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Abstract

Spirits are a prime target for fraudulent activity. Particular brands, production

processes, and other factors such as age can carry high value, and leave space for

mimicry. Further, the improper production of spirits, either maliciously or through

negligence, can result in harmful substances being sold for consumption. Lastly,

genuine spirits producers themselves must ensure the quality and standardisation

of their products before sale. Authenticating spirits can be a time consuming and

destructive process, requiring sealed bottles to be opened for access to the product.

It is therefore desirable to have a fast, non-invasive means of indicating the

authenticity, safety, and correctness of spirits. We advance and prototype such a

system based on near infrared spectroscopy, and generate datasets for the detection

of correct alcohol concentrations in synthesised spirits, for the presence of methanol

in genuine spirits, and for the distinction of particular genuine products in a given

bottle.

The standard chemometric pipelines for the analysis of spectra involve smooth-

ing of the signal, standardising for global intensity, possible dimensionality re-

duction, and some form of least squares regression. This has decades of proof

behind it, and works under the assumptions of clean signal gathering, potentially the

separation of sample and particular substance of interest, and the generally linear

relationship of light received/blocked and the analyte’s contents. In the proposed

system, at least one of these assumptions must be violated.



We therefore investigate the use of modern classification techniques to overcome

these challenges. In particular, we investigate and develop ensemble methods and

time series classification algorithms. Our first hypothesis is that algorithms which

consider the ordered nature of the wavelength features, as opposed to treating the

spectra effectively as tabular data, can better handle the structural changes brought

about by different bottle and environmental characteristics. The second is that

ensembling heterogeneous classifiers is the best initial technique for a new data

science problem, but should in particular be helpful for the spirit authentication

problem, where different classifiers may be able to correct for different defects in

the data.

In initial investigations on datasets of synthesised alcohol solutions and different

products, we prove the feasibility of the authentication system to make at least

indicative predictions of authenticity, but find that it lacks the precision and accuracy

needed for anything more than indicative results. Following this, we propose a novel

heterogeneous ensembling scheme, CAWPE, and perform a large scale evaluation

on public archives to prove its efficacy. We then outline improvements in the time

series classification space that lead to the state of the art meta-ensemble HIVE-

COTE 2.0, which makes use of CAWPE. We lastly apply the developed techniques

to a final dataset on methanol concentration detection. We find that the proposed

system can classify methanol concentration in arbitrary spirits and bottles from ten

possible values, containing as little as 0.25%, to an accuracy of 0.921. We further

conclude that while heterogeneously ensembling tabular classifiers does improve

the authentication of spirits from spectra, time series classification methods confer

no particular advantage beyond tabular methods.

viii
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Chapter 1

Introduction

Counterfeit alcohol poses potentially fatal health risks to the consumer where

illegally and poorly produced spirits may contain harmful contaminants such as

methanol, a large economic risk in most markets due to the avoidance of taxes, and

a risk to brand integrity in cases where the fakes are being sold as named brands.

In a series of Trading Standards raids in 2010, up to 25% of licensed premises

in some parts of the UK were found to have counterfeit alcohol for sale*, while a

third of rare and auctioned whiskies have also been discovered as forged†. Brown-

Forman, the company that makes Jack Daniels, estimates that around 30% of all

alcohol in China is fake‡.

Forgeries can sometimes be detected through external appearance such as

inconsistent labelling or bottling relative to a known standard, but currently there is

no way to conclusively tell whether spirits are forged without opening the bottle

to gain direct contact with the sample. Breaking the seal and taking samples

from a bottle can be effectively a destructive process, because even if authenticity

is confirmed the bottle cannot later be sold on store shelves or at auction, and

*https://www.bbc.co.uk/news/uk-12456360
†https://www.bbc.co.uk/news/uk-scotland-scotland-business-46566703
‡https://www.theguardian.com/sustainable-business/2015/sep/16/china-fake-alcohol-industry-

counterfeit-bathtub-booze-whisky
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collectors’ whisky will be greatly devalued. Also, testing of samples can be an

expensive and time consuming process that is not suitable for mass screening. No

matter what process is used it will require one or likely more of: transport of the

sample to a centralised lab; expert knowledge and handling; consumable materials

used in the analysis; and analysis time for methods such as chromatography. It

is therefore desirable to develop a system that can non-invasively determine the

authenticity of a suspect bottle on-site in a cheap, simple and fast manner.

Near infrared spectroscopy (NIRS) in combination with modern machine learn-

ing techniques provides a promising potential solution to these problems. Ever

improving and more affordable computing power and spectroscopy equipment, as

well as continual advancements in data mining and machine learning methods, mean

that on-site classification using cost effective equipment is becoming evermore

feasible. Such setups are already used in a variety of food and drink authentication

scenarios. We present three main sets of data collected for this thesis, in Chapters 3

and 5, using a prototype through-bottle near infrared spectroscopy system. We use

these datasets to work towards a functioning system for the alcohol authenticity

problem itself, but also as a test bed for the algorithms compared and evaluated

throughout the thesis.

We investigate two broad strands of machine learning and their application

to the forged alcohol problem. These are the construction and use of ensembles

to improve classification performance and resultant human decision power and

confidence, and the use of time series classification methods for spectroscopy data

to leverage the ordered nature of the wavelength attributes.

Classification is the supervised task of assigning one or more predefined labels

to instances of some problem. Learning algorithms are trained on a set of training

data with known labels to learn a mapping from the data to their labels. The output

of a learning algorithm applied to a dataset is a classifier that can make predictions
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on new unlabeled data by applying the learned mapping. In the context of this

thesis, we are interested in training classifiers to determine whether a suspect spirit

is forged, has been adulterated, or contains harmful substances.

Some individual experiments in later chapters relate to predicting the concen-

trations of individual substances in samples, as a proxy for authenticity. Namely,

the concentration of ethanol being within tolerable levels of that indicated on the

label, and the absence of methanol, which is toxic. These sub-problems are more

innately ordinal regression. However, we are still more interested in reducing these

to classification problems of authentic or not. This is achieved by discretising the

output space from continuous concentrations to buckets of acceptable versus not

concentrations. We still compare to industry-standard regression methodologies to

throughout these experiments.

Ensemble methods train and combine the predictions of multiple classifiers with

the aim of improving some factor of performance over using any single classifier.

They leverage the combination of a diverse set of experts that have learned different

aspects of a problem, or learned in different ways (via different random initial-

isations, learning parameters, or entirely different learning algorithms) to make

predictions that are (hopefully) more informed than a single classifier. At the cost of

naturally requiring more computational resources than any of their singular compo-

nents, ensembles in practice can generally provide improved predictive performance.

Otherwise, they also improve robustness to anomalous data where members of the

ensemble are more specialised to handle them, and improve probabilistic classifica-

tion performance by averaging over the predictions of many classifiers. Inspired by

previous work with ensembles and by the utility they demonstrate for our problem in

Chapter 3, we propose a new ensembling scheme in Chapter 4, the Cross-validation

Accuracy Weighted Probabilistic Ensemble (CAWPE). We evaluate it in terms of

its general purpose classification performance on a wide range of datasets from two
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public archives, as well as its application to our practical problem of forged spirits

in Chapter 5.

Time series classification is the same supervised classification problem state-

ment, but as applied to time series data in particular. Time series are ordered series

of continuous values, and there is typically some information contained within the

ordering of the time points themselves to be leveraged in mapping the series to

its label. Typically the series are some measurement taken over time with a label

attached, and can arise in many domains: sensor data, medical monitoring, weather,

motion capture, econometrics, and computational biology to name a few. The

measurements need not be strictly taken over time, however. The only requirement

is that the readings are ordered. This means we can phrase spectroscopy data, which

measures light received (or blocked) over wavelengths, as a time series problem.

Learning algorithms adapted to time series data, as opposed to e.g. tabular data,

are typically concerned either with whole-series distances between existing data,

or with finding and leveraging sequential patterns within the series. We develop

a number of time series classification methods and evaluate their efficacy on the

forged spirit problem relative to traditional chemometric and tabular-view machine

learning approaches. The state of the art approaches of the time are evaluated on our

initial datasets in Chapter 3, while in Chapter 5 we detail advances made towards a

new state of the art for time series classification and its application to a dataset for

determining methanol concentration in genuine spirits.

1.1 Contributions

The contributions described and support throughout this thesis can be summarised

as follows:
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• The description and prototyping of a non-invasive spirit analysis methodology

based on near infrared spectroscopy and classification algorithms. Ultimately,

we show in Chapter 5 that methanol concentration out of ten possible values

in arbitrary spirits and bottles can be classified with an accuracy of 0.921.

• We generate three distinct datasets for future and public use in the literature.

In Chapter 3, we describe datasets for the prediction of alcohol concentrations

in synthesised alcohol-water solutions, which includes predicting correct

ethanol concentrations and detecting the presence of methanol. We also

present in Chapter 3 a dataset for distinguishing two particular whiskys

in a given bottle. Lastly, in Chapter 5 we present a dataset of genuine

spirits in their original bottles, progressively spiked with methanol. The

dataset EthanolConcentration, derived from experiments of Chapter 3, already

appears in the UCR archive of time series classification datasets and has been

used as part of evaluations across the archive in numerous articles.

• In Chapter 4 we describe a novel heterogeneous ensemble scheme, CAWPE,

and evaluate it across two public archives containing over 200 datasets. We

show that on average for arbitrary datasets it outperforms alternative weight-

ing, stacking, and ensemble selection schemes across identical base classifier

sets, as well as homogeneous ensembles and heavily tuned classifiers. We

show that using the CAWPE scheme to combine the different representations

of HIVE-COTE results in a significantly improved ensemble, and forms part

of the new state of the art for time series classification.

• In Chapter 5, we summarise improvements made to time series representa-

tions which also feed into the newest instantiation and current state of the art

time series classifier, the HIVE-COTE 2.0 meta-ensemble. Aspects of this

contribution have been in collaboration with other authors. This thesis con-

tributes towards two members of the HIVE-COTE 2.0 ensemble (TDE and
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DrCIF), as well as experimentation towards the selection and use of CAWPE

as the meta-ensembling scheme for it. We give overviews of expansions to

the BOSS algorithm to form SBOSS and ultimately TDE which forms the

dictionary-based classifier within HIVE-COTE 2.0, and the improvements of

TSF into CIF and ultimately DrCIF, the interval-based component. TDE and

DrCIF now form the state of the art dictionary and interval representations

respectively, as shown by experimentation conducted in part through this

thesis. SBOSS is a contribution of the authors of this thesis alone, while work

towards TDE, DrCIF, and ultimately HIVE-COTE 2.0 are led by others in

collaboration with us. HIVE-COTE 2.0 is shown to be significantly more

accurate on standard archive datasets than the previous state of the art, again

as shown by experimentation conducted in part through this thesis. The

aspects of HIVE-COTE 2.0 that are entirely not attributed to work undertaken

within this thesis are the ’Shapelet Transform’ and ‘Arsenal’ base classifiers

of the ensemble.

1.2 Thesis Structure

In brief, we first cover the necessary background information in Chapter 2. For the

contributions of this thesis, we detail in Chapter 3 the data collection and anaylsis

of synthesised alcohol solutions using a non-invasive near infrared spectroscopy

system as well as subsequent classification algorithm benchmarking. In Chapter 4,

we present and evaluate a novel ensemble scheme with the aims of maximising

predictive and probabilistic accuracy. In Chapter 5, we detail the collection and

analysis of a further dataset of genuine spirits spiked with methanol under field-like

conditions, and leverage the findings of the previous chapters. Here, we evaluate the

methods developed in Chapter 4 as well as state of the art time series classification

techniques developed in tandem with this thesis.
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In more detail, each chapter is structured as follows:

Chapter 2 provides a technical background of vibrational spectroscopy, chemo-

metrics, and the machine learning topics relevant to this thesis. We cover the

necessary knowledge of the physical process that underlies the spectroscopy data

being modelled, and focus in particular on spectroscopic methods that can collect

non-invasive measurements and the data mining challenges that these pose. We

provide an overview of existing and traditional chemometric approaches for the

problem, and lay the groundwork for ensemble and time series classification ap-

proaches that we shall investigate. We also cover the experimental and evaluation

methods used throughout the thesis.

Chapter 3 details the collection and evaluation of early through-bottle, non-

invasive, near infrared spectroscopy datasets. Two problem statements are con-

sidered. First, whether alcohol concentrations (ethanol and methanol) can be

determined regardless of the containing bottle. Second, whether two similar prod-

ucts from the same brand be distinguished. These are two factors that, if answered

in the positive, demonstrate the feasibility of a portable, non-invasive system for

detecting a variety of forged or adulterated spirits. It would suggest that poorly

produced and potentially harmful spirits could be screened to within some limit

of detection, and that a particular known brand, given example data of it, could be

verified using such a system. We use the findings of this chapter to direct future

algorithmic development in later chapters.

Chapter 4 develops an ensemble methodology aimed towards maximising

probabilistic output over candidate classifier sets of an arbitrary problem/set of

problems. Our hypothesis is that building ensembles of small sets of strong classi-

fiers constructed with different learning algorithms is, on average, the best approach

to classification for real-world problems. We propose a simple mechanism for

building small heterogeneous ensembles based on exponentially weighting the
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probability estimates of the base classifiers with an estimate of the accuracy formed

through cross-validation on the train data. We demonstrate through extensive ex-

perimentation that, given the same small set of base classifiers, this method has

measurable benefits over commonly used alternative weighting, selection or meta-

classifier approaches to heterogeneous ensembles. We further extend the approach

to include all models trained during the cross validation evaluation procedure of the

base classifiers for improved robustness in predictions.

Chapter 5 presents the developments in the TSC space since Chapter 3, and

their application to a larger-scale and more thorough methanol-spiking dataset. We

first present improvements to the individual representations of the HIVE-COTE

meta-ensemble, which when combined with the CAWPE ensembling scheme, are

found to make significant improvements and constitute a new state of the art for

time series classification. We then look to apply the developed techniques to a third

new dataset. Methanol contamination poses a generalised problem that can persist

in any product or market, and in Chapter 3 was discovered to difficult to detect

accurately. We take a range of real spirits in their original bottles and progressively

spike them with methanol, analysing them with the non-invasive near infrared

spectroscopy setup. We show that the standard chemometric pipeline is unable

to handle this data. We then thoroughly evaluate the developed TSC algorithms

and the CAWPE ensemble from Chapter 4, among other competing algorithms,

and show that while time series classification methods do not provide the benefit

hypothesised, the CAWPE ensemble is the best approach of those evaluated.

Chapter 6 concludes the thesis, discusses the contributions put forward, and

introduces possible future directions in the spirit authentication space.
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Chapter 2

Background

This chapter introduces the relevant background materials for this thesis. We

first give a brief descriptive background of vibrational spectroscopy methods, and

focus on their application to authentication tasks in contrast to alternatives such

as chromatography. We review previous spirit authentication and analysis in the

literature, and motivate our investigations for fast, non-invasive authentication. We

secondly summarise the chemometric techniques commonly covered based on the

first section, and introduce the machine learning contexts, time series and ensemble

classification techniques, that we shall advance and apply to the spectroscopic

authentication problem. We finally describe the experimental procedure for classifi-

cation experiments followed through the thesis, namely data sampling methods and

frameworks for classifier evaluation and comparison.

2.1 Vibrational Spectroscopy

Vibrational spectroscopy (VS) is composed mainly of the two complementary

analytical techniques, Infrared (IRS) and Raman (RS) spectroscopy. These are

non–destructive, non–invasive tools that provide information about the molecular
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composition, structure and interactions of a sample. A light source of some target

wavelengths is shined towards the spectroscope either directly or via reflection. The

intermediary sample interacts with the light, changing what is measured by the

spectroscope. In particular, VS methods detect electronic changes in the internal

vibrational energy levels of molecules, which are associated with the physical

structure of a sample. The produced spectrum acts like a fingerprint signifying

the contents, and can be used qualitatively and quantitatively for identification,

characterisation, quality control and assurance.

In Infrared spectroscopy the sample is irradiated with polychromatic light, and

a photon of light is absorbed when the frequency (energy) of the absorbed light

matches the energy required for a particular bond to vibrate within the sample.

The spectra produced measures the amount of light absorbed at each sampled

wavelength.

Raman spectroscopy is based on an inelastic scattering effect. The sample

is irradiated with monochromatic light and the photons are either elastically (the

vast majority) or inelastically (<1%) scattered. The inelastically scattered light,

known as Raman scatter, has lost or gained energy during this interaction and the

emitted photon contains information about the molecular structure of the sample.

The measured effect is the intensity of the Raman scattered light versus the energy

difference, which is referred to as Raman Shift. Because potentially only one in a

million photons will scatter, the overall intensity of Raman as opposed to Infrared

is much weaker.

2.1.1 Infrared Spectroscopy

While there is no strict, physically defined boundary, the IR spectrum is typically

split into three sections by convention; the near (NIR), mid (MIR) and far (FIR),

defined by their position relative to the visible spectrum. The regions encompass
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different wavelengths and energies, and therefore interact with the same molecules

in different ways.

Fig. 2.1 The electromagnetic spectrum, with visible and infrared regions highlighted.
Short, medium and long waves are synonymous with the near, mid and far regions.
Image from [12].

Spectral bands in the NIR region are overtone and combination bands originating

from fundamental bands in the MIR region. Both provide vibrational information,

however, each has independent advantages and disadvantages that need to be

considered for analysis [27]. NIR regions, being overtone and combination bands,

are broad and have relatively low sensitivity and separation between components.

A particular compound of interest may interact with many NIR wavelengths, and

require inspection/modelling of all of them to detect it against other compounds. In

contrast, spectral bands in the MIR are fundamental bands and typically the peaks

indicating a compound are specific, sharp and sensitive. Most materials are strongly

absorbing in the MIR region, however, making the likelihood of retrieving a clear

signal through containers quite low. In contrast, glass, for example, is transparent

to NIR radiation. This is a property that has been capitalised on by a number of

industries, and is important of course for its choice in the alcohol authentication

problem.
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Fig. 2.2 Exemplars of near (a, left) and mid (b, right) infrared spectra characteristics.
While the MIR region exhibits more isolated spikes corresponding to particular
molecules, the NIR region presents molecules in a broader fashion with higher
degrees of overlap and greater consistency between samples. Image from [79].

There are no fixed and globally accepted definitions of the extents of the different

regions. However, the NIR band is typically defined as the range 700nm – 2500nm

(~14000cm-1 - ~4000cm-1), while the MIR band is 2500nm – 15000nm (~4000cm-1

- ~700cm-1). The use of both is much researched within the food and drink research

sector, due to IR spectroscopy’s non-invasive and low operating-cost nature. IR

suffers from high initial instrumental costs, however, and in many cases a lack of

reliable and stable supplementary chemometrics for analysis [62]. Developments to

introduce cheaper, more portable and more stable hardware have been consistent,

in order to meet the growing demand for in-line and portable quality controls and

verification needs [139].

Classical univariate spectroscopy methods in the UV and visible regions require

physical separation of the substance of interest, usually by dissolution in a solvent.

NIR spectroscopy combined with chemometrics/machine learning offers the poten-

tial for fast spectra collection and simplicity in sample presentation by learning to

discover the underlying signal and ignore noisy artefacts [29].

2.1.2 Raman Spectroscopy

Raman scattering as a phenomenon has been known about since the 1930s. However,

because the chances of inelastic scattering occurring are so low, practical use of it
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has only been possible in the last few decades with the invention and increasing

power of lasers. Most recently, further advances have led to the possibility of

portable Raman devices and decreases in operational costs. Relative to IR however,

it is still an expensive analytical technique, especially in terms of the initial costs of

the instrumentation but also per sample to a larger degree than IRS.

In modern-day Raman spectroscopy, the main hurdles to overcome are the sig-

nal’s susceptibility to be completely masked by fluorescence [22] and its extremely

shallow penetration depth meaning that only the surface can be investigated. Many

forms and extensions of Raman spectroscopy have appeared in the last two decades

as it has become more practical. However, many are at most only only tangentially

related to potential solutions to through-glass analysis, such as Surface Enhanced

Raman Spectroscopy (SERS) [103] and Wide Area Illumination (WAI) Raman [67].

Of more interest is spatially offset Raman spectroscopy.

2.1.3 Spatially Offset Raman Spectroscopy

Standard Raman spectra can only give information about the surface of a sample or

layer. Spatially Offset Raman Spectroscopy (SORS) is a technique for generating

subsurface Raman spectra, giving information about deeper layers than conven-

tional Raman can analyse. SORS involves the acquisition of two Raman spectra,

one effectively representing the container and the second the subsurface photon,

followed by a scaled subtraction which equates to the subsurface Raman spectrum.

Figure 2.3 gives an example.

The SORS technique is effectively able to bypass, to a depth of several millime-

tres, any fluorescence or Raman signals originating from the surface layers [22],

and relatively speaking enhances the Raman signal from the sub-layer. Therefore,

the Raman spectra of individual sub-layers within a complex multilayer system can

be isolated with a considerably small and simple experimental approach [94]. In
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Fig. 2.3 SORS with an offset of ∆S, image from [14]

absolute terms however, the already relatively low intensity Raman scatter affect is

in effect weakened once more by probing deeper into the surface.

Over the last decade since its invention, SORS has been the subject of much

research in the pharmaceutical and security sectors in particular, for its ability to

ascertain the contents of packaged medicine and pharmaceutical materials [14, 13],

and concealed narcotics [109, 40] or explosives [63]. Developments are also in

progress for the introduction of properly portable SORS instruments, particularly

for use in airport security scenarios [117].

The potential problem for SORS in the context of this project however is that

while its greatly diminished sensitivity is less of a problem for qualitative analysis

in relatively simple samples, or more precisely where the target being searched for

is a significant fraction of the sample, it may not be suitable for the discrimination

of spirits within a relatively small distribution. Ethanol content could realistically

be determined and discriminated upon. It is difficult to imagine though that the

less abundant chemicals such as methanol and metals, which would be the focus of

work coming from a public health standpoint, would be able to be reliably picked

up when present.

If a potentially workable and cost-permissible piece of SORS hardware were to

become available, experimentation with it would certainly be of interest, however.
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2.2 Spectroscopy For Authentication

There is a wealth of research on predictive chemometrics applied to spectroscopy

data for authentication applications, a selection of which are described below. In

the context of food/drink research, wine is by far the most commonly research

application. In comparison, whisky and most spirits appear to have had relatively

little focus on them, despite distilled spirits being considered a larger industry

worldwide *. The space of all distilled spirits, including home-made, is much larger

than the commercial market, however.

Wine

Because the authentication of wine is such a similar problem, many indications of

promising research avenues can be transferred from that existing body of research

to the spirits domain. An overview of the practical application of VS to the analysis

of wine is introduced in [29]. Included is a mention towards though-bottle analysis

for the monitoring of of unwanted changes in the composition of the contents such

as oxidisation. They believe however that such analysis can only be indicative rather

than truly quantitative, because of the limits of NIR and its analytical accuracy.

A series of work on Australian wine, using MIRS to discriminate between

varieties [11], a sample’s organic status [30], and the use of NIRS to determine

the concentration of various elements [31] provides further support to the idea of

using spectroscopy in the discriminatory/predictive analysis of wine samples. This

work culminates in a review by Cozzolino, which suggests the use of combined

Visible and NIR spectroscopy for non-invasive and rapid indicative analysis of

alcohol samples as a promising line of future research. This came with the warning

though, that while NIR can tolerate longer path lengths, its low spectral resolution

*https://www.alliedmarketresearch.com/alcoholic-beverages-market
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and therefore limited analytical accuracy means that it can likely be use only for

qualitative analysis rather than quantitative.

Food and Agriculture

There is a huge array of work on the more general topic of food authenticity and

quality control in terms of agricultural crops. Danezis et al. [32] reviews current

and potential future techniques for food authentication. In their review, VS research

is mainly focused on drinks and foods in liquid forms, such as oils and fats, dairy

and wine, in comparison to other analytical techniques such as chromatographic

and molecular methods.

Lohumi et al. [90] gives a review focused on VS techniques in the food industry.

They note that its use has gained popularity over the last decade due to its suitability

as a non-invasive, sensitive, and rapid analytical method for quality control and

assurance. However, chemometric analytical methods for these techniques are

still developing, and to some degree need to catch up. RS is also seeing a rise in

prevalence and use in certain industrial scenarios. However, it cannot see much

more use outside of lab conditions until costs go down and more complex variants

of Raman spectra collection become feasible in a portable scenario.

Examples of particular applications include distinguishing the geographic origin

of extra virgin olive oils [129], detecting the adulteration of strawberry purees [61],

and the discrimination of coffee of different origins in instant coffee [19].

Drug detection

Eliasson et al. [40] tested the feasibility of detecting illegal drugs dissolved in

alcohol for the purpose of smuggling using Raman spectroscopy, cocaine in rum

in particular. A very difficult to detect method of drug smuggling is to dissolve

the substance in a carrier solution, and then separate them once more at the target
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destination. The authors tested a non-invasive SORS setup to detect 300g of 75%

pure cocaine dissolved in 40% alcohol rum within its original bottle, and found that

when comparing pure rum and rum-plus-cocaine samples, the scaled difference in

the two spectra was identifiable as the signature of cocaine.

The authors noted that using the NIR band helped to combat intense fluo-

rescence which can potentially swamp the Raman signal. Arbitrary bottles with

different characteristics, e.g bottle shape, colour, and glass width, as well as the

solution colour and viscosity, with much more fluorescence could be combated with

specialised methods added on to the signal collection system such as Kerr gated

Raman spectroscopy [89].

Later work by Burnett et al. [23] tested the detection of cocaine in a wider

range of alcoholic solutions and bottles, and further collected data using a range of

different instruments, one laboratory-based and two portable. They found that a

general limit of detection in this scenario was roughly 8% w/v of cocaine in rum,

in an arbitrary bottle. In this context, cocaine is often dissolved at much higher

concentrations in order to reduce wasted materials during the smuggling process,

and therefore the experiments were very promising.

In terms of transferring those methods over to the context of this project, how-

ever, this work may show the limitations of Raman and its low power and resulting

low resolution. While we cannot directly transfer those results over to the fraudulent

alcohol case, since this study was looking for the presence of one substance in

another, if the limit of reliable detection was 8%, that suggests that current methods

cannot be relied of for the level of precision we need.

Security and Explosives Detection

More general security applications of Raman spectroscopy and non-invasive sub-

stance detection has seen much attention in recent years. Izake [63] provides a
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high-level overview of the strengths and limitations of various kinds of Raman

spectroscopy in the general context of forensic and homeland security, while [91]

reviews Infrared and Raman spectroscopy in various practical applications in the

area.

A thorough investigation into optimizing SORS for the detection of substances

concealed within opaque plastic and glass containers is given in [14]. As well

as illustrating SORS’s ability to bypass containers over conventional backscatter

Raman, number of practical conclusions are drawn and guidance given. It is found

that in most cases there exists a well-defined spatial offset that maximises the signal

to noise ratio of the resultant spectrum, which is variable dependant on the container

and content materials. However clear liquids or potentially other non-diffusely-

scattering substances exhibit a wider optimal band, suggesting insensitivity to the

offset. Further, container thickness seemed to have little effect on the optimal offset

value. These points together provide compelling practical arguments for applying

SORS to the fraudulent alcohol problem, however the low resolution of Raman as a

general technique is still a problem to overcome.

While not as strictly relevant to the proposed use cases of this project, Izake et

al. [64] demonstrates promising results using non-invasive ‘standoff’ Raman spec-

troscopy to detect explosives precursors/ingredients in highly fluorescing packaging

from as far as 15m. Given that Raman’s often quoted weaknesses are its relatively

low resolution and susceptibility to fluorescence, the fact that technology able to

leverage Raman’s strengths at such distances does at the very least demonstrate the

potential for Raman to develop as a technology and for hardware improvements to

make it usable in a wider array of applications over the coming decades. Perhaps

further applications arising from the work in this project can lead to distant detection

of fraudulent alcohol as a larger scale system, for example alongside a conveyor

belt at customs and imports.
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Pharmaceutical Supply

Spectroscopic techniques for analytical chemistry are commonplace in the pharma-

ceutical sector. In particular non-invasive techniques have received much intention

when looking for ways to automatically and rapidly verify the contents of ingre-

dients for pharmaceuticals at the production stage [13, 67] and at the consumer

distribution stage [82]. Such a depth and breadth of research into non-invasive

means of analytical chemistry is promising. However, the caveats must be made

that the substances being verified are typically much simpler in the pharmaceutical

context, that is, having fewer constituent compounds, and that the typical problem

in the pharmaceutical context (is the correct drug about to be given to this person?)

is once more qualitative rather than quantitative.

2.3 Spirit Authentication

We now turn to literature on the authentication of spirits in particular. While the

authentication of wine is such a similar topic, a limited amount of literature appears

for the authentication of spirits.

2.3.1 Non-Spectroscopic Alcohol Authentication Methods

We have seen that VS methods have unique advantages that are desirable in authen-

tication applications, however it can be limited in analytical power for situations

where precision is required to make a quantitative decision. More time consuming

and destructive techniques such as gas [54] or liquid [104] chromatography, are

able to chemically fingerprint spirits with great accuracy. Other attempted analyti-

cal techniques include nuclear magnetic resonance spectroscopy [102], capillary

electrophoresis [59], and artificial tongues [93], to name a few. All of these have
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various strengths and weaknesses in terms of analytical power, setup costs, practi-

calities of usage, and familiarity, and all these factors naturally change over time as

understanding and hardware production processes advance. We study VS, NIRS in

particular, in this work largely to leverage one of its main attractive strengths within

the context of detecting forged alcohol; the ability to measure samples within-bottle,

which the others above cannot.

2.3.2 Vibrational Spectroscopy Applications to Alcohol Authen-

tication

We separate VS-specific literature into those performing analysis with direct contact

to the sample first, and those performing through-bottle analysis second.

2.3.2.1 Direct Contact with Sample Required

Numata et al. [107] performed experiments to determine the feasibility and practical

implications of quantitative analysis of binary alcohol-water solutions using Raman

spectroscopy. Acetonitrile was used as a reference sample, with a reading of it

being taken before each reading of a binary solution. To determine the alcohol

concentration, the ratio between the band of alcohol in the binary solution and the

reference sample is calculated. The authors posit that the use of reference readings

is a requirement for quantitative analysis, otherwise the intensity of the band may

not be directly proportional to the alcohol concentration. As well as the sample

itself, the Raman intensity depends on several instrumental conditions such as laser

power and ambient environmental conditions. The authors demonstrated in earlier

work the dependency on laser power of the absolute Raman intensity, however the

band ratio is a constant, independent of the laser power [108]. The authors found

excellent correlation between the band ratios and the mass fraction (concentration)

of ethanol and methanol in water, R2 = 0.9996 in methanol–water, and R2 =
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1.000 in ethanol–water. In ethanol-methanol solutions, calibration curves with

R2 = 0.9992 and R2 = 0.9999 for ethanol and methanol respectively were found,

suggesting that, even though they appear in close spectral bands, discrimination

between them and determination of their levels is still accurate. This is important

for the measurement of full samples, which would contain many more confusive

compounds albeit in (hopefully) lower concentrations. Lastly, the authors found

that even if the acetonitrile standard was measured a single time, as opposed to

before every reading, the calibration curve formed from the band intensity ratio

shows good linearity but still with a reduction in R2. Therefore, the standard should

be measured and used for each sample.

