two main products are closely related

to glycolysis and energy conversion during fermentation conditions; ethanol and

glycerol. These two metabolites generally act as huge carbon sinks for the organism,

using much of the carbon metabolised. Generally, a drop in the expression of these

two metabolites is matched by a drop in carbon source metabolism.
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It is also necessary on a practical level to separate these higher-expression

metabolites (including medium-level metabolites such as malate) from those

less-expressed. Without this separation, heatmaps of expression quantities for

the main metabolites would be difficult, or impossible, to differentiate from other

metabolites.

Lastly, a strain that acts as a poor expression platform for the major metabolites

might be ideal for the production of other, rarer, chemicals. The biochemical

pathways would shuttle less carbon to the usual carbon sinks, and the organism

would instead more readily convert its carbon to the desired metabolite.

4.4.3 High value and lower expression metabolites

When considering microbial production platforms, not all outputs are created

equal. It is obvious that the economic feasibility of a production process relies

on two factors (assuming production and fixed costs remain constant); feedstock

prices and value of the produced chemical. Each feedstock is different, and each

presents difficulties and opportunities [150]. Economies of scale, using a single

feedstock, also play a large role in economic viability [151]- perhaps due to the

investment needed to extract the full value from a carbon source. Trying to swap

feedstock needs a re-invention of the entire biorefinery [150], from organism used,

to pre-treatments and specialised machinery. Due to the difficulties involved in

extracting energy from the carbon source, trying to express the highest-value end

product is natural.

While bioethanol production has been the focus of much research, it is generally

low-value and has to contend with the fluctuating pricing of oil-derived fuels.

Other biofuels suffer from similar issues, with the added difficulties involved in

lipid-based products [29, 152]. However, as fossil fuel reserves deplete and climate

change worsens, it is imperative to be prepared for future economic environments

[29, 152, 153].

Therefore, research often focusses on attempting to produce higher quantities

of rarer metabolites [137] and getting them up to theoretical maximum yields.

Here, we have carried out two different feedstock studies to analyse some of these

desired phenotypes. However, their genetic components contributing to these

higher expression levels are not to be taken in isolation.
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Just as important to the production of high amounts of a rare metabolite is

the high metabolism of the base carbon source such as glucose, glycerol, or other

carbon sources (section 4.4.1) and the expression of high-quantity metabolites such

as ethanol (section 4.4.2). That is to say, it is nearly impossible to achieve high

fractions of theoretical maximal yields if most of the carbon source goes either

undigested or shuttled into lower-value metabolites. Additionally, the purer the

final solution, the simpler the eventual purification and extraction of the desired

metabolite is to perform.

In conclusion, it is not possible to look at a metabolite in isolation. Each

metabolite exists in a complex network with every other metabolite in an organism’s

biochemical pathways- in aggregate, its metabolome. As such, it is necessary to take

a holistic view of the metabolome when considering the optimisation or genetic

modification of an organic production platform to express elevated levels of a

desired metabolite.

4.5 Results

4.5.1 Overview of Metabolite Correlations

Two tables were constructed for the metabolite analysis. Table 4.2 detailed the

highest and lowest metabolite concentrations for single strains within the study

with YNB media. This study included many diverse yeast strains of various species.

Table 4.3 attempts a similar study, but for Saccharomyces cerevisiae strains grown in

malt media.

There are many differences between the two studies in terms of metabolite

concentrations. Generally, however, the malt extract study (table 4.3) has higher

concentrations than those in the YNB study (table 4.2). This is likely simply due to

the abundant carbon source (maltose) in the maltose extract.

The YNB study had 10g/L of glucose, while the malt study contained

approximately 100g/L of maltose. This is a hugely significant increase in carbon

availability. However, even with this huge difference, expression only increased by a

factor of approximately two to three. This could mean that an energy source was no

longer the rate-limiting step of cell growth in the malt media, as it could have been

in the YNB media. This factor is shown clearly by the remaining glucose/maltose
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levels. The glucose concentrations in the YNB was near-zero for many strains(table

4.2), while the malt growth strains never dropped maltose concentrations below

9mM (table 4.3).

At a glance, the results of these two studies can be a challenge to interpret.

However, heatmaps enable easy identification of relative metabolite expression

levels. In heatmaps, all values are compared together and each value is assigned a

colour for its expression level relative to other metabolites. That is to say, a heatmap

interprets the relative expression of each metabolite per strain.

Figure 4.5.1: The log10 expression of various metabolites of strains grown in YNB media
In this figure, we can see how ethanol is highly expressed, with some glucose being mistaken for
maltose.

Figure 4.5.1 shows the log10 metabolite expression of the YNB study. In it,

we can see clear patterns of expression. When ethanol production is reduced and

glucose metabolism is high, glycerol expression is elevated. The Pearson correlation

between glucose and glycerol is -0.168, glucose and ethanol is -0.368 while glucose

correlated to glycerol and ethanol combined is -0.440. This indicates that both

metabolites are a significant carbon sink from the glucose carbon stock. There is also

a single strain (NCYC 820) with extremely high acetate expression which replaces

ethanol.

Figure 4.5.2 shows the log10 expression of the Malt media metabolites from the

second, Malt study. Compared to figure 4.5.1, maltose is clearly present in the

media. The YNB media did not contain any maltose. Additionally, we can see
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Figure 4.5.2: The log10 expression of various metabolites of strains grown in Malt media
In this figure, we can see that ethanol expression appears to depend on consumption of glucose
and its disaccharide maltose

changes in expression for other metabolites such as malate.

Figure 4.5.3: Maltose left in cell vs Ethanol produced
In this figure, each Saccharomyces cerevisiae strain (168 total) is a data point; graph ordered
by decreasing malt concentration. In the final quantification of metabolites after all growth, we
see that the strains that have consumed the most maltose have produced the most ethanol (r =
-0.936709864)

From figure 4.5.2, we can generally see that strains that struggled to metabolise

all the maltose had a correspondingly lower expression of ethanol (figure 4.5.3).

This is expected. Interestingly, our amino acids tested (Alanine r = 0.90, Valine r =

0.87) decreased with maltose levels (table 4.1).

Encouragingly, we can see clear increases in the flavour compounds succinate

(r = -0.667), malate (r = -0.543) and butyrate (r = -0.705) (table 4.1) as maltose
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decreases. This is encouraging for researchers who wish to uncover the genetic

underpinnings of these metabolites as clear links exist between carbon consumption

and metabolite production which can be exploited- instead of being a metabolite

that always maintains a constant expression level.

Importantly, these high correlations indicate a high variability in metabolite

concentration between strains. High phenotypic variability is essential to

determining the genetic underpinnings of phenotypic traits (i.e, metabolite

concentrations). This could explain why malt media, which has more significant

correlations between carbon source consumption and metabolite production, has

more low p-value SNPs that correlate with these metabolites. Some specific

examples are detailed within section 4.5.3.

4.5.2 Metabolite Quantities

The next stage in the analysis was comparing the metabolite data from the malt

study to the SNP genomes constituting the malt strain dataset. This would result in

an indication of the relative importance of each SNP to a specific phenotype (in this

case, metabolite expression levels).

In designing a strain with the desired metabolic profiles, it is necessary to

consider three main variables; carbon source digestion efficiency, genomic variants

affecting the concentration of major metabolites and, finally, the genomic variants

affecting the concentration of the desired phenotype (section 4.4).

As such, we will detail any SNPs potentially involved in expression levels of

the metabolites desired, while selecting strains with high carbon efficiencies. A

final modification of the strain could involve the addition of previously discussed

SNPs for furfural resistance to aid in the digestion of sugars present in pretreated

lignocellulosic waste (table 3.3).

We identified SNPs strongly correlated to both ethanol and succinate expression

levels (section 4.5.3). With these two metabolites, combined with information on

carbon source utilisation [2, 42, 113, 135, 147] and furfural resistance SNPs (table

3.3) we hope to build information that could lead to the design of various yeast

strains used in a range of production pipelines.

When deciding which metabolites to include within the final analysis, any

metabolites from Tricarboxylic Acid cycle (TCA) cycle were thought to be useful.
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Metabolite Malt Correlation YNB Correlation
4-Aminobutyrate 0.192 -0.221
Acetate 0.005 -0.048
Acetoin 0.064 0.054
Acetone 0.057 0.096
Alanine 0.904 -0.122
Butyrate -0.705 -0.127
Citrate 0.275 -0.061
Ethanol -0.937 -0.367
Formate 0.373 0.436
Fumarate -0.032 0.036
Glucose 0.262 1.000
Glycerol 0.000 -0.168
Glycylproline 0.604 -0.031
Malate -0.543 -0.124
Maltose 1.000 0.421
Methanol 0.245 -0.17
Pyruvate -0.447 0.024
Succinate -0.667 -0.110
Valine 0.874 -0.049
Acetaldehyde
Hydrate (QIB)

0.236 -0.096

Acetaldehyde
(QIB)

-0.546 -0.213

ethyl acetate 0.361 0.100

Table 4.1: Metabolite correlations per media to main carbon source
The first column is the metabolite being analysed. The second column is the correlation of these
metabolites in the malt media to the levels of maltose in the same media. The final column is the
correlation of these metabolites in the YNB media to the levels of glucose in the same media.
This table gives a quick glance at metabolite conversion from carbon source. If the correlation
is negative, the metabolite is produced as the carbon source is consumed. If the correlation is
positive, the reduction of the carbon source correlates with a drop in the metabolite, perhaps due
to consuming the metabolite as an energy source as the level of carbon source remaining decreases.

Containing many high-value metabolites and, as a core biochemical pathway, found

in all yeast, the TCA is of immense interest. As such, figure 4.5.4 highlights

all the metabolites included within the analysis. While not the only metabolites

comprising our analysis, they represent a resource of huge value and interest.

To achieve a broader view of all the TCA cycle metabolites analysed, a figure was

crafted highlighting the entire TCA cycle. In figure 4.5.4, we can see the different

compounds analysed in our study. Green represents potential metabolites that we

did not pursue for further analysis. Meanwhile, blue represents the metabolites

selected for analysis and red the metabolites without spectra peaks present within

the CHENOMX software library.
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Figure 4.5.4: The TCA cycle with relevant biomolecules
Biomolecules present in CHENOMX software for metabolite analysis (green), fully analysed (blue)
and molecules with identification difficulties (red). A quick overview reveals that many of the TCA
molecules themselves are either not in the CHENOMX compound library or too messy to be used
(red). By contrast, glycolysis metabolites are highly represented in the compound library (blue).

While a heatmap is useful for a broad overview of the data, it is less helpful for

the concrete evaluation of specific metabolites. Therefore, a table was created with

all the metabolites within the YNB media. The variation of metabolite quantities

between strains, which were from diverse species, was extensive. The variation of

across species grown in YNB media metabolites was summarised within table 4.2.

This analysis contained a few Saccharomyces cerevisiae strains, but mostly consisted

of strains from other species.
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Metabolite Minimum Maximum Mean-+StD Fold
Diversity

4-Aminobutyrate 0.00260 0.0726 0.0244-+0.014 27.900
Acetate 0.00270 22.700 0.7120-+1.31 8420.0
Acetoin 0.00113 0.1210 0.0118-+0.0163 107.00
Acetone 0.00140 1.3700 0.0538-+0.126 980.00
Alanine 0.00153 0.3550 0.0297-+0.0258 232.00
Butyrate 0.00295 0.0382 0.0152-+0.00544 12.900
Citrate 0.00140 0.3060 0.0166-+0.0282 219.00
Ethanol 6.96000 46.000 32.400-+7.07 6.6100
Formate 0.00000 0.0964 0.0070-+0.0092 –
Fumarate 0.00000 0.0527 0.0029-+0.00525 –
Glucose 0.00210 32.800 0.9080-+3.97 15600
Glycerol 0.01800 38.600 5.5900-+4.96 2150.0
Glycylproline 0.00000 9.5800 0.1030-+0.505 –
Malate 0.00437 0.3920 0.0560-+0.0554 89.700
Maltose 0.00000 0.0399 0.0020-+0.00394 –
Methanol 0.09140 0.2880 0.2420-+0.0291 3.1500
Pyruvate 0.00177 0.2050 0.0264-+0.0382 116.00
Succinate 0.00073 0.7610 0.0804-+0.0799 1040.0
Valine 0.00000 0.0994 0.0067-+0.0174 –
Acetaldehyde
Hydrate (QIB)

0.0066 0.2890 0.1090-+0.0519 44.000

Acetaldehyde
(QIB)

0.00250 0.1290 0.0445-+0.0252 51.600

Ethyl acetate 0.00125 0.1330 0.0317-+0.0226 107.00

Table 4.2: Metabolite (and carbon source) Concentrations (mM) analysed through
quantitative NMR after growth in YNB (+glucose) media.
Highest and lowest performing strain values shown alongside standard deviation in expression
across all strains in the study. The relatively high variability between low and high concentrations
(fold diversity) is often explained by a very low minimum in a strain. Acetaldehyde metabolites’
spectra added to compound library from the Quadram Institute Bioscience (QIB). Numbers
rounded to a s. f. number to align values.

As not exclusively S. cerevisiae strains, ethanol production varied from a high

of 46 mM with strain NCYC 17. Known more widely as Hanseniaspora valbyensis,

it is a grape must yeast well known to have high ethanol producing capabilities

[154]. The species with the lowest level of ethanol production, at just 6.96 mM, was

Rhodotorula graminis (NCYC 1401), a species known for very high lipid expression

levels [153].

These results are expected for these strains, as Rhodotorula graminis is known

as a strain with very low nitrogen but very high lipid content of up to 54% w/w

with glycerol as a feedstock. This extreme lipid expression is being investigated

as a production platform for biodiesel. Its low ethanol production is expected, as
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most of the carbon would have been sequestered to other biochemical pathways (i.e,

lipid production) [153]. Meanwhile Hanseniaspora valbyensis is an expected high

ethanol producer. Found in grape must, and the first step in grape fermentation,

high ethanol production for the future wine is expected [154]. Other metabolites of

interest include Succinate, which varied from a near-zero of 0.00073 mM to a peak

of 0.7610 mM.

This variation hints at the taxonomic and metabolic diversity encompassed

within the NCYC, with the evolutionary constraints of each strain’s home

environment resulting in specific metabolomic profiles. Even in the same

environment, the genome of each strain causes vastly different metabolomic

outputs.

As with the YNB media, there was a high degree of variation between the

metabolomes of the strains within the Malt dataset. Unlike the YNB media,

which contained many diverse yeast species, the malt media growth was achieved

with solely S. cerevisiae strains. The strains grown in the malt media presented

varied metabolomic profiles, illustrating their genetic diversity even within the

Saccharomyces cerevisiae species. As an example of this metabolite diversity, ethanol

varied from a low of 20.1 mM in strain NCYC 2041, with a high of 318.6 mM in

strain NCYC 1413. This huge variation presents the potential for SNP identification

that affects expression levels. Both strains are isolated from wine making processes,

which implies one strain is better adapted at growing on the malt media.

