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Abstract

The development of multivariate models with parsimonious dependence is of

great interest in a wide range of applications. Two broad frameworks have been

considered for parsimonious dependence modelling, namely the latent variable (fac-

tor) and copula frameworks. Within these two broad frameworks, we propose several

factor models based on copulas for modelling parsimonious dependence structures in

multivariate social science data.

We develop factor copula models for mixed continuous and discrete responses

where the dependence among the observed variables is explained via a few factors.

These are conditional independence models; the observed variables are conditionally

independent given the factors.

We also propose the bi-factor and second-order copula models for item response

data that can be split into non-overlapping groups, where each group of items has

homogeneous dependence. These proposed models fall under the structured factor

copula class. Our general models subsume the Gaussian bi-factor and second-order

models as special cases and are suitable for capturing different dependencies between

and within different groups of observed variables.
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Using the vine copula framework, we extend the factor copula models in order to

capture any residual dependence. We propose combined factor/truncated vine copula

models for item response data. These are conditional dependence models given very

few factors. The proposed models can be viewed as a truncated regular vine cop-

ula models that involve both observed and latent variables. They allow for flexible

construction based on a sequence of bivariate copulas that can provide different tail,

asymmetric and non-linear dependence properties.

All the proposed copula models are applied to real datasets and are compared with

other relevant benchmark models showing substantial improvement and performance

both conceptually and in fit to data.
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Chapter 1

Introduction

Studying the dependence among multivariate variables is of a great interest in many

applications. Association and dependence are interchangeably used in the literature

to describe a general relationship of two or more variables. The dependence is usually

described via the multivariate normal (MVN) distribution. However, the MVN is not

suitable when data display dependence among extreme values and inferences based

on multivariate tail probabilities are needed (e.g., Joe et al. 2010). When it is nec-

essary to have copula models with flexible dependence among extreme values, then

copulas, is a plausible choice. The theory and application of copulas have become

important in finance, insurance and other areas, in order to deal with dependence

in the joint tails (e.g., Nikoloulopoulos 2017). Copulas are a useful way to model

multivariate data as they account for the dependence structure and provide a flexi-

ble representation of the multivariate distribution. Furthermore, as they separate the

dependence from the marginal properties, they construct multivariate models with

marginal distributions of arbitrary form and allow a wide range of dependence. In

fact they allow for flexible modelling of the dependence far from assuming simple

linear correlation structures.

1



An important modelling framework that overcomes the limitations of the MVN is

the copula framework. Some desired properties for a parametric family of copulas are

(Nikoloulopoulos and Karlis, 2009; Nikoloulopoulos et al., 2012; Nikoloulopoulos,

2013a)

• Wide range of dependence, allowing both perfect positive and negative depen-

dence.

• Flexible dependence, meaning that the number of bivariate marginals is equal

to the number of dependence parameters.

• Flexible range of dependence among extreme values.

• Closed form density or cumulative distribution function (cdf) for continuous

and discrete data, respectively, and if not of closed-form, then a form that is

computationally feasible for estimation.

• Closure property under marginalization, meaning that lower order margins be-

long to the same parametric family.

Besides the appealing dependence properties of copulas and their popularity in

many applications, using simple copulas for multivariate data holds some drawbacks.

For example, d-variate Archimedean copulas (McNeil and Nešlehová, 2009) provide

only exchangeable dependence with a narrower range of negative dependence for

d > 2.

To achieve more flexible dependence modelling in high-dimensional data, vine

copula models or pair-copula constructions have been proposed (e.g., Joe 1996; Bed-

ford and Cooke 2001, 2002; Kurowicka and Cooke 2006; Kurowicka and Joe 2011;

Joe 2014). Vine copulas are a flexible class of models for high-dimensional data
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1.1. Basic copula definitions

that are constructed from a sequence of bivariate copulas in hierarchies or tree lev-

els. They can accommodate combinations of arbitrary bivariate copulas that have

different dependence properties. With appropriate choices of bivariate copulas, vine

copulas satisfy all the aforementioned properties except the closure under marginal-

ization property.

Krupskii and Joe (2013) and Nikoloulopoulos and Joe (2015) have proposed fac-

tor copula models for multivariate continuous and discrete variables, respectively.

Factor copulas are vine copulas that involve both observed and latent variables and

satisfy all the aforementioned properties including the the closure under marginal-

ization property. In this thesis, we propose several statistical models for dependence

modelling using the factor copula framework for multivariate social data. In the forth-

coming sections we define (vine) copulas and introduce their basic properties along

with the thesis contributions, organisation and structure of the subsequent chapters.

1.1 Basic copula definitions

A copula is a multivariate distribution with standard uniform margins (Nelsen, 2006;

Joe, 1997, 2014). In order to provide a precise definition of copulas for the d-variate

case, we have first to define the volume of a distribution.

Definition 1.1.1 (Nelsen 2006). Let S1, . . . , Sd be non-empty subsets of [−∞,∞],

and letH be a d-place real function such that DomH = S1×· · ·×Sd. LetB = [a,b]

be a d-box all of whose vertices are in DomH . Then the H-volume of B is given by

VH(B) =
∑

sgn(c)H(c),
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1.1. Basic copula definitions

where the sum is taken over all vertices c of B, and sgn(c) is given by,

sgn(c) =





1, if ck = ak for an even number of k’s.

−1, if ck = ak for an odd number of k’s.

Definition 1.1.2 (Nelsen 2006). A d-variate copula is a function C from [0, 1]d to

[0, 1] with the following properties:

1. For every u in [0, 1]d C(u) = 0 if at least one coordinate of u is 0 and if all

coordinates of u are 1 except uk, then C(u) = uk and

2. For every a and b in [0, 1]m such that a ≤ b, VC([a, b]) ≥ 0.

The first condition ensures that the marginal distributions are standard uniform.

The second condition, often referred to as the rectangular inequality, assures that the

copula C is a valid distribution function.

The Sklar’s theorem (Sklar, 1959) is central to the theory of copulas, and is the

foundation of many, if not most, of the applications of that theory in statistics. Sklar

(1959) has elucidated the role that copulas can play in the relationships between

multivariate distribution functions and their univariate cdfs.

Theorem 1.1.1 (Sklar 1959). Let H be a d-variate cdf with univariate marginal cdfs

F1, . . . , Fd. Then there exists a d-variate copula C such for all Y

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)). (1.1)

If F1, . . . , Fd are continuous, then C is unique, otherwise, C is uniquely determined

on RangeF1× · · · ×RangeFd. Conversely, if C is a d-variate copula and F1, . . . , Fd

are cdfs, then the function H defined by (1.1) is a d-variate cdf with marginal cdfs

F1, . . . , Fd.
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1.1. Basic copula definitions

Hence, copulas enable you to break the model building process into two separate

steps:

1. Choice of arbitrary marginal distributions:

• F1, . . . , Fd could take different forms;

• they could involve covariates.

2. Choice of an arbitrary copula function (dependence structure).

The estimation of F1, . . . , Fd and C can be done separately.

For every d-variate copula C we know from the Fréchet-Hoeffding inequality

(Fréchet, 1951) that copulas are bounded, viz.,

max(u1 + · · ·+ ud − d+ 1, 0) = W (u) ≤ C(u) ≤M(u) = min(u1, . . . , ud).

This can be shown in the bivariate case as follows:

max(u1 + u2 − 1, 0) = W (u1, u2) ≤ C(u1, u2) ≤M(u1, u2) = min(u1, u2),

for 0 ≤ u1, u2 ≤ 1. While the lower bound W is only a valid copula in the bivariate

case, the upper bound M is a valid copula for d > 2. We refer to the lower bound

and upper bound as countermonotonic and comonotonic copulas, respectively. The

comonotonic and countermonotonic copula provides perfect positive and negative

dependence, respectively; that is the one variable is strictly increasing and decreas-

ing function of the other, respectively. Another limiting copula is the independence

copula, viz.,

Π(u) =

d∏

j=1

uj ,
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1.1. Basic copula definitions

which provides independence between the variables. In Figure 1.1 we depict the inde-

pendence, comonotonic (upper bound) and countermonotonic (lower bound) copulas.

Figure 1.1: Contour diagrams of the independence (product), comonotonic and counter-
monotonic copulas.

Since the dependence among random variables is represented by copulas, they

provide a natural way to study and measure the association among random variables.

Bivariate concordance measures, such as Kendall’s τ , Spearman’s ρ, and Blomqvist’s

β (see Chapter 2 of Joe 1997 and Chapter 5 of Nelsen 2006), are copula-based mea-

sures of dependence and are margin free, i.e., they do not depend on the univariate

margins as the Pearson correlation which is often used in practise as a measure of de-

pendence. For non-normal variates the Pearson correlation can be quite misleading

because

• it is only a measure of linear association;

• its value depends on the marginal distributions;

• it can be close to 0 even in case of strong dependence.
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1.2. Copula-based measures of association

Concordance measures of dependence, such as the Kendall’s tau, reach

• 1 when C ≡M ;

• 0 when C ≡ Π;

• -1 when C ≡W.

In the forthcoming sections we will define copula-based measures of dependence,

such as the Kendall’s tau, to describe the dependence in the middle of the data, along

with tail dependence and tail order coefficients to describe the dependence in the joint

tails of the data.

1.2 Copula-based measures of association

1.2.1 Kendall’s τ

Kendall’s τ is a common non-parametric measure of concordance, meaning that large

(small) values in one variable are associated with large (small) values in another

variable, while discordance is when large (small) values of one variable are associated

with small (large) values of the other. The Kendall’s τ association takes the following

form (e.g., Nelsen 2006)

τ = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1.

The from reveals that Kendall’s τ is solely based on the copula C. Bivariate copula

parameters have different range, and hence, they are not comparable. In order to make

them comparable we use the copula-based Kendall’s tau association to quantify the

dependence in the middle of the data as they are strictly increasing functions of the

the bivariate copula parameters (Nelsen, 2006; Joe, 1997, 2014).
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1.2. Copula-based measures of association

1.2.2 Tail dependence and tail order

Another useful copula-based measure to distinguish among different copula families

is tail dependence (Joe, 1993), that is dependence among extreme values. Tail depen-

dence can be used to discriminate different families of bivariate parametric copulas.