MIR spectrometry with an attenuated total reflectance (ATR) probe, with direct

contact to the sample, is used to detect counterfeit Scotch whisky samples in McIn-

tyre et al. [95]. MIR data were processed using a Savitzky–Golay first derivative

filter, which employed a width of 7 data points and a second order polynomial.

Regions in the data that would only contribute noise to the measurements were

removed, however the exact process to achieve this was not specified. In one set of

experiments, ethanol concentration was measured using univariate and multivariate

PLS models. The authors found that it was possible to predict the concentration

of ethanol in the whisky samples with an average relative error of 1.2% and 0.8%,

respectively. In a second set of experiments authenticity of seventeen whisky sam-

ples was determined using a combination of predicted ethanol level and principal

component analysis (PCA) of the spectra to investigate the colorant added. It was

found that neither method alone was enough to determine authenticity, but with

both methods combined the seventeen samples were correctly discriminated as

legitimate or illegitimate.

Li et al. [83] tests the use of Visible-NIR spectroscopy for the discrimination

of Chinese Liquors based on the factors of brand, age, flavours and alcohol levels.

These experiments required direct access to the sample, however the authors intend
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to do further work involving spectra collection through bottle. Support vector

machine (SVM), Soft Independent Modeling of Class Analogy (SIMCA), and

Linear Discriminate Analysis based on Principal Component Analysis (PCA-LDA)

were tested on 730 samples of 22 kinds, ten brands, and six flavors. Contrary to

many other studies, raw, unfiltered spectra led to the highest classification accuracy.

Derivative processing, which was expected to correct additive and multiplicative

effects in the spectra sharply decreased accuracy of models. PCA-LDA achieved

the best results with a mean accuracy of 98.94% in the training set and 95.70% in

the test set. The percent correctly classified were all in the range of 95.65–100% in

the discrimination of different brands, alcohol levels, ages, and flavours.

Wu et al. [142] considers the use of MIR-ATR spectroscopy to monitor the

levels of the main chemical parameters involved in the fermentation process of

Chinese rice wines. The MIR spectra are once again Savitzky–Golay filtered,

using the first derivative for all readings after a short comparison between different

parameters of the filter on the raw data. PLS, SVM with a Radial Basis Function

kernal, and versions of the two on optimised intervals found through i-PLS are

tested. The SVM on the optimised interval (i-SVM), which reduced the number

of attributes from 1660 to 83, was found to be the most accurate, with root mean

squared errors of prediction (RMSEP) of 6.92, 3.32, 3.24, and 6.33, for total sugar,

ethanol, total acid, and amino nitrogen respectively.

2.3.2.2 Through-Bottle

NIR and Raman spectroscopies are compared for their suitability to determine of

alcohol content in whisky and vodka contained within clear and coloured glass

bottles in Nordon et al. [106]. Univariate regression models for each type of drink

were calibrated for the Raman data using the signal at 873cm−1 in the first derivative

spectrum, while a multivariate PLS was calibrated for the NIR data.
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The latter calibration procedure involved some optimisations on the test data,

and therefore the results specifically should be treated with caution. However, the

higher level conclusions in terms of the relative difficulty of different aspects of the

experiments are still insightful.

Differences between bottles accounted for the greatest variation and difficulty in

the analysis, relative to differences in bottle positioning and time of measurement.

Coloured glass made analysis particularly difficult, due to the effect of large amounts

of fluorescence on the spectra. Using the doubly-transmitted NIR method, a signal

could not be collected from the widest part (70mm path length) of the largest

bottles, whereas comparable signals to that of the smallest bottles could be found

by measuring through the neck of the bottle (40mm path length).

Kiefer et al. [66] study the ability for Raman spectroscopy to discriminate

between certain Scotch Whisky production factors from within their original con-

tainers is tested. 44 whisky samples were measured directly through the glass

walls using an Avantes Raman instrument. The authors suggest that the location

of measurement (from the neck, base or centre) had no influence on the quality of

the readings, in contrast to previous literature. The stability of their sampling sug-

gested excellent reproducibility, with normalised spectra being ‘virtually identical’.

Principal Component Analysis (PCA) could distinguish between the type of cask

each whisky was matured in, but otherwise had limited separability.

In experiments with PLS Regression (PLSR) through leave-one-out cross val-

idation, a quantitative analysis of important factors related to authentication was

described: age; ethanol concentration; and the presence of artificial colourings. The

age of samples between 3-22 years could be estimated to within 0.42 years. On

average ethanol concentration could be estimated to within 0.44%, which is only

just outside the regulatory limits of Scotch Whisky (0.3%).
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Two outliers were found with reported ethanol concentrations differing greatly

from their label. These were explained by the evaporation of alcohol due to a

failed seal, and repeated opening of the bottle, respectively, over longer periods

of time. These are very strong results, suggesting the feasibility of quantitatively

determining key factors to whisky authentication. Ethanol level determination

is perhaps less surprising, as it does form 40-55.8% by vol of the samples, but

determining unintuitive properties like age within such an accuracy is a positive

result.

Successful studies towards the same goal using handheld SORS are described

in [41]. SORS enables the use of Raman spectroscopy through thin surfaces, glass

bottles in this case. Experiments with spirits in identical, 2.3mL clear glass vials and

a thirty second acquisition time with the SORS device demonstrated the strength

of the process by determining the concentrations of ethanol, methanol and other

less abundant compounds present in real or adulterated spirits. Further experiments

with three off-the-shelf, branded, and variously-coloured 50mL bottles revealed

seemingly less reliable, but still well within tolerable levels, detection of methanol

concentration over a ninety second acquisition time.

Our experiments described later take measurements in full-size bottles (typically

700mL) and have a one second acquisition time. The results of these methods are

therefore are not directly comparable. However, that such results are achievable

with non-invasive spectroscopic methods is promising.

Continuing on from these works, our own investigation into this problem focuses

on portability, simplicity, and speed in all aspects of the analysis of a sample. The

final aim is to allow a non-expert to determine with sufficient confidence the

authenticity of an arbitrary spirit on-site and within seconds. The previous works

listed here provide a solid basis on which to continue, and to apply and evaluate
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more modern and expansive machine learning techniques in the context of higher-

throughput data collection procedures.

2.3.3 Chemometrics

The underlying theme in essentially all of the authentication works covered in the

previous section is the pipeline of: smoothing and/or filtering the signal in some

form; performing some form of interval selection and/or non-linear dimensionality

reduction (potentially included internally in the following modelling process);

ultimately predicting through the use of PLS regression (PLSR) for the most part.

Figure 2.4 summarises this process.
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Fig. 2.4 An overview of a standard chemometric pipeline, applied to example
spectra.

Savitzky–Golay (SG) is most frequently used for smoothing, and sometimes

also for simultaneously taking the first or second order derivatives to remove the

effects of total illumination. Suitable parameters for the filter would need to be

found for any individual dataset, as an optimal amount of smoothing would be

dependant on the signal to noise ratio. The amount of noise present, of the type

best handled by smoothers such as SG, is generally a function of the variability

of the total light source, the integration time for each spectra, and the averaging

of sub-spectra to take each reading. Light source stability comes down to the

engineering quality of the intended light source and the (mostly imperceptible

to humans) variance of ambient lighting brought about through e.g. atmospheric
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effects. The integration time is simply how long light is collected for, similar to a

camera. Lastly, many spectroscopic software packages will average over readings

automatically behind the scenes. A one second reading may be five averaged

readings of 0.2 second integration times each, for example. These factors will play

into the amount of smoothing that may or may not be needed.

As demonstrated by Wu et al. [142], but also intuitively, selection of the most

informative interval (wavelength band) significantly improves accuracy. Much of

the time, where particular substances are being search for, wavelength bands are

selected through domain knowledge of known resonant frequencies. For more

complex or multiple substances, or for indicative readings of higher level properties

(e.g. age or cask, from above), automated feature selection could be used. In the

context of our spirit authentication problem, while methanol level is a more concrete

marker for safety and legitimacy, ethanol level alone will likely not provide enough

discriminatory power to discover real world forgeries. Using colour, via the visible

spectrum, in combination with the NIR bands where ethanol and methanol appear,

may well prove to be strong discriminators for general legitimacy. The problem

with leveraging colorants in the context of this project is that, depending on the

particular use case pursued, the nature of the bottle can vary wildly from sample

to sample. Bottle colour, shape, reflectiveness, and ambient lighting all affect the

visible spectrum to a far greater degree than they affect the NIR.

PLS regression appears to be the classical yet accurate method that most authors

fall back on, at least as an initial model. However some authors are using more

recent and complex algorithms such as SVMs [83, 142] and Random Forests [124,

81] where factors such as container variability come into play. Simple (by modern

standards) neural networks have been considered in some older works [120, 105],

but deeper, more complex networks are generally limited by the smaller data scales

available to individual labs. More recent works such as [145] look to incorporate

modern convolutional architectures, in this case Inception modules [127]. However,
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in practice, we have found the use and reproduction of a number of particular

architectures troublesome. In our experiments later throughout Chapters 3 and 5, we

adopt convolutional networks originally designed for time series classification due

to their proven general utility and available implementations. These are discussed

later, in Section 2.4.2.7.

Linear systems on reduced attribute spaces work satisfactorily for clean spectra

collected under professional and standardised conditions. However, they may be

unable to handle any non-linear structural changes in the data described. Further,

spirits and especially whiskies are particularly complex in their chemical compo-

sitions, to their benefit as a final product. Depending on the manner of forgery,

adulteration, or contamination, discriminatory information may be relatively easy

or very difficult to extract.

2.3.4 Calibration Transfer

An important factor to consider in a fielded system is calibration transfer between

different spectral hardware and, more generally, ensuring that the data collected

by two or more different spectroscope devices are mutually useful in modelling

the global problem posed. For the most part, calibration transfer comes down to

the standardisation of instrumental responses through the comparison of spectra

collected of representative sample sets, called transfer samples. Standardisation

adjusts the response of one instrument to the other, and once adjustments have

been learned, can be applied as a preprocessing step to spectra of future genuine

samples. A typical scenario would be that a system is developed on bench-top,

lab-based equipment (the ’primary’ instrument). Later, portable devices for use in

the field (’secondary’ devices) need to be calibrated to produce equivalent responses

such that models trained on data from the primary instrument can maintain their

performance.
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This topic is not covered in further depth throughout this thesis, largely due to

the local practical consideration of equipment costs. For future use of as developed

system in the field, however, it is an important aspect to consider.

2.4 Classification Methods

When considering particular aspects of the spirit authentication problem such as the

concentrations of alcohols to inform decision of authenticity, the use of regression

models makes sense. However, through consultation with industry, the ultimate use

case designed to aid field use is a traffic light classification scheme; green (genuine),

yellow (suspect), and red (forged). The confidence thresholds for each class can be

set by the user in response to factors such as the costs of verification and screening.

Typical regression models can of course still be used though, since regression can

be reduced to classification through discretisation of the output space. In the case

of alcohol concentration, for example, the output space can be discretised to correct

concentration (according to that reported on the label) and not, to within some

acceptable limit.

The unique challenges of the domain in question suggest more powerful mod-

elling methods may be required than those described as being typically used previ-

ously. Non-standard containers, variable environmental conditions, portable devices

with lower power than bench-top solutions, and the relative homogeneity of the

sample properties being distinguished under our experimental conditions all work

to make the problem more difficult. Here, we shall first define the standard notation

used throughout the thesis when working with data and classifiers, and then give

overviews of two broad classification methods we shall develop and apply to the

domain: ensembles and time series classification.
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We use the following notation. A dataset DDD of size n is a set of attribute

vectors with an associated observation of a class variable (the response), DDD =

{(xxx111,y1), . . . ,(xxxnnn,yn)}, where the class variable has c possible values, y ∈ {1, . . . ,c}

and we assume there are m attributes, xxxiii = {xi,1, . . . ,xi,m}. A learning algorithm L,

takes a training dataset DDDr and constructs a classifier or model M, which is evaluated

on a test dataset DDDe. A classifier M is a mapping from the space of possible attribute

vectors to the space of possible probability distributions over the c valid values of

the class variable, M(xxx) = p̂pp, where p̂pp = {p̂(y = 1|M,xxx), . . . , p̂(y = c|M,xxx)}. Given

p̂, the estimate of the response is simply the value with the maximum probability.

ŷ = argmax
i∈{1,...,c}

p̂(y = i|M,xxx).

2.4.1 Ensembles

An ensemble of classifiers is a collection of classifiers trained to solve the same

overall problem whose predictions for new data are combined to produce a single

prediction for the whole ensemble. Many factors are at play when selecting and

designing a classifier to use for a decisioning system, and these are multiplied when

considering ensembles. Five key factors can be defined when considering ensemble

systems [119, 73], the way in which to combine the outputs of base classifiers,

how to train base classifiers both in the learning algorithm used and whether each

classifier is dependent or independent of the others, how to ensure diversity between

base classifiers, how large the ensemble should be and whether this is dynamic or

fixed, and whether any specific base classifier learning algorithm is required or the

choice is arbitrary.

The two key concepts in ensemble design which we are most interested in for

the experiments of Chapter 4 are the necessity for classifiers in the ensemble to
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produce diverse predictions [38, 110, 52, 57] and how to combine the outputs of

the models.

For the former, an ensemble needs to have classifiers that are good at estimating

the response in areas of the attribute space that do not overlap too much. That being

said, there is no single precise definition or measure of diversity accepted throughout

the literature, with dozens of different candidates having been proposed [72, 128].

Further, it has been argued that diversity is a necessary but not itself sufficient

condition of a strong ensemble [74], with conditions of minimal performance

of the base classifiers and suitable combination methods playing a role. Base

classifiers that each produce entirely random predictions will likely be very diverse,

but not very useful. In this vein, diversity may be broken down into ‘good’ and

‘bad’ diversity for ultimate predictive performance, and be related to the choice of

performance metric and combination scheme [20]. Regardless of whether diversity

itself can be optimised for, its presence is a requirement in any ensemble that is to

be better than its base classifiers. In the opposite case of the previous hyperbolic

example, ensembling many classifiers that all predict the same thing is no better

than using just one of them. Broadly speaking, diversity can be engineered by

changing the training data or parameters given to the same learning algorithm to

form a homogeneous ensemble, or by employing different learning algorithms to

train each base classifier, forming a heterogeneous ensemble.

On combining models, a top-level taxonomy of non-trainable, trainable, and

meta-classifier combination methods can be defined [73]. Non-trainable combina-

tion methods would include taking the means of the outputs of the base classifiers,

or taking the single most confident prediction in a probabilistic setting. Trainable

combination methods include weighting schemes where weights need to be learned

and assigned, or even classifier selection approaches where the single classifier

to use needs to be picked. Meta-classifiers, also described as stacking, go further
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by taking the outputs of the base classifiers and using them as inputs to a further

classifier (-system).

Extending the notation defined above, an ensemble E is a collection of classifiers

EEE = {M1, . . . ,Mk} built by a set of (possibly identical) learning algorithms LLL =

{L1, . . . ,Lk} which train on (possibly different) sets of train data. An ensemble

algorithm involves defining the learning algorithms LLL, the data DDD used by each

learning algorithm to produce the models EEE and a mechanism for combining the

output of the k models for a new case into a single probability distribution or a

single prediction.

2.4.1.1 Heterogeneous Ensembles

Heterogeneous ensemble design relies more heavily on diversity through the use

of different learning algorithms, and focuses on how to use the output of the base

classifiers to form a prediction for a new case. i.e., given k predictions {ŷ1, . . . , ŷk}

or k probability distributions { p̂pp111, . . . , p̂ppkkk}, how to produce a single prediction ŷ

or probability distribution p̂pp. There are three core approaches: define a weighting

function on the model output (weighting schemes); select a subset of the models

and ignore other output (ensemble selection schemes); or build a model on the

training output of the models (stacking) [116].

Weighting Schemes

Weighted combination schemes estimate a weight w j for each base classifier and

then apply it to their predictions. Base classifier predictions multiplied by some

weight are summed,

si =
k

∑
j=1

w j ·d(i, ŷ j)
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where

d(a,b) =


1, if a == b

0, otherwise

then the class with the highest weighted prediction is chosen

ŷ = argmax
i∈{1,...,c}

si.

Based on the framework described in Kuncheva and Rodríguez [71], we concentrate

on four weighting schemes, which are described as following on from one another

when relaxing assumptions about base classifiers’ performance.

1. Majority vote (MV): w j = 1 for all base classifiers.

2. Weighted majority vote (WMV): w j is set as an estimate of the accuracy of

the base classifier found on the train data.

3. Recall (RC): Rather than a single weight w j, a separate weight is assigned

to each class wi, j. This weight is set to be the proportion of cases correct for

that class on the training data (the true positive rate/recall/sensitivity).

4. Naive Bayes Combiner (NBC). The Naive Bayes combiner uses the con-

ditional distributions to form an overall distribution, assuming conditional

independence.

p̂(y = i|{ŷ1, . . . , ŷk}) = p̂(y = i|ŷ1) · p̂(y = i|ŷ2), . . . , p̂(y = i|ŷk)

where the probability estimates are derived directly from the cross-validation

confusion matrix of the train data. The final prediction is the index of the

maximum probability.
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Ensemble Selection

A popular approach is to use a heuristic to select a subset of classifiers. Also

referred to as an overproduce and select strategy or ensemble pruning, it was

initially proposed for ensembles of diverse neural networks [113], but later became

generalised to other classifier types [53]. The approach became known to a wider

audience after the landmark paper by Caruana et al. [25], which describes the

algorithm we compare to in Chapter 4 and call ensemble selection (ES).

Given a set of base classifiers, ES uses forward selection to progressively build

the ensemble, selecting the classifier at each stage that gives the largest improvement

to the ensemble’s performance, or stopping when no improvement can be made.

This process has a large potential for overfitting, and so this is mitigated through

three strategies: selecting with replacement allows for the incorporation of good

models multiple times, instead of being forced to select poor models sooner that

may by chance improve ensemble performance on the current set; initialising

the ensemble with a subset of the best classifiers in the pool gives a strong and

reasonable start to the process; and lastly, repeating the selection process multiple

times on bagged subsamples of the set of base classifiers before aggregating into a

final ensemble gives the inter-relationships between different sets of models more

chances to be recognised.

Stacking

The third popular approach to building heterogeneous ensembles is stacking [141].

This involves taking the output of the base classifiers on the train data, then applying

another learning algorithm to determine how to best combine the outputs to predict

the class value. Thus the cross-validation on the train data produces a set of

predictions or probabilities for each case from all ensemble members and a further

classifier is then trained on this output. New cases are classified by first producing
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the output of the base classifiers, then passing these outputs to the meta-classifier

to form a prediction. The first stacking algorithm to gain widespread usage was

stacking with multi-response linear regression (SMLR) [131]. Two extensions to

SMLR were proposed in [39]. These were stacking with multi-response linear

regression on extended features (SMLRE) and stacking with multi-response model

trees (SMM5).

HESCA

Lines et al. [87] describes a particular instantiation of an ensemble (base classifier

set and method of combination). The Shapelet Transform (discussed later, Section

2.4.2.3) for time series classification, generates a dataset that is transformed from

time series to tabular data. A general purpose classifier was desired to generate

predictions from the transform, which was accurate on test data but also could

generate a reliable estimate of performance on the train data. The Heterogeneous

Ensemble of Standard Classification Algorithms (HESCA) was designed to fill

this role. HESCA includes eight constituent classifiers, two of which themselves

are ensembles: k Nearest Neighbour; Naive Bayes; C4.5 decision tree; Support

Vector Machines with linear and quadratic basis function kernels; Random Forest

(with 500 trees); Rotation Forest (with 50 trees); and a Bayesian network. These

classifiers were chosen to give a balance between probabilistic, instance-based, and

tree-based classifiers. The intention behind this was to create a simple, untuned,

ensemble that was immediately diversified by the nature of its base classifiers. An

evaluation on 72 datasets from the UCI archive (Section 2.5.1.1) confirmed its

utility against its own base classifiers, although Rotation Forest itself was close in

performance. The benefit of HESCA, however, was shown when used to classify

time series data from the Shapelet Transform, where it was clearly superior [87].
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HESCA, although proven experimentally prior to use, was conceptualised

relatively simplistically. The selected base classifiers had thought put into them

for their diversity in theory, but were not optimised empirically for it. Likewise,

most of the classifiers are known to be generally strong on arbitrary tabular data,

but the particular classifiers selected for HESCA were not optimised for accuracy.

Put simply, a generically strong classifier was required to form predictions from

the transform, which was designed to do the heavy lifting of time series feature

extraction. HESCA formed the early basis of our interest in ensembles over small

heterogeneous classifier sets, and eventually leads to the development of a new

ensembling scheme in Chapter 4.

2.4.1.2 Homogeneous Ensembles

Homogeneous ensemble design focuses more on how to diversify the base classi-

fiers than on how to combine outputs. Popular homogeneous ensemble algorithms

based on sampling cases or attributes include: Bagging decision trees [17]; Random

Committee, a technique that creates diversity through randomising the base classi-

fiers, which are a form of random tree; Dagging [130], which trains base classifiers

on disjoint stratified folds of the data; Random Forest [18], which combines boot-

strap sampling with random attribute selection to construct a collection of unpruned

trees; and Rotation Forest [118], which involves partitioning the attribute space

then transforming in to the principal components space. Of these, we think it fair

to say Random Forest is by far the most popular. These methods combine outputs

through a majority vote scheme, which assigns an equal weight to the output of

each model.

Boosting ensemble algorithms seek diversity through iteratively re-weighting

the training cases and are also very popular. These include AdaBoost (Adaptive

Boosting) [45], which iteratively re-weights based on the training error of the
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base classifier; Multiboost [138], a combination of a boosting strategy (similar to

AdaBoost) and Wagging, a Poisson weighted form of Bagging; LogitBoost [47]

which employs a form of additive logistic regression; and gradient boosting al-

gorithms [46], which have become popular through the performance of recent

incarnations such as XGBoost [26]. Boosting algorithms also produce a weighting

for each classifier in addition to iteratively re-weighting instances. This weight

is usually derived from the the training process of the base classifier, which may

involve regularisation if cross-validation is not used.

Random Forest

A Random Forest is composed of k trees, with each tree being trained on a random

subset of the instances of the training set. At each node in the tree, a random

subset of attributes is selected, and the best attribute in the sample is selected for

partitioning the data. The Random Forest therefore generates diversity between

its constituent classifiers (trees) through random sampling of both instances and

attributes of the dataset. The hyperparameters controlling the sample sizes create

a trade-off between the inter-dependence of trees, with higher diversity driven

by lower values, and the strength of individual trees, with individual prediction

performance generally increased via access to more data. In practice, Random

Forests are often viewed as robust to these parameters when sufficient trees are built

(typically 500) [18, 44].

Rotation Forest

Rotation Forest is similarly an ensemble of trees, however its mechanisms for

generating diversity via the instances and attributes differs. For each tree, all

attributes are randomly partitioned into r distinct groups. For each group, instances

are randomly sampled with replacement from a random subset of the classes. A

36



principle component analysis is performed on each group, and the coefficients

learned from the instance subset used to transform the full instance space. All r

transformed groups of attributes are recombined to form the new dataset, which a

standard tree is trained on.

Gradient Boosting

Gradient Boosting, for which we make use of the XGBoost package for practical

implementation, is an approach where each new model is created to predict the

residual errors of previous models, and concatenated to make the final prediction.

Each tree is an intentionally simple and weak learner, limited primarily by its max

depth to typically between two to ten, which is treated as a tune-able hyperparameter.

Gradient descent is used to minimise loss and controls the tree addition process.

XGBoost as an implementation largely introduces regularisation techniques to the

loss, tree pruning strategies, and implementation optimisations to leverage hardware

resources and parellelisation.

2.4.2 Time Series Classification

Time series classification (TSC) is concerned with learning techniques for data

recorded consistently over some variable (typically time) in particular. A time

series is a set of ordered and numeric attributes. Beyond the regular tabular data

description of DDD previously, in a time series context there can be discriminatory

information embedded within the ordering of attributes itself in the form of shape

and autocorrelation. The description of DDD holds for univariate series, where each

instance {xxxiii,yi} has one time series xxxiii associated with each label yi. This can

be generalised to the multivariate time series classification (MTSC) case, where

multiple time series are associated to one label. In MTSC, each instance is a

list of vectors over d dimensions and m observations, XXX =< xxx111, . . .xxxddd >, where
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xxxkkk =(x1,k,x2,k, . . . ,xm,k). We denote the jth time step of the ith instance of dimension

k as the scalar xi, j,k.

The has been a large increase in the prevalence of TSC literature over the last

decade. This is due to the ubiquity of time series data in practical applications

providing motivation to improve modelling methods, as well as the practical experi-

mental benefits brought through the introduction and continued expansion of the

UCR univariate (Section 2.5.1.1) and UEA multivariate [3] TSC dataset archives.

For a time, the received wisdom was that whole-series distance comparison using

dynamic time warping (DTW) [115] with a nearest neighbour classifier was the

gold standard and difficult to beat on average. In 2017, a large-scale evaluative

comparison of proposed classification techniques on a wider set of datasets found

that a number of algorithms could significantly outperform the DTW benchmark [6].

It also defined a taxonomy of time series representations, which leverage differ-

ent features of time series through transformation into alternative domains. This

taxonomy has morphed and expanded since that study. We describe and group algo-

rithms in a similar way to aid contextual understanding of how different algorithms

fundamentally operate.

2.4.2.1 Algorithms based on raw series

Techniques based on raw series compare two series either as a vector (as with

traditional tabular classification) or by a distance measure that uses all data points. In

the latter case, measures are typically combined with one-nearest-neighbour (1-NN)

classifiers and the simplest variant is to compare series using Euclidean Distance.

However, this baseline is easily beaten in practice on all but the simplest and

most carefully aligned datasets, and most research effort has been directed toward

finding techniques that can compensate for small misalignments between series

using specialised elastic distance measures. The almost universal benchmark for
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whole-series measures is Dynamic Time Warping (DTW) but numerous alternatives

have been proposed. The most accurate whole series approach as of the bakeoff

comparison was the Elastic Ensemble (EE) [85], an ensemble of 1-NN classifiers

using various elastic measures, including DTW, combined through a proportional

voting scheme.

2.4.2.2 Interval-based algorithms

Rather than use the whole raw series, the interval class of algorithm selects one or

more phase-dependent intervals of the series. At its simplest, this involves a feature

selection of a contiguous subset of attributes. However, the three most effective

techniques generate multiple intervals, each of which is processed and forms the

basis of a member of an ensemble classifier [36, 9, 8]. There is no significant

difference in accuracy between these approaches, but the simplest and most widely

adopted is the Time Series Forest (TSF) [36].

TSF aims to capture basic summary features from intervals of a time series. For

any given time series of length m there are m(m−1)/2 possible intervals that can

be extracted. TSF takes a random forest-like approach to sampling these intervals.

For each tree, k intervals are randomly selected, each with a random start position

and length. Each interval is summarised by the mean, standard deviation and slope,

and the summaries of each interval are concatenated into a single feature vector of

length 3k for each time series. A decision tree is built on this concatenated feature

vector. New cases are classified using a majority vote of all trees in the forest.

CIF [97], the Canonical Interval Forest, and the subsequent DrCIF [99], the

Diverse Representation Canonical Interval Forest, expand on TSF and shall be

discussed in Chapter 5.
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2.4.2.3 Shapelet-based algorithms

Shapelets were first introduced by Ye et al. [143]. Shapelet approaches are a

family of algorithms that focus on finding short patterns (shapelets) that can appear

anywhere in the series, whose presence indicate class membership. Likelihood of

presence is typically determined by the so-called sDist, which slides the shapelet

along the time series of interest, and finds the location and computed distance of

the location from which the subsequence of equal length to the shapelet has the

minimum Euclidean distance. This is illustrated in Figure 2.5. Low sDist implies

that the pattern described by the shapelet is present in the series, and vice versa. The

main difficulties are then finding informative shapelets that discriminate between

classes well, and the means of leveraging them for classification.

Fig. 2.5 Illustration of a shapelet S, being compared to time series T. A start location
in T is found where S has minimal Euclidean distance to the subsequence of the
same length. Image from [143].

The two leading ways of finding shapelets are through enumerating the can-

didate shapelets in the training set [86, 60] or searching the space of all possible

shapelets with a form of gradient descent [56]. The bakeoff found that the shapelet

transform algorithm used in conjunction with a heterogeneous classifier ensemble

(ST-HESCA) is the most accurate approach on average. The transform searches for

shapelets, and then computes the distance between each series and each shapelet

to create a new (tabular) dataset for the training of a standard classifier. In more

recent works, the classifier trained on the transformed data has been a modified

and contracted rotation forest [1] instead of HESCA [4] for greater usability. As
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is done there, we refer to this version as the Shapelet Transform Classifier (STC)

henceforth.

2.4.2.4 Dictionary-based algorithms

Shapelet algorithms look for subseries patterns that identify a class through pres-

ence or absence. However, if a class is defined by the relative frequency of a

pattern, shapelet approaches will be poor. Dictionary approaches address this by

forming frequency counts of repeated patterns. They approximate and reduce the

dimensionality of series by transforming into representative words, then compute

similarity by comparing the distributions of words between series. Figure 2.6 illus-

trates the type of data dictionary-based algorithms should particularly be strong on.

Correctly parameterised (length of pattern, and severity of smoothing/discretisation)

transforms will be able to capture the patterns and form counts of each, separating

the classes.

As of the bakeoff, three of the approaches had been published in the data mining

literature are: Bag of Patterns (BOP) [84]; the Symbolic Aggregate Approxima-

tion Vector Space Model (SAXVSM) [125]; and the Bag of Symbolic Fourier

Approximation Symbols (BOSS) [121]. BOSS was among the most accurate single-

representation classifiers, and the only of the dictionary approaches to significantly

beat DTW.

BOSS uses Symbolic Fourier Approximation (SFA) [122] to discretise sliding

windows into words. SFA first finds the Fourier transform of the window, then

discretises the first l Fourier terms into α symbols to form a word using a bespoke

supervised discretisation algorithm. Histograms of the words in each series are

formed, and predictions made using nearest neighbour between the historgrams

with a bespoke distance function that considers only words contained in the test

instance’s histogram (i.e. the word count is above zero). Otherwise, it is Euclidean
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Fig. 2.6 Examples of simulated dictionary data for a two class problem. Class is
defined by colour, the top five cases are of one class, the bottom five of another.
Both classes contain examples of two distinct shapes, but each shape occurs more
commonly in one class than the other. The first class contains more spike shapes
than step shapes. The right contains far more random noise than the left, but the
underlying patterns are still present.