The huge diversity in species used in the earlier YNB growth study was readily

grasped in table 4.2, where we saw huge fold-change differences between the lowest

and highest producing strains of a metabolite. That strain dataset included both

Saccharomyces cerevisiae and many diverse yeast species. In contrast, table 4.3

contains only Saccharomyces cerevisiae strains. This difference in diversity is clearly

represented in the metabolite quantities. For example, all Saccharomyces cerevisiae

strains are generally assumed to produce high quantities of ethanol. In contrasting

the two tables, we see the Saccharomyces cerevisiae-only table 4.3 has an 11.3-fold

change between the lowest and highest glycerol producers. Table 4.2, by contrast,

has a 2150 fold difference (due to a very low base).

It is interesting to consider these results, as different media appear to affect fold

diversity in metabolite production between strains. As media change, the efficiency

of a yeast strain on the carbon source becomes an important variable.
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Metabolite Minimum Maximum Mean-+StD Fold
Diversity

4-Aminobutyrate 0.07230 0.364 0.25600-+0.0762 5.03
Acetate 0.07190 22.70 1.02000-+1.82 316
Acetoin 0.01200 0.335 0.02520-+0.0261 27.8
Acetone 0.00307 0.327 0.01600-+0.0287 107
Alanine 0.01690 0.531 0.19200-+0.15 31.3
Butyrate 0.08280 0.349 0.18300-+0.0454 4.21
Citrate 0.24200 0.888 0.51000-+0.1 3.66
Ethanol 20.1000 319.0 175.000-+70.2 15.9
Formate 0.00597 0.382 0.02420-+0.0386 64
Fumarate 0.00050 0.074 0.00993-+0.00748 148
Glucose 0.72400 19.40 1.72000-+2.25 26.8
Glycerol 1.32000 14.90 7.47000-+2.64 11.3
Glycylproline 0.43600 1.310 0.94700-+0.183 3.01
Malate 0.12400 0.9220 0.59900-+0.147 7.45
Maltose 4.71000 90.80 39.7000-+27.6 19.3
Methanol 0.45300 0.731 0.64600-+0.0519 1.61
Pyruvate 0.03710 0.884 0.23200-+0.139 23.8
Succinate 0.05980 1.380 0.43200-+0.214 23.1
Valine 0.03440 0.284 0.12600-+0.07 8.26
Acetaldehyde
Hydrate (QIB)

0.34900 6.080 1.24000-+0.494 17.4

Acetaldehyde
(QIB)

0.00543 0.229 0.04250-+0.0278 42.1

Ethyl acetate 0.01280 0.849 0.11700-+0.136 66.2

Table 4.3: Metabolite (and carbon source) Concentrations (mM) analysed through
quantitative NMR after growth in Malt media.
Highest and lowest performing strain values shown alongside standard deviation in expression
across all strains in the study. The relatively high variability between low and high concentrations
(fold diversity) is often explained by a very low minimum in a strain. Acetaldehyde metabolites’
spectra added to compound library from Quadram Institute Bioscience (QIB). Numbers rounded
to a s. f. number to align values.

From table 4.3, it is instantly visible (from Fold Diversity/Change), that there

exists a huge dynamism within the S. cerevisiae strains. While all of the same species,

they are nonetheless specialised to specific roles. Some strains are used in ale

production, while others make wine and still others are from clinical environments.

As such, their broad diversity in metabolomic outputs is not unusual. While

generally more flavour compounds were produced (citrate, acetoin) in the malt

media (table 4.3) than in YNB media (table 4.2), this discrepancy could probably

be partially explained by more of the carbon source.

Nonetheless, our analysis reveal the great metabolic diversity of yeasts, which

are a great resource to any potential buyer. Once coupled with the WGS of strains
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within the NCYC dataset, it might become possible to both predict phenotypic traits

based on genotypic variations as well as the evolutionary relationships between

strains (Q-Matrix, section 2.2.4).

4.5.3 Specific Metabolites Within The Malt Yeast Strains

The following subsections will attempt to illustrate the great variability in genomic

predictions based on the varied strains and media utilised using select metabolites

as examples. Malt media possesses more stored carbon energy (maltose, a glucose

disaccharide) than the YNB media, so is expected to have more metabolites

produced within it. As only S. cerevisiae strains were used in the malt media, which

are generally good for the brewing industry, many more ’flavour’ compounds are

expected to emerge within it. More over, the founder effect predictions made would

affect the final correlations- between the Kernel PCA-based PSIKO and the genetic

distance SANE, there exist some differences in p-value correlations for specific SNPs.

Far from a weakness, this shows how there are many tools available to a

bioinformatician. When one analysis fails to explain the data, a second method

might reveal a novel insight. Only when many tools and methods are tested can the

data be fully analysed and exploited for its full research potential.

In this analyses, we had many variables. There existed both YNB and Malt media

analyses, each with 23 metabolites analysed quantitatively. We also employed 2

separate Q-Matrices; the statistical PSIKO and the TamD genetic distance SANE. To

avoid displaying 92 SNP tables, these were added to the GitHub directory, while

some selected metabolite and SNP examples will be explained below. They are

summarised in table 4.4- this is not an exhaustive list.

As the strains in the YNB media were very diverse, they did not map well onto

the reference Saccharomyces cerevisiae pan-genome assembled [22]. For this reason,

the uncorrected p-values were very high and were not included in this section.

However, their SNP data is still included alongside their metabolomic outputs.

The data in table 4.4 is obtained from a GWAS that correlates data from

the SNP genomes of each strain to the concentrations of specific metabolites.

An example of the data is in table 4.5; full data in GitHub repository

("Strain_Metabolite_Comparisons.xlsx"). Excepting some strains expressing more

glycerol in YNB media than in Malt media, all metabolites were upregulated in
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Metabolite Gene Base pair p-value Q-Matrix
Glucose YGR287C 687 1.25 x 10-5 SANE
Ethanol YGR292W 913 6.84 x 10-8 PSIKO
Ethanol YCR048W 336 9.59 x 10-9 SANE
Glycerol YGR192C 865 4.6 x 10-22 SANE
Glycerol YJL052W 561 9.27 x 10-22 PSIKO
Succinate YAL054C 1332 1.3 x 10-10 SANE
Citrate YNR073C 327 1.30 x 10-20 SANE
Acetoin YAL060W 312 0.023 SANE

Table 4.4: Specific hits for metabolite concentrations
The table displays some SNPs highlighted in this Malt media section. They are not an exhaustive
list, as many other SNPs exist with similar uncorrected p-values; these are a few selected from the
92 SNP tables with 51,744 (Core Genome) SNPs per analysis each: 23 metabolites, 2 Q-Matrices
(SANE/PSIKO), 2 media types (YNB/Malt).

Malt media in comparison to YNB media. This can be due to Malt media having

more glucose available (as a disaccharide) than the YNB media.

Strain
Malt

Acetoin Citrate Ethanol Strain
YNB

Acetoin Citrate Ethanol

232 0.0267 0.4408 220.4 232 0.0045 0.0075 37.875
235 0.0269 0.4630 211.5 235 0.0044 0.0075 38.167
360 0.0218 0.4145 197.9 360 0.005 0.0127 31.907
361 0.0273 0.5166 245.8 361 0.0076 0.0126 31.931
505 0.0216 0.4442 206.5 505 0.0107 0.0078 38.533
667 0.0254 0.4704 224.7 667 0.0039 0.0043 38.030
695 0.0245 0.4515 213.6 695 0.0094 0.0160 30.461

Table 4.5: Metabolic outputs of specific Saccharomyces cerevisiae yeast in YNB and Malt
media
Table illustrates the change in metabolite production for specific Saccharomyces cerevisiae yeast
strains present in both media. Strain number for Malt media under ’Strain Malt’, strain number
for YNB media under ’Strain YNB’. Acetoin, citrate and ethanol shown as example metabolites.
Malt media presents much higher concentrations (mmol) of all metabolites chosen.

Ethanol

Ethanol, known colloquially simply as ’alcohol’, has been known to humans

for thousands of years as a constituent of recreational, pathogen-free alcoholic

beverages [138]. An electron donor to NADH in anaerobic and Crabtree [37] (i.e,

high sugar) conditions, it allows cells to respire without oxygen. Yet, it is not

essential and performs a similar function to glycerol (figure 1.3.2).

In contrast to the past, recently the usage of ethanol has shifted drastically.

While brewers and health experts have begun to focus on low-ethanol beers [155],

industrialists have attempted to increase ethanol production efficiency for use
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as a biofuel [134]. Much research then focusses on producing bioethanol from

lignocellulosic waste biomass [111, 134, 135, 156, 157]. Both of these avenues

demand the same thing; elucidation of the genetic elements responsible for the

biological pathways that affect ethanol production. While industrialists simply

desire high ethanol production and viable yeast, brewers would also want similar

flavour profiles to their current brewing strains.

As much of the carbon evidently goes towards ethanol (figure 4.5.2), we can

conclude that anything affecting glucose metabolism would affect ethanol levels.

Therefore, we can note that glucose concentrations appears heavily reliant on a

alpha-glucosidases (such as gene YGR287C at bp 687 (p-value 1.25E-05, SANE

Q-Matrix) [158]. This is an expected result that further validates the GWAS model.

It is also an indication of a glucose-metabolising gene that increases ethanol (and

all other) metabolite values.

Similarly, a mutation in metabolising glucose’s disaccharide (maltose) can be

predicted to affect ethanol levels. Indeed, this is what was found with YGR292W at

bp 913 (SANE: bp 913 6.84 x 10-6, PSIKO: 2.87 x 10-8) [159]. When considering

ethanol, and other metabolites, it becomes important to consider carbon source

catabolism.

For ethanol-specific genes in S. cerevisiae strains growing in Malt media, we

found many genes. Each SNP is a potential insight into the network effects of

various genes within the regulatory pathways of ethanol. For example, YCR048W

appears with an SNP at bp 336 (SANE: p-value 9.59 x 10-9, PSIKO: 3.37 x 10-9) and

is the Acyl-coenzyme A gene.The interactions between ethanol and Acyl CoA have

long been known so it is not surprising that a SNP within the gene might correlate

with various ethanol concentrations[160].

Glycerol

This metabolite is synthesised largely within industrial processes or derived from

fossil fuels, such as a by-product of biodiesel production [152]. Used in everything

from shampoo to food products to vibration dampeners, it is widely desired by the

world economy. While disposal of excess can be an issue [152], a renewable source

would be essential to decarbonise and find alternatives to fossil fuels before they

disappear.

As glycerol interacts, and competes with, molecules in the TCA cycle it is

124



expected to heavily vary depending on specific genetic variation that emphasises

different metabolic pathways. It also acts as a serious carbon sink (figures 4.5.2,

4.5.1).

Among the many SNP correlations for glycerol concentration, one was found

at bp 865 (SANE: p-value 4.6 x 10-22, PSIKO 4.60 x 10-22) for gene YGR192C.

YGR192C is a Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that is

differentially expressed in stress conditions [161]. Prior to full validation, it is not

inconceivable to consider this a ’true’ hit. As dehydrogenation of the alcohol version

(glycerol) gives glyceraldehyde, it is possible to see that the dehydrogenation of

glyceraldehyde would affect glycerol levels.

A further validation of GAPDHs in the role of yeast glycerol concentrations

is illyustrated by gene YJL052W at bp 561 (PSIKO: 9.27 x 10-22, SANE: 9.27 x

10-22) [128]. The identification of two disparate GAPDH genes with very low

uncorrected p-values indicates they might be ideal targets for the alteration of

glycerol concentrations.

Succinate

Succinate is a TCA metabolite produced in the mitochondria of cells, but is found

throughout cells and even extra-cellularly. Due to it being used in the TCA cycle,

it is found at some level in almost all eukaryotic organisms. This makes it an

excellent target for GWAS, where we can then potentially identify genetic variants

that affect metabolite levels [26, 162, 163]. In vivo cells, it can act as everything

from DNA transcription modulator to enzyme inhibitor though interaction with

histones and α-ketoglutarate-dependent enzymes and propyl hydroxylases [163]. In

industry, succinate fulfils many other roles. It is used as a food additive, feedstocks

for pharmaceuticals and agricultural animals as well as the general bulk chemical

market which includes using succinate to produce nylon, various plastics and select

chelators [137]. In short, it is needed in high concentrations for ease of purification

and high volume for best pricing [137].

Succinate is a chemical of high industrial and, thus, research interest. While

sourcing of succinate was derived through oil, renewable bio-based methods are

being investigated as replacements in a greener system [137, 136]. We have

therefore selected succinate as a biomolecule of interest due to ubiquity of both

industrial interest and yeast metabolic production.
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Fortunately, we see in the Malt media there are many SNPs with low uncorrected

p-values correlated with succinate concentration. For example, the SNP with the

lowest p-value is YAL054C on bp 1332 (p-value 1.3 x 10-10, SANE Q-Matrix),

which is a Acetyl-coA synthetase gene- shuttling more carbon into the TCA cycle

(figure 4.5.4) [164]. Another gene is YAL061W at bp 549 (p-value 3.4 x 10-9, SANE

Q-Matrix), which is a putative medium-chain alcohol dehydrogenase with similarity

to BDH1 and very tentative relations to succinate respiration [165].

Citrate

Another flavour compound important to the brewing industry is citrate. The

compound causing the ’citrus fruit’ flavour, it is produced in the biochemical

pathway that bears it’s name; The Citric Acid (TCA) cycle. An important flavour

compound, its presence was expected in Malt media, and plenty was found (figure

4.5.2).

The top correlated SNP among many, the gene YNR073C has a mutation at bp

327 (p-value 1.30 x 10-20, SANE Q-Matrix). The gene is MANnitol dehydrogenase,

an oxidoreductase that affects cellular levels of NAD+/NADH. This is important

as NAD+/NADH are pivotal to citrate levels. In the TCA cycle, both of citrate’s

substrates (oxaloacetate and acetyl-CoA) require NAD+ to be produced themselves.

However, it is important to note that the gene YNR073C increases NADH levels;

when NAD+ is needed for both oxaloacetate and acetyl-CoA. Therefore, the allele

in question might reduce its ability to catalyse the conversion of NAD+ to NADH

[166].

This gives an interesting target for the increase of citrate; both YNR073C,

but also oxidoreductases and NAD+/NADH genes in general. Affecting the

NAD+/NADH ratio and concentrations can be predicted to have large effects on

citrate levels. This highlights the complex network effects of genes and their

interactions; a gene may affect a completely separate gene due to modifying core

metabolite levels.

Acetoin

As a metabolite with a pleasant ’buttery’ smell, acetoin is often added to

butter-alternatives (such as plant-based butters) to add the distinctive ’buttery’

taste. Due to this gentle flavour, Acetoin is a useful metabolite in beer. As such,
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elucidating the biochemical pathways leading to its production is of industrial

interest.

