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Abstract	

There	is	a	lack	of	depth-resolved	sea	temperature	data,	especially	in	coastal	areas,	

which	 are	 often	 frequently	 dived	 by	 SCUBA	 divers.	 Marine	 citizen	 science	 is	 a	

growing	phenomenon,	but	projects	involving	collection	of	physical	parameters	are	

underrepresented.	The	aim	of	this	thesis	is	to	explore	the	potential	for	SCUBA	diver	

citizen	 scientists	 as	 a	 novel	 source	 of	 marine	 measurements,	 with	 a	 focus	 on	

temperature	 data	 collected	 from	 dive	 computers.	 Current	 knowledge	 does	 not	

quantify	 bias,	 response	 to	 temperature	 change,	 or	 within	 and	 between	 model	

differences	 across	models	 and	 styles	 of	 dive	 computer,	 a	 shortcoming	 this	 thesis	

addresses.	 The	 response	 time	 (time	 constant),	 accuracy	 and	 precision	 of	 water	

temperature	 measurement	 in	 28	 dive	 computers	 from	 11	 models,	 plus	 three	

underwater	cameras	of	the	same	model	are	assessed.	In	addition,	using	a	case	study	

of	a	dataset	of	dive	computer	temperature	from	recreational	divers	in	the	Red	Sea,	

we	ascertain	bias	from	satellite	derived	sea	surface	temperature	and	depth-resolved	

in	situ	data.	We	do	so	to	quantify	responses,	and	better	understand	the	limitations	

and	potential	uses	for	data	collected	in	this	way.	Time	constant	by	device	ranged	

from	(17	±	6)	s	 to	(341	±	69)	s,	with	significant	between	model	differences	 found.	

When	compared	with	baseline	mean	temperature	from	CTDs,	mean	bias	by	model	

ranged	from	(0.0	±	0.5)	°C	to	(-1.4	±	2.1)	°C,	with	9	of	the	12	models	found	to	have	

accuracy	≤	0.5	°C	overall.	We	show	that	seasonal	patterns	comparable	with	regional	

climatologies	are	observable	at	annual,	monthly	and	weekly	resolutions	in	data	from	

anonymous	online	dive	computer	logs.	Interannual	variation,	south-north	cooling	

trends	and	data	biases	consistent	with	seasonal	mixed	layer	depths	proposed	in	the	

literature	 are	 also	 seen.	 We	 also	 develop	 an	 interactive	 citizen	 science	 website	

Diveintoscience	 (diveintoscience.org)	using	 the	Shiny	package	 in	R,	detailing	 the	

development	process,	design	decisions	and	key	factors	involved.	We	conclude	that,	

with	sufficient	data	points,	temperature	data	from	dive	computers	could	form	part	

of	an	integrated	monitoring	system,	and	there	is	potential	for	SCUBA	divers	to	act	

as	citizen	scientists	in	the	collection	of	other	oceanographic	parameters.		
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Chapter	1. Introduction	

1.1 Chapter	summary	

Current	 projections	 of	 the	 potential	 effects	 of	 global	 change	 on	 the	 marine	

environment	show	that	the	effect	of	our	anthropogenic	activities	is	not	sustainable.	

The	 oceans	 drive	 our	 climate,	 and	 we	 need	 to	 build	 our	 knowledge	 and	

understanding	 to	 enable	 us	 to	make	 increasingly	well	 informed,	 healthy	 choices	

about	how	we	live.	However,	the	marine	environment	is	under	sampled,	especially	

in	coastal	areas.	An	increased	volume	of	data	will	help	us	understand	temperature	

changes	in	local	ecosystems,	and	how	climate	change	is	affecting	ocean	temperature	

over	time.	Citizen	science	involves	the	participation	of	volunteers	in	science	projects	

and	can	provide	volumes	of	data	that	would	not	otherwise	be	possible.	There	are	an	

estimated	6	–	10	million	recreational	SCUBA	divers	globally	(Cisneros-Montemayor	

and	 Sumaila,	 2010,	 cited	 Wright	 et	 al.	 2016),	 the	 majority	 wearing	 one,	 if	 not	

multiple,	dive	computers	on	each	dive.	Divers	have	been	found	to	be	an	engaged	

group	of	citizen	scientists,	and	with	most	recreational	SCUBA	diving	taking	place	in	

relatively	shallow,	coastal	regions,	this	offers	a	potential	significant	data	resource	to	

combat	the	data	shortage	in	these	areas.	This	chapter	provides	an	overview	of	the	

current	 knowledge,	 highlighting	 the	 knowledge	 gaps	 this	 thesis	 aims	 to	 fill	 and	

concludes	with	an	introduction	to	the	overall	thesis	structure,	aims	and	objectives.		

1.2 Marine	science	

It	is	predicted	that	by	2035	3.2	billion	people	will	live	within	100	km	of	a	coast	(Maul	

and	Duedall	 2021).	The	marine	 environment	here	 supports	high	 levels	of	 aquatic	

biodiversity	(Tittensor	et	al.	2010)	and	the	available	resources	are	important	for	the	

economy,	biodiversity,	fisheries,	tourism	and	coastal	protection.	Coastal	regions	are	

vulnerable	 to	 human	 pressures,	 are	 often	 shallow,	 inaccessible,	 or	 difficult	 to	

monitor	 using	 conventional	 techniques,	 such	 as	 ship-based	 oceanographic	

monitoring,	which	are	not	designed	to	cater	to	the	spatial/temporal	variability	and	

are	 expensive	 to	maintain.	 Therefore,	 these	 areas	 remain	 under	 sampled	 with	 a	

reliance	on	models	(Brewin	et	al.	2017a).			
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In	2011,	marine	ecosystem	services	were	valued	at	$49.7	trillion	dollars	per	annum	

(Costanza	et	al.	2014).	It	is	thought	that	over	two	thirds	of	the	overall	economic	value	

of	 the	ocean	 is	produced	by	assets	 that	 rely	directly	on	healthy	ocean	conditions	

(Hoegh-guldberg	2015).	There	is	a	growing	weight	of	marine	research	focusing	on	

climate	change,	and	a	more	rapid	increase	in	publications	related	to	climate	change	

rather	 than	 general	 marine	 science	 (Pedersen	 et	 al.	 2016).	 Lack	 of	 sustained	

observations	of	the	atmosphere,	oceans	and	land	have	hindered	the	development	

and	 validation	 of	 models	 (Euro-Argo	 ERIC	 n.d.)	 but	 understanding	 basic	

oceanographic	 processes,	 both	 separately	 and	 in	 an	 integrated	way,	 allows	 us	 to	

predict	changes	in	the	ocean.	Predictions	are	necessary	to	guide	global	decisions,	

industrial	policies	and	governmental	actions	(Copernicus	Marine	Service	2018).		

Natural	variability	introduces	uncertainty	that	makes	prediction	difficult	(Dye	et	al.	

2013),	especially	with	small	volumes	of	data.	For	example,	an	analysis	towards	the	

end	of	the	last	century	stated	that	the	currents	transporting	heat	northwards	in	the	

Atlantic	 and	 influencing	western	European	 climate	had	weakened	by	 30%	 in	 the	

previous	decade,	but	this	was	based	on	only	5	measurements	over	a	40-year	period.	

With	such	small	volumes	of	data,	it	is	impossible	to	identify	whether	this	was	part	

of	 an	ongoing	 trend,	 or	natural	 variability	 (Argo	Program	n.d.).	 It	 has	only	been	

within	 the	 last	 50	 years	 that	 technology	 has	 advanced	 to	 the	 point	 that	 we	 can	

examine	the	ocean	in	a	systematic,	scientific,	and	non-invasive	way	(NOAA	n.d.).		

Both	surface	(SST)	and	subsurface	sea	temperature	have	been	defined	as	essential	

ocean	variables	by	 the	Global	Ocean	Observing	System	project	 (GOOS	n.d.).	Sea	

temperature	is	a	vital	component	of	climate	and	weather	predictions,	being	directly	

linked	to	key	processes	and	impacts	such	as	sea	level	rise,	deoxygenation	(Bindoff	et	

al.	2019)	and	acidification	(Copernicus	Marine	Service	2018).	Changing	temperature	

also	impacts	marine	life,	coral	bleaching	(Gomez	et	al.	2020),	increased	prevalence	

of	algal	blooms	and	disease	(Genner,	Freer,	and	Rutterford	2017),	with	physiology,	

abundance,	 distribution,	 range	 and	 timing	 of	 key	 events	 such	 as	 spawning	 all	

affected	(Genner,	Freer,	and	Rutterford	2017;	Poloczanska	et	al.	2013).	By	monitoring	
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these	key	environmental	variables,	we	collect	information	to	help	us	understand	and	

predict	ocean	and	ecosystem	changes	due	to	natural	patterns	of	variation	or	climate	

change.	 Larger	 temperature	 datasets	 are	 required	 to	 support	 the	 assessments	 of	

impacts	on	whole	ecosystems	over	long	periods	of	time,	but	there	is	currently	a	lack	

of	information	on	seawater	temperature	below	the	surface	especially	for	inshore	and	

coastal	areas.		

Satellite	 data	 are	 commonly	 used	 to	 monitor	 sea	 temperature	 but	 there	 are	

limitations;	 they	only	measure	 the	 temperature	of	 the	upper	 few	micrometres	or	

millimetres	(Kennedy	2014)	and	are	interpolated	to	produce	global	scale	products,	

impacting	 variation	 seen	 at	 local	 level	 (Merchant	 et	 al.	 2019).	Depending	 on	 the	

sensor	(infrared	or	microwave)	they	are	affected	by	cloud	cover	(O’Carroll,	Eyre,	and	

Saunders	2008)	and	the	presence	of	land	in	coastal	areas	(Kennedy	2014).	They	have	

also	been	found	to	have	poorer	accuracy	in	coastal	areas	(Smit	et	al.	2013;	Wright	et	

al.	2016).	Therefore,	in	situ	observations	are	essential	for	calibration	and	verification	

of	 satellite	 data	 (Brewin	 et	 al.	 2017b)	 and	 for	 additional	 depth-resolved	

measurements.		

In	 situ	 observations	 are	 taken	 from	 a	 variety	 of	 platforms,	 including	 permanent	

moorings,	 ships,	 buoys,	 drifters,	 floats	 and	 marine	 life	 (McPhaden	 et	 al.	 2009;	

Abraham	et	al.	2013;	Smith	et	al.	2019;	Doi	et	al.	2019),	with	different	resolutions	and	

uncertainties	(Abraham	et	al.	2013;	Centurioni	et	al.	2019).	However,	research	vessels	

typically	 only	 operate	 offshore,	 and	 the	 existing	 coastal	 network	 of	 monitoring	

stations	in	the	UK	records	only	surface	temperature	(Morris	et	al.	2016).	In	1999,	to	

combat	this	lack	of	data,	scientists	began	a	publicly	available,	continual	monitoring	

of	 temperature	and	salinity	of	 the	upper	ocean	via	 free-drifting	Argo	floats	(Argo	

Program	n.d.),	significantly	improving	coverage.	However,	Argo	floats	are	unable	to	

resolve	small	scale	information	(Willis	n.d.)	and,	as	they	are	current	driven,	are	less	

effective	 for	 measuring	 coastal	 areas.	 Unmanned,	 remotely	 operated	 and	

autonomous	vehicles	such	as	underwater	gliders	are	also	becoming	more	accessible,	

with	increased	performance	(Garcia-Soto	et	al.	2017),	providing	specific	and	more	

generalised	information	about	the	ocean	environment	in	conjunction	with	satellite	
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remote	sensing.	Shipping	hazards	and	shallow	depths	mean	coastal	environments	

are	 also	 challenging	 for	 gliders,	 although	 work	 is	 currently	 being	 carried	 out	 to	

mediate	 the	 difficulties	 in	 navigating	 these	 areas	 (Plymouth	 Marine	 Laboratory	

2021).	

There	 has	 been	 a	 global	warming	 trend	 in	 the	 upper	 ocean	 over	 recent	 decades	

(Copernicus	Marine	 Service	 2018)	 and	 warming	 is	 projected	 to	 increase	 (Marine	

Climate	Change	 Impacts	 Partnership	 2020).	 Any	 bias	 in	 recorded	 SST	will	 affect	

global	temperature	estimates	because	of	the	proportion	of	ocean	covering	the	earth’s	

surface	(Jones	2016).	But	regional	variation	 is	seen	 in	rates	of	SST	change	(Belkin	

2009;	 Dye	 et	 al.	 2013;	 Sutton	 2018).	 Around	 the	 UK,	 the	 North	 Sea	 and	 English	

Channel	are	expected	to	experience	increased	warming	comparative	to	outer	shelf	

regions	 (Marine	 Climate	 Change	 Impacts	 Partnership	 2020).	 So,	 maximising	

accurate,	 regional,	 data	 in	 addition	 to	 global,	 is	 key	 for	 understanding	 local	

dynamics.		

There	are	still	areas,	such	as	the	islands	of	the	Pacific,	where	there	is	little	monitoring	

of	any	kind,	and	limited	scientific	information	available	(Holthus	2013).	However,	

these	areas	with	 limited	monitoring	 infrastructure	are	often	the	 location	for	high	

levels	 of	marine	 recreational	 activity,	 such	 as	 surfing,	 SCUBA	 diving	 and	 fishing	

(Brewin	et	al.	2017b).	

1.3 Citizen	science	

Citizen	science,	or	community	science,	is	an	area	of	increasing	growth.	It	has	been	

defined	in	a	variety	of	ways,	and	commonly	involves	the	collection	or	classification	

of	data	by	non-professional	scientists,	although	this	paradigm	is	transitioning	to	a	

broader	definition	where	projects	may	be	contributory,	collaborative	or	co-created	

(Bonney	et	al.	2009a;	Earp	and	Liconti	2020),	depending	on	the	level	of	involvement	

of	non-scientists.	This	thesis	assumes	a	definition	of	citizen	science	encompassed	by	

the	 contributory	 approach:	 ‘volunteers	 collecting,	 categorising,	 transcribing	 or	

analysing	scientific	data’.		
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The	number	of	projects	has	been	steadily	increasing	in	the	last	30	years,	and	this	is	

expected	 to	 continue	 (Thiel	 et	 al.	 2014).	 	 Projects	 are	 independent	 of	 scientific	

discipline,	with	diversity	in	desired	outcomes	(Bonney	et	al.	2015).	There	is	an	array	

of	 projects	 including	 topics	 from	 astronomy	 to	 microbiology	 (“Dark	 Energy	

Explorers”	 n.d.),	 historical	 research	 (“Heritage	 Quest”	 n.d.;	 Craig	 and	 Hawkins	

2020),	 social	 sciences	 (Tauginienė	 et	 al.	 2020),	 health	 sciences	 and	 community	

activism	(van	Noordwijk	et	al.	2021).	Adults	self-select	to	take	part,	choosing	to	give	

their	spare	time	to	things	they	are	interested	in	(Cigliano	et	al.	2015).	

One	of	the	benefits	of	citizen	science	is	the	potential	to	generate	a	large	volume	of	

data,	 with	 increased	 spatial	 and	 temporal	 scope	 compared	 with	 what	 would	 be	

possible	 via	 traditional	 ‘scientific’	 data	 collection	 alone	 (Bonney	 et	 al.	 2009b;	

Dickinson	 et	 al.,	 2012;	 Vye	 et	 al.	 2020).	 Data	 can	 be	 collected	 which	 augment	

traditional	 research	 programmes,	 form	 the	 basis	 of	 scientific	 research,	 and/or	

provide	 supporting	 evidence	 for	 public	 policy	 and	management	 decision	making	

(Bonney	2015;	Hollow	et	al.	2015;	Geoghegan	et	al.	2016).	Long	term	time	series	can	

be	generated	at	scales	that	are	out	of	scope	of	funded	research	projects	(Gonsamo	

and	D’Odorico	2014;	Earp	and	Liconti	2019).			

1.3.1 Environmental	citizen	science	

Within	the	breadth	of	topics,	there	is	a	prevalence	of	projects	using	citizen	science	

to	address	environmental	and	conservation	issues	(Pocock	et	al.	2017),	with	80	%	of	

projects	in	Europe	found	to	be	within	the	natural	and	life	sciences,	and	only	11	%	in	

social	sciences	or	humanities	(Hecker	et	al	2018).	Although	the	term	citizen	science	

didn’t	arise	until	the	1990s,	community	involvement	in	environmental	monitoring	

is	much	older,	with	many	of	the	earliest	examples	of	citizen	science	being	related	to	

observations	 in	 nature,	 such	 as	 the	 Audubon	 Society’s	 Christmas	 Bird	 Count,	

commencing	in	the	1900s	(Foody	et	al.	2017)	and	recording	of	the	timing	of	Japanese	

cherry	 blossom	 (Kobori	 et	 al.	 2016).	 There	 are	 limited	 analyses	 of	 the	monetary	

benefits	of	environmental	citizen	science,	but	Defra	placed	the	value	of	volunteer	

environmental	monitoring	in	the	UK	in	2011	at	£50	million	(Defra	2011,	cited	in	Hyder	

et	al.	2015).	
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Many	 environmental	 citizen	 science	 projects	 are	 designed	 by	 scientists,	 with	

volunteers	being	involved	in	some	way	with	data	collection	or	identification	(Science	

Communication	Unit	University	 of	 the	West	 of	 England	 2013).	 Projects	 are	wide	

ranging,	with	citizen	scientists	surveying	an	array	of	species,	logging	independently	

spotted	species	on	sites	such	as	eBird	(Cornell	Lab	of	Ornithology	n.d.),	contributing	

to	 biodiversity	 studies	 such	 as	 a	 BioBlitz	 (Tweddle	 et	 al.	 2012;	 Natural	 History	

Museum	n.d.),	participating	in	weather	studies	(e.g.	Community	Collaborative	Rain,	

Hail	 and	 Snow	 Network	 n.d.)	 or	 sampling	 the	 physical	 environment	 such	 as	

monitoring	water	or	quality	(Bristol	Avon	Rivers	Trust	n.d.;	European	Environment	

Agency,	2019).		Not	all	projects	require	an	ability	to	get	outside,	with	many	online-

only	projects	being	available	such	as	digitization	of	historical	weather	records	(Craig	

and	Hawkins	2020),	identification	of	species	from	photographs	(Willi	et	al.	2019),	or	

one	 of	 around	 50	 projects	 categorised	 by	 ‘nature’	 on	 the	 citizen	 science	website	

Zooniverse	(Zooniverse	n.d.).	

The	decisions	people	make,	such	as	behaviours,	social	preferences,	decisions	around	

diet,	travel	and	energy	use,	have	a	 large	impact	on	climate	change	(Corner	2018).	

Increased	highlighting	of	marine	issues	in	the	populist	media	has	coincided	with	a	

sea	change	in	mass	environmental	activism	on	a	day-to-day	scale.	For	example,	the	

so	 called	 ‘Blue	 Planet’	 effect	 connected	 with	 the	 broadcast	 of	 the	 well-known	

television	series	coincided	with	increased	awareness	of	environmental	issues	such	

as	marine	 plastic	 (Dunn,	Mills,	 and	Veríssimo	 2020),	 although	 the	 proportion	 of	

increased	media	 as	 a	 response	 to	 increased	 activism	 and	 public	 interest,	 or	 vice	

versa,	is	unquantified.	There	is	wide	social	media	attention	around	projects	which,	

as	part	of	activism	or	campaigning,	could	lend	themselves	to	citizen	science	projects.			

1.3.2 Marine	citizen	science	

The	oceans	are	not	our	natural	habitat	and	projects	face	logistical	challenges	around	

the	environment;	most	of	the	oceans	are	inaccessible	to	most	people	(Garcia-Soto	et	

al.	 2017).	 The	 need	 for	 more	 expensive	 equipment	 such	 as	 boats,	 training	 and	

resources	 such	 as	 protective	 equipment	 can	 also	 be	 a	 limiting	 factor,	 along	with	

safety	or	liability	concerns	(Cigliano	et	al.	2015).	Accordingly,	there	are	fewer	marine	
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citizen	science	projects	than	in	the	terrestrial	or	freshwater	environments	(Roy	et	al.	

2012;	 Sandahl	 and	Tøttrup	2020)	 and	projects	 in	 the	more	 accessible	 coastal	 and	

intertidal	habitats	are	most	commonly	seen	(Thiel	et	al.,	2014).		

Yet	the	number	and	diversity	of	marine	citizen	science	projects	has	been	increasing	

in	recent	years	(Thiel	et	al.	2014,	Kelly	et	al.	2020;	Sandahl	and	Tøttrup	2020),	with	

the	 number	 of	 published	 papers	 trebling	 between	 2014	 and	 2018	 (Sandahl	 and	

Tøttrup	 2020).	 Initiatives	 include	 above	 the	 shoreline	 projects	 such	 as	 the	 Big	

Seaweed	Search	(Natural	History	Museum	n.d.),	taking	part	in	coastline	surveys	with	

Coastwatch	 (Kathy	 and	 Gareth	 2000)	 or	 Capturing	 Our	 Coast	 (“Capturing	 Our	

Coast”	n.d.)	and	the	Great	British	Beach	Clean	(Marine	Conservation	Society	n.d.).	

Subsurface	projects	 for	SCUBA	divers	 include	Dive	against	Debris	 (“Dive	Against	

Debris”	 n.d.),	 submitting	 photos	 of	 animal	 sightings	 (Manta	 Trust	 n.d.;	

sharkguardian	n.d.)	and	nudibranch	surveys	(Gulen	Dive	Resort	n.d.),	all	helping	

contribute	 to	 conservation	 efforts.	 In	 May	 2017,	 the	 European	 Marine	 Board	

launched	 a	 position	 paper	 on	 advancing	 citizen	 science	 for	 coastal	 and	 marine	

research.		

Engaging	citizen	scientists	who	are	already	involved	in	marine	recreational	activities	

to	gather	sub-surface	information	can	help	fill	the	data	gap	(Simoniello	et	al.	2019;	

Lamy	et	al.	2020).	Measurement	of	water	temperature	is	a	common	task	for	citizen	

scientists,	but	collection	of	temperature	at	depth	is	limited	to	divers.	SCUBA	divers	

are	 some	 of	 the	most	 active	 citizen	 scientists	 (Martin,	 Christidis,	 and	 Pecl	 2016;	

Hermoso	et	al.	2019).	Divers	4	Oceans	(Akkaynak	n.d.),	and	Cousteau	Divers’	Project	

Hermes	(Cousteau	n.d.)	are	two	examples	where	organisations	have	made	efforts	to	

start	 a	 global	 collection	 of	 temperature	measurements	 from	 SCUBA	 divers.	 It	 is	

unclear	if	Divers	4	Oceans	is	still	active,	and	data	are	not	available	online.	Project	

Hermes	has	moved	away	 from	the	 idea	of	using	dive	computers	directly	and	has	

developed	a	new	sensor	(which	is	not	yet	publicly	available).		
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1.3.3 Benefits	of	Citizen	Science	to	participants	

A	successful	 citizen	 science	project	has	been	described	as	one	 in	which	not	only	

useful	 scientific	 data	 have	 been	 collected,	 but	 also	 has	 left	 contributors	 satisfied	

(Garcia-Soto	et	 al.	 2017),	with	benefits	 categorised	by	Broeder	et	 al.	 (2018)	 into	3	

groups:	 increased	 research	 capacity,	 improved	 knowledge	 and	 benefits	 to	

participants.	The	benefits	 of	participation	 for	 individuals	 are	manifold,	 including	

improved	 physical	 and	 mental	 wellbeing,	 personal	 growth	 and	 acquisition	 of	

knowledge	and	scientific	literacy	(Bonney	et	al.	2014;	Forrester	et	al.	2017.	

There	are	many	benefits	specific	to	environmentally	focused	citizen	science	projects.	

Engaging	 with	 citizen	 science	 and	 nature	 can	 promote	 positive	 environmental	

practices	and	choices	(McKinley	et	al.	2017),	 increase	civic	engagement	(Cornwell	

and	 Campbell	 2012)	 and	 increase	 public	 understanding	 of	 and	 a	 sense	 of	

environmental	stewardship	(Moore,	Townsend,	and	Oldroyd	2006;	Dickinson	et	al.	

2012;	Lucrezi	et	al.	2018).	Being	near	oceans	inspires	emotional	connections	to	water	

and	improve	well-being	(Cigliano	et	al.	2015),	with	marine	and	coastal	margins	found	

to	 be	 the	 areas	 with	 greatest	 self-reported	 happiness	 levels	 (using	 Experience	

Sampling	Method	(ESM)	and	Ecological	Momentary	Assessment	(EMA)	techniques)	

(MacKerron	 and	Mourato	 2013;	 de	Vries	 et	 al.	 2021).	 In	 addition	 participating	 in	

citizen	science	can	promote	support	for	policies	related	to	conservation	of	species,	

habitats	and	Marine	Protected	Areas	(Kelly	et	al.	2019).			

1.3.4 Robustness	of	data	

It	has	been	demonstrated	that	data	gathered	by	means	of	citizen	science	can	be	of	

comparable	quality	to	that	gathered	using	standard	scientific	approaches	(Gardiner	

et	 al.,	 2012;	 Kosmala	 et	 al.	 2016;	 Schläppy	 et	 al.	 2017;	 McKinley	 et	 al.	 2017).	

Nonetheless,	there	remains	a	perception	of	concern	regarding	data	quality	(Engel	

and	Voshell	2002;	Schläppy	et	al.	2017).		These	concerns	are	often	associated	with	a	

perceived	bias	due	to	knowledge	or	training	issues,	for	example,	under-reporting	of	

species	(Garcia-Soto	et	al.	2017).	However	the	types	of	errors	that	have	been	seen,	

such	 as	 under-reporting	 0r	 misidentification,	 are	 similar	 to	 those	 in	 traditional	
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science	(Lee	et	el.,	2020).	If	studies	do	not	describe	measures	of	data	quality,	this	

may	 contribute	 to	 reticence	 in	 its	 use	 (Vann-Sander,	 Clifton,	 and	 Harvey,	 2016;	

Sandahl	and	Tøttrup,	2020).	However,	a	study	of	36	diverse	citizen	science	projects	

found	that	94	%	of	projects	used	at	least	1	mechanism	to	ensure	data	quality,	with	

56	%	utilising	5	or	more	mechanisms	(de	Sherbinin	et	al.	2021),	highlighting	that	

improved	documentation	 is	 the	opportunity	rather	 than	 improved	data	practises.	

Riesch	and	Potter	(2014)	posit	that	scientists	may	be	less	concerned	about	the	quality	

of	the	data,	than	of	a	potential	negative	perception	by	other	scientists,	should	they	

use	volunteer-collected	data.		

Fundamentally,	 inclusion	of	data,	whatever	 the	source,	must	be	based	on	quality	

rather	than	simply	the	methodology	(Cigliano	et	al.	2015),	but	the	requisite	accuracy	

will	 depend	 on	 the	 scientific	 question.	 A	 well-considered	 approach	 to	 sampling	

design	can	improve	the	quality	of	a	dataset,	but	pre-processing,	validation	and	data	

transformation	may	necessary	before	further	modelling	or	analysis,	to	address	bias	

and	errors	(Dickinson,	Zuckerberg,	and	Bonter	2010;	Lewandowski	and	Specht	2015).	

In	conclusion,	as	with	any	scientific	research	programme,	robustness	in	approach	

must	be	demonstrated,	formal	statements	of	data	quality	and	accessibility	provided,	

along	with	transparency	and	accessibility	of	methods,	clearly	defined	data	quality	

standards,	data	infrastructure	and	governance	approach	(Silvertown	2009,	Hyder	et	

al.	2015,	Socientize	2015,	Sherbinin	et	al.	2020,	Bowser	2020).		

1.3.5 Citizen	science	and	policy	

In	2017,	the	U.S.	recognised	the	potential	for	cost	effective	acceleration	of	scientific	

research	 and	 addressing	 societal	 needs	 by	 connecting	members	 of	 the	 public	 to	

federal	science	agencies	in	the	form	of	the	Crowdsourcing	and	Citizen	Science	Act	

(“Crowdsourcing	 and	 Citizen	 Science	 Act”	 n.d.).	 The	 European	 Commission’s	

Horizon	2020	programme	also	 emphasised	 the	need	 to	bring	public	 engagement	

alongside	responsible	research	and	innovation	to	‘deliberate	on	matters	of	science	

and	technology’	(Horizon	2020	n.d.).		
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Where	members	of	 the	public	get	 involved	with	 issues	 that	 they	are	affected	by,	

whether	 local,	 national	 or	 global,	 it	 offers	 opportunity	 for	 them	 to	 influence	

decisions	made	around	those	 issues	(Garcia-Soto	et	al.	2017).	 	Citizen	science	has	

been	 shown	 to	 inspire	 effective	 advocacy,	 increase	 public	 awareness	 of	 issues,	

increase	 empowerment	 in	 policymaking	 and	 the	 likelihood	 of	 policy	 change	

(Cigliano	 et	 al.	 2015;	 European	Commission	 2020).	Whilst	 not	 all	 citizen	 science	

projects	have	an	aim	to	influence	policy	outcomes	(Bonney	et	al.	2016),	engaging	the	

public	in	a	meaningful	way	is	essential	to	supporting	sustainable	solutions	to	using	

ecosystems	and	natural	resources	(Kelly	et	al.	2019).		

Environmental	citizen	science	projects	 fit	well	 into	the	public-policy	 interface,	as	

members	of	the	public	can	be	engaged	from	the	start.	But	the	citizen	science	-	policy	

interface	 is	not	straightforward	(Schade	2021).	Evidence-based	decision	making	 is	

central	to	the	policy	process	(Chapman	and	Hodges	2017),	and	citizen	science	data	

may	not	yet	be	widely	used	by	decision	makers	(Hyder	et	al.	2015;	Sherbinin	2021).	

It	is	hard	to	assess	direct	impact	of	citizen	science	activities	on	policy,	as	formation	

of	policies	and	policy	change	is	not	a	quick	process	(Minkler	2010).	Newman	et	al.	

(2017)	found	that	from	134	environmental	conservation	projects	with	an	intention	to	

inform	 decision	making,	 73	 demonstrated	 some	 evidence	 of	 use	 of	 data	 outputs	

(where	decision	making	was	related	to	land	use	or	natural	resource	management	by	

landowners	or	institutions,	either	related	to	policy	change	or	within	existing	policy).			

Value	can	be	added	by	delivering	larger	volumes	of	data	over	a	wide	geographic	area	

to	support	evidence-based	policy	decisions	and	there	are	many	examples	of	citizen	

science	data	being	used	by	 industry	and	governments.	For	example,	Open	Street	

Map,	which	utilises	user	generated	mapping	data	(there	were	2.5	million	registered	

users	in	2016)	(Open	Street	Map	n.d.;	Foody	et	al.	2017).	Citizen	science	projects	have	

influenced	 policy	 or	 conservation	 efforts	 in	 areas	 such	 as	 air	 quality	 standards	

(Minker	2010;	Gonzalez	et	al.	2011):	efforts	and	outcomes	from	the	West	Oakland	

Environmental	Indicators	Project	(“Owning	Our	Air”,	n.d.,	Gonzalez	et	al.	2011)	led	

to	regulatory	changes	to	trucker	idling	activities	which	were	contributing	to	poor	

local	air	quality	(Bonney	et	al.	2016).	Monitoring	of	invasive	species	(Poursanidis	et	
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al.	2013;	Giovos	et	al.	2019):		iSea	citizen	science	project	provided	information	about	

alien	species	in	the	Mediterranean	Sea	around	Greece	and	Cyprus,	contributing	to	

the	applied	GES	indicator	relating	to	‘trends	in	the	number	of	new	alien	species	in	

national	waters’	(Giovos	et	al.	2019).	Citizen	science	derived	data	also	forms	a	part	

of	 the	 Cefas	 Coastal	 Temperature	 Network,	 a	 long-term	 time	 series	 of	 sea	

temperature	 observations	 from	 multiple	 sources	 around	 the	 UK,	 including	

opportunistic	sampling	from	ferry	routes	(Morris	et	al.	2016;	Morris	et	al.	2018),	used	

for	monitoring	hydrographic	changes	around	the	United	Kingdom.	Other	examples	

include	monitoring	the	abundance	and	distribution	of	marine	litter	(Hidalgo-Ruz	

and	Thiel	2015)	or	logging	empty	egg	cases	of	sharks	and	rays	(Roy	et	al.,	2012).		

Marine	 Protected	 Areas	 (MPAs)	 are	 areas	 of	 the	 ocean	 set	 aside	with	 long-term	

conservation	aims	such	as	enhancement	and	protection	of	fish	stocks,	protection	of	

biodiversity	and	economic	benefit	to	fishermen	(Gaines	et	al.	2010;	Botsford	et	al.	

2014).	MPAs	offer	some	level	of	protection	for	species	or	extraction	of	resources,	and	

citizen	science	has	been	used	to	deliver	useful	information	for	supporting	adaptive	

management	and	monitoring	(Mateara	et	al.	2019;	Nelms	et	al.	2020;	Cigliano	et	al.	

2015;		Giovos	et	al.	2019).	California,	for	example,	has	established	over	100	MPAs	since	

1999,	 with	 citizen	 science	 programmes	 involved	 from	 the	 beginning,	 including	

SCUBA	 divers,	 recreational	 fishermen	 and	 high	 school	 students.	 (Cigliano	 et	 al.	

2015).			

However,	the	potential	of	citizen	science	has	not	yet	been	fully	realised,	especially	

relating	 to	 ocean	 sustainability	 goals.	 Citizen	 science	 initiatives	 currently	 only	

contribute	to	5	of	the	Sustainable	Development	Goals,	only	one	of	these	relating	to	

goal	14,	life	below	water:	14.1.1	“(a)	index	of	coastal	eutrophication;	and	(b)	plastic	

debris	 density”	 (United	Nations	 Statistical	 Commission	 2017).	 Fraisl	 et	 al.	 (2020)	

listed	 additional,	 existing	 citizen	 science	 projects	 which	 are	 currently	 producing	

data	which	could	support	an	additional	3	indicators	in	goal	14:	14.3,	which	aims	to	

minimize	and	address	the	impacts	of	ocean	acidification,	14.4	which	aims	to	regulate	

harvesting	and	end	overfishing,	and	14.5	which	aims	to	conserve	at	least	10	per	cent	

of	coastal	and	marine	areas.		
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1.3.6 Citizen	science	and	technology/	sensors	

The	 increasing	 role	 of	 volunteers	 as	 a	 source	 of	 data	 has	 been	 supported	 by	

technological	 advancement.	 Smart	 phones,	 GPS	 devices	 and	 the	 interactive	 web	

have	 made	 it	 easy	 for	 volunteers	 to	 collect	 and	 share	 geographical	 information	

(Foody	et	al.	2017),	for	example,	VGI	(volunteered	geographic	information)	collected	

for	 Open	 Street	 Map.	 These	 advances	 have	 made	 citizen	 science	 location	

independent.	Volunteers	are	more	easily	able	to	collect	and	engage	with	data,	but	

also	to	more	simply	share	collected	data	with	scientists	and	projects	(Lewandowski	

and	Specht	2015).	Collection	of	sea	temperature	measurements	is	an	example	of	non-

framework	VGI	data,	similar	to	weather	data	collected	by	volunteers	(Foody	et	al.	

2017).	Individuals	participating	in	marine	recreational	activities	(such	as	surfers	and	

kayakers)	have	been	used	to	collect	 in	situ	temperature	measurements,	but	these	

have	focused	on	surface	temperature	(e.g.,	Brewin	et	al.	2020;	Action	2021).			

Low-cost	sensors,	such	as	wearable	biosensors	(Li	et	al.	2017)	are	increasingly	being	

used	 for	 citizen	 science	projects.	Atmospheric	data	 from	smartphones	have	been	

utilised	 to	 correct	 bias	 in	 surface	meteorological-station	measurements	 (Li	 et	 al.	