.

Distance. Since BOSS, a number of extensions to improve different aspects have

been proposed.

cBOSS [100] made BOSS contractable, and introduced optimisations and

randomisation to reduce the work done in BOSS’s parameter search.

WEASEL [123], Word Extraction for Time Series Classification, introduced

expanded histograms through the incorporation of bigrams of words, and adopted

a process of over-producing bigrams before utilising feature selection to keep the

most informative ones.

SBOSS [77], Spatial-BOSS, incorporated the temporal information back into

the by-default global histograms of BOSS. While dictionary classifiers, BOSS

included, are concerned with the frequency of patterns in a series regrdless of

location, SBOSS expands the histograms to include locational information which
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is naturally leveraged by the distance functions used for final prediciton. This is

discussed further in Chapter 5.

TDE [98] is the Temporal Dictionary Ensemble, which is a culmination and

unification of BOSS’s three improvements described previously. This is discussed

in Chapter 5.

2.4.2.5 Spectral-based algorithms

The frequency domain will often contain discriminatory information that is hard

to detect in the time domain. Methods include constructing an autoregressive

model ([28, 5]) or combinations of autocorrelation, partial autocorrelation and

autoregressive features ([7]). An interval-based spectral ensemble called Random

Interval Spectral Ensemble (RISE) was proposed Lines et al. [87] and shown to be

more accurate on average than whole series spectral approaches.

RISE draws on the ideas of random forests and TSF. Like TSF, RISE builds trees

on random intervals from the data to construct a random forest-like classifier. The

difference being that instead of summary statistics, RISE extracts spectral features

over each random interval instead. RISE uses several forms of spectral features:

the power spectrum, the autocorrelation function, the partial autocorrelation and

the autoregressive model. New classes are classified using a simple majority vote.

2.4.2.6 Combining Representations

Two or more of the above approaches can be combined into a single classifier.

For example, an approach that concatenates different feature spaces is described

by Kate [65], forward selection of features for a linear classifier is the method

adopted by Fulcher and Jones [48]) and transformation into a feature space that

represents each group above and ensembling classifiers together formed the basis of

the Collective of Transformations Ensemble (Flat-COTE) classifier [7]. Time series
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data, at least those in the public archives, appear to benefit greatly from the use

of particular representations. A model selection process can be used to select one.

However, selection processes from the train data will not always generalise and,

regardless, in some cases multiple respresentations are beneficial within a single

dataset also. It is for that reason that the combinations of representations has been

state of the art, and was so stand-alone until recently.

HIVE-COTE [87], the Hierarchical Vote Collective of Transformation-based

Ensembles (later dubbed HIVE-COTE alpha), succeeded Flat-COTE to become

the state of the art. It is a modular meta-ensemble of classifiers from each class of

algorithms: EE, TSF, BOSS, ST-HESCA and RISE. Each module is encapsulated

and built on the train data independently of the others. For new data, each module

passes an estimate of class probabilities to the control unit, which combines them

to form a single prediction. It does this by weighting the probabilities of each

module by an estimate of its testing accuracy formed from the training data. The

key principle behind HIVE-COTE is that TSC problems are best approached by

careful consideration of the data representation, and that with no expert knowledge

to the contrary, the most accurate algorithm design is to ensemble classifiers built

on different representations.

HIVE-COTE 1.0 [4], was introduced to improve HIVE-COTE alpha’s utility

and scalability. The goal of HIVE-COTE alpha was to achieve the highest level

of accuracy without concern for computational resources. Version 1.0 dropped

the distance based EE due to the high computational overhead without significant

loss of accuracy. STC introduced binary shapelets [15] and a randomised search

controlled by a time parameter. HIVE-COTE 1.0 uses the Cross-validation Accuracy

Weighted Probabilistic Ensemble (CAWPE) [78] ensemble structure (introduced

and evaluated in Chapter 4 of this thesis). CAWPE uses an accuracy estimate of each

classifier formed on the train data to weight the probabilities of each component.

It constructs a tilted distribution through exponentiation using a parameter α to
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extenuate differences in classifiers. Each component’s weight is found through an

internal estimate for each classifier if capable, else a ten fold cross-validation of the

training data is performed.

HIVE-COTE 2.0 updates each of the representational components to the most

recent state of the art, generalises to the MTSC scenario (from univariate only

previously), and introduces several usability updates. It is described in Chapter 5.

TS-CHIEF [126], the Time Series Combination of Heterogeneous and Inte-

grated Embedding Forest, is the classifier most comparable to HIVE-COTE. It

too combines different representations. However, representations are embedded

into the nodes of trees instead of modularly combined. TS-CHIEF is made up of

an ensemble of trees which embed distance, dictionary and spectral base features.

A number of splitting criteria from each representation with randomly initialised

parameters are considered at each node. The different types of split criteria are

dictionary based splits based on BOSS, similarity based splits based on EE and

interval based splits based on RISE. Across the UCR archive, there is no significant

difference in accuracy to HIVE-COTE 1.0, and so TS-CHIEF was among the state

of the art for some time. HIVE-COTE 2.0, as shown in Chapter 5, improves over it.

2.4.2.7 Deep Learning

Instead of selecting a single data representation, or combining over multiple, deep

learning can be utilised to learn bespoke representations per dataset. Despite their

strength and popularity in handling 2D image data, a result of AlexNet’s perfor-

mance on the ImageNet dataset [70], deep learning approaches have only more

recently been heavily studied in the (notionally easier) 1D time series domain.

While the UCR archive contains numerous datasets, many of these would be con-

sidered tiny by deep learning standards, and generalisable learning on individual

datasets can prove difficult. Regardless, knowledge of training methods and archi-
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tectures gained from the former can be utilised on the latter, and progress in deep

learning approaches has been rapid.

While Wang et al. [137] started with a smaller comparison of originally pro-

posed architectures, Fawaz et al. [42] provided the first standardised large-scale

comparative study of deep learning approaches for TSC. Nine architectures were

evaluated on 85 datasets of the univariate UCR archive and 13 datasets of the

Baydogan multivariate archive†. The Residual Network, ResNet [137] was found

to be significantly better than all other approaches on the univariate datasets, and on

all univariate and multivariate datasets combined. For the multivariate datasets in

isolation, no significant difference was found between all approaches, mainly due

the small sample size, but also due to a conservative adjustment for multiple testing.

The Fully Convolutional Neural Network, FCN [137] had a slightly better overall

rank, however no definitive conclusions of superiority could be drawn. We use this

comparative study to take ResNet as a baseline deep learning approach. Currently

the state-of-the-art deep learning approach for TSC is InceptionTime [43], which

builds on ResNet.

ResNet was first applied to TSC by Wang et al. [137]. It is a network of

three consecutive blocks, each comprised of three convolutional layers, which

are connected by residual ‘shortcut’ connections that add the input of each block

to its output. Residual connections allow the flow of gradient directly through

the network, combating the vanishing gradient effect [58]. The residual blocks

are followed by global average pooling and softmax layers to form features and

subsequent predictions.

InceptionTime achieves high accuracy through a combination of building on

ResNet to incorporate Inception modules [127] and ensembling over five multiple

random-initial-weight instantiations of the network for greater stability [43]. A

†http://www.mustafabaydogan.com/
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Fig. 2.7 An Inception module with example parameters, figure from [43]. Three of
these are concatenated to form a block in InceptionTime.

single network out of the ensemble is composed of two blocks of three Inception

modules each, as opposed to the three blocks of three traditional convolutional

layers in ResNet. These blocks maintain residual connections, and are followed by

global average pooling and softmax layers as before.

An Inception module is summarised in Figure 2.7. It takes an input multivariate

series of length m, dimensionality d, and first uses a bottleneck layer with length

and stride 1 to reduce the dimensionality to d′ < d while maintaining output length

m. This greatly reduces the number of parameters to later learn. Convolutions of

different lengths are applied to the output of the bottleneck layer to find patterns of

different sizes. The outputs of these convolutions are combined with an additional

source of diversity, a Max Pooling followed by bottleneck (with the same value of

d′) applied to the original time series, and all stacked to form the dimensions of the

output multivariate time series to be fed into the next layer.

Developing approaches

ResNet and InceptionTime detailed above are two of the most experimentally

verified models within the available TSC literature at the time of writing, Inception-

Time being the state of the state of the art for arbitrary datasets. That being said rate

of knowledge transfer from other data tasks to time series is rapid, and new models

are proposed frequently. One architecture paradigm, in the same conceptual vein as
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convolutional and recurrent architectures, yet to be practically utilised within TSC is

the Self-attention based Transformer network [133]. These have been used to great

effect in natural language processing [37, 21] and vision [111] domains within the

last few years. Transformers can be framed as being able to compute context-aware

arbitrary sequence-to-sequence functions on a compact domain [144], as opposed

to fixed word embeddings as in something like word2vec [101].

The lack (so far) of Transformer networks performing well within the gener-

alised TSC literature is likely because of a lack of millions-scale public datasets for

effective pretraining within the field. Throughout this thesis, we focus on ResNet

and InceptionTime as proven classifiers that we can access and implement for

experimentation.

2.4.2.8 ROCKET

A newer approach which defies the categorisations above is the Random Convo-

lutional Kernel Transform (ROCKET) [34]. ROCKET uses a large number of

randomly parameterised convolution kernels applied to each instance. As each

kernel is applied to a series, the max value and proportion of positive values are

recorded and concatenated into a feature vector. These features are then used to

build a linear ridge regression classifier with built in cross-validation to select the

alpha parameter. The key motivation here is to overproduce many features that

are weak by themselves, and allow the simple linear classifier to sort their relative

importance, even if only relatively few of them turn out to be useful.

For each kernel generated, the parameters are selected from the following

spaces: The length, l, is selected such that, l ∈ {7,9,11}; the value of each weight,

wi, is randomly sampled from a normal distribution ∼N (0,1), and are then mean

centered; bias b is sampled from a uniform distribution ∼U (−1,1); dilation, a, is

sampled from an exponential scale up to series length; the binary decision to pad
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the series p is chosen with equal probability, if true the series is zero padded at

the start and end equally such that middle element of the kernel is applied to every

point in the input series. Stride is always set to 1. For multivariate datasets, each

kernel is assigned a random number of randomly selected dimensions. The kernel

for the multivariate case is still one dimensional, but with weighting being different

for each dimension. The max and proportion of positive values is calculated across

all selected dimensions.

2.4.2.9 Application to spectra

The classification of spectra can be phrased as a TSC problem [6]. Instead of

continuous values being measured over time, they are measured over wavelength.

Our hypothesis in approaching this problem for this thesis is that TSC methods that

consider overall shape may be able to correct for structural defects in the spectra

brought about by the many sources and differing effects of noise involved with

non-invasive spectra collection. Relative to many other time series datasets that

may be encountered, spectra have some simplifying advantages. First, instances

are typically or can be trivially made equal-length. If the same individual type of

spectroscope is used for data collection, this is automatic. Otherwise, wavelengths

can simply be truncated and down/up sampled to match wavelength sampling

frequencies. Second, spectra will be automatically phase-aligned. Wavelengths

having a defined physical meaning means that the jth observation of one spectra

refers to precisely the same physical concept as the jth observation of another.

In this sense, spectra can be informally viewed as partway between tabular and

time series data. Through the use of standard chemometric approaches, spectra

are treated entirely as tabular data. Clearly this has been successful enough in a

wide variety of domains, discussed previously. We investigate whether augmenting

the modelling process to include order information is of benefit to our alcohol

authentication problem.
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Seven spectral datasets were included in the bakeoff evaluation [6]. These were

of various foods and drinks, with direct contact to the sample, collected with Fourier

transform infrared (FTIR) spectroscopy with either diffuse reflectance (DRIFT) or

attenuated total reflectance (ATR) sampling. These data collection scenarios fall

under the same conditions of direct contact with the sample described previously in

Section 2.3.2.1. True to conventional wisdom, Bagnall et al. [6] found that on these

seven datasets standard tabular classifiers (referred to as vector classifiers), albeit

generally more complex than (partial-) least squares regression, were marginally

stronger.

2.5 Classifier Evaluation and Comparison

In order to claim one classification method as better than another for some problem,

the data structure and sampling, the exact benefit being sought, and the statistical

methods used to test for difference must all be sound.

2.5.1 Data and Resampling

Throughout this thesis, we make use of datasets from three main sources. For gener-

alised classifier comparison across multiple domains, mainly throughout Chapter 4,

we use the public UCI (tabular data) and UCR (univariate time series) dataset

archives. Otherwise, spectroscope data of spirit samples has been manually col-

lected in procedures that shall be described in detail in their respective Chapters, 3

and 5.
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2.5.1.1 Public archives

The University of California, Irvine (UCI) machine learning archive ‡ is widely

used in the machine learning and data mining literature. An extensive evaluation of

179 classifiers on 121 datasets from the UCI archive, including different implemen-

tations of notionally the same classifier, was performed by Delgado et al. [44]. It is

worth mentioning there have been several problems identified with the experimental

procedure used in this study (see Wainberg et al. [134] for a critique). Firstly, some

algorithms were tuned, others were used with the built in default parameters, which

are often poor. For example, random forest in Weka defaults to 10 trees. Secondly,

for some of the tuned algorithms, there was an overlap between validation and

test datasets, which will have introduced bias. Thirdly, the data were formatted

to contain only real valued attributes, with the categorical attributes in some data

sets being naively converted to real values. We retain this formatting in order

to maintain consistency with previous research but this may bias against certain

types of classifier. Comparisons between, for example, different heterogeneous

ensembles in Chapter 4 should be entirely unaffected, since they are all built on the

same base classifier prediction information. We have no prior belief as to the impact

of the formatting on other base classifiers and in order to avoid any suggestion of a

priori bias, we use the exact same 121 datasets. A summary of the data is provided

in Table 6.2 in the Appendix.

The University of California, Riverside (UCR) archive [33] is a continually

growing collection of real valued TSC datasets§. Datasets come from various

domains such as image outlines, audio, motion sensor readings, electrocardiograms,

and spectroscopy data, as mentioned previously. A study [6] implemented 18

state-of-the-art TSC classifiers within a common framework and evaluated them

on 85 datasets in the archive. The best performing algorithm, the Collective

‡http://archive.ics.uci.edu/ml/index.php
§http://www.timeseriesclassification.com
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of Transformation-based Ensembles (COTE), was a heterogeneous ensemble of

strong classifiers. These results were our primary motivation for further exploring

heterogeneous ensembles for classification problems in general. The UCR datasets

are summarised in Table 6.3, in the Appendix once more.

2.5.1.2 Random Stratified Resampling

When evaluating a classifier on a dataset, we want to understand the performance

of the learning algorithm on the conceptual problem being presented. To reduce the

effects of particularly favourable or harmful data distributions, it is generally wise

to train and test the learning algorithm multiple times using distinct subsets of the

data. Multiple approaches exist to sample a dataset, most notably cross validation,

bootstrapping, and random stratified resampling.

It should be clarified that when talking about time series datasets throughout this

thesis, or the usage of time series classifiers, the instances of data are either innately

independent or are assumed to have been made so for the datasets in public archives.

In, for example, econometrics, in cases where we consider a streamed series and

predict the future values of it, it is vital that models are trained on past data to make

future predictions. In our scenario, however, independent time series with their own

labels are considered, and this factor can be ignored when resampling data.

For evaluation over arbitrary datasets, we take 30 random stratified resamples as

the default method. When tuning hyperparameters or performing model selection

on the train set of a resample, we use a nested 10-fold cross validation. All learning

of parameters and hyperparameters is done on the train set of a resample, and the

resulting classifier is evaluated on the corresponding test set only.

For the UCI data, 50% of the data is taken for training, 50% for testing. There

is no overlap in train or test data as previously observed by Wainberg et al. [134]
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and the data can be used in a similar manner to Wainer and Cawley [135] without

introducing bias.

The UCR archive provides a default train/test split defined by the datasets’

respective sources, and the first ‘resample’ is always this default split for ease

comparison to other results. Later resamples maintain the class and size distributions

defined in these default splits. We always compare classifiers on the same resamples,

and these can be exactly reproduced with our published code.

2.5.1.3 Leave One Category Out

Where evaluating performance in the average case, we also use random stratified

resampling for the evaluation of classifiers on our alcohol data. Sometimes, however,

we want to evaluate performance under particular data restrictions, or assess the

difficulty of particular aspects of the data. For these cases, we use a data sampling

strategy where a secondary categorical attribute, that is not the class label or one

that is learned from, is switched on to have data reserved for the test set of a sample,

with the remainder taken for training.

In our alcohol authentication experiments, this takes the form of a leave-one-

bottle-out (LOBO) cross-validation. In this scheme, all samples contained within

a particular bottle or bottle type are reserved for the test set, with the remainder

forming the training set. By evaluating in this manner, classifiers predicting on

unseen test cases should not be able to leverage any discriminatory features caused

by the bottle itself, focusing on the contents as the only commonly varying factor.

This data sampling strategy is particularly useful when we want to evaluate the

capability of classifiers to ’ignore’ the bottle. Being able to do so suggests that

suspect samples in future unseen bottles can still be reliably analysed, instead of

requiring extensive training data for every bottle bottle shape, colour, etc.
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2.5.2 Performance Measures

Classifiers produce a list of predictions on the unseen test data after each resample.

The performance of these predictions can be summarised using a range of different

statistics, dependent on the factors being selected for.

Our primary concern over many arbitrary datasets is generally error (or accuracy)

because of its ease of motivation and interpretability. In particular cases where class

imbalance poses a challenge, balanced error (or accuracy) can also be considered.

However, in applications such as ours the costs of measurement, verification, and

misclassification externally influence the ways in which decisions need to be made.

For example, if the costs of confirming the legitimacy of a suspect bottle are high,

relative to the resources available to the analyst, then the decision boundary may be

skewed to favour the ‘genuine’ label. As a result, only samples that the device is

more confident are fake will be seized or sent for further analysis.

Error cannot entirely capture these factors. Therefore measures that assess

the quality of the classifiers’ probabilistic outputs are also reported; the Negative

Log-Likelihood and the Area Under the Receiver Operating Characteristic Curve.

We now formally define these metrics of interest. Recall that a data set DDD of

size n is a set of attribute vectors with an associated observation of a class variable

(the response), DDD = {(xxx111,y1), . . . ,(xxxnnn,yn)}, where the class variable has c possible

values, y ∈ {1, . . . ,c}.

A classifier M is a mapping from the space of possible attribute vectors to

the space of possible probability distributions over the c valid values of the class

variable, M(xxx) = p̂pp, where p̂pp = {p̂(y = 1|xxx), . . . , p̂(y = c|xxx)}. Given p̂, the estimate

of the response is simply the value with the maximum probability, i.e.

ŷ = argmax
j=1,...,c

p̂( j).
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A correctness function f (y, ŷ) returns 1 if the prediction is correct, zero otherwise,

f (y, ŷ) =


1, if y = ŷ

0, otherwise

The test set error is simply the proportion of incorrect predictions

e(De|M,Dr) = 1−
∑yi∈De f (yi, ŷi)

|De|
. (2.1)

On some occasions we refer to the accuracy (one minus the error) for clarity. To

compensate for class imbalance, we also examine the balanced error rate. If we

define the proportion correct in the test set for each class j as

s j =
∑yi∈De,yi= j f (yi, ŷi)

∑yi∈De f (yi, j)
,

and denote r j as the proportion of class j in the train data, then the balanced error is

eb(De|M,Dr) =
c

∑
j=1

r j · s j. (2.2)

The likelihood is the probability of having observed the test data given our classifier,

i.e.

L(De|M,Dr) = ∏
xxxiii∈De

p̂(yi|xxxi,M).

The likelihood will be zero if the classifier predicts zero probability for the true

class for any test instance. This limits the usefulness of the statistic, as it can

significantly skew the results. For this reason we normalise all probability estimates

when calculating the likelihood so that the minimum probability for any one class

is 0.01. To make comparison with error more meaningful, we assess classifiers with
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the negative log likelihood (NLL),

l(De|M,Dr) = ∑
xi∈De

log2(p̂(yi|xxxi,M)). (2.3)

The fourth statistic is the area under the receiver operator characteristic curve

(AUROC). AUROC is best defined where one class is considered a ‘success’.

Suppose we designate y = 1 a success and all other outcomes a failure. The

classifier predictions of the probability of a success for the n instances in De as

p̂ = {p̂1, . . . , p̂n}. Observed values of the response are {y1, . . . ,yn}. The AUROC is

based on the order statistics. We let p̂(i) denote the ith order statistic (in descending

order) and y(i) the observed value of the response associated with probability

estimate p̂(i). These values are then used as classification functions d(i, j), where 1

is a success and 0 a failure,

ŷ( j) = d(i, j) =


1, if j ≤ i

0, otherwise

The ROC curve is a series of n points representing the false positive rate (the

proportion of failures classified as a success) on the x-axis and the true positive rate

(proportion of actual successes classified as a success) on the y-axis each associated

with a decision boundary. So, for example, if there are a positive cases and b

negative (a+b = n), then, for any point i, the decision boundary is to classify as

positive only those with probability greater than or equal to p̂(i). The true positive

rate is given by

t pri =
∑

i
j=1 f (y( j),d(i, j))

a
,

and the false positive rate is

f pri =
∑

i
j=1(1− f (y( j),d(i, j)))

b
.
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Given a list of n points

t =< ( f pr1, t pr1), . . . ,( f prn, t prn)>

from the n decision boundaries, the ROC curve is a subset of this list consisting of

pairs with unique point f pr values. If there are duplicate f pr values in t, the one

with the maximum t pr is selected for the ROC. (0,0) is inserted at the beginning

and(1,1) at the end. Given then a ROC curve

ROC =< (a1,b1), . . . ,(ak,bk)>

If class s is judged success, AUROC is defined as

AUROCs(De|M,Dr) =
k

∑
i=2

ai · (bi+1−bi)

For problems with two classes, we treat the minority class as a success. For

multiclass problems, we calculate the AUROC for each class and weight it by the

class frequency in the train data, as recommended by Provost and Domingos [114],

AUROC(De|M,Dr) =
c

∑
i=1

wi ·AUROCi(De|M,Dr) (2.4)

2.5.3 Classifier Comparison

When simply reporting a classifier’s e.g. accuracy on a given dataset, we give the

average accuracy over the resamples. When comparing classifiers on a dataset,

because we evaluate over many resamples we can then compare two classifiers on

a particular dataset with paired two sample tests, such as Wilcoxon signed-rank

test. For comparing two classifiers on multiple datasets we can compare either the

57



number of datasets where there is a significant difference over resamples, or we can

do a pairwise comparison of the average errors over all resamples.

For comparing multiple classifiers on multiple datasets, we follow the recom-

mendation of Demšar [35] and use the Friedmann test to determine if there are

any statistically significant differences in the rankings of the classifiers. However,

following recent recommendations [10, 50], we have abandoned the Nemenyi post-

hoc test originally used by Demsar [35] to form cliques (groups of classifiers within

which there is no significant difference in ranks). Instead, we compare all classi-

fiers with pairwise Wilcoxon signed-rank tests, and form cliques using the Holm

correction (which adjusts family-wise error less conservatively than a Bonferonni

adjustment).

All statistical tests of all types are performed with α = 0.05 throughout this

thesis.

Fig. 2.8 An illustrative example of a critical difference diagram.

We can present the results of statistical tests of multiple classifiers over multiple

datasets using critical difference diagrams, demonstrated in Figure 2.8. Classifiers

are compared and ordered by their average performance ranks. A lower rank,

and further to the right on the order line, is better. Classifiers with a thick bar

connecting their lines are considered not significantly different from one another.

In this example, four classifiers are compared. C1 is significantly better than the

rest. C2 and C3 cannot be significantly separated. C3 and C4 cannot be separated,
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but we can say that C2 is better than C4, for this performance metric over these

datasets.

Forming cliques with pairwise tests is the best procedure [10], but it can be

deceptive when presenting many classifiers that are very similar. A clique contains

classifiers with no pairwise difference between them. However, that does not mean

there is always a significant difference between all combinations of classifiers in

different cliques. A pairwise test between two classifiers in isolation may draw the

conclusion of no significant difference, while intermediary classifiers in terms of

overall ranking are concluded to be significantly different. Where such a situation

occurs, we clarify in the text or caption.

These methodologies for classifier evaluation and comparison provide a solid

framework for the experiments developing classification algorithms and evaluating

non-invasive alcohol authentication methods throughout this thesis.
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Chapter 3

Classification Methods for the

Prediction of Spirit Authenticity

Contributing Publications

• Large, J., Kemsley, E.K., Wellner, N., Goodall, I. and Bagnall, A., 2018, June.

Detecting forged alcohol non-invasively through vibrational spectroscopy

and machine learning. In Pacific-Asia conference on knowledge discovery

and data mining (pp. 298-309). Springer, Cham.

3.1 Introduction

Chapter 2 introduced the background for this thesis, including the problem of forged

spirits and spectroscopic means of analysis. Counterfeit alcohol poses potentially

fatal health risks to the consumer, as illegally and poorly produced spirits may

contain harmful contaminants such as methanol, a large economic risk in most

markets due to the avoidance of taxes, and a risk to brand integrity in cases where

the fakes are being sold as named brands.
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Forgeries can sometimes be detected through external appearance such as

inconsistent labelling or bottling relative to a known standard, but currently there is

no way to conclusively tell whether spirits are forged without opening the bottle

to gain direct contact with the sample. Breaking the seal and taking samples

from a bottle can be effectively a destructive process, because even if authenticity

is confirmed the bottle cannot later be sold on store shelves or at auction, and

collectors’ whisky will be greatly devalued. Also, testing of samples can be an

expensive and time consuming process that is not suitable for mass screening. No

matter what process is used it will require one or more of: transport of the sample to

a centralised lab; expert knowledge and handling; consumable materials used in the

analysis; and time for methods such as chromatography. It is therefore desirable to

develop a system that can non-invasively determine authenticity of a suspect bottle

on-site in a cheap, simple and fast manner.

Near infrared spectroscopy (NIRS) in combination with modern chemometric

and machine learning techniques provides a promising potential solution to these

problems. Ever improving and more affordable computing power and spectroscopy

equipment as well as continual advancements in machine learning methods mean

that on-site classification using cost effective equipment is becoming evermore

feasible. Such setups are already used in a variety of food and drink authentication

scenarios, as discussed in Section 2.2, of Chapter 2.

The alcohol concentration of genuine spirits in the UK is tightly controlled.

For example, Scotch Whisky must by law contain the level stated on the bottle to

within 0.3% (v/v), although the majority of commercial producers maintain stricter

bounds than that for quality control reasons. Forgeries typically do not have this

level of quality control, with the alcohol content often being lower than reported.

Alternatively, methanol and higher alcohols have regulations prohibiting or re-

stricting their presence in many spirits to within certain maximal concentrations to

ensure safe consumption [76], and are also tightly controlled. Ethanol and methanol
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Spectroscope Light source

Portable power source

Fibre-optics Fibre-optics

Fixed light geometry

Analysis, locally or in the 
cloud

Fig. 3.1 A high level view of the proposed non-invasive forged alcohol detection
system. In our experiments, a laptop is attached onto which data is saved for
later analysis. In a finished system, however, utilising trained models on-site and
real-time predictions are easily possible.

Fig. 3.2 The physical prototype equipment used through this study. A fixed light
path accessed via fiber optics allows the suspect bottle to be placed consistently.

concentrations can both in principle be determined via vibrational spectroscopy and

chemometric analysis methods [96, 75, 66].

While correct alcohol concentration is a necessary condition for legitimate

alcohol, it is not sufficient. Carefully produced forgeries, or even the substitution of

lower-priced but legitimate spirits pose a different challenge. Recently, there have

been several cases of individual very high-value, often very old, spirits found to

have been swapped with younger, cheaper spirits. However, this can also happen

on a larger scale with low-valued spirits being fraudulently sold as medium- to

high-valued.
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We wish to evaluate to what extent these problems can be solved by using a

non-invasive NIRS system summarised by Figure 3.1 and exemplified in Figure 3.2,

where the spectra can be collected, data processed, and prediction of authenticity

made within seconds. We describe two sets of experiments on collected spectra,

classified using a wide variety of benchmark machine learning algorithms into

‘genuine’ and ‘forged’ categories. In the first, experiments are performed on

synthesised alcohol-water solutions in real and arbitrary sealed bottles, analysed

through-bottle using NIRS, and classified based on their ethanol and methanol

concentrations. In the second, we evaluate whether two genuine products from the

same brand, one more expensive than the other, can be distinguished within the

same real bottle using the same NIRS setup.

As well as evaluating the feasibility of the problem itself, we equally test a

range of different algorithms for their suitability to the data. We evaluate classical

chemometrics methods, strong general purpose classifiers, TSC algorithms, and

ensembles of the latter two to compare their strengths and weaknesses for the

domain.

We first clarify the particular evaluation methods used for the classification

experiments in Section 3.2. We separate the presentation and discussion of the

alcohol detection and brand authentication experiments into their own sections

for readability. Data collection, analysis, and results are presented for the alcohol

concentration experiments in Section 3.3, and the brand determination experiments

in Section 3.4. Overall conclusions for the general feasibility of the proposed

system for forged alcohol detection are drawn in Section 3.5.
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3.2 Experimental Setup

We outline here the classification algorithms and methods of evaluation using the

spirit authentication datasets that have been formed. Data collection methods and

analyses for each of the two sets of experiments are described in their respective

sections. We perform benchmark and exploratory evaluations with a wide variety

of classification schemes.

The standard classifiers evaluated are: Partial Least Squares Regression (PLSR);

1-Nearest-Neighbour with Euclidean Distance (ED); and quadratic SVM (SVMQ),

while the generally stronger but more computationally expensive ensembles con-

sidered are the Heterogeneous Ensemble of Standard Classification Algorithms

(HESCA); Random Forest (RandF); and eXtreme Gradient Boosting (XGBoost),

all introduced in Section 2.4.1 of Chapter 2.

The TSC-specific classifiers are: Residual Network (ResNet), Random Inter-

val Spectral Ensemble (RISE); Bag of Symbolic Fourier Approximation Symbols

(BOSS); Shapelet Transform with HESCA as the classifier (ST-HESCA), Time

Series Forest (TSF), and the Heirarchical-Vote Collective of Transformation En-

sembles (HIVE-COTE), ensembling over the previous four classifiers, all discussed

in Section 2.4.2 of Chapter 2.

The exact setup and parameterisation of each classifier (default to the literature

in all cases), along with data and other supplementary material links for this work,

can be found in our codebase *.