Acetoin is produced by many organisms from Lactococcus lactis [167]to various

bacteria and Saccharomyces cerevisiae, and found in many foods from yogurt to

blackberries. Already in use as an additive in everything from butter [167] to

electronic cigarette ’vape’ products [168], it is widely accepted as safe for use.

The S. cerevisiae strains had many correlations to their acetoin levels; there were

3354 SNPs with p-values below 0.01- with gene YAL060W that catabolises acetoin

[169] found with an uncorrected p-value of 0.023 at bp 312 (SANE Q-Matrix). With

a P-value too high be valid, it is nonetheless interesting. The huge number of SNPs

with very low p-values (228 with less than 0.0001) highlight malt extract as a media

well-suited for the production of flavour compounds from S. cerevisiae strains.

4.6 Discussion

To analyse the results of the experiment and to assess the potential consequences

of these results, it is necessary to take a deep dive into the literature. Firstly, it is

necessary to select a SNP, with associated gene information, that is correlated to the

desired phenotype. Secondly, the gene in which the SNP is located in is investigated

and its general Gene Ontology (GO) and other functions verified.

Such a strategy might already reveal a possible mode of action, if the functional

data is evident enough and the correlation is strong. Subsequently, if the gene

is appropriately annotated, the specific locus of the SNP can be identified. This

allows for a much more accurate prediction of the potential method of a resultant

phenotype. For example, a mutation in the active site of an enzyme that creates

the metabolite can likely be linked to the enzyme being mutated to increase its

efficiency and/or how active it is.

The experiments carried out here, while providing possible solutions for the

genetic basis of phenotypic traits, remain predictive in scope. Further studies, for

example by targetted genetic mutation, would test the hypothesis of the SNPs’ role

in the phenotypic outcome. However, there is also another possibility; a directed

evolution experiment to increase a metabolite, followed by a WGS to verify if the

expected mutations gained prominence could be contemplated, for example in the

high-value metabolite succinate.
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To increase succinate production in yeast strains, we would need to produce an

environment where an increase in expression would result in an increased fitness. In

this way, we could select for genetic traits that cause higher succinate. One possible

avenue is to grow the strains in a competitive inhibitor for succinate; malanoate.

This would mean that for the cells to utilise succinate in the levels needed in the

TCA cycle, mutations might have to evolve to allow for better succinate specificity,

elevated expression or, unfortunately, a method for cells to remove melanoate from

the cells.

In this study, we found various genomic variants potentially underlying

metabolite expression changes. For example, we found an enzyme known to directly

interact with acetoin (YAL060W) as a potential gene affecting acetoin levels. Other

interesting results were uncharacterised regions of chromosome 15 potentially

being pivotal to ethanol production (in YNB media data). In a GWAS system,

there could be many reasons for such indirect genes causing increased expression of

specific metabolites, such as a reduction in competition for a scarce carbon source.

In finding known, fully characterised genes where expected (acetoin YAL060W) we

verify the accuracy of the GWAS performed. In finding tangential or unexpected

hits, we attempt to provide novel insights into the network effects affecting a

metabolite’s expression level. Overall, the GWAS was roughly successful, even with

the relatively small number of strains included in each study.

With more data, and better reference genomes for diverse yeast strains, better

GWAS may be carried out. As it stands, we were able to obtain good metabolomic

profiles for each strain and evaluate some of the predictive ability of the study

with some expected SNP hits. In future, an expansion of the assayed strains would

expand the potential of the GWAS.

4.6.1 CHENOMX profiling issues

The following examples will present some of the difficulties encountered in

assigning concentrations to a metabolite’s spectra. In general, difficulties in

assigning peaks to a metabolite are due to peak-shifts perhaps caused by an

unexpected pH, to trace amounts of metabolite that are difficult to identify or, to

peaks in a ’messy’ area of the spectra. All these factors can make it difficult to

determine the quantity of a specific metabolite. For these reasons, malate, citrate
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and isocitrate were rejected for analysis as their concentrations could not be reliably

identified.

For the metabolites carried forward for further analysis, some additional issues

remained. The first is the issue of two metabolites with single peaks very close to

one another. These two peaks may be confused for each other when quantified

via automatic annotation. A prime example of this phenomenon is acetoin, a

’buttery’ flavour compound common in beer and likely an important factor in a

beer’s flavour profile. Acetoin’s NMR spectra peak is adjacent to that of acetone.

Acetone, while produced in low amounts as a secondary metabolite, is usually a

signal for contamination from the acetone washing of NMR tubes. It can be difficult

for CHENOMX (CHENOMX Inc, Canada) to automatically fit both peaks correctly

and they must thus be corrected manually.

A separate issue is one of consistent peak shift. Due to deviations in media pH

or other media components, a metabolite peak is consistently found at an unusual

second location in the spectra. This is the case with Succinate, another metabolite of

interest. An acidity regulator and an input for plastic production, it is an important

metabolite for industry [162]. Through close analysis, and personal consultation

with NMR lab manager Dr. Colin MacDonald, it was easy to identify a recurring

mis-annotation of the CHENOMX software and adjust for it.

A final issue is when a compound library does not contain the required

metabolite at the desired NMR frequency. For example, to identify acetaldehyde,

it was necessary to use the 600MHz reference values on a 500MHz spectra. Due

to mismatches, only manual annotation was possible with the spectra peaks.

Additionally, due to limited intersection with glucose/maltose, it was a useful

cross-check for glucose/maltose concentrations.

However, none of these issues were found to affect high-concentration

compounds or those whose peaks were distinct from their neighbours. Ethanol is

a perfect example of a high-concentration compound present in all strains. It is

thus correctly and confidently annotated automatically by the CHENOMX software

throughout the study.
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Chapter 5

Operon Prediction of Cytochromes

through genomic analysis

5.1 Electrogenic bacteria

Electrogenic bacteria are bacteria that can produce electrical potentials to

shuttle electrons across their membranes. Shewanella oneidensis and Geobacter

sulfurreducens are both isolated from the anaerobic sediments of lake water and

are the best understood electrogenic model organisms [56, 57, 170]. The anoxic

subsurface is not the only place that electrogenic bacteria are found, for instance the

human microbiome has also been shown to electrogenic bacteria such as S. aureus

(ATC 6538), E. faecalis (ATCC 19433), S. agalactiae (A909), L. rhamnosus (GG), and

L.reuteri (ATCC 23272)[171]. Some showed even greater electrical productivity than

S. oneidensis [171]. This illustrates that a diverse array of hitherto-uncharacterised

bacteria have the potential to be electrogenic- including some in our own gut

microbiome.

Electrogenic bacteria have a wide array of potential biotechnological uses. The

three most common and of interest to industry are bio-remediation, microbial fuel

cells and microbial electro-synthesis [172].

In bio-remediation, electrogenic bacteria can be used to remove uranium from

contaminated groundwater in defunct ore-processing facilities or waste water

treatment [172, 173]. This is vastly cheaper than gathering and processing all the

soil, and water, separately.

Microbial fuel cells are another focus of research, for either wastewater
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remediation, electricity production from waste or soil or a mix of both [57]. The

broad range of substrates that electrogenic bacteria are able to thrive on has even

been exploited to act as a sensor for specific substrates, where a substrate’s presence

is measured by the electrical current generated by a mutated bacterial population

[174].

Lastly, electrogenic bacteria have been investigated for their ability to undergo

electro-synthesis. This is when a lower-value substrate is turned, with electrical

energy being supplied as an energy source, into a higher-value product. For

example, the final goal of directly turning carbon dioxide into higher value

multicarbon extracellular organic compounds with electricity [43]. When coupled

with ’green’ electrical supplies, it presents a potential alternative to oil-derived

chemicals.

5.1.1 Biochemistry of Electrogenic Bacteria

Cyrtochromes are proteins that use redox-active iron atoms in haem co-factors to

act as electron transporters or catalyse redox reactions. When multiple haems are

arranged in a linear conformation within a protein and across a membrane, they

can be used to shuttle electrons between a cell and its environment. This allows

for the reduction of insoluble mineral oxide grains of Fe (III) and Mn (III/IV) in

a microorganism’s environment. This ability can sometimes evolve into essential

respiratory functions for metal-respiring (electrogenic) microorganisms[175, 176].

An electrogenic bacteria that can use this ability to ’breathe’ metal (in place of

oxygen) is Shewanella amazonensis. This bacteria is capable, in anoxic conditions, to

utilise the metal oxides and solids in its environment as terminal electron acceptors

[176].

The complex that allows electron transfer across the outer membrane of S.

oneidensis is composed of three subunits, which in Shewanella are named MtrA,

MtrB and MtrC. MtrC acts as the extracellular protein interacting with the

extracellular metals in the environment, MtrB acts as an insulating transmembrane

porin β-barrel with MtrA nestled within MtrB. Subunit MtrC interacts with MtrA to

pass electrons back and forth from the cytoplasm, through MtrB, to the extracellular

environment [56].

The cytochome structures predicted are organised into 4 general structural
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groups. The MtrCAB structure is the largest and consists of a porin with

two haem-containing cytochromes (figure 5.1.1), while the MtrAB (figure 5.1.2)is

similar but lacking MtrC which means it cannot interact with its environment as

easily. The Cyc2 (figure 5.1.3)’fusion’ type is similar to MtrAB but is composed of a

single protein that is both a porin and an iron-containing electron-transport haem

chain (MtrA and MtrB joined into one protein). Finally, we group any cytochromes

that do not fit into these 3 groups into ’other’. These may turn out to be ’weird and

wonderful’ structures which improve our understanding of cytochromes as a whole.

Figure 5.1.1: MtrCAB Operon Illustration
MtrCAB Operon is visualised in an artistic representation of the general protein structures. MtrA
(Green) is sheathed within the MtrB (Blue) transmembrane porin and connects to the MtrC (Grey)
extracellular cytochrome. Electrons are carried from within the cell towards MtrC (then to the
environment) along the electron path (Yellow line) which follows the chain of C-type haems (Red
circles, number solely for illustrative purposes).

Knowing these general structures, and each subunit’s makeup, it becomes

possible to predict if a genetic sequence could be one of the three subunits. The

genetic sequence gives us plenty of clues, from a predicted number of haems in

a protein the to number of β-strands and its cellular localisation signals. This

can be coupled with knowledge of analogus systems, that might comprise of a

one- or two- component system as opposed to the usual three-component one. All

together, it becomes possible to screen genetic sequences for likelihood of being a
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Figure 5.1.2: MtrCAB Operon Illustration
MtrAB Operon is visualised in an artistic representation of the general protein structures. MtrA
(Green) is sheathed within the MtrB (Blue) transmembrane porin. Electrons (Yellow line) are
passed along MtrA’s c-type haems (Red circles, number solely for illustrative purposes) and
through MtrB.

Figure 5.1.3: MtrCAB Operon Illustration
Cyc2 Operon is visualised in an artistic representation of the general protein structures. The blue
Cyc2 fusion protein acts as both porin (directional ’barrel’ arrows) and as electron transport chain
with c-type haems (Red, number solely for illustrative purposes). The electron path (Yellow) leads
through the electron transport chain’s path. The electrons are drawn into the cell.

cytochrome-porin operon.

In our computational approach, we attempt to predict these cytochrome-porin

operons across all sequenced bacteria in the RefSeq database. This would allow for

an analysis of all sequenced bacteria, to allow us to narrow down the database to

suspected cytochrome-containing bacteria. Once all potential cytochrome operons

were identified in the bacterial genomes, they could be refined to only those of

specific properties (such as a specific number of haems). Further, each cytochrome
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was classified as one of the various distinct cytochrome types (figures 5.1.3, 5.1.1,

5.1.2) that allow us to better predict their phenotypic capabilities.

This novel approach allows us to classify all cytochromes present in all genomes

within the RefSeq database.

5.2 ETMiner

Electron Transfer data Miner (ETMiner) is a Python software tool developed within

this project to predict putative cytochrome operons from bacterial CDS genome

files. Able to predict operons from CDS genome files, it allows a user to interrogate

a database with desired operon parameters.

Able to automatically generate various figures such as heatmaps and

scatterplots, ETMiner enables quick analysis of the data to allow the researcher an

intuitive understanding of the data structure.

5.2.1 Metagenomic approach

ETMiner was used to predict all cytochrome operons present in the entire sequenced

CDS bacterial dataset within the Refseq database [64]. As such, it captured

most bacterial species found to date. (2020, when RefSeq CDS genomes were

downloaded). The single-database approach has the added benefit of ensuring all

genomes analysed adhere to the same quality standards instead of attempting to

reach a parity between multiple databanks with diverse data submission standards.

In this way, we can ensure all data were submitted under similar principles and

hold the same base biases.

This breadth of data utilised makes the discovery of novel operons highly likely.

Once operons are discovered, they can be backwards placed into their genomic

context.

5.2.2 Bioinformatics pipeline

To identify all cytochrome operons within the entire bacterial genome dataset, it was

necessary to create a bespoke pipeline and software application. Electron Transport

data Miner (ETMiner) allows for the identification of various cytochrome operon

types that match specific characteristics such as c-type haem count and molecular
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weight ratios.

To construct this application, it was necessary to create a BLAST nucleotide

database that was searchable by a BLASTn (i.e. nucleotide to nucleotide) call.

The database created was also, through headers within the data files, matched to

genomic location data for future operon construction. This division of information,

including splitting the database into four segments, was due to computational limits

and the size and breadth of the data used.

Cytochrome-like (containing c-type haems) proteins with known periplasmic

signal peptides were BLASTed to this sub-divided database. This would hopefully

identify all cytochromes that are located on cell walls- even in completely

uncharacterised genomes with purely predicted CDS regions. Once a protein match

was found, with an e-value below 0.0001 and query cover over 85% (percentage

match between the query and hit), it was then placed within its predicted operon.

A gene is assumed to be within a single operon with a neighbouring gene if the

two genes are less than 100bp apart. The chain of genes all within this 100bp of

their next neighbour are assumed to be an operon. This attempted to extract the

putative cytochrome entirely- with any associated proteins. One of these associated

proteins could be the porin required for cross-membrane electron shuttling.

To verify if associated proteins (or the hit protein itself) were porins, the

transmembrane beta-strands of each protein had to be counted. The TM region

count per protein was predicted using PRED-TMBB [16] while the haem count

was predicted through the Scan Prosite [17] tool. Once this had been done, each

predicted operon was assessed for its cytochrome potential using the ETMiner

application. This new software speeds identification of potential cytochromes of

interest in the broad range of bacteria via the selection of matching criteria. The

identified operons can then be narrowed down further manually for experimental

validation. This is useful, as it gives new insight into regions of interest and where

to begin searching. As it carries out a broad search of all bacterial species, ETMiner

is also able to identify regions in bacteria that have very limited gene annotation but

nonetheless match cytochrome profiles.

Unlike in standard GWAS systems, we translated coding DNA sequences (CDS)

into proteins after our initial BLASTn searches. Next, we focussed on matching

protein sequences to known motifs and, from there, constructing predicted

operons. In this way, we obtained a roughly genome-wide prediction of phenotypic
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characteristics based on genetic sequences.