2021)	 and	 a	 range	 of	 sensors	 have	 been	 used	 across	multiple	 citizen	 science	 air	

quality	monitoring	projects	(Reis	et	al.	2013).	However,	data	quality	out	of	the	box	is	

variable	(Giordano	et	al.	2021)	so	to	ensure	appropriate	data	quality	for	the	intended	

use,	it	is	important	to	consider	calibration	and	validation	requirements	(Meijling	et	

al.	2017;	Giordano	et	al.	2021)	and	include	a	definition	of	measurement	uncertainty	

(Lewis	and	Edwards	2016).			

1.4 Dive	computers	

The	purpose	of	a	dive	computer	 is	to	monitor	 length	and	depth	of	dive,	with	the	

common	goal	of	minimising	 the	 risk	of	decompression	 sickness.	Whilst	different	

models	 run	 different	 decompression	 algorithms,	 the	 algorithm	 is	 used	 by	 the	

computer	 to	 calculate	 the	 length	 of	 time	 a	 diver	 can	 stay	 at	 different	 depths,	

potentially	over	a	sequence	of	multiple	dives,	yet	have	a	reasonable	likelihood	of	not	

getting	decompression	sickness.		
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Where	divers	are	acting	as	“animals	of	opportunity”	(Brewin	et	al.	2017b)	they	are	a	

transport	 mechanism	 for	 the	 measuring	 instrument	 (dive	 computer)	 and	

heterogeneity	in	measurement	caused	by	the	sampling	itself	is	unlikely	(Garcia-Soto	

et	al.	2017)	outside	systematic	device	differences.	To	give	a	reliable	monthly	large	

scale	area	average	temperature,	100	bias-free	records	are	needed,	even	if	the	sites	for	

those	records	are	not	the	same	(Jones	2016).	Therefore,	data	collected	from	SCUBA	

sites	in	the	same	regions,	even	if	not	in	the	exact	site,	should,	with	sufficient	samples,	

give	useful	data.		

The	 depth	 reading	 provided	 to	 a	 SCUBA	 diver	 on	 a	 dive	 computer	 is	 an	

interpretation	 of	 the	 measured	 pressure	 (Sieber	 et	 al.	 n.d.),	 but	 factors	 such	 as	

salinity,	altitude	and	ambient	temperature	can	influence	the	conversion.	Accuracy	

can	only	be	achieved	when	taking	temperature	and	density	into	account	(Azzopardi	

and	Sayer	2012).	Readings	are	taken	from	the	pressure	sensor	at	specified	sampling	

intervals,	which	are	converted	to	a	depth	display	(Azzopardi	and	Sayer	2010).	The	

pressure	 reading	 may	 be	 taken	 at	 greater	 frequency	 for	 the	 purpose	 of	

decompression	 calculations	 than	 is	 converted	 to	 a	 reading	 on	 the	 display.	 The	

calculation	used	is	unspecified	(threshold,	average	etc.)	and	may	vary	among	models	

or	manufacturers.		

Most	 dive	 computers	 allow	 a	 downloadable	 dive	 profile	 of	 depth	 against	 time,	

although	the	sampling	rate	(both	recorded	and	downloadable)	vary	between	makes	

and	models.	Azzopardi	and	Sayer	(2012)	compared	47	models	of	dive	computer	at	a	

range	 of	 nominal	 depths	 in	 fresh	 and	 seawater	 environments,	 comparing	 the	

downloaded	 depths	 against	 the	 EU	 standard	 EN13319:2000	 for	 depth-time	

measurement.	Most	computers	give	estimated	depths	close	to	nominal	depths	both	

seawater	and	freshwater,	but	with	less	variance	in	seawater	(Azzopardi	and	Sayer	

2010).	

The	 recorded	 temperature	 is	 derived	 from	 a	 temperature-compensated	 pressure	

sensor	(Azzopardi	and	Sayer	2010)	rather	than	from	a	dedicated	temperature	sensor,	

as	accurate	temperature	readings	are	not	essential	to	the	decompression	algorithm.	

Variance	 against	 nominal	 temperature	 values	 has	 been	 found	 to	 be	 up	 to	 5.1°c	
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(Azzopardi	and	Sayer	2012).	The	head	engineer	of	diving	computer	manufacturer	

Mares	 (Angelini,	 personal	 comm.	 2018)	 indicates	 that	 even	 within	 models	 they	

expect	variance	of	±	1°c.	Satellite	data	are	commonly	used	for	monitoring	sea	surface	

temperature,	which	have	been	found	to	have	biases	of	between	1	°C	(Brewin	et	al.	

2017a)	and	6	°C	(Smit	et	al.	2013)	in	coastal	regions.	So,	depending	on	intended	use,	

data	of	this	quality	may	still	be	of	value.	

Trends	of	spatial	data	can	be	used	to	contextualise	citizen	science	data	and	verify	

quality	(Garcia-Soto	et	al.	2017),	and	by	comparing	against	scientific	data	can	assess	

the	robustness	of	data	collected	via	citizen	science.	In	this	instance,	dive	computer	

data	 can	 be	 compared	 against	 both	 satellite	 temperature	 data	 (for	 surface	

measurements)	and	in	situ	data.	However,	that	does	assume	that	the	satellite	data	

or	models	compared	with	are	more	accurate	than	the	dive	computers.		

Dive	 computers	 are	 not	 scientifically	 calibrated	measuring	 devices	 and	 there	 are	

mixed	opinions	in	the	literature	with	regards	to	the	suitability	for	temperature	data	

from	dive	computers	to	be	part	of	the	solution	to	the	data	gap.	Egi	et	al.	(2018)	and	

Azzopardi	 and	Sayer	 (2012)	 concluded	 that	dive	 computers	were	not	 suitable	 for	

measuring	temperature,	but	Wright	et	al.	(2016)	countered	that,	although	accuracy	

of	dive	computers	would	need	to	be	improved	to	deliver	data	relevant	to	climatology	

research,	with	processing,	data	 from	dive	computers	could	be	a	useful	additional	

data	 source	 to	 augment	 other	 systems,	 particularly	 in	 highly	 changeable	 coastal	

environments	 or	 under	 sampled	 areas.	However,	 no	 study	 to	date	 as	 carried	out	

within	and	between	model	research,	with	replicates,	into	accuracy	and	precision	of	

dive	computers,	or	has	quantified	the	response	to	changing	temperature.		

Thermoclines	are	strong	vertical	gradients	in	temperature,	and	characterisation	is	

important	in	our	understanding	of	primary	production,	trophic	dynamics	(Gray	and	

Kingsford	 2003),	 and	 ecosystems,	 as	 the	 thermocline	 is	 an	 ecological	 boundary	

(Roden	 and	 Raine	 1994).	 One	 feature	 of	 dive	 computers	 is	 their	 recording	 of	

temperature	profiles	as	a	function	of	time	and	depth,	giving	information	which	is	

unavailable	 from	satellite	SST.	Theoretically	 therefore,	 these	 temperature	profiles	

offer	potential	 for	 identifying	 local	and	seasonal	variations	 in	 thermocline	depth.	
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Different	definitions	of	the	thermocline	depth	and	strength	have	been	suggested,	

along	 with	 proposed	 mechanisms	 for	 identification	 (Zhang	 et	 al.	 2010),	 such	 as	

difference,	gradient,	maximum	curvature	(Chu	and	Fan	2019).	Data	collection	 for	

identification	has	been	carried	out	in	various	means	including	XBTs,	AUVs	(Zhang	

et	al.	2010)	and	penguins	(Pelletier	et	al.	2012).	As	many	dive	computers	have	single	

degree	 resolution,	 thermoclines	 of	 2	 °C	 or	 greater	 would	 be	 required	 to	 be	

identifiable	with	these	devices.	Devices	with	higher	resolution	theoretically	have	the	

capacity	to	identify	smaller	thermoclines.		

In	2016,	to	collect	data	to	enable	research	into	whether	dive	computers	could	assist	

with	filling	the	gap	in	depth-resolved	temperature	measurements	in	coastal	regions,	

a	website	‘Dive	into	Science’	(DiS1)	was	developed	(Wright	et	al.	2016).		

1.5 Summary	and	objectives	of	thesis	

The	primary	project	aim	is	to	further	investigate	the	potential	of	divers	to	add	low-

cost	monitoring	solutions	for	oceanographic	data.	It	builds	upon	the	work	reported	

by	Wright	et	al.	(2016)	investigating	the	potential	of	using	SCUBA	divers	as	citizen	

scientists	and	developing	a	proof-of-concept	website	‘diveintoscience.org’.		

Key	objectives	are	to:	

1. Investigate	accuracy,	within	and	between-model	precision	of	multiple	dive	

computer	models	via	laboratory	and	field	trials.		

2. Run	comparisons	of	dive	computer	generated	data	against	known	sea	surface	

temperatures	from	satellites	and	depth	resolved	in	situ	datasets.	

3. Develop	an	appropriate	web	interface	to	collect	temperature	data	from	dive	

computers,	 utilising	 data	 from	 the	 existing	 Diveintoscience	 platform,	

focusing	on	improvement	of	the	upload	and	visualisation	features.		

4. Work	with	sentinel	dive	schools,	marine	reserves	and	dive	clubs	on	citizen	

science	projects,	data	collection	and	community	building	activities:	aiming	

to	 add	 value	 to	 the	 evidence-base	 by	 not	 only	 increasing	 the	 volume	 of	
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available	data	for	analysis	but	increasing	engagement	of	the	SCUBA	diving	

community.		

5. Explore	the	possibility	of	detecting	hydrographic	features	such	as	fronts	and	

thermoclines	from	datasets.		

To	offer	a	useful	and	valuable	potential	contribution	to	science,	the	uncertainties	

associated	with	a	dataset	need	to	be	understood.	Accordingly,	Chapter	2	addresses	

objective	1,	detailing	the	accuracy,	precision	and	temperature	response	of	SCUBA	

diving	computers	and	cameras,	concluding	that	some	models	have	potential	for	use	

in	 oceanographic	monitoring.	 This	 chapter	 has	 been	 published	 as	 “Marlowe,	 C.,	

Hyder,	K.,	Sayer,	M.	D.	J.,	and	Kaiser,	J.	(2021).	Divers	as	Citizen	Scientists:	Response	

Time,	 Accuracy	 and	 Precision	 of	 Water	 Temperature	 Measurement	 Using	 Dive	

Computers.	Front.	Mar.	Sci.	8,	1–15.	doi:10.3389/fmars.2021.617691”.	

Chapter	 3	 addresses	 objective	 2,	 relaying	 a	 comparison	 between	 dive	 computer	

temperature	data	with	OSTIA	satellite	foundation	SST	and	a	monthly	in	situ	depth-

banded	dataset	 in	the	Red	Sea.	We	find	that	seasonal	patterns	are	seen	at	yearly,	

monthly,	 and	weekly	 resolutions,	with	 spatial	 (depth	and	 latitude)	differences	 in	

agreement	with	oceanographic	expectations	described	in	the	literature.		

Chapter	4	addresses	objective	3,	describing	the	development	of	an	interactive	citizen	

science	website	 for	 collection	of	data	 from	dive	 computers,	 and	 the	benefits	 and	

disadvantages	of	the	Shiny	package	in	R	(RStudio	n.d.)	as	a	tool	to	do	so.		

Chapter	 5	 outlines	 progress	 and	 challenges	with	 the	 final	 two	 objectives,	 briefly	

detailing	 community	 engagement	 and	 early-stage	 investigations	 into	 the	

identification	of	thermoclines	from	dive	computer	profiles,	in	the	context	of	a	global	

pandemic.	 It	 then	 concludes	 the	 thesis,	 with	 an	 overall	 summary	 of	 the	 study’s	

findings,	including	limitations	and	potential	future	avenues	for	research.		
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Chapter	2. Divers	as	citizen	scientists:	Response	time,	
accuracy	 and	 precision	 of	 water	 temperature	
measurement	using	dive	computers	

This	chapter	has	been	peer	reviewed	as	“Marlowe,	C.,	Hyder,	K.,	Sayer,	M.	D.	J.,	and	

Kaiser,	J.	(2021).	Divers	as	Citizen	Scientists:	Response	Time,	Accuracy	and	Precision	

of	Water	Temperature	Measurement	Using	Dive	Computers.	Front.	Mar.	Sci.	8,	1–15.	

doi:10.3389/fmars.2021.617691”.		

2.1 Abstract	

There	is	a	lack	of	depth-resolved	temperature	data,	especially	in	coastal	areas,	which	

are	often	commonly	dived	by	SCUBA	divers.	Many	case	studies	have	demonstrated	

that	 citizen	 science	 can	 provide	 high	 quality	 data,	 although	 users	 require	 more	

confidence	in	the	accuracy	of	these	data.	This	study	examined	the	response	time,	

accuracy	 and	precision	of	water	 temperature	measurement	 in	 28	dive	 computers	

plus	three	underwater	cameras,	from	12	models.	A	total	of	239	temperature	response	

times	(τ)	were	collected	from	29	devices	over	11	chamber	dives.	Mean	τ	by	device	

ranged	 from	 (17	 ±	 6)	 to	 (341	 ±	 69)	 s,	with	 significant	 between-model	 differences	

found	for	τ	across	all	models.	Clear	differences	were	found	in	τ	by	pressure	sensor	

location	and	material,	but	not	by	size.	Two	models	had	comparable	τ	to	designed-

for-purpose	aquatic	temperature	loggers.	337	mean	data	points	were	collected	from	

equilibrated	temperatures	in	hyperbaric	chamber	(n	=	185)	and	sea	(n	=	152)	dives,	

compared	 with	 baseline	 mean	 temperature	 from	 Castaway	 CTDs	 over	 the	 same	

period.	Mean	bias,	defined	as	mean	device	temperature	minus	baseline	temperature,	

by	model	ranged	from	(0.0	±	0.5)	to	(−1.4	±	2.1)	◦C	and	by	device	from	(0.0	±	0.6)	to	

(−3.4	±	1.0)	◦C.	Nine	of	the	twelve	models	were	found	to	have	“good”	accuracy	(≤0.5	

◦C)	 overall.	 Irrespective	 of	 model,	 the	 overall	 mean	 bias	 of	 (−0.2	 ±	 1.1)	 ◦C	 is	

comparable	with	existing	commonly	used	coastal	temperature	data	sets,	and	within	

global	ocean	observing	system	accuracy	requirements	for	in	situ	temperature.	Our	

research	 shows	 that	 the	 quality	 of	 temperature	 data	 in	 dive	 computers	 could	 be	

improved,	but,	with	collection	of	appropriate	metadata	to	allow	assessment	of	data	
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quality,	 some	 models	 of	 dive	 computers	 have	 a	 role	 in	 future	 oceanographic	

monitoring.	

2.2 Introduction	

The	oceans	have	a	critical	role	in	climate	change,	acting	as	a	heat	sink	and	being	

responsible	for	the	uptake	of	93	%	of	the	excess	heat	in	our	climate	system	between	

1971	 and	 2010	 (Pörtner	 et	 al.	 2019;	 Johnson	 and	 Lyman	 2020).	 Warming	 ocean	

temperatures	are	intrinsically	linked	to	sea	level	rise	and	projections	show	the	rise	

accelerating	 because	 of	 nonlinear	 thermal	 expansion	 (Widlansky,	 Long,	 and	

Schloesser	2020).	In	addition,	the	number	and	severity	of	occurrences	of	extreme	

events	 linked	 to	 increased	 sea	 temperatures,	 such	as	heat	waves,	 are	expected	 to	

increase	with	global	warming	(Bindoff	et	al.	2019).	Global	sea	surface	temperature	

(SST)	is	projected	to	rise	by	up	to	6.4	°C	depending	on	the	emission	scenario	(Aral	

and	 Guan	 2016);	 accordingly,	 both	 sea	 surface	 and	 subsurface	 temperatures	 are	

defined	as	essential	climate	variables	 (Bojinski	and	Richter	2010;	Lindstrom	et	al.	

2012).	 However,	 there	 is	 regional	 variability	 (Kennedy,	 2014);	 for	 example,	 SST	

around	the	British	Isles	has	been	increasing	at	a	rate	of	up	to	six	times	the	global	

average	rate	(Dye	et	al.	2013)	and	at	twice	the	global	rate	in	offshore	China	since	2011	

(Tang	et	al.	2020).	In	contrast,	parts	of	the	North	Atlantic	have	experienced	cooling	

(Wright	et	al.	2016).	Shifts	in	biodiversity	have	been	seen	in	response	to	variations	

in	temperature	between	0.1	to	0.4	°C	(Danovaro	et	al.	2020),	with	shallow	seasonal	

thermoclines	 being	 important	 to	 ecosystem	 dynamics,	 horizontal	 and	 vertical	

distribution	of	fish	(Aspillaga	et	al.	2017)	and	biological	production	(Palacios	et	al.	

2004).	Variation	and	oscillations	in	thermocline	depth	and	temperature	have	been	

recorded	 during	 the	 stratification	 period	 (Bensoussan	 et	 al.	 2010;	Aspillaga	 et	 al.	

2017).		

In	situ	data	are	essential	to	monitor	these	local	variations,	supplement	satellite	sea	

surface	temperature	data	and	validate	ocean	models	(Brewin	et	al.	2017a),	but	there	

is	a	lack	of	depth-resolved	temperature	data	(Wright	et	al.	2016)	and	few	time	series	

on	localised	variations	in	thermoclines	(Bensoussan	et	al.	2010).	This	lack	in	data	is	

especially	 true	 in	 areas	 near	 to	 the	 coast	which	 research	 vessels	 and	Argo	 floats	
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cannot	 commonly	 reach	 (Wright	 et	 al.	 2016).	Citizen	 science	has	 been	 shown	 to	

provide	opportunities	for	collecting	data	at	broad	spatial	and	temporal	scales,	which	

would	not	be	possible	by	traditional	means	(Pocock	et	al.	2014b;	Wright	et	al.	2016;	

D.	W.	Walker,	Smigaj,	and	Tani	2021).	Many	case	studies	have	shown	that	citizen	

science	can	provide	high	quality	data	(Kosmala	et	al.	2016)	with	comparable	accuracy	

to	dedicated	research	studies	(Vianna	et	al.	2014;	Albus,	Thompson,	and	Mitchell	

2019;	Krabbenhoft	and	Kashian	2020),	but	with	uncertainty	regarding	the	reliability	

and	 quality	 of	 data	 (Burgess	 et	 al.	 2016;	 Gibson	 et	 al.	 2019).	 To	 address	 these	

concerns,	 and	 to	 increase	 the	 value	 of	 existing	 datasets,	 users	 require	 more	

confidence	in	the	accuracy	of	these	data	(Burgess	et	al.	2016;	Kosmala	et	al.	2016).	In	

situ	measurements	should	have	associated	uncertainty	estimates	(Barker	et	al.	2015).	

Post-hoc	 data	 quality	 assessment	 and	 error	 detection	 have	 been	 found	 to	 dispel	

doubts	about	data	quality	(Burgess	et	al.	2016).		

SCUBA	 divers	 (from	 here	 on	 referred	 to	 as	 divers)	 have	 been	 involved	 in	many	

marine	 citizen	 science	 projects	 (Thiel	 et	 al.	 2014;	Hermoso	 et	 al.	 2019)	 including	

marine	protected	 area	monitoring	 (Pocock	 et	 al.	 2014b),	 reef	habitat/biodiversity	

surveys	 (Branchini	 et	 al.	 2015;	Hermoso	 et	 al.	 2019)	 and	marine	debris	 collection	

(Pasternak	 et	 al.	 2019).	 Some	 areas	most	 frequently	 accessed	 by	 citizen	 scientist	

divers	are	the	shallow	coastal	subtidal	areas	(e.g.,	to	depths	<	40	m;	Thiel	et	al.,	2014)	

where	reliable	physical	and	chemical	data	series	are	sparse.	Within	the	estimated	6–

10	million	recreational	divers	globally	(Wright	et	al.	2016)	the	use	of	dive	computers	

may	be	approaching	100	%	(Azzopardi	and	Sayer	2010).	Dive	computers	are	worn	

with	the	primary	purpose	of	managing	decompression	limits	via	algorithms	which	

calculate	the	level	of	nitrogen	load	in	tissues.	Most	modern	dive	computers	record	

profiles	of	temperature	and	depth,	with	the	latter	derived	from	a	dedicated	pressure	

sensor.	 Temperature	 data	 are	 required	 to	 correct	 for	 non-linear	 pressure	 sensor	

output	as	ambient	temperature	changes	(Li	et	al.	2016),	but	as	temperature	does	not	

have	the	same	impact	on	decompression	algorithms	as	pressure,	the	same	level	of	

accuracy	is	not	required.	Consequently,	temperature	data	are	obtained	from	thermal	

corrections	applied	to	the	pressure	sensor	(Wright	et	al.	2016;	Azzopardi	and	Sayer	

2010),	rather	than	from	a	dedicated	temperature	sensor.	Temperature	readings	are	
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not	 calibrated,	 and	 only	 have	 an	 advertised	 accuracy	 (where	 published	 by	

manufacturers)	of	±	2	°C	(Azzopardi	and	Sayer	2012;	Mares,	n.d.),	or	±	2	°C	within	20	

minutes	of	temperature	change	(Suunto	2018).	Previous	research	has	explored	the	

possibility	of	collecting	temperature	data	from	dive	computers.	Wright	et	al.	(2016)	

concluded	that,	with	processing,	temperature	data	from	dive	computers	could	be	a	

useful	resource.	Other	authors	recommend	that	these	data	be	avoided	for	scientific	

study	(Azzopardi	and	Sayer	2012),	or	state	that	dive	computers	do	not	have	sufficient	

accuracy	to	measure	ocean	temperature	changes	(Egi	et	al.	2018).	

This	study	builds	on	the	work	carried	out	by	Wright	et	al.	(2016)	and	investigates	a	

range	of	dive	computers	in	replicated	experiments	which	aim	to	mimic	real-world	

scenarios,	 to	 quantify	 the	 temperature	 responses	 of	 different	 models;	 aiming	 to	

address	some	of	the	concerns	regarding	the	potential	use	of	these	data.	We	focus	on	

three	 objective	 measures:	 the	 time	 constant	 (t	 ),	 accuracy	 and	 precision.	 Time	

constants	are	used	to	measure	a	sensor’s	response	to	change,	representing	the	time	

taken	for	63	%	of	the	total	step	change	in	temperature	to	have	taken	place.	t	is	useful	

in	 the	 context	 of	 oceanographic	 temperature	 change	 (such	 as	 thermocline	

identification),	 and,	 in	 conjunction	with	 the	 sample	 rate,	 the	potential	 to	 gather	

useful	data	from	relatively	short	dive	profiles.	Temperature	accuracy	is	defined	as	

the	systematic	error	in	the	devices’	temperature	measurement	when	compared	with	

a	reference	temperature,	such	as	from	a	calibrated	microCTD.	By	focusing	on	these	

measures,	 this	 paper	 investigates	 the	 potential	 of	 different	 devices	 as	 alternative	

sources	 of	 in	 situ	 temperature	 for	 oceanographic	 monitoring.	 The	 response	 to	

temperature	 change	 within	 and	 between	 models	 and	 as	 a	 function	 of	 the	 dive	

computer's	body	material,	size,	pressure	sensor	location	and	attachment	to	the	diver	

(i.e.,	worn	on	the	wrist	or	hanging	freely)	are	analysed	to	ascertain	whether	some	

models	or	features	may	offer	potential	for	higher	quality	data	than	others.		
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2.3 Materials	and	methods	

2.3.1 Equipment	

28	dive	computers	(eleven	models	 from	seven	brands),	along	with	three	Paralenz	

Dive	Camera+	cameras	(for	the	purposes	of	this	study	referred	to	collectively	as	‘dive	

computers’)	were	analysed.	All	devices	shared	the	ability	to	record	full	profiles	of	

temperature	and	depth	as	a	function	of	time,	except	Suunto	Vypers,	which	only	store	

a	single	minimum	temperature	per	dive.	All	devices	were	able	to	sample	at	intervals	

of	30	s	or	less	and	were	set	to	the	highest	frequency	possible	for	each	model	for	all	

dives.		

Recorded	 temperature	 resolution	 ranged	 from	 0.1	 °C	 to	 1	 °C.	 The	 devices	 were	

categorised	into	four	‘sizes’:	‘Small	(diameter	<	5	cm),	‘Medium’(5	cm	<	diameter	<	

7.5	cm),	‘Large	(diameter	>7.5	cm),	and	‘Camera’	and	further	classified	by	pressure	

sensor	 location	based	on	the	 identifying	small	holes	 in	 the	housing	material	 into	

‘Back’	 or	 ‘Edge’	with	Paralenzes	being	defined	as	 ‘Covered’	 (Table	 2.1;	 pictures	of	

devices	with	pressure	sensor	location	can	be	seen	in	Appendix	Table	A.1).	Material	

was	a	composite	category	based	on	front,	edge	and	back	material	being	metal	(m)	

or	plastic	(p).		

All	hyperbaric	tests	were	carried	out	in	a	cylindrical	two-compartment,	2000	mm	

diameter	 Divex	 therapeutic	 recompression	 chamber,	 manually	 controlled	 to	

compress	to	the	simulated	nominal	depths,	as	described	by	Sayer	et	al.	(2014).	For	

all	baseline	temperature	measurements	with	the	exception	of	water	bath	trials,	three	

SonTek	CastAway	CTDs	 (CTD	=	Conductivity,	Temperature,	Depth)	with	0.01	 °C	

resolution,	±	0.05	°C	accuracy,	sampling	rate	of	5	Hz	(Xylem	Analytics	n.d.)	were	

used.	As	the	CastAway	CTDs	were	brand	new,	they	were	considered	to	adhere	to	the	

‘out	of	the	box’	factory	calibration	standards,	and	no	further	calibration	was	carried	

out.	For	unpressurised	temperature	comparison	a	Grant	R4	refrigerated	bath	with	

TXF200	heating	circulator	was	used.		
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Table	2.1.	Models	used	and	their	categorisations	within	this	study.	In	the	material	column,	

m	denotes	metal	and	p,	plastic.	e.g.,	ppp	denotes	plastic	for	the	front,	edge	and	back	of	the	

housing	respectively.	

Model	 n	 Resolution		
/	°C	

Pressure	
sensor	

Size	 Material	
(front-
edge-
back)	

Sampling	
interval		
/	s	

Aqualung	i750TC	 3	 5/9	≈	0.56	 Back	 Medium	 ppp	 30	

Garmin	Descent	

Mk1	

3	 1.0	 Edge	 Small	 mpp	 1	

Mares	Matrix	 2	 0.1	 Edge	 Small	 mmp	 5	

Mares	Puck	Pro	 2	 0.1	 Back	 Medium	 ppp	 5	

Paralenz	Dive	

Camera+	

3	 0.1	 Covered	 Camera	 mmm	 1	

Ratio	iX3M	GPS	

Deep	

3	 0.1	 Back	 Large	 ppp	 10	

Scubapro	G2	 3	 0.4	 Back	 Medium	 ppp	 4	

Shearwater	Perdix	 3	 1.0	 Back	 Large	 ppp	 10	

Suunto	D4i	 1	 1.0	 Edge	 Small	 mmp	 20	

Suunto	D6i	 3	 1.0	 Edge	 Small	 mmm	 10	(20	first	3	

dives)	

Suunto	EON	Steel	 3	 0.1	 Edge	 Large	 mpp	 10	

Suunto	Vyper	 2	 1.0	 Back	 Medium	 ppp	 NA	

	

2.3.2 Time	constants	(τ)	

Inside	the	hyperbaric	chamber,	all	devices	and	Castaways	were	immersed	to	(8.5	±	

2.5)	cm	in	a	tub	containing	13	litres	of	cold	(10	±	1	°C)	fresh	water	and	allowed	to	

acclimatise	for	10	minutes,	as	high	ambient	air	temperature	has	been	demonstrated	

to	affect	temperature	profiles	for	several	minutes	into	a	dive.	Three	further	tubs	were	

filled	with	well-mixed	warm	water	between	18	and	25	°C.	Although	fitted	with	an	
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environmental	control	unit	it	was	not	possible	to	regulate	chamber	air	temperature	

precisely;	varying	between	18	and	27	°C	over	the	course	of	a	single	dive	of	1	hour's	

duration,	caused	by	the	heating	effect	of	compression	and	subsequent	cooling	across	

the	non-insulated	chamber	walls.	To	minimise	the	impact	of	the	changing	chamber	

temperature	on	 tub	 temperature,	warm	tubs	 starting	 temperatures	approximated	

the	mid-point	of	potential	chamber	ascent	temperatures	(as	measured	with	a	stick	

digital	thermometer).	

Some	models	allow	manual	switching	between	salt	and	freshwater	mode	(densities	

unspecified	by	manufacturers),	but	 to	allow	comparison	between	dive	computers	

which	did	not	have	this	capability,	all	dive	computers	were	left	in	default	salt-water	

mode	 for	 all	dives	with	 the	 exception	of	 the	Shearwater	Perdix	which	was	 set	 to	

‘EN13319’	 mode	 (1020	 kg	 m–³	 water	 density)	 (Shearwater	 n.d.).	 All	 devices	 were	

allowed	 to	 automatically	 start	 recording	 temperature	 profiles	 according	 to	 their	

default	pressure	parameters,	except	for	Paralenz	Dive	Camera+,	which	were	started	

manually.		

After	acclimatisation,	all	tubs	were	compressed	to	a	maximum	simulated	depth	of	

between	9	and	10.4	m.	Once	the	simulated	depth	was	reached,	one	Castaway	was	

moved	from	the	cold	bucket	to	each	of	the	warm	tubs	and	stirred	well,	followed	by	

a	 further	 two	minutes	 of	 acclimatisation.	One	 Paralenz	Dive	 Camera+	was	 then	

moved	into	each	warm	tub	and	stirred	well.	Early	trials	established	that	all	devices	

reached	 temperature	 equilibrium	 before	 seven	 minutes.	 Therefore,	 after	 seven	

minutes	 all	 Paralenz	 Dive	 Camera+	 were	 removed	 and	 switched	 off	 to	 conserve	

battery	life.	Subsequently,	a	dive	computer	was	moved	into	each	of	the	warm	tubs,	

stirred	well,	 then	 left	 for	 seven	minutes,	 repeated	 until	 all	 the	 devices	 had	 been	

transferred.	 This	 interval	 approach	was	 designed	 to	minimise	 any	 effect	 of	 cold-

water	 ingress	 by	 the	 transfer	 of	 devices	 between	 tubs,	 without	 impacting	 the	

temperature	response	of	previously	added	devices.	Two	dives	were	carried	out	with	

the	same	depth/tub	protocol	using	only	the	three	Paralenz	Dive	Camera+	devices,	

and	nine	replicates	with	all	devices	(schematic	in	Figure	2.1).	
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Dive	profiles	were	downloaded	and	imported	into	R	Studio	for	processing.	For	each	

dive	by	device,	data	were	aligned	to	the	start	point	of	the	response	curve	(Figure	2.2,	

a)	 and	 sliced	 at	 the	 first	 instance	 of	 the	 maximum	 temperature	 (Figure	 2.2,	 b),	

isolating	the	full	temperature	response.	In	contrast	to	the	findings	of	Egi	et	al.	(2018),	

not	 all	 models’	 temperature	 response	 had	 a	 single	 exponential	 form,	 and	 linear	

regression	did	not	consistently	produce	a	good	fit.	Time	constants	were	ascertained	

by	exponential	fitting	via	numerical	integration	as	defined	by	Jacquelin	(2009),	using	

the	area	under	the	curve	to	calculate	τ,	allowing	linear	regression	to	be	applied	to	

non-linear	data	without	estimation	of	parameters	(Jacquelin	2009).		
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Figure	2.1.	Schematic	showing	device	movement	in	chamber	dives	for	time	constant	
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Figure	2.2.	Example	response	curve	for	one	dive/device.	‘Elapsed	seconds’	is	the	entire	

profile,	during	which	all	devices	were	moved	between	cold	and	warm	tub	at	7	min	intervals.	

2.3.3 Accuracy	

Three	protocols	were	followed	to	assess	the	temperature	accuracy	and	consistency	

of	the	dive	computers.	

2.3.3.1 Water	bath	

Dive	computers	only	start	to	record	profiles	once	they	reach	a	prescribed	pressure,	

but	for	safety	reasons,	it	is	not	possible	to	put	a	temperature-controlled	water	bath	

in	 a	 pressurised	 chamber	 environment.	 Therefore,	 trials	 were	 conducted	 in	 an	

unpressurised	environment	and	the	temperatures	were	visually	recorded	from	the	

computer	displays.	Water	temperature	was	controlled	using	a	Grant	R4	refrigerated	

bath	 filled	 with	 deionised	 water,	 with	 the	 circulation	 set	 to	 maximum	 and	

temperature	equilibrated	to	(20.0	±	0.1	°C).	Between	nine	and	eleven	devices	could	
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be	submerged	in	the	water	bath	at	once,	so	the	experiments	were	run	in	a	series	of	

batches.	An	initial	batch	was	submerged	in	the	bath	for	15	minutes	(three	times	the	

maximum	 time	 constant,	 by	 which	 time	 all	 devices	 have	 equilibrated	 to	 final	

temperature).	Temperature	was	 then	read	 from	the	digital	display	of	each	device	

whilst	 still	 submerged,	 and	 the	 device	 removed	 from	 the	 bath.	 Once	 all	 device	

temperatures	had	been	read	the	subsequent	batch	was	submerged	for	 15	minutes	

and	the	process	repeated.	The	process	was	then	repeated	at	bath	temperatures	of	10	

and	 30	 °C.	 For	 analysis,	 the	deviation	of	on-screen	 temperature	display	 from	 the	

water	bath	temperature	was	noted.	On-screen	temperature	resolution	for	all	devices	

is	limited	to	1	°C,	except	for	the	Ratio	iX3M	GPS	Deep	which	display	temperature	

on-screen	at	a	resolution	of	0.1	°C.	

2.3.4 Chamber	

Six	replicate	dives	were	carried	out	in	the	outer	lock	of	the	Divex	chamber,	with	a	

maximum	simulated	depth	of	10	±	1	m.	Three	dives	included	a	temperature	change	

from	a	cold	to	warm	environment	and	three	a	warm	to	cold	transition,	using	one	tub	

for	 the	 starting	 temperature	 and	 three	 for	 the	 contrast	 temperature.	 All	 devices	

acclimatised	 in	 a	 single	 tub	 for	 ten	minutes,	 unpressurised,	 to	 the	 same	 starting	

temperature	(cold	or	warm,	depending	on	dive).	Devices	were	then	shared	across	

the	 three	 tubs	 with	 contrasting	 temperature;	 one	 Castaway	 CTD	 in	 each	 tub	 to	

provide	a	baseline.	All	tubs	were	compressed	to	the	simulated	depth	for	10	minutes,	

then	decompressed	and	removed	(schematic	in	Figure	2.3).	Over	the	six	dives,	cold	

tub	final	temperature	ranged	from	10.4	°C	to	12.6	°C	and	warm	tub	final	temperature	

ranged	from	16.8	°C	to	19.5	°C.		
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Figure	2.3.	Schematic	showing	device	movement	in	chamber	dives	for	accuracy	

Raw	data	output	from	the	Castaways	was	used,	retaining	the	full	temperature	profile	

as	a	 function	of	pressure	and	time.	Castaway	depth	was	calculated	 from	pressure	

using	the	swDepth	function	in	the	oce	package	in	R	(Kelley,	Richards,	and	Layton	

2021),	 which	 uses	 Fofonoff	 and	Millard’s	 refitted	 equation	 (Fofonoff	 and	Millard	

1983).	Device	profiles	were	aligned	by	depth	and	time	with	the	relevant	Castaway	

from	the	same	tub.	Mean	device	temperature	from	the	final	180	s	at	>	2.5	m	depth	
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was	 calculated	 (to	 compensate	 for	 differences	 in	 depth	 at	 which	 devices	 start	

recording)	by	which	time	all	devices	had	equilibrated	to	the	change	in	temperature	

(Figure	2.4).	The	mean	from	the	equivalent	180	s	Castaway	data	were	used	as	baseline	

temperature	 for	comparison.	Mean	bias	was	defined	as	mean	device	 temperature	

minus	mean	Castaway	temperature.	