A bivariate copula C is reflection symmetric if its density satisfies c(u1, u2) =

c(1− u1, 1− u2) for all 0 ≤ u1, u2 ≤ 1. Otherwise, it is reflection asymmetric often

with more probability in the joint upper tail or joint lower tail. Upper tail dependence

means that c(1 − u, 1 − u) = O(u−1) as u → 0 and lower tail dependence means

that c(u, u) = O(u−1) as u → 0. If (U1, U2) ∼ C for a bivariate copula C, then

(1− U1, 1− U2) ∼ Ĉ, where Ĉ(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) is the

survival or reflected copula of C; this “reflection” of each uniform U(0, 1) random

variable about 1/2 changes the direction of tail asymmetry.

Following Hua and Joe (2011), we also define the copula-based tail order coeffi-

cients. Under some regularity conditions (e.g., existing finite density in the interior

of the unit square, ultimately monotone in the tail), if there exists κL(C) > 0 and

some L(u) that is slowly varying at 0+
(
i.e., L(ut)L(u) ∼ 1, as u→ 0+ for all t > 0

)
,

then κL(C) is the lower tail order of C. The upper tail order κU (C) can be defined

by the reflection of (U1, U2), i.e., C(1−u, 1−u) ∼ uκU (C)L∗(u) as u→ 0+, where

C is the survival function of the copula and L∗(u) is a slowly varying function. With

κ = κL or κU , a bivariate copula has intermediate tail dependence if κ ∈ (1, 2),

tail dependence if κ = 1, and tail quadrant independence if κ = 2 with L(u) being

asymptomatically a constant.
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1.3 Parametric families of bivariate copulas

We start by discussing bivariate parametric copulas to allow for a more concrete

exposition. Later, we will discuss about d-variate parametric copulas, namely the

d-dimensional vine copulas, which are built via successive mixing from d(d − 1)/2

bivariate linking copulas on trees.

We will consider bivariate parametric copulas that have different tail dependence

(Joe, 1993) or tail order (Hua and Joe, 2011). Note that there is a rich literature on

bivariate parametric copulas (see e.g., Joe 2014; Nelsen 2006), here we list the most

common copula families that capture different dependence structures of multivariate

data.

• Reflection symmetric copulas with intermediate tail dependence such as the

BVN copula with κL = κU = 2/(1 + θ), where θ is the copula (correlation)

parameter. The BVN copula cdf is

C(u1, u2; θ) = Φ2

(
Φ−1(u1),Φ

−1(u2); θ
)
, −1 ≤ θ ≤ 1,

where Φ is the univariate standard normal cdf and and Φ2 is the cdf of a BVN

distribution with correlation parameter θ.

• Reflection symmetric copulas with tail quadrant independence (κL = κU = 2),

such as the Frank copula with cdf

C(u1, u2; θ) = −θ−1 log

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
, θ ∈ (−∞,∞)\{0}.

• Reflection asymmetric copulas with upper tail dependence only such as

– the Gumbel copula with κL = 21/θ and κU = 1, where θ is the copula

parameter.
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1.3. Parametric families of bivariate copulas

– the Joe copula with κL = 2 and κU = 1.

The Gumbel and Joe copula cdf is

C(u1, u2; θ) = exp
[
−
{

(− log u1)
θ + (− log u2)

θ
}1/θ]

, θ ≥ 1

and

C(u1, u2; θ) = 1−
{

(1−u1)θ + (1−u2)θ− (1−u1)θ(1−u2)θ
}1/θ

, θ ≥ 1,

respectively.

• Reflection symmetric copulas with tail dependence, such as the tν copula with

κL = κU = 1. The tν copula cdf is

C(u1, u2; θ) = T2
(
T −1(u1; ν), T −1(u2; ν); θ, ν

)
, −1 ≤ θ ≤ 1,

where T (; ν) is the univariate Student-t cdf with (non-integer) ν degrees of

freedom, and T2 is the cdf of a bivariate Student-t distribution with ν degrees

of freedom and correlation parameter θ.

• Reflection asymmetric copulas with upper and lower tail dependence that can

range independently from 0 to 1, such as the BB1 and BB7 copulas with κL =

1 and κU = 1. The BB1 and BB7 copula cdf is

C(u1, u2; θ, δ) =
[
1 +

{
(u−θ1 − 1)δ + (u−θ2 − 1)δ

}1/δ]−1/θ
, θ > 0, δ ≥ 1

and

C(u1, u2; θ, δ) = 1−
[
1−
{

(1−ūθ1)−δ+(1−ūθ2)−δ−1
}−1/δ]1/θ

, θ ≥ 1, δ > 0,
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with ū1 = 1− u1 and ū2 = 1− u2, respectively.

• Reflection asymmetric copulas with tail quadrant independence, such as the

BB8 copula with cdf

C(u1, u2; θ, δ) = δ−1
[
1−

{
1− η−1[1− (1− δu1)θ][1− (1− δu2)θ]

}1/θ]
,

where θ ≥ 1, 0 < δ ≤ 1, and η = 1− (1− δ)θ, or the BB10 copula with cdf

C(u1, u2; θ, δ) = u1u2

{
1− δ(1− uθ1)(1− uθ2)

}−1/θ
, θ > 0, 0 ≤ δ ≤ 1.

The BVN, Frank, and tν are comprehensive copulas, i.e., they interpolate be-

tween countermonotonicity (perfect negative dependence) to comonotonicity (per-

fect positive dependence). The other aforementioned parametric families of copulas,

namely Gumbel, Joe, BB1, BB7, BB8 and BB10 interpolate between independence

and perfect positive dependence. Nevertheless, negative dependence can be obtained

from these copulas by considering reflection of one of the uniform random variables

on (0, 1). If (U1, U2) ∼ C for a bivariate copula C with positive dependence, then

• (1−U1, U2) ∼ Ĉ(1), where Ĉ(1)(u1, u2) = u2−C(1−u1, u2) is the 1-reflected

copula of C with negative lower-upper tail dependence;

• (U1, 1−U2) ∼ Ĉ(2), where Ĉ(2)(u1, u2) = u1−C(u1, 1−u2) is the 2-reflected

copula of C with negative upper-lower dependence.

Negative upper-lower tail dependence means that c(1− u, u) = O(u−1) as u→ 0+

and negative lower-upper tail dependence means that c(u, 1− u) = O(u−1) as u→

0+ (Joe, 2011).

In Figure 1.2, to depict the concepts of refection symmetric or asymmetric tail de-

pendence or quadrant tail independence, we show contour plots of the corresponding
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1.3. Parametric families of bivariate copulas

copula densities with standard normal margins and dependence parameters corre-

sponding to Kendall’s τ value of 0.5 on absolute value. Sharper corners (relative to

ellipse) indicate tail dependence.

Figure 1.2: Contour plots of bivariate copulas with standard normal margins and dependence
parameters corresponding to Kendall’s τ value of 0.5 in absolute value.
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1.4 Vine copulas

Vine copula models are flexible tools to analyse dependence structures based on a se-

ries of bivariate copulas and have been popular in many application areas (Kurowicka

and Joe, 2011).

In order to obtain a valid probability distribution, a d−dimensional regular vine

has been defined in terms of d − 1 trees such that T1, . . . , Td−1 as follows (Bedford

and Cooke 2001, 2002):

• T1 is a tree with nodes N1 = 1, . . . , d and edges E1.

• For i = 1, . . . , d−1, Ti is a tree with nodesNi = Ei−1 and edge setEi. Edges

in a tree becomes nodes in the next tree.

• Two edges in tree Ti are joined in tree Ti+1 only if they share a common node

in tree Ti. This is known as the proximity condition.

There are two boundary cases of vines, namely, the canonical-vine (C-vine) and

drawable-vine (D-vine) models (Nikoloulopoulos et al., 2012). The D-vine model is

natural for linear order of time events and longitudinal data (Panagiotelis et al., 2012),

while the C-vine model is plausible when the variables there is a (pilot) variable that

drives the dependence. In Figure 1.3 we depict the C-vine and D-vine models. In Tree

1 (T1), the edges correspond to non conditional bivariate copulas, then the edges in

T1 becomes nodes in T2. These nodes are connected with edges that are given as

conditional bivariate copulas, this process continues until the last tree T4. Note that

the arrangement of these variables in this example is arbitrary.

The possibility of parsimonious vine models are obtained via truncation. Trunca-

tion of vine models means that the copulas at the higher trees will be set to indepen-

dence (Brechmann et al., 2012). So the vine models will involve many conditional
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Figure 1.3: Graphical representation of the C-vine (left panel) and D-vine (right panel) cop-
ulas with d = 4 observed variables.

independent copulas. Truncated vines are often reasonable and sufficient as the de-

pendence amongst the data is mostly explained by the first few trees (Joe et al., 2010).

Factor copula models are truncated C-vine copulas rooted at the latent/unobserved

variables. Hence, they are also constructed using a sequence of bivariate copulas that

can involve different tail dependence or asymmetry properties. They are more suit-

able than vine copula models if there exists a latent variable that drives the depen-

dence among the variables.

1.5 Further motivation and thesis contributions

1.5.1 Factor copula models for mixed data

It is very common in the social science (e.g., in surveys) to deal with datasets that

have mixed continuous and discrete responses. For example, amount of expenditures

and income which are regarded as continuous variables might be included in a survey

with other ordinal variables that measure quality of life or depression (Bartholomew

et al., 2011). In the literature, two broad frameworks have been considered to model

the dependence among such mixed continuous and discrete responses, namely the

latent variable and copula frameworks.
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There are two approaches for modelling multivariate mixed data with latent vari-

ables: the underlying variable approach that treats all variables as continuous by

assuming the discrete responses as a manifestation of underlying continuous vari-

ables that usually follow the normal distribution (e.g., Muthén 1984; Lee et al. 1992;

Quinn 2004); and the response function approach that postulates distributions on the

observed variables conditional on the latent variables usually from the exponential

family (e.g., Moustaki 1996; Moustaki and Knott 2000; Wedel and Kamakura 2001;

Huber et al. 2004; Moustaki and Victoria-Feser 2006). The former method almost

invariably assumes that the underlying variables (linked to the observed variables via

a threshold process to yield ordinal data and an identity process to yield continuous

data) follow a MVN distribution, while the latter assumes that the observed vari-

ables are conditionally independent, usually given MVN distributed latent variables.