Recall from Chapter 2 Section 2.5.1, that we evaluate classifiers on many

resamples/folds of the data, and average over them. The method of sampling for any

particular experiment is of course dependent on the aspect of the data distribution

that we are trying to reduce the variance of or correct for in an experimental setting.

*https://github.com/uea-machine-learning/tsml/tree/paper/alcohol
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In the first set of experiments on determining alcohol concentration regardless

of bottle (Section 3.3), we evaluate each classifier using the leave-one-bottle-out

(LOBO) cross-validation scheme describe in Section 2.5.1.3. Otherwise in the

second set of experiments, classifying whisky brand within a particular bottle

type (Section 3.4), our resampling strategy is to simply take 30 random stratified

resamples of the full data, reserving half the data for each train set, and the remaining

half for the test set.

3.3 Determination of Alcohol Concentration

In this first set of experiments we wish to determine the feasibility of non-invasively

classifying the alcohol concentration of a sample contained in an arbitrary bottle.

Successful classification of ethanol and methanol concentrations allow for the easy

detection of ‘low-effort’ fakes, which comprises the largest volume of fraudulent

activity compared to individually high-valued spirits.

Concentrations of alcohols can be determined accurately by vibrational spec-

troscopy methods in standardised lab conditions [96, 75]. However, many factors

could confound a fielded non-invasive alcohol classification system: variation

within-product or within-batch of suspect but genuine samples; ambient light and

environmental conditions; variation in spectral hardware; statistical variance in

the trained classifier; and the measurement habits of different users may all cause

variation in the resulting spectra. However, we believe one of the largest sources

of variation which needs to be accounted for arises from the properties of the

bottle a sample is contained in. Bottle shape and size, glass thickness and colour,

and interfering labeling and embossing can all work to frustrate the collection of

consistent, reliable spectra. Therefore, with these experiments, we primarily wish to

determine the difficulty of measuring and classifying the alcohol content of samples

in arbitrary bottles.
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3.3.1 Data

We have conducted experiments using 44 different examples of real, non-standardised

bottles. While most of the bottles are transparent and cylindrical, some are coloured,

rectangular or skewed. Using a single StellarNet BLACK-Comet-SR spectrometer,

transmission near-infrared spectra over a one second integration time of ethanol,

methanol and water solutions within each bottle were collected to form two datasets.

For the ethanol concentration experiments, 40% ethanol (with the remainder being

water) is taken to be the ‘genuine’ case, while concentrations of 35% and 38%

ethanol are taken to be ‘forgeries’. The second dataset is detecting the presence of

methanol. With 40% total alcohol concentration being maintained, solutions with

1%, 2% and 5% methanol (v/v) form the forged class, while 0% methanol (i.e 40%

ethanol) constitutes not forged. The two classification problems are therefore to

determine from a spectra whether or not a solution within an arbitrary sealed bottle

1) has less than 40% alcohol or 2) contains dangerous levels of methanol.

Three batches of each alcohol concentration were produced, and for each

solution in each bottle three repeat readings are taken, resulting in a total of over

2000 readings. Bottles were positioned such that the light travels through the widest

part of the bottle while avoiding labelling, embossing and seals as much as possible.

However, to mimic future conditions a precise recreation of the exact path on each

placement was intentionally not attempted. For simplicity, and to mimic a possible

portable sampling station, the geometry of the light source and receiver was fixed at

15cm; enough to accommodate the widest bottles tested. Spectra are presented in

the wavelength range 876.5nm - 1101nm, sampled every 0.5nm, and each spectrum

has a dark reading subtracted and is standardised.

To help give an intuition of the classification problem, Figure 3.3 shows the

average series of each class to demonstrate their differences. The progressively

shaded regions show the overall standard deviation and range of intensities at each
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Fig. 3.3 Graphs showing the average series of each class, overall standard deviation
and range for the ethanol and methanol concentration datasets. For each image, the
main discriminatory region is zoomed.

wavelength. The overall variance in the dataset is very low, and the inter-class

variance a fraction of that.

The zoomed regions show the wavelength ranges where alcohols are known to

have a strong resonance. A clear separation between classes can be seen within the

ethanol problem. However, for methanol the classes appear to be indistinguishable.

Ethanol and methanol have overlapping resonances, and therefore the fact that the

overall concentration of alcohol (ethanol plus methanol) has been maintained at

40% means that any difference between the class values in the resulting spectra is

drastically reduced.
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Fig. 3.4 Graphs of the top three PCs of the PCA-transformed ethanol forgery dataset,
with samples categorised by (a) ‘genuine’ (blue dot) and ‘forgery’ (red cross) based
on ethanol concentrations, and (b) by bottle.
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Relative to the apparent differences in the average class spectra, individual

series are greatly affected by noise introduced by a variety of means through the

nature of the experiment, further increasing classification difficulty. For example,

an individual series may be skewed by the lensing effects of a uniquely shaped

bottle.

This is evidenced by Figure 3.4. It shows the first three principle components

(PCs) of the transformed ethanol dataset, which explain 95% of the total variance.

In (a), the instances are categorised by their ethanol concentrations. While some

separation is found between the two classes, this is observed mostly in the second

and third PCs, which account for only 17% of the total variation. The first PC, as (b)

shows, for the most part explains variance due to the bottles. This is in line with our

expectations that bottle variation would be one of the larger obstacles to overcome

for the final use case of an authentication system. While many bottles are clustered

close together, there are some that form clear and separate clusters of their own. As

might be expected, these are bottles that have some particularly non-standard bottle

property, such as irregular shape or colour. The black + for example is a Bernheim

Original bottle, which is compared to one of the more standard cylindrical bottles,

Smokehead, in Figure 3.5.

a) Bernheim Original b) Smokehead

Fig. 3.5 Pictures comparing an ‘irregular’ bottle, the Bernheim Original (a), with a
‘regular’ bottle, the Smokehead (b).
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Promisingly, the PCA transform does suggest a good separation between ethanol

concentrations within a particular type of bottle, as best illustrated by the outlying

bottle clusters when compared between figures. The equivalent figures for the

methanol dataset are not included in this paper for the sake of readability and space,

however, they (and the source ethanol images including keys) are available online †.

What they show is analogous to Figure 3.3(b); that the PCA is almost entirely

unable to distinguish between the alcohol concentrations. However, trends by bottle

type are largely the same in that they dominate the first PC, and bottles form bands

across it.

A simple statistical summary of the data used for all datasets in this Chapter

and for Chapter 5 can be found in Table 6.1 in the Appendix.

3.3.2 Results: Determination of Alcohol Concentration

3.3.2.1 Leave-one-bottle-out Cross Validation

Table 3.1 summarises accuracy, area under the curve, and negative log likelihood

scores of the classifiers for the LOBO experiments on the original (time series form)

data. Figure 3.6 displays the ROC curves for the five classifiers with the best AUC

score. Two trends are immediately apparent from these: ethanol concentration, with

the correct models, can be classified with high accuracy; determining methanol

concentration in a constant overall alcohol level is much more difficult. Only some

of the classifiers tested achieve much higher than the minimum expected accuracy

of 0.75, the proportion of the majority class.

Across both problems the TSC-specific approaches appear to add little value

over the more standard, vector-based approaches and ensembles. The de-facto

standard PLS is consistently at or close to the top performances across each evalu-

†https://github.com/uea-machine-learning/tsml/tree/paper/alcohol
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Table 3.1 Average accuracies over all folds of the leave-one-bottle-out-sampled
alcohol concentration datasets. The best scores in each column are bold. Classifiers
grouped by being considered as standard, ensemble, or TSC-bespoke classifiers.

Ethanol Methanol
Classifier ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓
ED 0.866 0.851 0.891 0.672 0.564 2.177
PLS 0.965 0.994 0.271 0.860 0.913 0.543
SVMQ 0.959 0.981 0.300 0.864 0.920 0.827
HESCA 0.965 0.995 0.170 0.843 0.898 0.522
RandF 0.888 0.972 0.399 0.758 0.727 0.737
XGBoost 0.923 0.980 0.315 0.794 0.815 0.776
ResNet 0.958 0.991 0.322 0.815 0.859 2.055
BOSS 0.913 0.981 0.299 0.786 0.820 0.642
RISE 0.817 0.962 0.647 0.793 0.908 0.636
ST 0.919 0.981 0.271 0.836 0.878 0.543
TSF 0.878 0.974 0.409 0.769 0.817 0.695
HIVE-COTE 0.915 0.986 0.346 0.802 0.870 0.618

ation metric. The heterogeneous ensemble HESCA, which ensembles over eight

relatively standard classifiers, and SVMQ perform the best on the ethanol and

methanol problem formulations respectively. HESCA is a generally strong ensem-

ble, however the performance of SVMQ is somewhat surprising considering its

parameters were not tuned.
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Fig. 3.6 ROC curves for the classifiers on the LOBO-sampled alcohol concentration
problems. Predictions are concatenated over all folds. For clarity, only the five best
classifiers in terms of AUC are displayed.

Because each test fold represents a single bottle, the accuracy on a fold gives an

indication of the difficulty that a particular bottle adds to the classification problem.
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We took the top classifiers on the ethanol problem, PLS and HESCA, and looked

at which bottles were preventing perfect classification. Of 44 bottles, 19 had the

alcohol concentration of their contents classified perfectly by both PLS and HESCA.

Of the rest, most of the errors are split to one or two per bottle, with a couple of

exceptions among the irregular bottles. The worst average fold accuracy represents

the Bernheim Original Kentucky Straight wheat whiskey bottle, where HESCA

made 9 errors, and PLS 3.

Similarly, if we split the computation of AUC scores between the bottle charac-

teristics for the methanol problem, there is a clear drop in performance from the

standard bottles (best AUC scores of around 0.93) to the irregular bottles (best AUC

scores around 0.85). This does lend credence to the idea that the determination of

alcohol concentration cannot be done entirely irrespective of bottle. However, the

fact that there is clearly some transferability (evidenced by better-than-guessing

performance in this LOBO format) is promising.

In previous through-bottle studies on alcohol concentrations [66, 106], coloured

glass posed challenges for the collection of Raman spectra, which particularly

struggles to handle fluorescence, but also for NIRS in the latter. Our experiments

included three green-glass bottles, however on these no significant drop in predictive

accuracy was observed in the same analysis of the top four classifiers. These three

bottles also showed no clear separation from the largest central cluster in the PCA

transform presented in Figure 3.4b.

3.3.2.2 Classifying the bottle

The PCA transform of the ethanol dataset, Figure 3.4b, indicated that the majority

of the variance corresponded with differences in the containing bottle’s properties.

Further, most of the first PC was caused by a small number of irregularly shaped

bottles. The majority of bottles otherwise formed a dense cluster. To further
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Table 3.2 Results of classifying the containing bottle regardless of contents, 44
class problem. SVMQ exhibits a surprisingly wide gain in performance over the
other algorithms. The best scores in each column are bold.

Classifier ACC ↑ AUC ↑ NLL ↓
ED 0.400 0.717 3.982
PLS 0.056 0.521 6.101
SVMQ 0.551 0.947 2.660
HESCA 0.512 0.938 2.713
RandF 0.431 0.917 2.875
XGBoost 0.403 0.898 3.351
ResNet 0.420 0.924 6.087
BOSS 0.463 0.884 2.674
RISE 0.503 0.930 3.049
ST 0.499 0.932 2.464
TSF 0.468 0.922 2.704
HIVE-COTE 0.509 0.940 2.550

investigate the extent to which features of the bottle are detectable in the spectra,

we ran experiments with the same set of classifiers but with the containing bottle

as the class label, instead of alcohol concentration. We would expect the outlying

bottles on the PCA transform to be the easiest to classify, with the standard bottles

being guessed at.

The dataset was split 30 times using random stratified sampling with a 70/30

train/test split. Table 3.2 summarises these results. The best accuracies achieved

were up to 0.551 (SVMQ), on the 44 class problem.

In the interest of finding where the classifiers were making their errors, we

grouped bottles by whether they could be described as being standard (clear glass

and cylindrical, 28 bottles) or irregular (coloured glass and/or non-cylindrical, 16

bottles). Considering the SVMQ’s predictions, Figure 3.7 depicts a confusion

matrix with the bottles (classes) grouped by whether they are standard or irregular.

Classifying a standard bottle as a different standard bottle accounts for 67% of the

total number of errors, while the remaining three account for 12, 12, and 9% each.
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Standard Bottles Irregular Bottles

Fig. 3.7 A confusion-matrix of SVMQ’s predictions the bottle classification prob-
lem, aggregated over folds. It is much more likely to mistake a standard bottle for
another standard bottle than anything else.

These results have positive implications for the original goal of generic non-

invasive alcohol level determination. It suggests that a classifier could be reliably

trained under the assumption that the test sample bottle has certain properties

matching those in the train set. In terms of the practical use and production costs

of a device, the worst case is that each individual type of bottle requires its own

adequately populated training data for a model to learn on. While this may still be

needed for each of the irregular bottles, a device that can effectively classify the

contents of many different bottles within some particular range of properties is still

a worthwhile improvement over the worst case.

3.3.2.3 PCA Transforms

Lastly for alcohol concentration, we repeated the LOBO classification experiments

again with PCA-transformed versions of the datasets (calculated and applied to each

resample individually), maintaining components that explain 95% of the variance.

Analysis of spectral data in the literature often involves a dimensionality-reducing

transformation such as PCA, both to highlight discriminatory variance and reduce
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Table 3.3 Performances of non-TSC algorithms averaged across folds on the PCA
transformed alcohol concentration problems. Performances are greatly diminished
in relation to classification using the full spectra. The best scores in each column
are bold.

Ethanol Methanol
ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓

HESCA 0.818 0.935 0.544 0.750 0.616 0.800
ED 0.779 0.747 1.468 0.627 0.506 2.475
PLS 0.801 0.927 0.593 0.745 0.622 0.800
RandF 0.817 0.925 0.572 0.714 0.530 0.885
SVMQ 0.803 0.927 0.581 0.750 0.537 0.810
XGBoost 0.809 0.911 0.781 0.703 0.539 1.016

the computation time of analysis. However, in this case it appears to reduce accuracy

relative to classification performed on the time series, in agreement with Kiefer et

al. [66].

The methanol PCA transform seemingly cannot discriminate between concen-

trations at all, with all classifiers simply picking the majority class. For ethanol,

all classifiers except ED achieve very similar accuracies. Referring to Figure 3.4a,

it would seem that most of the classifiers are forming almost identical decision

boundaries, the same that a human naively would by eye.

3.4 Authentication of Reported Brand

Our first set of experiments considered cases where alcohol concentrations may not

align with expected values. This represented the verification of a necessary, but not

sufficient, test for authenticity and safety.

We now present experiments that look into a harder problem within this domain

- distinguishing between different genuine spirits. These represent attempts to

confirm or deny that the spirit contained within a suspect bottle align with that

reported on the label. Cheaper, but still genuine in their own right, spirits can be

sold under the guise of rarer and more expensive examples for profit. Depending
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on their familiarity with the expected product, the average consumer would likely

not recognise any difference. Alcohol concentration, which accounts for a high

proportion of the volume of the samples in question, cannot be relied on in this

case. The discriminatory information must reside in the less abundant compounds

of the sample.

3.4.1 Data

We experiment with two different spirits from the same producer, one more ex-

pensive than the other. We collect data using the same high-level setup as in the

previous set of experiments of eight cheaper, and eight more expensive real whiskies.

We swap the contents of four pairs of bottles, such that we have four examples each

of cheaper and more expensive whiskies in their original bottles, and cheaper and

more expensive whiskies in incorrect bottles. We use these to form two sets of

classification problems: in each of the bottle designs, do the contents align with

what’s reported on the label? An ideal system would of course discriminate between

more than just two particular whiskies. For obvious practical reasons, however, we

limit the scope of our experiments to these samples as a feasibility test.

In total, four batches of data involving whiskies have been collected. We define

a batch in this context as ten readings of each bottle for 160 total readings, taken

in a randomised order in a single continuous session. The four batches consist

of two taken by an expert user, and one each taken by informed but non-expert

users. In total our full dataset therefore consists of 640 spectra. The data collection

process mirrors the previous experiments, however a BLUE-Wave spectrometer

was used instead of the BLACK-Comet-SR. Data was also collected by multiple

people, one expert and two non-expert users. The potential effects of different users

shall be investigated at the end of Section 3.4.2.3, but otherwise all users’ data are

combined to simulate datasets composed of readings from many sources. Spectra
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are presented in the wavelength range 450nm - 1000nm, sampled every 0.5nm, and

each spectrum is standardised.

A reason for separating these experiments into two problems based on the

containing bottles is that there is and interesting variation in the bottle design based

on the time period of acquisition. While the expensive bottles are all identical, there

is minor variation in the cheaper bottles due to the time of purchase and having been

sold via the European Union, as opposed to solely within the UK. This has had an

impact on the quality of the spectra and ultimately differentiability of the contents

between the expert and non-expert users, where the former was correcting for this

fact but latter were unaware of it. The differences are much finer than the structural

differences that were the focus of the bottles tested in the alcohol concentration

experiments previously. However, as shall be seen, the differences were enough to

significantly affect performance of the models on this more difficult classification

problem.
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(a) Contained in the more expensive bottles (b) Contained in the less expensive bottles

Fig. 3.8 Graphs displaying the averages (lines), standard deviations (dark shaded
regions), and overall range (light shaded region) of the more expensive and cheaper
whiskies while in the more expensive (a) and cheaper (b) bottles.

Figure 3.8(a) displays summarised spectra of the two whiskies inside the more

expensive and consistent bottles. A surprisingly clear degree of separation is

observed, especially around the wavelength interval 450 to 700nm. Meanwhile for

the whiskies presented in cheaper bottles in (b), which have the differences noted
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above, far less distinction between the classes can be found, and a far larger range

of intensities are observed.
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Fig. 3.9 Graphs of the top three PCs of the PCA-transformed brand authentication
dataset, with samples categorised by cheaper (red symbols) and more expensive
whisky (black symbols), whilst in the more expensive (a) and cheaper (b) bottles.

Figure 3.9 displays the first three PCs of the PCA-transformed datasets of

Figure 3.8. Different individual bottles are denoted by different symbol types

(◦,+,∗,•). In Figure 3.4(b), it was seen that a very large proportion of the variance

was explained by the containing bottle. This was to be expected of that experiment.

Here, however, the bottles are supposed to be effectively identical within certain

parameters of precision of the bottle and whisky production process. It can be seen

however that the ‘◦’ bottles of the forgery in each figure are somewhat outliers,

especially in the case of the cheaper bottles on the right. That the outlier bottle in

both images is represented by ◦ in both cases is coincidental; there is no connection

between the physical bottles they refer to.

3.4.2 Results: Authentication of Reported Brand

3.4.2.1 Stratified Random Resample

We first present results for the general problem statement; pooling all the data

together and performing a 30 stratified random resample evaluation. Table 3.4
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Table 3.4 Performances of each classifier averaged across folds on the brand au-
thentication problem. The best scores in each column are bold.

Expensive Bottle Cheaper Bottle
Classifier ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓
ED 0.965 0.93 0.235 0.753 0.562 1.64
PLS 0.879 0.931 0.470 0.603 0.590 1.690
SVMQ 0.967 0.961 0.246 0.734 0.649 2.045
HESCA 0.976 0.983 0.160 0.825 0.891 0.616
RandF 0.976 0.993 0.145 0.849 0.922 0.525
XGBoost 0.965 0.991 0.178 0.827 0.889 0.735
ResNet 0.923 0.974 0.573 0.672 0.738 2.158
BOSS 0.942 0.987 0.233 0.733 0.812 0.755
RISE 0.941 0.979 0.391 0.761 0.817 0.807
ST 0.958 0.980 0.200 0.861 0.935 0.484
TSF 0.966 0.984 0.181 0.879 0.942 0.453
HIVE-COTE 0.968 0.991 0.189 0.864 0.931 0.535

displays the scores of each classifier across the three performance metrics, while

Figure 3.10 displays the ROC curves.

In the alcohol concentration problem, the simpler classifiers out-performed the

more complex and TSC-based ones. The classification problem was fundamentally

linear in nature - the alcohol concentration. The ethanol problems were easier

than methanol due to the larger absolute differences in concentration and lack of

overlapping contributions to the spectra from the two different alcohols. This brand

authentication problem must classify on non-linear factors, and as a result we find

that the more complex classifiers and TSC-based classifiers make a relative gain on

this problem. Standard ensembles still win on the easier formulation of determining

contents in the more constistent expensive bottles, however TSF in particular (and

HIVE-COTE, an ensemble of which TSF is a member) become relatively stronger

on the less consistent cheaper bottle formulation.
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Fig. 3.10 ROC curves for the classifiers on the brand authentication problems.
Predictions are concatenated over all folds. For clarity, only the five best classifiers
in terms of AUC are displayed.

3.4.2.2 PCA Transforms

Even when classifying on the full series, predictive performance has been shown

for a number of classifiers to be strong in the optimal case of identical bottle

designs. Dimensionality reduction in the form of techniques such as a simple

attribute or interval selection and transforms such as PCA may not have much

room to improve on this. If predictive performance could be maintained after their

application, however, they may provide a means of reducing the model training and

more importantly prediction time, as well as perhaps lead to better ways to inform

the user of the reasons for any prediction a system makes.

Figure 3.9 displayed strong separation between the classes of the brand authen-

tication problem within the top three PCs, but also showed that these PCs only

accounted for 81% and 70% of the variance of each dataset respectively. Closer

inspection revealed that beyond the fourth or fifth PC, the remaining components

each explain similarly diminishingly small amounts. We experimented with PCA

transforms maintaining only the top three components, i.e. the exact informa-

tion displayed in Figure 3.9. While not presented for brevity, maintaining further

components did not help performance.
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Table 3.5 Performances of considered non-TSC classifiers on PCA transforms of the
brand authentication problem in the two sets of bottles. Due to the restricted number
of attributes (first three principle components) and therefore frequent mathematical
problems in computing matrices being encountered, PLS is not included. The best
scores in each column are bold.

Expensive Bottle Cheaper Bottle
Classifier ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓
HESCA 0.969 0.990 0.166 0.822 0.889 0.610
ED 0.971 0.943 0.193 0.838 0.702 1.073
RandF 0.960 0.979 0.187 0.830 0.904 0.591
SVMQ 0.967 0.986 0.217 0.767 0.740 0.872
XGBoost 0.968 0.986 0.201 0.823 0.891 0.753

Table 3.5 shows that performance drops only slightly from usage of the full

spectra, for both bottle sets. The classifiers considered in this study vary wildly

in terms of their training and testing time and complexities, and different models

types appear to work to differing degrees of success depending on the particular

problem formulation. The usage of a PCA transform as both a visualisation and

classification tool to allow simpler and faster predictions in this problem aids the

end goal greatly.

3.4.2.3 Testing on different user’s data

Taking a reading with the equipment used for these experiments involves placing

a bottle upright between the spectroscope and light source and saving the spectra

on an attached laptop. While we maintain efforts to avoid labelling, embossing,

etc., we do not impose any precise restrictions on recreating the exact same path

geometries relative to the bottle positioning, as this would not be possible to recreate

in a field-scenario. Given that for these experiments the samples are contained

within supposedly identical bottles, we wish to investigate another potential form

of confounding information: whether any performance-impacting differences arise

in the spectra collected by different users. Instructions and brief demonstrations

were provided to two non-expert users to collect batches of readings, as described
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Table 3.6 Performances of each classifier on the brand authentication problem
sampled such that data collected by one user are used for the train data, and those
collected by others are reserved for testing. Scores are expressed as the difference
to the average scores across 30 stratified random resamples as reported in Table 3.4.
ACC and AUC aim to be maximised, while NLL aims to be minimised. Performance
degrades everywhere, except from the accuracy of RISE (likely by chance).

Expensive Bottle Cheaper Bottle
Classifier ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓
ED -0.009 -0.017 0.057 -0.105 -0.180 0.699
PLS -0.112 -0.050 0.223 -0.131 -0.223 0.936
SVMQ -0.036 -0.048 0.136 -0.105 -0.126 0.856
HESCA -0.039 -0.015 0.099 -0.127 -0.038 0.282
RandF -0.008 -0.017 0.110 -0.114 -0.062 0.233
XGBoost -0.003 -0.008 0.067 -0.123 -0.112 0.797
ResNet -0.068 -0.063 0.960 -0.068 -0.063 3.639
BOSS -0.118 -0.012 0.230 -0.129 -0.110 0.186
RISE 0.015 -0.011 0.099 -0.126 -0.062 0.090
ST -0.153 -0.025 0.391 -0.201 -0.144 0.468
TSF -0.173 -0.052 0.469 -0.105 -0.058 0.228
HIVE-COTE -0.012 -0.009 0.177 -0.153 -0.090 0.222

previously. However, they were then left to collect the readings used in the final

dataset with minimal supervision. If we train using only the data of the expert

user, and test on the data of the others, is there any degradation in prediction

performance?

Table 3.6 shows that, relative to the performance scores on the 30 stratified

random resamples of the same data, there is a minimal but consistent drop in per-

formance when separating data based on the collector. The degree of performance

loss varies by classifier, and also by the containing bottle type. The more expensive

bottle shows anywhere from negligible to severe losses depending on the classifier,

while the cheaper bottle with minor structural differences shows a consistent and

large drop of 10 to 20% accuracy, with the exception of ResNet which was already

scoring poorly (Table 3.4).

We hypothesise that the expert collector, whose data formed the train set, was

correcting for slight differences in the label size and positioning, resulting in
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different refractive properties for the light path through the bottle. This is perhaps

particularly important in the case of the particular bottles tested because they are

square-faced rather than cylindrical bottles, and as such the light received would be

more sensitive to differences in bottle placement. As a result, the training of future

users may be a required step for collecting useful data to fit models or predict on,

as opposed to being a completely accessible device off-the-shelf.

In any case, that such a drastic difference in predictive performance and visu-

alisation arises from such small differences suggests a hurdle to be overcome if a

generalised database and classification system for many brands in many bottle types

is to be engineered. We believe these problems to be largely solvable via scaling

the data with more samples, analysts, and in a similar vein, more spectroscopes.

3.5 Conclusions

We have demonstrated the feasibility of a system to accurately detect forged alcohol

in two important ways, using near infrared spectroscopy and machine learning to

generate non-invasive, non-destructive predictions of authenticity within seconds.

When determining the alcohol concentration of sealed bottles of arbitrary spirits,

ethanol level can be classified with high accuracy. Ethanol concentration aligning

with that reported is a necessary condition of authenticity, which is often not met

by low-effort fakes. Dangerous levels of methanol within a consistent total alcohol

concentration were more difficult to accurately detect. However, results significantly

better than random guessing were demonstrated, suggesting that the discriminatory

features are not entirely lost at the physical hardware level. There is likely room for

improvement with different optical geometries, more tailored data processing and

model selection.
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Bottles with particularly unusual properties introduce extra difficulty, but the

minor differences between more standard, cylindrical bottles do not confound the

classifiers. This suggests that a combined dataset can be made to train models

for easy bottles, with perhaps a two-stage classification pipeline required only for

particularly unique bottle designs.

When concerned with the authenticity of a particular brand as a opposed to a

general spirit, factors other than alcohol may need to be used. We have found that a

particular brand of spirit contained within a bottle could also be classified with high

accuracy. For this problem though, a practical system clearly needs to discriminate

between more than just two products, and performance fell with variation in the

suspect bottle structure. A more extensive database, including different brands,

bottle types and production batches of the same brand, would shed clearer light

on the practical generalisation of the method to many different possible spirits and

their associated bottles. We have, however, shown the feasibility of detecting the

presence of a particular brand as marketed on the bottle.

The traditional method used in chemometrics of Partial Least Squares regression

performed well when detecting alcohol concentration. However, it struggled on

the distinctly non-linear brand determination problem. A quadratic support vector

machine performed well, and a larger computational investment for thorough

tuning would likely lead to improved results for this. Ensembles scored highly

on all problems throughout. The deep learning approach ResNet achieved strong

but never the best evaluation scores and would probably benefit relatively more

from larger datasets. Algorithms bespoke to TSC saw gains when classifying the

more complex brand authentication formulations, however it is possible they were

overcoming difficulties in the data presentation rather than the underlying problem

of interest, and that human effort spent there may allow for the cheaper standard

methods to work just as well or better.
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Along with generally increasing the amount of useful data available to the

learners, a combination of tuning and ensembling standard classification methods

seems to be the most promising route to follow for this problem. Tighter wavelength

interval selections in preprocessing, be that done manually or automatically, are

also worth investigation. This is especially true because the two problem formula-

tions evaluated here displayed discriminatory information at different places in the

spectra.
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Chapter 4

CAWPE: An Ensemble Method for

General Purpose Classification
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4.1 Introduction

Chapter 3 introduced the alcohol authentication problem space and initial bench-

marking attempts in the context of synthesised alcohol solutions. One of the findings

was that ensemble methods, in particular HESCA, were among the best performing.

In the initial problem statement, the reliability of probability distributions was a

factor identified as a key requirement to aid in actual decision making by end users

in the field. In this Chapter, we develop and evaluate an augmented weighted vote

ensemble scheme with the express aims of improving probability estimates above

and beyond general predictive performance. We evaluate in this Chapter on many

datasets from multiple domains for the benefit of general purpose classification

and application to many different use case, and the resulting ensemble is evaluated

more specifically on this thesis’ particular application of alcohol authentication in

Chapter 5.

Investigation into the properties and characteristics of classification algorithms

forms a significant component of all research in machine learning. Broadly speaking,

there are three families of algorithms that could claim to be state of the art for

classification: support vector machines; multilayer perceptrons/deep learning; and

tree based ensembles. Nevertheless, there are still good reasons, such as scalability

and interpretability, to use simpler classifiers such as decision trees. Thousands

of publications have considered variants of these algorithms on a huge range of

problems and scenarios. Sophisticated theories into performance under idealised

conditions have been developed and tailored models for specific domains have

achieved impressive results. However, data mining is an intrinsically practical

exercise and our interest is in answering the following question: if we have a new

classification problem or set of problems, what family of models should we use

given our computational constraints? Large-scale comparative studies of classifiers
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attempt to give some indication (for example Fernández-Delgado et al. [44]), but

most people make the decision for pragmatic or dogmatic reasons.

Our first hypothesis is that, in the absence of specific domain knowledge, it is

in fact better to ensemble classifiers from different families rather than intensify

computational efforts into selecting and optimising a specific type. Our second

hypothesis is that the best way of combining a small number of effective classifiers

is to combine their probability outputs, weighted by an accuracy estimate derived

through cross-validation on the training data, raised to the power four to magnify

differences in competence. We call this weighting scheme the Cross-validation

Accuracy Weighted Probabilistic Ensemble (CAWPE). The algorithm has the benefit

of being very simple and easy to implement, trivially parallelisable, incremental

(in that new classifiers can be added to the ensemble in constant time) and, on

average, provides state-of-the-art performance. We support the last claim with a

series of experiments on two data archives containing over 200 datasets using over

twenty different classification algorithms. We compare classifiers on unseen data

based on the quality of the decision rule (using classification error and balanced

classification error to account for class imbalance), the ability to rank cases (with the

area under the receiver operator characteristic curve) and the probability estimates

(using negative log likelihood).