	

Figure	2.4.	Mean	device	temperature	in	final	180	s	at	>	2.5	m	by	dive	and	bucket.	NB.	Devices	

in	different	buckets,	but	same	dive,	are	not	comparable	in	this	plot	due	to	different	baseline	

bucket	temperatures.		

2.3.5 Sea	dives	

Six	 sea	 dives	were	 carried	 out	 by	 RHIB	 at	 dive	 sites	 local	 to	Oban	 (56.41535°	N,	

5.47184°	W),	with	maximum	depths	ranging	from	13.5	m	to	30.7	m	(mean:	18.6	m).	

For	each	pair	of	dives,	half	the	dive	computers	were	carried	hanging	loosely	on	a	
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frame	made	 from	 plastic	 piping,	 and	 half	 were	 worn	 on	 the	 arms	 of	 two	 divers	

(Figure	2.5).	For	subsequent	dives	in	each	dive	pair,	each	device	was	switched	to	the	

other	mounting	position.	All	Paralenz	Dive	Camera+	were	transported	on	the	frame	

for	all	dives	(as	they	were	not	wrist	mountable),	along	with	all	Castaways	for	baseline	

temperature.		

	

	

Figure	2.5.	(A)	Devices	in	tub	with	Castaway	in	chamber	dive.	(B)	Diver	wearing	computers	

on	arms,	with	frame	shown	in	RHIB	

Raw	Castaway	data	was	imported,	depth	calculated	as	per	section	2.3.2.	The	sea	dives	

had	 a	 shallow	 cold	 surface	 thermocline	 from	 snow	 melt	 run-off.	 The	 mean	

temperature	below	the	depth	at	which	the	Castaway	temperatures	equilibrated	(top	

of	the	bottom	mixed	layer)	was	used	as	a	baseline	temperature	for	comparison	for	

each	dive	(Figure	2.6).	In	dive	number	order	this	depth	was	5,	10,	10,	10,	10	and	12	m.	

As	the	frame	was	carried	by	divers,	and	therefore	may	not	have	been	consistently	

horizontal,	small	variations	were	seen	in	Castaway	depths.	Device	dive	profiles	were	

imported	into	R	Studio	and	mean	temperatures	calculated	for	each	device,	Castaway	

and	model	 for	the	final	 180	seconds	below	the	specified	depth	(Figure	2.7).	Mean	

A	 B	
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bias	 was	 defined	 as	 mean	 device/model	 temperature	 minus	 mean	 Castaway	

temperature.	

	

Figure	2.6.	Castaway	data	for	Oban	sea	dives.	Horizontal	lines	show	the	cut	off	depth	(top	

of	 the	 bottom	 mixed	 layer)	 for	 each	 dive.	 Baseline	 temperature	 for	 comparison	 was	

calculated	from	the	mean	temperature	from	the	final	180	seconds	of	temperature	data	below	

this	depth.	
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Figure	2.7.	Final	180	s	data	below	cut	off	depth	by	device.		

2.4 Results	

As	per	Wright	et	al.	2016,	devices	and	models	were	categorised	as	accurate	 if	 the	

mean	bias	from	baseline	temperature	was	<=	0.5	°C	and	as	precise	if	the	standard	

deviation	of	 the	mean	bias	was	<=	0.5	 °C.	Devices	were	defined	as	having	quick,	

intermediate	or	slow	response	to	temperature	change	(respectively	t	<	60	s,	60	s	≤	t	

<	120	s,	t	≥	120s).		

2.4.1 Time	constants	

A	total	of	239	t	values	were	collected	from	26	devices	over	9	dives	plus	three	Paralenz	

Dive	Camera+	cameras	which	comprised	of	6	dives.	13	t	values	were	lost	because	of	

battery	 failures	 or	 camera	 recording	 not	 initiating	 correctly.	 All	 Ratio	 iX3M	GPS	
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Deep	 dives	 and	 two	 Shearwater	 Perdix	 dives	 were	 removed	 from	 the	 analyses	

because	of	a	poor	regression	fit	(Figure	2.8).		

	

Figure	2.8.	Example	of	a	poor	regression	fit	in	Ratio	iX3M	GPS	Deep	

Mean	t	by	model	ranged	from	(18	±	5)	s	to	(304	±	45)	s	(Figure	2.9,	Table	2.2).	

Uncertainties	represent	1	s	unless	otherwise	described.	Time	constants	and	

residuals	were	not	normally	distributed;	time	constants	were	best	fitted	to	an	

inverse	Gaussian	distribution	curve.	A	generalised	linear	model	(GLM)	approach	

was	used	in	R	Studio	to	look	for	significant	differences.	Significant	between	model	

differences	were	found	for	t	across	all	models	(p	<	0.001)	(Mares	Puck	Pro	(p	<	

0.01)).	Mean	t	by	device	ranged	from	(17	±	6)	s	to	(341	±	69)	s	(Figure	2.10).	S(t	fit)	

represents	95	%	confidence	intervals	in	the	regression	fit,	based	on	the	standard	

error	of	the	regression	(full	data	in		
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Table	2.3).	S(t	fit)	<	10	s	was	defined	as	a	good	fit	and	applied	to	all	profiles	except	

for	those	mentioned	in	the	first	paragraph	of	this	section.	

	

Table	2.2.	Mean	response	time	(t	),	by	model.	

Model	 n	(dives)		 τmean	/	s		 sd(m)	 Classification	

(τ)	

Aqualung	i750TC	 20	 151	 11	 Slow	

Garmin	Descent	Mk1	 25	 48	 9	 Quick	

Mares	Matrix	 18	 46	 5	 Quick	

Mares	Puck	Pro	 18	 111	 5	 Intermediate	

Paralenz	Dive	Camera+	 16	 22	 3	 Quick	

Scubapro	G2	 27	 73	 8	 Intermediate	

Shearwater	Perdix	 25	 304	 45	 Slow	

Suunto	D4i	 7	 46	 5	 Quick	

Suunto	D6i	 27	 18	 5	 Quick	

Suunto	EON	Steel	 27	 42	 5	 Quick	
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Figure	2.9.	Mean	response	time	(t)	by	model.	The	black	line	represents	the	median.	The	

lower	 and	 upper	 hinges	 correspond	 to	 the	 first	 and	 third	 quartiles	 (25th	 and	 75th	

percentiles).	Upper	and	lower	whiskers	extend	from	the	hinge	to	the	largest/smallest	value,	

respectively,	no	further	than	1.5	*	interquartile	range	from	the	hinge.	Data	beyond	the	end	

of	the	whiskers	are	plotted	individually	as	outliers	
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Table	2.3.	Mean	response	time	(t),	by	device.	S(t	fit)	represents	95	%	confidence	intervals	in	

the	regression	fit,	based	on	the	standard	error	of	the	regression.	

Model	 Device	ID	 n		 τmean	

/	s		

sd(τ)		 S(t	fit)	 Classification	

	Aqualung	

i750TC	

Aqualung	1	 6	 148	 15	 2.0	±	1.0	 Slow	

	Aqualung	

i750TC	

Aqualung	2	 7	 149	 7	 2.0	±	1.0	 Slow	

	Aqualung	

i750TC	

Aqualung	3	 7	 157	 12	 3.0	±	2.0	 Slow	

Garmin	

Descent	Mk1	

Garmin	3	 7	 44	 4	 1.0	 Quick	

Garmin	

Descent	Mk2	

Garmin	2	 9	 52	 11	 0.5	±	0.5	 Quick	

Garmin	

Descent	Mk3	

Garmin	1	 9	 46	 8	 0.5	±	0.5	 Quick	

Mares	Matrix	 Mares	Matrix	1	 9	 46	 5	 1.5	±	0.5	 Quick	

Mares	Matrix	 Mares	Matrix	2	 9	 46	 6	 1.5	±	0.5	 Quick	

Mares	Puck	Pro	 Mares	Puck	Pro	1	 9	 111	 3	 1.5	±	0.5	 Intermediate	

Mares	Puck	Pro	 Mares	Puck	Pro	2	 9	 112	 7	 2.0	±	1.0	 Intermediate	

Paralenz	Dive	

Camera+	

Paralenz	1	 6	 24	 4	 0.5	±	0.5	 Quick	

Paralenz	Dive	

Camera+	

Paralenz	2	 6	 20	 2	 0.0	 Quick	

Paralenz	Dive	

Camera+	

Paralenz	3	 4	 22	 1	 0.0	 Quick	

Scubapro	G2	 Scubapro	3	 9	 70	 8	 2.5	±	1.5	 Intermediate	

Scubapro	G3	 Scubapro	2	 9	 74	 5	 1.5	±	0.5	 Intermediate	

Scubapro	G4	 Scubapro	1	 9	 76	 10	 2.5	±	1.5	 Intermediate	
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Shearwater	Perd

ix	

Shearwater	1	 9	 291	 45	 2.5	±	2.5	 Slow	

Shearwater	Perd

ix	

Shearwater	2	 9	 303	 47	 6.0	±	3.0	 Slow	

Shearwater	Perd

ix	

Shearwater	3	 7	 322	 45	 5.5	±	2.5	 Slow	

Suunto	D4i	 Suunto	D4i	1	 7	 46	 5	 1.5	±	0.5	 Quick	

Suunto	D6i	 Suunto	D6i	1	 9	 18	 4	 4.0	±	4.0	 Quick	

Suunto	D6i	 Suunto	D6i	2	 9	 17	 6	 3.5	±	3.5	 Quick	

Suunto	D6i	 Suunto	D6i	3	 9	 20	 6	 2.5	±	2.5	 Quick	

Suunto	

EON	Steel	

Suunto	EON	Steel	

1	

9	 42	 5	 2.0	±	1.0	 Quick	

Suunto	

EON	Steel	

Suunto	EON	Steel	

2	

9	 41	 3	 2.0	±	1.0	 Quick	

Suunto	

EON	Steel	

Suunto	EON	Steel	

3	

9	 42	 7	 2.5	±	1.5	 Quick	
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Figure	2.10.	Mean	response	time	(t)	by	device.	The	black	line	represents	the	median.	The	

lower	 and	 upper	 hinges	 correspond	 to	 the	 first	 and	 third	 quartiles	 (25th	 and	 75th	

percentiles).	Upper	and	lower	whiskers	extend	from	the	hinge	to	the	largest/smallest	value,	

respectively,	no	further	than	1.5	*	interquartile	range	from	the	hinge.	Data	beyond	the	end	

of	the	whiskers	are	plotted	individually	as	outliers.	

Clear	differences	were	found	in	t	by	pressure	sensor	location	and	material,	but	not	

by	size	(Figure	2.11).	All	devices	with	the	pressure	sensor	at	the	edge	along	with	the	

Paralenz	Dive	Camera+	were	defined	as	having	a	quick	response	(17	s	≤	t	<	52	s)	and	

all	 with	 a	 pressure	 sensor	 at	 the	 back	 were	 classified	 as	 intermediate	 or	 slow	

responders.	Devices	with	entirely	metal	housing	had	quick	mean	response	(17	s	≤	t	

<	24	s),	part	metal/part	plastic	were	intermediate	(41	s	≤	t	<	52	s),	and	all	plastic	were	

slowest	(70	s	≤	t	<	322	s).		
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Figure	2.11.	A)	t	by	material	(B)	t	by	size	(C)	t	by	pressure	sensor	location.	(m	=	metal,	p	=	

plastic.	e.g.,	mmm	devices	comprise	metal	front	rim,	edge	and	back)	

2.4.2 Temperature	accuracy	(water	bath)	

A	total	of	78	data	points	were	collected	from	29	devices	over	three	conditions	(bath	

temperatures).	One	Suunto	D6i	data	point	was	missed	because	of	a	dead	battery.	

Paralenz	Dive	Camera+	were	not	included	in	the	water	bath	deployments	due	to	not	

having	an	on-screen	temperature	display.	Mean	bias	is	defined	as	displayed	device	

temperature	minus	water	bath	temperature,	averaged	on	a	model	or	device	basis.	By	

model,	 this	 ranged	 from	0.0	 to	 (-1	±	 1.7)	 °C	 (Table	2.4).	The	mean	bias	by	device	

ranged	from	0	to	(-2.3	±	1.5)	°C	(Table	2.5).	

 	

A	 B

	

C

	



	 53	

Table	2.4.	Mean	bias	and	uncertainties	by	model	in	water	bath	trials	

Model	 Water	bath	

		 n	(dives)	 mean	bias	(°	C)	 sd	(mean	

bias)	

Aqualung	i750TC	 9	 -1.0	 1.7	

Garmin	Descent	Mk1	 9	 -0.7	 0.5	

Mares	Matrix	 6	 -0.8	 0.4	

Mares	Puck	Pro	 6	 -1.0	 0.0	

Paralenz	Dive	Camera+	 NA	 NA	 	NA	

Ratio	iX3M	GPS	Deep	 9	 -0.2	 0.4	

Scubapro	G2	 9	 0.0	 0.0	

Shearwater	Perdix	 9	 -0.8	 0.4	

Suunto	D4i	 3	 -0.3	 0.6	

Suunto	D6i	 8	 0.0	 0.0	

Suunto	EON	Steel	 9	 -0.8	 0.4	

Suunto	Vyper	 6	 -0.7	 0.5	

	

2.4.3 Temperature	accuracy	(chamber)	

The	chamber	dives	investigating	accuracy	comprised	n(devices)	=	31	and	n(dives)	=	

185.	Mean	bias	by	model	ranged	from	(0.1	±	0.3)	°C	to	(-1.4	±	2.0)	°C	and	by	device	

ranged	 from	 (0.1	 ±	 0.1)	 °C	 to	 (-3.3	 ±	 1.4)	 °C.	 Full	 data	 on	 accuracy	 dives	 across	

conditions	are	shown	by	model	(Table	2.6)	and	device	(Table	2.7).		
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Table	2.5.	Mean	bias	and	uncertainties	by	device	in	water	bath	trials	

	Model	 Device	ID	 n(dives)	 Mean	bias	(°	

C)	

	sd	(mean	

bias)	

Aqualung	i750TC	 Aqualung	1	 3	 -2.3	 1.5	

Aqualung	i750TC	 Aqualung	2	 3	 -1.7	 0.6	

Aqualung	i750TC	 Aqualung	3	 3	 1.0	 0.0	

Garmin	Descent	Mk1	 Garmin	1	 3	 -1.0	 0.0	

Garmin	Descent	Mk1	 Garmin	2	 3	 -1.0	 0.0	

Garmin	Descent	Mk1	 Garmin	3	 3	 0.0	 0.0	

Mares	Matrix	 Mares	Matrix	1	 3	 -1.0	 0.0	

Mares	Matrix	 Mares	Matrix	2	 3	 -0.7	 0.6	

Mares	Puck	Pro	 Mares	Puck	Pro	1	 3	 -1.0	 0.0	

Mares	Puck	Pro	 Mares	Puck	Pro	2	 3	 -1.0	 0.0	

Paralenz	 Dive	

Camera+	

Paralenz	1	 NA	 NA	 NA		

Paralenz	 Dive	

Camera+	

Paralenz	2	 NA	 NA	 NA	

Paralenz	 Dive	

Camera+	

Paralenz	3	 NA	 NA	 NA	

Ratio	iX3M	GPS	Deep	 Ratio	1	 3	 -0.2	 0.5	

Ratio	iX3M	GPS	Deep	 Ratio	2	 3	 0.0	 0.3	

Ratio	iX3M	GPS	Deep	 Ratio	3	 3	 -0.3	 0.4	

Scubapro	G2	 Scubapro	1	 3	 0.0	 0.0	

Scubapro	G2	 Scubapro	2	 3	 0.0	 0.0	

Scubapro	G2	 Scubapro	3	 3	 0.0	 0.0	

Shearwater	Perdix	 Shearwater	1	 3	 -0.7	 0.6	

Shearwater	Perdix	 Shearwater	2	 3	 -0.7	 0.6	

Shearwater	Perdix	 Shearwater	3	 3	 -1.0	 0.0	

Suunto	D4i	 Suunto	D4i	1	 3	 -0.3	 0.6	

Suunto	D6i	 Suunto	D6i	1	 3	 0.0	 0.0	
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2.4.4 Temperature	accuracy	(sea	dives)	

A	total	of	 152	mean	bias	values	were	collected	from	31	devices	over	five	sea	dives.	

Three	 data	 points	 missing	 due	 to	 failure	 to	 recover	 data	 from	 Paralenz	 Dive	

Camera+.	Mean	bias	by	model,	without	considering	experimental	condition,	ranged	

from	(0.0	±	0.1)	°C	to	(-1.3	±	2.2)	°C	(Table	2.6)	and	by	device	ranged	from	(0	±	0.1)	°C	

to	(-3.5	±	0.1)	°C	(Table	2.7).	

 	

Suunto	D6i	 Suunto	D6i	2	 2	 0.0	 0.0	

Suunto	D6i	 Suunto	D6i	3	 3	 0.0	 0.0	

Suunto	EON	Steel	 Suunto	 EON	

Steel	1	

3	 -1.0	 0.0	

Suunto	EON	Steel	 Suunto	 EON	

Steel	2	

3	 -0.7	 0.6	

Suunto	EON	Steel	 Suunto	 EON	

Steel	3	

3	 -0.7	 0.6	

Suunto	Vyper	 Suunto	Vyper	1	 3	 -0.7	 0.6	

Suunto	Vyper	 Suunto	Vyper	2	 3	 -0.7	 0.6	
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Table	2.6.	Bias	by	model	across	the	two	accuracy	conditions		

Model	 Sea	dives	 Chamber	

		 n(dives)	 bias	ΔT	/	°C	 n(dives)	 bias	ΔT	/	°C	

Aqualung	i750TC	 15	 –1.3	±	2.2	 18	 –1.4	±	2.0	

Garmin	Descent	Mk1	 15	 –0.3	±	0.7	 18	 0.1	±	0.9	

Mares	Matrix	 10	 0.1	±	0.1	 12	 –0.1	±	0.7	

Mares	Puck	Pro	 10	 0	±	0.1	 12	 –0.2	±	0.7	

Paralenz	Dive	Camera+	 12	 0.7	±	0.1	 17	 0.7	±	0.6	

Ratio	iX3M	GPS	Deep	 15	 0.9	±	0.7	 18	 0.1	±	0.3	

Scubapro	G2	 15	 0	±	0.6	 18	 –0.4	±	0.9	

Shearwater	Perdix	 15	 –0.3	±	0.4	 18	 –0.9	±	0.6	

Suunto	D4i	 5	 –0.5	±	0.2	 6	 –0.4	±	0.8	

Suunto	D6i	 15	 –0.3	±	0.4	 18	 –0.2	±	1.0	

Suunto	EON	Steel	 15	 –0.6	±	0.1	 18	 –0.4	±	0.7	

Suunto	Vyper	 10	 –0.3	±	0.4	 12	 –0.2	±	2.9	

	

2.4.5 Temperature	accuracy	(‘on	frame’	vs	‘on	arm’)	

Wearing	a	computer	‘on	arm’	led	to	a	non-negative	mean	bias	across	all	devices	(0.0	to	2	°C)	

(Table	2.8)	and	models	(0.0	to	1.6	°C)	(Table	2.9)	when	compared	to	being	carried	on	the	

frame	(Figure	2.12).	Brand,	housing	material,	shape	or	response	group	were	not	found	to	be	

significant	for	bias	in	‘on	arm’/	‘on	frame’	data.		
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Table	2.7.	Bias	by	device	across	the	two	accuracy	conditions	(sea	and	chamber	dives)	

Model	 Device	ID	 Sea	dives	 Chamber	

		 	 n(dives)	 bias		
ΔT	/	°C	

n(dives)	 bias		
ΔT	/	°C	

Aqualung	i750TC	 Aqualung	1	 5	 –3.5	±	0.1	 6	 –3.3	±	1.4	

Aqualung	i750TC	 Aqualung	2	 5	 –1.9	±	0.0	 6	 –1.9	±	0.8	

Aqualung	i750TC	 Aqualung	3	 5	 1.5	±	0.4	 6	 0.9	±	0.9	

Garmin	Descent	Mk1	 Garmin	1	 5	 –0.3	±	0.4	 6	 0.2	±	0.7	

Garmin	Descent	Mk1	 Garmin	2	 5	 –0.9	±	0.3	 6	 –0.5	±	0.9	

Garmin	Descent	Mk1	 Garmin	3	 5	 0.2	±	0.7	 6	 0.5	±	0.9	

Mares	Matrix	 Mares	Matrix	1	 5	 0.1	±	0.1	 6	 –0.1	±	0.6	

Mares	Matrix	 Mares	Matrix	2	 5	 0.1	±	0.1	 6	 –0.1	±	0.8	

Mares	Puck	Pro	 Mares	Puck	Pro	1	 5	 0.1	±	0.1	 6	 –0.2	±	0.8	

Mares	Puck	Pro	 Mares	Puck	Pro	2	 5	 0	±	0.1	 6	 –0.2	±	0.8	

Paralenz	

DiveCamera+	

Paralenz	1	 4	 0.5	±	0.0	 6	 0.6	±	0.7	

Paralenz	

DiveCamera+	

Paralenz	2	 4	 0.8	±	0.1	 6	 0.9	±	0.7	

Paralenz	

DiveCamera+	

Paralenz	3	 4	 0.8	±	0.1	 5	 0.8	±	0.5	

Ratio	iX3M	GPS	Dee

p	

Ratio	1	 5	 1.2	±	0.7	 6	 0.4	±	0.2	

Ratio	iX3M	GPS	Dee

p	

Ratio	2	 5	 0.5	±	0.6	 6	 –0.3	±	0.3	

Ratio	iX3M	GPS	Dee

p	

Ratio	3	 5	 0.8	±	0.8	 6	 0.1	±	0.1	

Scubapro	G2	 Scubapro	1	 5	 0.2	±	1.0	 6	 –0.5	±	0.9	

Scubapro	G2	 Scubapro	2	 5	 –0.1	±	0.1	 6	 –0.4	±	1.1	

Scubapro	G2	 Scubapro	3	 5	 –0.1	±	0.3	 6	 –0.4	±	1	

Shearwater	Perdix	 Shearwater	1	 5	 –0.2	±	0.5	 6	 –1	±	0.5	

Shearwater	Perdix	 Shearwater	2	 5	 –0.4	±	0.4	 6	 –0.8	±	0.8	
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Shearwater	Perdix	 Shearwater	3	 5	 –0.3	±	0.5	 6	 –1	±	0.5	

Suunto	D4i	 Suunto	D4i	1	 5	 –0.5	±	0.2	 6	 –0.4	±	0.9	

Suunto	D6i	 Suunto	D6i	1	 5	 –0.3	±	0.4	 6	 –0.1	±	1.2	

Suunto	D6i	 Suunto	D6i	2	 5	 –0.3	±	0.4	 6	 –0.3	±	1	

Suunto	D6i	 Suunto	D6i	3	 5	 –0.3	±	0.4	 6	 –0.3	±	0.9	

Suunto	EON	Steel	 Suunto	 EON	

Steel	1	

5	 –0.7	±	0.0	 6	 –0.6	±	1	

Suunto	EON	Steel	 Suunto	 EON	

Steel	2	

5	 –0.5	±	0.1	 6	 –0.3	±	0.6	

Suunto	EON	Steel	 Suunto	 EON	

Steel	3	

5	 –0.6	±	0.0	 6	 –0.4	±	0.6	

Suunto	Vyper	 Suunto	Vyper	1	 5	 –0.3	±	0.4	 6	 –0.3	±	2.2	

Suunto	Vyper	 Suunto	Vyper	2	 5	 –0.3	±	0.4	 6	 –0.1	±	3.6	
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Table	2.8.	Comparison	of	mean	bias	by	device	worn	‘on	arm’	vs	loose	on	a	frame.		

Model	 Device	ID	 ‘On	frame’	
mean	ΔT/°C	

‘On	arm’	
mean	ΔT/°C	

Abs.	diff	
ΔT/°C	

Aqualung	i750TC	 Aqualung	1	 -3.6	±	0.0	 -3.5	±	0.2	 0.1	

Aqualung	i750TC	 Aqualung	2	 -1.9	±	0.1	 -1.9	±	0.0	 0.0	

Aqualung	i750TC	 Aqualung	3	 1.3	±	0.1	 1.7	±	0.6	 0.4	

Garmin	Descent	Mk1	 Garmin	1	 -0.5	±	0.3	 -0.1	±	0.5	 0.4	

Garmin	Descent	Mk1	 Garmin	2	 -0.9	±	0.2	 -0.9	±	0.2	 0.0	

Garmin	Descent	Mk1	 Garmin	3	 0	±	0.4	 0.6	±	0.6	 0.6	

Mares	Matrix	 Mares	Matrix	1	 0.1	±	0.1	 0.1	±	0.1	 0.0	

Mares	Matrix	 Mares	Matrix	2	 0.1	±	0.0	 0.2	±	0.1	 0.1	

Mares	Puck	Pro	 Mares	Puck	Pro	1	 0.1	±	0.1	 0.3	±	0.4	 0.2	

Mares	Puck	Pro	 Mares	Puck	Pro	2	 0	±	0.1	 0	±	0.1	 0.0	

Ratio	iX3M	GPS	Deep	 Ratio	1	 0.8	±	0.5	 1.9	±	0.4	 1.1	

Ratio	iX3M	GPS	Deep	 Ratio	2	 0.3	±	0.1	 2.3	±	2.3	 2.0	

Ratio	iX3M	GPS	Deep	 Ratio	3	 0.4	±	0.1	 1.9	±	0.5	 1.5	

Scubapro	G2	 Scubapro	1	 -0.3	±	0.0	 0.7	±	1.4	 1.0	

Scubapro	G2	 Scubapro	2	 -0.2	±	0.1	 -0.2	±	0.1	 0.0	

Scubapro	G2	 Scubapro	3	 -0.2	±	0.1	 0.1	±	0.4	 0.3	

Shearwater	Perdix	 Shearwater	1	 -0.4	±	0.4	 0.2	±	0.2	 0.6	

Shearwater	Perdix	 Shearwater	2	 -0.4	±	0.3	 0	±	0.5	 0.4	

Shearwater	Perdix	 Shearwater	3	 -0.7	±	0.1	 -0.1	±	0.5	 0.6	

Suunto	D4i	 Suunto	D4i	1	 -0.7	±	0.1	 -0.4	±	0.3	 0.3	

Suunto	D6i	 Suunto	D6i	1	 -0.4	±	0.3	 0	±	0.5	 0.4	

Suunto	D6i	 Suunto	D6i	2	 -0.4	±	0.4	 -0.1	±	0.5	 0.3	

Suunto	D6i	 Suunto	D6i	3	 -0.4	±	0.3	 0	±	0.5	 0.4	

Suunto	EON	Steel	 Suunto	EON	Steel	1	 -0.8	±	0.0	 -0.7	±	0	 0.1	

Suunto	EON	Steel	 Suunto	EON	Steel	2	 -0.6	±	0.0	 -0.5	±	0.1	 0.1	

Suunto	EON	Steel	 Suunto	EON	Steel	3	 -0.6	±	0.0	 -0.6	±	0.0	 0.0	

Suunto	Vyper	 Suunto	Vyper	1	 -0.4	±	0.4	 -0.1	±	0.5	 0.3	

Suunto	Vyper	 Suunto	Vyper	2	 -0.4	±	0.3	 -0.1	±	0.5	 0.3	
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Figure	2.12.	Effect	of	wearing	devices	"on	arm"	vs	"on	frame".	Bias	from	Castaway	baseline	

data	by	device,	black	line	represents	an	equal	bias	in	both	conditions 	
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Table	2.9.	Comparison	of	bias	by	model	worn	‘on	arm’	with	loose	on	a	frame.	Bias	is	defined	

as	the	mean	temperature	derived	from	the	final	180	s	of	sea	dives	below	the	top	of	the	bottom	

mixed	layer,	compared	to	baseline	Castaway	temperature	data	acquired	over	the	same	time.	

Model	 On	frame	 On	arm	 On	arm	-	On	frame	

	 bias	ΔT/°C	 bias	ΔT/°C	 difference	ΔΔT/°C		

Aqualung	i750TC	 –1.4	±	2.1	 –1.2	±	2.3	 0.2	

Garmin	Descent	Mk1	 –0.5	±	0.5	 –0.1	±	0.8	 0.3	

Mares	Matrix	 0.1	±	0.1	 0.2	±	0.1	 0.1	

Mares	Puck	Pro	 0.0	±	0.1	 0.2	±	0.3	 0.1	

Paralenz	Dive	Camera+	 0.7	±	0.1	 n.	a.	 –0.7	

Ratio	iX3M	GPS	Deep	 0.5	±	0.3	 2.0	±	1.2	 1.6	

Scubapro	G2	 –0.2	±	0.1	 0.2	±	0.8	 0.4	

Shearwater	Perdix	 –0.5	±	0.3	 0.0	±	0.4	 0.5	

Suunto	D4i	 –0.7	±	0.1	 –0.4	±	0.3	 0.3	

Suunto	D6i	 –0.4	±	0.3	 –0.1	±	0.4	 0.4	

Suunto	EON	Steel	 –0.6	±	0.1	 –0.6	±	0.1	 0.0	

Suunto	Vyper	 –0.4	±	0.4	 –0.1	±	0.5	 0.3	

2.4.6 Temperature	accuracy	(overall)	

As	 depth	 resolved-temperature	 data	 are	 required	 for	 scientific	 interest	 and	

collecting	temperature	data	from	dive	computers	in	an	unpressurised	environment	

would	not	be	recommended,	only	data	from	sea	and	chamber	accuracy	dives	were	

combined	for	overall	accuracy	results.	Across	the	total	n	=	337	data	points	from	the	

two	accuracy	protocols,	overall	mean	bias	was	(-0.2	±	1.1)	°C.	Mean	bias	by	model	

ranged	 from	(0.0	±	0.5)	 °C	to	(-1.4	±	2.1)	 °C	(Table	2.10;	Figure	2.13)	and	by	device	

ranged	from	(0.0	±	0.6)	°C	to	(-3.4	±	1.0)	°C	(Table	2.11)	
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Figure	2.13.	Normalised	bias	across	sea	and	chamber	dives.	

The	black	line	represents	the	median.	The	lower	and	upper	hinges	correspond	to	the	

first	 and	 third	 quartiles	 (25th	 and	 75th	 percentiles).	 Upper	 and	 lower	 whiskers	

extend	from	the	hinge	to	the	largest/smallest	value,	respectively,	no	further	than	1.5	

*	interquartile	range	from	the	hinge.	Data	beyond	the	end	of	the	whiskers	are	plotted	

individually	as	outliers. 	
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Table	2.10.	Bias	by	model,	averaged	across	sea	and	chamber	dives	

Model	 n(dives)	 Bias	ΔT/°C	 Resolution	 /	

°C	

Aqualung	i750TC	 33	 –1.4	±	2.1	 5/9	≈	0.56	

Garmin	Descent	Mk1	 33	 –0.1	±	0.8	 1.0	

Mares	Matrix	 22	 0	±	0.5	 0.1	

Mares	Puck	Pro	 22	 –0.1	±	0.6	 0.1	

Paralenz	Dive	Camera	+	 29	 0.7	±	0.5	 0.1	

Ratio	iX3M	GPS	Deep	 33	 0.4	±	0.7	 0.1	

Scubapro	G2	 33	 –0.2	±	0.8	 0.4	

Shearwater	Perdix	 33	 –0.6	±	0.6	 1.0	

Suunto	D4i	 11	 –0.5	±	0.6	 1.0	

Suunto	D6i	 33	 –0.3	±	0.8	 1.0	

Suunto	EON	Steel	 33	 –0.5	±	0.6	 0.1	

Suunto	Vyper	 22	 –0.3	±	2.1	 1.0	
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Table	2.11.	Total	mean	bias	by	device	across	sea	and	chamber	dives	

Model	 Device	ID	 n	

(dives)	

Mean	

bias	

ΔT/°C	

Abs.	

mean	

bias	

ΔT/°C	

sd	

(mean	

bias)	

ΔT/°C	

Aqualung	i750TC	 Aqualung	1	 11	 -3.4	 3.4	 1.0	

Aqualung	i750TC	 Aqualung	2	 11	 -1.9	 1.9	 0.5	

Aqualung	i750TC	 Aqualung	3	 11	 1.2	 1.2	 0.7	

Garmin	Descent	Mk1	 Garmin	1	 11	 0.0	 0.0	 0.6	

Garmin	Descent	Mk1	 Garmin	2	 11	 -0.7	 0.7	 0.7	

Garmin	Descent	Mk1	 Garmin	3	 11	 0.3	 0.3	 0.8	

Mares	Matrix	 Mares	Matrix	1	 11	 -0.1	 0.1	 0.4	

Mares	Matrix	 Mares	Matrix	2	 11	 0.0	 0.0	 0.6	

Mares	Puck	Pro	 Mares	Puck	Pro	1	 11	 -0.1	 0.1	 0.6	

Mares	Puck	Pro	 Mares	Puck	Pro	2	 11	 -0.1	 0.1	 0.6	

Paralenz	

DiveCamera+	

Paralenz	1	 10	 0.6	 0.6	 0.5	

Paralenz	

DiveCamera+	

Paralenz	2	 10	 0.8	 0.8	 0.5	

Paralenz	

DiveCamera+	

Paralenz	3	 9	 0.8	 0.8	 0.3	

Ratio	iX3M	GPS	Deep	 Ratio	1	 11	 0.8	 0.8	 0.6	

Ratio	iX3M	GPS	Deep	 Ratio	2	 11	 0.1	 0.1	 0.6	

Ratio	iX3M	GPS	Deep	 Ratio	3	 11	 0.4	 0.4	 0.6	

Scubapro	G2	 Scubapro	1	 11	 -0.2	 0.2	 1.0	

Scubapro	G2	 Scubapro	2	 11	 -0.3	 0.3	 0.8	

Scubapro	G2	 Scubapro	3	 11	 -0.3	 0.3	 0.7	

Shearwater	Perdix	 Shearwater	1	 11	 -0.6	 0.6	 0.7	

Shearwater	Perdix	 Shearwater	2	 11	 -0.6	 0.6	 0.6	

Shearwater	Perdix	 Shearwater	3	 11	 -0.7	 0.7	 0.6	
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Suunto	D4i	 Suunto	D4i	1	 11	 -0.5	 0.5	 0.6	

Suunto	D6i	 Suunto	D6i	1	 11	 -0.2	 0.2	 0.9	

Suunto	D6i	 Suunto	D6i	2	 11	 -0.3	 0.3	 0.7	

Suunto	D6i	 Suunto	D6i	3	 11	 -0.3	 0.3	 0.7	

Suunto	EON	Steel	 Suunto	EON	Steel	1	 11	 -0.7	 0.7	 0.7	

Suunto	EON	Steel	 Suunto	EON	Steel	2	 11	 -0.4	 0.4	 0.4	

Suunto	EON	Steel	 Suunto	EON	Steel	3	 11	 -0.5	 0.5	 0.5	

Suunto	Vyper	 Suunto	Vyper	1	 11	 -0.3	 0.3	 1.6	

Suunto	Vyper	 Suunto	Vyper	2	 11	 -0.2	 0.2	 2.6	

	

2.5 Discussion	

Despite	the	inherent	limitations	of	the	existing	technology,	our	research	shows	that,	

while	there	is	wide	between-model	variation	in	both	temperature	bias	and	t,	there	

is	value	in	data	derived	from	devices	commonly	carried	by	SCUBA	divers	as	a	source	

of	 subsurface	 temperature	 data	 in	 coastal	 areas.	 We	 demonstrate	 that	 there	 is	

sufficient	 consistency	 in	 bias	 within	 some	models	 to	 offer	 the	 potential	 for	 bias	

correction	by	model.	In	addition,	an	overall	bias	of	(-0.2	±	1.1)	°C	demonstrates	that,	

with	sufficient	datapoints,	valuable	data	may	be	produced	irrespective	of	the	models	

from	which	data	were	derived.	Due	to	variation	in	t,	while	not	all	models	would	be	

recommended	 for	 use	 in	 scenarios	 of	 temperature	 change,	 some	 models	 also	

demonstrate	a	t	which,	in	conjunction	with	a	sufficiently	high	resolution,	offer	the	

potential	for	identification	of	thermoclines.		