They are equivalent when in the underlying and the response function approach the

MVN distribution has a factor and an independence correlation structure, respectively

(Takane and de Leeuw, 1987).

The underlying variable approach uses the MVN distribution as a latent model for

the discrete responses, and therefore maximum likelihood (ML) estimation requires

multidimensional integrations (Nikoloulopoulos, 2013b, 2016); their dimension is

equal to the number of observed discrete variables. This is why alternative estimation

methods such as the three stage weighted least squares and composite likelihood have

been proposed; see e.g., Katsikatsou et al. (2012). The response function approach,

with the dependence coming from p latent (unobservable) variables/factors where

p << d (the number of observed variables), requires p- rather than d- dimensional

integration. Hence, ML estimation is feasible, especially when the number of latent

variables is small.
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Nevertheless, both approaches are restricted to the MVN assumption for the ob-

served or the latent variables that is not valid if tail asymmetry or tail dependence ex-

ists in the mixed data which is a realistic scenario. This occurs when many responses

are found in one or both of the extreme ends of the scale and thus the normality

assumption is not usually appropriate (Cai et al., 2011). Ma and Genton (2010),

Montanari and Viroli (2010), and Irincheeva et al. (2012a) stress that the MVN as-

sumption might not be adequate, and acknowledge that the effect of misspecifying

the distribution of the latent variables could lead to biased model estimates and poor

fit. To this end, Irincheeva et al. (2012b) proposed a more flexible response function

approach by strategically multiplying the MVN density of the latent variables by a

polynomial function to achieve departures from normality.

As we have discussed, the underlying variable approach exploits the use of the

MVN assumption to model the joint distribution of mixed data. The univariate mar-

gins are transformed to normality and then the MVN distribution is fitted to the trans-

formed data. This construction is apparently the MVN copula applied to mixed data

(Shen and Weissfeld, 2006; Hoff, 2007; Song et al., 2009; He et al., 2012; Jiryaie

et al., 2016), but previous papers (e.g., Quinn 2004) do not refer to copulas as the

approach can be explained without copulas.

Smith and Khaled (2012), Stöber et al. (2015) and Zilko and Kurowicka (2016)

used vine copulas to model mixed data. Vine copulas have two major advantages

over the MVN copula as emphasized in Panagiotelis et al. (2017). The first is that

the computational complexity of computing the joint probability distribution func-

tion grows only quadratically with d, whereas for the MVN copula the computational

complexity grows exponentially with d. The second is that vine copulas are highly

flexible through their specification from bivariate parametric copulas with different
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tail dependence or asymmetry properties. They have, as special case, the MVN cop-

ula, if all the bivariate parametric copulas are bivariate normal (BVN).

In Chapter 2, we extend the factor copula models in Krupskii and Joe (2013)

and Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete

responses. Factor copulas are vine copula models that involve both observed and

latent variables. Hence, they are highly flexible through their specification from bi-

variate parametric copulas with different tail dependence or asymmetry properties.

The underlying variable approach where the MVN distribution has a p-factor cor-

relation structure or its equivalent, the response function approach where the MVN

distribution has an independence correlation structure, is a special case of factor cop-

ula models when all the bivariate parametric copulas are BVN (hereafter referred to

as the standard factor model).

We tackle issues of particular interest to the social data analyst such as model

selection and goodness-of-fit. Model selection in previous papers on factor copula

models (Krupskii and Joe, 2013; Nikoloulopoulos and Joe, 2015) was mainly based

on simple diagnostics. In addition to simple diagnostics based on semi-correlations

(correlations in the lower and upper quadrants of the data), we propose an heuris-

tic method that automatically selects the bivariate parametric copula families. With

regard to the issue of goodness-of-fit testing, we propose a technique that is based

on the M2 goodness-of-fit statistic (Maydeu-Olivares and Joe, 2006) in multidimen-

sional contingency tables to overcome the shortage of goodness-of-fit statistics for

mixed continuous and discrete response data (e.g., Moustaki and Knott 2000).

1.5.2 Bi-factor and second-order copula models for item response data

Item response data can be defined as the responses of the questions in a survey. They

are usually measured in an ordinal scale and constructed to measure unobserved traits
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or behavioural characteristics such as extroversion (e.g., Wainer et al. 2007). Datasets

with large number of items are often naturally divided into subgroups, in such, each

group of items has homogeneous dependence. For example, the well-being (common

factor) of patients is usually assessed via items that arise from several sub-domains to

assess several group-specific factors such as the depression, anxiety and stress. This

special classification of items is also common in educational assessments and referred

to as “testlets” (Wainer and Kiely, 1987). It is essential to investigate the structure of

the item response data, as implementing factor models on testlet-based items could

result in biased estimates and a poor fit (Wang and Wilson, 2005; DeMars, 2006;

Zenisky et al., 2002; Sireci et al., 1991; Lee and Frisbie, 1999; Wainer and Thissen,

1996).

To account for the homogeneous dependence in each group of items, Gibbons and

Hedeker (1992) and Gibbons et al. (2007) proposed bi-factor models for binary and

ordinal response data, respectively. The bi-factor models have become omnipresent

in analysing survey items that arise from several sub-domains or groups. They consist

of a common factor that is linked to all items, and non-overlapping group-specific

factors. The common factor explains dependence between items for all groups, while

the group-specific factors explain dependence amongst items within each group. The

items are assumed to be independent given the group-specific and common factors.

An alternative way of modelling items that are split into several groups is via the

second-order model (e.g., de la Torre and Song 2009; Rijmen 2010), where items

are indirectly mapped to an overall (second-order) factor via non-overlapping group-

specific (first-order) factors. Second-order models are suitable when the first-order

factors are associated with each other, and there is a second-order factor that accounts

for the relations among the first-order factors.
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The bi-factor and the second-order models are not generally equivalent (Yung

et al., 1999; Gustafsson and Balke, 1993; Mulaik and Quartetti, 1997; Rijmen, 2010),

unless proportionality constraints are imposed by using the Schmid-Leiman transfor-

mation method (Schmid and Leiman, 1957). More importantly, both models are

restricted to the MVN assumption for the latent variables, which might not be valid.

Nikoloulopoulos and Joe (2015) emphasized that if the ordinal variables in item re-

sponse data can be thought of as discretizations of latent random variables that are

maxima/minima or mixtures of means, then the use of factor models based on the

MVN assumption for the latent variables could provide poor fit. More discussion is

given in Section 3.1.3.

In the context of item response data, latent maxima, minima and means can arise

depending on how a respondent considers specific items. An item might make the

respondent think about M past events which, say, have values W1, . . . ,WM . In

answering the item, the subject might take the average, maximum or minimum of

W1, . . . ,WM and then convert to the ordinal scale depending on the magnitude. The

case of a latent maxima/minima can occur if the response is based on a best or worst

case. For different dependent items based on latent maxima or minima, multivariate

extreme value and copula theory can be used to select suitable distributions for the

latent variables. Copulas that arise from extreme value theory have more probability

in one joint tail (upper or lower) than expected with a MVN distribution and have

latent variables that are maxima/minima instead of means. Even, in the case where

the item responses are based on discretizations of latent variables that are means,

then it is possible that there can be more probability in both the joint upper and joint

lower tail, compared with MVN distributed latent variables. This happens if the

respondents consist of a “mixture” population (e.g., different locations or genders).

From the theory of elliptical distributions and copulas (McNeil et al. 2005; Joe 2014),
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it is known that the multivariate Student-t distribution as a scale mixture of MVN has

more dependence in the tails.

Nikoloulopoulos and Joe (2015) have studied factor copula models for item re-

sponse data and have shown that there is an improvement on the factor models based

on the MVN assumption for the latent variables both conceptually and in the fit to

the data. This improvement relies on the aforementioned reasons, i.e., items can have

more probability in joint upper or lower tail than would be expected with a MVN

or items can be considered as discretized maxima/minima or mixtures of discretized

means rather than discretized means.

In Chapter 3, we propose copula extensions for bi-factor and second-order mod-

els. The construction of the bi-factor copula model exploits the use of bivariate cop-

ulas that link the observed variables to the common and group-specific factors. We

also propose a heuristic method that automatically selects suitable bivariate copu-

las, along with goodness-of-fit based on the M2 statistic (Maydeu-Olivares and Joe,

2006) for the bi-factor and second-order copula models. Note that if there is only

one group of items, then the bi-factor model reduces to the 2-factor copula model in

Nikoloulopoulos and Joe (2015). Similarly with the bi-factor copula model, we also

use bivariate copulas to construct the second-order copula model. In this case, there

are bivariate copulas that link the observed to the group-specific factors, and also

bivariate copulas that link the group-specific to the second-order factor. To account

for the dependence between the observed variables and group-specific factors, each

group of variables in fact is modelled using the one-factor copula model proposed by

Nikoloulopoulos and Joe (2015). In addition, if there is only one group of items, then

the second-order copula model reduces to the one-factor copula model. Hence, the

proposed models contain the one- and two-factor copula models in Nikoloulopou-

los and Joe (2015) as special cases, while allowing flexible dependence structure for
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both within and between group dependence. As a result, the models are suitable for

modelling a high-dimensional item response classified into non-overlapping groups.

The proposed models are truncated vine copulas (Brechmann et al., 2012) that

involve both observed and latent variables. They provide flexible dependence by

selecting arbitrary bivariate linking copulas (Joe et al., 2010) to link the items to

latent factors. If the bivariate linking copulas are BVN, then the Gaussian bi-factor

and second-order models are special cases of our constructions which are the discrete

counterparts of the structured factor copula models introduced by Krupskii and Joe

(2015).

1.5.3 Factor tree copula models for item response data

Most factor models are restricted to the conditional independence assumption, where

the observed variables are assumed to be conditionally independent given some latent

variables. This assumption implies that the dependence amongst the observed vari-

ables is fully accounted for by the factors with no remaining dependence. This could

lead to biased estimates if the strict assumption of conditional independence is vio-

lated (Braeken et al., 2007; Sireci et al., 1991; Chen and Thissen, 1997; Yen, 1993).