The algorithms we compare against can be grouped into three classes: hetero-

geneous ensembles; homogeneous ensembles; and tuned classifiers. The first of

these classes is in direct competition with our approach, while the latter two are

examples of attempts to improve individual types of classifiers.

The heterogeneous ensemble algorithms most similar to our approach involve

alternative weighting schemes, ensemble selection algorithms and stacking tech-

niques, introduced in Section 2.4.1.1 of Chapter 2. We compare CAWPE to nine

variants of these heterogeneous ensembles that all use the same base classifiers
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and the same estimate of accuracy found through train set cross-validation. We

demonstrate that CAWPE provides a small, but significant, improvement on all of

them.

To put the performance of CAWPE in a wider context we also compare it

to homogeneous ensembles and tuned single classifiers. We choose classifiers

to compare against from among those often considered to be state of the art:

random forest; support vector machines; neural networks; and boosting forests.

Using data derived from the UCI archive, we find that a small ensemble of five

untuned simple classifiers (logistic regression, C4.5, linear support vector machine,

nearest neighbour classifier and a single hidden layer perceptron) combined using

CAWPE is not significantly worse than either state-of-the-art untuned homogeneous

ensembles, nor tuned random forest, support vector machine, multilayer perceptron

and gradient boosting classifiers.

To avoid and correct for any danger of dataset bias, we repeat the core experi-

ments on a completely separate repository, the UCR archive of TSC problemss, and

draw the same conclusions. We show that the CAWPE scheme can provide a small,

but significant, improvement to the current state-of-the-art TSC algorithm.

We then address the question as to why CAWPE does so well. We compare

CAWPE to choosing the best classifier and find that the CAWPE approach is

significantly better. It is most effective for data with small train set size. CAWPE

consists of four key design components: using heterogeneous classifiers; combining

probability estimates instead of predictions; weighting these probabilities by an

estimate of the quality of the classifier found on the train data; and increasing the

differences of these weights by raising them to the power α , the single parameter of

the classifier. On their own, none of these components are novel. Our contribution

is to demonstrate that when used together, the whole is greater than the sum of the

parts. To demonstrate this we perform an ablation study for the last three design
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components of CAWPE and show that each element contributes to the improved

performance. We perform a sensitivity analysis for the parameter α and show that

CAWPE is robust to changes to this parameter, but that the default value of α = 4

we decided on a priori and use in all experiments may be improved with tuning.

The exponentiation through the parameter α allows for the amplification of small

differences in accuracy estimates. This facilitates base classifiers that show a clear

affinity to a given problem to provide a larger contribution to the ensemble while

still allowing it to be overruled when enough of the other base classifiers disagree.

It provides a mechanism to balance exploiting information found from the train

data (through high α) and mitigating for potential variance in the accuracy estimate

(through lower α).

In summary, the remainder of this chapter is structured as follows. Section 4.2

describes the CAWPE classifier and motivates the design decisions made in its

definition. Section 4.3 contains our assessment of the CAWPE classifier. We com-

pare CAWPE to its components (4.3.1), other heterogeneous ensemble schemes

(4.3.2), homogeneous ensemble schemes (4.3.3), and tuned state-of-the-art clas-

sifiers (4.3.4) on 121 UCI datasets. We also present a reproduction study of the

performance gain between CAWPE and its base classifiers on the UCR TSC datasets

(4.3.5), and compares its performance to the standard benchmark classifier in that

domain. Section 4.4 provides a deeper analysis into the CAWPE scheme. We

explore the differences in performance between combining a set of classifiers with

CAWPE and picking the best of them based on the train set of any given dataset

(4.4.1). To better understand the nature of the improvements, we also carry out

an ablation study that builds up from simple majority voting to CAWPE (4.4.2),

and perform a sensitivity analysis of CAWPE’s parameter, α (4.4.3). We also

investigate mechanisms to maintain models created through the cross validation

process, to create hybrid homogeneous and heterogeneous ensembles and assess

their relative performance and stability (4.4.4). Finally, we conclude in Section 4.5.
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Our conclusion is that it is, on average, better to ensemble the probability estimates

of strong classifiers with a weighting scheme based on cross-validated estimates of

accuracy than expend resources on a large amount of tuning of a single classifier

and that the CAWPE scheme means that classifiers can be incrementally added to

the ensemble with very little extra computational cost.

4.2 The Cross-validation accuracy weighted proba-

bilistic ensemble (CAWPE)

The key features that define the weighting scheme we propose in the context of

other commonly used weighting schemes such as those described in Chapter 2 are

that, firstly, we weight with accuracy estimated through cross-validation instead

of a single hold-out validation set, secondly, we extenuate differences in accuracy

estimates by raising each estimate to the power of α and thirdly, we weight the

probability outputs of the base classifiers instead of the predictions. To clarify,

prediction weighting takes just the prediction from each member classifier,

p̂(y = i|EEE,xxx) ∝

k

∑
j=1

w jd(i, ŷ j)

whereas probability weighting weights the distribution each classifier produces,

p̂(y = i|EEE,xxx) ∝

k

∑
j=1

w j p̂ j(y = i|M j,xxx). (4.1)

Figure 4.1 gives an overview of the components of CAWPE that make it different

to majority voting.

Our approach is based on the idea of building a smaller number of effective

classifiers and combining the output rather than learning a huge number of weak

classifiers. The rationale for using the probability estimates rather than the predic-
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Fig. 4.1 Illustration of the different effects of combination and weighting schemes
on a toy instance classification. Each stage progressively pushes the predicted class
probabilities further in the correct direction for this prediction.

tions is that they will contain more information than a point estimate, and with fewer

classifiers we need to capture all information available. With 500 base classifiers

the voting mechanism is less important than with 5 classifiers, since averaging over

500 votes is likely to have lower variance than averaging over 5 votes.

The construction of the CAWPE ensemble involves estimating the classification

accuracy of each base classifier on the train data through a ten-fold cross-validation,

then constructing a model of each base classifier on the whole train data. Classifying

a new case, described in Algorithm 1 and Equation 4.1, requires obtaining a

probability estimate of each class from all the base classifiers, weighting these

by the cross-validation accuracy raised to the power α (the only parameter of the

approach), then either normalising if probability estimates are required or returning

the index of the maximum probability if a prediction is needed.

As α increases, the weightings of classifiers found to be stronger on the training

data relative to the rest are increased, until the ensemble becomes functionally

identical to the single best classifier in training. Conversely, when alpha is zero all
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Algorithm 1 CAWPE classify(A test case xxx)
1: Given a set of classifiers < M1, . . . ,Mk >, an exponent α , a set of weights wi,

and the number of classes c
2: {p̂1, . . . , p̂c}= {0, . . . ,0}
3: for i← 1 to k do
4: for j← 1 to c do
5: q̂ j← p̂((y = j|Mi,xxx)
6: p̂ j← p̂ j +wα

i · q̂ j
7:
8: return argmax j=1...c p̂ j

members will be equally weighted. Therefore, on a high level, the α parameter

defines the degree to which the base classifiers’ error estimates should be trusted

in guiding the ensemble’s output. Set α too high, and all but the best classifier’s

outputs are diminished. Set α too low, and the competitive advantage that the best

individual is estimating it has is potentially wasted. The quality of the error estimate

is key to this process, of course, thus the use of cross-validation as opposed to a

single validation set as used in a number of previous works [69].

The optimal value of α will therefore allow the strongest classifiers to steer the

ensemble, but enable them to be overruled when sufficiently outvoted. This value

will be dependent on the relative performances and distribution of probabilistic

outputs of the base classifiers on the given dataset. To keep in line with the general

ethos of simplicity, we remove the need to tune α and potentially overfit it by fixing

α to 4 for all experiments and all component structures presented. We chose the

value 4 fairly arbitrarily as a sensible starting point before running any experiments.

In Section 4.4 we revisit the importance of the α parameter and whether it could

benefit from tuning, as well other design decisions we have made.
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4.3 Results

We perform experiments across the UCI and UCR dataset archives as described

in Chapter 2, Section 2.5.1. Each classifier on each dataset is evaluated over 30

resamples. The initial experimentation and bulk of the analysis shall be conducted

on the UCI archive for its wider applicability and for ease of comparison to other

results following Delgado et al. [44]. However, transference and generality of the

findings to the UCR timeseries archive is a key additional step and motivated by

Bagnall et al. [6], which implemented 18 state-of-the-art TSC classifiers within

a common framework and evaluated them on 85 datasets in the archive. The

best performing algorithm, the Collective of Transformation-based Ensembles

(COTE), was a heterogeneous ensemble of strong classifiers. These results were our

primary motivation for further exploring heterogeneous ensembles for classification

problems in general.

We demonstrate the benefits of the CAWPE scheme through a sequence of

experiments to address the following questions:

• Does CAWPE improve heterogeneous base classifiers (Section 4.3.1)?

• Is CAWPE better on average than alternative heterogeneous ensemble schemes

all using the same base classifiers and error estimates (Section 4.3.2)?

• Is CAWPE better on average than homogeneous ensembles (Section 4.3.3)?

• How does CAWPE compare to tuned versions of classifiers commonly con-

sidered state of the art (Section 4.3.4)?

• Do the results generalise to other data (Section 4.3.5)?

Throughout, we make the associated point that CAWPE is significantly better

than its components when they are approximately equivalent. CAWPE has a single
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parameter, α , which is set to the default value of 4 for all experiments. We stress

that we perform no tuning of CAWPE’s parameter α : it simply combines classifier

output using the algorithm described in Algorithm 1. We investigate the sensitivity

of CAWPE to α in Section 4.4.3.

We present results in this section through critical difference diagrams which

display average rankings. A full list of the average scores for each classifier is

provided in Table 6.4 in the Appendix, while further spreadsheets are available on

the accompanying website.

4.3.1 Does CAWPE improve heterogeneous base classifiers?

Ensembling multiple classifiers inherently involves more work than using any single

one of them. As a basic sanity check, we assess whether applying CAWPE to a

random set of classifiers improves performance. We randomly sampled 5 out of 22

classifiers available in Weka and constructed CAWPE on top of them. Over 200

random configurations, CAWPE was significantly more accurate than the individual

component with the best average rank on 143 (71.5%), and insignificantly more

accurate on a further 34 (17%), over the 121 UCI datasets. CAWPE was never

significantly worse than the best individual component. Note that many of these

sets contain components that are significantly different, with average accuracies

across the archive ranging between 81.4% and 62.7%.

To avoid confusion as to the components of any CAWPE instantiation, we

continue the evaluation with two sets of base classifiers. The first, simpler set

contains well known classifiers that are fast to build. These are: logistic regression

(Logistic); C4.5 decision tree (C4.5); linear support vector machine (SVML);

nearest neighbour classifier (NN); and a multilayer perceptron with a single hidden

layer (MLP1). These classifiers are each distinct in their method of modelling the

data, and are roughly equivalent in performance. We call this version CAWPE-S.
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The second set of five classifiers are more complex, and generally considered

more accurate than the previous set. These are: random forest (RandF); rotation

forest (RotF); a quadratic support vector machine (SVMQ); a multi layer perceptron

implementation with two hidden layers (MLP2); and extreme gradient boosting

(XGBoost). We call CAWPE built on this second set of advanced classifiers

CAWPE-A.

In Figure 4.2 we compare CAWPE-A and CAWPE-S against their respective

base classifiers in terms of accuracy. In both cases, CAWPE is significantly better

than all components. CAWPE also significantly improves of all the base components

in terms of balanced accuracy, AUROC, and log likelihood.

6 5 4 3 2 1

1.7314 CAWPE-S
3.6281 MLP1
3.6488 NN3.7149SVML

4.0992C4.5

4.1777Logistic

6 5 4 3 2 1

1.8306 CAWPE-A

3.2851 RandF

3.4752 RotF3.6405XGBoost

4.1736MLP2

4.595SVMQ

Fig. 4.2 Critical difference diagrams CAWPE-S with its base classifiers (left), and
CAWPE-A with its base classifiers (right). Ranks formed on test set accuracy
averaged over 30 resamples.

The improvement is not particularly surprising for CAWPE-S, since the benefits

of ensembling weaker learners are well known. It is perhaps more noteworthy,

however, that learners often considered state-of-the-art on arbitrary tabular data such

as random forest, rotation forest and XGBoost, are improved by inclusion in the

CAWPE-A ensemble. This improvement is achieved at a computational cost. The

CAWPE scheme will require more computation than using a single classifier, since

a cross-validation procedure is required for each base classifier. If a ten-fold cross-

validation is used, as we do in all our experiments, CAWPE requires approximately

50 times longer to train than the average training time of its five base classifiers. In

terms of time taken to predict a new test case, CAWPE simply needs five times the

average prediction time of the base classifiers. We have experimentally verified this
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is the case, but exclude results for brevity. This constant time overhead is easy to

mitigate against: it is trivial to distribute CAWPE’s base classifiers and even the

cross-validation folds for each classifier can easily be parallelised.

4.3.2 Is CAWPE better on average than alternative heteroge-

neous ensemble schemes?

We compare the particular weighting scheme used in CAWPE, over the -S and -A

base classifier sets, to well known alternative weighting, selection and stacking

approaches described in Chapter 2, Section 2.4.1.1. For ease of reference, the

weighted ensembles are: Majority Vote (MV); Weighted Majority Vote (WMV); Re-

call (RC); Naive Bayes (NBC) and our scheme (CAWPE). The selection ensembles

are: Pick Best (PB); and Ensemble Selection (ES). The stacking schemes are: stack-

ing with multi-response linear regression (SMLR); stacking with multi-response

linear regression on extended features (SMLRE); and stacking with multi-response

model trees (SMM5). Recall that HESCA, evaluated throughout Chapter 3, is effec-

tively a WMC but with a particular defined base classifier set. Here, we generalise

away from this.

It should be noted that of course this is not an exhaustive list of possible

alternative heterogeneous ensembles. Rather, we believe that these constitute a fair

representation of the different types of classifier combination schemes, provided a

consistent and relatively small base classifier set.

In each comparison, all ensembles use the same set of base classifiers, so the

only source of variation is the ensemble scheme. Algorithms such as ensemble

selection were originally described as using a single validation set to assess models.

However, cross-validation will on average give a better estimate of the true error

than a single hold-out validation set [69]. Given that CAWPE uses cross-validation

error estimates and that these estimates are already available to us, we also use

96



these for all ensembles. Hence, we are purely testing the ability of the ensembles to

combine predictions with exactly the same meta-information available.

Figure 4.3 shows the summary ranks of ten heterogeneous ensembles built on

the simpler classifier set on the 121 UCI datasets using four performance metrics.

CAWPE-S is highest ranked for error and in the top clique for both error and

balanced error. It is significantly better than all other approaches for AUC and NLL.

It has significantly lower error than all but SMLR, and significantly lower balanced

error than all but NBC.
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Fig. 4.3 Critical difference diagrams for ten heterogeneous ensemble classifiers on
121 UCI data built using logistic, C4.5, SVML, NN and MLP1 base classifiers.

Figure 4.4 shows the summary ranks of the same ten heterogeneous ensembles

on the 121 UCI datasets using the more advanced classifiers. The pattern of results

is very similar to those for the simple classifiers. CAWPE-A is top ranked for

error and in a clique with majority vote and weighted majority vote. For balanced

error, it is not significantly different to NBC and is significantly better than the

others. For both AUC and NLL, it is significantly better than all the other methods.

Considering the results for both CAWPE-S and CAWPE-A, it is apparent that

the CAWPE scheme is more consistent than other approaches, since it is the only
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Fig. 4.4 Critical difference diagrams for ten heterogeneous ensemble classifiers on
121 UCI data built using Random Forest (RandF), Rotation Forest (RotF), Support
Vector Machine with a quadratic kernel (SVMQ), a two layer multilayer perceptron
(MLP2) and extreme gradient boosting (XGBoost) base classifiers.

algorithm in the top clique for all measures for both sets of classifiers. We think this

suggests that the CAWPE scheme on this data is the best heterogeneous ensemble

technique, at least for the simple and advanced component sets studied.

Given the ensembles are using the same base classifiers and accompanying error

estimates, and these are all good classifiers in their own right, we would expect

the actual differences in average error to be small, and this is indeed the case (see

Table 6.4 in Appendix). Nevertheless, the weighting scheme used in CAWPE is

significantly better than nearly all the other methods using the four metrics.

In conclusion, CAWPE makes sets of approximately equivalent classifiers

significantly better, and is competitive with or generally better than commonly used

weighting, selection and stacking schemes when the number of classifiers is small.

Given how simple CAWPE is, we believe it is a sensible starting point for any

attempt at combining small numbers of base classifiers on an arbitrary problem.
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The question then is, should you heterogeneously ensemble at all, or rather should

you focus efforts into improving a single model?

4.3.3 Is CAWPE better on average than homogeneous ensem-

bles?

We examine how CAWPE-S compares to five homogeneous ensembles that each

employ 500 duplicates of the same base classifier. CAWPE-A, which includes

RandF and XGBoost in its base classifier set, is significantly better on all four

performance metrics than both them and all the homogeneous ensembles evalu-

ated here (see Figure 4.2, the results are available on the accompanying website).

However, this improvement requires roughly 50 times the computational effort of

XGBoost or Random Forest alone. We are more interested in assessing how the

simpler and faster CAWPE-S compares with homogeneous ensembles.
6 5 4 3 2 1

2.5661 CAWPE-S
2.6116 RandF
2.8512 XGBoost3.6033Bagging

4.2562LogitBoost

5.1116AdaBoost

6 5 4 3 2 1

2.5496 CAWPE-S
2.6074 XGBoost
2.6529 RandF4.0992LogitBoost

4.2686Bagging

4.8223AdaBoost

(a) Error (b) Balanced Error

6 5 4 3 2 1

2.2231 RandF
2.7149 CAWPE-S
2.7438 XGBoost3.1777Bagging

4.8512LogitBoost

5.2893AdaBoost

6 5 4 3 2 1

2.438 RandF
2.4711 CAWPE-S
3.1488 Bagging3.405XGBoost

4.2975LogitBoost

5.2397AdaBoost

(c) AUC (d) NLL

Fig. 4.5 Critical difference diagrams for CAWPE (built using logistic, C4.5, SVML,
NN and MLP1 base classifiers) against 5 homogeneous ensemble classifiers on 121
UCI data.

Figure 4.5 shows the results of five ensembles each with 500 base classifiers

and CAWPE-S. We observe that CAWPE-S is significantly more accurate than

AdaBoost, LogitBoost and Bagging, and not significantly worse than Random

Forest and XGBoost. With minimal effort using standard classifiers we have pro-
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Table 4.1 Summaries of train times for CAWPE-S and the homogeneous ensembles.
All times are in seconds, and are averaged across the 121 UCI data.

Classifier CAWPE-S LogitBoost RandF XGBoost Bagging AdaBoost
Mean 524.9 302.2 111.9 46.8 22.7 7.8

Median 13.7 8.9 6.9 2.1 0.7 0.06

duced an ensemble that is not significantly worse than state-of-the-art homogeneous

ensembles.

Table 4.1 summarises the train times of CAWPE-S and the homogeneous

ensembles in seconds. CAWPE on this simpler component set has a much larger

mean train time than RandF and XGBoost. This largely comes down to the logistic

regression component, which takes a relatively much longer amount of time on

datasets with larger numbers of classes. The median times are closer, however

XGBoost especially still achieves predictive performance not significantly different

to that of CAWPE-S in much shorter times on average.

These timings should be interpreted with the understanding that XGBoost is a

highly optimised library, while the logistic and MLP1 implementations in particular

are relatively straight forward and unoptimised implementations in Java. The fact

that CAWPE-S has a median train time within the same order of magnitude as

XGBoost while not being significantly less accurate is, we think, a positive result.

Note that due to human error on the part of the authors, Rotation Forest is

missing from this comparison versus competing homogeneous ensembles. Based

on the author’s experience and the previous experiments of this Chapter, we would

expect Rotation Forest to be in the same clique as RandF and CAWPE, possibly

insignificantly higher-ranked in the same manner as RandF.
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4.3.4 How does CAWPE compare to tuned classifiers?

In Section 4.3.1 we showed the ensemble scheme outperforms its set of base

classifiers. However, finding the weights requires an order of magnitude more

work than building a single classifier because of the ten fold cross-validation across

the different components. Given it is widely accepted that tuning parameters on

the train data can significantly improve classifier accuracy [2], perhaps a carefully

tuned classifier will do as well as or better than CAWPE built on untuned classifiers.

To investigate whether this is the case, we tune an SVM with a radial basis function

kernel (SVMRBF), XGBoost, MLP and a random forest and compare the results to

CAWPE-S and CAWPE-A. We tune by performing a ten-fold cross-validation on

each train resample for a large number of possible parameter values, described in

Table 4.2. This requires a huge computational effort. We can distribute resamples

and parameter combinations over a reasonably sized cluster. Even so, considerable

computation is required; we were unable to complete a full parameter search for 4

datasets (within a 7 day limit): adult; chess-kvrk; miniboone; and magic. To avoid

bias, we perform this analysis without these results.

5 4 3 2 1
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2.7436 TunedRandF
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2.8034 TunedSVM

2.9915 TunedRandF
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Fig. 4.6 Average ranked errors for (a) CAWPE-S and (b) CAWPE-A against four
tuned classifiers on 117 datasets in the UCI archive. The datasets adult, chess-krvk,
miniboone and magic are omitted due to computational restraints.

Figure 4.6 compares CAWPE-S and CAWPE-A to tuned versions of MLP,

XGBoost, RandF and SVM. On average, CAWPE-S, containing the five simpler

untuned base classifiers (Logistic, C4.5, SVML, NN and MLP1), is significantly

better than the tuned MLP and not significantly worse than tuned versions of

XGBoost, SVMRBF and Random Forest (Figure 4.6(a)). The highest ranked tuned
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Table 4.2 Tuning parameter ranges for SVMRBF, Random forest, MLP and XG-
Boost. c is the number of classes and m the number of attributes

Classifier Total Parameter Range
SVMRBF 1089 Regularisation C (33 values) {2−16,2−15, . . . ,216}

variance γ (33 values) {2−16,2−15, . . . ,216}

Random 1000 number of trees (10 values) {10,100,200, . . . ,900}
Forest feature subset size (10 values) {

√
m,(log2 m+1), m

10 , . . . , m
3 }

max tree depth (10 values) {0, m
9 , m

8 . . . ,m}

MLP 1024 hidden layers (2 values) {1,2}
nodes per layer (4 values) {c,m,m+ c, m+c

2 }
learning rate (8 values) {1, 1

2 , 1
4 , . . . ,1/(27)}

momentum (8 values) {0, 1
8 , 2

8 , . . . , 7
8}

decay (2 values) {true, f alse}

XGBoost 625 number of trees (5 values) {50,100,250,500,1000}
learning rate (5 values) {0.01,0.05,0.1,0.2,0.3}
max tree depth (5 values) {2,4,6,8,10}
min child weight (5 values) {1,3,5,7,9}

classifier is SVM, but it is still ranked lower than CAWPE-S. This despite the

fact that CAWPE-S is two orders of magnitude faster than the tuned SVM and at

least one order of magnitude faster than tuned Random Forest, MLP and XGBoost.

Sequential execution of CAWPE-S for miniboone (including all internal cross-

validation to find the weights) is 5 hours. For TunedSVM, ten-fold cross-validation

on 1089 different parameter combinations gives 10890 models trained for each

resample of each dataset. For the slowest dataset (miniboone), sequential execution

would have taken more than 6 months. Of course, such extensive tuning may not

be necessary. However, the amount and exact method of tuning to perform is in

itself very hard to determine. Our observation is that using simple approach such as

CAWPE-S avoids the problem of guessing how much to tune completely.

If we use CAWPE-A, containing the more advanced components (RandF, RotF,

SVMQ, MLP2 and XGBoost), we get a classifier that is significantly more accurate
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than any of the individuals (Figure 4.6(b)). CAWPE-A takes significantly longer to

train than CAWPE-S, but it is still not slower on average than the tuned classifiers.

We are not claiming that CAWPE-A is significantly faster than tuning a base

classifier in the general case, because this is obviously dependent on the tuning

strategy. CAWPE-A involves a ten fold cross-validation of five classifiers, so it is

going to be comparable in run time to one of these single classifiers tuned over 50

parameter settings. However, our experiments demonstrate that tuning a single base

learner over a much larger parameter space does not result in as strong of a model,

on average.

Our goal is not to propose a particular set of classifiers that should be used with

CAWPE. Rather, we maintain that if one has some set of classifiers they wish to

apply to problem, ensembling them using CAWPE is generally at least as strong as

other heterogeneous ensemble schemes when we have a relatively small number of

base classifiers, that it significantly improves base classifiers that are approximately

equally strong, and that the degree of improvement is such that state-of-the-art level

results can be achieved with minimal effort. Once a classifier is trained and the

results are stored, ensembling is very quick. To perhaps belabour the point, we

ensembled the four tuned classifiers using the parameter ranges given in Table 4.2

and the resulting classifier was significantly better than the components in a manner

reflecting the patterns observed in Section 4.3.1.

4.3.5 Does the CAWPE performance generalise to other datasets?

Our interest in heterogeneous ensembles originated in TSC problems, where we

ensemble over different representations of the data in a style similar to CAWPE [88].

TSC involves problems where the attributes are ordered (not necessarily in time)

and all real valued. The UCR repository for TSC contains problems from a wide

range of domains such as classifying image outlines, EEG and spectrographs. There
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are currently 85 datasets, with diverse data characteristics. A full list of the 85

datasets is listed in the Appendix in Table 6.3.

Traditionally, dynamic time warping distance (with window size set through

cross-validation) [115] with a 1-nearest neighbour classifier (referred to as just

DTW henceforth) has been considered the benchmark algorithm for this type of

problem. In recent years, a range of bespoke algorithms have been proposed in high

impact journals and conferences. A large-scale experimental evaluation [6] found

that of 18 such algorithms, only 13 were significantly better (in terms of accuracy)

than DTW.

Our goal is to test how well the results observed for CAWPE on the UCI data

generalise to other data, by testing whether CAWPE significantly improves over

its components on the UCR archive also. To do so, we ignore the ordering of

the series and treat each time step in the series as a feature for traditional vector-

based classification. The UCR datasets generally have many more features than

the UCI data. This has meant we have had to make one change to CAWPE-S: we

remove logistic regression because it cannot feasibly be built on many of the data.

Since DTW is a 1-nearest neighbour classifier, it always produces 0/1 probability

estimates. Because of this, we omit a probabilistic evaluation using AUC and NLL,

as it has little meaning for DTW.

6 5 4 3 2 1

2.0235 CAWPE-S

2.5529 DTW

3.3647 MLP13.4118NN

4.3294SVML

5.3176C4.5

7 6 5 4 3 2 1

2.0529 CAWPE-A

3.4588 DTW

3.5529 RandF

4.2118 RotF

4.6588MLP2

5.0176SVMQ

5.0471XGBoost

(a) (b)

Fig. 4.7 Average ranked errors for DTW against (a) CAWPE-S and its components
and (b) CAWPE-A and its components on the 85 datasets in the UCR archive.

Figure 4.7 shows the critical difference diagrams for accuracy of CAWPE-S,

CAWPE-A, their respective constituents, and DTW. Both sets of base classifiers are
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significantly improved by CAWPE once more. These results closely mirror those on

the UCI datasets presented above. Furthermore, neither of the CAWPE versions are

significantly worse than DTW and both have higher average rank. This should be

considered in the context that neither classifier takes advantage of any information

in the ordering of attributes. Despite this, CAWPE-A has a higher average rank

than 9 of the 18 bespoke TSC algorithms evaluated by Bagnall et al. [6], and is

not significantly worse than 11 of them. CAWPE, a simple ensemble using off the

shelf components and a simple weighting scheme, has been made as accurate as

complex algorithms that use a range of complicated techniques such as forming

bags of patterns, using edit distance based similarity, differential based distances,

compression techniques and decision trees based on short subseries features.

Using standard classifiers for TSC is unlikely to be the best approach. The

best performing TSC algorithm in the study [6], significantly more accurate than

all the others, was the Collective of Transformation-based Ensembles (COTE) [7].

It has components built on different representations of the data. COTE uses an

ensemble structure that is the progenitor of CAWPE. The latest version of COTE,

HIVE-COTE [88] uses weighted majority voting for five modularised classifier

components defined on shapelet, elastic distance, power spectrum, bag-of-words and

interval based representations, and is significantly more accurate than the previous

version, flat-COTE, and all of the competing algorithms. HIVE-COTE exploits

the diversity of the representations through an ensemble scheme. We address the

question of whether CAWPE is the best ensemble scheme for HIVE-COTE.

Figure 4.8 shows how HIVE-COTE performs when we incrementally add in the

CAWPE combination scheme methods. The left most version, weighted majority

vote, is the classifier used by the original HIVE-COTE [88]. Raising the weight

to the power of four significantly reduces error. Switching to using probabilities

is significantly better than either weighted voting scheme. Using CAWPE (probs,

a=4 in Figure 4.8) is significantly better than all variants. It is not just a matter of
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tiny improvements in accuracy improving the ranks. The overall mean accuracy

over all problems for HIVE-COTE using CAWPE is 87.16%, whereas the accuracy

reported originally [88] using WMV is 85.97%. An overall improvement of over

1% for such a simple change is hugely valuable. For context, the average accuracy

of DTW is 77.7%.

4 3 2 1

1.4647 HIVE-COTE(probs,a=4)

2.1471 HIVE-COTE(probs,a=1)2.9647HIVE-COTE(vote,a=4)

3.4235HIVE-COTE(vote,a=1)

Fig. 4.8 Average ranked errors for HIVE-COTE using four variants of the combina-
tion schemes on the UCR datasets.

4.4 Analysis

We perform a more in-depth analysis of results to determine whether there are any

patterns in the results that indicate when and why CAWPE performs well. We

compare various facets of performance against choosing the best component on

any given dataset (Section 4.4.1). We then perform an ablative study of CAWPE

(Section 4.4.2), and a sensitivity study of its parameter, α (Section 4.4.3).