The entirety of the pipeline meant that it was possible to search an entire

CDS genomic database for potential c-type haem cytochrome porin-containing

metal-respiring operons without experimentally validating genes. The BLAST

commands would identify likely candidates, while the Haem and TM motif searches

would then verify cytochrome likelihood. Once this was completed, candidates

could be reviewed with manual experimentation. All this data was later joined in

ETMiner (figure 5.7.1).

5.3 Bacterial genome selection and curation

As a project designed to capture the breadth of cytochrome operons in bacterial

genomes that have potentially remained as-yet undiscovered, it was decided to

use every genome in the Refseq database. The Refseq database is a high-quality

database of sequenced genomes that would give us reliable results of real operons

[64].

To refine any missing gene/protein data, the non-redundant (NR) protein

database at the NCBI was used to fill in the gaps. This helped ensure that the

manual data curation remained of high quality. However, there were significant

issues with assigning taxonomic identification (TaxID). Many CDS and proteins in

the study had no TaxID information, or it was outdated, or had changed as genomes

were re-classified.

These issues were largely alleviated through manual curation. For

example, using NCBI’s ftp system allowed many conversion files

to be downloaded for quick conversion to the accessions needed

(https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/). Using these files,

TaxIDs can accurately be attributed to specific WGS genomes by refseq. Secondly,

any strains with missing species info can be assembled from NCBIWWW’s BioBlast

python3 packages that convert TaxIDs to species information.

With these steps, and converting old TaxIDs into new ones, it was possible to

eventually find as many TaxIDs as possible from all WGS and CDS information.

Some rare discontinued TaxIDs and anonymous protein IDs were completely

inscrutable.
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5.4 Bioinformatics and explanation for choices and

development of methods

Figure 5.4.1: Creation of DB for ETMiner app
The RefSeq CDS genomes were downloaded and placed into a single file (RefSeq CDS DB). The
data was too large to host on the server, so it was reduced (700+Gb to 300Gb) by concatonating
headers (Concatenated Headers) in Step 1. In Step 2, this was fractured into multiple smaller
databases to be small enough to BLAST on available HPC cores. In Step 3, BLASTn was used
for queries against the fractured databases, and hits stored. In Step 4, the hits were reinserted
into their putative genomic operons, converted to protein sequences and then joined together into
a single database (Database RefSeq).

To explain the later stages of the analysis, it is first necessary to explain how the

databases was created. Two databases were made; one with sequence information,

and one without.

The RefSeq CDS Genomes were downloaded from the NCBI FTP website

directly. As there were too many genomes at the time (2020), the database was
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over 700Gb and reached the limits of our storage permissions. As such, in step 1

a database was created and reduced by exploiting redundancy. Every redundant

DNA sequence received a header of all the matching genes in all the genomes

concatenated. This database was, in turn, too large for BLASTn to query with the

CPUs at our disposal. This had the benefit of allowing us to simultaneously BLASTn

many of our queries at once with many cores- important due to our large volume of

query sequences ( 250,000).

Therefore, in step 2, the concatenated-headers database was separated randomly

(’fractured’) into multiple smaller databases. These were then queried in place

of the larger database for step 3. The e-values of true hits were nonetheless still

distinct when compared to non-hits by many orders of magnitude (decimal points).

The hits were plugged back into their original CDS genome files and neighbouring

genes extracted. These hits, with their neighbouring operon genes, were then joined

into a single database in step 4 (Database RefSeq). They were also converted to their

relevant protein sequences for subsequent Hidden Markov Model (HMM) analysis

of specific protein motifs. One version was maintained without any sequence

information in the eventuality sequence data was redundant to a researcher.

The database creation was initiated with the relevant blast command (equation

5.1) below.

makeblastdb − in NonRedundantDB.f na − title DB_f or_BLAST ing − dbtype nucl

(5.1)

Once the databases were created, each query sequence was BLASTn-ed against the

smaller databases. As a nucleotide-nucleotide match, we used the blastn command

( equation 5.2).

blastn −outf mt 7 −query query.f a −db databaseN −evalue 0.0001 −qcov_hsp_perc 85

(5.2)

Output format 7 has been chosen as the preferred visual output for data parsing,

with databaseN (N being databases1-4). The evalue and query cover (percentage

of query matching target in database) were selected to be broad enough to capture

enough novel variation, while remaining significant.

Hits were individual gene matches that were mapped to their parent genome
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(s). This was possible by both preserving all the ’headers’ of the hits (step 1, figure

5.4.1) and output 7 (-outfmt 7) which displayed everything necessary. The genes,

mapped to their parent genomes, were then inserted into predicted operons which

were then converted to protein sequences.

To accomplish the operon creation, a ’window’ of 300 genes on either end of the

re-inserted gene was maintained to either end of each gene hit. The single-gene

operon was then expanded sequentially to include any genes within 100bp at either

end of the operon’s ends (to the 300 limit). This sliding ’window’ was utilised to

counter computing resource limitations (step 4, figure 5.4.1). The reduction in

computing difficulty also resulted in faster data processing.

Once the operons were thus constructed and assembled through BLAST and

custom scripts, all the proteins (converted from the DNA sequence) within the

operons were listed. This list was analysed for haem and transmembrane motifs.

The end result was a dictionary of Haems and transmembrane motifs per protein

distinct from the operons the proteins reside in. The cytochrome operons were then

predicted using the haem and transmembrane information acquired earlier.

The ETMiner app joined c-type haem, transmembrane β-strand and operon

data with thresholds (haems per protein,..) and overall structure (Cyc2

cytochrome-porin fusion structure, etc) to output predicted operons of each type

(Cyc2, MtrCAB, MtrAB, Other). This data included the molecular weight of each

protein within the operon. This extra molecular weight data was used to filter, sort

and rank operons to highlight those of most interest to a user.

5.5 ETMiner and Cytochrome novel operon prediction

The ETMiner app takes as its input 3 files.

The file containing data on the operons was constructed via the HPC scripts.

It is, by far, the largest as it contains gene names, sequences, genomic locations

and genome information. It was processed and produced via bespoke software,

and refined through manual data curation. For example, some gene names were

missing and had to be replaced via BLASTing back to the non-redundant (NR)

protein database. This allowed for the extraction of missing NR protein accessions

for genes.

The second file was the haem data file. The prediction of haems and, therefore,
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cytochrome relied on the CXXCH/CXXXCH motif. This is because the motif allows

the incorporation of a c-type heme into the protein when it is transported to the

periplasm. These predictions were obtained via running through haem prediction

software Prosite [17] which predicted the number of CXXCH/CXXXCH motifs in a

protein sequence. This allowed us to detail how many CXXCH/CXXXCH were in

each gene and operon in our operon file for the final analysis [175, 176].

It is generally accepted that MtrCAB cytochrome porins have at least 20 haems,

MtrAB have more at least 10 and fusion (Cyc2) need just one to function. Therefore,

haem number becomes an important factor when considering if a protein is a true

cytochrome porin [170].

The final file contained information on putative porin structure (via TM strand

count) obtained through another researcher (Konstantinos D. Tsirigos [16]) who

made specialised software for the purpose (TransMembrane Beta Barrel predictor,

TMBB2 [16]). The TMBB2 tool predicts the number of β-strands within a single

protein- which then is used to predict the porin’s structure. This data, verified

through randomly checking some predictions, appeared accurate.

Once all three files were unified, it was possible to make predictions within

certain constraints. For example, it became possible to locate operons for which

we predict 10 haems in a single protein, flanked by two CXXCH/CXXXCH

proteins. By filtering with different constraints, we could check the individual

veracity of predicted operons. While some were the expected, some presented

novel insights- including cytochrome-porin electron transporters found in bacterial

species previously believed to have none.

In this way, we can bring manually curated data together to form intuitive

outputs that are easily translatable into operon data that can be investigated

experimentally. While most operons should be readily identifiable, many novel

ones could be investigated to learn something of both cytochromes and sequence

predictions.

5.6 ETMiner Usage

The app designed for the elucidation of cytochromes was by necessity option-dense.

In the case where the user might require rare functionality, many often unused

options had to be included. This could present itself as a bewildering profusion
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of choice to the new user (figure 5.8.1).

Therefore, full usage and functionality is spelled out below.

From figure 5.8.1, the options present at start-up are in evidence. The first option

is simply naming of the output operon file. The format can be seen in figure 5.8.1

with explanation of barcode in 5.8.5. The default would include TM and Haem

numbers mixed with the date the run is processed.

The second option is the selection of the operon ’type’ to look for. I.e, fusion

(Cyc2), 2-component (MtrAB) or 3-component (MtrCAB). There is also the options

of both ’other’ and ’custom’. Other allows the search for any non-characterised

operons, which could be entirely novel in structure, and any added to a custom

search (as per ’Custom Operon Search’ button in the bottom left).

The TM threshold is simply the number of predicted beta-strands to find in a

protein to count it as a TMBB protein. The CXXXCH is the number of haems motifs

to identify within a protein to count it as a cytochrome.

The ’top hits to print as image’ it allows the user to print a set number (default

10) of the top hits (lowest kDa/haem ratio) into operon CDS images. This could be

output as a variety of formats (and size, default 25)- notably SVG which could then

be further manipulated by the user in Inkscape or other similar software.

The ratio of kDa to haems has been identified as of potential scientific interest,

with specific ratio parameters being vital. As such, it was added as an option.

Custom operons structures can also be searched for (figure 5.8.3). This allows

for much more versatility and future-proofs for when other general cytochrome

structures are elucidated and need to be searched for in the current database.

To create images from each operon at will, it is necessary to input the row data

from the output (a series of accessions from figure 5.8.5 separated by a comma) into

the app’s image generator (figure 5.8.2). This will output the relevant images (figure

5.8.4) for consideration by the user.

To interpret the output data itself, it is necessary to read the headers for the

output CSV and then each predicted protein within the operon which is decoded

via the example in figure 5.8.5.
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Figure 5.7.1: Basic data workflow of ETMiner app.
ETMiner requires Haem and TM strand datafiles to predict transmembrane porin cytochrome
complexes in bacterial operons (here RefSeq DB from figure 5.4.1). ETMiner uses the following
Python Packages: Bio, reportlab, guizero, EasyTKinter, datetime, numpy, math, pandas, glob2,
pillow, openpyxl, matplotlibmath

5.7 ETMiner Backend data handling

These predicted raw (Database RefSeq, figure 5.7.1) operons are assessed for

adhering to operon ’types’ based on TM and Haem numbers within each protein

of the operon. The data for each is saved as in individual files.

As seen in figure 5.7.1, the basic data workflow is of conjoining data together

from disparate sources and predicting results with visually pleasing outputs.

The operon database is the most important element in the setup. Without this

basic database, no local analysis can be performed. The operon database, ’Database

Refseq’ (figure 5.7.1), is created in a linux server as per figure 5.4.1 and contains

information on our predicted, raw, operons.
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The Haem files (CXXCH, CXXXCH) contain information on the predicted

number of haems for every protein within the database, while the TM file contains

the predicted number of beta strands for every protein within the database. These

were obtained through methods detailed in section 5.5.

The haems and TMs counts were only counted as one of the known ’types’ (Cyc2,

MtrAB, MtrCAB) if they existed in the known conformations. For example, to be

a Cyc2 protein, the Haem count and TM count must both be above the desired

threshold and on the same protein within the Operon. If the haems and TMs are

not on the same protein, the operon cannot be a Cyc2 fusion cytochrome and the

Haem/TM count is thus not counted on any Cyc2 data plots.

Joining the Haem/TM counts with the raw operon database itself, it can predict

operons into a CSV format with images of select operons as well as create histograms

and heatmaps for a visualisation of the data.

The ETMiner app used a variety of packages, with the main ones being TKinter

and GUIzero for GUI construction, matplotlib for all figures and charts, and finally

GenomeDiagram from Bio.Graphics for all operon visualisations. It works on a local

computer as a desktop executable app.

5.7.1 Operon Figures

To visualise operons directly, ETMiner permits the printing of entire operons in

both linear and circular formats. For example figure 5.7.2 shows a operon classified

as ’Other’ in type but passing both TM strand and haem thresholds.

While it is possible to create some of the ’top’ operons as a test of the select

top operons, it is also possible to directly print an operon. This allows any user to

quickly print out any operon to visualise. With a SVG output mode, it is possible

to undergo subsequent manual tinkering. This permits near-infinite modification

from a base template.

This simple tool allows for the instant comprehension of an operon to confirm

its structure visually. As they include to-scale genetic distances of the CDS regions,

it is a useful visual tool. In the figures, blue represents TM- containing proteins, red

is haem-containing proteins while purple are fusion proteins, with both haem and

TMs.

Not necessarily a final publication-grade figure, nor for use in plasmid design,
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(a) An example of a complex operon
classified as ’Other’

(b) An example operon classified as
’MtrAB’.

Figure 5.7.2: Operon figures classified according to the ETMiner rules
The figures illustrate circularised operons (NOT PLASMIDS) crafted from RefSeq protein CDS
location information.Blue represents TM-containing proteins, red is haem=containing proteins
while purple sections are proteins with fusions of the two. Grey sections are intergenic regions or
proteins without either TM strands or haems. The raw file is an SVG and nearly infinitely scalable
for HQ images.

it is a useful starting point for a researcher wanting a quick visual overview of an

operon. From this point, it is possible to then further design the next step- having

understood the structure from the automated figure generation. The option of linear

and circular simply allows the user to choose that which intellectually resonates

with them best.

All the following figures were created programmatically and were not manually

manipulated to present an accurate idea of the outputs of ETMiner. Any slight

inaccuracies can, however, be manipulated and tweaked with the excel (XLSX) files

provided with each figure.

5.7.2 Scatterplots

One type of figure created automatically by ETMiner is a suite of scatterplots, one

for each operon type (Cyc2, MtrAB, MtrCAB, custom and Other). The scatterplots

aim to identify proteins /operons of particular interest by plotting the log10 of the

molecular weight (kDA) to haem number, then plotted against haem number on the

x-axis.

That is to say, we find the average amount of amino acids (in kDA) per haem

in the protein. This tells us if the haems are unusually sparse in the protein or if

they make up a relatively large percentage of the total weight of the protein (low
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kDA/haem). This is illustrated in equation 5.3

X −Axis = Haem Number

Y −Axis = log10(kDa of protein/haem number)
(5.3)

The log10function aims to reduce the spread of data to a more visually pleasing

range. In this way, it is possible to view the entire spread of data in a single plot

comfortably. In figure 5.7.3, this becomes clear as we can see everything from

1000kDa (3, y-axis) to nearly 0 kDa/haem.

The output in figure 5.7.3 is taken directly from ETMiner’s output for

transparency. However, the raw data making up the figure is automatically also

presented in an XLSX file.