The conditional independence assumption is violated if there exists local or residual

dependence. Mitigating the residual dependence might be achieved by adding more

latent variables to the factor model, but at the expense of computational problems and

difficulties in interpretation and identification.

To circumvent these problems, the items can be allowed to interrelate by forming

a dependence structure with conditional dependence given a few interpretable latent

variables. In this way, on the one hand the parsimonious feature of factor models

remains intact and any residual dependencies are being taken into account on the

other. This can be achieved by incorporating copulas into the conditional distribu-

tion of factor models in order to provide a conditional dependence structure given
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very few latent variables. Such copula approaches for item response data are pro-

posed by Braeken et al. (2007, 2013) and Braeken (2011) who explored the use of

Archimedean copulas or a mixture of the independence and comonotonicity (perfect

positive dependence) copulas to capture the residual dependence of traditional item

response theory models. Therein simple copulas have been used for subgroups of

items that are chosen from the context with homogeneous within-subgroup depen-

dence. This is due to the fact that Archimedean copulas allow only for exchange-

able dependence with a narrower range as the dimension increases (McNeil and

Nešlehová, 2009).

Without a priori knowledge of obvious subgroups of items that are approximately

exchangeable, we will propose a more general residual dependence approach that

makes use of truncated regular vine copula models (Brechmann et al., 2012). Within

a vine copula specification, no such restrictions need to be made. Regular vine cop-

ulas are a flexible class of models that are constructed from a set of bivariate copulas

in hierarchies or tree levels (Joe, 1996; Bedford and Cooke, 2001, 2002; Kurow-

icka and Cooke, 2006; Kurowicka and Joe, 2011; Joe, 2014). A d-dimensional reg-

ular vine copula can cover flexible dependence structures, rather than assuming sim-

ple linear correlation structures, tail independence and normality (Nikoloulopoulos

et al., 2012), through the specification of d − 1 bivariate parametric copulas at level

1 and
(
d−1
2

)
bivariate conditional parametric copulas at higher levels; at level ` for

` = 2, . . . , d− 1, there are d− ` bivariate conditional copulas that condition on `− 1

variables. Joe et al. (2010) have shown that in order for a vine copula to have (tail)

dependence for all bivariate margins, it is only necessary for the bivariate copulas in

level 1 to have (tail) dependence and it is not necessary for the conditional bivariate

copulas in levels 2, . . . , d−1 to have (tail) dependence. That provides the theoretical

justification for the idea to model the dependence in the first level and then just use

the independence copulas to model conditional dependence at higher levels without
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sacrificing the tail dependence of the vine copula distribution. That is the 1-truncated

vine copula has d − 1 parametric bivariate copulas in the 1st level of the vine and

independence copulas in all the remaining levels of the vine (truncated after the 1st

level). This truncation, as per the terminology in (Brechmann et al., 2012), provides

a parsimonious vine copula model. The 1-truncated vine copula can provide, with

appropriately chosen linking copulas, asymmetric dependence structure as well as

tail dependence (dependence among extreme values). Joe et al. (2010) have shown

that by choosing bivariate linking copulas appropriately, vine copulas can have a flex-

ible range of lower/upper tail dependence and different lower/upper tail dependence

parameters for each bivariate margin. Choices of copulas with upper or lower tail de-

pendence are better if the items have more joint upper or lower tail probability than

would be expected with the discretized multivariate normal (MVN) model (Muthén,

1978). Note in passing that the discretized MVN distribution is a special case of the

vine copula model with discrete margins. If all bivariate copulas are bivariate normal

(BVN) in the vine copula model, then the resulting model is the discretized MVN.

To define the conditional independence part of the model we also use truncated

vine copulas rather than the traditional factor models for item response in Braeken

et al. (2007, 2013) and Braeken (2011). Nikoloulopoulos and Joe (2015) have pro-

posed factor copula models for item response data. These factor models can be ex-

plained as truncated canonical vines rooted at the latent variables. The canonical vine

is a boundary case of regular vine copulas, which is suitable if there exists a (latent)

variable that drives the dependence among the items. For the first factor there are

bivariate copulas that couple each item to the first latent variable and for the second

factor there are copulas that link each item to the second latent variable conditioned

on the first factor (leading to conditional dependence parameters), etc. Factor copula

models with appropriately chosen linking copulas will be useful when the items (a)

have more probability in joint upper or lower tail than would be expected with a dis-
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cretized multivariate normal, or (b) can be considered as discretized maxima/minima

or mixtures of discretized means rather than discretized means (Nikoloulopoulos and

Joe, 2015).

The proposed parsimonious approach, that requires no priori knowledge of the

subgroups of items, can be explained as a truncated regular vine copula model that

involves both observed and latent variables; but, more simply, we derive the mod-

els as conditional dependence models with a few interpretable latent variables that

model the residual dependence of the factor copula model via an 1-truncated vine

copula. The factor copula model explains most of the dependence and the remaining

dependence can be further accounted for by an 1-truncated vine copula conditioned

on the factors. One reason to have residual dependence is when the observed vari-

ables do not share homogeneous or common dependence (that arise from the latent

variables) with the rest of the observed variables. Alternatively, the bi-factor and

second-order models can be used for items that are grouped into non-overlapping

groups (e.g., Kadhem and Nikoloulopoulos 2021a; Gibbons et al. 2007; Gibbons and

Hedeker 1992). While, the combined factor vine copula models avoid such hurdles

when the groups of items are overlapping, not known or difficult to identify. They

also avoid violating the conditional independence assumption due to their conditional

dependence structure. Brechmann and Joe (2014) and Joe (2018) initiated the study

of such conditional dependence models with a unidimensional factor/latent variable

for continuous data. The combined 1-factor and 1-truncated vine model for con-

tinuous data in Brechmann and Joe (2014) is restricted to Gaussian dependence, but

Joe (2018) proposed a combination of an 1-factor copula model with 1-truncated vine

copula model with non-Gaussian bivariate copulas. Our models for item response are

discrete counterparts of the models in Brechmann and Joe (2014) and Joe (2018) with

interpretation and technical details that are quite different and provide an extension

to more than one factor.
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1.6 Thesis organization

The remainder of the thesis is structured as follows. In Chapter 2, we present the

factor copula models for mixed continuous and discrete responses (Kadhem and

Nikoloulopoulos, 2021b). Model selection algorithms and goodness-of-fit techniques

are also proposed and examined through an extensive simulation study. We also

present an application of our methodology to three real datasets.

In Chapter 3 we present copula extensions for bi-factor and second-order mod-

els for item response data (Kadhem and Nikoloulopoulos, 2021a) and discuss their

relationship with the existing models. Model selection algorithms to select suitable

bivariate copulas and goodness-of-fit techniques are proposed. The derivations of the

M2 goodness-of-fit statistic of (Maydeu-Olivares and Joe, 2006) for the bi-factor and

second-order copula models are also given. We examine our methodology through

an extensive simulation study and also present an application of our methodology to

a real dataset.

In Chapter 4, we present combined factor/truncated vine copula models for item

response data (Kadhem and Nikoloulopoulos, 2022). These are conditional depen-

dence models with very few interpretable latent variables. In this case, the factor

model explains most of the dependence and the remaining dependence is further ex-

ploited by an 1-truncated vine copula conditioned on the factors. Model selection

algorithms to select suitable vine tree and bivariate copulas are proposed and as-

sessed through an extensive simulation study. We also present an application of our

methodology by re-analysing a real dataset.

In Chapter 5, we conclude the thesis with some discussion and future research.
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Chapter 2

Factor copula models for mixed

data

In this chapter, we present factor copula models for mixed continuous and discrete

responses. These are conditional independence models, where observed variables are

assumed to be conditionally independent given some latent variables. The construc-

tion of the proposed factor copula models exploits the use of bivariate copulas that

link the observed to the latent variables. Bivariate copulas other than BVN, with dif-

ferent tail behaviour, can be employed to model tail asymmetry or dependence in the

data.

Suitable bivariate parametric copulas are selected using a heuristic method, this is

a sequential model selection algorithm that we propose. In order to evaluate the fit of

the resulting factor copula models for mixed data, we propose a technique based on

theM2 goodness-of-fit statistic (Maydeu-Olivares and Joe, 2006). TheM2 statistic is

based on a quadratic form of the deviations of sample and model-based proportions

over all bivariate margins.

We illustrate the proposed methodology by re-analysing three real datasets, and
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show that factor copula models with selected copulas (obtained from the model se-

lection algorithm) provide substantial improvements over standard factor models that

are based on the normality assumption.

The chapter is organised as follows. Section 2.1 introduces factor copula models

for mixed data. Estimation techniques and computational details are provided in Sec-

tion 2.2. Sections 2.3 and 2.4 propose methods for model selection and goodness-

of-fit, respectively. Section 2.5 presents applications of our methodology to three

mixed response data sets. Section 2.6 contains an extensive simulation study to gauge

the small-sample efficiency of the proposed estimation, investigate the misspecifica-

tion of the bivariate copulas, and examine the reliability of the model selection and

goodness-of-fit techniques. We conclude with a summary in Section 2.8.

2.1 The factor copula model for mixed responses

Although the factor copula models can be explained as truncated canonical vines

rooted at the latent variables, we derive the models as conditional independence

models, i.e., a response function approach with dependence coming from latent (un-

observable) variables/factors. The p-factor model assumes that the mixed continuous

and discrete responses Y = (Y1, . . . , Yd) are conditionally independent given p latent

variablesX1, . . . , Xp. In line with Krupskii and Joe (2013) and Nikoloulopoulos and

Joe (2015), we use a general copula construction, based on a set of bivariate copulas

that link observed to latent variables, to specify the factor copula models for mixed

continuous and discrete variables. The idea in the derivation of this p-factor model

will be shown below for the 1-factor and 2-factor case. It can be extended to p ≥ 3

factors or latent variables in a similar manner. The evaluation of a p-dimensional

integral can be successively performed as we strategically assume that the factors or

latent variables are independent.