4.4.1 CAWPE vs Pick Best Exploratory Analysis

Given CAWPE ensembles based on estimates of accuracy obtained from the train

data and gives increasingly larger weights to the better classifiers, it seems rea-

sonable to ask, why not just choose the single classifier with the highest estimate

of accuracy? Figure 4.3 demonstrated that it is on average significantly worse

choosing a single classifier than using the CAWPE ensembles. When comparing

algorithms over entire archives, we get a good sense of those which are better for

general purpose classification. However, differences in aggregated ranks do not
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tell the whole story of differences between classifiers. It could be the case that

CAWPE is just more consistent that its components: it could be a jack of all trades

ensemble that achieves a high ranking most of the time, but is usually beaten by

one or more of its components. A more interesting improvement is an ensemble

that consistently achieves higher accuracy than all of its components. For this to

happen, the act of ensembling needs to not only cover for the weaknesses of the

classifiers when in their suboptimal domains, but accentuate their strengths when

within their specialisation too. Figure 4.9 shows the scatter plots of accuracy for

choosing the best base classifier from their respective component sets against using

CAWPE. This demonstrates that CAWPE has higher accuracy than Pick Best on

the majority of problems, and that the differences are not tiny.

(a) (b)

Fig. 4.9 Accuracy of (a) CAWPE-S and (b) CAWPE-A vs picking the best compo-
nent.

Figure 4.10 shows the counts of the rankings achieved by CAWPE built on

the simpler (a) and advanced (b) components, in terms of accuracy, over the 121

UCI datasets. CAWPE is the single best classifier far more often than any of its

components, and is in fact more often the best classifier than second best. Both

versions of CAWPE are never ranked fifth or sixth, and very rarely ranked fourth,

demonstrating the consistency of the improvement. This suggests that the simple

combination scheme used in CAWPE is able to actively enhance the predictions of

its locally specialised members, rather than just achieve a consistently good rank.
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Fig. 4.10 Clustered histograms of accuracy rankings over the 121 UCI datasets
for (a) CAWPE-S and (b) CAWPE-A and their respective components. For each
classifier, the number of occurrences of each rank being achieved relative to the
other classifiers is shown.

Table 4.3 CAWPE-S vs pick best split by train set size. The three datasets with the
same average error have been removed (acute-inflammation, acute-nephritis and
breast-cancer-wisc-diag). If there is a significant difference within a group (tested
using a Wilcoxon sign rank test) the row is in bold.

#Train Cases #Problems #CAWPE-S WINS Mean Error Difference
1-100 28 21 1.49%

101-500 46 36 0.71%
501-1000 12 11 1.51%

1001-5000 23 11 0.16%
>5001 9 2 0.02%

For clarity we restrict further analysis to the CAWPE-S results. Comparable

results for CAWPE-A are available on the accompanying website.

Comparing overall performance of classifiers is obviously desirable; it addresses

the general question: given no other information, what classifier should I use?

However, we do have further information. We know the number of train cases,

the number of attributes and the number of classes. Does any of this information

indicate scenarios where CAWPE is gaining an advantage? The most obvious factor

is train set size, since picking the best classifier based on train estimates is likely to

be less reliable with small train sets.

Table 4.3 breaks down the results of CAWPE-S compared to Pick Best by

train set size. With under 1000 train cases, CAWPE-S is clearly superior. With
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1000-5000 cases, there is little difference. With over 5000 cases, CAWPE-S is

better on just 2 of 9 problems, but there is only a tiny difference in error. This

would indicate that if one has over 5000 cases then there may be little benefit in

using CAWPE-S, although it is unlikely to be detrimental. Analysis shows there is

no detectable significant effect of number of attributes. For the number of classes,

there is a benefit for CAWPE-S on problems with more than 5 classes. CAWPE-S

wins on 62% of problems with five or fewer classes (53 out of 85) and wins on

85% of problems with 6 or more (28 out of 33). This is not unexpected, as a large

number of classes means fewer cases per class, which is likely to introduce more

noise into the estimate of error.
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Fig. 4.11 The difference in average errors in increasing order between CAWPE-S
and picking the best classifier on each dataset. Significant differences according to
paired t-tests over folds are also reported. CAWPE-S is significantly more accurate
on 46, the best individual classifier on 18, and there is no significant difference on
57.

Despite using the same classification algorithms, not all of the differences

between pick best and CAWPE-S are small in magnitude. Figure 4.11 shows the

ordered differences between the two approaches. The largest difference in favour

of CAWPE-S (averaged over 30 folds) is 4.42% (on the arrhythmia dataset) and in
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favour of pick best 4.5% (on energy-y1). This demonstrates the importance of the

selection method for classifiers; it can cause large differences on unseen data.

This analysis indicates that CAWPE-S is likely to be a better approach than

simply picking the best when there is not a large amount of training data, there are

a large number of classes and/or the problem is hard. Overall, CAWPE requires

almost no extra work beyond pick best and yet is more accurate.

4.4.2 CAWPE Ablative Study

CAWPE belongs to the family of ensemble schemes broadly categorised as weighted

output combination. We found in Section 4.3 that both CAWPE-S and CAWPE-

A are significantly better than the most common instantiations of this type of

ensemble; majority vote and weighted majority vote. The major design components

of CAWPE are the fact it uses the probabilistic outputs of its base classifiers and the

emphasising of differences in weights by using α set to 4. Figure 4.8 has already

shown that that both of these factors result in significant improvement of the TSC

algorithm HIVE-COTE. Here we wish to delve further into the contribution that

each factor of CAWPE has on its performance. For brevity, we perform all analysis

using the CAWPE-S set of simpler classifiers.

We split CAWPE based on these two factors, building up from majority vote to

CAWPE: the use of the base classifiers’ probabilities (probs) or predictions (preds);

and the extent to which we make use of the base classifiers’ cross-validation

accuracy to weight their contribution: none at all (a=0); standard weighting (a=1);

and extenuated weighting (a=4). Figure 4.12 details the results of a comparison

between all combinations of these factors. To better ground these results in the

context of the previous comparison to other heterogeneous ensembles in general

in Section 4.3.2, we reuse and define new labels relevant to combinations of

these factors of weighted output combination. These are: Majority Vote (MV:
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(c) AUC (d) NLL

Fig. 4.12 Critical difference diagrams of the stages of progression from a simple
majority vote up to CAWPE, on the 121 datasets of the UCI archive using the
CAWPE-S variant.

a=0,preds); Majority Confidence (MC: a=0,probs); Weighted Majority Vote (WMV:

a=1,preds); Weighted Majority Confidence (WMC: a=1,probs); Exponentially

Weighted Majority Vote (EWMV: a=4,preds); and finally Exponentially Weighted

Majority Confidence (CAWPE: a=4, probs).

These diagrams confirm some suspicions. Firstly, for equal values of α , it is

always better to use probabilities instead of predictions. For AUC and NLL, the

performance metrics most relevant to probabilistic output, the use of probabilities

is better even regardless of the value of α . Secondly, the use of a weighting scheme,

and then further increasing the value of α to 4 also always provides improvement

on average.

The improvement from increasing α to 4 is consistent, too, providing in some

instances surprising improvements in absolute accuracy. When directly comparing

CAWPE (α=4, probs) to WMC (α=1, probs), CAWPE wins on 86 datasets and

loses on 28. The largest reduction in error was 4.49% on the flags dataset, with the

largest increase in error being 1.65% on plant-shape.

Figure 4.13 displays scatter plots to demonstrate these findings. Against differ-

ences in error between CAWPE and WMC, it plots a four dataset characteristics: the
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number of instances; number of attributes; number of classes; and class imbalance.

For this purpose, the class imbalance of a dataset is informally calculated as the

average difference between each class’ actual proportional representation in the

dataset, and its expected value, 1/c. These confirm visually that there is no obvious

relationship between the improvement α provides and any of these characteristics.
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Fig. 4.13 Four plots of the difference in error between CAWPE (α=4,probs) and
WMC (α=1,probs), against different dataset characteristics. Above zero CAWPE
wins, below zero WMC wins. Trend represented by solid black line, R2 reported in
top-right corner.

4.4.3 CAWPE Sensitivity Analysis

Section 4.4.2 has shown that exaggerating the weights of classifiers using α gives

a significant increase in performance over standard weighted averaging of prob-

abilities, even with all else being equal. As stated at the end of Section 4.2, the

value of α was fixed to 4 for CAWPE for all experiments reported throughout

the previous sections. This value was decided on while developing HIVE-COTE.
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Having performed our experiments with α = 4, we were interested to find out how

sensitive the performance of CAWPE is to this single parameter.

✄

✄�✄✄✁

✄�✄✂

✄�✄✂✁

✄�✄☎

✄�✄☎✁

✂ ☎ ✆ ✝ ✁ ✞ ✟ ✠ ✡ ✂✄ ✂✂ ✂☎ ✂✆ ✂✝ ✂✁

☛
☞✌
✌✍
✎
✍
✏
✑
✍
☞✏
✒
✑
✑
✓
✎
✒
✑
✔
✕
✖
✗
✘
✙

✚

✛✜✢✣✤✥✦✧★

✛✜✢✣✤✩✪✤

✛✜✫✣✤✥✦✧★

✛✜✫✣✤✩✪✤

✄

✄�✄✄✁

✄�✄✂

✄�✄✂✁

✄�✄☎

✄�✄☎✁

✂ ☎ ✆ ✝ ✁ ✞ ✟ ✠ ✡ ✂✄ ✂✂ ✂☎ ✂✆ ✂✝ ✂✁

☛
☞✌
✌✍
✎
✍
✏
✑
✍
☞✏
✒
✑
✑
✓
✎
✒
✑
✔
✕
✖
✗
✘
✙

✚

✛✜✢✣✤✥✦✧★

✛✜✢✣✤✩✪✤

✛✜✫✣✤✥✦✧★

✛✜✫✣✤✩✪✤

(a) CAWPE-S (b) CAWPE-A

Fig. 4.14 Mean train (squares) and test (triangles) accuracies over the 121 UCI
(dashed line) and 85 UCR (solid line) datasets as the alpha parameter changes,
expressed as the difference to equal weighting (α=0).

Figure 4.14 depicts what happens if we fix α to progressively higher values over

both dataset archives and both base classifier sets used throughout, the basic set

(Logistic, C4.5, SVML, NN and MLP1) and the advanced set (RandF, RotF, SVMQ,

MLP2 and XGBoost). To keep everything on the same scale and to appropriately

highlight the actual differences in accuracy, the average accuracy of each α value is

expressed as the difference between itself and using α = 0, i.e. no weighting of the

base classifiers. Even across the two different archives and base classifier sets, the

test performances of different values of α show a fairly consistent pattern, rising

steadily until around five to seven before tapering off or eventually falling again.

Ultimately as α tends to infinity, we know that the ensemble becomes equivalent to

picking the best individual, at which point the line has fallen far below 0 on these

graphs. While not included for the sake of space and clarity, the results for the other

three test statistics (balanced error, AUC, and NLL) follow an effectively identical

pattern.

These results give us an understanding of the surprisingly consistent properties

of α overall. However, given some particular set of base classifiers, their relative
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performances and ability to estimate their own performance on the training set could

vary to different extents depending on the individual dataset provided. As such,

the amount that we want to extenuate the differences between the classifier could

change from dataset to dataset. It is therefore natural to wonder whether the alpha

parameter could be tuned. To do this in a completely fair and unbiased way, we

would need to perform a further nested level of cross-validation. However, we can

find a much faster (but possibly biased) estimate of the ensemble’s error by using

exactly the same folds as the base classifiers once more, and simply recombining

their predictions. Such a procedure has been shown before to sufficiently sound

in practice [136] when performing model selection with nested hyperparameter

tuning, and we adopt this here.

3 2 1

1.7025 CAWPE(ConTie)
1.8595 CAWPE(alpha=4)

2.438CAWPE(RandTie)

3 2 1

1.8529 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.2294CAWPE(RandTie)

(a) CAWPE-S, UCI (b) CAWPE-S, UCR
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1.7562 CAWPE(alpha=4)
1.9959 CAWPE(ConTie)

2.2479CAWPE(RandTie)

3 2 1

1.6706 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.4118CAWPE(RandTie)

(c) CAWPE-A, UCI (d) CAWPE-A, UCR

Fig. 4.15 Critical difference diagrams over test error of CAWPE on the UCI and
UCR archives as it stands (alpha=4), and against two tuning schemes for the alpha
parameter: resolving ties in error estimates randomly (RandTie); and conservatively
picking the lowest alpha amongst the ties (ConTie).

However, as Figure 4.15 shows, tuning alpha over the range {0,1,. . . 15,∞}

appears to offer little to no benefit when doing so with simple and sensible tuning

rules such as picking the α with the best accuracy estimate, and resolving ties (which

can be quite common in this scenario) either randomly (RandTie) or conservatively,

by choosing the smallest tied value of α (ConTie). ConTie tends towards more

evenly averaging the base classifier’s outputs, both to counteract any potential

overfitting by the base classifiers and, as shown in Figure 4.14, the tendency for
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higher values of α to increasingly lead to higher estimates of the ensemble’s own

performance incorrectly.

One could imagine many more complex tuning schemes potentially having

a positive effect, such as sticking to the default value of 4, and only deviating

if another value significantly improves accuracy over the cross-validation folds.

However, considering both this analysis of α and the findings of the previous

section, and remembering our initial guiding principle of simplicity, we believe we

can reasonably fall back to fixing the value of α .

4.4.4 Incorporating homogeneity back into CAWPE

CAWPE cross-validates each member on the train data to generate error estimates

for weightings. Models rebuilt on the full train data are used to form predictions

for the ensemble. During the CV process, however, models are made on each fold

which are then discarded. A natural question is whether these can be retained and

leveraged to improve predictive performance.

We investigate whether retaining these models, in addition to the models re-

trained to the full training set, can improve classification performance. We also

assess whether accuracy can be maintained while skipping the retraining step on the

full data, saving time in the training phase. While maintaining these models incurs

no additional training time cost, prediction time and space requirements clearly

increase in proportion to the number of CV folds. We further analyse the variance

of the maintained classifiers and their effects on the resulting ensemble’s variance.

Explicitly building homogeneous (sub-)ensembles from heterogeneous base

classifiers is not a new idea. Gashler et al. [51] build forests of trees from different

tree building algorithms and shows that larger purely-homogeneous forests can be

matched or beaten by smaller mixed forests. Ensemble selection [25] (or pruning)

can similarly be applied to purely hetero- or homogeneously generated model sets,
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or mixtures of the two [112]. Alongside these works, we specifically wish to study

the effects of maintaining homogeneous models, with potentially lower-quality

estimates of competency attached, on the CAWPE weighting scheme which relies

heavily on the weightings applied.

We evaluate three ensemble configurations that retain the models evaluated on

CV folds of the train data against the original CAWPE, which ensembles only over

the models retrained on the entire train set. These are to a) (M)aintain all models

trained on CV folds and add them to the ensemble alongside the fully trained models

(CAWPE_M), b) (M)aintain all models once more, but systematically (D)own-

(W)eight them relative to the fully trained models due to their potentially less

reliable error estimates (CAWPE_M_DW) c) maintain only those models trained

on the CV folds, and skip the retraining step on the full train data, (R)eplacing the

original models (CAWPE_R).

We take the UCI archive once more to evaluate on, however use a subset of 39

datasets, following feedback received on the superset of these datasets used in the

previous study [78]. This set of the datasets are summarised in Table 4.4, and are

taken as specifically independent, non-toy, and relatively larger in size. All configu-

rations of CAWPE tested here use the CAWPE-S set of base classifiers. Because

all dataset resamples and CV folds of the respective train splits are aligned, each

ensemble configuration is therefore being built from identical (meta-)information

and we are only testing the configuration’s ability to combine the predictions. For

reference, we also compare once more these combined homogeneous and heteroge-

neous CAWPE variants to the homogeneous ensembles RandF and XGBoost, each

with 500 trees.
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Table 4.4 A full list of the 39 UCI datasets used in these sub-experiments. Full
names saved for horizontal space: *1 conn-bench-sonar-mines-rocks, *2 conn-
bench-vowel-deterding, *3 vertebral-column-3clases.

Dataset #Cases #Atts #Classes Dataset #Cases #Atts #Classes
bank 4521 16 2 page-blocks 5473 10 5

blood 748 4 2 parkinsons 195 22 2
breast-cancer-w-diag 569 30 2 pendigits 10992 16 10

breast-tissue 106 9 6 planning 182 12 2
cardio-10clases 2126 21 10 post-operative 90 8 3

sonar-mines-rocks*1 208 60 2 ringnorm 7400 20 2
vowel-deterding*2 990 11 11 seeds 210 7 3

ecoli 336 7 8 spambase 4601 57 2
glass 214 9 6 statlog-landsat 6435 36 6

hill-valley 1212 100 2 statlog-shuttle 58000 9 7
image-segmentation 2310 18 7 statlog-vehicle 846 18 4

ionosphere 351 33 2 steel-plates 1941 27 7
iris 150 4 3 synthetic-control 600 60 6

libras 360 90 15 twonorm 7400 20 2
magic 19020 10 2 vertebral-column*3 310 6 3

miniboone 130064 50 2 wall-following 5456 24 4
oocytes_m_nucleus_4d 1022 41 2 waveform-noise 5000 40 3

oocytes_t_states_5b 912 32 3 wine-quality-white 4898 11 7
optical 5620 62 10 yeast 1484 8 10
ozone 2536 72 2

4.4.4.1 Results

We summarise comparative results succinctly here in three forms: Figure 4.16

displays CAWPE configurations and reference homogeneous ensembles ordered by

average ranks in accuracy along with cliques of significance formed; Table 4.5 de-

tails the average scores of all four evaluation metrics; and Table 4.6 details pairwise

wins, draws and losses between the original and proposed CAWPE configurations.

Maintaining the individual fold classifiers significantly improves over the origi-

nal CAWPE. Within the three proposed configurations there is very little difference

in performance. This is largely to be expected since they are working from the

same meta-information, with the exception of CAWPE_R, which replaces the fully

re-trained models only with those trained during CV. This does mean that training

time can seemingly be saved by avoiding this final retraining step without a tangible

reduction in predictive performance.

Note that while maintaining the fold classifiers improves performance with

statistical significance, the average improvement in absolute terms is very small,

roughly 0.3% in terms of accuracy, balanced accuracy, and area under the curve
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Fig. 4.16 Critical difference diagram displaying the average ranks of accuracy of
the original CAWPE and three tested configurations and reference homogeneous
ensembles. Classifiers connected by a solid bar are considered within the same
clique and not significantly different from each other.

Table 4.5 Averages scores for four evaluation metrics of each of the CAWPE
configurations and homogeneous ensembles tested.

Classifier ACC ↑ BALACC ↑ AUC ↑ NLL ↓
CAWPE 0.861 0.787 0.915 0.53
CAWPE_M_DW 0.864 0.789 0.917 0.517
CAWPE_M 0.865 0.79 0.918 0.515
CAWPE_R 0.865 0.789 0.918 0.516
RandF 0.854 0.78 0.91 0.564
XGBoost 0.85 0.784 0.907 0.647

(Table 4.5). Meanwhile, XGBoost’s average accuracy is a full 1.2% lower, but

still significantly similar to the new CAWPE configurations. This is because

the improvement found while being small, is very consistent (and, conversely,

XGBoost is strong but has relatively high variance in performance across datasets).

When looking at the paired wins, draws and losses between the configurations in

Table 4.6, the contrast between the relatively balanced match-ups of the three new

configurations, against the consistently beaten original configuration is clear to see.

Table 4.6 Pairwise wins, draws and losses in terms of dataset accuracies between
the ensemble configuration on the row against the configuration on the column.

CAWPE_R CAWPE_M CAWPE_M_DW CAWPE
CAWPE_R - 17/4/18 23/0/16 32/0/7
CAWPE_M 18/4/17 - 23/0/16 31/0/8

CAWPE_M_DW 16/0/23 16/0/23 - 34/0/5
CAWPE 7/0/32 8/0/31 5/0/34 -
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4.4.4.2 Analysis

CV is such a commonly used method of evaluating a model on a given dataset

because of its robustness and completeness relative to, for example, singular held-

out validation sets [69]. A single fold of a CV procedure in isolation is of course

simply the latter, and equivalent to a single subsample within a bagging context [17];

it is the repeated folding of the data that leads to each instance being predicted as a

validation case once that makes the process complete.

All weighted ensembles rely to some extent on the reliability of the error

estimates of their members, but CAWPE especially does given that it accentuates

the differences in those estimates. We wish to analyse the extent to which the

quality of error estimates suffers, and its effects on the ensemble’s own performance

and variance.
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Fig. 4.17 Normalised counts of differences in estimated (on train data) and observed
(on test data) accuracy for the retrained (blue) and individual CV fold (orange) mod-
els across all datasets and resamples. Positive x values indicate a larger estimated
than observed accuracy, i.e. a classifier overestimating its performance.
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Figure 4.17 measures the counts of differences in estimated (on train data)

and observed (on test data) accuracies and confirms expectations that completing

the CV process and retraining models on the full dataset results in more accurate

estimates of accuracy on average than the individual models on CV folds. Overall

standard deviation almost doubles, but the number and degree of the outliers is

perhaps the most important thing. The retrained models never have performance

under-estimated by more than 0.3, and less than 2% of the models under estimate

by more than 0.1.

Meanwhile, the individuals fold estimates have some extreme outliers in terms

of underestimating in particular, with a small tail on Figure 4.17 stretching all the

way to -0.75. 7.6% of all fold models underestimate accuracy by more than 10%.

Many of the extreme outliers were localised to two datasets, spread out across

different learning algorithms. The breast-tissue dataset is a relatively balanced six

class problem, while post-operative is a heavily imbalanced three class problem.

These factors along with them being the datasets with the least instances likely

lead to difficult folds to classify for certain models and seeds, which are of course

averaged over when considering the remaining CV folds.

In context, however, the difference really is not too stark. The errors in es-

timates may double in variance, and these are being accentuated by CAWPE’s

combination scheme, but there are also fifty more models to average over. Fig-

ure 4.18 summarises the differences in variance across test performances between

the configurations that maintain the fold models and the original CAWPE along

two dimensions - variance in performance on arbitrary datasets, and variance in

performance over formulations of the same dataset through resampling. Variance

across resamples is reduced, while variance over datasets is less clear. It seems as

though cases such as breast-tissue and post-operative affect this particular compari-

son as with the above, and this shows with variance in balanced accuracy still being

clearly reduced.
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Fig. 4.18 Standard deviations in performance metrics for the three proposed CAWPE
configurations over (a) datasets averaged over resamples and (b) individual dataset
resamples, expressed as differences to the original CAWPE. NLL is omitted due to
the improper scaling factor brought about by it not being a measure in the range 0
to 1.

When there are only five members, erroneously discounting a classifier to

the extent that its outputs are effectively worthless is a large blow to the overall

strength of the ensemble. In the case of ensembles with 50 or 55 members though,

erroneously discounting one or two classifiers is not so harmful. Practitioners

of homogeneous ensembles will of course be familiar with this, and it is the

underpinning of the design of such an ensemble - averaging over high variance

inputs to produce a low variance output [18].

4.5 Conclusions

In this Chapter, we have developed and evaluated a heterogeneous weighted ensem-

ble scheme, CAWPE. Our initial hypothesis was simple: forming heterogeneous

ensembles of approximately equivalent classifiers produces on average a signifi-

cantly better classifier (in terms of error, ordering and probability estimates) than a

wide range of potential base classifiers, and that when we use a weighted probabilis-
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tic combination mechanism, ensembles of simple classifier can be at least as good

as homogeneous ensembles, heterogeneous ensembles or tuned classifiers. The

CAWPE method we propose is significantly better than many equivalent methods

and, if the number of classifiers being ensembled is relatively small, represents

a sensible starting point. CAWPE is quick, simple and easy to understand. The

CAWPE of five simple untuned classifiers is not significantly worse than heavily

tuned support vector machines, multilayer perceptron, random forest and XGBoost.

CAWPE is significantly better than similar heterogeneous schemes based on predic-

tions rather than probabilities. Clearly, CAWPE is not always the best approach,

but given the short time it takes to build the simple classifiers we have used to test

it, it seems a sensible starting point.

CAWPE has limitations or areas where it is untested. Firstly, as the train set

size increases, the value in ensembling, as opposed to just picking the best, reduces.

However, picking best rather than ensembling requires a similar amount of work,

and ensembling is unlikely to make things worse. Secondly, with a larger pool of

classifiers, it may be better to select a subset rather than use all classifiers using

some ES type algorithm. We have not tested this, because unless we choose the

overproduce and select methodology of including multiple copies of the same

learning algorithm, there are not that many learning algorithms that would be

considered equivalent. Our approach is to use fewer very different base classifiers,

then combine their output in a way that retains the maximum information. Thirdly,

it may well be possible that advanced classifiers such as boosting, deep learning

and support vector machines can be designed to beat CAWPE, but if this is the

case it is not trivial, as we have shown. Finally, the data we have used has only

continuous attributes. We made this decision based on the fact that we wanted to

extend previous research and because we come to this problem from TSC, where

all data is real valued. It may be that the variation in classifier performance on

nominal data is such that the ensembling does not benefit. However, given that
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CAWPE is classifier neutral, it seems unlikely that the pattern of results would be

much different.

The next stage in this thesis is to evaluate the use of CAWPE, among other

algorithms, on our alcohol authentication problem. CAWPE’s strong probabilistic

predictions, ease of use, and ability to be decomposed and analysed for the relative

performances of its base classifiers should all work to its advantage.
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5.1 Introduction

In Chapter 3, we reported initial investigations on synthesised alcohol solution

datasets and brand differentiation. In the former, ethanol concentration was pre-

dictable, but methanol concentration was much more difficult. Consuming as little

as 10 ml of methanol can cause permanent blindness, while 30 ml can be fatal [132].

Methanol, either by itself or as part of more complex substances such as pectin

which are broken down during digestion, occurs naturally in very small amounts

in fruit and vegetables. More concentrated methanol can be produced in alcoholic

drinks during the fermentation process, particularly when low-quality processes,

equipment, and raw inputs are used. Larger scale and more regulated manufacturers

will make use of processes to remove any amounts of methanol produced during

fermentation. However, producers in less regulated areas or those making it at

home (legally or not) are at risk. The detection of methanol to minimal dangerous

concentrations with a system such as that put forward by this thesis, where arbitrary

spirits in arbitrary containers could be tested, would constitute a large step forward

for public health and safety where such analysis can take place prior to consumption.

While scenarios such as the identification of particular products are important, they

have a more narrow scope of applicability, requiring data collection for each product

of interest both now and in the future as different products come to market. It has

therefore been identified as a topic that would benefit from more direct work and

investigation.

In this chapter, we describe the collection of a dataset of 41 progressively

methanol-spiked genuine spirits in their original bottles, spiked from 0.25% to 5%

v/v. The lower end (1.75ml in 700ml product) is worthy of seizure and investiga-

tion into production processes (especially in commercially sold spirits), but with

minimal risk to long term health, while the upper end (35ml in 700ml product) is

almost certainly fatal when consumed in large quantities. We show that the stan-
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dard chemometric pipeline of normalisation, smoothing, and partial least squares

regression cannot form a reasonable fit for predictions. We evaluate the use of more

modern classification techniques once more on this data.

Time series classification methods have seen continual and rapid development

since the bakeoff discussed in Chapter 2, Section 2.4.2, and the experiments of

Chapter 3. The meta-ensemble of time series representations, HIVE-COTE, has

always been either solely or among the state of the art for classification perfor-

mance since its conception, as it and other methods in the literature have improved.

Improvements to the overall ensemble have come from advances in individual

representations and in their method of combination. We describe the updates to

HIVE-COTE since Chapter 3 to form HIVE-COTE 2.0, currently the stand-alone

state of the art for TSC as measured on the UCR archive. For individual represen-

tation updates, some contributions are in collaboration with other authors, while

CAWPE, developed in the previous chapter, is now the ensembling scheme of

choice.

We apply the updated TSC methods and CAWPE itself with simple classifiers

alongside standard classification techniques and initially find that ten methanol

concentrations can be distinguished in arbitrary bottles and spirits with an accuracy

of 0.723. The use of stricter collection techniques in particular allows for much

clearer signals to be analysed than those in Chapter 3. We investigate this further,

looking at the sources of improvement and confounding factors. We ultimately find

that using the combined prediction of multiple repeat spectra of a particular sample

can improve accuracy to 0.921.

We first outline improvements in TSC algorithms, both contributions solely

from this thesis and in collaboration with other authors, in Section 5.2. We introduce

and summarise the methanol concentration dataset collected in Section 5.3 and

present the results of classification experiments in Section 5.4. We analyse different
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aspects of the problem and model performance on it in Section 5.5, and finally

conclude in Section 5.6.

5.2 Time series classification improvements

Updates to the state of the art in TSC have been continuous, in part through work

of the authors of this thesis. Considerable ground is covered in this section. We

catalogue the classifiers used through HIVE-COTE’s lifespan for reference in

Table 5.1, and illustrate the updates for visual reference in Figure 5.1, which also

indicates visually the components and ensembles touch and improved through work

towards this thesis.

We summarise in brief here the updates made to the meta-ensemble HIVE-

COTE and its constituents, which were made in collaboration with other researchers

at the University of East Anglia. The reasons for brevity are due to the main fo-

cus of this thesis being on alcohol authentication and the collaborative nature of

these TSC-related works. We leave the full experimental details to the respective

published works and the future theses of other authors. The HIVE-COTE heteroge-

neous ensemble of different time series representations, alongside the individual

representations themselves, forms the bulk of the time series approaches applied to

our methanol concentration dataset. We otherwise employ the state of the art deep

learning representative, InceptionTime.

Chapter 2, Section 2.4.2.6 described the original incarnation (alpha), comprised

of the TSF, RISE, STC, BOSS, and EE classifiers, with predictions being combined

by a majority vote weighted by an estimate of train accuracy. Then, formally

defined in early 2020, HIVE-COTE 1.0 dropped EE for efficiency at little to no cost

in accuracy and updated BOSS to cBOSS, reducing the total size of and injecting

randomness and subsequently diversity into BOSS’s hyperparameter search space.
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Table 5.1 List of classifiers and acronyms used in summarising the progression of
HIVE-COTE and its constituents.

Algorithm Name Acronym Source Representation(s)
Elastic Ensemble EE [85] Whole-series distance
Bag of Symbolic Fourier
Approximation Symbols BOSS [122] Dictionary

Spatial BOSS SBOSS [77] Dictionary
Contractable BOSS cBOSS [100] Dictionary
Word Extraction for Time
Series Classification WEASEL [123] Dictionary

Temporal Dictionary Ensemble TDE [98] Dictionary
Time Series Forest TSF [36] Interval
Canonical Interval Forest CIF [97] Interval
Diverse Representation CIF DrCIF [99] Interval/Spectral
Shapelet Transform ST-HESCA [60] Shapelets
Shapelet Transform Classifier STC [16] Shapelets
Random Interval
Spectral Ensemble RISE [87] Spectral

Random Convolutional
Kernel Transform ROCKET [34] Convolutional

Arsenal - [99] Convolutional

Hierarchical Vote Collective
of Transformation-based
Ensembles
(HIVE-COTE)

HC-alpha [87]
TSF, RISE, ST-HESCA, BOSS, EE
Weighted Majority Confidence

HC1 [4]
TSF, RISE, STC, cBOSS
CAWPE

HC2 [99]
DrCIF, STC, TDE, Arsenal
CAWPE

HIVE-COTE 1.0 also adopted CAWPE as its combination scheme. Both CAWPE

and its application to HIVE-COTE were described in Chapter 4. We now describe

the updates from HIVE-COTE 1.0 to 2.0.