This means that interesting data points, such as the protein with 62 haems

on the scatterplot, can be identified clearly. Because of the thresholds set in the

ETMiner app (figure 5.8.1), we know each of the proteins found here have at least

12 TM strands. This number was selected as the conservative lower threshold of TM

strands needed for the protein to plausibly possess a porin in it’s 3D structure.

In this case, the species responsible is Geopsychrobacter electrodiphilus

(TAXID:1121918). The bacteria is a known anaerobic, psychrophilic

metal-respiring bacterium [177]. This makes it a good candidate for research

into metal-respiring cytochrome-containing organisms that do not require high

temperatures to function.

The protein with 62 haems within the species is WP_020674948. With a very

low kDa weight per haem (4.4) it is a very interesting hit as it shows a fusion

protein with a huge number of haems that represent a large fraction of the overall

protein’s weight. Due to it being largely uncharacterised, it is an excellent potential

research target obtained from the overview granted by the automatically generated

scatterplots.
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Figure 5.7.3: Scatterplot with weight per haem (log10 (kDa/haem)) plotted against total
haems in protein.
X-axis ticks automatically selected to be a broad spread to reduce cluttering. All proteins have 12
or more TM strands. Actual organisms (each dot) can be pulled from a related XLSX file sat beside
the output plot.

5.7.3 Heatmaps

Occasionally, a more holistic overview of all possible operons is necessary to

understand the larger picture involved. For this, we have plotted the TM strand

number in the putative porin protein of the operon against the haem number of the

putative cytochrome protein of the operon. In this way, we can see trends in the

distribution of the data.

ETMiner’s automatic heatmaps generated present a wealth of data. With

intensity of colour illustrating the (log10) number of operons. This shows what

combinations of TMs and Haems are most common, and where they cluster in

frequency.

In figure 5.7.4, we can see some interesting results. There appears to be a

preference for 1, 6 or 10 haems for Cyc2 (fusion) proteins. In general, however,

the broader trend is clear; it is much more common for Cyc2 operons to have lower

numbers of TMs and Haems. With our automatic figure generations (with one each

for Cyc2, MtrAB, MtrCAB, Other and custom operon types) we can see all of this

clearly at-a-glance. Colour can be changed with an option in ETMiner- simply select
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the preferred colour from a list (figure 5.8.1).

As well as the general trends, we can pick out the ’outlier’ operons. Such as Cyc2

operons with 44 or 45 Haems and 22 TM strands. An interesting cluster for its sheer

number of c-type haems and worthy of further scrutiny. Anyone wanting to fully

investigate the proteins, their host organism and genomic locations can look in the

associated CSV/XLSX files that are printed with every figure.

Figure 5.7.4: Heatmap of TM strands in an operon’s putative porin vs number of hemes
predicted from a cytochrome sequence
Using this heatmap, it is possible to see what TM & haem numbers are most common in
bacteria. The clusters might indicate something fundamental about structure and function. Dark
blue square indicates a high number of bacterial cytochrome operons in our analysis have that
specific TM-Haem count. The specified bacterial operons, and host species, can be found in an
accompanying XLSX.

5.7.4 Histograms

Occasionally, researchers want to investigate a single parameter. That is, what is

the distribution of Haems among operons where the porin has N number of TM

strands?

This is especially useful for when a TM strand number has been identified as

interesting. This can be found, for example, in figure 5.7.4. There appear to be

many Cyc2 operons with 18 TM strands (as seen by colour intensity), so we choose

to investigate the histogram for that specific TM number. As we can see in figure
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5.7.5, it matches figure 5.7.4 and highlights count differences.

In figure 5.7.5, we can see the number of haems in each operon that has 18 TM

strands for its porin. Automatically generated, an XLSX exists with all the data to be

manipulated further. At a glance, we can see that a single haem is the most common

for a Cyc2 operon with 18 TM strands, followed by 2 then 6 haems.

Using these two figures, we can get a clear insight into the structure of the data.

Delving into their individual XLSX files, we can find the specific operons relating

to each figure for future analysis.

Figure 5.7.5: Histogram showing occurrence of Haem numbers in operons with 18 TM
strands
Automatically generated by ETMiner, the figure’s graphics are not optimal and simply act as a
quick at-a-glance guide of the raw data which is also available in a CSV.

5.7.5 Interactive Tree of Life files

To assist in creating Interactive Tree of Life (iTOL) files, specific files are

automatically output by ETMiner. This includes ’mocked-up’ iTOL files with some

configurations pre-set and all phenotypic data (in this case, count of operon types

per taxon ID). Additionally, a list of Taxon IDs are created for phylogenetic tree

creating on NCBI and a file listing.

Due to the need to use online resources, instructions for using the data and

converting it to a functional tree of life are included in a text file. This provides

a step-by-step guide on creating the Phylogenic Tree from the iTOL files output by

ETMiner.
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The benefit of using online resources to craft the tree of life is that the

evolutionary relationships between taxa is kept up-to-date by the NCBI. Mixed

with some mocked files for the online resource, it is a quick, easy, and relatively

up-to-date system to procure phylogenetic trees.

Following the instructions file, we create a phylogenic tree from the Taxon list.

This is then combined with the phenotypic information we decided; in this case,

the count of Cyc2, MtraAB, MtrCAB, Other and ’custom’ operons found in each

species. Using the interactive Tree of Life (iTOL) [18] tool, we are able to visualise

this (figure 5.7.6). From it, we can see the broad spread of operons. This is highly

relevant to researchers who want to investigate an unusual number of operons in a

specific bacterial species.

Moreover, as the operon files, iTOL files and high-res image are all included in

the supplementary data, it is possible for researchers to quickly identify an operon

of interest to investigate. With both a taxon ID and protein ID (WP redundant

code), they can find the exact DNA sequence giving rise to the cytochrome in a

bacteria. This DNA sequence can then be investigated in-vitro for insights. For

simplicity of reading, the bacterial classes were split into separate colours; green for

Gammaproteobacteria, red for Alphaproteobacterial, blue for Betaproteobacteria,

purple for Epsilonproteobacteria, orange for Deltaproteobacteria, pink for

Bacteroides and, finally, black for everything else.

From figure 5.7.6, we can see that the presence of cytochromes is distributed

across many bacterial species- with notable spikes of operon numbers in some

species. This gives the image of most bacterial groupings using cytochromes bound

to porins for various purposes but with a spread species containing a multitude-

perhaps as an indication of the importance of cytochromes within the species.

In any case, this provides plenty of fodder for research with many species that

could become of great import to cytochrome research.
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Figure 5.7.6: Interactive Tree of Life of all cytochrome operon types across the entire
bacterial kingdom
Not all bacterial species are included; only those we have identified (through Taxon ID) as
possessing at least one cytochrome operon were included- with more cytochromes indicated by
a longer radiating bar (indicating a higher operon count). Type of operon identified is illustrated
by colour (see legend).
Blow-up shows a list of species from the Alphaproteobacterial class (red).
Species lineage is denoted by bacterial class and were split into separate colours; green
for Gammaproteobacteria, red for Alphaproteobacterial, blue for Betaproteobacteria, purple
for Epsilonproteobacteria, orange for Deltaproteobacteria, pink for Bacteroides and black for
everything else.
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5.8 ETMiner Images

Figures for explaining the GUI of ETMiner app. In these images, we can see the

basic functionality of the ETMiner app and how inputs can be translated to outputs.

By manipulating the selections appropriately, we can create the optimal output

desired.

In figure 5.8.1, we see the main window of the GUI. By selecting the ’create

image’ option (figure 5.8.2), it is possible to create an operon image straight from

the CSV data of the operon file. Alternatively, the operon file can be searched with

a custom structure, for example a porin-haem-porin operon (figure 5.8.3).

By using the ’file’ option to add the haem/TM count files as well as the operon

CSV file, it becomes possible to quickly analyse the operon database according to

any criteria set within the ETMiner app. This enables a user to quickly search for

any operon that might match their profile; from molecular weight per haem to haem

number and TM number. Multiple colour profiles exist for the automated figures

output to match various user preferences/needs.

Figure 5.8.1: Main ETMiner GUI
The main window as seen when ETMiner is opened. It holds options such as range of TM/Haems
to count in the analysis, weight ratio per haem, colour of resultant heatmaps and more.
The File menu allows selection of the Haem/TM count files, as well as the sequence/operon file.
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Figure 5.8.2: ETMiner image creation from operon
Allows the conversion of a text-based operon descriptor (CSV format) to be turned into an operon
image. Useful for printing out an operon for easier visualisation.

Figure 5.8.3: ETMiner custom operon type prediction
Add custom operon format to search for. For example, a haem flanked by two porins (P-H-P). The
haem must be within the boundaries set in figure 5.8.1, and the TM counts for the porin must also
be within the range set in 5.8.1

Figure 5.8.4: ETMiner example output (single row)
An operon printed out automatically using figure 5.8.2’s functionality. Linear format is shown,
but circular is also output. Asterix (*) on operon protein accession indicates match to query
protein in BLAST search.
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Figure 5.8.5: ETMiner output operon barcode explanation
An explanation of how the barcode in the CSV operon files work. The red is the non-redundant
(NR) WP protein accession, followed by it’s genomic location in grey and then the number of
CXXXCH motifs (haem section), number of TM strands (for porin) and then the molecular weight
(MW) in yellow.
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5.9 Discussion

From simply the raw data obtained from the RefSeq database, we were able to

curate the whole genome sequenced (WGS) bacterial genomes into which possess

cytochromes- and whether they belong to the three known types we have previously

discussed (figures 5.1.3, 5.1.1 and 5.1.2 ).

Recent studies have attempted similar; such as FeGenie, which attempts to

identify ’iron genes’ and ’iron gene neighbourhoods’ [178]. However, where we

differ is in approach; FeGenie uses Hidden Markov Models (HMM) to predict ’iron

genes’ in a genome based on protein motifs and requires both a dataset of known

’iron genes’ and tests putative ’iron genes’ in an iterative fashion. In opposition

to FeGenie, this thesis utilised nucleotide matching across the entire bacterial

kingdom to identify all, including entirely unknown, cytochromes fitting a rough

profile (BLAST[15], section 5.4) and joins them into a resource for all researchers.

FeGenie is useful when you want to verify if a protein sequence you’ve identified

matches the ’iron gene’ profile, while our ETMiner system helps you locate the

sequences in the first place. if you don’t have any sequences to test, ETMiner is

good at finding a subset of possible sequences.

This is a powerful system that can be applied more generally, with some

streamlining and increased computational power for the initial database-searching.

Using only information already present in the public domain, we are able to predict

haems, TM strands and, eventually, cytochrome type. This allowed us to investigate

thousands of bacteria at once (all currently sequenced) for any unusual cytochromes

both in structure and species.

The study permits the identification of novel points for potential research.

Not only can identified proteins be investigated for function and structure

experimentally, experiments can also be undertaken on unusual species to validate

their cytochromes. If applied more broadly, various other operons can be identified

and studied without the need to test every protein in a database.

Additionally, the process allows for a higher-confidence analysis than a simple

BLAST search for homologues. In our approach, we verify haem and TM numbers;

something not necessarily identified through BLAST. It is also able to identify

interesting proteins that do not share sufficient homology with currently identified

cytochromes to be isolated through a BLAST search.
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With the automatic creation of figures, and the data placed into XLSX files for

ease-of-recreating, we gain an accurate at-a-glance assessment of the data. Any

points of interest are then taken up firstly by the XLSX, then carried into the usual

bioinformatics analysis of interesting hits. In the future, the proteins can even be

analysed experimentally.

The project has highlighted the number, and type, of cytochrome-porin operons

across the entire bacterial species. Available publicly as an interactive Tree Of Life

(iTOL) phylogenetic tree (figure 5.7.6), raw xlsx data, and iTOL files, it is a valuable

resource to identify species of interest or to approximate the spread of operon types

across the bacterial kingdom.

This is a significant contribution that can act as a starting point for those wishing

to explore various electrogenic bacteria experimentally. However, the usefulness

doesn’t end there. The methods we’ve employed can be employed to any other

operon people wish to identify.

Following the methodology, any sized database can be analysed for specific

operons. By first splitting the database into manageable chunks, BLAST can be

launched on hundreds of HPC cores. By itself, BLAST is insufficient. The hits from

it provide a useful starting point, however, and the resultant re-inserted hit genes

can be analysed in the context of their operons. These operons can be sequentially

checked for porin β-sheet motifs, or any other motifs, to analyse their probability of

being a gene cluster warranting further study.

Where other studies use HMM to analyse genomes on a as-needed basis, we can

identify entirely uncharacterised genomes from the entire repository of bacterial

genomes submitted to any fasta-format database. Indeed, this is what we have

accomplished in many cases (e.g, Zobellia uliginosa).

This broad approach allows for a more holistic view of the bacterial genomes

known. Knowing the distribution and type of cytochrome-porins is an important

step in the study of all bacteria. In the future, knowing how bacteria interact with,

and exploit, minerals in their environment could become an integral concept to

understanding the life of any bacteria.
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5.10 Conclusions

Overall, the operon prediction part of the thesis can be said to be successful. While

the expected operons were drawn out of the RefSeq database, many novel, and

some unusual, operons were also identified to act as the basis of future research.

Of particular interest may be those operons of unknown type, classified as ’Other’,

as they could broaden our understanding of electrogenic bacteria- or better define

their limits.

The automated figures generated (figures 5.7.3, 5.7.5, 5.7.4) grant an instant

overview of the data structure. For example, figure 5.7.3 highlights Geopsychrobacter

electrodiphilus as a bacteria with a very unusual, as yet experimentally

uncharacterised, predicted cytochrome protein with an attached porin.

While the bacteria and its operon might have been identified without the

figure, the scatter-plot highlighted it instantly. With the various figures, it is

possible to ’lock on’ to specific operons and offer conjectures for the more common

TM-to-Haem numbers within operons.

In our analysis of all bacterial CDS genomes, we identified the expected culprits

when looking for cytochromes. This includes Shewanella onidensis [179] (and other

Shewanella species), Geobacter sulfurreducens [180] and Sideroxydans lithotrophicus

[181] among others. All these bacteria are known electrogenic or metal-respiring

bacteria [179, 180, 181]. As expected results, they confirm that we have correctly

identified a instances of various cytochromes across the bacterial kingdom.

However, in our identification of bacteria with cytochrome-porin operons, we

have found species previously not categorised as electrogenic. Indeed, some have

either very little or no information about them, except perhaps some sequencing in

the literature (such as Zobellia uliginosa[182]).

For example, Dyella amyloliquefaciens is a forest soil microbe found in aerobic

environments [183] which we predict to have 2 MtrAB cytochrome porin operons.