2.5.1 Response	time	

t	varied	widely	between	models,	with	less	within-model	variance	than	between.	We	

saw	less	within-device	variation	in	t	than	Egi	et	al.,	(2018),	although	a	similar	mean	

t	(46	s	compared	with	52	s)	was	seen	for	the	only	model	used	in	both	papers	(Mares	

Matrix).	Within-model	consistency	is	promising	for	the	purposes	of	citizen	science,	

as	 it	 offers	 projects	 the	 potential	 to	 select	 specific	models	 based	 on	 the	 project	

objectives	or	run	post-hoc	corrections.	
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Six	models	were	defined	as	quick	responders	(t	<	60	s)(Table	2.12).	Of	these,	the	two	

models	with	the	shortest	t	(Suunto	D6i	(18	±	5	s)	and	Paralenz	Dive	Camera+	(22	±	

3	 s))	 have	 t	 comparable	 designed-for-purpose	 aquatic	 temperature	 loggers;	 the	

plastic	Star-Oddi	Starmon	mini	has	an	18	s	standard	t.	Although	more	commonly	

used	 in	 moored	 scenarios,	 Starmon	 minis	 have	 been	 used	 to	 measure	 lake	

temperature	profiles,	with	corrections	applied	(Jóhannesson	et	al.	2007).		

Table	2.12.	Model	classification.	Accuracy	and	precision	across	sea	&	chamber	conditions,	

overall,	plus	response	to	temperature	change.	Accuracy/Precision	=	good	(G),	moderate	(M),	

poor	(P).	τ	=	quick	(Q),	intermediate	(I),	slow	(S),	excluded	(X),	not	applicable	(NA)

	 Accuracy	 Precision	 	
	Model	 Sea	 Chamber	 Overall	 Sea	 Chamber	 Overall	 τ	
Aqualung	i750TC	 P	 P	 P	 P	 P	 P	 S	

Garmin	Descent	Mk1	 G	 G	 G	 M	 M	 M	 Q	

Mares	Matrix	 G	 G	 G	 G	 M	 G	 Q	

Mares	Puck	Pro	 G	 G	 G	 G	 M	 M	 I	

Paralenz	DiveCamera+	 M	 M	 M	 G	 M	 G	 Q	

Ratio	iX3M	GPS	Deep	 M	 G	 G	 M	 G	 M	 X	

Scubapro	G2	 G	 G	 G	 M	 M	 M	 I	

Shearwater	Perdix	 G	 M	 M	 G	 M	 M	 S	

Suunto	D4i	 G	 G	 G	 G	 M	 M	 Q	

Suunto	D6i	 G	 G	 G	 G	 M	 M	 Q	

Suunto	EON	Steel	 M	 G	 G	 G	 M	 M	 Q	

Suunto	Vyper	 G	 G	 G	 G	 P	 P	 NA	

Exponential	fits	proved	consistent	across	models,	exceptions	causing	poor	fit	were	

errant	temperature	data	points	recorded	in	the	temperature	profile	(Suunto	EON	

Steel)	or	a	sharp	rise	in	temperature	followed	by	a	levelling	or	drop	before	a	further	

rise	(Ratio	iX3M	GPS	Deep).	In	the	case	of	the	Ratios,	the	response	seen	could	be	

because	of	intermittent	heating	caused	by	internal	electronic	functions	of	the	model,	

or,	as	a	slow	responding	but	higher	resolution	model,	the	devices	may	have	been	

affected	by	cold	water	ingress	introduced	by	adding	additional	devices.		
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When	dive	computer	model	was	excluded	as	a	parameter	from	the	generalised	linear	

model,	 pressure	 sensor	 location	 and	 housing	 material	 were	 also	 found	 to	

significantly	influence	t.	As	the	two	features	are	correlated	(e.g.,	all	devices	with	a	

pressure	sensor	at	the	back	are	entirely	housed	in	plastic	(Table	2.1),	it	is	not	possible	

to	fully	separate	the	effect	of	the	two	variables.	Also,	while	pressure	sensor	location	

is	 identifiable	 (Table	A.1),	 it	 is	not	known	whether	 the	 temperature	 sensor	 is	 co-

located	 with	 the	 pressure	 sensor	 in	 any	 given	 model.	 However,	 it	 is	 logical	 to	

postulate	that	in	a	small	device,	or	where	a	sensor	is	close	to	the	edge	of	the	device	

housing,	a	more	rapid	response	to	temperature	change	will	be	seen	than	that	of	a	

sensor	 buried	 deep	within	 a	 larger	 housing,	where	 the	 thermal	mass	 of	 the	 dive	

computer	itself	may	slow	the	response.		

2.5.2 Temperature	accuracy	

All	 models	 performed	 well	 within	 the	 ±	 2	 °C	 advertised	 accuracy	 (Mares	 n.d;	

Azzopardi	and	Sayer,	2012;	Suunto,	2018)	overall,	with	only	one	model	having	a	mean	

absolute	bias	>=1	 °C	(Aqualung	 i750TC),	and	only	two	(Aqualung	 i750TC,	Suunto	

Vyper)	 having	 poor	 precision.	 The	 overall	 mean	 bias	 seen	 ((-0.2	 ±	 1.1)	 °C)	 is	

comparable	with	 existing	 commonly	 used	 coastal	 temperature	 data	 sets,	 such	 as	

those	 using	 handheld	 digital	 thermometers	 for	 subsurface	 temperature	

measurement;	Cefas	coastal	temperature	datasets	include	data	from	thermometers	

and	 data	 loggers	 with	 accuracies	 of	 (±	 0.2	 to	 ±	 0.3	 °C)	 (Morris	 et	 al.	 2018).	 A	

systematic	negative	bias	of	–1	°C	has	been	seen	in	satellite	sea	surface	temperature	

(satSST)	(Brewin	et	al.	2017a)	and	up	to	6	°C	bias	between	coastal	satSST	and	in	situ	

devices	(Smit	et	al.	2013).		

Sampling	requirements	for	the	global	ocean	observing	system	in	situ	temperature	

(other	than	for	identification	of	climate	trend)	are	0.2	to	0.5	°C	(Needler,	Smith,	and	

Villwock	1999),	and	bias-corrected	numerical	oceanic	models	have	been	shown	to	

still	have	up	to	−0.86	°C	offset	from	baseline	satellite	temperature	after	corrections	

have	been	applied	(Macias	et	al.	2018).	As	nine	of	the	twelve	dive	computer	models	

were	 found	 to	 have	 ‘good’	 accuracy	 (<=	 0.5	 °C)	 overall	 (Table	 2.12),	 these	

requirements	and	biases	indicate	that,	with	sufficient	data	points,	some	models	of	
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dive	computers	can	offer	an	additional	source	of	temperature	data	to	contribute	to	

ocean	temperature	monitoring,	numerical	models	and	composite	satellite	products.	

Differences	were	found	in	both	bias	and	variance	(accuracy	and	precision)	across	the	

two	 conditions	 (sea	 and	 chamber).	 Nine	 models	 had	 the	 same	 accuracy	

categorisation	 in	 both	 sea	 and	 chamber	 dives	 (Table	 2.12).	 Of	 these,	 only	 three	

models	 (Aqualung	 i750TC,	 Garmin	 Descent	 MK1,	 Scubapro	 G2)	 had	 the	 same	

precision	 across	 the	 two	 conditions.	 Precision	 was	 found	 to	 be	 improved	 in	 sea	

conditions,	 with	 eight	 models	 categorised	 as	 having	 ‘good’	 precision.	 Only	 one	

model	(Ratio	iX3M	GPS	Deep)	was	found	to	have	good	precision	in	the	chamber.	

The	reduced	precision	found	in	nine	of	the	models	in	the	chamber	is	likely	caused	

by	 differences	 between	 tub	 temperatures	 in	 dive	 repetitions,	 combined	with	 the	

effect	of	a	static	water	environment	on	the	Castaway	temperature	sensor.	Castaway	

CTDs	are	designed	to	work	with	a	steady	flow	of	water	of	around	1	m	s–1	through	the	

sensor	 channel.	 Collection	 of	 data	 in	 real	 world	 scenarios	 will	 always	 lead	 to	

differences	caused	by	environmental	variation	for	which	it	is	not	possible	to	control.	

In	 the	present	study,	as	all	Castaways	were	positioned	on	a	 frame	carried	by	one	

diver,	 while	 all	 the	 dive	 computers	 were	 worn	 on	 the	 wrists	 of	 two	 divers.	 It	 is	

therefore	 possible	 that,	 although	 precision	 was	 better	 than	 in	 the	 chamber,	

proximity	 differences	 combined	 with	 local	 variations	 in	 temperature	 led	 to	

additional	variation	being	seen	in	the	sea	dives.		

Except	for	three	devices	(Ratio	iX3M	(n	=	1),	Garmin	Descent	Mk1	(n	=	1),	Suunto	

EON	Steel	(n	=	1)),	all	individual	devices	aligned	with	their	model’s	overall	accuracy	

categorisation,	 demonstrating	 positive	 within	 model	 consistency.	 Similarly,	 only	

one	device	had	 lower	precision	 than	 its	model’s	 categorisation,	with	 four	devices	

(Suunto	EON	Steel	(n	=	2),	Aqualung	i750TC	(n	=	2))	having	better	precision	than	

their	model	would	indicate.	This	within	model	consistency	is	encouraging	for	post-

hoc	 bias	 correction	 by	 model.	 Across	 both	 conditions,	 all	 models	 except	 three	

showed	overall	negative	bias	to	the	baseline	temperature.	In	contrast,	Mares	Matrix	

had	an	overall	bias	of	0,	whilst	Ratio	iX3M	GPS	Deep	and	Paralenz	Dive	Camera+	

biased	warm.	This	could	be	caused	by	an	internal	heating	effect	of	the	electronics	
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due	 to	 additional	 active	 functions	 as	 both	 Ratio	 iX3M	 GPS	 Deep	 and	 Paralenz	

DiveCamera+	 are	 both	 devices	 with	 additional	 functionality	 in	 comparison	 with	

some	smaller	devices.		

Diver	attachment	placement	also	had	significant	effect	on	bias	in	sea	dives,	with	all	

models	 ‘on	arm’	having	a	non-negative	mean	bias	compared	with	than	 ‘on	frame’	

(irrelevant	of	whether	the	device	was	biased	colder	or	warmer	than	the	baseline).	

These	differences	could	be	caused	by	the	heating	effect	of	the	diver’s	body,	an	effect	

of	 an	 additional	 barrier	 between	 the	 ambient	 water	 temperature	 and	 the	

temperature	sensor	(dependent	on	sensor	location	within	the	housing).	All	divers	

were	 wearing	 dry	 suits,	 but	 the	 material	 and	 thickness	 varied	 (neoprene/	

membrane).		

Except	for	two	models	(Mares	Matrix,	Suunto	EON	Steel)	there	was	greater	variation	

in	within-model	 bias	 in	 ‘on	 arm’	 conditions.	 This	 could	 be	 due	 to	 differences	 in	

positioning	of	dive	computers	on	arms,	the	amount	of	contact	between	the	device	

and	the	diver’s	arm,	or	the	dive	suit	material.	When	collecting	or	correcting	data	

across	different	environments,	console	mounted	devices	which	are	mounted	on	a	

hose	not	 attached	 to	 the	diver	may	be	preferable	 for	 temperature	data	 accuracy.	

Alternatively,	it	is	common	for	divers	to	have	redundancy	in	kit,	carrying	two	dive	

computers.	The	secondary	device	could	be	attached	safely	to	the	diver	but	not	worn	

on	the	arm.	It	is	recommended	that	attachment	mechanism	and	thermal	protection	

type	be	noted	in	data	collection	from	citizen	scientist	divers	so	it	can	be	taken	into	

consideration.		

2.5.3 Technology	limitations	

Accuracy	in	recorded	or	displayed	temperature,	or	response	to	temperature	change	

does	 not	 form	 part	 of	 primary	 dive	 computer	 function	 and	 dive	 computer	

manufacturers	are	not	providing	temperature	data	for	oceanographic	purposes.	The	

results	 found	 are	 in	 no	 way	 reflective	 of	 the	 performance	 of	 any	 model	 in	 the	

designed	purpose	as	diver	 safety	devices.	Whilst	dive	 computers	 in	 the	UK	must	

adhere	to	standards	set	in	British	Standard	BS	EN13319:2020,	which	covers	functional	
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and	safety	requirements	including	depth	and	time,	the	Standard	does	not	include	

temperature	(British	Standard	2000).		

The	greatest	potential	for	temperature	data	from	citizen	scientist	divers	is	to	address	

the	lack	of	depth-resolved	data	in	coastal	regions.	To	improve	the	overall	use	of	dive	

computers	 as	 oceanographic	monitoring	 devices	 in	 less-well	 performing	models,	

manufacturers	 could	 look	 at	 improving	 the	 quality	 of	 the	 out	 of	 the	 box	

measurements.	 The	 addition	 of	 an	 accurate	 dedicated	 temperature	 sensor,	 with	

considered	 placement	 of	 the	 sensor	 would	 support	 unbiased	 detection	 of	 water	

temperature	 change.	 Whilst	 the	 majority	 of	 dive	 computer	 models	 tested	 by	

Azzopardi	 and	 Sayer	 (2010)	were	 found	 to	 be	 consistently	within	 1%	 of	 nominal	

depth,	the	addition	of	conductivity	sensors	to	measure	salinity	would	increase	the	

accuracy	of	depth	values,	although	this	would	not	affect	temperature	data	quality.	

Inclusion	of	geolocation	ability	would	allow	easy	identification	of	dive	locations.	A	

combination	of	all	the	above	would	maximise	the	citizen	science	potential	of	divers,	

because	of	their	access	to	otherwise	hard	to	reach	locations.		

Within	 the	 limitations	 of	 the	 current	 commercially	 available	 devices,	 a	 citizen	

science	project	dataset	could	be	improved	by	calibrating	individual	dive	computers	

in	advance,	simply,	using	an	iced	bucket	of	water.	As	evidenced	by	the	water	bath	

trials	 -	 this	would	 be	 greatly	 improved	 by	 an	 additional	 significant	 figure	 to	 the	

unpressurised	temperature	display,	as	currently	most	models	display	only	positive	

integers,	limiting	the	potential	accuracy	by	introducing	truncation	effects.		

2.5.4 Citizen	science	and	use	of	data	

We	need	to	better	understand	how	model	type	effects	temperature	profiles	so	that	

citizen	science	diving	projects	can	help	fill	gaps	in	coastal	temperature	datasets.	To	

standardise	 data,	 there	 should	 be	 a	 focus	 on	 the	 models	 offering	 the	 greatest	

accuracy	and	shortest	 temperature	response.	Only	one	model	 (Aqualung	 i750TC)	

was	found	to	have	poor	accuracy	and	precision	across	all	conditions,	along	with	a	

slow	 response	 to	 temperature	 change.	 Five	 of	 the	 six	 models	 with	 a	 quick	

temperature	response	(t	<60	s)	were	also	found	to	also	have	good	accuracy,	with	
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good/moderate	 precision	 overall	 (Figure	 9).	 These	 comprise	Mares	Matrix	 (2/2),	

Garmin	Descent	(2/3),	Suunto	D6i	(3/3),	Suunto	EON	Steel	(2/3)	and	Suunto	D4i	

(1/1),	all	sharing	promising	characteristics	as	individual	devices.		

	

	

Figure	2.14.	Accuracy	against	bias	for	all	devices;	the	inner	box	highlights	0.5	°C	bias	with	60	

s	t.	Devices	falling	in	the	inner	box	are	defined	as	having	both	a	quick	response	and	a	good	

accuracy	overall.	The	outer	box	highlights	devices	which	have	up	to	1	°C	bias	and	120	s	t:	an	

intermediate	response	to	temperature	change,	and	moderate	accuracy.	When	considering	

models	for	citizen	science	data	collection,	those	with	the	greatest	potential	have	a	

high	sample	rate	and	resolution,	are	likely	to	have	a	pressure	sensor	located	on	an	

edge	 and	have	 a	metal	 or	 part-metal	 housing.	 In	 addition,	 a	 standardised	model	

could	 be	 used	 by	 all	 volunteers	 in	 a	 project	 and	 simple	 corrections	 applied	 for	

systemic	model	bias.	The	most	promising	model	tested	here	for	overall	use	across	

citizen	 science	 projects	 is	 the	 Mares	 Matrix.	 This	 model	 had	 consistently	 good	

accuracy	and	precision	and	a	quick	response	to	temperature	change,	exhibiting	an	

overall	mean	bias	of	(0.0	±	0.4)	°C	and	t	=	(46	±	5)	s	with	a	recorded	resolution	of	0.1	
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°C	and	a	5	s	sampling	rate.	A	close	second	is	the	Suunto	EON	Steel,	which	has	good	

accuracy	overall,	moderate	precision	and	a	quick	response	to	temperature	change,	

with	a	 recorded	resolution	of	0.1	 °C	and	a	 10	s	 sampling	rate.	Other	models	have	

shorter	t	(Suunto	D6i,	Suunto	D4i,	Garmin	Descent),	but	single	degree	resolution,	

making	them	less	useful	for	monitoring	temperature	change.		

We	found	that	with	sufficient	data	points,	‘good’	accuracy	was	found	irrespective	of	

originating	 device.	 Therefore,	 data	 collected	 by	 local	 groups	 or	 dive	 centres	 in	

commonly	dived,	discrete	areas,	may	generate	 sufficient	data	points	 to	provide	a	

useful	 accuracy,	 irrelevant	of	model.	 In	 addition,	not	 all	 sampling	 locations	have	

equal	 value	 (Callaghan	 et	 al.	 2019)	 and	 lower	 quality	 data	may	 still	 be	 of	 use	 to	

support	 decision	making	 (Buytaert	 et	 al.	 2016)	 if	 uncertainties	 are	 quantified.	As	

such,	 in	 remote,	 less	 widely	 sampled	 areas	 where	 there	 are	 limited	 pre-existing	

records,	dive	computer	information	may	still	be	of	use	as	indicative	data,	even	with	

fewer	sampling	points	or	from	devices	with	less	accuracy/precision.	

Temperature	from	dive	computers	could	be	used	to	compliment	biological	datasets.	

Thermal	drivers	(stratification	and	seasonal	patterns)	affect	habitat	choice	(Freitas	

et	al.	2021),	vertical	distribution	(Sogard	and	Olla,	1993)	and	behaviour	(Bartolini,	

Butail,	 and	 Porfiri	 2014)	 in	 fish.	 Computer-derived	 temperature	 data	 could	

contribute	to	a	better	understanding	of	local	variability	in	fish	ecology.	Temperature	

data	can	also	support	regional	assessment	of	hydrological	conditions	(Morris	et	al.	

2018).	 In	 highly	 dived	 areas,	 the	 data	 would	 provide	 a	 time	 series	 allowing	

identification	 of	 seasonal	 variation,	 albeit	 without	 complete	 temporal	 coverage.	

They	may	also	be	useful	for	marine	recreation	(Brewin	et	al.	2015)	or	feeding	into	

numerical	 models	 and	 satellite	 products	 (Smit	 et	 al.	 2013)	 in	 areas	 where	 the	

accuracy	is	known	to	be	<	1	°C.	They	could	be	especially	useful	in	commonly	dived,	

poorly	sampled	areas,	such	as	the	South	Pacific,	where	the	volume	of	dive	profiles	

could	provide	data	of	a	useful	resolution	irrespective	of	model.		

In	 conclusion,	 the	 limitation	 of	 divers	 as	 citizen	 scientists	 for	 temperature	 data	

collection	is	inherent	in	the	devices	themselves.	The	challenge	is	to	understand	the	

uncertainty	 in	 accuracy	 and	 precision	 recorded	 by	 the	 devices	 rather	 than	 the	
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abilities	 or	 knowledge	 of	 the	 citizen	 science	 diver.	 Our	 research	 shows	 that	 the	

quality	 of	 temperature	 data	 in	 dive	 computers	 could	 be	 improved,	 but	

implementation	would	need	to	be	driven	by	manufacturers,	or	by	diver	demand.	As	

some	models	of	dive	computers	can	demonstrably	provide	data	comparable	to	that	

collected	 by	more	 traditional	methods,	within	 required	 accuracy	 levels	 for	 some	

monitoring	scenarios,	they	have	a	role	to	play	in	future	oceanographic	monitoring.		

2.5.5 Errata	

The	incorrect	dimension	and	units	published	in	Table	2.1	Sampling	Interval	column	

have	been	corrected	to	time	(s)	from	ΔT	/	°C.	

Section	2.3.5/2.4.4.	Although	6	sea	dives	were	completed,	one	was	excluded	from	

accuracy	analyses	as	 the	Castaway	data	showed	sea	temperature	did	not	come	to	

equilibrium	within	the	depth	of	the	dive	
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Chapter	3. Comparison	of	temperature	data	recorded	
by	dive	computers	with	satellite	SST	and	depth-resolved	
in	situ	observations	in	the	Red	Sea	

3.1 Chapter	summary	

The	Red	Sea	is	one	of	the	most	dived	areas	in	the	world.	This	chapter	discusses	the	

comparison	of	17	years	of	minimum	water	temperatures	collected	from	SCUBA	dive	

computers	in	the	northern	Red	Sea	(23–30°	N,	32–39.4°	E),	with	satellite-derived	sea	

surface	 temperatures	 from	 the	Operational	 Sea	Surface	Temperature	 and	Sea	 Ice	

Analysis	 (OSTIA)	optimal	 interpolation	product	 (E.U.	Copernicus	Marine	Service	

Information	 2020),	 depth-banded	 monthly	 mean	 in-situ	 temperature	 from	 the	

TEMPERSEA	 dataset,	 which	 incorporates	 data	 originating	 from	 several	 in-situ	

recording	platforms	(including	Argo	floats,	ships	and	gliders)(Agulles	et	al.	2019).	

Dive	computer	temperatures	were	found	to	have	an	overall	negative	bias	of	(–0.5	±	

1.1)	 °C	when	compared	with	 interpolated	OSTIA	temperatures	and	(–0.2	±	 1.4)	 °C	

compared	 with	 TEMPERSEA.	 Our	 research	 shows	 clear	 seasonal	 patterns	 in	

agreement	with	OSTIA	and	regional	climatology	are	observable	 in	dive	computer	

temperature	data	at	different	temporal	resolutions.	Depth	related	biases	consistent	

with	comparison	mixed	 layer	depths,	and	south-north	mean	temperature	cooling	

trend	by	latitudinal	band	consistent	with	values	in	the	literature	are	also	identifiable.	

Bias	 remains	 consistent	 when	 reducing	 sample	 numbers	 down	 to	 n(93).	 We	

conclude	 that,	 with	 sufficient	 datapoints,	 dive	 computers	 offer	 potential	 as	 an	

alternative	source	of	depth-resolved	temperature	data	to	complement	existing	in-

situ	and	satellite	SST	data	sources.		

3.2 Introduction	

Long	term	observations	of	ocean	temperature	are	essential	for	our	understanding	of	

natural	variations	and	trends	caused	by	climate	change	(Needler	et	al.	1999;	Rintoul	

et	al.	2013),	but	there	is	a	shortage	of	depth-resolved	temperature	data,	especially	in	

coastal	areas	(Wright	et	al.	2016).	Satellite	products	are	commonly	used	to	measure	

sea	surface	temperature	(SST)	but	are	affected	in	coastal	areas	by	proximity	of	land	
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(Ricciardulli	and	Wentz,	2004)	or	aerosol	interference	(Bernstein,	1982).	In	addition,	

satellite	SST	records	only	the	skin	or	sub-skin	temperature	at	the	sea	surface	and	

measurements	have	been	found	to	differ	from	in	situ	measurements	by	up	to	6	°C	

(Smit	et	al.	2013)	with	root-mean-squared	errors	(RMSE)	amplified	nearer	the	coast	

(Lee	and	Park,	2020).	Determining	temporal	and	spatial	variation	via	remote	sensing	

in	 coastal	 areas	 is	 challenging	 (Baldock	 et	 al.	 2014)	 and	 although	 interpolated	

analysis	products	are	available,	it	is	important	to	understand	how	temperature	varies	

with	depth	for	validation	of	these	products	(Kennedy	et	al.	2007).	

Public	participation	in	scientific	research	(Bonney	et	al.	2009a),	often	called	citizen	

science,	 is	 a	 rapidly	 developing	 field	 (Bonney	 et	 al.	 2016).	 Environmental	 citizen	

science	projects	have	been	around	for	well	over	a	century;	the	first	recorded	project	

being	the	Christmas	Bird	Count,	which	has	taken	place	annually	in	the	US	since	1900	

(Silvertown,	 2009).	 In	 conjunction	 with	 the	 developing	 autonomous	monitoring	

technologies,	engaging	citizen	scientists	involved	in	marine	recreational	activities	to	

gather	sub-surface	information	can	help	fill	the	data	gap	(Hyder	et	al.	2015;	Brewin	

et	al.	2017b;	Simoniello	et	al.	2019).	One	approach	is	for	citizen	scientists	to	act	as	

sensor	platforms	(Haklay,	2018),	providing	crowdsourced	‘Volunteered	Geographic	

Information’	(VGI)	(Schade	et	al.	2010)	data	for	research	purposes,	such	as	data	from	

a	 mobile	 phone	 or	 biosensing	 watch.	 Dive	 computers	 are	 as	 ubiquitous	 as	

smartphones	in	the	diving	world.	With	as	many	as	10	million	SCUBA	divers	world-

wide	(Wright	et	al.	2016),	most	wearing	one	or	more	dive	computers,	there	is	clear	

potential	for	divers	to	gather	depth-resolved	information	that	is	difficult	to	collect	

by	traditional	means	by	following	this	crowdsourced	approach.	With	sufficient	data,	

dive	 computers	 have	 been	 found	 to	 have	 an	 overall	 mean	 temperature	 bias	 of	

(−0.2±1.1)	 °C	 (Marlowe	 et	 al.	 2021),	 offering	 huge	 opportunity	 to	 contribute	 to	

observational	 datasets,	 given	 the	 potential	 numbers	 of	 available	 data	 points	

worldwide.	

Most	modern	dive	computers	record	profiles	of	temperature	as	a	function	of	depth	

and	time,	with	some	older	models	recording	a	single	minimum	temperature	for	a	

dive.	The	Red	Sea	is	one	of	the	top	diving	destinations	in	the	world	(Shaalan,	2005),	
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with	in	excess	of	30000	dives	per	year	in	some	areas	(Hasler	and	Ott,	2008).	This	

study	collates	minimum	water	temperatures	collected	from	SCUBA	dive	computers	

in	the	northern	Red	Sea	(longitude:	32–39.4°	E,	latitude:	23–30°	N)	between	2000	to	

2017.	These	are	compared	with	satellite-derived	foundation	sea	surface	temperatures	

from	OSTIA	(E.U.	Copernicus	Marine	Service	Information	2020)	and	in-situ	depth-

resolved	monthly	mean	observations	from	TEMPERSEA’,	which	brings	together	data	

from	CORA	(Cabanes	et	al.	2013)	which	incorporates	profiles	from	several	sources	

(e.g.	Argo,	GOSUD,	OceanSITES	 and	World	Ocean	Database)	with	 data	 sourced	

from	 all	 KAUST	 (“King	 Abdullah	 University	 of	 Science	 and	 Technology”	 n.d.)	

platforms	in	the	Red	Sea	(e.g.	ships,	gliders	and	Argo	floats)(Agulles	et	al.	2020).	We	

establish	 the	 quantitative	 validity	 of	 dive	 computer	 temperature	 for	 resolving	

seasonal	and	interannual	temperature	variations,	exploring	agreement	with	satellite	

and	in	situ	data	under	different	grouping	conditions.		

3.3 Materials	and	methods	

3.3.1 Study	area:	Red	Sea	

The	Red	Sea	is	a	marginal	sea	formed	by	continental	rifting	(Zolina	et	al.	2017)	and	

has	 one	 of	 the	 longest	 reef	 systems	 in	 the	world	 (Fine	 et	 al.,	 2019),	 at	 4000	 km	

(Kleinhaus	et	al.	2020).	40	%	of	the	Red	Sea	basin	is	shallower	than	100	m,	with	a	

maximum	depth	of	2800	m	(Shaked	and	Genin,	2011).	It	is	economically	important	

for	tourism,	shipping,	oil	and	gas	(Shaltout,	2019),	and	is	a	focus	for	climate	science	

and	 coral	 reef	 research,	 because	 of	 the	 unprecedented	 heat	 tolerance	 of	 its	

scleractinian,	reef	building	corals	(Kleinhaus	et	al.	2020).	One	of	the	hottest	ocean	

basins	(Abdulla	et	al.	2018;	Krokos	et	al.	2019),	the	Red	Sea	has	a	pronounced	annual	

temperature	cycle	(Al-Subhi	and	Al-Aqsum,	2008).	It	has	an	annual	mean	surface	

temperature	of	 (27.9±2.1)	 °C	(1982	-	2016)	(Shaltout,	2019),	with	a	summer-winter	

difference	of	 6	 ºC	 (Berman	 et	 al.,	 2003).	 Interannual	 variability	 is	 greatest	 in	 the	

winter	in	the	north	(Karnauskas	and	Jones,	2018).	A	SST	gradient	of	4	ºC	exists	from	

north	to	south	(Alraddadi	et	al.	2021),	along	with	a	weaker	zonal	gradient;	eastern	

monthly	mean	 surface	 temperatures	 are	 0.3	 °C	 higher	 in	 the	 north	 than	 on	 the	

western	side	(Al-Subhi	and	Taqi,	2014).	A	shallow	thermohaline-driven	circulation	
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is	seen	above	150	m	(Tragou	and	Garrett,	1997),	with	weak	semi-diurnal	currents	in	

the	northern	parts	(Sofianos	and	Johns,	2007).		

3.3.2 Dive	computer	data	

Dive	 computers	 (DC)	 have	 temperature	 bias	 related	 to	 model,	 pressure	 sensor	

location	and	housing	material,	but,	with	aggregation	of	sufficiently	large	numbers,	

a	mean	bias	of	-0.2	°C	from	CTD	measured	temperature	was	found	(Marlowe	et	al.	

2021).	For	the	present	study,	323	088	anonymous	data	points	 from	unknown	dive	

computers	containing	date,	minimum	temperature,	maximum	depth,	latitude	and	

longitude	 were	 provided	 by	 divelogs.de	 (Mohr,	 n.d).	 These	 data	 have	 been	

submitted	 as	 ‘public’	 logbooks	 and	 are	 freely	 available.	While	most	modern	dive	

computers	 store	 full	 temperature-depth	 profiles,	 these	 were	 not	 stored	 in	

divelogs.de	 and	 were	 therefore	 not	 available	 for	 use.	 However,	 all	 dives	 had	 a	

minimum	temperature	recorded,	and	we	were	interested	to	see	the	usefulness	of	this	

basic	dataset.	Using	anonymous	data	from	an	online	dive	log	provided	a	real	test	of	

the	 potential	 of	 raw	 dive	 computer	 data	 as	 a	 useful	 source	 for	 temperature	

monitoring,	where	no	additional	metadata	were	available	about	the	device,	such	as	

model,	material,	or	pressure	sensor	location.	

All	 data	 were	 processed	 using	 the	 tidyverse	 suite	 of	 packages	 in	 R	 (tidyverse	

Overview),	with	the	number	of	dives	retained	decreasing	at	each	step	of	the	filtering	

process	 (Fig.	 1).	 Basic	 validity	 tests	 were	 carried	 out	 (Fig.	 3.1).	 The	 majority	 of	

retained	 dives	 were	 in	 the	 northern	 Red	 Sea.	 To	 avoid	 skewing	 the	 comparison	

(whole	region)	climatology	with	temperatures	from	the	warmer	southern	Red	Sea	

(Fishelson,	1971;	Karnauskas	and	Jones,	2018),	the	study	range	was	spatially	restricted	

to	 the	 northern	 Red	 Sea:	 23–30°	 N,	 32–39.4°	 E.	 Only	 dives	 within	 standard	

recreational	depths	(maximum	dive	depth	≤	40	m),	years	with	more	than	75	dives	

per	year	and	with	a	spread	of	dives	across	most	months	were	retained	(2000	to	2017).	

Only	dives	with	minimum	temperatures	between	20	and	31	°C	were	selected.	These	

temperature	 constraints	were	 applied	 as,	 in	 the	Red	 Sea,	 temperatures	 as	 low	 as	

20	°C	have	only	been	found	in	water	at	depths	>1500	m	(Shaked	and	Genin,	2011)	and	

>31	°C	SST	only	in	the	extreme	southern	Red	Sea	(Karnauskas	and	Jones,	2018).	Only	
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dives	with	a	collocated	OSTIA,	and	TSEA	datapoint	at	the	relevant	depth	band	were	

retained	 (further	 details	 in	 section	 3.3.3).	 A	 15	 arc	 second-resolution	 bathymetry	

(approximately	 0.5	 km)	 for	 the	 area	 was	 downloaded	 from	 GEBCO	 (General	

Bathymetric	Chart	of	the	Oceans)	(GEBCO	Compilation	Group,	2020).	Bathymetry	

depths	associated	with	each	dive	location	were	found	using	the	get.depth	function	

in	 the	 marmap	 package	 in	 R	 (Pante	 et	 al.	 2020).	 To	 exclude	 any	 incorrectly	

geolocated	dives	where	 the	 recorded	 latitude	 and	 longitude	 correlated	with	 land	

rather	 than	 sea,	 all	 records	 for	 which	 the	 corresponding	 bathymetry	 depth	 was	

shallower	than	the	maximum	recorded	dive	depth	were	removed.	As	there	were	only	

48	dives	remaining	at	7	m	or	shallower,	only	dives	with	maximum	depths	over	7	m	

were	retained.		
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Fig.	3.1.	Flow	chart	showing	the	filtering	process	and	number	of	dives	(n)	retained	at	each	

step.	

The	Red	Sea	is	an	area	subject	to	high	solar	radiation	(Al-Aidaroos	et	al.	2014)	and	

extremely	low	precipitation	(Abdulla	et	al.	2018).	A	cooler	surface	stratification	layer	

is	therefore	not	expected.	Under	these	conditions,	we	assumed	that	the	minimum	

temperature	is	coincident	with	the	maximum	depth.	However,	during	a	short	dive,	

a	dive	computer	may	have	not	been	at	depth	sufficiently	long	to	equilibrate	to	the	

ambient	water	temperature	(Marlowe	et	al.	2021).	Although	an	uncommon	profile,	

in	a	short	‘bounce’	descent	to	maximum	depth	followed	by	an	ascent	straight	back	

to	 the	 surface,	 the	 bottom	 time	 might	 be	 short	 and	 artificially	 high	 minimum	
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temperatures	may	 be	 recorded	 (Wright	 et	 al.	 2016).	 No	metadata	were	 available	

about	the	length	of	dive,	so	we	have	no	way	to	eliminate	this	potential	warm	bias	in	

the	dive-computer	data.	

3.3.3 Comparison	data	

Daily	 satellite-derived	 SST	 data	were	 obtained	 from	 the	 global	 ocean	OSTIA	 sea	

surface	 temperature	 and	 sea	 ice	 product	 (E.U.	 Copernicus	 Marine	 Service	

Information,	2020).	This	is	a	level	4	(L4)	analysis	product	(Donlon	et	al.	2004)	with	

a	horizontal	resolution	of	0.05°	x	0.05°,	which	combines	satellite	SST	data	with	in	

situ	data	from	the	HadIOD	dataset	(Fiedler,	2014)	within	an	optimal	interpolation	

system	 (Group	 for	 High	 Resolution	 Sea	 Surface	 Temperature).	 L4	 products	 are	

gridded	and	processed	to	be	gap	free,	with	uncertainty	estimates.	Foundation	SST	

values	were	used,	which	represent	the	mixed	layer	temperature	(equivalent	to	0.2	to	

1	 m	 below	 the	 surface	 measured	 just	 before	 sunrise)	 (Donlon	 et	 al.	 2012)	 and	

therefore	removes	diurnal	variations.		
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Fig.	3.2.	Map	of	the	study	region	with	final	selection	of	dives	used	in	analyses.	Inset	map	

shows	wider	contextual	area,	with	area	of	interest	highlighted	with	a	box.		