27



2.1. The factor copula model for mixed responses

For the 1-factor model, let X1 be a latent variable, which we assume to be stan-

dard uniform (without loss of generality). From Sklar (1959), there is a bivariate

copula CX1j such that Pr(X1 ≤ x, Yj ≤ y) = CX1j

(
x, Fj(y)

)
for 0 ≤ x ≤ 1 where

Fj is the cumulative distribution function (cdf) of Yj . Then it follows that

Fj|X1
(y|x) := Pr(Yj ≤ y|X1 = x) =

∂CX1j

(
x, Fj(y)

)

∂x
. (2.1)

Letting Cj|X1
(Fj(y)|x) = ∂CX1j(x, Fj(y))/∂x for shorthand notation and y =

(y1, . . . , yd) be realizations of Y, the density‡ of the observed data in the 1-factor

model case is

fY(y) =

∫ 1

0

d∏

j=1

fj|X1
(yj |x) dx, (2.2)

where

fj|X1
(y|x) =





Cj|X1

(
Fj(y)|x

)
− Cj|X1

(
Fj(y − 1)|x

)
if Yj is discrete;

cX1j

(
x, Fj(y)

)
fj(y) if Yj is continuous,

is the density of Yj = y conditional on X1 = x; cX1j is the bivariate copula density

of X1 and Yj and fj is the univariate density of Yj .

For the 2-factor model, consider two latent variablesX1, X2 that are, without loss

of generality, independent uniform U(0, 1) random variables. Let CX1j be defined as

in the 1-factor model, and let CX2j be a bivariate copula such that

Pr(X2 ≤ x2, Yj ≤ y|X1 = x1) = CX2j

(
x2, Fj|X1

(y|x1)
)
,

‡We mean the density of Y w.r.t. the product measure on the respective supports of the marginal
variables. For discrete margins with integer values this is the counting measure on the set of possible
outcomes, for continuous margins we consider the Lebesgue measure in R.
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where Fj|X1
is given by (2.1). Then for 0 ≤ x1, x2 ≤ 1,

Pr(Yj ≤ y|X1 = x1, X2 = x2) =
∂

∂x2
Pr(X2 ≤ x2, Yj ≤ y|X1 = x1)

=
∂

∂x2
CX2j

(
x2, Fj|X1

(y|x1)
)

= Cj|X2

(
Fj|X1

(y|x1)|x2
)
.

The density of the observed data in the 2-factor model case is

fY(y) =

∫ 1

0

∫ 1

0

d∏

j=1

fX2j|X1

(
x2, yj |x1

)
dx1dx2, (2.3)

where fX2j|X1
(x2, y|x1)

=





Cj|X2

(
Fj|X1

(y|x1)|x2
)
− Cj|X2

(
Fj|X1

(y − 1|x1)|x2
)

if Yj is discrete;

cjX2;X1

(
Fj|X1

(y|x1), x2
)
cX1j

(
x1, Fj(y)

)
fj(y) if Yj is continuous.

Note that the copulaCX1j links the jth response to the first latent variableX1, and

the copula CX2j links the jth response to the second latent variable X2 conditional

on X1. In our general statistical model there are no constraints on the choice of the

parametric marginal Fj or copula {CX1j , CX2j} distribution.

2.1.1 Semi-correlations to detect tail dependence or tail asymmetry

Choices of copulas with upper or lower tail dependence are better if the observed

variables have more probability in joint upper or lower tail than would be expected

with the standard factor model. This can be shown with summaries of correlations in

the upper joint tail and lower joint tail.

For continuous variables, although copula theory uses transforms to standard uni-

form margins Uj = Fj(Yj), we convert to normal scores Zj = Φ−1(Uj) to check

deviations from the elliptical shape that would be expected with the BVN copula

(Nikoloulopoulos et al., 2012). For notational ease, let C2|1 = C2|1
(
0.5|Φ(z)

)
, and
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c12 = c
(
Φ(z1),Φ(z2)

)
, then the correlations of normal scores in the upper and lower

tail (hereafter semi-correlations) are defined as (Joe, 2014, page 71):

ρ+N = Cor
(
Zj1 , Zj2 |Zj1 > 0, Zj2 > 0

)

=

∫∞
0

∫∞
0
z1z2φ(z1)φ(z2)c12dz1dz2 −

(∫∞
0
zφ(z)

(
1− C2|1

)
dz

)2

/C(0.5, 0.5)

∫∞
0
z2φ(z)

(
1− C2|1

)
dz −

(∫∞
0
zφ(z)

(
1− C2|1

)
dz

)2

/C(0.5, 0.5)

;

ρ−N = Cor
(
Zj1 , Zj2 |Zj1 < 0, Zj2 < 0

)

=

∫ 0

−∞
∫ 0

−∞ z1z2φ(z1)φ(z2)c12dz1dz2 −
(∫ 0

−∞ zφ(z)C2|1dz

)2

/C(0.5, 0.5)

∫ 0

−∞ z2φ(z)C2|1dz −
(∫ 0

−∞ zφ(z)C2|1dz

)2

/C(0.5, 0.5)

,

where Φ(·) and φ(·) are the univariate normal cdf and density, respectively. Note in

passing that for the BVN copula ρ+N = ρ−N and has a closed form; see (Joe, 2014,

page 71).

From the above expressions, it is apparent that the normal scores semi-correlations

depend only on the copula C of (Uj1 , Uj2). Table 2.1 has semi-correlations for all

the aforementioned bivariate parametric copulas with τ = {0.3, 0.5, 0.7}. From the

table we can see that ρ+N = ρ−N for any reflection symmetric copula, while they are

different for any reflection asymmetric one. If there is stronger upper (lower) tail

dependence than with the BVN, then the upper (lower) semi-correlation is larger.

The population versions ρ+N , ρ
−
N also apply when the variables Yj are ordinal.

Under the univariate probit model (Agresti, 2010, Section 3.3.2) Zj are standard

normal underlying latent variables, such that

Yj = yj if αyj−1,j ≤ Zj ≤ αyjj , yj = 1, . . . ,Kj , (2.4)
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Table 2.1: Lower semi-correlations ρ−N , upper semi-correlations ρ+N , lower tail dependence
λL, and upper tail dependence λU , with τ = {0.3, 0.5, 0.7} for 1-parameter and 2-parameter
bivariate copulas.

Bivariate copula τ θ δ ρ−N ρ+N λL λU

BVN
0.3 0.45 0.23 0.23 0.00 0.00
0.5 0.71 0.47 0.47 0.00 0.00
0.7 0.89 0.75 0.75 0.00 0.00

t3
0.3 0.45 0.45 0.45 0.29 0.29
0.5 0.71 0.61 0.61 0.45 0.45
0.7 0.89 0.80 0.80 0.66 0.66

Frank
0.3 2.92 0.15 0.15 0.00 0.00
0.5 5.74 0.32 0.32 0.00 0.00
0.7 11.41 0.60 0.60 0.00 0.00

Joe
0.3 1.77 0.05 0.58 0.00 0.52
0.5 2.86 0.14 0.78 0.00 0.73
0.7 5.46 0.37 0.92 0.00 0.86

Gumbel
0.3 1.43 0.16 0.46 0.00 0.38
0.5 2.00 0.36 0.67 0.00 0.59
0.7 3.33 0.64 0.85 0.00 0.77

BB1
0.3 0.50 1.14 0.43 0.25 0.30 0.17
0.5 0.35 1.71 0.52 0.59 0.31 0.50
0.7 1.33 2.00 0.85 0.72 0.77 0.59

BB7
0.3 1.40 0.40 0.28 0.37 0.18 0.36
0.5 1.50 1.57 0.66 0.42 0.64 0.41
0.7 4.00 2.00 0.73 0.85 0.71 0.81

BB8
0.3 3.92 0.60 0.10 0.22 0.00 0.00
0.5 4.51 0.80 0.20 0.52 0.00 0.00
0.7 6.89 0.90 0.41 0.84 0.00 0.00

BB10
0.3 1.60 0.83 0.18 0.09 0.00 0.00
0.5 2.50 0.98 0.43 0.19 0.00 0.00
0.7 10.00 1.00 0.25 0.66 0.00 0.00

where Kj is the number of categories of Yj and a1j , . . . , aKj−1,j are the univariate

cutpoints (without loss of generality, we assume α0j = −∞ and αKjj = ∞). Note

in passing that for binary variables (Kj = 2) the calculation of the semi-correlations

is meaningless as the binary variables have no tail asymmetries.

The sample versions of ρ+N , ρ
−
N are sample linear (when both variables are contin-

uous), polychoric (when both variables are ordinal), and polyserial (when one vari-

31



2.2. Estimation

able is continuous and the other is ordinal) correlations in the joint lower and upper

quadrants of the two variables. The sample polychoric and polyserial correlation is

defined as

ρ̂N = argmaxρ

n∑

i=1

log
(

Φ2(αyi1 , αyi2 ; ρ)− Φ2(αyi1−1, αyi2 ; ρ)

−Φ2(αyi1 , αyi2−1; ρ) + Φ2(αyi1−1, αyi2−1; ρ)
)
,

where Φ2(·, ·; ρ) is the BVN cdf with correlation ρ and

ρ̂N = argmaxρ

n∑

i=1

log

{
φ(zi1)

(
Φ
(αyi2 − ρzi1

(1− ρ2)1/2
)
− Φ

(αyi2−1 − ρzi1
(1− ρ2)1/2

))}

with zij = Φ
(

1
n+1

∑n
i=1 1(Yij ≤ yij)

)
, respectively.

2.2 Estimation

We use a two-stage copula modelling approach toward the estimation of a multivari-

ate model that borrows the strengths of the semi-parametric and inference function

for margins (IFM) approach in Genest et al. (1995) and Joe (2005), respectively.