This is surprising as we would expect these operons to be found in more anoxic

environments. However, it is still a soil microbe, unlike Zobellia galactanivorans

which is a marine bacteria found in degrading algae [184] and is predicted to possess

3 Cyc2, 4 MtrAB and 1 ’Other’ predicted cytochrome porin operons. This lack of

a MtrCAB could indicate, as a marine bacteria, it does not need a protein interface

(MtrC) to interact with extracellular deposits of metals.
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These results indicate that the distribution, function and versatility of these

cytochrome-porins are much wider than previously expected. This increases

the number of potential commercial applications of the bacteria possessing such

operons as there is a higher probability of identifying an operon with characteristics

desired by industry or academia. In identifying so many putative operons, ETMiner

opens up the world of electrogenic bacteria as never before.
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Chapter 6

Discussion

The practice of mapping phenotype to genotype is not a new approach. Far from

it; the ‘personalised medicine’ of the future depends on it [185]. If we are ever

to learn to tailor biology to our needs as a society, we will have to master the

genotype-phenotype gap. In humans this is often limited to the identification

of novel pharmaceutical treatments for rare genetic disorders and diseases. New

applications of GWAS technology have recently been carried out for a variety of

reasons, such as uncovering the surprising number of genes involved in human eye

colour [186].

Each organism has its own genomic peculiarities; bacterial genomes are packed

with coding DNA in neat clusters, or ’operons’, while yeasts have huge chromosomal

variability. There are benefits and drawbacks to each organism in academic and

industrial settings. Bacteria are easier to manipulate, but may lack the molecular

machinery to create human-like biomolecules. In picking an organism to work with,

it is first necessary to consider what is the goal of the project. Yet microbes have

many benefits as a whole.

The benefit of microbes as model organisms is the ability to rapidly validate

and test any genetic hypothesis through genetic manipulation techniques such as

CRISPR- including for modifying the metabolome [187]. In humans such genetic

manipulation for basic science is, for obvious reasons, strictly controlled. In

addition, microbes’ rapid life-cycles make it relatively easy to monitor populations

over many generations.

Secondly, using allele frequency variations across many strains is a known

technique for population mapping and ancestry prediction, for example in the

analysis of human populations [188]. Excepting genes known to be under purifying
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selective pressure (for example in protein coding genes), it can be assumed that

DNA variations mutate and accumulate randomly over time with few deleterious

effects. Often, these gene locations are used to measure evolutionary relationships

with models that account for random variation [189, 190].

In a very simplistic (not real-world and without full mathematical proofs)

example with only one non-coding locus with alleles A and a, we can attempt a

prediction of ancestry for an individual. If allele A is present 90% of the time in

population 1, we could assume a 90% probability of any individual with allele A

as belonging to population 1 [188]. Once clusters of loci are identified in specific

populations and sub-populations, probabilistic models can be tailored for more

complex situations such as the origin of entire populations (e.g, human Out Of

Africa model) [189]. Similar reasoning is used to build Q-Matrix (chapter 2.2.4)

estimates to predict ancestry of members of a species, or sometimes a genus.

Seen in everything from RNA-Seq to GWAS analyses, genetic correlation studies

are a well-known tool for discovery and narrowing down of targets of interest in

silico before experimental studies are carried out. While inconclusive on their own,

they provide substantial support to justifying future experimental approaches for

validation or further analysis.

Industry and research often focuses on ‘high-throughput’ techniques to discover

novel phenotypes in organisms. However, being able to target microorganisms with

probabilistic scores based on genotypes would be a novel approach. The approaches

used and discussed present new methodologies for discovering the link between

genotype and phenotype.

With ever-cheaper sequencing technologies coupled with the high cost of

high-throughput analytical techniques, a new system could be created. This could

drastically reduce the time frame needed to identify beneficial strains, as the target

group could be curated to remove unlikely strains based on genomic features.

As a whole, techniques used to link genetic variants to phenotypes have been

a feature of biological research for many decades. In the studies discussed here,

tens of thousands of genetic variants are assessed concurrently. Furthermore, each

additional cycle of model usage and validation would improve the predictive value

of the model and further improve future predictions (figure 6.0.1).

Using yeast as the model organism, (figure 6.0.1) it is inefficient to perform

high-throughput analysis on all yeast strains directly. Because while experimental
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analysis is expensive, computational time is cheap. Any reduction in throughput

load would improve the model, ensuring gradual increases in accuracy and speed.

As both increase, N2 (top hits from model) decreases from dataset N1 (all genomes).

Being able to reduce the number of strains to be analysed would dramatically

reduce the time wasted on irrelevant strains. Yeast species are still some one of the

many microorganisms that would benefit from this approach; in fact, as eukaryotes,

they are among the most difficult to build models of due to their complexity.

Figure 6.0.1: Recursive improvement of model for trait prediction for high-throughput
preparation

Yeast species are therefore not the only ones to benefit from such computational

predictions; it applies to everything including bacteria and archaea. Moreover,

not all genomic predictions are based upon SNP data. Some models utilise the

variability in Copy Number Variations (CNVs) [11] between strains (or individuals)

of a species, and many other computational models predict the structure [13] and

function [14] of proteins produced by genomic regions.

With our SNP data as the basis, we did a furfural resistance study on 168 S.

cerevisiae yeast strains. To accomplish this, we developed a new computational

method to predict a holistic resistance score from yeast growth curves (as seen

in Chapter 3). This method appears to work well and can be used in other

studies. We developed a new computational method (SANE) to estimate a Q-Matrix

representing the ancestry and inter-relationships of our yeast strains (section 3.3).

A Mantel test applied to our yeast dataset suggested the results are highly similar to
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those estimated using an established method (PSIKO), though they are not identical,

and they share 2283 out of the top 10000 hits. More work would be needed to fully

validate and study the approach.

With our resistance phenotype, SNP genomes and custom SANE Q-Matrix,

we did a GWAS for the strains. We did not find any compelling results from

the analysis, likely because the study was too small. However, some potentially

interesting results were identified; we found SNP hits in our study for genes

important to resistance to cellular stressors (YLR247C, YGL093W, YOL078) such

as the predicted broad-spectrum effects of furfuraldehyde. We then progressed to a

Directed Evolution experiment. While resistance scores did not grow appreciably,

we did find some interesting results such as the fixation of many of the top predicted

alleles in the main study. Some shortcomings were both lack of time (started at

the beginning of the pandemic and lab access was reduced) and small number of

strains. If the study was scaled up, however, it would be a complete methodology

for the improvement of yeast strains in regards to inhibitor resistance.

We did not limit ourselves to inhibitor resistance as our phenotype for the

genotypes’ GWAS. We performed a metabolomic study on two yeast datasets.

Firstly, we looked at a broad set of 362 yeast strains (from 118 species), growing on

YNB (with 10g/L glucose) media, to simulate basic growing conditions. Secondly,

we examined the 168 Saccharomyces cerevisiae strains from the furfural study

growing on Malt media, to replicate brewing conditions. NMR metabolite levels

were quantified using the CHENOMX software which showed a huge variability

between species and even strains. Several notable effects were apparent.

Generally, metabolite quantities from yeast growing on malt extract were

considerably higher than on YNB. Examining a set of 50 S. cerevisiae strains

common to both datasets showed that fold levels were as high as 218,200 times

for the Malt study (Acetate for NCYC 3612). A GWAS conducted on the second,

Malt dataset indicated several SNPs significantly correlated with metabolite levels,

that will highly interesting and potentially valuable to follow up in the future.

Growing the strain dataset would only increase the predictive capabilities of the

GWAS undertaken; in any case, the metabolic data is a valuable resource that can

sit alongside other NCYC information.

In this body of work, a specific tool was created called Electron Transport

Miner (ETMiner). This tool, alongside other upstream pipelines, use function
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and structure predicting tools (Prosite, TMBB2, BLAST) to predict cytochrome

and porins within all known bacterial species. Bacteria possessing gene clusters

(Operons) with specific cytochrome-porin structures (haem counts, cellular

localisation signals,...) are predicted to be specific operons used by electrogenic

bacteria and are, in turn, putative electrogenic bacteria themselves.

ETMiner permitted the assembling of operons, automated creation of relevant

figures for the analysis of the upstream analyses (heatmaps, histograms,

scatterplots). ETMiner allows the interrogation of an operon database with specific

protein prediction data (haem count, β-strand number) to identify operons that fit

a specific criteria including molecular weight ratios and type of operon (MtrCAB,

MtrAB, Cyc2).

Subsequent studies might investigate SNPs within identified genomic regions,

yet our preliminary research provides a start point for those wishing to locate

specific operon structures within unknown genomes. This is a valuable dataset for

anyone wishing to search

We were able to find the spread, frequency and depth of specific cytochrome

operon types across the breadth of known bacterial genomes. This includes those

of as-yet unknown or ’Other’ structure. A vital start-point for researchers, it can

provide a start point for where to attempt to find cytochrome-porins for electrogenic

bacterial identification purposes. These bacteria could be useful for a range of

purposes such as bioremediation (waste water treatment, heavy metal extraction),

electricity generation, or chemosynthesis using electricity.

This thesis has explored many of the ways genomic data can be used as the

foundation for predictions of phenotypic characteristics. These varied methods

are used in different fields for different purposes but all expand our knowledge

of genomic data and how to interpret it. The predictions generated and the

models build a foundation for others to build upon. Whether future researchers

are searching for genes related to a range of metabolite expressions levels in yeast

strains, or which bacteria to investigate for commercial bioremediation niches, the

body of research has been expanded appropriately.
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6.1 Future work

Future work for this body of work would include the validation of SANE as a robust

Q-Matrix founder-population predictor. This would aid in the next segments;

performing the GWAS on a larger strain dataset to increase the statistical power

of the correlations performed. A longer DE experiment would likely increase

furfuraldehyde resistance better than our shorter one was able to. A CRISPR study

focussed on validating identified SNPs would provide experimental evidence to the

efficacy of the GWAS carried out.

Talking to brewers would be a great way to ensure the experiments and analysis

were of material use to them. Maintaining a dialogue in future work would ensure

that the goals of the research remained aligned with the needs of brewers.

The predictions made by ETMiner are expansive. Thousands of predicted

cytochrome-porins have been identified that vastly expands the scope of potential

electrogenic bacteria in nature. Experimental validation should be carried out to

verify and refine the model. How many of the predicted operons are functioning

as expected? Are there other functions for the protein structures as-yet not

understood? Are there constraints in structure we were unaware of going into the

study that should be used on the next iteration?

Nonetheless, the methodology of ETMiner (from server pipeline to desktop GUI

app) can be replicated for any number of genomic structures. Improvements could

be performed to enable rapid pipeline-building and database construction based on

any number of genomic structures to be identified across the entire set of known

bacterial genomes.
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Final Figures and Appendix

Plate Provider Machine Library Insert size
(bp)

Read length
(bp)

1 TGAC Illumina HiSeq TruSeq 500 2 x 100
2 TGAC Illumina HiSeq TruSeq 475 2 x 125
3 TGAC Illumina HiSeq TruSeq 475 2 x 125
3B TGAC Illumina HiSeq LITE 430 2 x 250
4 Eurofins Illumina HiSeq 2500 TruSeq 300 2 x 125
5 Eurofins Illumina HiSeq 2500 TruSeq 300 2 x 125
6 Eurofins Illumina HiSeq 2500 TruSeq 300 2 x 125
7 EI Illumina HiSeq LITE 430 2 x 250
8 EI Illumina HiSeq LITE 430 2 x 250
9 EI Illumina HiSeq LITE 430 2 x 250
10 Eurofins Illumina HiSeq 2500 TruSeq 300 2 x 100
11 WTSI Illumina X10 NEB Ultra 450 2 x 150

Table 1: NCYC yeast genome sequencing project structure.
Yeast genomes were sequenced in eleven batches of 96 strains (in 96-well plate format).
Sequencing providers were either TGAC (The Genome Analysis Centre, Norwich, UK; now EI),
Eurofins (Eurofins Genomics, Germany), EI (The Earlham Institute, Norwich, UK) or WTSI
(Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK).

NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

70 Saccharomyces cerevisiae Plate 1

72 Saccharomyces cerevisiae Plate 1

74 Saccharomyces cerevisiae Plate 1

76 Saccharomyces cerevisiae Plate 1

77 Saccharomyces cerevisiae Plate 1

78 Saccharomyces cerevisiae Plate 1

79 Saccharomyces cerevisiae Plate 1

80 Saccharomyces cerevisiae Plate 1

81 Saccharomyces cerevisiae Plate 1

82 Saccharomyces cerevisiae Plate 1

83 Saccharomyces cerevisiae Plate 1

84 Saccharomyces cerevisiae Plate 1 Plate 10

85 Saccharomyces cerevisiae Plate 1

86 Saccharomyces cerevisiae Plate 1

87 Saccharomyces cerevisiae Plate 1 Plate 10
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NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

88 Saccharomyces cerevisiae Plate 1

89 Saccharomyces cerevisiae Plate 1

90 Saccharomyces cerevisiae Plate 1

91 Saccharomyces cerevisiae Plate 1 Plate 10

92 Saccharomyces cerevisiae Plate 1

93 Saccharomyces cerevisiae Plate 1

95 Saccharomyces cerevisiae Plate 1

96 Saccharomyces cerevisiae Plate 1

97 Saccharomyces cerevisiae Plate 1

167 Saccharomyces cerevisiae Plate 3 Plate 3B

192 Saccharomyces cerevisiae Plate 3 Plate 3B

196 Saccharomyces cerevisiae Plate 3 Plate 3B

197 Saccharomyces cerevisiae Plate 3 Plate 3B

200 Saccharomyces cerevisiae Plate 3 Plate 3B

205 Saccharomyces cerevisiae Plate 3 Plate 3B

206 Saccharomyces cerevisiae Plate 3 Plate 3B

208 Saccharomyces cerevisiae Plate 3 Plate 3B Plate 11

210 Saccharomyces cerevisiae Plate 3 Plate 3B

211 Saccharomyces cerevisiae Plate 3 Plate 3B

212 Saccharomyces cerevisiae Plate 3 Plate 3B

213 Saccharomyces cerevisiae Plate 3 Plate 3B

221 Saccharomyces cerevisiae Plate 3 Plate 3B

222 Saccharomyces cerevisiae Plate 3 Plate 3B

223 Saccharomyces cerevisiae Plate 3 Plate 3B

224 Saccharomyces cerevisiae Plate 3 Plate 3B

225 Saccharomyces cerevisiae Plate 3 Plate 3B

228 Saccharomyces cerevisiae Plate 3 Plate 3B

232 Saccharomyces cerevisiae Plate 4

235 Saccharomyces cerevisiae Plate 4

241 Saccharomyces cerevisiae Plate 5

356 Saccharomyces cerevisiae Plate 5

357 Saccharomyces cerevisiae Plate 5
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NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