The	 four	 nearest	 OSTIA	 grid	 cells	 by	 Haversine	 (or	 great	 circle)	 distance	 were	

identified,	using	the	geosphere	package	in	R	(Hijmans	et	al.	2019).	A	cell	is	defined	

as	land	if	greater	than	50	%	of	the	cell	surface	is	land	(Kara	et	al.	2007).	Any	returned	

grid	cells	with	a	land	mask	flag	were	excluded.	An	interpolated	SST	value,	θ(sat),	for	

the	 specified	 latitude	 and	 longitude	 was	 calculated	 from	 the	 four	 grid	 cells.	 As	

bilinear	interpolation	requires	four	surrounding	data	points	and	many	dives	were	

situated	along	the	coastline,	to	calculate	the	interpolated	value,	the	inverse	distance	
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weighted	 interpolation	 function	 from	 the	 Akima	 package	 (Gebhardt,	 2020)	 was	

used.	

‘TEMPERSEA’	 (TSEA),	 a	 3-D	 gridded	 monthly	 mean	 0.25°	 by	 0.25°	 in	 situ	 data	

product	utilising	an	optimal	interpolation	algorithm	was	used	as	a	reference	in	situ	

dataset	 (Agulles	 et	 al.	 2020).	 TSEA	has	 23	 vertical	 (depth)	 levels,	 two	within	 the	

recreational	diving	depths	of	interest	in	this	study	(15	and	30	m),	plus	another	one	

just	below,	at	50	m.	Dive	computer	data	were	matched	to	the	TSEA	spatial	grid	at	

the	closest	TSEA	level	below	the	maximum	dive	depth,	i.e.,	dive	computer	data	at	

depths	 of	 between	 7	 and	 15	 m	 (θ(DC15))	 were	 compared	 with	 15	 m	 TSEA	 data	

(θ(TSEA15)),	 from	 15	m	 to	 30	m	 (θ(DC30))	 were	 compared	 with	 30	m	 TSEA	 data	

(θ(TSEA30)),	and	between	30	m	and	40	m	(θ(DC40))	with	TSEA	50	m	(θ(TSEA50)).	

Values	did	not	exist	for	all	grid	cell/depth	level	combinations.	If	present,	the	value	

(mean	 monthly	 temperature	 at	 that	 location/depth)	 was	 selected	 for	 in	 situ	

comparison.	Plots	of	θ(DC)	vs.	θ(sat),	θ(DC)	vs.	θ(TSEA)	and	θ(sat)	vs.	θ(TSEA)	were	

created.	Bias	was	calculated	as	θ(DC)	–	θ(sat),	θ(DC)	–	θ(TSEA),	or	θ(sat)	–	θ(TSEA).		

Monthly	and	weekly	(based	on	day	of	year)	climatologies	of	the	whole	region	were	

produced	 encompassing	 the	 entire	 temporal	 and	 geospatial	 extent	 of	 the	 study	

(𝜃(region)).	For	example,	to	create	a	monthly	climatology,	all	daily	OSTIA	data	from	

all	 years	 were	 aggregated	 by	 month	 and	 average	 temperatures	 produced.	 These	

provided	baseline	seasonal	patterns.	Mean	annual,	monthly	and	weekly	values	were	

calculated	for	each	data	source	for	comparison.	Anomalies	from	annual	means	were	

calculated	for	each	year	and	data	source	(DC,	sat,	TSEA),	to	ascertain	interannual	

variation.	Amplitudes	for	each	dataset	were	calculated	by	year,	and	each	depth	band	

by	 year,	 by	 taking	 the	 difference	 between	 maximum	 and	 minimum	 mean	

temperature	for	each	subset.	Temporal	and	spatial	resolutions	for	each	data	source	

are	summarised	in	Table	3.1.		
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Table	3.1.	Temporal	and	spatial	resolution	by	data	source.	

Data	source	 Temporal	resolution	 Spatial	resolution	

θ(DC)	 Point	 Point		

θ(sat)	 Daily		 0.05°	x	0.05°	

θ(TSEA)	 Monthly	mean	 0.25°	x	0.25°	

θ(region)	 Mean	daily		 Whole	study	region	

Coastal	 satellite	 SST	 has	 been	 found	 to	 have	 poorer	 agreement	 with	 insitu	 data	

(Brewin	et	al.	2017a).	Therefore,	we	investigated	whether	dive	computer	temperature	

correlated	 better	 with	 satellite	 data	 away	 from	 the	 coast.	 We	 extracted	 a	 10	 m	

resolution	 shapefile	 for	 the	 Red	 Sea	 coastline	 from	 a	 global	 coastline	 shapefile	

(ne_10m_coastline.shp)	(Natural	Earth).	The	shortest	distance	from	dive	locations	

to	the	coastline	were	calculated	using	the	sf	package	in	R	(Pebesma).	As	the	OSTIA	

data	are	on	a	0.05°	grid,	approximating	5.5	km	at	these	latitudes,	all	dive	computer	

points	within	 11	km	of	 the	coast	were	categorised	as	coastal	and	beyond	11	km	as	

offshore,	allowing	comparisons	to	be	made	between	biases	based	on	distance	from	

shore.		

3.3.4 Statistical	approach	

The	lm	function	in	R	(Carchedi	et	al.)	was	used	to	calculate	a	simple	linear	regression	

between	each	combination	of	θ(DC),	θ(TSEA)	and	θ(sat).	As	uncertainty	was	present	

in	 both	 variables,	 York	 regression	was	 applied	 to	 subsetted	data	 at	monthly	 and	

weekly	 resolutions,	using	 the	yorkregression	 function	 in	R	 (Lichter	and	Delgado)	

and	using	sx	and	sy	for	each	subset	as	the	error	value.		

Adjusted	R2	(𝑅$!)(was	calculated	using	the	Wherry	formula	1	as	defined	by	Yin	and	

Fan	(Yin	and	Fan,	2010)	(Eq.1)	where	N	is	the	sample	size,	p	is	the	number	of	

predictor	variables	and	R	is	the	sample	multiple	correlation	coefficient:	

	 	 𝑅$! = 1 − "#$
"#%#	$

	(1 −	𝑅!)	 	 	 	 	 	 (1)	
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3.4 Results	

A	total	of	9310	records	with	co-located	values	for	θ(DC),	θ(TSEA)	and	θ(sat)	were	

identified	(Fig.	2).	Simple	linear	regression	of	θ(sat)	vs.	θ(DC)	(intercept=	1.33,	slope	

=	0.93,
	
R,!=	0.78,	p	=	<0.001),	θ(TSEA)	vs.	θ(DC)	(intercept=	-0.5,	slope	=	1.01,	𝑅$!=	

0.65,	p	=	<0.001)	and	θ(sat)	vs.	θ(TSEA)	(intercept=	6.99,	slope	=	0.72,	𝑅$!=	0.74,	p	=	

<0.001)	(Fig.	3)	found	θ(sat)	and	θ(TSEA)	respectively	explained	78	%	and	65	%	of	

the	variation	in	θ(DC).	Mean	timeseries	bias	was	(-0.5±1.1)	°C	for	θ(DC)	–	θ(sat),	(–

0.2±1.4)	°C	for	θ(DC)	–	θ(TSEA),	and	(0.3±1.1)	°C	for	θ(sat)	–	θ(TSEA).	

Dive	computer	resolution	is	limited	to	integers	in	many	models.	This	is	seen	in	the	

predominance	of	 dive	 computer	 temperatures	 at	 integer	 values	 in	 Fig.	 3.3.	Mean	

annual	SST	amplitude	was	(6.5±1.0)	°C	for	θ(sat).	Annual	temperature	amplitude	was	

comparable	for	θ(DC15)	at	(6.8±1.2)	°C,	and	θ(TSEA15)	(6.2±0.7)	°C.	
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Fig.	3.3	Scatterplot	of	retained	dives	(n	=	9310).	a)	θ(sat)	vs.	θ(DC),	b)	θ(TSEA)	vs.	θ(DC),	c)	

θ(sat)	vs.	θ(TSEA).	Linear	regression	is	solid	line,	dotted	line	is	1:1	(included	as	a	visual	aid).	

3.4.1 Monthly	resolution	

York	 regression	on	mean	monthly	 bias	 found	𝑅$!was	 comparable	 across	 all	 three	

comparison	datasets	(Fig.	3.4).		
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Fig.	3.4.	Solid	line	shows	York	regression	on	mean	monthly	temperature	for	a)	θ(sat)	-	θ(DC),	

b)	θ(TSEA)	-	θ(DC)	and	c)	θ(sat)	-	θ(TSEA),	showing	intercept	α,	slope	β	and	𝑅"!.	Dashed	

line	is	1:1.	Error	bars	are	standard	deviation	for	a	given	month	/	dataset,	across	all	years.		

Bias	for	all	three	monthly	timeseries	is	shown	in	Fig.	3.5.	The	mean	maximum	depth	

across	 all	months	was	 consistent	 at	 (22.5±1.0)	m.	The	highest	 biases	 for	θ(DC)	 –	

θ(sat)	and	for	θ(sat)	–	θ(TSEA)	were	seen	in	July	and	August	(Fig’s	3.5a	and	3.5c).	

θ(DC)	–	θ(sat)	bias	ranged	from	(–0.2±1.0)	°C	in	February	to	(–0.8±1.2)	°C	in	July	and	

August	 (Fig.	 3.5a).	 θ(DC)	 –	 θ(TSEA)	 bias	 ranged	 from	 (-0.7±0.9)	 °C	 in	March	 to	

a	 b	

c	
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(0.0±1.2)	°C	in	May.	Absolute	mean	bias	≤	0.1	°C	was	found	between	May	and	October	

(Fig.	3.5b).	θ(sat)	–	θ(TSEA)	bias	ranged	from	(-0.4±0.7)	°C	in	March	to	(1.0±1.3)	°C	

in	August,	with	absolute	mean	bias	≤	0.4	°C	found	between	October	and	April	and	

in	June	(Fig.	3.5c).	Mean	monthly	temperatures	for	all	data	sources	show	seasonal	

patterns	consistent	with	those	seen	in	the	regional	climatology.	Seasonal	patterns	

can	be	seen	in	overall	mean	monthly	data	for	each	data	source,	and	also	individual	

years	(Fig.	3.6)	

	

Fig.	3.5.	a)	θ(DC)	-	θ(sat),	b)	θ(DC)	-	θ(TSEA)	and	c)	θ(sat)	-	θ(TSEA)	bias	by	month.	Error	

bars	show	standard	deviation	for	a	given	month	/	dataset,	across	all	years.	

a	 b	 c	
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Fig.	3.6.	Mean	monthly	temperatures	for	θ(DC),	θ(sat)	and	θ(TSEA)	with	𝜃(region)	for	a)	all	

years,	b)	for	an	example	year	(2015)	

We	 also	 explored	 bias	 on	 a	 weekly	 basis,	 with	 the	 same	 patterns	 of	 relative	

differences	observed	(see	supporting	information).		

3.4.2 Interannual	variation	

All-year	mean	temperatures	were	(25.1	±2.2)	°C	(θ(DC)),	(25.7±2.3)	°C	(θ(sat))	and	

(25.5±1.8)	°C	(θ(TSEA)).	The	annual	mean	temperature	anomalies	(annual	mean	data	

compared	with	all-year	mean	temperature)	show	consistency	(Fig.	3.7).	2003,	2010	

and	2016	were	warm	years	across	all	three	timeseries,	with	2010	being	the	warmest	

(𝜃(region))	year	of	our	study	period	at	(27.1±2.3)	°C.	This	is	reflected	in	θ(DC)	and	

θ(sat),	where	highest	mean	annual	temperature	is	also	seen	for	2010	(θ(DC)	=	(26±2)	
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°C,	θ(sat)	=	(26.0±2.1)	°C).	In	contrast,	although	θ(TSEA)	shows	2010	as	a	warm	year	

at	(25.6±1.7)	ºC,	it	is	only	equal	third	warmest.	

	

	

Fig.	 3.7.	 Interannual	 variation	 in	 anomalies	 from	mean	 θ(DC),	 θ(sat)	 and	 θ(TSEA).	 Red	

denotes	 years	 that	 are	warmer	 than	 average	 (for	 the	 data	 source)	 and	 blue	 cooler	 than	

average.	

Months	with	unusually	large	anomalies	are	also	comparable	across	timeseries;	for	

example,	the	warmest	November	is	2010	for	both	θ(sat)	(1.5	°C	anomaly)	and	θ(DC)	

(1.8	°C	anomaly),	but	for	θ(TSEA),	November	2010	was	equal	third	warmest,	with	no	

anomaly	from	average	November	temperature.		
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3.4.3 Latitude	bands	

In	addition	to	assessing	the	representativeness	of	the	dataset	by	comparison	with	

the	 regional	 climatology,	 geospatial	 and	 depth	 effects	 were	 investigated.	 Mean	

θ(DC),	θ(sat)	and	θ(TSEA)	temperature	all	decreased	northwards,	except	from	28–

29°	N	to	29–30°	N	(Table	3.2).	Mean	θ(DC)	–	θ(sat)	bias	ranged	from	(-0.6±1.0)	°C	for	

23–24°	N	to	(1.1±0.8)	°C	for	29–30°	N,	but	with	bias	of	–0.6	°C	or	smaller	in	the	five	

most	 southerly	bands	 (Table	 3.2).	Mean	θ(DC)	–	θ(TSEA)	bias	 followed	a	 similar	

pattern,	 turning	 increasingly	 negative	 northwards,	 except	 for	 the	most	 northerly	

band	(Table	3.2).	Mean	θ(sat)	–	θ(TSEA)	bias	ranged	between	(-1.2±0.8)	°C	for	29–

30°	N	and	(0.8±1.3)	°C	for	24–25°	N,	with	smaller	absolute	bias	in	the	25–28°	bands.		

Table	3.2.	Mean	temperature	and	bias	(θ(DC)	-	θ(sat),	θ(DC)	-	θ(TSEA)	and	θ(sat)	-	θ(TSEA)	

by	latitude	band.	

Latitude	

band	

q(DC)	 /	

°C	

q(sat)/	

°C	

q(TSEA)

/	°C	

q(DC)	 -	

q(sat)		

q(DC)	 -	

q(TSEA)	

q(sat)	 -	

q(TSEA)	

n	

Bias	/	°C	 Bias	/	°C	 Bias	/	°C	 	

23–24°	N	 27.0±2.4	 27.6±2.1	 26.9±2.0	 -0.6±1.0	 0.1±1.4	 0.7±1.2	 602	

24–25°	N	 26.3±2.4	 26.9±2.3	 26.2±1.9	 -0.6±1.3	 0.1±1.5	 0.8±1.3	 1287	

25–26°	N	 25.9±2.5	 26.0±2.3	 26.2±2.0	 -0.2±1.1	 -0.3±1.3	 -0.1±1.0	 887	

26–27°	N	 25.6±2.2	 26.0±2.0	 25.8±1.7	 -0.5±1.1	 -0.3±1.3	 0.2±1.0	 3292	

27–28°	N	 25.2±2.2	 25.7±2.1	 25.6±1.8	 -0.5±1.1	 -0.4±1.3	 0.1±1.0	 3158	

28–29°	N	 24.1±2.0	 24.1±2.0	 24.9±1.7	 0.0±1.4	 -0.8±1.3	 -0.8±1.0	 55	

29–30°	N		 26.4±1.4	 25.3±1.6	 26.5±1.2	 1.1±0.8	 -0.1±0.5	 -1.2±0.8	 29	

3.4.4 Distance	from	coast	

When	categorised	into	coastal	(≤	11	km)	or	offshore	(>11	km)	by	distance	from	the	

coastline,	θ(DC)	–	θ(sat)	mean	bias	was	similar	for	coast	and	offshore:	(-0.6±1.1)	vs	(-

0.5±1.1)	°C.	θ(DC)	–	θ(TSEA)	bias	was	smaller	offshore	by	0.3	°C	and	θ(sat)	–	θ(TSEA)	

was	 0.5	 °C	 larger	 offshore	 (Table	 3.3).	 When	 depth	 level	 is	 included	 in	 coastal	

comparisons,	 all	 three	 data	 sources	 showed	 consistent	 patterns	 in	 direction	 of	
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temperature	bias	irrespective	of	the	coastal/offshore	category	(Table	3.3).	Mean	DC	

depths	in	the	levels	(15,	30,	40)	m	were	comparable:	(12.6,	21.8,	33.4)	m	for	the	coastal	

dives	and	(12.7,	23.5,	34.7)	m	offshore.	All	biases	were	0.1	to	0.3	°C	greater	offshore,	

with	the	exception	of	θ(DC30)	-	θ(TSEA30)	which	had	a	0.2	°C	smaller	offshore	bias.	

Table	3.3.	Mean	bias	by	depth	level	and	coastal	grouping.	

Measure	 Coast	/	°C	 Offshore	/	°C	 Difference	/	°C	

q(DC)	-	q(sat)	 -0.5±1.1	 -0.6±1.1	 0.1	

q(DC)	-	q(TSEA)	 -0.3±1.3	 -0.0±1.5	 -0.3	

q(sat)	-	q(TSEA)	 -0.1±1.0	 -0.6±1.3	 0.5	

θ(DC15)	-	θ(sat)	 -0.3±1	 -0.5±1.1	 0.2	

θ(DC30)	-	θ(sat)	 -0.5±1.1	 -0.5±1.1	 0.0	

θ(DC40)	-	θ(sat)	 -0.7±1.2	 -0.8±1.2	 0.1	

θ(DC15)	-	θ(TSEA15)	 -0.6±1.2	 -0.9±1.4	 0.3	

θ(DC30)	-	θ(TSEA30)	 -0.4±1.3	 -0.2±1.3	 -0.2	

θ(DC40)	-	θ(TSEA50)	 0.4±1.4	 0.5±1.6	 0.1	

θ(sat)	-	θ(TSEA15)	 -0.3±0.8	 -0.4±0.9	 0.1	

θ(sat)	-	θ(TSEA30)	 0.1±0.9	 0.3±1	 0.2	

θ(sat)	-	θ(TSEA50)	 1.2±1.2	 1.3±1.4	 0.1	

3.4.5 Vertical	resolution	

The	mean	DC	 depth	was	 12.6	m	 for	 θ(DC15),	 22.2	m	 for	 θ(DC30),	 and	 34.2	m	 for	

θ(DC40).	When	considered	in	isolation	(not	including	temporal	or	spatial	factors),	

mean	θ(DC)	was	consistent	irrespective	of	depth:	(25.4±2.3)	°C	for	θ(DC15),	(25.7±2.3)	

°C	for	θ(DC30)	and	θ(DC40).	Although	θ(sat)	is	a	foundation	temperature	and	therefore	

does	not	have	depth	level	variation,	local	temperature	of	the	dives	will	be	affected	

by	spatial	factors,	so	it	is	still	a	useful	comparison,	for	example,	mean	comparison	

satellite	temperature	was	0.8	°C	colder	for	θ(DC15)	dives	(θ(sat)	=	(25.7±2.2)	°C)	than	

θ(DC40)	 (θ(sat)	=	 (26.5±2.2)	 °C).	Mean	θ(TSEA15)	 °C	was	 (26.1±2.1)	 °C,	 reducing	 to	

(25.2±1.3)	°C	for	θ(TSEA50).	As	depth	increased,	θ(DC)	cooled	compared	with	θ(sat)	
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and	both	θ(DC)	and	θ(sat)	became	warmer	in	comparison	with	θ(TSEA))	(Table	3.4,	

Fig.	3.8).	

Table	3.4.	Mean	DC	depth,	temperature	and	bias	by	depth	band	for	θ(DC),	θ(sat)	&	θ(TSEA).	

	

When	taking	depth	level	into	account	in	combination	with	month,	the	mean	bias	

shows	a	clear	 impact	of	depth	 (Table	S1,	Fig.	 3.8).	θ(DC)	–	θ(sat)	bias	 is	negative	

across	all	θ(DC)	depths.	All	θ(DC)	–	θ(TSEA)	biases	are	negative	except	for	θ(DC40)	

-	θ(TSEA50)	between	May	and	October	(Fig.	11).	All	θ(sat)	–	θ(TSEA15)	and	θ(sat)	–	

θ(TSEA30)	month	biases	are	negative	(θ(sat)	<	θ(TSEA)	°C)	except	December	(θ(sat)	

–	θ(TSEA15|30)),	May	and	October	(θ(sat)	–	θ(TSEA30)).	All	θ(sat)	–	θ(TSEA50),	biases	

are	positive	except	February.		

	

Depth	

band	

Mean	

DC	

depth	/	

m	

Mean	

θ(DC)	/	

°C	

Mean	

θ(sat)	°C	

Mean	

θ(TSEA)	

°C	

θ(DC)	-	

θ(sat)	

°C	

θ(DC)	-	

θ(TSEA)	

°C	

θ(sat)	-	

θ(TSEA)	

/	°C	

θ(DC15)	 12.6	 25.4±2.3	 25.7±2.2	 26.1±2.1	 -0.3±1	 -0.7±1.2	 -0.4±0.8	

θ(DC30)	 22.2	 25.7±2.3	 26.2±2.2	 26.0±1.9	 -0.5±1.1		 -0.3±1.3	 0.1±0.9	

θ(DC40)	 34.2	 25.7±2.3	 26.5±2.2	 25.2±1.3	 -0.8±1.2	 0.5±1.5	 1.2±1.3	
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Fig.	3.8.	Mean	bias	by	depth	and	month	for	a)	θ(DC)	-	θ(sat),	b)	θ(DC)	-	θ(TSEA),	c)	θ(sat)	-	

θ(TSEA)	

3.4.6 Group	size	

To	ascertain	the	number	of	dive	samples	required	for	consistent	results,	an	approach	

based	 on	 a	 random	 fraction	 of	 samples	 per	 year	 was	 used.	 Analysis	 was	 run	 on	

random	samples	of	different	sample	fractions	(75,	50,	25,	10	and	1	%).	This	generated	

sample	sizes	of	6982,	4655,	2328,	931	and	93,	respectively.	Mean	θ(DC)	vs.	θ(sat)	bias	

a	

c	

b	
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remained	consistent	at	 (-0.5±1.1)	 °C	at	all	 sample	 sizes	down	 to	 1	%	 (-0.8±1.2)	 °C.	

Similarly,	θ(DC)	vs.	θ(TSEA)	bias	remained	consistent	with	biases	of	(-0.2±1.4)	°C	at	

all	sample	sizes	down	to	1	%	(-0.6±1.5)	°C.	To	check	for	consistency,	from	a	bootstrap	

of	50	iterations	of	1	%	(ndives	=	93),	36/50	absolute	mean	biases	(θ(DC)	-	θ(sat))	were	

≤0.5	°C,	with	the	remaining	14/50	(≥	0.5	≤	8)	°C.	45/50	absolute	mean	biases	(θ(DC)	

-	θ(TSEA))	were	≤0.5	°C	with	5/50	(≥	0.6	≤	8)	°C.	For	(θ(sat)	-	θ(TSEA))	45/50	absolute	

mean	biases	were	≤0.5	°C	with	5/50	(<	0.7)	°C.	

3.5 Discussion	

The	Red	Sea	has	a	pronounced	seasonal	temperature	cycle	(Al-Subhi	and	Al-Aqsum	

2008).	This	study	utilised	a	17-year	non-continuous	timeseries	of	in	situ	and	satellite	

sea	temperature	data,	investigating	the	potential	for	temperature	data	from	citizen	

science	 logged	 dives	 to	 contribute	 useful	 ocean	 temperatures.	 We	 found	 that	

temperature	data	from	dive	computers	can	be	used	to	derive	interannual	patterns	in	

temperature	 change,	 and	 seasonal	 temperature	 cycles	 at	 monthly	 and	 weekly	

resolutions.	 These	 patterns,	 in	 agreement	 with	 satellite-derived	 climatology,	 are	

consistently	 seen	 in	 timeseries	 of	 biases	 for	θ(DC)	 -	θ(sat),	θ(DC)	 -	θ(TSEA)	 and	

θ(sat)	-	θ(TSEA).	The	overall	mean	θ(DC)	-	θ(sat)	bias	of	(–0.5±1.1)	°C	is	comparable	

to	the	result	of	Woo	and	Park	(Woo	and	Park,	2020)	who	found	consistent	warm	

bias	in	coastal	SST	of	over	0.3	°C	in	coastal	regions	when	compared	with	in	situ	data	

from	buoys,	but	is	in	contrast	to	studies	in	other	areas	where	a	0.3	°C	cool	bias	in	

satellite	SST	was	found	(Baldock	et	al.	2014).		

3.5.1 Temporal	resolution	

The	overall	mean	maximum	depth	of	dives	was	consistent	across	months	at	(22.5±1)	

m.	The	mixed	layer	depth	(MLD)	of	the	northern	Red	Sea	shows	monthly	variations	

(Eladawy	et	al.	2017).	In	winter,	surface	cooling	forces	convection	and	a	subsequent	

deepening	of	the	MLD,	 leading	to	uniform	temperatures	around	22	°C	(Yao	et	al.	

2014).	In	summer,	surface	warming	increases	SST	to	over	28	°C,	with	a	coincident	

reduction	of	MLD.	When	surface	temperatures	are	warmest,	poorest	θ(sat)	vs.	θ(DC)	

and	greater	θ(DC)	vs.	θ(TSEA)	agreement	 is	 seen,	 indicating	 shallower	MLD	and	
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increased	 stratification	 leading	 to	 greater	 variation	 in	 water	 temperature.	 This	

agrees	with	the	MLD	climatology	(Fig.	3.9);	depending	on	month	and	latitude,	MLD	

varies	from	<	20	m	to	>	80	m,	with	shallow	mean	MLDs	(<	25	m)	in	our	latitude	range	

mainly	observed	between	April	and	September	(Abdulla	et	al.	2018).	The	difference	

in	biases	seen	by	month,	in	agreement	with	varying	MLD	values,	demonstrates	the	

importance	of	depth-resolved	data	and	the	potential	value	dive	computers	an	bring	

by	giving	insight	into	local	conditions	at	depth	which	is	not	possible	to	gather	with	

just	sea	surface	temperature	or	an	interpolated	monthly	in	situ	value.	Dive	durations	

are	 unknown,	 but	 a	 likely	 contributing	 factor	 to	 increased	 variance	 in	 summer	

months	is	device	heating	due	to	solar	radiation	prior	to	the	dive.	

	

Fig.	3.9.	Mixed	layer	depth	by	month	and	latitude	(Abdulla	2018)	

At	a	weekly	resolution,	comparable	seasonal	patterns	are	observed	(Fig.	S2).	As	with	

monthly	comparisons,	 larger	θ(DC)	-	θ(sat)	biases	are	seen	 in	the	summer	weeks	

when	surface	temperatures	are	higher	and	MLD	shallower.	The	reduced	consistency	

in	θ(DC)	-	θ(TSEA)	bias	seen	at	weekly	resolution	is	expected	as	θ(TSEA)	has	only	

monthly	 resolution.	 θ(sat)	 interannual	 variation	 was	 largely	 in	 agreement	 with	

Karnauskas	and	Jones	(2018),	with	largest	SST	variations	seen	in	winter.	Berman	et	
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al.	(2003)	found	a	mean	surface	temperature	summer-winter	difference	of	6	°C.	We	

found	amplitudes	of	6.4	 °C	(θ(DC)),	6.5	 °C	(θ(sat))	and	5	 °C	(θ(TSEA),	amplitude	

decreasing	 with	 increased	 depth).	 This	 consistency	 is	 another	 demonstrable	

instance	of	dive	computers	producing	comparable	data	to	that	from	more	commonly	

used	sources.		

3.5.2 Spatial	differences	

𝜃(region)	is	composed	of	data	across	the	entire	spatial	and	temporal	bounds	of	the	

study.	Comparing	the	time	series	with	climatology	of	the	whole	region	gives	insight	

into	seasonal	pattern	expectations	and	agreement.	The	Red	Sea	is	known	to	display	

a	strong	latitudinal	temperature	gradient	from	south	to	north	(Chaidez	et	al.,	2017),	

and	 a	 weaker	 zonal	 gradient	 in	 the	 north,	 with	 eastern	 monthly	 mean	 surface	

temperatures	0.3	°C	higher	than	the	western	side	(Al-Subhi	and	Taqi,	2014;	Alraddadi	

et	al.	2021).	As	most	dives	in	our	dataset	are	located	near	the	western	coast,	this	will	

contribute	 to	 the	 observed	bias	with	 the	 regional	 climatology	 (Fig.	 3.6;	 Fig.	 3.8).	

Inspecting	latitude	bands,	we	see	good	spatial	agreement,	with	the	latitudinal	south	

–	north	cooling	trend	observable	in	the	mean	temperatures	by	latitude	band	in	all	

datasets,	 with	 the	 consistent	 exception	 of	 the	 most	 northerly	 band.	 This	

inconsistency	is	likely	attributable	to	the	small	ndives	in	this	band	(n	=	29).		

Satellite	SST	is	purported	to	have	poorer	accuracy	close	to	coastlines	(Ricciardulli	

and	Wentz,	2004;	Smit	et	al.	2013).	As	such	we	would	expect	to	see	greater	deviation	

from	 θ(DC)	 in	 data	 categorised	 as	 coastal,	 but	 instead	 see	 a	 marginally	 greater	

negative	bias	(-0.1	°C)	in	the	offshore	data.	However,	a	L4	analysis	product	was	used	

as	comparison	SST,	to	provide	a	gap-free	dataset.	L4	products	incorporate	data	from	

drifting	buoys	(E.U.	Copernicus	Marine	Service	Information,	2020),	to	compensate	

for	satellite	error,	minimising	coastal	inaccuracies.		

3.5.3 Group	size	

Reducing	ndives	by	random	sampling	to	1	%	of	the	initial	9310	dives	(i.e.,	93	dives)	did	

not	affect	mean	bias,	standard	deviation	or	𝑅$!	values.	However,	when	increasing	the	
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granularity	by	encompassing	multiple	categories	(such	as	to	week	by	depth	level),	

the	number	of	points	 reduce	 to	 low	numbers	 and	 the	 relative	 importance	of	 the	

different	 explanatory	 variables	 are	 less	 clear.	 Despite	 noisy	 data,	 significant	

information	about	trends	is	seen,	therefore	in	areas	where	there	are	few	in	situ	data	

alternatives	available,	small	datasets	may	still	offer	trend	information	if	care	is	taken.		

3.5.4 Representativeness	of	data	

Representativeness	of	data	is	not	as	simple	as	merely	sample	size;	individual	device	

factors	 need	 to	 be	 considered.	 Drift	 can	 occur	 in	 forecasting	 systems	 as	 well	 as	

citizen	 science	 datasets,	 but	 sensors	 utilised	 for	monitoring	 are	 usually	 regularly	

recalibrated	(Bell	et	al.	2013).	Dive	computers	are	not	calibrated	(after	purchase)	and	

use	piezoelectric	sensors,	which	are	known	to	drift	over	time	(Otmani	et	al.	2011).	If	

large	volumes	of	data	are	collected	in	a	small	area	from	an	individual	device	which	

has	drifted,	or	has	a	large	systematic	bias,	overall	bias	may	be	seen	in	the	data.	In	

the	 dataset	 there	 are	 examples	 of	 a	 pattern	 of	 morning	 and	 afternoon	 dives,	

consistent	with	that	of	a	diving	holiday	(for	example,	10	dives	over	5	days),	all	with	

a	θ(DC)	-	θ(sat)	bias	(-5.1±0.2)	°C.	In	the	above	example	(10	dives	in	September	2001)	

a	corresponding	monthly	bias	is	seen;	September	2001	was	the	coldest	September	

instance	for	θ(DC)	(mean	=	24.4)	°C,	in	contrast	to	both	θ(TSEA)	and	θ(sat)	where	it	

was	not	in	the	coolest	6	years,	and	had	a	mean	temperature	of	27.7	°C.	If	a	diver	is	

extremely	active	in	logging	dives	in	a	particular	area,	care	needs	to	be	taken	if	there	

are	only	a	small	number	of	dives	logged	from	other	devices.	By	carrying	out	regular	

simple	calibration	in	an	ice	bucket	(Wright	et	al.	2016),	an	indication	of	device	bias,	

and	any	change	over	time,	could	be	collected.		

3.5.5 Relevance	for	data	usage:	local	monitoring	

Between	1982	and	2006	the	Red	Sea	experienced	warming	SST	at	5.5	times	the	global	

change	(Belkin,	2009),	but	temperature	measurement	is	not	straightforward.	While	

Argo	floats	are	commonly	used	to	gather	in	situ	temperature/depth	profiles,	there	

are	few	cycles	recorded	in	the	Red	Sea,	with	only	1615	cycles	recorded	between	2001	

and	2021	(Argo	2021),	presumably	as	the	single	narrow	entry	point	at	the	Strait	of	
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Bab	 al	Mandeb	 limits	 their	 ingress.	Mean	 differences	 of	 0.5	 °C	 have	 been	 found	

between	satellite-derived	SST	products	in	the	Red	Sea	(Karnauskas	and	Jones,	2018).	

Regional	 variation	 in	 coral	 mortality	 is	 affected	 by	 local	 differences	 in	 physical	

parameters	(Moore	et	al.	2012)	and	Davis	et	al.	(2011)	found	daily	variations	ranging	

from	0.5	°C	to	>5	°C	on	shallow	Red	Sea	reefs,	depending	on	the	level	of	protection	

from	waves.	As	such,	micro	level	data	are	essential	to	monitor	ambient	temperature	

variation,	and	its	influence	on	corals	and	other	ecosystem	processes	(Baldock	et	al.	

2014).	With	 consistent	 biases	 being	 seen	 between	 all	 three	 datasets	 at	 different	

depths,	our	findings	agree	with	Colin	and	Shaun	Johnston	(2020),	identifying	depth-

resolved	 temperature	 differences	 which	 are	 not	 captured	 by	 satellite	 data.	 Dive	

computers	 therefore	 are	 interesting	 for	 their	 potential	 to	 provide	depth	 resolved	

data	as	they	are	not	limited	to	nominal	depths	like	sea-surface	(satellite)	or	a	fixed	

depth	(in	situ	sensor).	They	can	offer	a	valuable	additional	layer	of	information	at	a	

micro	level,	to	complement	data	from	other	sources.	Utilising	the	potential	volumes	

of	data	that	could	be	available	in	the	highly	dived	areas	of	the	Red	Sea,	long	term	

time	series	could	be	collated	to	support	monitoring	of	important	corals	and	their	

surrounding	ecosystems.	

3.5.6 Practical	considerations	for	dive	computer	accuracy	

Most	 dive	 computer	 models	 do	 not	 have	 GPS	 functionality,	 which	 introduces	

potential	 error	 in	 any	user	 recorded	 coordinates.	 If	 a	 position	 is	 recorded	 to	 the	

nearest	 0.01°	 longitude/latitude,	 the	 accuracy	 will	 be	 approximately	 1	 km.	 The	

satellite	SST	grid	used	here	is	0.05°,	equivalent	to	5.5	km.	In	addition,	the	coordinates	

of	the	most	frequently	dived	sites	are	well	documented	online.	Many	divers	will	note	

the	reef	or	wreck	name	at	the	time	of	dive,	looking	up	coordinates	later	when	back	

on	dry	land.	In	these	instances,	the	potential	risk	for	dive	to	be	recorded	at	a	location	

greater	 than	 5	 km	 from	 the	 actual	 location	 is	 considered	 small.	 In	 less	 well	

documented	areas,	GPS	coordinates	should	be	carefully	recorded	at	the	start	or	end	

of	the	dive	using	a	GPS	tracker	or	mobile.	