5.2.1 TSF→ CIF→ DrCIF

The upgrade from TSF to CIF in 2020 was led by collaborators, with equal (~50%)

input on algorithmic and experimental design, and smaller amounts (~30%) of

experimental execution and results analysis from myself. CIF expands on TSF,

incorporating a larger feature set known as catch22 [92]. catch22 is a set of 22

time series features from the 7658 contained in the highly comparative time-series

analysis (hctsa) toolbox [49], selected through a multi-stage process specifically for

classification performance on the UCR archive. The features cover a wide range
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Fig. 5.1 An overview of the updates to individual representations and versions of
HIVE-COTE, from alpha to 2.0. Algorithms in solid green (SBOSS) are contribu-
tions of this thesis alone. Algorithms in patterned green (HIVE-COTE 1.0/2.0, CIF,
DrCIF, TDE) have been developed in collaboration with other authors.

of concepts such as basic statistics of time series values, linear correlations, and

entropy. For classification, the obvious way to use catch22 is as a transform prior to

building a classifier. However, this method with a decision tree or random forest

does not ultimately create a classifier any stronger than DTW [97]. CIF incorporates

the catch22 features in the TSF structure, and generates further diversity by sampling

a (default 8) of the 25 features (22 plus the mean, slope, and standard deviation

from TSF) to use in each tree. k phase dependent intervals with randomly selected

positions and lengths are extracted, and summarised by the a features. The tree is

then built on the concatenated set of interval summaries, length ka. Middlehurst

et al. [97] showed that CIF achieves significantly improved accuracy over TSF on

the UCR archive, and when it replaces TSF in HIVE-COTE with no other changes,

HIVE-COTE is significantly improved.

CIF was then further enhanced to DrCIF in 2021. This expansion incorporates

ideas from the Supervised Time Series Forest (STSF) [24], and aims to incorprate
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back into HIVE-COTE 2.0 the spectral information that previously was captured by

RISE. The same tree structure is used as in CIF, and intervals randomly selected for

use and summary in each tree. However, intervals given to the tree are taken from

one of three representations: the interval from the base series; from the first order

differences; and intervals from the periodograms of the whole series. The feature

pool is expanded further to include four more basic summary statistics: the median;

inter-quartile range; min; and max. This takes the candidate pool of features to

29, of which a are still randomly selected for use in each tree. DrCIF significantly

improves further over CIF on the UCR archive, and forms the current state of the

art interval approach [99].

5.2.2 BOSS→ SBOSS→ TDE

Chapter 2, Section 2.4.2.4, laid out how a variety of direct successors to BOSS were

spawned - SBOSS, cBOSS, and WEASEL. The current state of the art dictionary

representation is TDE, which draws from aspects of all three. SBOSS constitutes

my own contribution, while the incorporation into TDE was led by collaborators,

with design decisions about the method of incorporation being contributed by me

(~20%).

The underlying essence of dictionary classifiers is that they summarise the

frequency of patterns any where in the series. SBOSS, originally proposed in

2018, aims to reintroduce temporal location information through the use of spatial

pyramids [80], from the field of computer vision. Starting from the initial histogram

(bag of words) across the whole series, histograms on subsections are formed by

repeatedly dividing the series L times. These histograms are weighted by 1
2L−l ,

i.e. weighted inversely proportional to the level l at which they are found. All

histograms are then combined and normalised to form a single elongated histogram

feature. Because of the weighting, similarity between features found at smaller
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Concatenated
and weighted
feature vector

Fig. 5.2 An example transformation of an OSULeaf instance to demonstrate the
additional steps to form SBOSS from BOSS. Note that each histogram is represented
in a sparse manner; the set of words along the x-axis of each histogram at higher
pyramid levels may not be equal.

divisions on the series have a more significant effect than those found on a more

global scale, as their temporal location becomes increasingly dissimilar. It is also

worth noting that a pyramid with one level is equivalent to the basic bag of words,

as no division has occurred. Figure 5.2 illustrates the augmentation. The histogram

intersection distance function is also used in place of BOSS’s bespoke distance,

defined for a histogram of length k as

HI(a,b) =
k

∑
i=1

min(ai,bi)

SBOSS constitutes a small in absolute accuracy terms, but consistent and

significant improvement over BOSS [77].

TDE constitutes a unification of the various improvements and expansions

made to BOSS in the literature up to 2020. It takes the spatial pyramid method

and use of histogram intersection from SBOSS, the contracting and randomisation

of the search space and final ensemble from cBOSS, and the use of bigrams from

WEASEL. The increased hyper-parameter search space did make direct porting of
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the methods of cBOSS less robust in forming strong ensembles, as a larger space

over more dimensions is searched with the same number of evaluations. Because

of this, TDE uses a parameter search guided by a Gaussian process. The first 50

(and subsequent) parameter sets and their performances are used to train a Gaussian

process regressor [140] which predicts the best performing parameter set out of

those still available. Similar to CIF replacing TSF, TDE was found to significantly

improve HIVE-COTE when it replaced BOSS and cBOSS [98].

5.2.3 HIVE-COTE 2.0

HIVE-COTE 2.0 contains the strongest individual representations as of 2021:

DrCIF; TDE; STC; and Arsenal, with CAWPE as the ensembling mechanism. The

structure is summarised by Figure 5.3. For the sake of space on figures and in tables,

we refer to HIVE-COTE 2.0 as HC2 henceforth. STC is consistent with the version

used in HIVE-COTE 1.0. DrCIF and TDE take the forms described above. HC2

constitutes a further collaborative effort, with contribution from me in algorithm

design and experimental design and execution (~20%).

Arsenal is an adaptation of ROCKET for use in HC2, described in Middlehurst

et al. [99]. Recall from Chapter 2, Section 2.4.2.8, that ROCKET generates huge

feature spaces from the use of randomised convolutional kernels, which it then

trains a linear classifier on to make predictions. HIVE-COTE combines weighted

probability distributions to form predictions, and so is reliant on the probabilistic

output of its base classifiers. The linear classifier (typically ridge regression) used

by ROCKET, however, produces essentially one-hot distributions. The CAWPE

scheme benefits from its base classifiers producing probability distributions that

are already good, beyond generally making them better. The authors of ROCKET

found that more complex classifiers such as random forests, which may produce

better distributions, did not perform as well on the large and sparsely-important
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STC TDE DrCIF

Performance 
Estimate

82%

Prob Class 1 0.1

Prob Class 2 0.8

Prob Class 3 0.1

Prediction 2

Prob Class 1 0.8

Prob Class 2 0.1

Prob Class 3 0.1

Prediction 1

Prob Class 1 0.7

Prob Class 2 0.1

Prob Class 3 0.2

Prediction 1

CAWPE
Alpha (α) = 4

Prob Class 1 0.824 x 0.1 + 0.594 x 0.8 + 0.74 x 0.3 + 0.584 x 0.7 = 0.29/(0.29+0.53+0.1)  = 0.32

Prob Class 2 0.824 x 0.8 + 0.594 x 0.1 + 0.74 x 0.6 + 0.584 x 0.1 =  0.53/(0.29+0.53+0.1)  = 0.58

Prob Class 3 0.824 x 0.1 + 0.594 x 0.1 + 0.74 x 0.1 + 0.584 x 0.2 =  0.1  /(0.29+0.53+0.1)  = 0.1

Prediction argmax(0.32, 0.58, 0.1)

Prediction: Class 2

Performance 
Estimate

59%
Performance 

Estimate
58%

Unknown Test Case

Arsenal

Prob Class 1 0.3

Prob Class 2 0.6

Prob Class 3 0.1

Prediction 2

Performance 
Estimate

70%

Fig. 5.3 An overview of the ensemble structure of HIVE-COTE 2.0 for a three class
problem. Each module is trained independently and produces an estimate of the
probability of membership of each class for unseen data. CAWPE combines these
probabilities, weighted by an estimate of the quality of the module found on the
train data.

feature space as simpler linear classifiers, besides taking much longer to train.

For HC2, this is overcome by generating multiple smaller ROCKET transforms

and ensembling over them. It was found that while there is very little difference

in accuracy between Arsenal and ROCKET, HC2 with Arsenal is significantly

better than HC2 with ROCKET, due entirely to the improvements in probabilistic

output [99].

Figure 5.4 summarises HC2’s accuracy in relation to the previous state of the

art, and shows that it significantly improves over all of them. Further analysis and

breakdown can be found in the supporting paper [99].
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Fig. 5.4 Critical difference diagram for HC2 against the previous state of the art
on 112 UCR TSC problems. It demonstrates that there is no difference between
HIVE-COTE 1.0 (HC1), InceptionTime, ROCKET and TS-CHIEF, but HC2 is
significantly higher ranked than all of them.

5.3 Methanol Concentration Data

Having updated the time series literature to the current state of the art, we now

look to apply it to our methanol concentration problem. We first describe the data

collected.

Table 5.2 summarises the samples used. To protect producers and their assets,

product names are anonymised. Most samples were provided by industry partners

via the Scotch Whisky Research Institute, who were given minimal instruction as to

the types of samples desired. Samples 33 to 40, however, were acquired separately.

Alcohol strengths marked with ^ were ‘spiked’ with water or ethanol prior to any

methanol spiking, to provide a wider range of base alcohol strengths against which

to try and detect methanol. This was done where we had multiple samples of the

same product. Bottle sizes marked with * were samples that had the product moved

from their original bottle to a different, unique, bottle. This occurred in cases where

the original bottles themselves could not be utilised, either due to being fitted with

anti-tampering devices (preventing post-production spiking, as is their intention),

or where labelling covered the entire bottle by design, blocking any signal from

transmitting through.
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We can see that a wide range of spirit types, background alcohol concentrations,

bottle sizes, and (although anonymised) bottle types are covered by this dataset. We

believe the coverage achieved lends evidence towards the wider general utility of

the system for determining methanol concentration under realistic scenarios.

The data collection procedure followed is largely similar to that used throughout

Chapter 3. A single BLUE-Wave spectrometer allowing measurements between

339nm and 1174.5nm, with a sampling rate of 0.5nm, was used throughout. Based

on domain knowledge of the NIR band of alcohol, we loosely crop to the range

600nm to 950nm in the first instance. Spectra are formed over a total of two

seconds; ten readings of 200ms each are averaged.

500ml of each sample was measured out to use as the base 0% methanol. After

a ‘round’ of reading at a methanol concentration, the solution was further spiked

with methanol by weight to achieve the desired vol/vol percentage. We spiked to ten

targets, 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4 and 5% methanol. Practically, all spiking

degrees and readings of an individual bottle occurred in a single day, and bottles

remained sealed outside of weighing and spiking. Alcohol evaporation through

exposure to air is not a considerable factor at these timescales. For each sample at

each concentration, the sample was once more placed and replaced five times with

minimal effort put into recreating the exact signal path, outside of ensuring it avoids

labelling and embossing. With 41 bottles, ten spiking quantities, and five repeat

placements, we have collected 2050 spectra in total of genuine, spiked, spirits.

Reference spectra were taken prior to each placement, and dark readings after

each spiking stage. We present all spectra in this chapter, both in figures and as

presented to classifiers, in transmission format following discussion with industry

partners. For wavelength m, this is calculated as:

transmittance(m) =
sample(m)−dark(m)

re f erence(m)−dark(m)
∗100 (5.1)
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Table 5.2 Summary of the samples used in the genuine spirit methanol concentration
dataset. Samples with the same bottle ID are different instantiations of the same
product in the same bottle type (including labelling, etc.). Alcohol strengths listed
are prior to any methanol being introduced.

Sample ID Product ID Spirit Type Alcohol Strength Bottle Size (ml)
0 0 Blend 40 750
1 0 Blend 40 750
2 1 Blend 40 700 ->700 *
3 2 Blend 40 450 ->250 *
4 3 Blend 40 ->52.0 ^ 500
5 3 Blend 40 500
6 4 Blend 40 700
7 5 Malt 43 750
8 5 Malt 43 750
9 6 Blend 45 700 ->500 *
10 7 Blend 40 700
11 8 Blend 43 750
12 9 Blend 40 1000
13 10 Blend 40 1140
14 11 Malt 45.8 700
15 11 Malt 45.8 700
16 12 Malt 43 700
17 12 Malt 43 700
18 13 Malt 43 700
19 14 Malt 43 700
20 15 Gin 37.5 700
21 16 Gin 37.5 700
22 17 Gin 37.5 700
23 18 Gin 37.5 1000
24 19 Gin 43 1000
25 20 Gin 47.3 750
26 21 Gin 43.1 700
27 22 Gin 40 750
28 23 Vodka 37.5 1000
29 23 Vodka 37.5 750
30 24 Vodka 35 750
31 25 Vodka 40 750
32 26 Vodka 35 375
33 27 Blend 40 ->25.7 ^ 700
34 27 Blend 40 ->57.1 ^ 700
35 27 Blend 40 ->29.1 ^ 700
36 27 Blend 40 ->45.1 ^ 700
37 28 Blend 40 ->57.1 ^ 700
38 28 Blend 40 ->25.7 ^ 700
39 28 Blend 40 ->29.1 ^ 700
40 28 Blend 40 ->45.1 ^ 700
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All spectra are normalised for global intensity once in transmittance format.

Figure 5.5 provides example spectra to illustrate the dataset. Four bottles

(chosen randomly, and limited to four for space) are shown on the rows. On the

left, random example spectra of each methanol-spiked concentration are plotted.

The right plots averaged spectra for no methanol spiking (in blue) and the maximal

spiking, 5% (in black). Standard deviations of the spectra of each concentration are

also plotted as areas. There are two main points that inspection of these plots tell

us.

First, variation by bottle still appears to dominate the overall variance present

in the full dataset, consistent with what was found in Chapter 3. Each bottle has

a distinct trace that seems easily recognisable and separable from the others. The

fourth row is of product 12. The greater effect of within-series variance suggests a

lower overall amount of transmitted signal (pre-normalisation), which is caused by

it having darker green glass. The use of the leave-one-bottle-out sampling scheme,

introduced in Chapter 2, Section 2.5.1.3 and used previously in Chapter 3, shall

isolate this factor and again allow us to test for the presence of methanol in a target

product regardless of the containing bottle properties.

Second, by eye it is difficult to separate the spectra in a meaningful and consis-

tent way, even when viewing the figures in an interactive manner as opposed to the

static view presented here. Considering on the right the most stark and contrasting

case we experiment with, 0% and 5% methanol, perhaps the largest separation to be

seen are around wavelengths 600-750 for the second bottle (row). Yet, the average

spectra look identical in this region for the first bottle.

The consistent use of reference spectra before each prediction, and the use of the

transmission mode of spectra presentation, does clearly result in very stable spectra.

This does, however, add an additional step to the analysis of new suspect samples,
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Fig. 5.5 Example spectra from the genuine spirit methanol concentration dataset. On
the left, random example spectra of different methanol concentrations are plotted.
On the right, average (lines) and standard deviations (areas) of 0% (black) and 5%
(blue) methanol are drawn for maximal chance of contrast compared to intermediary
concentrations. Each row pertains to a different bottle to display contrast between
bottles also.
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and increases the total prediction time during field use. We determine the impact of

this stability and whether models can reduce the need for it in Section 5.5.4.

As with Chapter 3, a simple statistical summary of the data used for all datasets

in this Chapter can be found in Table 6.1 in the Appendix.

5.4 Results

We conduct our main experiments to determine the following:

• With tighter controls on the data production process, are standard chemomet-

ric techniques suitable for predicting methanol concentration non-invasively?

• On finding the answer to the previous to be in the negative, can ensemble or

TSC techniques make up the difference?

To better account for learning in spite of bottle differences, we use the leave-one-

category-out resampling scheme once more throughout all experiments. Because

some samples are duplicates of the same product, we adopt a leave-one-product-out

(LOPO) sampling such that results are an average over 29 folds with each unique

product ID from Table 5.2 being taken in turn to form the test set, with the rest

taken for training.

Once the overall results are presented here, we breakdown and analyse different

aspects of problem in Section 5.5.

5.4.1 Standard Chemometric Pipelines

We first assess whether the typical chemometric pipeline, initially laid out in

Chapter 2, Section 2.3.3, of Savitzky-Golay smoothing followed by partial least

squares regression is able to better handle the cleaner data for methanol prediction.
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For consistency in data presentation across modelling methods, we achieve intensity

correction through normalising spectra, as opposed to e.g. taking the first derivative

via the Savitzky-Golay filter.

Given the relative speed of this approach compared to the more complex meth-

ods tested next, we perform a large hyperparameter space search over the number of

PLS components and SG filter parameters, the window size and polynomial order,

to give it the fairest chances. We searched through 20 values of the number of

PLS components in 1 through m (followed by a search of values 1 to 10 on seeing

that this range is clearly superior for this problem); followed by a grid search of

Savitzky-Golay filter parameters of 10 filter window sizes from 5 to 95; and through

polynomial orders in the filter of 2, 3 and 5.

Fig. 5.6 Results of a search over the number of PLS components from one to m for
the methanol concentration problem.

To better illustrate the degrees of fit found in the context of the surrounding

literature, we phrase the problem back into regression onto methanol concentrations.

We first give a brief outline of the parameter search. Figure 5.6 shows that for this

problem, one component is best. Then, in short, we find that across all folds of our

problem minimal smoothing is actually needed, and that as long as the magnitude
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of smoothing is overall small, the performance is fairly robust to these parameters.

The modal optimal parameters were a window size of 11, and polynomial order 5,

which was only slightly better than no smoothing at all.

Fig. 5.7 The quality of fit for PLS over all methanol concentration predictions with
optimal parameters for each fold. The blue line is observed fit to the predictions
(red dots, n=2050), while the green line shows the perfect fit. Essentially no fit is
found.

With optimal parameters for each fold of the LOPO-sampled problem, Fig-

ure 5.7 shows the average fit over all predictions. We can see that PLS with this

comprehensive search simply cannot fit to the data, with an R2 of 0.007. Phrased

back in terms of a ten-class classification problem, the average accuracy when

classifying the discretised methanol concentrations is 0.131. We can conclude that

the classical chemometric pipeline is insufficient to predict methanol concentrations

from the data that we have collected.
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5.4.2 Modern Approaches

We now investigate the use of more modern machine learning approaches once more.

One of our hypotheses throughout this thesis has been the requirement for non-linear

models to account for the distinctly non-linear structural changes to the underlying

spirit spectra. In particular, we evaluate TSC approaches to leverage structural

changes that can be captured through information contained in the ordering of

wavelength values. Another hypothesis was that ensemble approaches, particularly

heterogeneous ones, would be able to correct for different problems in the data and

average over them to improve robustness and probabilistic output.

Consistent with Chapter 3, we evaluate and compare a quadratic-kernel support

vector machine (SVMQ), one nearest neighbour with Euclidean distance (ED),

random forest (RandF), and eXtreme gradient boosting (XGBoost). We update

HESCA to now be CAWPE-S, and the previous TSC representatives to HC2 and

its constituents (DrCIF, TDE, STC, Arsenal). ResNet is updated to InceptionTime,

the current state of the art deep learning approach for TSC. CAWPE-S takes the

form described in Chapter 4, Section 4.3.5, where the logistic regression classifier

was removed for the generally larger UCR data. As there, we have data here with

many attributes and many classes. Logistic regression (as implemented in Weka)

proved to not be computationally viable for the experiments we ran. The removal

of one of five base classifiers makes CAWPE-S weaker in terms of predictive

performance. For convenience and space in Figures, we refer to CAWPE-S as

described as CAWPE henceforth in this chapter.

Table 5.3 summarises the averaged performances of classifiers on the LOPO-

sampled methanol concentration data. CAWPE and ED achieve the best accuracies,

0.723 with a standard deviation of 0.137 and 0.722 with a standard deviation of

0.142 respectively, while CAWPE stands alone as the best for instance ordering and
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Table 5.3 Average predictive performances over all 29 folds of the leave-one-
bottle-out-sampled methanol concentration dataset. Classifiers grouped by being
considered as standard, ensemble, or TSC-bespoke classifiers.

ACC ↑ AUC ↑ NLL ↓
ED 0.722 0.851* 3.061*
PLS 0.131 0.516 5.340
SVMQ 0.552 0.841 3.453
RandF 0.619 0.881 2.662
CAWPE 0.723 0.925 1.581
XGBoost 0.560 0.869 2.051
InceptionTime 0.449 0.796 3.090
DrCIF 0.594 0.861 2.827
TDE 0.606 0.868 1.973
Arsenal 0.527 0.831 2.288
STC 0.485 0.814 2.640
HC2 0.638 0.897 1.962

probabilistic output, as measured by AUC and NLL. We include PLS results, as

originally found in the previous section, for direct comparison.

ED is a one nearest neighbour with Euclidean distance, and so in reality is

not capable of producing probabilities estimates. The implementation used in the

Weka toolkit employs a Laplace-like correction on initialisation of its probability

distributions, preventing larger skews in NLL values (Chapter 2, Section 2.5.2).

The AUC and NLL values for ED should not be over-interpreted, but are included

for the benefit later comparisons (Section 5.5.3) where distributions for ED make

sense.

TSC algorithms do not perform as well as tabular classifiers and ensembles,

with STC and Arsenal being the worst of the individual representations. DrCIF

and TDE perform relatively better, and the ensemble over all four, HC2, performs

better still. HC2 in fact produces the second best probability estimates despite lower

accuracy. Overall however, the computational and complexity overhead of the TSC

algorithms is not rewarded by improved performance on this data.
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In Chapter 3, the presence of methanol was very difficult to predict in a two-

class setup, distinguishing 0% methanol as the first class from solutions with 1%,

2% and 5% methanol as the second. In the experiments here, we are predicting

methanol concentration directly as a ten-class problem, with finer gradations in

concentration. Instead of an accuracy of 0.864 over a minimum expected accuracy

of 0.75 (Chapter 3), we now observe accuracies of 0.723 over a minimum expected

0.1. While CAWPE has been advanced in Chapter 4 and performs best here, the

fact that ED performs as well as it does shows that a large degree of the difference

can be accounted for by the data itself, with possible improvements coming from

differences in data preparation, presentation, and quantity. In Chapter 3, three

repeat placements were recorded per bottle and per contents, instead of five now.

We test the effect of this in Section 5.5.3. The transmission representation, or in

particular the collection and use of reference spectra prior to every reading, also

has an effect, tested in Section 5.5.4.

Averaged accuracy does not give a full picture of predictive performance. Fig-

ure 5.8 shows the summed and normalised over rows confusion matrix for test

predictions over all 29 folds of the LOPO-sampled dataset. Because we have essen-

tially an ordinal classification problem, we would expect to see most errors closer

to the main diagonal. If a sample has a true concentration of 0.5% but a classifier

predicts incorrectly, we would prefer it to predict 0.25% or 0.75% over 5%. On in-

spection, there is some evidence of this effect happening around true concentrations

closer to zero, but overall the errors seem randomly spread. Slightly more errors

lie below the diagonal than above (57% of errors below, 43% above), suggesting

that CAWPE trends slightly more towards predicting higher concentrations than the

true value.

We can inspect the severity of errors by calculating the RMSE of predicted

against true methanol concentrations. Because the errors are essentially random

in scale, CAWPE’s average RMSE is in fact 1.243% methanol. To be clear, this
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Fig. 5.8 The confusion matrix of CAWPE, summed and normalised over all folds
of the LOPO-sampled methanol concentration problem.

would mean that if a sample is predicted to have 2% methanol, the sample could,

on average, have between 0.757% and 3.243% methanol, not between plus/minus

1.243% of 2%. Phrased in this manner, the ability to correctly determine methanol

concentrations using such a setup is shown to be less clear cut than it may initially

seem.

5.5 Analysis

We have presented headline results on the methanol concentration problem, where

we are predicting one of ten possible concentrations. We now dissect different

aspects of the problem and test the limits of detection.
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5.5.1 Confounding factors

With the data and results that we have, we can investigate sample properties and

their correlations to predictive performance. We identify and plot three properties

of interest from the predictions across all folds, summarised by Table 5.2: product

ID (29 unique values, aligned with the LOPO sampling folds), spirit type (four cat-

egories: Blend, Malt, Gin, Vodka), base alcohol strength (29.1 to 57.1). Bottle size

could be an interesting discriminator. However, the real intent behind comparing

that would be better suited by measuring over path length, which we do not have

access to.

Note that because we sum over all folds, not all predictions are made with

entirely identical data. However, the vast majority (27 of 29 products) of the train

data is the same fold to fold, and so we take the predictions to be comparable and

summarisable in this way.

We first look errors across product IDs, i.e. the bottle shape and notional

contents, in Figures 5.9 and 5.10. In other words, these are the test errors of each

fold, the average of which is reported in the previous Section. In Figure 5.9, we

plot the accuracies of classifiers for each product. This gives us an overview of

the relative difficulty of different products regardless of the model, and whether

this is consistent. Then in Figure 5.10, we focus on CAWPE’s fold accuracies in

particular.

We can see that there are definitely some products that are more consistently

difficult than others. With the exception of PLS (which is close to random guessing

anyway, and is always the lower end outlier in Figure 5.9), the easiest product for

all classifiers is product 4. This is a clear glass, cylindrical bottle with clear (albeit

narrow) light paths available directly through the centre of the bottle. This makes

sense as to why it is easier to obtain a clear signal. However, why it is consistently
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Fig. 5.9 Boxplots of all classifiers’ accuracy over different product ID’s for the
ten-class methanol concentration problem. Orange lines indicate the median, and
green triangles indicate the mean.

Fig. 5.10 CAWPE’s accuracy over different product ID’s for the ten-class methanol
concentration problem.

easier than other bottles of the same description is not obvious. Products 12, 15,

16, 20 and 21 are the most difficult on average, with 21 being the most so. The

sample of product 21 was originally contained in a bottle with an anti-tampering

device, and therefore was transferred to an alternative real whisky bottle. The

replacement had clear glass and was cylindrical, but had patterned labelling (thin
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lines with space in between) covering the majority of the bottle. Finding truly

clear paths around these patterns is evidently difficult. Products 12 and 20 have

dark green glass lowering the overall signal received. Products 15 and 16 have a

non-cylindrical shape (three angled edges, and a curved front to connect). All of

these properties making classification more difficult aligns with expectations.

Next, we break down errors between spirit types. The conclusions of this

particular piece of analysis should not be overstated. First there is imbalance in

the counts of different spirit types. Second, a large amount of variance in difficulty

between spirit types could already be captured and explained by the typical designs

of bottles in each spirit industry, rather than being explainable by the relative

difficulty of detecting methanol in each spirit solution type specifically. Regardless,

different typical bottle types between industries is a factor that appears in real

markets, and so if one type is more difficult than another due to typical bottle

structures, that is still worth noting.

Fig. 5.11 Box plots of all classifiers’ average accuracy over spirits grouped and
averaged into their spirit type classifications for the ten-class methanol concentration
problem. n refers to the number of unique samples available for this type (total 41,
Table 5.2). Orange lines indicate the median, and green triangles indicate the mean.
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Figure 5.11 plots accuracies for classifiers on folds averaged into their spirit

category (see Table 5.2). We can see that blended whiskies are generally easier to

classify in our data, while gins are the hardest. Notionally, there are no consistent

differences in blended whisky bottle design and malt whisky bottle design, at least

in our samples, and so the difference in methanol concentration predictability is

interesting. The blended whisky category contains the most data (20 samples of

the 41 total), and so better performance here makes some sense. However, the

fact that this extra data appears to allow classifiers to specialise towards methanol

concentration classification in blended whiskies at all suggests that there is a

differentiable factor to specialise towards that is separate to malts. Most of the

gin samples are of the shape described for product ID 15 and 16 previously; non-

cylindrical. This translates to reduced accuracy relative to the other categories.

Lastly, we turn to differences in the ability to classify methanol concentration

based on the underlying alcohol (ethanol) strength. Prior to any spiking, we altered

some duplicate samples (detailed in Table 5.2 once more) by adding pure ethanol

or water to change this base strength, which gives us a wider range of values to

work with in this analysis. Alcohols (particularly ethanol and methanol) share

overtone bands in the NIR region. Figure 5.12 plots accuracies of CAWPE over the

base alcohol strength of the samples. Due to our experimental and results writing

mechanisms, we unfortunately present strengths as average strengths per product

ID, such that Figure 5.12 has 29 data points. Even with this limitation, however, we

can conclude that there is minimal if any correlation between total alcohol strength

and the difficulty to classify methanol contents.

A more detailed view of CAWPE’s results, giving signed errors in methanol

concentration per prediction (as opposed to total accuracy of methanol concentration

predicted), is shown in Figure 5.13. Here, we can see that beyond there being no

correlation between total errors and base strength, there is equally no correlation

between the direction of errors and base strength.
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Fig. 5.12 CAWPE’s total accuracy over the average base alcohol concentrations of
different spirit products.

Fig. 5.13 CAWPE’s individual prediction (n=2050) errors over the average base
alcohol concentrations of different spirit products. The size of bubbles indicates the
relative number of predictions at that base alcohol strength and degree of error.

5.5.2 Direct tests for limits of detection

The results above are on a classification problem with ten classes; each methanol

concentration. Errors for CAWPE were relatively randomly spaced across the
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concentrations. We can get a better idea of the relative difficulty of discriminating

successive amounts of methanol concentration by seeing how accuracy changes over

two-class formulations of the problem, 0% methanol against x%. This also gives

a further indication of what such a proposed system as it stands could reasonably

discriminate, should a particular percentage of methanol concentration be identified

as being critical and ground for seizure.

Fig. 5.14 Performance of CAWPE in accuracy, area under the receiver operator
curve, and negative log likelihood, in reduced two-class dataset formulations to
detect methanol at increasing concentrations.

Figure 5.14 plots the performance of CAWPE on sub-problems of 0% vs the

remaining methanol concentrations collected. We would expect the accuracy to

increase as the difference in methanol increases, as there should be a progressively

larger difference in the underlying spectra.

The first, most obvious conclusion is that no increase in performance is observed

as increasingly larger differences in methanol concentration are modelled. Strangely,

there is more evidence for the opposite. In a paired t-test, α = 0.05, between the

fold accuracies of CAWPE on the 0% vs 0.25% (average accuracy 0.883) and 0% vs

5% (average accuracy 0.874) methanol concentration sub-problems, no significant
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difference is found. The equivalent tests for AUC and NLL yield the same. We take

the slight decrease in observed performance to be down to chance, and interpret

these results as performance being stable over increasing methanol concentrations.