358 Saccharomyces cerevisiae Plate 5

360 Saccharomyces cerevisiae Plate 4

361 Saccharomyces cerevisiae Plate 4

430 Saccharomyces cerevisiae Plate 5

478 Saccharomyces cerevisiae Plate 5

479 Saccharomyces cerevisiae Plate 5

482 Saccharomyces cerevisiae Plate 5

490 Saccharomyces cerevisiae Plate 5

491 Saccharomyces cerevisiae Plate 5

505 Saccharomyces cerevisiae Plate 1

609 Saccharomyces cerevisiae Plate 6

619 Saccharomyces cerevisiae Plate 5

620 Saccharomyces cerevisiae Plate 5

621 Saccharomyces cerevisiae Plate 5

667 Saccharomyces cerevisiae Plate 4

672 Saccharomyces cerevisiae Plate 5

684 Saccharomyces cerevisiae Plate 5

695 Saccharomyces cerevisiae Plate 4

816 Saccharomyces cerevisiae Plate 5

1006 Saccharomyces cerevisiae Plate 1

1026 Saccharomyces cerevisiae Plate 1 Plate 10

1064 Saccharomyces cerevisiae Plate 4

1151 Saccharomyces cerevisiae Plate 4

1228 Saccharomyces cerevisiae Plate 1

1245 Saccharomyces cerevisiae Plate 1

1315 Saccharomyces cerevisiae Plate 6

1337 Saccharomyces cerevisiae Plate 4

1406 Saccharomyces cerevisiae Plate 5

1407 Saccharomyces cerevisiae Plate 5

1408 Saccharomyces cerevisiae Plate 5

1409 Saccharomyces cerevisiae Plate 5

1413 Saccharomyces cerevisiae Plate 5
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NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

1414 Saccharomyces cerevisiae Plate 5

1415 Saccharomyces cerevisiae Plate 5

1444 Saccharomyces cerevisiae Plate 4

1529 Saccharomyces cerevisiae Plate 5

1603 Saccharomyces cerevisiae Plate 4

1681 Saccharomyces cerevisiae Plate 1

2397 Saccharomyces cerevisiae Plate 4

2401 Saccharomyces cerevisiae Plate 5

2517 Saccharomyces cerevisiae Plate 5

2592 Saccharomyces cerevisiae Plate 4

2688 Saccharomyces cerevisiae Plate 5

2733 Saccharomyces cerevisiae Plate 4

2737 Saccharomyces cerevisiae Plate 4

2776 Saccharomyces cerevisiae Plate 7

2777 Saccharomyces cerevisiae Plate 7

2778 Saccharomyces cerevisiae Plate 7

2779 Saccharomyces cerevisiae Plate 7

2780 Saccharomyces cerevisiae Plate 7

2798 Saccharomyces cerevisiae Plate 7

2826 Saccharomyces cerevisiae Plate 3 Plate 3B

2855 Saccharomyces cerevisiae Plate 5

2945 Saccharomyces cerevisiae Plate 4

2947 Saccharomyces cerevisiae Plate 5

2948 Saccharomyces cerevisiae Plate 5

2967 Saccharomyces cerevisiae Plate 7

2974 Saccharomyces cerevisiae Plate 7

3025 Saccharomyces cerevisiae Plate 7

3026 Saccharomyces cerevisiae Plate 7

3028 Saccharomyces cerevisiae Plate 7

3030 Saccharomyces cerevisiae Plate 7

3031 Saccharomyces cerevisiae Plate 7

3032 Saccharomyces cerevisiae Plate 7
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NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

3033 Saccharomyces cerevisiae Plate 7

3035 Saccharomyces cerevisiae Plate 7

3036 Saccharomyces cerevisiae Plate 7

3037 Saccharomyces cerevisiae Plate 7

3038 Saccharomyces cerevisiae Plate 7

3039 Saccharomyces cerevisiae Plate 7

3051 Saccharomyces cerevisiae Plate 7

3052 Saccharomyces cerevisiae Plate 7

3076 Saccharomyces cerevisiae Plate 7

3077 Saccharomyces cerevisiae Plate 7

3078 Saccharomyces cerevisiae Plate 7

3114 Saccharomyces cerevisiae Plate 7

3121 Saccharomyces cerevisiae Plate 7

3122 Saccharomyces cerevisiae Plate 7

3123 Saccharomyces cerevisiae Plate 7

3124 Saccharomyces cerevisiae Plate 7

3125 Saccharomyces cerevisiae Plate 7

3126 Saccharomyces cerevisiae Plate 7

3127 Saccharomyces cerevisiae Plate 7

3265 Saccharomyces cerevisiae Plate 4

3266 Saccharomyces cerevisiae Plate 4

3311 Saccharomyces cerevisiae Plate 4

3313 Saccharomyces cerevisiae Plate 4

3314 Saccharomyces cerevisiae Plate 4

3315 Saccharomyces cerevisiae Plate 4

3318 Saccharomyces cerevisiae Plate 4

3319 Saccharomyces cerevisiae Plate 4

3324 Saccharomyces cerevisiae Plate 7

3325 Saccharomyces cerevisiae Plate 7

3326 Saccharomyces cerevisiae Plate 7

3331 Saccharomyces cerevisiae Plate 7

3333 Saccharomyces cerevisiae Plate 7
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NCYC

strain

Species Sequencing

plate 1

Sequencing

plate 2

Sequencing

plate 3

3334 Saccharomyces cerevisiae Plate 7

3338 Saccharomyces cerevisiae Plate 7

3339 Saccharomyces cerevisiae Plate 7

3406 Saccharomyces cerevisiae Plate 4

3445 Saccharomyces cerevisiae Plate 4

3447 Saccharomyces cerevisiae Plate 4

3448 Saccharomyces cerevisiae Plate 4

3449 Saccharomyces cerevisiae Plate 4

3452 Saccharomyces cerevisiae Plate 3 Plate 3B

3455 Saccharomyces cerevisiae Plate 4

3456 Saccharomyces cerevisiae Plate 4

3457 Saccharomyces cerevisiae Plate 4

3458 Saccharomyces cerevisiae Plate 4

3460 Saccharomyces cerevisiae Plate 4

3461 Saccharomyces cerevisiae Plate 4

3462 Saccharomyces cerevisiae Plate 4

3467 Saccharomyces cerevisiae Plate 4

3470 Saccharomyces cerevisiae Plate 4

3471 Saccharomyces cerevisiae Plate 4

3472 Saccharomyces cerevisiae Plate 4

3486 Saccharomyces cerevisiae Plate 4

3487 Saccharomyces cerevisiae Plate 4

3557 Saccharomyces cerevisiae Plate 6

3612 Saccharomyces cerevisiae Plate 4

3630 Saccharomyces cerevisiae Plate 4

Table 2: Saccharomyces cerevisiae strains sequenced within the NCYC yeast genome
sequencing project
Some genomes were sequenced multiple times (maximum of three times), either for quality control
purposes or where a sequencing failure had occurred. Blue shading denotes a sequencing failure,
either at the sequencing library construction or sequencing run stages.
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NCYC

strain

Species YNB

study

Malt

Study

1 Candida famata var. famata YES NO

2 Dekkera anomala YES NO

4 Candida tropicalis YES NO

6 Candida kefyr YES NO

8 Debaryomyces hansenii YES NO

9 Debaryomyces hansenii YES NO

10 Debaryomyces hansenii YES NO

16 Pichia subpelliculosa YES NO

17 Hanseniaspora valbyensis YES NO

18 Pichia anomala YES NO

20 Pichia anomala YES NO

21 Pichia membranifaciens YES NO

22 Williopsis saturnus var. saturnus YES NO

23 Williopsis saturnus var. saturnus YES NO

26 Kloeckera africana YES NO

31 Kloeckera corticis YES NO

36 Hanseniaspora vineae YES NO

39 Candida catenulata YES NO

40 Guilliermondella selenospora YES NO

43 Candida krusei YES NO

44 Pichia membranifaciens YES NO

45 Candida krusei YES NO

46 Nadsonia fulvescens Var. fulvescens YES NO

49 Geotrichum candidum YES NO

51 Pichia membranifaciens YES NO

52 Pichia membranifaciens YES NO

54 Pichia membranifaciens YES NO

55 Pichia membranifaciens YES NO

57 Williopsis saturnus var. saturnus YES NO

58 Kloeckera africana YES NO
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59 Rhodotorula glutinis var. glutinis YES NO

60 Rhodotorula glutinis var. glutinis YES NO

61 Rhodotorula glutinis var. glutinis YES NO

62 Rhodotorula minuta var. minuta YES NO

63 Rhodotorula mucilaginosa YES NO

64 Rhodotorula mucilaginosa YES NO

65 Rhodotorula mucilaginosa YES NO

68 Rhodotorula mucilaginosa YES NO

70 Saccharomyces cerevisiae NO YES

71 Candida famata var. famata YES NO

72 Saccharomyces cerevisiae NO YES

74 Saccharomyces cerevisiae NO YES

76 Saccharomyces cerevisiae NO YES

77 Saccharomyces cerevisiae NO YES

78 Saccharomyces cerevisiae NO YES

79 Saccharomyces cerevisiae NO YES

80 Saccharomyces cerevisiae NO YES

81 Saccharomyces cerevisiae NO YES

82 Saccharomyces cerevisiae NO YES

83 Saccharomyces cerevisiae NO YES

84 Saccharomyces cerevisiae NO YES

85 Saccharomyces cerevisiae NO YES

86 Saccharomyces cerevisiae NO YES

87 Saccharomyces cerevisiae NO YES

88 Saccharomyces cerevisiae NO YES

89 Saccharomyces cerevisiae NO YES

90 Saccharomyces cerevisiae NO YES

91 Saccharomyces cerevisiae NO YES

92 Saccharomyces cerevisiae NO YES

93 Saccharomyces cerevisiae NO YES

95 Saccharomyces cerevisiae NO YES

96 Saccharomyces cerevisiae NO YES
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97 Saccharomyces cerevisiae NO YES

100 Kluyveromyces marxianus YES NO

111 Kluyveromyces marxianus YES NO

128 Zygosaccharomyces bailii YES NO

135 Rhodotorula mucilaginosa YES NO

138 Rhodotorula aurantiaca YES NO

140 Candida colliculosa YES NO

141 Candida colliculosa YES NO

142 Rhodotorula mucilaginosa YES NO

143 Candida kefyr YES NO

147 Torulaspora delbrueckii YES NO

151 Kluyveromyces marxianus YES NO

152 Candida kefyr YES NO

154 Rhodotorula glutinis var. glutinis YES NO

155 Rhodotorula glutinis var. glutinis YES NO

158 Rhodotorula mucilaginosa YES NO

159 Rhodotorula mucilaginosa YES NO

161 Torulaspora delbrueckii YES NO

162 Rhodotorula glutinis var. glutinis YES NO

167 Saccharomyces cerevisiae NO YES

171 Zygosaccharomyces bisporus YES NO

179 Kluyveromyces marxianus YES NO

188 Candida kefyr YES NO

192 Saccharomyces cerevisiae NO YES

195 Rhodotorula mucilaginosa YES NO

196 Saccharomyces cerevisiae NO YES

197 Saccharomyces cerevisiae NO YES

200 Saccharomyces cerevisiae NO YES

205 Saccharomyces cerevisiae NO YES

206 Saccharomyces cerevisiae NO YES

208 Saccharomyces cerevisiae NO YES

210 Saccharomyces cerevisiae NO YES
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211 Saccharomyces cerevisiae NO YES

212 Saccharomyces cerevisiae NO YES

213 Saccharomyces cerevisiae NO YES

221 Saccharomyces cerevisiae NO YES

222 Saccharomyces cerevisiae NO YES

223 Saccharomyces cerevisiae NO YES

224 Saccharomyces cerevisiae NO YES

225 Saccharomyces cerevisiae NO YES

228 Saccharomyces cerevisiae NO YES

232 Saccharomyces cerevisiae YES YES

235 Saccharomyces cerevisiae YES YES

241 Saccharomyces cerevisiae NO YES

243 Kluyveromyces marxianus YES NO

244 Kluyveromyces marxianus YES NO

350 Candida glabrata YES NO

356 Saccharomyces cerevisiae NO YES

357 Saccharomyces cerevisiae NO YES

358 Saccharomyces cerevisiae NO YES

360 Saccharomyces cerevisiae YES YES

361 Saccharomyces cerevisiae YES YES

371 Metschnikowia pulcherrima YES NO

372 Metschnikowia pulcherrima YES NO

373 Metschnikowia pulcherrima YES NO

377 Rhodotorula glutinis var. glutinis YES NO

385 Zygosaccharomyces bailii YES NO

388 Candida glabrata YES NO

392 Saccharomyces pastorianus YES NO

408 Torulaspora delbrueckii YES NO

416 Kluyveromyces lactis YES NO

417 Zygosaccharomyces bailii YES NO

426 Kluyveromyces marxianus YES NO

430 Saccharomyces cerevisiae NO YES
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431 Saccharomyces cerevisiae YES NO

464 Zygosaccharomyces bailii YES NO

469 Kluyveromyces lactis YES NO

478 Saccharomyces cerevisiae NO YES

479 Saccharomyces cerevisiae NO YES

482 Saccharomyces cerevisiae NO YES

490 Saccharomyces cerevisiae NO YES

491 Saccharomyces cerevisiae NO YES

492 Torulaspora delbrueckii YES NO

502 Rhodotorula graminis YES NO

505 Saccharomyces cerevisiae YES YES

523 Kluyveromyces polysporus YES NO

524 Torulaspora pretoriensis YES NO

538 Kluyveromyces dobzhanskii YES NO

539 Rhodotorula minuta var. minuta YES NO

541 Rhodotorula minuta var. minuta YES NO

543 Saccharomyces kluyveri YES NO

546 Kluyveromyces wickerhamii YES NO

548 Kluyveromyces lactis YES NO

551 Kluyveromyces lactis YES NO

559 Torulaspora delbrueckii YES NO

563 Zygosaccharomyces bailii YES NO

566 Torulaspora delbrueckii YES NO

568 Zygosaccharomyces rouxii YES NO

570 Kluyveromyces lactis YES NO

571 Kluyveromyces lactis YES NO

573 Zygosaccharomyces bailii YES NO

575 Kluyveromyces lactis YES NO

580 Zygosaccharomyces bailii YES NO

582 Torulaspora delbrueckii YES NO

585 Torulaspora delbrueckii YES NO

587 Kluyveromyces marxianus YES NO
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608 Candida colliculosa YES NO

609 Saccharomyces cerevisiae YES NO

619 Saccharomyces cerevisiae NO YES

620 Saccharomyces cerevisiae NO YES

621 Saccharomyces cerevisiae NO YES

667 Saccharomyces cerevisiae YES YES

672 Saccharomyces cerevisiae NO YES

677 Torulaspora delbrueckii YES NO

684 Saccharomyces cerevisiae NO YES

695 Saccharomyces cerevisiae YES YES

696 Torulaspora delbrueckii YES NO

731 Saccharomycodes ludwigii YES NO

739 Saccharomyces cerevisiae YES NO

744 Candida kefyr YES NO

745 Metschnikowia reukaufii YES NO

747 Metschnikowia pulcherrima YES NO

752 Kluyveromyces lactis YES NO

754 Saccharomyces cerevisiae YES NO

758 Rhodotorula mucilaginosa YES NO

768 Kluyveromyces delphensis YES NO

776 Kluyveromyces lactis YES NO

777 Saccharomyces dairenensis YES NO

783 Metschnikowia zobellii YES NO

794 Metschnikowia zobellii YES NO

796 Rhodotorula mucilaginosa YES NO

797 Rhodotorula mucilaginosa YES NO

807 Saccharomyces cerevisiae YES NO

814 Saccharomyces exiguus YES NO

816 Saccharomyces cerevisiae NO YES

820 Torulaspora globosa YES NO

826 Saccharomyces cerevisiae YES NO

827 Kluyveromyces marxianus YES NO
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844 Rhodotorula minuta var. minuta YES NO