Dive	 computers	 record	 time	 and	 date,	 but	 some	 require	 these	 to	 be	 changed	

manually.	If	divers	travel	into	a	different	time	zone,	and	divers	do	not	do	this,	data	
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are	potentially	recorded	at	the	wrong	time	of	day.	For	the	purposes	of	this	study,	

this	 should	 not	 cause	 an	 issue	 because	 the	 comparison	 foundation	 temperature	

reflects	pre-dawn	values.	However,	a	citizen	science	project	would	need	to	consider	

this	where	daily	variation	in	temperature	is	relevant,	such	as	a	reef	ecosystem.	With	

sufficient	data	and	accurate	metadata	(such	as	time	zone)	from	dive	computers,	in	

areas	with	 sufficiently	 large	 diurnal	 variation,	 it	 could	 also	 be	 possible	 to	 gather	

insight	into	this	variation.	By	collecting	longer	term	time	series	of	dive	computer	

data,	 the	 demonstrated	 ability	 to	 identify	 anomalously	 hot	 or	 cold	 periods	 will	

become	another	a	valuable	source	of	historical	data	available	for	comparison	with	

other	biological	datasets.	

The	MS5803-14BA	pressure	sensor	(TE	Connectivity,	2017),	which	is	commonly	used	

in	dive	computers,	has	sufficient	resolution	(<0.01)	°C	to	offer	improved	temperature	

recording,	especially	 in	those	models	which	currently	only	record	temperature	 in	

integer	intervals.	Dive	computer	models	have	time	constants	(time	to	adjust	to	63%	

total	temperature	change)	ranging	between	17	and	300	seconds	(Marlowe	et	al.	2021),	

which	affects	the	time	taken	to	equilibrate	to	ambient	temperature.	In	areas	of	high	

air	temperature,	this	risks	artificially	high	temperatures	being	recorded	because	of	

surface	heating	of	the	device.	Knowing	the	duration	of	each	dive	would	allow	either	

removal	of	dives	of	less	than	5	minutes	(which	is	insufficient	time	to	equilibrate	to	

ambient	water	temperature	for	some	models	with	slower	response	time)	or	based	

on	a	known	time	constant	for	the	model.	

Subject	to	data	storage	capacity,	improving	the	recorded	resolution	and	recording	

parameters	such	as	the	model	and	dive	duration	would	ensure	that	bounce	dives	or	

known	inaccurate	models	could	be	excluded,	as	features	such	housing	material	and	

pressure	sensor	location	are	known	to	be	significant	for	bias	(Marlowe	et	al.	2021).	

These	would	allow	better	quality	control	of	a	dataset	and	maximise	future	potential	

for	using	dive	computers	for	temperature	monitoring.	Computers	are	not	calibrated	

instruments	and	so	sensor	temperatures	may	also	drift	over	time,	further	research	

would	be	required	in	this	area.	
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3.5.7 Uncertainties	and	requirements	for	data	

Both	comparison	datasets	used	in	the	study	have	been	interpolated,	spatially,	using	

weighted	 algorithms	 and/or	 using	 background	 data	 for	 gap	 filling.	 Uncertainty	

estimates	for	individual	comparison	data	points	in	this	study	are	between	0.16	and	

1.07	ºC	for	θ(sat)	and	between	0.04	and	1.0	°C	for	θ(TSEA),	with	the	TEMPERSEA	

dataset	having	a	formal	error	of	0.31	°C	at	the	surface	(Agulles	et	al.	2020).	It	is	not	

possible	to	ascertain	the	proportion	of	systematic	error	in	θ(DC)	point	data	from	the	

current	 dataset	 and	 therefore,	 ad	 hoc	 point	 data	 is	 of	 little	 use	 for	 temperature	

measurement	 in	 isolation.	 Devices	 with	 large	 bias	 should	 still	 correctly	 identify	

seasonal	variation,	albeit	offset.	Additionally,	the	overall	absolute	mean	bias	seen	of	

0.5	 °C	 (θ(DC)	 -	 θ(sat))	 and	 0.2	 °C	 (θ(DC)	 -	 θ(TSEA))	 are	 within	 the	 specified	

uncertainty	 ranges	of	 the	comparison	datasets,	 the	proportion	derived	 from	each	

component	indeterminable.	

The	 requirements	 for	 accuracy,	 spatial	 and	 temporal	 resolution,	 and	 acceptable	

degree	of	uncertainty	for	ocean	temperature	data	varies	depending	on	the	intended	

use	(National	Research	Council,	2000).	For	example,	requirements	for	monitoring	

of	deep	ocean	sea	temperature	are	stringent	at	0.002	°C	(Pawlowicz,	2013),	but	the	

World	 Meteorological	 Organization	 (World	 Meteorological	 Organization,	 2020)	

only	requires	SST	measurements	to	0.1	°C.	The	three	themes	of	the	Global	Ocean	

Observing	System	(GOOS)	have	requirements	more	within	reach;	climate	change	

detection	(0.1	°C	on	500	km	grid	at	monthly	resolution),	operational	services	(e.g.,	

numerical	 weather	 prediction:	 0.2	 –	 0.5	 °C	 accuracy	 at	 100	 km	 grid	 and	 3-day	

resolution)	and	ecosystem	health	(0.2	°C	daily)	(Needler	et	al.,	1999;	Kennedy,	2014;	

Moltmann	et	al.	2019).	The	observed	biases	indicate	dive	computers	can	offer	data	

within	the	required	range	for	numerical	weather	prediction	and	ecosystem	health	

analyses.	 Observations	 from	 buoys	 stratified	 to	 weekly,	 monthly	 and	 seasonal	

resolutions	have	been	used	to	identify	seasonal	patterns,	interannual	variability	and	

climate	signals	related	to	ENSO	(McPhaden	et	al.	2010).	Buoys	have	SST	resolution	

and	accuracy	(0.1±1.0)	°C	(National	Data	Buoy	Centre)	and	while	overall	bias	in	data	

collected	from	unknown	models	is	greater	than	that,	the	ability	to	identify	seasonal	
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patterns	 at	 different	 resolutions	 has	 clearly	 been	 demonstrated,	 and	 many	 dive	

computer	models	are	known	to	have	comparable	resolution	and	accuracy	(Marlowe	

et	al.	2021).	Thus,	a	dataset	restricted	to	dive	computers	with	higher	accuracy	could	

be	used	in	comparable	ways	to	buoys.			

3.6 Conclusions	

Our	 results	 clearly	 demonstrate	 that	 dive	 computers	 can	 resolve	 interannual	

variations	and	seasonal	patterns	of	data	comparable	with	OSTIA	and	 insitu	data.	

This	can	provide	a	layer	of	insight	at	varying	depths	on	a	local	level,	over	and	above	

that	available	 from	other	sources.	As	depth	resolved	data	 is	key	to	monitoring	of	

ecosystem	processes,	we	suggest	that	a	database	of	temperature	data	derived	from	

SCUBA	 diver	 citizen	 scientists	 can	 deliver	 viable	 data	 to	 complement	 existing	

datasets.	The	consistency	between	the	bias	found	for	subsamples	of	the	total	data	

demonstrate	that	the	numbers	of	dives	do	not	need	to	be	in	the	thousands	to	be	

produce	useful	results,	with	only	around	100	datapoints	needed	for	consistency.	Data	

will	be	most	useful	in	commonly	dived	areas,	giving	greater	spatial	continuity,	but	

in	areas	with	fewer	dives	and	limited	or	no	other	monitoring,	patterns	of	data	should	

still	be	visible	from	smaller	datasets.		

Retrospectively	 analysing	 data	 collected	 without	 a	 research	 question	 limits	 the	

possible	analyses	(Hochachka	et	al.	2012),	and	these	limits	were	seen	with	the	lack	

of	useful	metadata	such	as	model	of	dive	computer	or	dive	duration,	which	could	

improve	overall	analyses.	However,	despite	this	lack	of	information	our	uncontrolled	

real-world	example	gave	outputs	with	absolute	bias	of	0.5	°C	and	less,	identification	

of	 months	 and	 years	 with	 large	 anomalies	 and	 consistent,	 comparable	 seasonal	

patterns	at	different	scales.	
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Chapter	4. Diveintoscience.org:	an	interactive	website	
for	citizen	science	divers		

4.1 Chapter	summary	

The	crowdsourcing	of	data	from	sensors	worn	by	the	public,	to	inform	research,	is	

increasingly	common.	SCUBA	divers	commonly	wear	dive	computers,	which	have	

been	shown	to	have	potential	 for	contributing	 to	ocean	monitoring,	but	data	are	

largely	unavailable,	or	inaccessible,	in	the	dive	logs	of	individual	divers.	This	chapter	

describes	the	current	knowledge	landscape	in	geospatial	online	citizen	science	and	

the	development	of	an	interactive	citizen	science	website	for	collection	of	data	from	

dive	computers,	using	the	Shiny	package	in	R.		

4.2 Introduction		

Public	participation	in	scientific	research	(Bonney	et	al.	2009a)	(commonly	referred	

to	 as	 citizen	 science),	 is	 increasingly	 recognised	 as	 a	 mechanism	 for	 gathering	

volumes	of	data	at	temporal	and	spatial	scales	that	are	not	possible	by	other	means	

(Dickinson	 et	 al.	 2012).	 The	 benefits	 and	 potential	 of	 citizen	 science	 have	 been	

recognised	by	governments	(Pocock	et	al.	2014a),	the	European	Union	(de	Rijck	et	

al.	 2020)	 and	 the	United	Nations	 (Rogers	 1995).	 In	 their	White	Paper	on	Citizen	

Science	for	Europe	(2015),	Socientize	highlight	the	need	for	public	engagement,	trust	

and	education	in	designing	effective	programmes	for	reform,	and	state	that	citizen	

science	should	be	seen	as	an	integral	part	of	mainstream	science	activities.	Datasets	

are	often	difficult	to	access,	many	being	contained	within	distinct	research	projects,	

or	dispersed	in	small	quantities	around	many	independent	researchers	(Reichman,	

Jones,	and	Schildhauer	2011).	Data	quality	is	a	concern	cited	in	the	literature	(Bonney	

et	al.	2014;	Lukyanenko,	Parsons,	and	Wiersma	2016),	but	many	case	studies	show	

that	data	gathered	in	a	participatory	manner	can	be	of	equally	high-quality	as	that	

gathered	in	a	more	traditional	manner	(Vianna	et	al.	2014;	Kosmala	et	al.	2016;	Albus,	

Thompson,	and	Mitchell	2019).		
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4.3 Technology-driven	citizen	science	

Citizen	science	projects	can	be	contributory,	collaborative	or	co-created	(Bonney	et	

al.	 2009a),	 depending	 on	 the	 level	 and/or	 manner	 of	 public	 involvement.	 Most	

projects	 falling	 into	 the	 ‘contributory’	 category	 (Science	 Communication	 Unit	

University	of	the	West	of	England	2013).	Using	low-cost	or	non-traditional	sensors	

(Strigaro,	 Cannata,	 and	 Antonovic	 2019)	 as	 a	 complementary	 source	 of	 data	 for	

environmental	 monitoring	 is	 an	 example	 of	 a	 ‘crowdsourced’	 approach	 (Haklay	

2018)	 to	 contributory	 projects.	 Wearable	 biosensors	 (such	 as	 electrocardiogram	

monitors	 included	 in	 smart	 watches)	 which	 record	 continual	 time	 series	 of	

physiological	parameters	(Li	et	al.	2017)	are	on	the	increase.	Our	ability	to	gather,	

share	 and	 connect	 large	 quantities	 of	 data	 has	 been	 revolutionised	 by	 the	

smartphone	 (Roy	 et	 al.	 2012;	 Katapally	 2020).	 Fine	 scale	 atmospheric	 data	 from	

smartphones	 have	 been	 utilised	 to	 correct	 bias	 in	 surface	meteorological-station	

measurements	 (Li	 et	 al.	 2021).	 In	 contrast	 to	 citizen	 science	 projects	 requiring	

subject	matter	expertise	such	as	capturing	species	presence	data,	the	quality	of	the	

data	 output	 from	 crowdsourced	 sensor	 projects	 is	 largely	 a	 function	 of	 the	

underlying	 sensor	 capacity,	 not	 the	 capability,	 knowledge	 or	 experience	 of	 the	

wearer,	although	project	design	and	metadata	will	play	a	part.		

Environmental	 conservation	 is	 accessible	 to	 large	 groups	 of	 people	 via	 digital	

platforms	 (Sharma	 et	 al.	 2019).	 With	 ever	 expanding	 use	 of	 and	 access	 to	 the	

internet,	websites	are	an	important	communication	mechanism	(Garett	et	al.	2016).	

Projects	which	require	web-based	technology	achieve	this	either	by	the	development	

of	their	own	website	or	web	application	(e.g.,	Birdwatch	(RSPB	n.d.))	or	by	hosting	

on	 a	 platform	 which	 brings	 multiple	 projects	 together,	 such	 as	 Zooniverse	

(Aristeidou,	Scanlon,	and	Sharples	2020).	There	are	also	sites	which	collate	links	to	

interesting	 or	 related	 projects,	 such	 as	 Scotland’s	 Environment	 Citizen	 Science	

Portal	(Scotland's	Environment	n.d.).	The	danger	of	sites	with	a	list	of	links,	is	that	

if	not	regularly	checked,	links	go	out	of	date	and	the	referring	page	itself	becomes	

out	of	date.		
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The	 development	 of	 geospatial	 technologies	 has	 increased	 the	 abundance	 of	

environmental	data	(Zhang	2019).	Geo-located	web-based	activities	may	range	from	

submission	 of	 photos	 of	 bees	 (University	 of	 Aberdeen	 n.d.)	 to	 logging	 roadkill	

(Projekt	Roadkill	n.d.).	Combined	with	web	technologies,	with	different	degrees	of	

automation,	 volunteers	 are	 able	 to	 submit	 large	 volumes	 of	 spatially	 defined	

ecological	data	from	GIS-enabled	devices,	via	the	internet,	to	centralised	databases	

(Dickinson	et	al.	2012),	with	data	seen	as	analogous	with	remote	sensing	(Thiel	et	al.	

2014).	 This	 offers	 potential	 in	 areas	 where	 a	 monitoring	 network	 would	 be	

prohibitively	 expensive,	 or	 there	 are	 other	 sampling	 challenges	 such	 as	

inaccessibility	(for	example	the	Caribbean	or	Pacific	Islands)	(Brewin	et	al.	2017b).	

Participants	 in	 environmental	 citizen	 science	 have	 been	 shown	 to	 make	 better	

environmental	 decisions,	with	 citizen	 science	 having	 been	 described	 as	 ‘a	 public	

good	 which	 supports	 environmental	 stewardship’	 by	 Dickinson	 et	 al.	 (2012).	

Motivations	and	personal	benefits	to	participating	such	as	empowerment,	greater	

self-awareness,	learning	about	science	and	positive	mental	health	impacts	have	been	

well	 documented	 in	 the	 literature	 (Hartig	 et	 al.	 2003;	 Koss	 and	 Kingsley	 2010;	

Bratman,	Hamilton,	and	Daily	2012).		

4.3.1 Divers	as	citizen	scientists	

Dive	computers	are	as	ubiquitous	as	 smartphones	and	biosensing	watches	 in	 the	

diving	world;	the	majority	of	the	estimated	6	-	10	million	SCUBA	divers	worldwide	

wearing	one	or	more	(Wright	et	al.	2016).	With	sufficient	data,	dive	computers	have	

been	 found	 to	have	 an	overall	mean	bias	of	 (−0.2	±	 1.1)	 °C	 (Marlowe	et	 al.	 2021),	

offering	 huge	 opportunity	 to	 contribute	 to	 observational	 datasets,	 given	 the	

potential	numbers	of	available	data	points	worldwide.	SCUBA	divers	are	particularly	

keenly	 engaged	 with	 participating	 in	 conservation	 initiatives	 (Thiel	 et	 al.	 2014;	

Hermoso	et	al.	2019).	The	greatest	potential	for	SCUBA	divers	as	citizen	scientists	is	

to	gather	depth-resolved	information	that	is	difficult	to	gather	by	traditional	means	

(Marlowe	et	al.	2021),	to	support	the	shortfall	in	available	data	due	to	logistical	and	

economic	constraints	of	collection	(Wright	et	al.	2016).	Although	SCUBA	divers	are	

already	 active	 in	 coastal	 areas,	 and	 in	 conservation	projects,	 and	dive	 computers	



	 105	

have	been	shown	to	have	the	potential	to	contribute	to	ocean	monitoring,	most	data	

remain	undiscovered	and	inaccessible	in	divers’	personal	computers	or	logs.		

Diver	focused	initiatives	exist	which	aim	to	utilise	recreational	divers	for	collection	

of	physical	parameters,	 such	as	Project	Baseline	(Project	Baseline	n.d.),	an	online	

resource	connecting	divers	and	snorkellers	with	projects	in	their	local	areas.	Projects	

include	 logging	 a	 range	 of	 underwater	 observations,	 which	 may	 include	 water	

temperature	or	quality.	Paralenz	make	small	diving	cameras,	which	also	record	geo-

located	temperature	profiles.	When	users	upload	their	videos	to	the	Paralenz	app,	

the	 additional	 oceanographic	 data	 is	 shared,	 which	 can	 contribute	 to	 research	

(Paralenz.com	n.d.).	Project	Hermes	is	a	pilot	stage	project	where	recreational	divers	

carry	a	small	GPS	enabled	device,	collecting	temperature	depth	profiles,	with	the	

goal	 to	 add	 additional	 sensors	 in	 the	 future	 (Cousteau	 n.d.).	 However,	 there	 is	

currently	no	cohesive	central	database	for	data	derived	from	citizen	science	divers.	

The	 ideal	 ‘futurescape’	 would	 be	 a	 collaborative	 shared	 database	 fed	 into	 from	

multiple	sources,	allowing	users	to	contribute	to	a	local	initiative	they	feel	connected	

to,	whilst	contributing	to	a	wider	global	effort.	

4.3.2 Diveintoscience	(DiS1)		

A	pre-existing	Diveintoscience	portal	(DiS1)	was	developed	alongside	work	carried	

out	by	Wright	 et	 al.	 (2016),	providing	 simple	visualisation	of	 approximately	 7500	

records	 collected	 in	 2012.	 There	 was	 no	 upload	 or	 interactivity	 option,	 but	 to	

contribute,	users	had	to	complete	a	spreadsheet	template	provided	on	the	site	with	

details	of	their	dives,	then	email	this	to	the	project	convenors.	This	was	a	barrier	to	

uptake	as	 to	manually	 transfer	 their	data	 from	a	 logbook	 to	a	 templated	 .csv	 file	

involved	a	significant	effort	on	the	part	of	the	user.	

4.3.3 R	Shiny	

Shiny	is	an	R	package	designed	to	allow	users	to	easily	build	interactive	web	apps	

using	 R	 knowledge	 rather	 than	 standard	 web	 technologies	 (Shiny).	 This	 can	 be	

advantageous	to	scientists	who	may	already	be	comfortable	working	in	R.		
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Shiny	is	commonly	used	as	a	tool	for	interactive	visualisation	and	manipulation	of	

data,	with	many	apps,	including	citizen	science	data	websites,	easily	findable	online.	

The	Centre	for	Ecology	and	Hydrology,	for	example,	has	a	website	displaying	data	

collected	through	the	Grasshoppers	and	Allied	Species	Recording	Scheme	map	(UK	

Centre	for	Ecology	and	Hydrology	n.d.)	and	the	California	Seagull	Frequency	and	

Distribution	site	(Blasco	n.d.)	visualises	data	collected	via	the	eBird	project	(Cornell	

Lab	 of	Ornithology	 n.d.).	However,	 of	 the	 sites	 found,	most	 do	 not	 allow	 direct	

import	of	data,	but	primarily	support	interactive	visualisation	of	pre-existing	data.	

The	Community	Water	Data	Analysis	Tool	 (Anonymous,	n.d.)	 is	a	 free	 tool	built	

using	R	and	Shiny,	providing	visualisation	tools	allowing	community-based	water	

quality	monitoring	initiatives	to	explore	their	data.	CWDAT	includes	functionality	

to	upload	.csv	files	but	does	not	save	to	a	data	repository	in	the	backend.	To	the	best	

of	our	knowledge	there	are	no	Shiny	based	citizen	science	apps	allowing	not	only	

visualisation,	but	collection	of	user	data	to	add	to	a	back-end	database.		

4.3.4 Diveintoscience2	(DiS2)		

Diveintoscience2	(DiS2)	is	a	website	built	with	the	aim	to	provide	a	mechanism	for	

recreational	 divers	 around	 the	world	 to	 anonymously	 upload	 temperature/depth	

profiles	from	their	dive	computers.	It	is	developed	functionally	from	a	blank	slate	

but	is	an	expansion	to	the	DiS1	website	concept.	All	collected	data	is	open	access	and	

freely	available	for	download.	By	offering	a	mechanism	to	collate,	store	and	process	

data,	it	is	possible	to	extract	information	and	build	greater	knowledge	of	the	marine	

environment,	supporting	conservation	and	climate	change	initiatives.		

The	aims	of	DiS2	are	to	

- Provide	a	mechanism	for	people	to	easily	share	data	from	their	dive	computer	

profiles,	making	a	meaningful	contribution	to	conservation.	

- Allow	people	 to	explore	 the	 collected	data	 in	a	manner	which	 is	 easy	and	

understandable.	

- Make	data	open	for	anyone	to	freely	access	and	use.	

- Increase	the	volume	of	depth	resolved	ocean	temperature	data.	
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This	 chapter	 does	 not	 aim	 to	 discuss	 in	 detail	 methods	 for	 developing	 web	

development	 processes	 or	 designing	 citizen	 science	 projects,	 as	 these	 are	 well	

documented	elsewhere	(e.g.	Burdman	1999;	Howcroft	and	Carroll	2000;	Bonney	et	

al.	2009b;	Robinson	et	al.	2019).	We	describe	using	the	Shiny	package	in	R	(RStudio	

n.d.)	to	develop	a	website	with	the	defined	purpose	of	collection	of	depth-resolved	

temperature	 data	 from	 SCUBA	 dive	 computers.	 We	 cover	 the	 project	 history,	

provide	 a	 background	 context	 in	 the	 use	 of	 web	 technologies,	 followed	 by	 a	

description	 of	 the	 developed	 website	 and	 under-pinning	 thought	 processes.	We	

conclude	by	discussing	benefits	and	limitations,	offering	improvements	for	future	

research.	

4.4 Development	of	DiS2		

4.4.1 Design	goals	

The	original	portal	(DiS1)	had	achieved	its	purpose	as	a	proof-of-concept	exercise.	

However,	it	was	built	using	code	which	formed	part	of	a	wider	system.	As	such,	much	

of	the	code	was	redundant,	with	no	reason	for	inclusion	in	the	project,	making	the	

site	hard	to	interpret.	The	graphics	were	dated,	with	minimal	interactivity.	As	such,	

the	decision	was	made	to	develop	the	DiS2	from	scratch.	The	revised	website	needed	

to	improve	on	this	in	multiple	ways;	it	should	be	intuitive	and	simple	to	use,	catering	

to	 different	 audiences’	 needs	 (for	 example,	 citizen	 scientist,	 researcher,	 policy	

maker).	Requirements	were	a	clean	user	interface,	interactivity	(ability	to	filter	and	

manipulate	 the	 data	 on	 display),	 meaningful	 and	 clear	 visualisations,	 alongside	

simple	upload.	Upload	needed	to	allow	the	 input	of	additional	metadata,	such	as	

dive	 computer	 make	 and	 model,	 and	 geographic	 coordinates	 if	 these	 were	 not	

present	in	the	dive	logs.		

Mass	participation	 citizen	 science	projects	 require	 simplicity.	While	websites	 are	

generally	an	example	of	 low-effort	participation	(Garcia-Soto	et	al.,	2017),	as	data	

upload	was	a	feature,	 it	was	important	to	ensure	the	website	was	easy	to	use	and	

accessible,	with	as	few	user	experience	barriers	as	practically	possible.	Usability	is	

key,	as	not	only	do	participants	need	to	be	attracted	to	the	website	and	engaged	once	

they	 arrive	 (Vicens,	 Duch,	 and	 Perelló	 2018),	 but	 high	 levels	 of	 usability	 lead	 to	
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improved	rates	of	revisiting	(Garett	et	al.	2016).	For	DiS2	to	be	a	successful	initiative,	

revisit	rates	will	need	to	be	high.		

There	are	many	definitions	of	web	usability	(Chen,	Germain,	and	Rorissa	2009),	but	

we	consider	it	here	to	be	an	absence	of	difficulties	that	users	may	experience	with	

achieving	a	particular	website	goal.	Different	factors	contribute	to	usability	(Lee	and	

Kozar	2012)	such	as	intuitiveness	and	ease	of	navigation,	short	page	response	times	

and	high-quality,	 relevant	 content	 (Palmer	2002).	The	 relative	 importance	of	 the	

usability	elements	is	dictated	by	the	primary	purpose	of	the	site	(Calongne	2001).	

Diveintoscience	is	interdisciplinary	by	nature,	combining	the	collection	elements	of	

hands-on	environmental	data	collection	with	use	of	website	technology.	To	provide	

value	to	users,	increased	volumes	of	data	need	to	be	accessible	(Iwamoto	et	al.	2019).	

Exploration	of	 large	datasets	and	 insight	 into	underlying	data	can	be	more	easily	

achieved	 with	 interactive	 visualisations	 (Walker	 et	 al.	 2020).	 Visualisation	 is	

therefore	 a	 key	 feature	 of	 DiS2,	 with	 large	 volumes	 of	 data	 being	 displayed	

concurrently,	so	page	load	speed	is	an	important	factor.	

One	of	the	European	Citizen	Science	Association’s	10	principles	of	citizen	science	is	

the	importance	of	making	project	data	publicly	available	(ECSA	2015).	Open	data	are	

data	made	available	by	organisations	or	individuals	for	use/re-use	or	distribution	by	

all,	 and	 bring	 innovation,	 productivity	 and	 economic	 value	 (Duvivier	 2018).	 In	

addition,	the	more	open	data	are,	the	greater	the	societal	benefit	(Molloy	2011).	Easy	

access	 and	 inclusion	 of	metadata	 is	 important,	with	 prescribed	 specifications	 for	

comprehensive	 and	 consistent	 description	 of	 data	 (Reichman,	 Jones,	 and	

Schildhauer	2011),	including	collection	mechanism	and	uncertainties.		

4.4.2 Build	

DiS2	is	built	using	the	Shiny	package	in	R	and	published	via	RStudio	Connect.	R	is	a	

statistical	programming	language	commonly	used	in	the	sciences.	Benefits	of	using	

R	based	web-publishing	is	that	it	allows	future	development	by	scientists,	who	may	

not	have	web-development	skills,	to	share	their	data	using	a	language	with	which	

they	 may	 be	 more	 familiar.	 R	 also	 offers	 out-of-the	 box	 easy	 visualisation	 and	
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interactivity.	 The	 Shiny	 system	 architecture	 separates	 code	 relating	 to	 the	 user	

interface	(usually	via	a	file	named	ui.R)	and	server	logic	(server.R)	although	these	

can	be	maintained	in	a	single	file	should	project	simplicity	allow	it.	Data	or	filtering	

options	 are	 primarily	 via	 user	 input	 into	 a	 browser.	 Shiny	 is	 built	 on	 a	 reactive	

programming	model	(RStudio	n.d.).	In	simple	terms,	when	the	user	does	something	

in	 the	 browser,	 reactive	 sources	 are	 affected,	 and	 a	 response	 is	 returned	 in	 the	

browser,	 e.g.,	 a	 plot	 is	 displayed.	DiS2	 is	 distinct	 from	other	 Shiny	based	 citizen	

science	 websites	 in	 its	 live	 file	 processing,	 in-line	 user	 addition	 and	 editing	 of	

metadata,	and	importation	into	a	database.		

Users	 expect	 websites	 which	 are	 not	 only	 usable	 and	 functional,	 but	 also	 look	

appealing.	Although	out	of	 the	box	Shiny	offers	a	clear,	 responsive	user	 interface	

with	 intuitive	 interactivity	 features,	 to	 produce	 something	 more	 aesthetically	

pleasing	in	keeping	with	modern	website	design,	additional	Cascading	Style	Sheets	

(CSS)	knowledge	is	required.		

4.4.3 Landing	pop-up	

When	a	user	arrives	at	the	site,	a	pop-up	lightbox	is	automatically	displayed	(Figure	

4.1).		

This	fulfils	multiple	purposes:	

a) Delivers	a	call	to	action,	inspiring	people	with	the	message	that	we	need	their	

data	

b) Quickly	summarises	why	temperature	data	are	important		

c) Allows	 the	 page	 to	 continue	 loading	 in	 the	 background	whilst	 the	 user	 is	

reading/closing	the	lightbox	
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Figure	4.1.	Pop-up	lightbox	displayed	as	a	user	arrives	at	diveintoscience.org.	

4.4.4 Site	map	

Page	 titles	 were	 chosen	 to	 facilitate	 an	 intuitive	 understanding	 either	 of	 the	

underlying	content	of	the	page,	or	the	task	that	can	be	fulfilled	on	the	page	(Dive	

Map,	Import	Data,	Export	Data,	About)(Figure	4.2).		

	

Figure	4.2.	Diveintoscience	site	map	

Landing	pop-
up

Dive	map Export	data Import	data About
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4.4.5 Data	

Divelogs.de	is	a	free	open	access	online	dive	log	application.	Users	can	upload	their	

dive	logs	and	chose	whether	they	are	able	to	be	seen	publicly.	Around	89	000	open	

access	 temperature	data	points	 (individual	dives,	with	associated	metadata)	were	

sourced	from	divelogs.de	and	used	to	initially	populate	Diveintoscience.	

4.4.6 Dive	map	

The	 landing	page	of	 the	website	 consists	of	 an	 interactive	map	 (Figure	4.3)	built	

using	the	leaflet	package	in	R	(RStudio	n.d.).	On	initial	load	the	map	is	seen	greyed	

out	in	the	background,	behind	the	previously	described	popup.	The	map	is	centred	

at	a	zoom	level	which	facilitates	display	of	a	number	of	dives	that	gives	a	usable	page	

load	speed.	At	time	of	writing	this	was	just	under	4000	dives	(out	of	the	original	89	

000	dives	uploaded).	If	more	dives	within	the	map	bounds	defined	by	the	zoom	level	

(area	displayed	on	the	screen)	are	uploaded	by	users,	then	this	number	will	increase.	

Page	 load	 speed	will	 also	be	 impacted	by	 the	 connectivity	 speed	dictated	by	 the	

broadband	of	the	user.		

In	the	bottom	left-hand	corner,	multivariate	filters	enable	the	user	to	select	which	

dives	are	plotted	in	the	current	bounds	of	the	map.	Filtering	between	inland	and	

ocean	dives,	a	date	range	of	interest	and/or	selection	of	one	or	several	months	are	

allowed	 in	 any	 combination.	The	user	 can	move	 the	map	or	 zoom	 to	 an	 area	 of	

interest	using	the	mouse,	trackpad	or	on	screen	zoom	buttons.	A	dive	is	defined	as	

‘Inland’	based	on	intersection	with	a	wrld_simpl	spatial	dataset	(Bivand	n.d.)	in	the	

R	maptools	package	(Bivand	and	Lewin-Koh	n.d.).	wrld_simpl	provides	simplified	

country	polygons	and	sf_intersects	 from	the	sf	package	(Pebesma	n.d.)	 is	used	to	

ascertain	intersection.	If	there	is	no	intersection	between	a	dive	and	a	polygon,	the	

dive	is	classified	as	‘Ocean’.	The	inland/ocean	distinction	allows	separation	of	lakes	

(and	potentially	swimming	pools)	from	ocean	data	to	assist	with	analyses.		
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Figure	4.3.	Diveintoscience	‘Dive	Map’	page,	showing	clusters	of	dive	points.	

Contextual	 information	 is	 important	 in	 interactive	 visualisations	 (Rock	 Content	

Writer	n.d.),	to	help	the	user	get	an	accurate	picture	of	the	data.	Diveintoscience	

provides	context	by	displaying	the	total	number	of	dives,	along	with	the	number	of	

dives	in	view	-	which	adjusts	as	the	number	of	dives	in	the	map	bounds	change	with	

user	filtering.		

Dives	 are	 displayed	 in	 clusters,	 for	 ease	 of	 viewing,	 using	markercluster	 options	

(RStudio	n.d.).	Clicking	on	a	cluster	will	either	zoom	in	and	split	into	smaller	clusters	

or	expand	the	cluster	into	individual	points.	Clicking	on	an	individual	point	gives	

additional	detail	of	the	dive	such	as	date,	model,	temperature,	latitude	and	longitude	

(Figure	4.4).		
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Figure	4.4.	Detailed	information	for	one	dive,	showing	single	dive	metadata,	markercluster	

and	expansion	

Innovative	 solutions	 for	 pre-processing,	 interactive	 analysis	 and	 intuitive	

visualisation	 have	 all	 been	 developed	 over	 the	 past	 decades,	 such	 as	 pattern	

recognition	and	interactive	mining	of	datasets	(Fayyad,	Grinstein,	and	Wierse	2002).	

Good	design	is	critical,	as	however	good	the	underlying	data	or	the	statistical	rigour,	

if	the	results	are	poorly	displayed,	they	will	not	convince	or	encourage	the	tool	to	be	

used	(Driscoll	n.d.).	Visualisation	requirements	of	the	data	for	a	policy	maker	may	

be	different	to	that	telling	the	story	to	a	wider	audience,	but	the	primary	intended	

audience	is	citizen	scientists.		

The	 ‘Explore	Data’	 page	provides	 interactive	plots	 of	 the	median	 temperature	by	

month	 (Figure	4.5)	 and	numbers	of	dives	per	 year,	 for	 the	data	which	 is	 in	 view	

bounds	on	the	Dive	map.	For	example,	if	the	data	have	been	filtered	to	just	show	

ocean	dives	for	a	specific	year,	only	these	are	reflected	in	the	plots.	The	timeline	at	

the	 base	 of	 the	 plot	 adds	 an	 additional	 interactive	 layer,	 allowing	 selection	 of	 a	
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smaller	date	range	in	the	plot	itself.	Plots	are	built	using	ggplot2	(Wickham	2016)	

and	dygraphs	(“Dygraphs	for	R”	n.d.).		

The	‘Filtered	data’	tab	displays	the	source	data	in	tabular	form.	

	

Figure	4.5.	'Plot'	tab	in	Explore	Data	page,	showing	median	temperature	by	month	(°C).	The	

range	of	the	x	axis	is	manipulatable	by	the	user	via	the	bottom	bar.	

A	key	principle	for	Diveintoscience	is	to	ensure	open	access	to	all	data	collected.	In	

the	 left-hand	 column,	 download	 buttons	 are	 provided	 for	 both	 the	 filtered	 data	

(Download	Selection)	and	 the	entire	dataset	 (Download	All).	Downloads	contain	

the	summary	data	for	each	dive	in	.csv	format.	This	which	allows	easy	individuals,	

researchers,	or	scientists	to	carry	out	their	own	complementary	analyses.		

4.4.7 Import	data	

Dive	log	applications	allow	users	to	upload	depth/time	profiles	as	a	history	of	their	

dive	 locations.	 There	 are	 many	 levels	 of	 additional	 detail	 that	 may	 be	 recorded	

according	 to	 user	 preference,	 but	 commonly	 these	 include	 information	 on	 dive	

buddy	(who	they	partnered	with	on	the	dive),	equipment	used	or	what	they	saw	on	

a	dive.	Most	modern	dive	computers	also	record	changes	in	temperature	during	the	
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dive	as	a	function	of	depth	and	time,	although	some	older	models	of	dive	computer	

record	a	single	minimum	temperature.		

Dive	computer	export	 formats	are	not	consistent.	Whilst	an	XML	based	protocol	

(UDDF)	 exists,	 this	 is	 not	 universally	 used,	 and	 export	 formats	 are	 in	 the	main	

proprietary	to	each	manufacturer.	To	develop	a	website	that	allows	upload	of	files	

directly	exported	from	dive	computers,	it	needs	to	be	able	to	cater	to	these	multiple	

formats.	A	cross-platform,	open-source	code	library	‘libdivecomputer’	(Driesen	n.d.)	

exists,	providing	a	mechanism	for	communication	across	models.	In	addition,	there	

are	 various	 third-party	 applications	which	 use	 libdivecomputer	 to	 provide	 inter-

model	dive	log	applications.	One	example	is	Subsurface	(Subsurface	Divelog	n.d.),	a	

fully	 featured	 desktop/mobile	 dive	 logging	 app.	 Both	 libdivecomputer	 and	

Subsurface	are	actively	maintained	and	new	dive	computer	models	are	catered	to	as	

they	are	released.		