Suppose that the data are yij , j = 1, . . . , d, i = 1, . . . , n, where i is an index for

individuals or clusters and j is an index for the within-cluster measurements. For

i = 1, . . . , n, we start from a d-variate sample yi1, . . . , yid from which d estimators

F1(yi1), . . . , Fd(yid) can be obtained. We use these to transform the yi1, . . . , yid sam-

ple into a uniform sample ui1 = F1(yi1), . . . , uid = Fd(yid) on [0, 1]d and then fit

the factor copula model at the second step. For continuous and discrete data yij , we

use non-parametric and parametric univariate distributions, respectively, to transform

the data yij into copula data uij = Fj(yij), i.e., data on the uniform scale. Hence
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our proposed approach, in line with the approaches in Genest et al. (1995) and Joe

(2005), can be regarded as a two-step approach on the original data or simply as the

standard one-step ML method on the transformed (copula) data.

2.2.1 Univariate modelling

For continuous random variables, we estimate each marginal distribution non-

parametrically by the empirical distribution function of Yj , viz.

Fj(yij) =
1

n+ 1

n∑

i=1

1(Yij ≤ yij) = Rij/(n+ 1),

whereRij denotes the rank of Yij as in the semi-parametric estimation of Genest et al.

(1995) and Shih and Louis (1995). Hence we allow the distribution of the continuous

margins to be quite free and not restricted by parametric families.

Nevertheless, rank-based methods cannot be used for discrete variables with cop-

ulas (Genest and Nešlehová, 2007). Hence, for both ordinal and count variables we

have chosen realistic parametric models:

• For an ordinal response variable Yj we use the univariate probit model in (2.4).

The ordinal response Yj is assumed to have density

fj(yj ;γj) = Φ(αyjj)− Φ(αyj−1,j),

where γj = (a1j , . . . , aKj−1,j) is the vector of the univariate cutpoints.

• For a count response variable Yj we use the negative binomial distribution

(Lawless, 1987). It allows for over-dispersion and its probability mass function

is

fj(yj ;γj) =
Γ(ξ−1j + yj)

Γ(ξ−1j ) yj !

µyj ξ
y
j

(1 + ξ−1j )ξ
−1
j +yj

, yj = 0, 1, 2, . . . , µj > 0, ξj > 0,
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where γj = {µj , ξj} is the vector with the mean and dispersion parameters. In

the limit ξ → 0 the negative binomial reduces to Poisson, which belongs to the

exponential family of distributions and it is the only distribution for count data

that existing latent variable models for mixed data can accommodate.

To this end, for a discrete random variable Yj , we approach estimation by maximizing

the univariate log-likelihoods

`j(γj) =
n∑

i=1

log fj(yij ;γj)

over the vector of the univariate parameters γj . That is equivalent with the first step

of the IFM method in Joe (1997, 2005). In line with the IFM method, if one uses

a misspecified univariate model for the discrete responses at the first step, then the

estimation of the copula parameters at the second step deteriorates as demostrated in

Kim et al. (2007). Nevertheless, there is no “correct specification” of the margins or

copula for data analysis. If one does a proper analysis of the univariate margins for

goodness-of-fit, then the proposed two-stage (or IFM) method should be fine. Kim

et al. (2007) have “true univariate distributions for simulations” and “specified uni-

variate distributions for estimation” that were very far apart and unrealistic, because

the difference of the two is easily detected without too much data.

2.2.2 Copula modelling

After estimating the univariate marginal distributions we proceed to estimation of the

dependence parameters. For the 1-factor and 2-factor models, we let CX1j and CX2j

be parametric bivariate copulas, say with dependence parameters θj and δj , respec-

tively. Let also θ = {γj , θj : j = 1, . . . , d} and θ = {γj , θj , δj : j = 1, . . . , d} to

denote the set of all parameters for the 1- and 2-factor model, respectively. Estimation
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can be achieved by maximizing the joint log-likelihood

`Y(θ) =
n∑

i=1

log fY(yi1, . . . , yid;θ). (2.5)

over the copula parameters θj or δj , j = 1, . . . , d, with the univariate parame-

ters/distributions fixed as estimated at the first step of the proposed two-step estima-

tion approach. The estimated parameters can be obtained by using a quasi-Newton

(Nash, 1990) method applied to the logarithm of the joint likelihood. This numerical

method requires only the objective function, i.e., the logarithm of the joint likeli-

hood, while the gradients are computed numerically and the Hessian matrix of the

second order derivatives is updated in each iteration. The standard errors (SEs) of the

estimates can be obtained via the gradients and the Hessian computed numerically

during the maximization process. These SEs are adequate to assess the flatness of the

log-likelihood. Proper SEs that account for the estimation of univariate parameters

can be obtained by maximizing the joint likelihood in (2.5) at one step over θ.

For factor copula models numerical evaluation of the joint density fY(y;θ) can

be easily done using Gauss-Legendre quadrature (Stroud and Secrest, 1966). To com-

pute one-dimensional integrals for the 1-factor model, we use the following approxi-

mation:

fY(y) =

∫ 1

0

d∏

j=1

fj|X1
(yj |x) dx ≈

nq∑

q=1

wq

d∏

j=1

fj|X1
(yj |xq),

where {xq : q = 1, . . . , nq} are the quadrature points and {wq : q = 1, . . . , nq}

are the quadrature weights. To compute two-dimensional integrals for the 2-factor
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model, the approximation uses Gauss-Legendre quadrature points in a double sum:

fY(y) =

∫ 1

0

∫ 1

0

d∏

j=1

fX2j|X1

(
x2, yj |x1

)
dx1dx2

≈
nq∑

q1=1

nq∑

q2=1

wq1wq2

d∏

j=1

fX2j|X1

(
xq2 , yj |xq1

)
.

With Gauss-Legendre quadrature, the same nodes and weights are used for dif-

ferent functions; this helps in yielding smooth numerical derivatives for numerical

optimization via quasi-Newton (Nash, 1990). Our comparisons show that nq = 25

quadrature points provide good precision.

2.3 Model selection

In this section we propose a heuristic method that automatically selects the bivariate

parametric copula families that link the observed to the latent variables. This is very

useful when the direction to the tail asymmetry based on semi-correlations is not con-

sistent or clear. For multivariate mixed data, it is infeasible to estimate all possible

combinations of bivariate parametric copula families, and compare them on the basis

of information criteria. We develop an algorithm that can quickly select a factor cop-

ula model that accurately captures the (tail) dependence features in the data at hand.

The linking copulas at each factor are selected with a sequential algorithm under

the initial assumption that linking copulas are Frank, and then sequentially copulas

with non-tail quadrant independence are assigned to any of pairs where necessary to

account for tail asymmetry (discrete data) or tail dependence (continuous data).

For the 1-factor model, the proposed model selection algorithm is summarized in

the following steps:

1. For j = 1, . . . , d estimate the marginal distributions Fj(y).
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2. Fit the 1-factor copula model with Frank copulas to link each of the d ob-

served variables with the latent variable, i.e., maximise the log-likelihood func-

tion of the factor copula model in (2.5) over the vector of copula parameters

(θ1, . . . , θd).

3. If the jth linking copula has θ̂j > 0, then select a set of copula candidates

with ability to interpolate between independence and comonotonicity, other-

wise select a set of copula candidates with ability to interpolate between coun-

termonotonicity and independence.

4. For j = 1, . . . , d:

(a) fit all the possible 1-factor copula models, iterating over all the copula

candidates for the jth variable;

(b) select the copula family that corresponds to the lowest information crite-

rion, say the Akaike, that is AIC = −2× `+ 2×#copula parameters;

(c) fix the selected linking copula family for the jth variable.

For more than one factor we can select the appropriate linking copulas accordingly.

We first select copula families in the first factor, and then we proceed to the next

factor and apply exactly the same algorithm.

2.4 Techniques for parametric model comparison and goodness-of-fit

Factor copula models with different bivariate linking copulas can be compared via the

log-likelihood or AIC at the maximum likelihood estimate. In addition, we will use

the Vuong’s test (Vuong, 1989) to show if a factor copula model provides better fit

than the standard factor model with a latent additive structure, that is a factor copula

model with BVN bivariate linking copulas (Krupskii and Joe, 2013; Nikoloulopoulos
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and Joe, 2015). The Vuong’s test is the sample version of the difference in Kullback-

Leibler divergence between two models and can be used to differentiate two para-

metric models which could be non-nested. This test has been used extensively in the

copula literature to compare vine copula models (e.g., Brechmann et al. 2012; Joe

2014; Nikoloulopoulos 2017). We provide specific details in Section 2.4.1.

Furthermore, to assess the overall goodness-of-fit of the factor copula models for

mixed data, we will use appropriately the limited information M2 statistic (Maydeu-

Olivares and Joe, 2006). The M2 statistic has been developed for goodness-of-fit

testing in multidimensional contingency tables. Nikoloulopoulos and Joe (2015) has

used the M2 statistic to assess the goodness-of-fit of factor copula models for ordinal

data. We build on the aforementioned papers and propose a methodology to assess

the overall goodness-of-fit of factor copula models for mixed continuous and discrete

responses. We provide the specifics for the M2 statistic in Section 2.4.2.

2.4.1 Vuong’s test for parametric model comparison

In this subsection, we summarize Vuong’s test for comparing parametric models

(Vuong, 1989). Assume that we have Models 1 and 2 with parametric densities f (1)Y

and f (2)Y , respectively. We can compare

∆1fY = n−1
[ n∑

i=1

{
EfY log fY(yi)− EfY log f

(1)
Y (yi;θ1)

}]
,

∆2fY = n−1
[ n∑

i=1

{
EfY log fY(yi)− EfY log f

(2)
Y (yi;θ2)

}]
.

where θ1,θ2 are the parameters in Models 1 and 2, respectively, that lead to the

closest Kullback-Leibler divergence to the true fY; equivalently, they are the limits

in probability of the MLEs based on Models 1 and 2, respectively.
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Model 1 is closer to the true fY, i.e., is the better fitting model if ∆ = ∆1fY −

∆2fY < 0, and Model 2 is the better fitting model if ∆ > 0. The sample version of

∆ with MLEs θ̂1, θ̂2 is

D̄ =

n∑

i=1

Di/n,

where Di = log

[
f
(2)
Y (yi;θ̂2)

f
(1)
Y (yi;θ̂1)

]
. Vuong (1989) has shown that asymptotically that

√
nD̄/s ∼ N(0, 1),

where s2 = 1
n−1

∑n
i=1(Di − D̄)2. Hence, its 95% confidence interval (CI) is D̄ ±

1.96× 1√
n
σ. In addition, Vuong (1989) provides adjusted log-likelihood ratios based

on AIC correction (Joe, 2014). The AIC adjusted Vuong’s 95% CI is

D̄ − n−1[dim(θ̂2)− dim(θ̂1)]± 1.96× 1√
n
σ.