845 Rhodotorula minuta var. minuta YES NO

851 Kluyveromyces marxianus YES NO

894 Metschnikowia lunata YES NO

906 Candida kefyr YES NO

911 Pseudozyma aphidis YES NO

929 Kluyveromyces lactis YES NO

931 Rhodotorula minuta var. minuta YES NO

935 Saccharomyces cerevisiae YES NO

956 Saccharomyces cerevisiae YES NO

970 Kluyveromyces marxianus YES NO

971 Saccharomyces unisporus YES NO

974 Rhodotorula glutinis var. glutinis YES NO

975 Saccharomyces pastorianus YES NO

1006 Saccharomyces cerevisiae YES YES

1026 Saccharomyces cerevisiae YES YES

1063 Saccharomyces cerevisiae YES NO

1064 Saccharomyces cerevisiae YES YES

1151 Saccharomyces cerevisiae YES YES

1187 Saccharomyces cerevisiae YES NO

1228 Saccharomyces cerevisiae YES YES

1245 Saccharomyces cerevisiae YES YES

1315 Saccharomyces cerevisiae YES NO

1337 Saccharomyces cerevisiae YES YES

1368 Kluyveromyces lactis YES NO

1384 Pseudozyma fusiformata YES NO

1400 Zygosaccharomyces bailii YES NO

1406 Saccharomyces cerevisiae NO YES

1407 Saccharomyces cerevisiae NO YES

1408 Saccharomyces cerevisiae NO YES

1409 Saccharomyces cerevisiae NO YES

1413 Saccharomyces cerevisiae NO YES
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1414 Saccharomyces cerevisiae NO YES

1415 Saccharomyces cerevisiae NO YES

1416 Zygosaccharomyces bailii YES NO

1417 Kluyveromyces lodderae YES NO

1424 Kluyveromyces marxianus YES NO

1425 Kluyveromyces marxianus YES NO

1426 Kluyveromyces marxianus YES NO

1429 Kluyveromyces marxianus YES NO

1441 Candida kefyr YES NO

1444 Saccharomyces cerevisiae YES YES

1449 Candida bombicola YES NO

1495 Zygosaccharomyces bisporus YES NO

1510 Pseudozyma tsukubaensis YES NO

1529 Saccharomyces cerevisiae NO YES

1603 Saccharomyces cerevisiae YES YES

1606 Saccharomyces cerevisiae YES NO

1645 Rhodotorula mucilaginosa YES NO

1646 Rhodotorula mucilaginosa YES NO

1647 Rhodotorula mucilaginosa YES NO

1649 Rhodotorula mucilaginosa YES NO

1650 Rhodotorula mucilaginosa YES NO

1651 Rhodotorula mucilaginosa YES NO

1659 Rhodotorula mucilaginosa YES NO

1660 Rhodotorula mucilaginosa YES NO

1681 Saccharomyces cerevisiae NO YES

2265 Kluyveromyces marxianus YES NO

2321 Metschnikowia pulcherrima YES NO

2322 Metschnikowia pulcherrima YES NO

2395 Metschnikowia hawaiiensis YES NO

2396 Metschnikowia hawaiiensis YES NO

2397 Saccharomyces cerevisiae YES YES

2401 Saccharomyces cerevisiae NO YES
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2403 Zygosaccharomyces mellis (20DEG!) YES NO

2433 Lachancea thermotolerans YES NO

2439 Rhodotorula glutinis YES NO

2440 Rhodotorula glutinis YES NO

2449 Kazachstania telluris YES NO

2450 Candida humilis YES NO

2473 Candida colliculosa YES NO

2480 Metschnikowia agaves YES NO

2483 Kluyveromyces piceae YES NO

2486 Metschnikowia agaves YES NO

2489 Zygotorulaspora mrakii YES NO

2491 Metschnikowia gruessii YES NO

2508 Lachancea fermentati YES NO

2513 Zygotorulaspora florentinus YES NO

2517 Saccharomyces cerevisiae NO YES

2521 Metschnikowia bicuspidata YES NO

2529 Metschnikowia bicuspidata YES NO

2559 Kluyveromyces dobzhanskii YES NO

2560 Kluyveromyces sinensis YES NO

2568 Zygosaccharomyces microellipsoides YES NO

2572 Debaryomyces hansenii var. hansenii YES NO

2577 Kazachstania servazzii YES NO

2578 Saccharomyces bayanus YES NO

2580 Metschnikowia pulcherrima YES NO

2581 Rhodotorula minuta var. minuta YES NO

2592 Saccharomyces cerevisiae YES YES

2597 Kluyveromyces marxianus var.

marxianus

YES NO

2599 Sporobolomyces albo-rubescens YES NO

2600 Saccharomyces paradoxus YES NO

2605 Rhodotorula vanillica YES NO

2629 Torulaspora delbrueckii YES NO
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2644 Kluyveromyces waltii YES NO

2666 Rhodotorula glutinis var glutinis YES NO

2675 Kluyveromyces marxianus YES NO

2688 Saccharomyces cerevisiae NO YES

2693 Saccharomyces servazzii YES NO

2701 Kazachstania viticola YES NO

2702 Kazachstania kunashirensis YES NO

2729 Kluyveromyces africanus YES NO

2733 Saccharomyces cerevisiae YES YES

2737 Saccharomyces cerevisiae YES YES

2739 Hanseniaspora uvarum YES NO

2741 Torulaspora delbrueckii YES NO

2742 Kluyveromyces lactis YES NO

2752 Rhodotorula cresolica YES NO

2753 Metschnikowia zobellii YES NO

2754 Kluyveromyces yarrowii YES NO

2775 Saccharomyces servazzii YES NO

2789 Zygosaccharomyces lentus YES NO

2790 Zygosaccharomyces bailii YES NO

2791 Kluyveromyces marxianus YES NO

2797 Kluyveromyces lactis YES NO

2804 Saccharomyces bayanus/pastorianus YES NO

2808 Saccharomyces bayanus/pastorianus YES NO

2809 Saccharomyces bayanus/pastorianus YES NO

2826 Saccharomyces cerevisiae NO YES

2827 Saccharomyces rosinii YES NO

2855 Saccharomyces cerevisiae NO YES

2864 Rhodotorula mucilaginosa YES NO

2875 Lachancea cidri YES NO

2878 Saccharomyces barnettii YES NO

2885 Torulaspora delbrueckii YES NO

2886 Kluyveromyces marxianus YES NO
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2887 Kluyveromyces marxianus YES NO

2888 Saccharomyces mikatae YES NO

2889 Saccharomyces kudriavzevii YES NO

2890 Saccharomyces cariocanus YES NO

2897 Zygosaccharomyces kombuchaensis YES NO

2898 Naumovozyma castellii YES NO

2904 Yarrowia lipolytica YES NO

2907 Kluyveromyces marxianus YES NO

2908 Starmerella bombicola YES NO

2927 Zygosaccharomyces bailii YES NO

2931 Zygosaccharomyces bailii YES NO

2932 Zygosaccharomyces bailii YES NO

2933 Zygosaccharomyces bailii YES NO

2934 Zygosaccharomyces bailii YES NO

2935 Zygosaccharomyces bisporus YES NO

2945 Saccharomyces cerevisiae YES YES

2947 Saccharomyces cerevisiae/paradoxus NO YES

2948 Saccharomyces cerevisiae/paradoxus YES YES

2956 Kluyveromyces lactis YES NO

2976 Hanseniaspora osmophila YES NO

2980 Kluyveromyces lactis var. lactis YES NO

2981 Kluyveromyces lactis var.

drosophilarum

YES NO

2991 Saccharomyces spencerorum YES NO

2995 Zygosaccharomyces bailii YES NO

2999 Zygosaccharomyces kombuchaensis YES NO

3000 Zygosaccharomyces kombuchaensis YES NO

3001 Zygosaccharomyces kombuchaensis YES NO

3024 Zygosaccharomyces microellipsoides YES NO

3025 Saccharomyces cerevisiae NO YES

3026 Saccharomyces cerevisiae NO YES

3028 Saccharomyces cerevisiae NO YES
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3030 Saccharomyces cerevisiae NO YES

3031 Saccharomyces cerevisiae NO YES

3032 Saccharomyces cerevisiae NO YES

3033 Saccharomyces cerevisiae NO YES

3034 Saccharomyces cerevisiae YES NO

3035 Saccharomyces cerevisiae NO YES

3036 Saccharomyces cerevisiae NO YES

3037 Saccharomyces cerevisiae NO YES

3038 Saccharomyces cerevisiae NO YES

3039 Saccharomyces cerevisiae NO YES

3041 Kluyveromyces lactis YES NO

3047 Metschnikowia pulcherrima YES NO

3051 Saccharomyces cerevisiae NO YES

3052 Saccharomyces cerevisiae NO YES

3053 Saccharomyces servazzii YES NO

3056 Rhodotorula sp. nov. YES NO

3057 Rhodotorula mucilaginosa YES NO

3072 Rhodotorula laryngis YES NO

3076 Saccharomyces cerevisiae NO YES

3077 Saccharomyces cerevisiae NO YES

3078 Saccharomyces cerevisiae NO YES

3090 Zygosaccharomyces bailii YES NO

3091 Zygosaccharomyces bailii YES NO

3096 Metschnikowia fructicola YES NO

3104 Candida pseudointermedia YES NO

3108 Naumovozyma castellii YES NO

3114 Saccharomyces cerevisiae NO YES

3120 Rhodotorula phylloplana YES NO

3121 Saccharomyces cerevisiae NO YES

3122 Saccharomyces cerevisiae NO YES

3123 Saccharomyces cerevisiae NO YES

3124 Saccharomyces cerevisiae NO YES
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3125 Saccharomyces cerevisiae NO YES

3126 Saccharomyces cerevisiae NO YES

3127 Saccharomyces cerevisiae NO YES

3141 Torulaspora delbrueckii YES NO

3239 Torulaspora delbrueckii YES NO

3255 Torulaspora delbrueckii YES NO

3264 Saccharomyces cerevisiae YES NO

3265 Saccharomyces cerevisiae YES YES

3266 Saccharomyces cerevisiae YES YES

3267 Pseudozyma sp. YES NO

3303 Candida glabrata YES NO

3311 Saccharomyces cerevisiae YES YES

3313 Saccharomyces cerevisiae YES YES

3314 Saccharomyces cerevisiae YES YES

3315 Saccharomyces cerevisiae YES YES

3318 Saccharomyces cerevisiae YES YES

3319 Saccharomyces cerevisiae YES YES

3324 Saccharomyces cerevisiae NO YES

3325 Saccharomyces cerevisiae NO YES

3326 Saccharomyces cerevisiae NO YES

3331 Saccharomyces cerevisiae NO YES

3333 Saccharomyces cerevisiae NO YES

3334 Saccharomyces cerevisiae NO YES

3338 Saccharomyces cerevisiae NO YES

3339 Saccharomyces cerevisiae NO YES

3344 Kluyveromyces marxianus YES NO

3396 Kluyveromyces marxianus YES NO

3398 Metschnikowia aff. fructicola YES NO

3400 Metschnikowia sp. nov. YES NO

3401 Rhodotorula graminis YES NO

3406 Saccharomyces cerevisiae YES YES

3411 Rhodotorula mucilaginosa YES NO
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3431 Pseudozyma hubeiensis YES NO

3444 Rhodotorula dairenensis YES NO

3445 Saccharomyces cerevisiae YES YES

3447 Saccharomyces cerevisiae YES YES

3448 Saccharomyces cerevisiae YES YES

3449 Saccharomyces cerevisiae YES YES

3451 Saccharomyces cerevisiae YES NO

3452 Saccharomyces cerevisiae NO YES

3453 Saccharomyces cerevisiae YES NO

3454 Saccharomyces cerevisiae YES NO

3455 Saccharomyces cerevisiae YES YES

3456 Saccharomyces cerevisiae YES YES

3457 Saccharomyces cerevisiae YES YES

3458 Saccharomyces cerevisiae YES YES

3460 Saccharomyces cerevisiae YES YES

3461 Saccharomyces cerevisiae YES YES

3462 Saccharomyces cerevisiae YES YES

3466 Saccharomyces cerevisiae YES NO

3467 Saccharomyces cerevisiae YES YES

3469 Saccharomyces cerevisiae YES NO

3470 Saccharomyces cerevisiae YES YES

3471 Saccharomyces cerevisiae YES YES

3472 Saccharomyces cerevisiae YES YES

3486 Saccharomyces cerevisiae YES YES

3487 Saccharomyces cerevisiae YES YES

3502 Candida glabrata YES NO

3504 Rhodotorula mucilaginosa YES NO

3506 Torulaspora delbrueckii YES NO

3519 Candida glabrata YES NO

3536 Rhodotorula mucilaginosa YES NO

3537 Candida glabrata YES NO

3612 Saccharomyces cerevisiae YES YES
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3630 Saccharomyces cerevisiae YES YES

3719 Metschnikowia sp. YES NO

3721 Rhodotorula slooffiae YES NO

3722 Rhodotorula graminis YES NO

3725 Rhodotorula glutinis var. dairenensis YES NO

3735 Rhodotorula mucilaginosa YES NO

3772 Rhodotorula mucilaginosa YES NO

3775 Rhodotorula mucilaginosa YES NO

3788 Hanseniaspora guilliermondii YES NO

3792 Metschnikowia koreensis YES NO

3816 Rhodotorula mucilaginosa YES NO

3817 Rhodotorula mucilaginosa YES NO

3820 Rhodotorula mucilaginosa YES NO

3821 Rhodotorula mucilaginosa YES NO

3832 Rhodotorula sp. nov. YES NO

3833 Rhodotorula sp. nov. YES NO

3834 Rhodotorula laryngis YES NO

3835 Rhodotorula sp. nov. YES NO

3836 Rhodotorula laryngis YES NO

3837 Rhodotorula laryngis YES NO

3838 Rhodotorula laryngis YES NO

3853 Kazachstania bulderi YES NO

3867 Rhodotorula mucilaginosa YES NO

3872 Rhodotorula mucilaginosa YES NO

4000 Kazachstania yasuniensis YES NO

3455 Saccharomyces cerevisiae NO YES

Table 3: Yeast strains included within the metabolomics studies
The NCYC strain designation is on the first column, species on the second, with presence
(YES/NO) in Malt and YNB media in third and fourth columns, respectively.
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