Regardless, we would expect performance to have increased, even if the effect was

not significant. Taken at face value, what we can say based on these results is that

the high-level or summed changes to a sample’s spectra as methanol is added may

not necessarily be linear in nature. Before drawing such conclusions, more data and

experimentation would be needed, however.

The second point to draw from Figure 5.14 is that better predictive performances

are achieved on these more focused sub-problems than the ten class variant with

all concentrations in one. This has possible implications for dataset structure and

modelling methods. We suggested in Chapter 1 that classification of legitimacy

or safety is the preferred final output compared to regression onto exact values.

These results give some confirmation that generalised detection of the presence of

methanol is easier than direct regression.

5.5.3 The utility of repeat placements

We can achieve high predictive accuracy to the precision available to us by our

dataset. One avenue to further progress is to see how little data we need to maintain

this. Reducing the requirements for data, even if extra data beyond the minimum

requirement is always useful, can reduce costs of data collection in future scenarios

where new bottle designs, new equipment, etc. are encountered. Further, retraining

times (and their own associated compute costs) can be reduced, allowing for more

reactive decision making where needed.

One avenue to reduce data requirements is the number of repeat readings taken

per bottle and contents, which was five throughout our data collection. These were

taken to capture variation within placements, largely a human user factor, and
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the scale of its effects on predictions. Are all of these repeats needed to capture

variability between placements and the resulting light paths, or can we maintain

performance with less?

We repeat the same experimental setup, but progressively removing repeat

placements (incidentally, in the order of collection due to the naming schemes of

the spectra files) from the train set such that we can compare algorithm performance

when trained on all 5 (results above), 4, 3, 2, and only 1 placement. Figure 5.15

plots the degradation in performance for CAWPE as the number of repeats available

in the train set decreases.

Fig. 5.15 Performance of CAWPE in accuracy, area under the receiver operator
curve, and negative log likelihood, as repeat readings are successively removed
from the train set.

We observe that classification performance does indeed drop off with less re-

peats available. This confirms that the additional spectra provide useful information

about variance in bottle positioning, or just more examples to learn the true signal

from against the random noise. Moving from five to four repeats comes with

minimally reduced performance, but more removals come with gradually more cost

until only having one reading per sample in particular yields very poor accuracies.
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Table 5.4 Classifier performance comparison of individual- and multiple-spectra
predictions, formed through averaging over the predictions of repeat placements.
Performances under single-spectra predictions are copied over from Table 5.3 for
convenience.

Single-spectra predictions Multi-spectra predictions
ACC ↑ AUC ↑ NLL ↓ ACC ↑ AUC ↑ NLL ↓

CAWPE 0.723 0.925 1.581 0.921 0.989 0.835
ED 0.722 0.851 3.061 0.831 0.957 0.979

In all results presented so far, models have classified individual spectra in

isolation. We have now shown the benefits of repeat placements for classifier

training, but they could also be useful for improving predictions as well. Given

repeat placements of a sample with particular contents, we can effectively turn

these into a single multivariate instance to classify. We naively implement this

in a post-hoc manner from saved prediction information by averaging the five

probability distributions from repeat readings to form a single distribution for a

sample that has been read multiple times.

Table 5.4 summarises the differences in performance that occur for CAWPE

and ED when we adopt this approach. Performance notably jumps, in particular

for CAWPE. We include ED in this comparison to further the point that although

the two classifiers had essentially the same accuracy previously, the high-quality

probabilistic output of CAWPE meant that it can achieve a larger increase in

accuracy here, when averaging over multiple predictions. Products 15 and 21 are

still difficult to classify when leveraging multiple spectra, with individual fold

accuracies of 0.5 and 0.6 respectively, however, 19 of 29 folds now results in

an accuracy of 1. Using this mechanism, we can now say that using the system

proposed by this thesis, we can classify methanol concentration in arbitrary spirits

and bottles from ten possible values to an accuracy of 0.921, standard deviation

0.137.
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5.5.4 The utility of reference spectra

One of the differences in collection practices between the data for this chapter and

the alcohol concentration data of Chapter 3 is that reference spectra have now been

collected prior to every sample reading, and the spectra subsequently presented in

the transmission format.

While the total time to analyse a sample is aimed to be in the seconds (two

seconds of actual read time by the hardware, data handling and prediction within a

second, plus human handling of the sample) and the recording of reference spectra

would only add an extra few, reducing the total work needed and room for human

error in a high-throughput scenario is still useful if it can come with no degradation

in performance.

We repeat the main experiment, predicting from ten possible methanol con-

centrations, but present the model with spectra in their raw form with just a dark

reading subtracted (referred to as just raw form henceforth). We maintain the use

of dark readings as it is assumed that they shall be collected infrequently, and they

account for ambient lighting sufficiently well to warrant their collection still.

In short, large decreases in performance are observed. For ED in particular,

average accuracy drops from 0.722 to 0.227. ED clearly benefits greatly from

the corrections that the use of reference spectra provides, which results in the

stability between readings observed in Figure 5.5. The largest decrease in accuracy

over a single fold was 0.88, on product 4, which took it from being the easiest

product to classify down to random guessing. The smallest decrease was 0.23,

and several products could still have their methanol concentrations classified with

much higher accuracy than random guessing. Clearly, the use of reference spectra

and transmission format benefits products to different degrees. They are always

of benefit, however. We can conclude that authentication systems such as those
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proposed by this thesis should always collected reference spectra prior to every

reading.

5.6 Conclusions

In this chapter we have shown the utility of our proposed non-invasive spirit

authentication system for detecting dangerous levels of methanol. In contrast to

the inability to determine methanol concentrations in the experiments of Chapter 3,

here we have been able to achieve an accuracy of 0.921 on a ten-class methanol

concentration prediction dataset.

We have also outlined significant improvements made to the state of the art for

general purpose TSC, ultimately culminating in HIVE-COTE 2.0. We hypothesised

in Chapter 1 that TSC approaches could leverage order information that is typically

ignored by tabular approaches to spectra. However, when HC2 and its constituents

are applied to our methanol concentration problem, they perform worse than tabular

techniques, despite considerable extra computational resources being required. We

can conclude that order information is unimportant to the classification of spectra,

likely in large part due to the perfectly aligned nature of the series.

Another hypothesis was that heterogeneous ensembles could correct for defects

of different kinds in the data and deliver improved predictive performance overall,

but especially so for probabilistic output. CAWPE, introduced in the previous

chapter, recorded the highest accuracy by a small margin (a simple one nearest

neighbour with Euclidean distance scored only 0.2% less accuracy), but by far better

probabilistic performance compared to the rest. Similarly, although overall worse,

HC2 still improved over its constituents, and provided the second best probabilistic

output despite raw accuracy being poorer.
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Regardless of these algorithmic hypotheses and results though, it must be said

that the improved ability to predict methanol concentration, relative to Chapter 3,

comes largely from improvements in data collection and presentation procedures.

These procedures are namely the collection of more repeats per bottle and contents,

the collection of reference spectra for each reading, and the presentation of spectra

in transmission format. We believe that such practices applied the brand detection

problem, and indeed all problems in this space, should lead to similarly stronger

results than those exhibited in Chapter 3.

We analysed the results, paying particular attention to CAWPE and ED, being

the best classifiers evaluated. We searched for correlations in accuracy to various

sample properties, and found strong differences between products and bottles

(consistent to prior expectation), tenuous differences between spirit types, and no

correlation between the accuracy of methanol concentration predictions and the

base alcohol concentration of the sample. Accuracy dropped off heavily with less

than four repeats to learn from with our data, suggesting at least that many should

be collected for a future spirits spectra database to be robust. Finally, the utility of

reference spectra and the transmission format was proven, and should be used in

future fielded systems.

Algorithmically, further work on this data would be to fine-tune the ensemble

used. We elected to use the pre-defined simple base classifier set used in Chapter 4

for consistency. Automatic and human-guided base classifier selections could im-

prove performance, and would form the basis of our future modelling investigations

in this domain.
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Chapter 6

Conclusions and Future Work

This thesis has outlined work towards a system that can non-invasively detect

fraudulent and/or dangerous spirits. We have described and experimented with a

near infrared spectroscopy setup that allows for readings to be taken and analysed

non-invasively in seconds, and produced three datasets covering different aspects

of spirit authentication. We developed novel general-purpose ensembling and

time series classification algorithms, advancing the state of the art, and evaluated

them alongside standard chemometric approaches on our new data. Finally we

demonstrated that such a system can predict methanol concentration out of ten

possible values in arbitrary spirits and bottles with an accuracy of 0.921.

We hypothesised in Chapter 1 that the environmental and sample presentation

challenges posed by the system in question, as opposed to standardised lab con-

ditions with direct access to the sample, would result in structural changes and

different forms of noise affecting the sample spectra. These changes would not be

linear in nature, and therefore would confound the standard chemometric analysis

pipeline. This aspect has certainly been shown, with differences in bottle shape

being shown repeatedly to be the dominating source of variation in Chapters 3
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and 5. In Chapter 5 in particular, is was shown that partial least squares was unable

to fit to the methanol concentration data at all.

We further hypothesised that these factors could be overcome by the use of

modern classification algorithms. That ensemble algorithms could correct for

multiple different sources of error and detect many different underlying features,

while time series classification algorithms could leverage an additional feature type;

order information. Results indicate that while heterogeneous ensembles of tabular

classifiers, represented by CAWPE, did provide improved accuracy and was the

best approach evaluated overall, the use of TSC approaches conferred no particular

advantage. We conclude as a result of this thesis that tabular (aka vector) modelling

approaches are superior to those that specifically leverage order information.

As a result of this thesis, we can suggest that such a system is worthy of further

evaluation in a lab scenario. Immediate field use in a law enforcement situation

would not be possible; greater efforts are needed to raise the overall reliability,

accuracy, and explainability of the analysis pipeline to allow for actionable law

enforcement. The system could be used, however, as an indicative method of

detecting correct alcohol concentrations in its current state.

6.1 Discussion of Contributions

During this thesis, we have produced three datasets for use in the literature, on the

prediction of alcohol contents in alcohol-water solutions, the prediction of particular

product in a given bottle, and the prediction of methanol concentration in genuine

spirits. Time series classification literature continues to advance, as knowledge

about different representations, representation manufacture (through deep learning

or ROCKET-like classifiers), and their combinations improve. For TSC and indeed

general purpose classification literature to meaningfully continue to progress, the
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generation and donation of new datasets for study is an important task. Benchmark

datasets and archives need expending and updating to prevent or at least lessen

iterative archive-wide optimisation and overfitting. The datasets collected through-

out this thesis shall contribute to this process. The dataset EthanolConcentration,

derived from experiments of Chapter 3, already appears in the UCR archive of

time series classification datasets and has been used as part of general-purpose,

multi-domain evaluations across the archive, both in our own works evaluating TSC

as documented in Chapter 5, and in the wider community.

We proposed a new ensembling scheme, CAWPE, in Chapter 4. This is com-

posed of cross validation of the base classifiers on the train data to generate an

estimate of performance, and accentuating this weighting by raising to a power.

Predictions of new cases are formed by combining the tilted class probability distri-

butions of the base classifiers weighted by their accentuated performance estimate.

We showed that the addition of the accentuation outperforms alternative ensemble

schemes and heavily tuned classifiers across large sets of diverse arbitrary datasets

from two different dataset archives. On the UCR time series archive, we showed

that incorporating the CAWPE combination scheme into HIVE-COTE makes it

significantly better, and advances the state of the art for that field. This is due to

the importance of different representations and their correct application to different

dataset properties in the TSC space. We performed a series of analyses to better

understand CAWPE: an in depth comparison to simple model selection instead

of combination, an ablative study of CAWPE’s stages, a sensitivity analysis of

its parameter, α , and an investigation into expansions of the scheme to include

homogeneity through the continued use of the cross validation fold models. We

concluded that the best start in a new data domain is to heterogeneously ensemble

different classifiers and/or representations instead of focusing attention directly

onto one, and that CAWPE is a reasonable place to start until reason is found to

attempt more complex stacking or selection schemes.
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We described the advancement of the state of the art in time series classification

in Chapter 5. Novel to this thesis, this included the improvement of BOSS to

SBOSS through the reincorporation of temporal information into the otherwise

global dictionary representation. Then, in collaboration with others, we outlined the

further incorporation of SBOSS into TDE, the new best dictionary representation,

and the improvement of the interval-based TSF classifier into CIF and DrCIF, the

new best interval representation. Finally, these were included in the new overall

state of the art for time series classification, HIVE-COTE 2.0, comprised of DrCIF,

TDE, STC, and Arsenal, with their predictions being ensembled through the use

of CAWPE. We showed that the new formulation of HIVE-COTE significantly

improves over the previous version and the competing state of the art classifiers.

The aspects of HIVE-COTE 2.0 that are entirely not attributed to work undertaken

within this thesis are the ’Shapelet Transform’ and ‘Arsenal’ base classifiers of the

ensemble.

6.2 Limitations

Throughout this thesis, we have considered and evaluated a wide range of method-

ologies. However, through discussions with industry partners, the interests of the

authors and the research group, and issues of timing and work disruption through

COVID19, particular aspects have received arguably disproportionate attention.

First, the end goal has been phrased as a classification problem: authentic versus

not. This is what a production-ready system would output in the first instance when

faced with an arbitrary sample. We have, however, mainly considered sub-problems

building towards this end goal which are more innately ordinal regression. The

concentrations of different substances within a sample constitute an important part

of authenticity, clearly. The main regression approach we have taken and compared

to is a pipeline involving Partial Least Squares Regression. This has been suggested
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to us and has been evidenced to be the de facto method for determining substance

concentrations from spectra both in the literature and in common chemometrics

software. This is particularly the case where the data collection process is highly

standardised and separated from confounding factors - which is distinctly not the

case for the experiments presented here.

Given this, a larger focus on (more advanced, beyond the industry standard)

regression modelling techniques could have been investigated. We instead focused

on the classification domain, perhaps prematurely due to the end goal desired, and

also due to our inherent expertise and interests.

Similarly, a focus has been placed on Time Series Classification methods,

particularly given that the results of Chapter 3 had already suggested a lack of

utility within the given spectroscopy domain. Algorithms and results within the

general-purpose TSC literature space have been advancing rapidly, in part due to

the work done in this thesis. One of our original hypotheses was that TSC methods

could correct for high-level distortions brought about by the non-invasive nature

of the data collection. While this was not fully realised in the results of Chapter

3, development within the TSC space were deemed worthy of a revisit. This is

particularly so with the interval-based classifier advancements of DrCIF and the

introduction of the convolutional-based ROCKET classifier, both by themselves

and within the context of the improved meta-ensemble HIVE-COTE 2.0.

Lastly, it can be said that Chapters 3 and 5 are very similar in experimental

design, and that Chapter 3 should be presented with the methods of Chapter 5, or

simply combined. The main reasons for their separation are due to the updated

and improved methods of data collection between the datasets of the Chapters,

ultimately fueled by the time difference between the dataset collections. The

experiments of Chapter 3 represent data collection and presentation procedures and
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a set of algorithms that represent our chronologically early investigations into this

domain. Chapter 5 represents an improvement in all these aspects.

6.3 Future work

Again, we have worked from the initial principle that classification is the preferred

final outcome, based on the final desire for a traffic light system for the aid of

final human decision making. When predicting concentrations of substances,

we therefore disctretised the class values to reduce what is innately a regression

problem, to a classification problem. Another part of the reasoning for this though,

is the relative advancement of time series classification techniques in particular

as compared to time series regression (TSR) techniques. TSR has seen minimal

attention in the literature, while classification has dominated. Instead of reducing

the problem to classification through data manipulation, a strand of investigation

could be the conversion of existing classification algorithms to the regression task,

or the development of new regression algorithms.

For some methods, conversion to the regression task is notionally trivial. Deep

learning classifiers architecturally need only replace the final layer. Fully transform-

based representational classifiers need only add a regression algorithm to learn on

the transformed data, rather than a classifier. However, in some cases such as the

shapelet transform, internal processes would need to be updated too. The measure

of quality for shapelets would need to be altered for the continuous regression task

instead of a binary classification setting.

Besides the use of deep learners for direct prediction, some other deep learning

paradigms could be interestingly applied to the alcohol authentication problem.

Generative Adversarial Networks [55] could be employed for data augmentation.

Learning bottle or environmental properties with Variational Autoencoders [68] to
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better learn around them could be fruitful too. There is much potential work in this

space.

As covered in Chapter 2, Section 2.3.4, an important consideration when training

models for field use in analytical systems is calibration transfer between spectro-

scopic hardware. Analogous to the use of reference and dark spectra to account

for ambient light and the intentional light source’s intensity, techniques to account

for differences in hardware brought about by production process imperfections

are critical if two or more instrument’s data are to be used together. Largely for

practical reasons of cost, this factor is not present throughout this thesis. Important

work before fielding a system would be to incorporate from the literature and ensure

the adequacy of calibration transfer techniques.

In terms of the future development of a practical system that can be used in

the field, the large-scale future work would be the collection and labelling of a

spirits database. In this thesis, we have collected and organised data to form distinct

sub-problems to work on. However, for an arbitrary suspect bottle, the way in

which the contents are incorrect to the expectation of the label could be for any

of these reasons or others not discussed. Models for the different sub-problems

that have been discussed in this thesis - correct total alcohol concentration, the

presence of methanol, correct brand detection - along with the detection of other

means of fraud or adulteration of interest, need to be unified into an overall system.

Preferably, one that can a) detect that the contents are incorrect in general with high

accuracy and b) give information about the manner in which it is incorrect. The

latter would give greater confidence to the initial agent taking a reading to seize the

sample, but also make later confirmatory analysis faster and potentially cheaper by

immediately targeting analytical efforts.

Our initial route to such a system would be to make models for each sub-

problem of major interest, and heterogeneously ensemble them. For a given suspect
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sample, models that have learned to predict total alcohol concentration and the

presence of methanol may give the green light, but other models for classifying

the brand that is on the label may predict that this is a different whisky. In such a

scenario, it may then be that a cheaper, but itself legal, whisky has decanted into the

bottle of a more expensive one. These models for individual sub-problems can also

be ensembled alongside one-class classifiers for particular brands of interest for

which a large volume of data is available. Chances are, not all types of abnormality

can be modelled (either because they are unknown about, rare to find in fakes,

or expensive to reproduce), and so having more generic models that learn the

acceptable distributions of a known product can give a greater indication towards

a), even if they cannot provide b).

This thesis has proven that a near infrared spectroscopy system with modern

machine learning techniques is able to extract useful discriminatory information

about a sample non-invasively. The bulk of the future work would be to bring

everything together into a practical system, backed by a sizeable database of

catalogued and analysed spirits.
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Table 6.1 Summaries of the alcohol authentication datasets used throughout Chap-
ters 3 and 5. For the PCA-transformed datasets, 95% of the dataset variance is
maintained from a transform that is computed per fold. As such, the exact number
of attributes remaining varies from fold to fold. Generally speaking this is a single
digit number, however. LOBO is the leave-one-bottle-out resampling scheme, and
LOPO is similarly leaving out one product, where multiple bottles contain the same
categorical contents. RSR is random stratified resampling, where 70% of the data
is taken for training, 30% is reserved for testing.
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Table 6.2 A full list of the UCI datasets used in Chapter 4.

Dataset Atts Classes Cases Dataset Atts Classes Cases
abalone 8 3 4177 monks-1 6 2 556

acute-inflammation 6 2 120 monks-2 6 2 601
acute-nephritis 6 2 120 monks-3 6 2 554

adult 14 2 48842 mushroom 21 2 8124
annealing 31 5 898 musk-1 166 2 476

arrhythmia 262 13 452 musk-2 166 2 6598
audiology-std 59 18 196 nursery 8 5 12960
balance-scale 4 3 625 oocytes_m_nucleus_4d 41 2 1022

balloons 4 2 16 oocytes_m_states_2f 25 3 1022
bank 16 2 4521 oocytes_t_nucleus_2f 25 2 912

blood 4 2 748 oocytes_t_states_5b 32 3 912
breast-cancer 9 2 286 optical 62 10 5620

breast-cancer-w 9 2 699 ozone 72 2 2536
breast-cancer-w-diag 30 2 569 page-blocks 10 5 5473
breast-cancer-w-prog 33 2 198 parkinsons 22 2 195

breast-tissue 9 6 106 pendigits 16 10 10992
car 6 4 1728 pima 8 2 768

cardio-10clases 21 10 2126 pit-bri-MATERIAL 7 3 106
cardio-3clases 21 3 2126 pit-bri-REL-L 7 3 103

chess-krvk 6 18 28056 pit-bri-SPAN 7 3 92
chess-krvkp 36 2 3196 pit-bri-T-OR-D 7 2 102

congressional-voting 16 2 435 pit-bridges-TYPE 7 6 105
conn-bench-sonar... 60 2 208 planning 12 2 182

conn-bench-vowel... 11 11 990 plant-margin 64 100 1600
connect-4 42 2 67557 plant-shape 64 100 1600

contrac 9 3 1473 plant-texture 64 100 1599
credit-approval 15 2 690 post-operative 8 3 90
cylinder-bands 35 2 512 primary-tumor 17 15 330

dermatology 34 6 366 ringnorm 20 2 7400
echocardiogram 10 2 131 seeds 7 3 210

ecoli 7 8 336 semeion 256 10 1593
energy-y1 8 3 768 soybean 35 18 683
energy-y2 8 3 768 spambase 57 2 4601

fertility 9 2 100 spect 22 2 265
flags 28 8 194 spectf 44 2 267
glass 9 6 214 statlog-aus-credit 14 2 690

haberman-survival 3 2 306 statlog-ger-credit 24 2 1000
hayes-roth 3 3 160 statlog-heart 13 2 270

heart-cleveland 13 5 303 statlog-image 18 7 2310
heart-hungarian 12 2 294 statlog-landsat 36 6 6435

heart-switzerland 12 5 123 statlog-shuttle 9 7 58000
heart-va 12 5 200 statlog-vehicle 18 4 846
hepatitis 19 2 155 steel-plates 27 7 1941

hill-valley 100 2 1212 synthetic-control 60 6 600
horse-colic 25 2 368 teaching 5 3 151

ilpd-indian-liver 9 2 583 thyroid 21 3 7200
image-segmentation 18 7 2310 tic-tac-toe 9 2 958

ionosphere 33 2 351 titanic 3 2 2201
iris 4 3 150 trains 29 2 10

led-display 7 10 1000 twonorm 20 2 7400
lenses 4 3 24 vert-col-2clases 6 2 310
letter 16 26 20000 vert-col-3clases 6 3 310
libras 90 15 360 wall-following 24 4 5456

low-res-spect 100 9 531 waveform 21 3 5000
lung-cancer 56 3 32 waveform-noise 40 3 5000

lymphography 18 4 148 wine 13 3 178
magic 10 2 19020 wine-quality-red 11 6 1599

mammographic 5 2 961 wine-quality-white 11 7 4898
miniboone 50 2 130064 yeast 8 10 1484

molec-biol-promoter 57 2 106 zoo 16 7 101
molec-biol-splice 60 3 3190
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Table 6.3 The 85 UCR time series classification problems used in the experiments
for Chapter 4. Experiments were conducted on 30 stratified resamples of each
dataset and all classifiers were aligned on the same folds. Each UCR dataset has an
initial default train and test partition that was used for the first experiment, and each
subsequent experiment was conducted using resamples of the data that preserve the
class distributions and size of the original training and test partitions.

Dataset Atts Classes Train Test Dataset Atts Classes Train Test
Adiac 176 37 390 391 MedicalImages 99 10 381 760

ArrowHead 251 3 36 175 MidPhalOutAgeGroup 80 3 400 154
Beef 470 5 30 30 MidPhalOutCorrect 80 2 600 291

BeetleFly 512 2 20 20 MiddlePhalanxTW 80 6 399 154
BirdChicken 512 2 20 20 MoteStrain 84 2 20 1252

Car 577 4 60 60 NonInvasiveThorax1 750 42 1800 1965
CBF 128 3 30 900 NonInvasiveThorax2 750 42 1800 1965

ChlorineConcentration 166 3 467 3840 OliveOil 570 4 30 30
CinCECGtorso 1639 4 40 1380 OSULeaf 427 6 200 242

Coffee 286 2 28 28 PhalOutCorrect 80 2 1800 858
Computers 720 2 250 250 Phoneme 1024 39 214 1896

CricketX 300 12 390 390 Plane 144 7 105 105
CricketY 300 12 390 390 ProxPhalOutAgeGroup 80 3 400 205
CricketZ 300 12 390 390 ProxPhalOutCorrect 80 2 600 291

DiatomSizeReduction 345 4 16 306 ProximalPhalanxTW 80 6 400 205
DisPhalOutAgeGroup 80 3 400 139 RefrigerationDevices 720 3 375 375

DisPhalOutCor 80 2 600 276 ScreenType 720 3 375 375
DislPhalTW 80 6 400 139 ShapeletSim 500 2 20 180
Earthquakes 512 2 322 139 ShapesAll 512 60 600 600

ECG200 96 2 100 100 SmallKitchApps 720 3 375 375
ECG5000 140 5 500 4500 SonyAIBORSurface1 70 2 20 601

ECGFiveDays 136 2 23 861 SonyAIBORSurface2 65 2 27 953
ElectricDevices 96 7 8926 7711 StarlightCurves 1024 3 1000 8236

FaceAll 131 14 560 1690 Strawberry 235 2 613 370
FaceFour 350 4 24 88 SwedishLeaf 128 15 500 625

FacesUCR 131 14 200 2050 Symbols 398 6 25 995
FiftyWords 270 50 450 455 SyntheticControl 60 6 300 300

Fish 463 7 175 175 ToeSegmentation1 277 2 40 228
FordA 500 2 3601 1320 ToeSegmentation2 343 2 36 130
FordB 500 2 3636 810 Trace 275 4 100 100

GunPoint 150 2 50 150 TwoLeadECG 82 2 23 1139
Ham 431 2 109 105 TwoPatterns 128 4 1000 4000

HandOutlines 2709 2 1000 370 UWaveAll 945 8 896 3582
Haptics 1092 5 155 308 UWaveX 315 8 896 3582
Herring 512 2 64 64 UWaveY 315 8 896 3582

InlineSkate 1882 7 100 550 UWaveZ 315 8 896 3582
InsectWingbeatSound 256 11 220 1980 Wafer 152 2 1000 6164

ItalyPowerDemand 24 2 67 1029 Wine 234 2 57 54
LargeKitchApps 720 3 375 375 WordSynonyms 270 25 267 638

Lightning2 637 2 60 61 Worms 900 5 181 77
Lightning7 319 7 70 73 WormsTwoClass 900 2 181 77

Mallat 1024 8 55 2345 Yoga 426 2 300 3000
Meat 448 3 60 60
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Table 6.4 Raw average scores for error, balanced error, AUC and NLL of the
classifiers referenced throughout Section 4.3 of Chapter 4. Scores are averaged over
all datasets and resamples of the UCI and UCR archives respectively, except for the
tuned classifiers on the UCI archive which had the adult, chess-kvrk, miniboone,
and magic datasets removed due to computational restraints.

121 UCI datasets Classifier Sections Error Balanced AUC NLLError

CAWPE CAWPE-A 4.1,4.2,4.4 0.174 0.243 0.893 0.651
CAWPE-S 4.1,4.2,4.3,4.4 0.184 0.258 0.884 0.706

Simple components C4.5 4.1 0.23 0.301 0.736 1.161
Logistic 4.1 0.238 0.309 0.841 8.134
MLP1 4.1 0.213 0.287 0.86 1.297
NN 4.1 0.216 0.303 0.798 1.116
SVML 4.1 0.229 0.306 0.849 1.073

Advanced components MLP2 4.1 0.204 0.276 0.858 1.26
RandF 4.1,4.3 0.185 0.259 0.886 0.713
RotF 4.1 0.187 0.265 0.868 0.704
XGBoost 4.1,4.3 0.193 0.261 0.876 0.843
SVMQ 4.1 0.216 0.281 0.863 1.454
ES-S 4.2 0.19 0.266 0.813 0.884

Heterogeneous Ensembles, MV-S 4.2 0.195 0.273 0.808 0.877
simple components NBC-S 4.2 0.193 0.26 0.82 0.999

PB-S 4.2 0.229 0.306 0.847 0.95
RC-S 4.2 0.195 0.288 0.811 0.912
SMLR-S 4.2 0.195 0.272 0.737 1.144
SMLRE-S 4.2 0.214 0.288 0.734 1.251
SMM5-S 4.2 0.195 0.271 0.744 1.046
WMV-S 4.2 0.192 0.27 0.814 0.872
ES-A 4.2 0.176 0.246 0.817 0.847

Heterogeneous ensembles, MV-A 4.2 0.176 0.249 0.815 0.833
advanced components NBC-A 4.2 0.183 0.249 0.821 1.031

PB-A 4.2 0.193 0.261 0.876 0.843
RC-A 4.2 0.177 0.262 0.813 0.87
SMLR-A 4.2 0.19 0.263 0.752 1.141
SMLRE-A 4.2 0.203 0.275 0.747 1.232
SMM5-A 4.2 0.188 0.261 0.757 1.019
WMV-A 4.2 0.175 0.248 0.817 0.837
AdaBoost 4.3 0.353 0.469 0.775 3.258

Homogeneous ensembles Bagging 4.3 0.206 0.303 0.868 0.775
(RandF and XGBoost LogitBoost 4.3 0.241 0.302 0.836 8.246
repeated) RandF 4.1,4.3 0.185 0.259 0.886 0.713

XGBoost 4.1,4.3 0.193 0.261 0.876 0.843

Tuned Classifiers TunedMLP 4.4 0.227 0.318 0.857 1.009
TunedRandF 4.4 0.188 0.271 0.879 0.719
TunedSVM 4.4 0.188 0.255 0.857 0.955

(on 117 UCI datasets) TunedXGBoost 4.4 0.194 0.267 0.869 0.86
CAWPE-T 4.4 0.175 0.244 0.891 0.653

85 UCR datasets Classifier Sections Error Balanced AUC NLLError

CAWPE CAWPE-S 4.5 0.241 0.267 0.88 1.071
CAWPE-A 4.5 0.226 0.254 0.903 0.906

DTW DTW 4.5 0.224 0.246 - -

Simple Components C4.5 4.5 0.36 0.384 0.685 2.168
Logistic 4.5 - - - -
MLP1 4.5 0.275 0.301 0.842 3.323
NN 4.5 0.27 0.301 0.78 1.654
SVML 4.5 0.312 0.337 0.823 4.733

Advanced components MLP2 4.5 0.276 0.304 0.858 1.538
RandF 4.5 0.245 0.28 0.893 1.036
RotF 4.5 0.251 0.279 0.881 1.019
SVMQ 4.5 0.276 0.295 0.856 5.755
XGBoost 4.5 0.267 0.297 0.881 1.156
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