If the CIs include 0, then Model 1 and Model 2 are considered to be non-significantly

different, while if the CIs are above 0, then Model 2 is favourable and considered to

fit better than Model 1.

2.4.2 M2 goodness-of-fit statistic

Since the M2 statistic has been developed for multivariate ordinal data (Maydeu-

Olivares and Joe, 2006), we propose to first transform the continuous and count

variables to ordinal and then calculate the M2 statistic at the maximum likelihood

estimate before transformation.

Continuous variables can be transformed to ordinal with categories that are mean-

ingful both practically and scientifically. If this is not the case, we propose an unsu-

pervised strategy of transforming a continuous into an ordinal variable:
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1. Set the number of ordinal categories Kj .

2. Transform Yj to a standard uniform random variable Uj using its empirical

distribution function.

3. Set the ordinal cutpoints on the uniform scale by generating a regular sequence

from 1 to Kj − 1 and then dividing over Kj .

4. Divide the range of Uj into intervals with the ordinal cutpoints as breaks.

5. Transform Uj into an ordinal variable Yj according to the interval in which its

values fall.

Count variables that contain very high counts or very low counts, can be treated as

ordinal where the first or the last category contains all the low or high counts, respec-

tively, and their other values remain as they are. We further propose an unsupervised

strategy of categorising a count into an ordinal variable:

1. Set the number of ordinal categories Kj .

2. Divide the range of Yj into intervals with a regular sequence of length Kj + 1

from min(Yj) to max(Yj) as breaks.

3. Transform Yj into an ordinal variable according to the interval in which its

values fall.

After applying the transformations as above for each continuous or count vari-

able, we have d ordinal variables Y1, . . . , Yd (both the original and the transformed

ones) where the jth (1 ≤ j ≤ d) variable consists of Kj ≥ 2 categories labelled as

0, 1, . . . ,Kj − 1. Consider the set of univariate and bivariate residuals that do not

include category 0. This is a residual vector of dimension

s =

d∑

j=1

(Kj − 1) +
∑

1≤j1<j2≤d
(Kj1 − 1)(Kj2 − 1).
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For a factor copula model with parameter vector θ of dimension q, let π2(θ) =

(
π̇1(θ)>, π̇2(θ)>

)> be the column vector of the model-based marginal probabilities

with π̇1(θ) the vector of univariate marginal probabilities, and π̇2(θ) the vector of

bivariate marginal probabilities. Also, let p2 = (ṗ>1 , ṗ
>
2 )> be the vector of the

observed sample proportions, with ṗ1 the vector of univariate marginal proportions,

and ṗ2 the vector of the bivariate marginal proportions.

With a sample size n, the limited information statistic M2 is given by

M2 = M2(θ̂) = n
(
p2 − π2(θ̂)

)>
C2(θ̂)

(
p2 − π2

(
θ̂)
)
, (2.6)

with

C2(θ) = Ξ−12 −Ξ−12 ∆2(∆
>
2 Ξ−12 ∆2)

−1∆>2 Ξ−12 = ∆
(c)
2

(
[∆

(c)
2 ]>Ξ2∆

(c)
2

)−1
[∆

(c)
2 ]>,

(2.7)

where ∆2 = ∂π2(θ)/∂θ> is an s×q matrix with the derivatives of all the univariate

and bivariate marginal probabilities with respect to the model parameters, ∆
(c)
2 is an

s × (s − q) orthogonal complement to ∆2, such that [∆
(c)
2 ]>∆2 = 0, and Ξ2 =

diag(π2(θ))− π2(θ)π2(θ)> is the s× s covariance matrix of all the univariate and

bivariate marginal sample proportions, excluding category 0. Due to equality in (2.7),

C2 is invariant to the choice of orthogonal complement. The limited information

statisticM2 has a null asymptotic distribution that is χ2 with s−q degrees of freedom

when the estimate θ̂ is
√
n-consistent. For details on the computation of Ξ2 and ∆2

for factor copula models we refer the interested reader to Nikoloulopoulos and Joe

(2015).
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2.5 Applications

In this section we illustrate the proposed methodology by re-analysing three mixed

response datasets.

Initially, we use the diagnostic method in Joe (2014, pages 245-246) to show that

each dataset (or more precisely the correlation matrix of the observed variables for

each dataset) has a factor structure based on linear factor analysis. The correlation

matrix Robserved has been obtained based on the sample correlations from the bi-

variate pairs of the observed variables. These are the linear (when both variables are

continuous), polychoric (when both variables are discrete), and polyserial (when one

variable is continuous and the other is discrete) sample correlations among the ob-

served variables. The resulting Robserved is generally positive definite if the sample

size is not small enough; if not one has to convert it to positive definite. We calculate

various measures of discrepancy between Robserved and Rmodel (the resulting cor-

relation matrix of linear factor analysis), such as the maximum absolute correlation

difference D1 = max |Rmodel −Robserved|, the average absolute correlation differ-

enceD2 = avg|Rmodel−Robserved|, and the correlation matrix discrepancy measure

D3 = log
(
det(Rmodel)

)
− log

(
det(Robserved)

)
+ tr(R−1modelRobserved)− d.

After confirming that a factor model with a parsimonious correlation structure

is reasonable, we calculate the semi-correlations for each pair of observed variables

to check if there is tail asymmetry. This will be a useful information for choosing

potential parametric bivariate copulas other than the BVN copulas that lead to the

standard factor model. Note that when the variables are negatively associated we

calculate the sample semi-correlations in the lower-upper and upper-lower quadrant.

After motivating why more flexible dependencies are needed in cases of mixed

data and how those dependencies in the data can be captured by suitable bivariate

copulas, we proceed with factor copula models and construct a plausible factor cop-
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ula model, to capture any type of reflection asymmetric dependence, by using the

proposed algorithm in Section 2.3. For a baseline comparison, we first fit the factor

copula models with the comprehensive bivariate parametric copula families that al-

low for reflection symmetric dependence; these are the BVN, Frank, and tν copulas.

For tν copulas, we summarize the choice of integer ν with the largest log-likelihood.

For the standard 2-factor model, to obtain a unique solution we must impose suf-

ficient constraints. One parameter for the second factor can be set to zero and the

likelihood can be maximized with respect to other 2d− 1 parameters. We report the

varimax transform (Kaiser, 1958) of the loadings (a reparametrization of 2d parame-

ters), converted to factor copula parameters via the relations

θj = βj1, δj =
βj2

(1− β2j1)1/2
, (2.8)

where βj1 and βj2 are the loadings at the first and second factor, respectively (Krup-

skii and Joe, 2013; Nikoloulopoulos and Joe, 2015).

If the number of parameters is not the same between the models, we use the AIC

as a rough diagnostic measure for goodness-of-fit between the models, otherwise we

use the likelihood at the maximum likelihood estimates. We further compute the

Vuong’s tests with Model 1 being the factor copula model with BVN copulas, that is

the standard factor model, to reveal if any other factor copula model provides better fit

than the standard factor model. To make it easier to compare strengths of dependence,

we convert the estimated parameters to Kendall’s τ ’s in (−1, 1) via the relations in

Joe (2014, Chapter 4); SEs are also converted via the delta method. For the model

that provides the best fit, we provide the estimates and SEs that are obtained by

maximizing the joint likelihood in (2.5) at one step over θ. Although, the two-stage

estimation approach in Section 2.2 is a convenient way to quickly compare candidate

factor copula models, the full likelihood is applied for the best fitting factor copula
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model. The overall fit of the factor copula models is evaluated using the M2 statistic.

Note that the M2 statistic in the case with 2d − 1 copulas (one set to independence

for the second factor) is computed with ∆2 having one less column.

2.5.1 Political-economic dataset

Quinn (2004) considered measuring the (latent) political-economic risk of 62 coun-

tries, for the year 1987. The political-economic risk is defined as the country’s risk

in manipulating economic rules for its own and constituents’ advantages (see e.g.,

North and Weingast 1989). Quinn (2004) used 5 mixed variables, namely the con-

tinuous variable ‘black-market premium’ in each country (used as a proxy for illegal

economic activity), the continuous variable productivity as measured by ‘real gross

domestic product per worker’ in 1985 international prices, the binary variable ‘inde-

pendence of the national judiciary’ (1 if the judiciary is judged to be independent and

0 otherwise), and the ordinal variables measuring the ‘lack of expropriation risk’ and

‘lack of corruption’. The dataset and its complete description can be found in Quinn

(2004) or in the R package MCMCpack (Martin et al., 2011). Note that since the con-

tinuous variable black-market premium is negatively associated with the remaining

variables (from the context), we re-orient it leading to positive dependence among all

the observed variables.

Table 2.2 shows that the sample correlation matrix of the mixed responses has

an 1-factor structure based on linear factor analysis (large D3 is due to the small

sample size as demonstrated using simulated data in Section 2.6). The sample semi-

correlations in Table 2.2 show that there is more probability in the upper tail or lower

tail compared with a discretized MVN, suggesting that a factor model with bivariate

parametric copulas with upper or lower tail dependence might provide a better fit.