DiS2	could	be	developed	to	use	 libdivecomputer	and	allow	uploads	directly	 from	

dive	 computers.	 However,	 developing	 this	 would	 involve	 significant	 coding	

expertise,	which	is	contrary	to	one	of	the	primary	benefits	of	using	Shiny,	that	of	

using	knowledge	of	R	rather	than	web	technologies	to	develop	online	applications.	

It	is	common	for	users	to	import	data	from	their	dive	computers	using	proprietary	

software	and	subsequently	export	data	from	that	application	into	an	additional	dive	

logging	 application	 or	 website	 which	 may,	 for	 example,	 allow	 them	 to	 add	

photographs	or	share/	track	their	dives	differently.	This	was	the	chosen	approach	

for	 DiS2.	 A	 user	 has	 one-off	 task	 to	 install	 Subsurface,	 with	 its	 benefit	 of	 being	

compatible	across	all	dive	computers.	Subsurface	is	then	used	to	import	data	from	

their	dive	computer(s).	Subsequently,	a	standardised	XML	export	can	be	made	from	

Subsurface	which	DiS2	has	been	developed	to	accept.	This	was	considered	the	best	

compromise	between	user	and	coding	effort.		

On	 opening	 the	 ‘Import	 Data’	 page	 a	 single	 tab	 with	 instructions	 is	 seen.	 The	

instructions	cover	the	entire	process	in	simple	bullet	points:	from	importing	data	

into	Subsurface,	exporting	in	a	format	that	DiS2	can	consume,	uploading	the	file	to	

the	 site	 and	 the	 required	 steps	 to	 save	 to	 the	 database.	 The	 requirement	 to	 add	
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latitude	and	longitude	data	is	highlighted	in	bold	text,	also	that	any	profiles	without	

latitude	and	longitude	will	not	be	saved	to	the	database.	A	note	is	made	on	the	left-

hand	side	that	large	files	may	take	a	little	while	to	upload	and	process.	In	the	left-

hand	column	there	is	a	short	paragraph	explaining	the	benefit	of	using	Subsurface,	

along	with	a	browse	button	to	allow	the	user	to	locate	a	file	for	upload	from	their	

file	system.		

If	the	user	attempts	to	upload	an	invalid	file	format,	a	user-friendly	error	message	is	

shown	(Figure	4.6).	Often	error	messages	seen	on	websites	are	system-generated,	

HTTP	status	codes	(“Hypertext	Transfer	Protocol	(HTTP)	Status	Code	Registry”	n.d.)	

(e.g.,	500	 is	an	Internal	Server	Error)	which	are	uninformative	to	the	uninitiated,	

leaving	 casual	 users	 unable	 to	 proceed.	 It	 is	 important	 to	 retain	 interest	 and	

motivation	of	the	user,	and	the	risk	is	that	they	lose	interest	if	there	are	difficulties	

uploading	the	file.	By	providing	a	 ‘human’	message,	the	user	 is	encouraged	to	try	

again	with	a	Subsurface	file,	rectifying	a	possible	file	issue,	or	to	directly	contact	the	

team,	who	should	be	able	to	identify	and	solve	issues	more	quickly.	As	this	is	rolled	

out	to	a	global	audience,	it	is	better	to	have	direct	contact	to	solve	problems	as	they	

arise.	It	would	be	unlikely	for	the	site	to	explode	into	an	unmanageable	level	of	use	

at	 such	 an	 early	 stage.	 As	 the	 site	 becomes	more	 widely	 used,	more	 automated	

mechanisms	will	be	developed.		
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Figure	4.6.	User	readable	error	message	seen	on	attempt	to	upload	invalid	file.	

When	 a	 user	 selects	 a	 valid	 file	 to	 upload,	 a	 progress	 bar	 shows	 the	 time	 to	

completion,	and	states	‘Upload	complete’	when	processing	has	finished.	Once	the	

file	 has	 loaded,	 two	 new	 tabs	 are	 visible	 in	 the	main	 body	 of	 the	 page:	 a	 ‘Data	

summary’	tab	and	a	‘Profiles’	tab,	with	the	‘Data	summary’	being	the	area	in	view.	

The	instruction	tab	is	still	available,	should	the	user	wish	to	clarify	anything,	but	it	

is	now	behind	the	new	tabs.	‘Data	summary’	contains	summary	information	for	each	

uploaded	dive	in	tabular	form,	including	a	dive	number,	site,	date,	time,	model	of	

dive	 computer,	 device	 identifier	 number,	 minimum	 recorded	 temperature,	

maximum	depth,	latitude	and	longitude.	With	a	few	exceptions,	most	dive	computer	

models	 do	 not	 currently	 have	 GPS	 capability.	 If	 latitude	 and	 longitude	 data	 are	

present	in	the	uploaded	log	file,	these	will	be	shown	in	the	table;	if	not,	the	columns	

will	be	blank,	 and	 the	user	will	need	 to	add	 these	manually.	A	message	 to	 input	

latitude	and	longitude	in	decimal	degree	format	is	shown	at	the	top	of	the	table.		

As	a	user	adds	latitude	and	longitude	to	a	row	in	the	table	(or	there	are	geolocated	

dives	 in	 the	 import	 file)	 the	 site	 becomes	 aware	 of	 these	dives,	 and	 the	 location	

appears	on	a	small	map	on	the	bottom	left-hand	side	of	the	page.	This	is	updated	in	
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real	time,	for	each	row	that	is	updated	by	the	user.	This	also	acts	as	a	visual	cue	to	

the	user	of	any	errors	in	coordinates,	for	example,	if	they	see	a	dive	appear	in	the	

wrong	continent.	A	user	can	also	edit	or	add	the	dive	computer	model	but	is	unable	

to	edit	any	other	fields.	When	the	user	has	finished	adding	metadata,	to	send	their	

geolocated	data	to	the	database	they	must	click	‘Save	Data’.	Any	dives	which	do	not	

have	coordinates	are	ignored.	Imported	dives	are	not	immediately	visible	on	the	site	

but	are	stored	in	the	database	with	a	status	of	‘New’.	This	is	part	of	a	user	testing	

process	 and	 in	 future,	 dives	 will	 be	 automatically	 validated	 by	 the	 system	 and	

displayed	in	the	main	site.		

4.4.8 About	

‘About’	is	a	simple	text-based	page	with	longer	information	about	the	project	than	

given	in	the	loading	pop-up	box.	The	page	also	includes	acknowledgments,	logos	of	

all	 the	 funding	sources	and	partners,	and	primary	contact	details	 for	 the	project.	

Citizen	science	projects	should	clearly	convey	the	context	in	which	data	have	been	

collected	 or	 created	 (Balázs	 et	 al.	 2021).	 As	 the	 project	 evolves,	 and	 further	 data	

sources	may	become	integrated,	this	information	will	be	clearly	disseminated	here.		

4.4.9 Data	management	

One	concern	with	citizen	science	data	is	that	quality	may	be	impacted	by	experience,	

training	 or	 expertise	 of	 the	 contributors	 (Hunter,	 Alabri,	 and	 van	 Ingen	 2012;	

Dickinson	et	al.	2012).	Bias	and	noise	can	arise	 from	uneven	sampling,	with	 local	

variation	missed	where	data	 are	 reported	nationally	 (Fritz	 et	 al.	 2019).	As	 in	 this	

instance	 volunteers	 are	 transporting	 instrumentation	 to	 collect	 temperature	

readings,	 bias	 based	 on	 user	 training	 should	 not	 be	 present.	 There	 will	 be	

heterogeneity	caused	by	systematic	errors	in	individual	dive	computers,	and	these	

have	been	explored	in	Chapter	2.		

Assessing	 the	 quality	 of	 volunteered	 geographic	 information	 (VGI)	 such	 as	

georeferenced	citizen	science	data	is	challenging	(See	et	al.	2013)	if	the	location	is	

manually	added.	Smartphones	can	utilise	GPS	for	automated	location	identification,	
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but	as	most	dive	computers	do	not	have	this	capability	at	present,	there	is	a	reliance	

on	the	user	entering	the	correct	coordinates.	This	adds	a	level	of	risk.	Adding	the	

visual	cue	of	the	display	on	the	upload	map	which	is	displayed	as	the	user	adds	co-

ordinates	aims	to	mitigate	this	risk.		

Subsurface	 XML	 export	 only	 generates	 metric	 values,	 even	 where	 the	 user	 has	

preferences	set	to	imperial,	relieving	the	need	to	cater	to	both	imperial	and	metric	

units.	There	are	many	different	levels	of	data	validation	and	cleaning,	from	manual	

verification	 through	 automated	 assessment	 and	 data	mining	 (Balázs	 et	 al.	 2021).	

Currently	manual	(expert)	validation	is	carried	out	on	dive	computer	data	uploaded	

to	the	database,	prior	to	display	on	the	website.	This	is	to	allow	review	of	imported	

data	and	build	an	assessment	of	the	data	landscape	from	citizen	science	divers	and	

can	be	modified	in	the	future	once	more	user	uploaded	data	is	present.	One	driver	

for	this	step	is	that	sensors	may	drift	over	time	if	they	are	not	calibrated	(Otmani,	

Benmoussa,	 and	 Benyoucef	 2011).	 Dive	 computers	 are	 often	 used	 by	 divers	 for	

decades	without	calibration,	and	 it	 is	not	known	what	 level	of	drift	occurs.	 If	we	

automatically	exclude	data	which	are	outside	of	realistic	oceanographic	bounds,	we	

will	 lose	 insight	 into	 the	 percentage	 of	 dive	 computers	 which	 are	 producing	

impossible	 or	 unlikely	 output	 due	 to	 drift	 or	 inherent	 systematic	 bias.	 It	 is	

impossible	 to	 know	 in	 advance	what	 dives	 users	may	upload,	 but	 over	 time	 this	

information	will	give	us	additional	understanding	in	the	possible	placement	of	dive	

computer	data	in	the	overall	monitoring	realm.		

4.4.10 Database	schema	

An	underlying	PostgreSQL	database	holds	all	live	data	available	for	plotting	on	the	

map	and	stores	uploaded	profiles.	It	has	a	simple	schema,	consisting	of	two	tables	

(Figure	4.7).	
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Figure	4.7.	PostgreSQL	database	schema	for	Dive	into	Science.	

The	 table	 ‘alldives’	 has	 one	 row	 of	 summary	 information	 for	 each	 dive.	 The	

associated	 temp/depth/time	profiles	are	stored	 in	 the	 ‘profiles’	 table,	with	a	uuid	

(universally	unique	identifier)	linking	the	summary	and	profile.		

4.4.11 Engagement	

The	goal	was	to	develop	a	working	proof	of	concept	website,	accessible	as	a	beta	to	

the	outside	world.	Having	been	through	a	thought	exercise	of	what	considerations	

should	be	made,	allowing	ease	of	future	development,	it	was	to	have	visualisation	

features	 and	upload	 capacity,	 but	without	necessarily	 being	 fully	 formed	or	 fully	

scalable	(for	example).	Following	citizen	science	and	human	behaviour	guidelines	

(Vicens,	 Duch,	 and	 Perelló	 2018),	 DiS2	 aims	 to	 motivate	 participation	 and	

engagement.		

By	involving	stakeholders	in	the	planning	process,	trust,	collaboration	and	buy-in	

are	 enhanced	 (Cigliano	 et	 al.	 2015).	 The	 needs	 of	 the	 varying	 stakeholders	 were	

considered	in	the	design	process,	aiming	to	understand	the	motivations	and	goals	

of	 participants	 for	 data	 collection,	 but	 also	 for	 potential	 consumers	 of	 the	 data.	

Initial	engagement	was	carried	out	via	a	survey	which	was	shared	on	several	diving	

related	social	media	groups.	This	was	a	brief	survey	with	a	small	number	of	questions	

such	 as	 ‘What	 make	 and	 model	 is	 your	 primary	 dive	 computer?’	 and	 ‘Do	 you	

regularly	use	more	than	one	computer	on	each	dive?’.	This	was	intended	as	a	quick	
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finger	 in	 the	 air	 check	 to	 establish	 a	 starting	 point	 for	 the	 project	 and	 to	 allow	

interested	 parties	 to	 share	 their	 thoughts	 -	 rather	 than	 being	 a	 detailed	 analysis	

process.	Approx.	90	 responses	were	 received.	Many	contributors	wanted	 features	

which	 would	 have	 been	 out	 of	 the	 realistic	 scope	 of	 the	 project,	 for	 example,	

requesting	 photo	 uploading	 capability.	 These	 features	 would	 have	 functionally	

turned	DiS2	into	a	general	dive-logging	software	(of	which	there	are	many	already).	

The	decision	was	made	to	keep	it	simple,	focused	on	collection	of	temperature	data,	

but	allowing	open	access	to	filter	or	download	raw	data	for	users	to	utilise	freely.		

Continued	engagement	and	contribution	is	important	for	the	success	and	longevity	

of	online	citizen	science	projects	(Nov,	Arazy,	and	Anderson	2014).	In	the	context	of	

DiS2,	 this	means	 repeated	 visits	 and	 data	 uploads	 as	more	 dives	 are	 completed,	

although	as	batches	of	dives	can	be	uploaded	at	once,	uploads	can	be	periodical.	

Studies	 of	 motivation	 into	 engagement	 with	 online	 participatory	 studies	 have	

included	 exploration	 of	 projects	 with	 community	 and	 social	 network	 elements,	

along	with	reciprocity	and	increased	knowledge	(Aristeidou	2017).		

Where	the	primary	motivation	for	contributors	to	open-source	software	projects	is	

a	‘desire	to	help	for	the	greater	good	worldwide’	(Baytiyeh	and	Pfaffman	2010),	along	

with	work	enjoyment,	the	main	motivations	for	SCUBA	divers	partaking	in	citizen	

science	projects	are	out	of	interest	in	the	field	under	study,	to	be	able	to	‘contribute’	

and	 for	 science	 (Lucrezi	 et	 al.	 2018).	Whilst	 DiS2	 has	 online	 elements,	 they	 are	

secondary:	 the	means	 for	 recording	 the	 data	 collected	 in	 the	 field.	As	 such,	 it	 is	

considered	that	motivations	are	likely	to	be	more	aligned	with	other	marine	citizen	

science	 than	 fully	 online	 projects,	 with	 personal	 satisfaction,	 knowledge	 and	

recognition	scoring	highly	(Thiel	et	al.	2014).		

4.4.12 GDPR	

It	is	important	to	consider	wider	ethical	issues	around	collection	of	data,	including	

legislation,	 sharing,	 rights	 and	 minimising	 negative	 impact.	 Protection	 of	

contributors’	privacy	and	anonymity	is	key	(Garett	et	al.	2016;	Katapally	2020).	For	

the	 current	 iteration	 of	DiS2,	 to	 ensure	 privacy	 and	minimise	 potential	 harm	 or	
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additional	security	complications,	user	logins	and	security	were	considered	out	of	

scope.	The	design	decision	was	made	to	build	DiS2	in	a	way	where	no	personally	

identifiable	information	about	participants	is	collected	or	recorded.	This	removed	

the	need	to	develop	login	areas	and	adhere	to	GDPR	(ICO	2021)	legislation.		

4.5 Discussion	

4.5.1 	R	Shiny	

A	purported	benefit	of	Shiny	is	the	ability	for	R	users	to	develop	web	applications	

via	 R,	 rather	 than	 with	 web	 technologies	 directly.	 Shiny	 removes	 a	 lot	 of	 the	

development	load	and	simplifies	interactive	visualisations,	by	offering	pre-existing	

functions.	Out	of	the	box,	Shiny	offers	the	ability	to	develop	clear,	responsive	user	

interfaces	 with	 intuitive	 interactivity	 features	 for	 information	 visualisation.	

However,	to	produce	something	more	aesthetically	pleasing	and	appropriate	for	an	

external	 facing	 website,	 additional	 Cascading	 Style	 Sheets	 (CSS)	 knowledge	 is	

required	to	manage	design	elements.	In	addition,	to	develop	a	more	complex	site	

such	as	including	a	database	connection,	it	is	recommended	that	the	developer	has	

at	least	a	basic	understanding	of	programming.		

A	Shiny	server	instance,	along	with	R,	are	required	in	the	background.	Publishing	

options	 exist,	 from	a	 fully-fledged	RStudio	Connect	publishing	 solution	 (RStudio	

n.d.)	to	simpler	and	cheaper	cloud-based	hosting	options	with	shinyapps.io	(RStudio	

n.d.).	 In	an	organisation	where	Shiny	 is	heavily	used	 such	as	Cefas	 (“Cefas	Open	

Science”	n.d.)	the	former	may	be	an	achievable	option,	but	for	many	citizen	science	

organisations	the	associated	costs	would	be	a	barrier.	Shinyapps.io	basic	solution	is	

free	and	can	be	a	good	entry	point.		

While	the	underlying	language	is	R,	new	packages	and	approaches,	such	as	Shiny’s	

reactive	programming	methodology,	need	to	be	learned	initially.	Page	speed	can	be	

an	issue	where	large	datasets	are	being	mined,	so	careful	planning	of	development	

approach	 is	 important.	 Long	 calculations	 can	 freeze	 the	user	 interface	until	 they	

finish,	although	new	packages	are	in	development	to	address	this	(Appsilon	2020a).	
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Ensuring	 Shiny	 only	 interfaces	 between	 R	 and	 the	 browser,	 with	 computations	

managed	in	a	database	or	browser	(Appsilon	2020b)	helps.	These	factors	may	require	

more	advanced	knowledge.	IT	departments	also	may	not	know	how	to	support	R	

Shiny,	so	there	is	a	risk	that	‘if	you	built	it	-	you	maintain	it’,	which	can	lead	to	a	

future	drain	on	time.		

4.5.2 Potential	for	DiS2		

DiS2	 has	 been	 developed	 with	 an	 aim	 to	 collect	 data	 on	 a	 global	 scale.	 As	

demonstrated	in	Chapter	3,	as	few	as	100	records	in	the	Red	Sea	can	identify	seasonal	

patterns,	 so	 huge	 numbers	 are	 not	 required	 to	 provide	 insight.	 Although	 larger	

volumes	 of	 data	 would	 be	 required	 in	 water	 bodies	 with	 more	 complex	

hydrodynamics,	DiS2	dive	computer	data	need	not	stand	alone,	or	give	a	complete	

picture.	With	appropriate	techniques	for	management	of	uncertainties,	DiS2	data	

could	be	incorporated	into	wider	datasets	such	as	the	International	Comprehensive	

Ocean-Atmosphere	Data	Set	(“ICOADS”	2021)	to	form	one	part	of	the	solution.		

Regions	with	 limited	 subsurface	monitoring,	 are	often	well	 populated	by	SCUBA	

sites	(e.g.,	the	South	Pacific	or	Caribbean).	Working	with	sentinel	dive	schools	in	

such	 regions	with	 little	 or	 no	 available	 ocean	 temperature	 data	would	move	 the	

project	 from	 a	 broad	 ‘get	 as	much	 data	 as	 possible	 from	 everywhere’	 to	 a	more	

focused	approach.	Callaghan	et	al.	(2019)	suggest	incentivising	sampling	at	specific	

locations	or	 times.	A	media	drive	 to	 request	data	 in	a	particular	area,	 to	 support	

specific	conservation	or	ecological	requirements,	would	be	akin	to	projects	such	as	

those	 on	 Project	 Baseline	 (Project	 Baseline	 n.d.),	 where	 individual	 divers	 are	

connected	 with	 scientists	 working	 on	 projects	 in	 a	 specific	 area.	 These	 two	

approaches,	global	and	targeted,	are	not	mutually	exclusive	-	targeting	specific	areas	

does	not	preclude	DiS2	being	useful	on	a	global	scale.	

DiS2	also	offers	an	opportunity	to	engage	the	wider	global	SCUBA	diving	community	

with	issues	of	environmental	importance,	and	a	mechanism	could	be	provided	on	

DiS2	 to	 allow	 highlighting	 of	 calls	 for	 data	 in	 areas	 of	 particular	 interest.	

Additionally,	building	a	project	around,	and	relationship	with,	known	dive	centres	
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would	give	us	the	opportunity	to	control	the	equipment	that	is	used,	such	as	using	

‘in-house’	dive	computers	 in	 the	case	of	 the	Berwickshire	Marine	Reserve	project	

(described	in	5.2.1),	and	ensure	dive	computers	are	calibrated	frequently.	By	frequent	

sampling	 in	 the	 same	 locations,	 a	 long-term	 time	 series	 and	observation	of	 local	

patterns	would	be	possible.		

4.5.3 Data	considerations	

When	designing	citizen	science	projects,	it	is	important	to	be	strategic	in	assigning	

any	research	tasks	(Cigliano	et	al.	2015)	such	as	considering	participant	comfort	and	

experience	 levels.	 However,	 in	 this	 proof-of-concept	 project,	 contributing	 divers	

make	decisions	about	dive	locations,	based	on	their	own	recreational	requirements	

or	 limits.	 As	 the	 participants	 select	 their	 own	 dive	 locations,	 the	 project	 style	 is	

defined	as	semi-structured	data	collection	(Kelling	et	al.	2019).	This	approach	has	

been	found	to	attract	sufficiently	large	numbers	of	participants	to	reduce	bias	in	data	

(Kelling	 et	 al.	 2019).	 Dive	 site	 selection	 ultimately	 makes	 data	 collection	 an	

engagement	 exercise,	 facilitating	 the	 collection	 of	 data	 as	 a	 secondary	 benefit	 of	

individuals’	leisure	activity	in	which	they	would	participate	anyway.	The	challenge	

then	lies	in	motivating	participants	to	upload	their	logs.	

As	the	data	collection	itself	is	automated	(collected	by	the	dive	computer),	but	the	

profiles	need	to	be	manually	uploaded,	 the	process	 is	defined	as	semi-automated	

(Muller	et	al.	2015).	Contributors	are	able	to	collect	data	in	a	real-world	context,	but	

the	addition	of	metadata	on	upload	to	 the	platform	allows	scientific	 rigour	 to	be	

applied	to	the	data	(Vicens,	Duch,	and	Perelló	2018).	Three	important	elements	of	a	

citizen	science	project	are	to	ensure	the	data	are	accessible,	findings	are	shared,	and	

contributors	are	acknowledged	(de	Vries,	Land-Zandstra,	and	Smeets	2019).	For	data	

to	be	used,	people	need	to	know	they	exist,	so	an	engagement	approach	for	raising	

awareness	needs	 to	be	considered,	whether	 it	be	by	publication,	 social	media,	or	

other	mechanisms.	

Spatial	and	temporal	inconsistencies	may	be	present	in	both	traditional	data	sources	

and	 citizen	 science	 initiatives	 (Callaghan	 et	 al.	 2019).	 As	 a	 global	 citizen	 science	
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initiative,	Diveintoscience	is	not	a	structured	collection	effort	and	as	such	has	no	

control	over	these	variations.	There	will	always	be	clusters	of	data	points	in	spatial	

and	temporal	dimensions,	as	more	diving	will	happen	in	preferred	locations	and	at	

certain	times	of	year.	This	can	be	positive	for	research	into	changes	on	a	micro	(local)	

scale.	To	bring	focus	to	an	area	of	interest,	a	call	to	action	from	community	or	science	

organisations	could	lead	a	concerted	push	for	data	submission	in	a	more	targeted	

approach.	 Tiago	 (2012)	 suggests	 that	 combining	 different	 data	 sources	 might	

produce	improved	results.	While	there	is	currently	no	single	centralised	database	

for	dive	computer	data,	if	data	from	the	available	sources	were	combined,	numbers	

of	dives	would	be	optimised.	

From	a	data	output	perspective,	the	longevity	and	value	of	a	website	which	relies	on	

participation	 depends	 on	 engagement,	 alongside	 the	 volume	 and	 quality	 of	 data	

collected	(Nov,	Arazy,	and	Anderson	2014;	Waldispühl	et	al.	2020).	Some	initiatives	

have	successfully	encouraged	several	hundred	of	thousand	participants	(Waldispühl	

et	al.	2020),	but	understanding	the	audience	and	developing	retention	mechanisms,	

longevity,	scalability,	encouraging	repeated	uploads	or	attracting	a	constant	stream	

of	new	participants	are	essential.	Feedback	was	gathered	pre-development	of	DiS2,	

but	stakeholder	access	was	minimal	due	to	COVID-19.	The	authors	believe	in	the	

potential	 of	 dive	 computers	 and	Diveintoscience	 to	 gather	 useful	 oceanographic	

information,	but	improved	engagement	will	be	required	moving	forward.	It	is	also	

important	to	define	the	success	criteria,	and	which	parameters	identify	whether	the	

website	 has	 been	 effective	 in	 its	 goals	 or	 demonstrating	 quality	 of	 data	 (Vicens,	

Duch,	and	Perelló	2018).	Data	quality	of	dive	computer	temperature	 is	now	more	

clearly	 understood,	 including	 the	 required	 number	 of	 datapoints	 for	 accuracy	

(Marlowe	et	al.	2021).	The	inclusion	of	metadata	such	as	model	and	length	of	dive	

will	allow	further	data	cleaning	and	validation.	DiS2	has	achieved	three	of	the	aims	

stated	in	4.3.4	by	providing	a	mechanism	for	people	to	easily	share	and	explore	data	

and	make	a	meaningful	contribution	to	conservation,	with	data	freely	accessible	for	

all.	No	quantification	has	been	given	to	the	final	aim	of	 increasing	the	volume	of	

depth	resolved	ocean	temperature	data,	but	 further	user	 testing	and	engagement	
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will	 establish	 any	 barriers	 or	 blocks	 to	 its	 use,	 and	mitigation	 processes	 can	 be	

initiated.		

4.5.4 Participant	acknowledgement	

Acknowledging	participants	for	their	involvement	is	important	(Brewin	et	al.	2017b)	

and	public	 recognition	 is	an	 important	motivator	 for	marine	 science	 (Thiel	et	al.	

2014).	Acknowledgement	should	include	citizen	scientists	who	are	involved	at	any	

time	in	the	project.	Journal	authorship	requirements	often	follow	the	International	

Committee	 of	 Medical	 Journal	 Editors	 ICMJE	 4	 step	 protocol,	 in	 which	 named	

authors	need	to	have	substantially	contributed	to	the	design,	acquisition,	analysis	or	

interpretation	 of	 data,	 but	 this	 definition	 precludes	 the	 recognition	 of	 citizen	

scientist	contributions.	Ward-Fear	et	al.	(2019)	recommend	group	co-authorship	as	

an	 approach	 to	 recognise	 contribution	 by	 non-professionals.	 However,	 citizen	

science	datasets	are	in	a	state	of	constant	expansion,	with	new	contributions	being	

added	all	the	time.	The	Dynamic	Data	Citation	Working	Group	within	the	Research	

Data	Alliance	propose	dynamic	data	citation	for	subsets	of	data	via	time-stamped	

queries	 with	 persistent	 identifiers,	 allowing	 citation	 acknowledgement	 for	

contributors	of	the	data	subset	(Hunter	and	Hsu	2015).	As	Diveintoscience	does	not	

record	 who	 has	 uploaded	 dives,	 it	 is	 also	 not	 currently	 possible	 to	 individually	

acknowledge	 contributors	 in	 the	 site,	 or	 any	 journal	 authorship,	 or	 develop	 a	

‘reward’	system	for	their	feedback,	but	an	umbrella	acknowledgement	is	included	in	

the	About	page.	 In	 future	 if	 this	 functionality	 is	 extended,	 then	 individual/group	

acknowledgement	will	be	implemented.		

4.5.5 Limitations	and	future	work	

From	a	development	perspective,	relying	on	Subsurface	to	provide	files	for	input	is	

beneficial,	tying	into	the	requirement	for	low	coding	knowledge	and	imbuing	the	

longevity	 and	maintainability	 gains	 of	 using	 an	 actively	 updated	 software	which	

caters	to	new	dive	computer	models	as	they	arise.	However,	from	a	user	perspective	

this	 requires	 the	download/installation	of	 additional	 (open	 source)	 software,	 and	

extra	steps	to	exporting	a	logfile	which	can	be	imported	into	DiS2.	The	future	goal	
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is	to	offer	an	automated	upload	process,	integrating	directly	with	libdivecomputer	

(Driesen	n.d.).	

As	dive	 computers	do	not	 commonly	have	GPS	 functionality,	 there	 are	potential	

risks	of	poorly	entered	coordinates,	along	with	the	user	effort	in	adding	these	to	each	

dive.	As	such,	both	scientific	potential	and	user	experience	will	be	improved	once	it	

is	more	dive	computer	models	commonly	have	GPS	functionality.	Locations	will	be	

recorded	more	accurately	at	source,	and	uploaded	automatically	into	dive	logs/DiS2,	

reducing	user	effort.		

Maintenance	 of	 a	 website	 involves	 continuous	 investment	 over	 time	 to	 keep	

packages	and	libraries	up	to	date	and	secure,	evolving	to	meet	new	technological	

developments	so	that	the	site:	a)	remains	functional;	and	b)	is	not	seen	as	out	of	date	

or	un-maintained	by	users.	This	is	a	consideration	in	any	website	project,	not	unique	

to	Shiny,	citizen	science	websites	or	DiS2.	Many	of	the	underlying	processes	could	

be	easily	adapted	to	suit	other	data	collection	goals,	offering	the	potential	for	re-use/	

adaptation	of	 code,	 saving	 time	on	 subsequent	projects.	The	DiS2	 code	 could	be	

deployed	as	a	standalone	site	on	a	local	machine,	should	there	be	technical	benefits	

to	do	so,	for	example	in	remote	areas	with	poor	internet	connection.	In	this	instance,	

it	would	be	beneficial	 to	agree	sharing	mechanisms	to	avoid	the	 issue	of	discrete	

chunks	of	inaccessible	data.		

An	additional	feature	which	could	improve	the	user	experience	and	reduce	risk	of	

recording	error	in	geolocation	of	dives	is	to	provide	a	list	of	known	dive	sites,	using	

pre-specified	latitude	and	longitude.	This	would	offer	users	the	option	to	select	from	

a	list	instead	of	manually	adding	coordinates.	However,	there	is	no	comprehensive	

existing	agreed	list	of	dive	site	names	and	locations.	Lists	that	exist	from	online	dive	

logging	 software	 have	 language	 implications	 and	 site	 duplications	 with	 slightly	

different	names.	In	DiS1,	for	example,	dive	site	names	were	manually	entered;	from	

the	7500	records	there	were	nearly	3200	unique	dive	site	names,	while	the	actual	

number	 of	 unique	 sites	 was	 much	 smaller.	 To	 implement	 this	 in	 DiS2,	 design	

decisions	would	need	to	be	made	such	as	whether	to	allow	users	to	manually	input	

a	name	for	a	dive	site	that	does	not	currently	exist,	and	how	to	allow	selection	from	
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a	 list	 of	 possibly	 hundreds	 of	 thousands	 of	 names.	 These	 issues	 are	 a	 significant	

challenge	to	implement,	given	the	numbers	of	possible	global	dive	sites.	

Currently,	full	profiles	of	temperature	and	depth	against	time	are	downloaded	and	

stored	in	the	database,	along	with	the	summary	data.	This	will	allow	future	display	

of	 profiles	 against	 an	 individual	 dive,	 but	 also	 the	 ability	 to	 collect	 insight	 into	

temperature	patterns	at	depth	such	as	thermocline	depth/strength,	depending	on	

the	shape	of	the	dive	profile	and	model	of	origin.		

By	 not	 having	 login	 functionality,	 code	 development	 to	 cater	 to	 security	

considerations	was	minimised.	However,	this	also	removed	the	potential	to	allow	

users	to	store	a	collection	of	their	own	dives,	and	view	these	and	the	associated	data	

analysis	in	the	wider	context	of	all	site	dives.	These	could	be	a	barrier	to	engagement	

and	is	a	question	to	be	asked	when	further	user	testing	occurs.	Communication	of	

findings	is	important	for	participants’	motivation,	especially	in	contributory	projects	

(de	Vries,	Land-Zandstra,	and	Smeets	2019).	 If	a	 login	mechanism	were	added,	 it	

would	open	the	door	to	customisation	(as	opposed	to	interactivity),	allowing	a	user	

to	see	their	own	individual	dive	logs	in	the	context	of	the	greater	whole,	along	with	

in-site	 feedback,	 communication	 and	 dissemination	 of	 information.	 A	 sign-in	

mechanism	would	 also	 allow	development	of	 a	 ‘reward’	 system	 for	 contributions	

(Gerovasileiou	 et	 al.	 2016),	 such	 as	 giving	 users	 a	 grading	 based	 on	 number	 of	

contributions	made,	by	uploads	or	number	of	dives.		

Once	DiS2	is	fully	encompassed	in	a	system	of	engagement	and	being	used	by	divers,	

the	impact	of	DiS2	should	be	assessed.	As	citizen	science	data	may	be	combined	with	

other	 datasets	 as	 a	 gap	 filling	 exercise	 (Sprinks	 et	 al.	 2021),	 impacts	 are	 often	

cumulative	and	not	easily	separable.	Wiggins	et	al.	(2018)	have	developed	a	list	of	18	

science	‘product’	metrics	for	citizen	science	projects,	to	help	with	project	evaluation	

from	 a	 science	 perspective.	 Product	 output	 categories	 are	 ‘written’,	 ‘data’,	

‘management	 and	 policy’,	 and	 ‘communication’,	 with	 example	 products	 being	

inclusion	or	use	of	data	in	theses	and/or	peer-reviewed	publications,	availability	of	

data	visualisations	and	metadata,	direct	actions	and	social	media	coverage.		



	 129	

4.5.6 Project	ownership	

Whilst	DiS2	is	a	fully	functioning	working	site,	with	the	ability	to	be	scaled	according	

to	levels	of	usage,	the	work	does	not	end	with	delivery	of	a	website.	For	any	citizen	

science	project	to	be	successful,	appropriate	ownership	and	management	processes	

need	 to	 be	 put	 in	 place,	 such	 as	 mechanisms	 to	 raise	 awareness,	 ongoing	

communication	with	users	and,	in	this	case,	technical	trouble	shooting.	For	DiS2	to	

reach	its	potential,	attracting	and	retaining	users	will	be	key.		

4.6 Conclusion	

I	have	demonstrated	that	tools	are	available	to	researchers	to	facilitate	visualisation	

and	 sharing	of	 their	 research	 for	 engagement	 along	with	 collection	of	 additional	

data,	with	minimal	coding	knowledge.	Giving	users	the	means	to	contribute	data	

they	have	collected	simply	by	doing	the	thing	they	love	can	provide	data	to	support	

local	and	global	monitoring	efforts,	 improving	our	ability	to	connect	the	effect	of	

temperature	 changes	 to	 climate,	 ecosystem	 and	 biological	 changes.	 DiS2	

demonstrates	 the	 flexibility	 of	 R	 Shiny	 to	 deliver	 a	 web-based	 citizen	 science	

offering,	with	an	upload	facility,	built	with	minimal	web	development	knowledge	

(or	none	if	default	styling	is	used),	but	suggest	that	some	level	of	prior	knowledge	is	

required	for	more	advanced	projects.	In	isolation,	R	Shiny	is	not	a	complete	solution	

to	 developing	 an	 online	 citizen	 science	 project,	 as	 clear	 project	 ownership	 and	

engagement	mechanisms	will	 always	 be	 required,	 but	 it	 can	deliver	 the	 building	

blocks	of	a	flexible,	scalable,	interactive	and	engaging	website.		

DiS2	aims	to	increase	the	availability	of	long-term	data,	with	potential	as	a	broad	

spread	global	data	collection	mechanism,	as	a	push	for	data	in	specific	areas,	or	as	a	

stand-alone	offline	site.	However,	the	development	effort	does	not	end	with	delivery	

of	 a	website;	 continued	 user	 engagement	 and	maintenance	 are	 required.	 Citizen	

scientists	 can	 form	 part	 of	 the	 answer	 to	 the	 lack	 of	 marine	 data,	 but	 ongoing	

engagement	is	essential	to	keep	motivating	people	to	submit	data,	to	ensure	code	is	

kept	functioning	and	up	to	date,	or	to	scale	up	or	down	depending	on	usage.		
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Chapter	5. Thesis	summary	and	conclusion	

5.1 Summary	

This	chapter	summarises	the	aims	of	the	thesis	and	contribution	to	advancement	of	

knowledge.	The	overall	objective	of	 the	 thesis	was	 to	 investigate	 the	potential	of	

citizen	science	SCUBA	divers	as	novel	 source	of	oceanographic	data,	 focusing	on	

temperature	data	from	dive	computers.	I	have	established	the	accuracy,	precision,	

and	 response	 to	 temperature	 change	 of	 dive	 computers,	 demonstrated	 the	 real-

world	potential	of	a	citizen	science	dataset	to	identify	seasonal	patterns	comparable	

with	those	generated	from	satellite	and	in	situ	datasets,	and	delivered	a	website	for	

interactive	visualisation	and	collection	of	data,	exploring	the	potential	of	R	Shiny	as	

a	development	tool.	

5.1.1 SCUBA	divers	as	citizen	scientists	

To	 address	 the	 first	 thesis	 objective,	 the	 within	 and	 between-model	 bias	 and	

uncertainty	 of	 28	 dive	 computers	 and	 3	 underwater	 cameras	were	 quantified.	 In	

contrast	to	Azzopardi	and	Sayer	(2012)	and	Egi	et	al.	(2018),	and	in	agreement	with	

Wright	et	al.	(2016)	I	conclude	that	some	models	of	dive	computer	do	offer	potential	

as	a	source	of	data	for	oceanographic	monitoring.	I	have	found	that	some	models	

produce	data	at	an	accuracy	and	precision	comparable	to	existing	tools	and	therefore	

can	form	part	of	the	solution	to	the	data	shortage	in	coastal	areas.	With	sufficient	

data,	overall	accuracy	was	good,	irrespective	of	model.	In	addition,	there	is	within-

model	consistency,	and	significance	in	model	features	such	as	material	and	pressure	

sensor	location.	I	have	demonstrated	that	data	from	recreational	divers’	computers	

can	be	of	value	without	needing	to	know	the	model.	However,	with	collection	of	

metadata,	additional	insight	into	potential	data	quality	either	directly	(such	as	data	

from	a	model	with	known	 response	 characteristics)	 or	 indirectly	 (indicative	data	

quality	based	on	pressure	sensor	 location	and	material)	can	be	gathered.	Further	

work	will	offer	the	potential	for	development	of	bias	compensating	algorithms.		
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5.1.2 Satellite	and	in	situ	data	comparison	

The	2nd	objective	was	to	compare	dive	computer	generated	data	against	known	sea	

surface	temperatures	from	satellites	and	depth	resolved	in	situ	datasets.	In	doing	so,	

I	have	shown	that	seasonal	patterns	are	identifiable	at	annual,	monthly	and	weekly	

resolutions	in	dive	computers,	well	correlated	with	those	seen	in	related	satellite	SST	

and	 in-situ	 data	 at	 depth.	 Interannual	 anomalies	 were	 also	 identifiable.	

Temperature-depth	differences	between	dive	computer,	satellite	and	in	situ	data,	in	

agreement	 with	MLD	 reported	 in	 the	 literature	 (Abdulla	 et	 al.	 2018)	 were	 seen.	

Divers	(and	thus	dive	computers)	differ	from	in	situ	monitoring	platforms	such	as	

buoys,	as	they	are	not	restricted	to	specified	nominal	depths	(outside	of	training	and	

qualification	limitations).	This	highlights	potential	benefits	for	dive	computer	data	

to	offer	depth	related	information	to	complement	existing	datasets,	offering	insight	

at	a	micro	scale,	which	may	be	beneficial	for	ecosystem	data	discovery.		

In	agreement	with	Jones	(2016),	I	found	that	groupings	of	approximately	100	dives	

were	sufficient	to	identify	seasonal	patterns,	irrespective	of	dive	computer	model.	

As	this	held	true	in	an	area	the	size	of	the	Red	Sea,	given	100	dives	in	a	smaller	area,	

where	less	temperature	variation	might	be	expected,	improved	values	may	be	seen.	

With	smaller	quantities	of	data,	inclusion	should	be	considered	on	a	case-by-case	

basis	 (Hyder	 et	 al.	 2015).	 Callaghan	 et	 al.	 (2019)	 discuss	 the	 idea	 of	 the	 leverage	

and/or	 value	 of	 a	 sample	 based	 on	 the	 scientific	 question,	 such	 as	 species	

distribution	 modelling	 or	 phenology.	 Although	 devices	 with	 large	 biases	 may	

contribute	to	bias	in	small	datasets,	an	advantage	of	citizen	science	divers	is	their	

access	 to	 areas	with	 little	 pre-existing	 data.	 Therefore,	 data	 from	 areas	with	 few	

existing	data	points,	similarly	to	other	spatially	focused	analyses,	may	be	of	higher	

value,	and	should	still	be	considered.		

5.1.3 Citizen	science	website	design	

A	website	was	developed	in	fulfilment	of	objective	3,	as	a	mechanism	to	allow	upload	

and	visualisation	of	dive	computer	data	primarily	using	R	skills,	and	demonstrating	

the	capability,	advantages	and	challenges	of	 the	Shiny	package	 in	R	 for	doing	so.	
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Long-term	 time	 series	 are	a	powerful	 tool	 to	 investigate	patterns	and	changes	 in	

environmental	 data	 over	 time.	 By	 offering	 a	 solution	 for	 bringing	 together	

temperature	data	in	one	place,	under	open	data	principles,	this	capitalises	on	the	

potential	of	SCUBA	divers	as	citizen	scientists,	but	also	improves	access	to	data	for	

scientists,	marine	managers	and	community	groups.	Data	can	also	be	collected	in	

discrete	areas	to	support	environmental	campaigns,	or	local	versions	of	the	website	

can	be	implemented	in	areas	where	internet	connectivity	is	poor.	In	future,	it	could	

be	 possible	 to	 correct	 temperature	 based	 on	 depth	 and	 known	model	 and	 time	

constant	(Daunt	et	al.	2003)	along	with	dive	profile	shape.	

5.1.4 Potential	for	use	

The	environment	is	consistently	in	the	top	three	most	pressing	issue	of	concern	to	

the	public	(YouGov	2021)	and	is	especially	important	to	young	adults	(YouGov	2021;	

Uba	2021).	The	mean	age	of	SCUBA	divers	in	the	US	is	29.7	years	(median	=	26	years)	

(DEMA	 2021),	 so	 the	 18	 –	 24-year-old	 demographic,	 who	 are	 currently	 most	

concerned	 about	 environmental	 issues	 (YouGov	 2021),	 are	 the	 potential	 SCUBA	

divers	of	tomorrow.	A	pan-European	study	exploring	public	awareness	and	concerns	

around	marine	 environmental	 impacts	 found	 the	 >10	 000	 respondents	 had	most	

concerns	around	ocean	acidification,	pollution	and	habitat	destruction	(Gelcich	et	

al.	2014).		

Previous	 studies	 define	 high-quality	 citizen	 science	 data	 as	 having	 comparable	

accuracy	and	bias	to	that	gathered	by	experts	(Bonney	et	al.	2009b;	Kosmala	et	al.	

2016).	 In	 this	 instance	 we	 assessed	 uncalibrated	 sensors,	 so	 it	 follows	 that	 a	

reasonable	comparison	would	be	with	sensors	with	a	similar	purpose.	An	individual	

ship-borne	SST	measurement	has	measurement	uncertainty	of	 1	–	1.5	K	(Kennedy	

2014)	and	models	of	depth-resolved	in	situ	data	with	accuracy	of	±	1	°C,	78%	of	the	

time	 have	 been	 used	 for	MPA	monitoring	 purposes	 (Baldock	 et	 al.	 2014).	 These	

examples	show	there	are	precedents	 for	usage	of	data	with	comparable	accuracy.	

GOOS	recognises	that	observations	exist	that	meet	the	required	specifications	but	

are	not	currently	part	of	the	integrated	system.	As	part	of	the	UN	Decade	of	Ocean	

Science	 for	Sustainable	Development	GOOS	aims	 to	 support	 integration	of	 these	
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observations	into	end-products	(Fischer	et	al.	2021).	A	recent	example	of	this	is	the	

addition	of	data	from	animal-borne	ocean	sensors	into	the	GOOS	in	2020	(AniBOS,	

2020).	Data	 from	 appropriate	models	 of	 dive	 computer	 could	 be	 integrated	 into	

GOOS	in	a	similar	way,	with	the	requisite	statement	of	data	assurance	(Schläppy	et	

al.	2017).		

As	 the	 vast	 majority	 of	 citizen	 science	 projects	 focus	 on	 life	 sciences	 (van	 Hee,	

Seldenrath,	and	Seys	2020;	Garcia-Soto	et	al.	2021),	with	physical	parameters	such	as	

temperature	only	contributing	to	a	small	number	of	projects	(11	%	when	grouped	in	

with	projects	such	as	fish	stock	counts,	archaeology	and	maritime	history	(Garcia-

Soto	et	al.	2021)),	there	is	an	opportunity	to	capitalise	on	the	rising	interest	in	citizen	

science	and	recent	government	research	into	opportunities	for	and	barriers	to	UK	

marine	citizen	science	(Defra	2021).		

Whilst	existing	satellite	and	in	situ	SST	data	combined	offer	a	broad	reach,	there	are	

fewer	subsurface	observations.	Citizen	scientist	divers	to	fill	some	of	the	shortfall,	

adding	an	extra	dimension	of	information	in	areas	that	otherwise	have	poor	in	situ	

sampling.	Targeting	areas	of	 specific	community	 interest	could	be	approached	 in	

two	 ways:	 1.	 a	 call	 for	 data	 could	 be	 put	 out	 through	 social	 media	 engagement	

avenues	to	all	associated	recreational	divers,	 for	data	 to	be	collected	 in	a	specific	

area;	 or	 2.	 subject	 to	 available	 funding,	 a	 more	 formally	 created	 citizen	 science	

project	could	be	initiated	to	manage	a	requirement	for	local	data.	With	a	local	on-

the-ground	presence,	support	could	be	given	with	simple	ice	bucket	calibration	of	

individual	devices	prior	to	diving,	and	collection	of	data	directly	post.	This	would	

not	only	build	understanding	of	wider	variation	 in	models	 such	as	due	 to	 sensor	

drift,	 allow	compensation	 for	 systematic	bias	 to	be	 incorporated,	but	also	ensure	

correct	coordinates	are	logged	(assuming	known	dive	sites	have	been	visited)	and	

reduce	the	likelihood	of	people	forgetting	or	being	distracted	from	to	upload	data	

after	the	event.		

Although	intense	research	has	been	carried	out	on	ocean	fluctuations	with	relation	

to	El	Niño	Southern	Oscillation	(ENSO)	since	the	1950s	(Cravatte	et	al.	2016),	it	is	

still	 not	 fully	 understood	 (Smith	 et	 al.	 2015).	 Degree	 heating	 weeks	 (DHW)	 are	
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measures	of	accumulated	heat	stress	for	corals	related	to	ENSO	and	can	be	used	to	

predict	bleaching	events.	Hot	spots	(50	x	50	km	areas)	with	anomalies	greater	than	

1	°C	are	of	interest	(McClanahan	et	al.	2007),	but	increased	ocean	temperature	time	

series	are	needed	(Cravatte	et	al.	2016)	 to	support	understanding	and	to	 improve	

models	 (Kessler	 et	 al.	 2014).	 This	 offers	 an	 opportunity	 for	 dive	 computer	

temperature	data	on	a	broader	scale.	Temperature	anomalies	at	this	resolution	are	

identifiable	with	dive	computers,	and	there	are	many	regions	spanning	areas	of	this	

size	where	sufficient	dives	would	take	place	to	produce	temperature	time	series.		

One	 potential	 for	 dive	 computer	 data	 use	 in	 hindcast/reanalysis	 and	 forecasting	

models.	Modellers	 commonly	 incorporate	 data	 of	 lesser	 quality	 into	models	 and	

have	 procedures	 for	managing	 the	 associated	uncertainties	 (Atkinson	 2021).	One	

such	 example	 is	 the	 use	 of	 historical	 data	 from	 ship	 logbooks,	 which	 are	 being	

transcribed	and	made	available	for	use	in	climate	research	and	modelling	(ICOADS	

RECLAIM	n.d.;	“Old	Weather”	n.d.),	including	incorporation	into	the	International	

Comprehensive	Ocean-Atmosphere	Data	Set	(ICOADS).	Dive	computer	data	could	

be	assimilated	using	similar	processes	to	ensure	appropriate	uncertainty	measures	

are	in	place.		

Year	 on	 year,	 engagement	 with	 citizen	 science	 is	 increasing,	 not	 only	 raising	

awareness	 of	 environmental	 issues,	 but	 there	 is	 also	 positive	 feedback;	 the	more	

engaged	people	are,	the	more	they	are	likely	to	change	behaviour	(Jones	et	al.	2013),	

and	the	greater	the	awareness,	the	greater	likelihood	of	participation	(Kragh	2016).	

The	most	successful	initiatives	are	those	with	the	least	barriers	to	participation	in	

terms	of	effort	and	knowledge	(Garcia-Soto	et	al.	2021).	As	divers	are	enthusiastic	

citizen	scientists	willing	to	collect	several	days	of	data	annually	(Martin,	Christidis,	

and	 Pecl	 2016),	 and	 divers	 will	 be	 diving	 recreationally,	 the	 largest	 barrier	 to	

potential	 for	 these	 data	 could	 be	 the	mechanism	 for	 collection	 of	 data	 from	 the	

divers	themselves.	I	have	offered	a	potential	solution	to	this,	with	the	development	

of	 DiS2	 as	 a	 platform	 to	 increase	 the	 available	 data	 for	 science	 and	monitoring	

purposes.	However,	 availability	 does	 not	 equate	 to	 usage.	While	 providing	 open	

access	to	data	increases	citation	rate,	increased	volumes	of	data	do	not	inevitably	
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lead	to	better	science;	the	data	need	to	be	used	(Molloy	2011).	One	barrier	to	use	is	

perception	 of	 data	 quality.	 Quantification	 of	 the	 variability	 and	 evaluation	 of	

limitations	of	temperature	data	from	dive	computers	carried	out	in	this	doctorate	

should	 positively	 influence	 this.	 Schlappy	 et	 al.	 (2017)	 recommend	 provision	 of	

documentation	covering	data	quality	assurance,	which	could	be	added	to	DiS2	in	

future	iterations.	Provision	of	metadata	in	downloads	from	the	DiS2	database	will	

allow	 additional	 filtering,	 validation	 and	 processing	 of	 data,	 as	 required	 by	 the	

scientific	 question	being	 addressed.	Demonstration	of	 applied	use	 of	 the	data	 to	

solve	ocean	problems	and	identification	of	possible	opportunities	for	data	use	may	

initially	be	required	to	ensure	uptake	by	policy	makers	and	scientists.	The	greater	

awareness	and	usage	of	the	data,	the	increased	likelihood	of	future	expanded	usage.	

As	dive	computer	temperature	has	been	proven	to	identify	seasonal	and	interannual	

patterns	of	temperature	change,	with	positive	engagement	mechanisms	maximising	

the	number	of	participants	in	marine	citizen	science,	these	data	can	become	part	of	

an	integrated	observation	platform.		

5.2 Additional	work		

The	4th	and	5th	objectives	were	to	carry	out	engagement	with	dive	schools	and	to	

investigate	and	marine	reserves,	delivering	talks	and	exploring	the	enthusiasm	for	

citizen	 science	 projects	 collecting	 temperature	 data	 from	 dive	 computers	 and	

investigate	 the	 potential	 for	 identification	 of	 thermoclines.	 These	 were	 both	

hampered	by	the	arrival	of	the	global	pandemic.		

5.2.1 Engagement	

Dickinson	et	al.	(2012)	state	that	the	mantra	“easy,	fun	and	social”	is	what	is	required	

to	 recruit	 large	 numbers	 of	 volunteers,	 but	 for	 ongoing	 commitment,	 targeting	

specific	audiences	may	be	more	effective.	The	original	aim	of	working	with	sentinel	

dive	schools	largely	had	to	be	put	on	hold	because	of	the	obvious	constraints	of	the	

pandemic.	An	engagement	exercise	was	carried	out	over	a	period	of	3	months	with	

dive	schools	in	Cape	Town,	although	data	was	not	collected	as	DiS2	was	not	built	at	

that	point.	Conversations	were	held	with	recreational	SCUBA	divers,	dive	centres	
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and	marine	conservation	organisations,	assessing	motivation	to	get	 involved	with	

citizen	science,	but	especially	Dive	into	Science.	Without	exception,	every	individual	

spoken	to	was	enthusiastic	about	getting	involved.		

Understanding	 the	motivations	 for	 citizen	 science	 will	 be	 key	 to	 harnessing	 the	

available	data	moving	forwards.	This	applies	to	both	volunteers’	desire	to	share	data	

they	have	collected	on	SCUBA	trips,	but	also	minimising	any	barriers	to	the	upload	

of	 that	 data	 and	 having	 a	 good	 understanding	 of	 website	 user	 experience.	

Participants	 begin	 to	 develop	 questions	 whilst	 taking	 part	 in	 field	 observations	

(Hyder	et	al.	2015)	but	also	when	interacting	with	data	via	mapping	tools	(Conceição,	

Samuel,	and	Biniecki	2017).	This	agrees	with	personal	experience;	having	engaged	

with	divers	prior	to	a	dive,	they	became	attentive	to	the	temperature	responses	of	

their	dive	computers	during	a	dive	and	had	increased	likelihood	to	re-engage	and	

raise	questions	after	the	dive.		

Contacts	were	made	with	headquarters	of	the	two	major	dive	organisations	in	the	

UK:	BSAC	and	PADI,	but	to	no	response	(NB.	however,	as	of	July	2021,	I	have	been	

co-opted	 onto	 the	 BSAC	Council	 (a	 volunteer	 directorship	 role),	 with	 an	 aim	 to	

support	 the	 new	 environmental/conservation	 strand	 of	 their	 3-year	 strategy,	 so	

forward	movement	may	now	be	possible).	Positive	relationships	were	also	built	with	

Project	Baseline,	PADI	Project	Aware	 (which	has	 since	become	 the	PADI	Project	

AWARE	Foundation)	and	Paralenz.	There	are	other	dive	organisations	and	citizen	

science	projects	with	slightly	different	diving	focus,	such	as	GUE,	SSI,	TDI,	Divers	

against	Debris	 and	 the	 Community	 Seagrass	 Initiative	who	may	 also	 be	 open	 to	

collaborations.	 In	addition,	 it	may	be	more	productive	 to	contact	dive	shops	and	

clubs	directly	to	establish	interest	and	work	on	a	local	scale,	as	club	engagement	and	

enthusiasm	seems	high.	Working	with	clubs	and	dive	schools	is	a	means	of	not	only	

gathering	data,	but	 also	building	engagement	directly	with	 scuba	divers	who	are	

diving	in	these	areas,	whether	it	be	on	a	regular	or	one-off	basis.	

Other	engagement	included	provision	of	advice	and	support	in	project	approach	and	

selection	of	appropriate	dive	computers	to	St	Helena	Government,	which	aims	to	

address	a	shortage	of	temperature	data	around	its	coast	by	using	dive	computers.	A	
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project	was	also	initiated	with	the	Berwickshire	Voluntary	Marine	Reserve	(BVMR)	

(formerly	St.	Abbs	and	Eyemouth	Voluntary	Marine	Reserve),	which	covers	8	km	of	

coastline	 from	 around	 Eyemouth.	 The	 reserve	 spans	 1030	 hectares,	 extending	

offshore	to	the	50m	depth	contour,	which	is	an	average	distance	of	1.5	km	(St.	Abbs	

&	 Eyemouth	 Voluntary	Marine	 Reserve	 n.d.).	 The	 reserve	 is	 a	 base	 for	 offshore	

fishery	 and	has	many	 recreational	 SCUBA	dive	 sites	because	of	particularly	 clear	

water.	There	is	a	small	finger	of	the	North	Atlantic	drift	extending	over	the	northern	

tip	of	Scotland,	which	brings	warmer	water	species	than	would	be	expected	in	the	

North	Sea	(St.	Abbs	&	Eyemouth	Voluntary	Marine	Reserve	n.d.).	Wolf-fish	are	also	

unusually	found	here,	at	much	shallower	depths	than	elsewhere	and	BVMR	has	an	

existing	wolf-fish	identification	project	and	were	keen	to	engage	with	further	citizen	

science	projects.	

BVMR	is	working	with	Blue	Marine	Foundation	and	local	fishers	in	a	baseline	survey	

project,	 collecting	 data	 to	 build	 knowledge	 of	 species	 and	 commercial	 fishing	

practices	inside	the	BVMR.	The	aim	is	to	understand	key	stocks,	temporal	changes,	

and	inform	efficiency,	to	improve	the	sustainability	of	local	fishery.	A	citizen	science	

SCUBA	diving	project	was	scoped	and	planned	with	BVMR.	The	scope	was	to	include	

the	 impact	 of	 temperature	 on	 species	 distribution	 and	 abundance,	 utilising	

temperature	data	from	loggers	on	the	seabed,	on	creels	&	by	collection	of	data	from	

citizen	science	SCUBA	divers’	dive	computers.	With	contributions	from	the	(then)	

BVMR	Manager	and	a	local	dive	boat	captain,	who	has	in	depth	local	knowledge	of	

the	underwater	landscape	and	insight	into	commonly	dived	areas,	6	sites	of	different	

depths	were	proposed	as	potential	logger	locations.	The	intention	was	to	place	in	

situ	loggers	at	commonly	dived	sites,	which	could	be	used	for	comparison	with	dive	

computer	temperatures.	Advice	was	given	to	the	BVMR	Manager	on	suitable	dive	

computers	 for	the	project,	which	were	purchased,	Subsurface	was	downloaded	to	

BVMR	 machines,	 and	 training	 given.	 Early	 trials	 by	 BVMR	 volunteers	 found	

temperature	differences	between	dive	computer	and	a	positioned	logger	of	+0.3	°C	

at	the	closest	sample	point,	and	at	a	steady	depth	a	difference	of	+0.2	°C,	which	is	

consistent	 with	 an	 offset	 found	 in	 our	 research	 into	 dive	 computer	 accuracy	

discussed	 in	Chapter	 2.	The	proposed	approach	was	 to	hand	out	 the	BVMR	dive	
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computers	to	divers	on	dive	boats	on	a	dive-by-dive	basis,	as	positive	relationships	

exist	 between	BVMR	and	dive	 boat	 captains.	 Post-dive,	 the	 computers	would	 be	

recovered	by	BVMR	volunteers,	the	data	uploaded	to	Subsurface,	and	subsequently	

to	 DiS	 when	 live.	 This	 would	 have	 the	 benefit	 of	 gathering	 data	 for	 the	 BVMR	

projects	while	 removing	 the	 data	 upload	 effort	 from	 the	 divers.	 Additionally,	 by	

handing	out	and	retrieving	dive	computers	an	engagement	opportunity	was	seen.	It	

would	be	a	chance	to	excite	divers	about	the	wider	BVMR	activities	whilst	piquing	

their	interest	in	the	wider	DiS	project,	hopefully	to	then	go	on	and	submit	additional	

data	from	their	own	computers.	With	the	exit	of	the	then	manager,	a	succession	of	

further	volunteers	in	the	role,	and	little	seeming	project	handover,	project	energy	

was	intermittent,	and	the	project	stalled.	I	was	recently	contacted	by	a	new	Project	

Officer	at	the	BVMR,	who	was	interested	in	finding	out	about	the	project,	and	who	

may	progress	things.		

5.2.2 Thermocline	

Other	aspects	of	utilising	temperature	data	from	dive	computers	were	also	explored,	

such	 as	 identification	 of	 thermoclines.	Due	 to	 the	 pandemic,	 field	work	was	 not	

allowed,	preventing	the	planned	collection	of	dive	computer	and	CTD	data	in	areas	

with	known	 thermoclines.	Coincidentally,	 two	dives	with	 thermoclines	had	been	

carried	out	alongside	Castaway	CTDs	 in	Cape	Town	 in	early	2019.	As	 insufficient	

data	was	available	to	fully	unpick	the	factors	involved,	a	full	description	has	not	been	

given	as	further	data	are	required.	The	following	section	gives	a	brief	overview	of	

results	and	is	provided	to	suggest	the	potential	for	future	investigation.		

Three	simple	approaches	were	explored:	one-sided	differentiation,	where		

	 	 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑛) = '())#'()#$)
+())#+()#$)

;	 	 	 	 	 	 (2)	

two-sided	differentiation,	where	

	 	 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑛) = '(),$)#'()#$)
+(),$)#+()#$)

;	 	 	 	 	 (3)	
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and	a	binned	approach,	where		

	 	 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑏𝑖𝑛) = '!"#$(-.))#'!"#$(-.)#$)
∆0

;	 	 	 	 (4)	

2	m	depth	bins	were	found	to	have	the	most	successful	results	in	early	trials.	

Early	 results	 showed	 potential	 with	 all	 three	 methods,	 however,	 each	 method	

returned	a	different	thermocline	depth	for	the	Castaway	itself,	likely	due	to	subtle	

gradient	changes	in	different	dives.	One	dive,	which	had	a	square	profile	(a	descent	

to	 the	maximum	 dive	 depth	 was	 followed	 by	 a	 consistent	 period	 at	 that	 depth,	

followed	 by	 an	 ascent	 to	 the	 surface)	 had	 better	 agreement	 with	 the	 Castaway	

results.	 For	 this	 dive,	 a	 suggested	 depth	 for	 the	maximum	 temperature	 gradient	

within	±	1	m	of	the	Castaway	was	returned	for	14	out	of	a	possible	26	dive	computers	

following	 the	 one-sided	 approach.	 21/26	 were	 within	 ±	 1	 m	 using	 two-sided	

differentiation,	and	20	dive	computers	registered	the	largest	temperature	change	in	

a	bin	with	depth	±	1	m	of	the	Castaway	bin	depths.	For	the	second	dive,	14/26	dive	

computers	were	within	±	1	m	using	one-sided	differentiation,	14/26	with	a	binned	

approach,	but	none	with	two-sided	differentiation.	The	dives	were	not	carried	out	

with	the	intention	of	collecting	thermocline	data,	so	profiles	were	not	consistent,	

and	there	was	a	highly	variable	depth	profile	through	the	course	of	the	latter	dive.	

This	dive	did	not	follow	a	square	profile	(square	profile:	descend	to	maximum	depth,	

retain	a	consistent	depth	before	ascending	at	a	safe	speed),	but	passed	through	the	

subjective	thermocline	layer	multiple	times.	With	the	varying	time	constants,	the	

dive	computers,	this	type	of	profile	would	be	hard	to	map.	It	is	suggested	that	in	this	

dive,	one-sided	differentiation	also	captured	minor	gradient	changes	in	the	CTDs	

that	 were	 not	 identifiable	 within	 dive	 computer	 resolutions,	 as	 there	 were	 two	

distinct	dive	computer	depth	groups:	eight	dive	computers	were	within	1	m	of	each	

other,	 and	 a	 further	 16	 in	 another	 1	 m	 spread	 group.	 For	 both	 dives,	 several	

computers	returned	multiple	bins	with	the	same	maximum	change	in	temperature	

(dT)	when	using	a	binned	approach.	The	rate	of	ascent	through	the	thermocline	as	

well	as	profile	shape	and	dive	time	will	all	have	an	effect,	but	the	results	seen	here	

show	promise	for	further	investigation.		
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Egi	 et.	 al.	 (2018)	proposed	a	dive	plan	 (including	pausing	 for	 3	min	at	 subjective	

depth	of	thermocline)	which	would	‘mark’	the	thermocline	in	the	profile,	although	

no	research	has	been	presented	demonstrating	its	effectiveness.	As	time	constant	

has	been	found	to	range	between	18	and	300	s,	a	citizen	scientist	diver	could	target	

their	dive	to	include	marking	a	perceived	thermocline,	stopping	for	a	duration	based	

on	knowledge	of	their	dive	computer	model’s	temperature	response	characteristics.	

These	 stops	would	need	 to	 be	 carried	 out	without	 endangering	 divers’	 health	 or	

contravening	decompression	limits.	For	this	reason,	and	to	allow	dive	computers	to	

acclimatise	from	potential	surface	temperature	affects,	it	would	be	recommended	to	

mark	the	thermocline	on	the	ascent	if	following	this	approach.	Further	conclusions	

will	be	possible	in	the	future,	with	greater	access	to	a	wider	range	of	dive	computer	

and	thermocline	profiles.	

5.3 Limitations	

The	doctorate	as	a	whole	was	affected	by	the	pandemic,	including	the	inability	to	

carry	out	field	data	collection	which	impacted	on	the	intended	scope	of	work.		

Limitations	of	dive	computers	themselves	have	been	discussed	in	section	2.5.3,	and	

of	potential	user	error	in	section	3.5.6.	Lack	of	spatial	and	temporal	consistency	is	a	

feature	of	citizen	science	data	(Callaghan	et	al.	2019).	As	with	many	geo-referenced	

citizen	science	datasets,	the	spatial	and	temporal	density	in	data	collected	from	dive	

computers	 is	 incidental	 and	 therefore	 will	 be	 inconsistent.	 However,	 a	

comprehensive	monitoring	network	is	not	suggested,	but	gap-filling,	or	increased	

volumes	 of,	 data	 in	 areas	where	 there	 is	 little	 or	 no	 existing	 in	 situ	monitoring.	

Rather	than	using	interpolation	to	fill	large	gaps,	calls	for	data	in	specific	areas	can	

be	made.		

Feedback	from	scientists	is	important	to	all	groups	of	citizen	scientists	(Martin	et	al.	

2016).	 It	 was	 a	 bureaucratic	 challenge	 in	 getting	 diveintoscience	 live,	 which	

minimised	available	time	to	carry	out	necessary	engagement.	With	the	reduction	in	

diving	in	2020	and	2021	due	to	lockdowns	and	lack	of	travel,	the	site	has	not	yet	been	

well	used,	but	also	no	comprehensive	engagement	programme	has	been	carried	out.	
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User	testing	needs	to	be	widened	and	increased	volumes	of	feedback	need	gathered	

to	 identify	 whether	 there	 are	 issues	 with	 site	 usability,	 effort	 to	 upload,	 lack	 of	

awareness	or	other	barriers	to	participation.	

5.4 Final	thoughts	

The	 pandemic	 has	 highlighted	 the	 importance	 to	 expand	 our	 methods	 for	 data	

collection,	with	key	mooring	arrays	at	risk	and	10	%	of	real-time	data	distribution	

lost	 in	 2020	 –	 2021	 (IOC-UNESCO	 n.d.).	 The	 environment	 and	 conservation	 are	

increasingly	 part	 of	 key	 diving	 agencies’	 focus.	 PADI	 AWARE	 Foundation	 is	 the	

conservation	arm	of	PADI,	one	of	the	leading	training	agencies	worldwide.	For	the	

first	time,	‘Environment’	is	a	strand	in	the	2021	–	2023	strategic	plan	for	BSAC	(the	

national	 governing	 body	 for	 diving	 in	 the	 UK).	 Importantly,	 this	 study	 has	

strengthened	 our	 understanding	 of	 the	 potential	 of	 SCUBA	 divers	 as	 citizen	

scientists,	 particularly	 with	 regards	 to	 ocean	 temperature.	 Further	 studies	 with	

specific	depth/time	points	in	profiles	would	develop	our	understanding	further.	We	

should	 consider	 the	 potential	 for	 SCUBA	 diver	 citizen	 scientists	 to	 collect	

measurements	of	physical	parameters	in	the	ocean	is	in	their	spatiotemporal	reach.	

With	the	increasing	miniaturisation	and	decreasing	costs	of	sensors,	the	potential	

to	expand	to	other	physical	and	chemical	parameters,	such	as	pH,	is	likely	imminent.		

Now	 that	 dive	 computer	 temperature	 responses	 and	 uncertainties	 are	 better	

understood,	the	possibilities	are	extensive.	Although	with	a	resolution	that	 is	not	

appropriate	for	climate	monitoring,	dive	computers	provide	information	on	patterns	

and	local	temperature	variability,	which,	in	some	areas,	are	not	available	by	other	

means.	 If	 feature	mapping	 is	 important	 (such	as	 thermocline	 identification)	 then	

actual	accuracy	is	less	important	than	the	ability	to	detect	change.	While	it	is	not	

suggested	that	dive	computers	are	the	sole	answer	to	the	data	shortage,	they	can	

form	part	of	the	solution.	When	multiple	organisations	start	to	investigate	the	same	

issue	from	different	angles,	I	believe	it	is	an	indication	that	there	is	value	in	the	idea.	

Over	the	duration	of	this	PhD,	new	projects	have	arisen	investigating	this	issue	in	a	

similar	way,	such	as	DORIS	(Diver	carried	Oceanographic	Recording	InstrumentS),	

a	small	autonomous	CTD	which	can	be	carried	by	divers	(Sayer	et	al.	2021);	Sonic	
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kayaks,	 low	 cost	 open	 source	 hardware	 for	 collecting	 marine	 data	 such	 as	

temperature	and	turbidity	(Action	2021)	and	ECOTag,	a	low	cost,	open	source,	3d	

printable	device	for	collecting	marine	temperature,	pressure	and	light	(pers.	comm.	

Mark	James;	University	of	St	Andrews	n.d.).	Existing	initiatives	such	as	the	Smartfin	

project	 (collecting	 temperature	data	 from	 surfboard	 fins)(Brewin	 et	 al.	 2021)	 and	

Project	Hermes	(GPS	and	Wi-Fi	enabled	device	for	collection	of	temperature	and	

depth,	designed	to	attach	to	SCUBA	divers’	tanks)	(Cousteau	n.d.)	have	been	further	

refined	and/or	evaluated.	A	single	source	of	citizen	science	temperature	data	can	

contribute	 to	 an	 integrated	observation	platform,	but,	 assuming	data	 source	 and	

quality	measures	are	clearly	stated,	combining	these	data	sources	offers	the	greatest	

opportunity.	All	data	would	not	need	to	be	collected	via	one	initiative,	or	technology	

solution,	 but	 open	 data	 sharing	 and	 collaboration	 will	 be	 key.	 Sustained	

observations	 have	 struggled	 because	 of	 lack	 of	 funding	 or	 stopped	 completely	

(Mieszkowska	 et	 al.	 2014)	 despite	 the	 importance	 of	 long-term	 time-series	 in	

advancing	our	understanding	of	ecosystems	and	ocean	processes	(Brander,	Dickson,	

and	 Edwards	 2003;	 Harvey	 et	 al.	 2020).	 As	 a	 result	 of	 this	 study,	 a	 potential	

mechanism	to	develop	a	long-term	time	series	has	been	delivered,	and	results	which	

can	 underpin	 further	 work	 into	 areas	 such	 as	 more	 detailed	 thermocline	

investigations.	With	 an	 engaged	 community	 of	 citizen	 scientist	 divers,	 advanced	

sensors	and	tools	could	be	developed	to	measure	additional	parameters,	allowing	us	

to	take	better	care	of	our	oceans.	
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Appendix	

Table	A.1:	Device	sizes	and	pressure	sensor	locations	

Model	 Front	view	 Pressure	sensor	location	

Aqualung	

i750TC	

	 	

Garmin	

Descent	Mk1	
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Mares	

Matrix	

	 	

Mares	 Puck	

Pro	

	 	

Paralenz	

Dive	

Camera+	

	 	

	

	

	

Underneath	 pull	

switch	
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Ratio	 iX3M	

GPS	Deep	

	 	

Scubapro	G2	

	 	

Shearwater	

Perdix	
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Suunto	D4i	

	 	

Suunto	D6i	

	 	

Suunto	EON	

Steel	
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Suunto	

Vyper	
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