Table 2.3 gives the estimated parameters, their standard errors (SE) in Kendall’s τ

scale, joint log-likelihoods, the 95% CIs of Vuong’s tests, and the M2 statistics for
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Table 2.2: The sample correlation ρN , lower semi-correlation ρ−N , and upper semi-
correlation ρ+N for each pair of variables, along with the measures of discrepancy between
the sample and the resulting correlation matrix of linear factor analysis with 1 and 2 factors
for the political-economic risk data.

pairs of variables ρN ρ−N ρ+N

BM GDP 0.53 -0.04 0.57
BM IJ 0.61 - -
BM XPR 0.67 0.88 0.63
BM CRP 0.62 0.16 0.55
GDP IJ 0.78 - -
GDP XPR 0.55 0.11 0.75
GDP CRP 0.77 0.24 0.63
IJ XPR 0.91 - -
IJ CRP 0.87 - -
XPR CRP 0.76 0.71 0.71

# factors D1 D2 D3

1 0.16 0.04 0.91
2 0.06 0.01 0.22

BM: black-market premium; CPR: lack of corruption; GDP: gross domestic product; IJ: independent

judiciary; XPR: lack of expropriation risk.

the 1-factor copula models. Table 2.3 also indicates the parametric copula family

chosen for each pair using the proposed heuristic algorithm. Copulas with asymmet-

ric dependence are selected for all the copulas that link the latent variable to each of

the observed variables. Hence, it is revealed that there are features in the data such as

tail dependence and asymmetry which cannot be captured by copulas with reflection

symmetric dependence such as BVN, Frank and tν copulas.
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Table 2.3: Estimated parameters, their standard errors (SE) in Kendall’s τ scale, joint log-likelihoods, the 95% CIs of Vuong’s statistics, and the M2

statistics for the one-factor copula models for the political-economic risk data.

1-factor BVN¶ t5 Frank Selected

τ̂ SE τ̂ SE τ̂ SE copulas τ̂ SE

BM 0.50 0.06 0.51 0.07 0.49 0.06 Joe 0.51 0.05
GDP 0.57 0.05 0.57 0.06 0.58 0.06 Joe 0.58 0.05
IJ 0.80 0.09 0.81 0.09 0.75 0.09 reflected Joe 0.80 0.07
XPR 0.66 0.06 0.68 0.07 0.66 0.06 Joe 0.69 0.06
CRP 0.71 0.06 0.70 0.06 0.72 0.06 Gumbel 0.74 0.06

` -165.15 -166.25 -164.89 -151.98
Vuong 95%CI (-0.051,0.015) (-0.077,0.085) (0.073,0.352)
M2 179.2 187.4 177.6 129.2
df 134 134 134 134
p-value < 0.01 < 0.01 < 0.01 0.60

¶: The resulting model is the same as the standard factor model; BM: black-market premium; GDP: gross domestic product; IJ: independent judiciary; XPR: lack of

expropriation risk; CPR: lack of corruption.
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In all of the fitted models the estimated Kendall’s τ ’s are similar. Kendall’s τ only

accounts for the dependence dominated by the middle of the data, and it is expected

to be similar amongst different families of copulas. However, the tail dependence and

tail order vary, as explained in Section 1.3, and they are properties to consider when

choosing amongst different families of copulas (Nikoloulopoulos and Karlis, 2008).

The table shows that the selected model using the proposed algorithm provides

the best fit and there is a substantial improvement over the standard factor model as

indicated by the Vuong and M2 statistics. To compute the M2 statistics we trans-

formed the continuous variables to ordinal with 5 categories using the unsupervised

strategy in Section 2.4.2; a similar inference was drawn, when we transformed them

to ordinal with 3, 4, or 6 categories. The factor copula parameter of 0.51 on negative

black market premium indicates a negative association between the illegal economic

activity and the latent variable. All the other estimated factor copula parameters indi-

cate a positive association between each of the other observed variables (independent

judiciary, productivity, lack of expropriation, and lack of corruption) with the latent

variable. Hence, we can interpret the latent variable to be the political economical

certainty.

2.5.2 General social survey

Hoff (2007) analysed seven demographic variables of 464 male respondents to the

1994 General Social Survey. Of these seven, two were continuous (income and age

of the respondents), three were ordinal with 5 categories (highest degree of the survey

respondent, income and highest degree of respondent’s parents), and two were count

variables (number of children of the survey respondent and respondent’s parents).

The data are available in Hoff (2007, Supplemental materials).
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Table 2.4: The sample correlation ρN , lower semi-correlation ρ−N , and upper semi-
correlation ρ+N for each pair of variables, along with the measures of discrepancy between
the sample and the resulting correlation matrix of linear factor analysis with 1, 2 and 3 fac-
tors for the general social survey dataset.

pairs of variables ρN ρ−N ρ+N

income age 0.29 0.48 0.23
income degree 0.52 0.24 0.33
income pincome 0.14 0.02 0.28
income pdegree 0.24 0.04 0.08
income child 0.22 0.23 0.01
income pchild -0.09 0.06 0.00
age degree 0.06 0.22 -0.04
age pincome -0.11 -0.02 0.12
age pdegree -0.14 -0.42 0.44
age child 0.58 0.36 0.26
age pchild 0.12 0.18 0.07
degree pincome 0.21 0.17 -0.05
degree pdegree 0.46 0.46 0.41
degree child -0.11 -0.10 -0.09
degree pchild -0.25 -0.14 -0.30
pincome pdegree 0.44 0.44 0.34
pincome child -0.16 -0.15 0.11
pincome pchild -0.23 0.13 -0.30
pdegree child -0.21 0.08 0.10
pdegree pchild -0.34 0.19 -0.32
child pchild 0.20 -0.11 -0.06

# factors D1 D2 D3

1 0.55 0.09 0.82
2 0.15 0.03 0.13
3 0.02 0.00 0.00

Table 2.4 shows that the sample correlation matrix of the mixed responses has a

2- or even a 3-factor structure based on linear factor analysis. The direction of the

tail asymmetry based on sample semi-correlations in Table 2.4 is not consistent, and

this shows the usefulness of the proposed model selection technique. Table 2.5 gives

the estimated parameters, their standard errors (SE) in Kendall’s τ scale, the joint

log-likelihoods, the 95% CIs of Vuong’s tests, and the M2 statistics for the 1-factor
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and 2-factor copula models. The best fit for the 1-factor model is based on the bi-

variate copulas selected by the proposed algorithm, where there is improvement over

the factor copula model with BVN copulas according to Vuong’s statistic. However,

assessing the overall goodness-of-fit via the M2 statistic, it is revealed that one latent

variable is not adequate to explain the dependencies among the mixed responses. To

apply the M2 statistic, age and income were transformed to ordinal with 4 (18–24,

25–44, 45–64, and 65+) and 5 (0–10, 11–19, 20–29, 30–40, and 41+) categories,

respectively, and number of children of the survey respondent and respondent’s par-

ents were treated as ordinal where the 4th (more than 3 children) and 8th (more than

7 children) category, respectively, contained all the high counts.

The 2-factor copula models with BVN, tν , and Frank copulas provide some im-

provement over the 1-factor copula models but according to the M2 statistic they still

have a poor fit. Note that the factor copula model with t9 copulas was not identifi-

able (large SEs) in line with Nikoloulopoulos and Joe (2015), hence one parameter

for the second factor was set to zero and the likelihood was maximized with respect

to the remaining parameters. We report the varimax transform (Kaiser, 1958) of the

loadings, converted to factor copula parameters via the relations in (2.8).

The selected 2-factor copula model using the algorithm in Section 2.3 shows

improvement over the standard factor model according to the Vuong’s statistic and

better fit according to the M2 statistic; it changes a p-value < 0.001 to one > 0.10.

For the 2-factor model based on the proposed algorithm for model selection, note

that, without the need for a varimax rotation, the unique loading parameters (τ̂ ’s

converted to normal copula parameters θ̂j’s and δ̂j’s and then to loadings using the

relations in (2.8)) show that one factor is loaded only on the demographic variables

of the respondent’s parents.
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Table 2.5: Estimated parameters, their standard errors (SE) in Kendall’s τ scale, joint log-
likelihoods, the 95% CIs of Vuong’s statistics, and the M2 statistics for the 1- and 2-factor
copula models for the general social survey dataset.

1-factor BVN¶ t9 Frank Selected

τ̂ SE τ̂ SE τ̂ SE copulas τ̂ SE

income 0.20 0.04 0.20 0.04 0.20 0.04 Joe 0.29 0.04
age -0.14 0.04 -0.14 0.04 -0.14 0.04 2-reflected Joe -0.14 0.03
degree 0.40 0.04 0.39 0.04 0.38 0.04 t3 0.45 0.04
pincome 0.33 0.03 0.34 0.04 0.35 0.04 t3 0.33 0.05
pdegree 0.62 0.05 0.65 0.05 0.68 0.06 reflected Gumbel 0.56 0.05
child -0.20 0.04 -0.19 0.04 -0.19 0.04 2-reflected Joe -0.14 0.03
pchild -0.32 0.03 -0.31 0.04 -0.32 0.04 2-reflected Gumbel -0.27 0.03

` -3425.39 -3420.56 -3433.83 -3397.79
Vuong 95%CI (-0.005,-0.025) (-0.037,0.001) (0.022,0.097)
M2 743.74 715.45 738.76 660.47
df 348 348 348 348
p-value < 0.001 < 0.001 < 0.001 < 0.001

2-factor BVN¶ t9 Frank Selected

τ̂ τ̂ τ̂ SE copulas τ̂ SE

1st factor
income 0.36 0.35 0.13 0.04 reflected Gumbel 0.34 0.03
age -0.05 -0.06 0.50 0.05 reflected Joe 0.49 0.03
degree 0.55 0.53 -0.12 0.04 BVN 0.18 0.04
pincome 0.27 0.28 -0.21 0.04 1-reflected Joe -0.13 0.04
pdegree 0.48 0.50 -0.31 0.05 1-reflected Joe -0.13 0.04
child -0.13 -0.14 0.52 0.05 reflected Joe 0.44 0.04
pchild -0.28 -0.28 0.23 0.04 Gumbel 0.11 0.03
2nd factor
income 0.38 0.41 0.50 0.06 Gumbel 0.40 0.04
age 0.54 0.55 0.21 0.04 2-reflected Joe -0.14 0.03
degree 0.14 0.17 0.57 0.07 reflected Joe 0.65 0.06
pincome -0.09 -0.08 0.23 0.04 Gumbel 0.30 0.04
pdegree -0.16 -0.14 0.44 0.05 t5 0.49 0.04
child 0.53 0.53 0.08 0.04 BVN -0.24 0.04
pchild 0.13 0.10 -0.24 0.04 2-reflected Gumbel -0.26 0.03

` -3286.80 -3278.88 -3300.07 -3235.86
Vuong 95%CI (-0.004,-0.038) (-0.058,0.001) (0.061,0.159)
M2 471.47 461.70 492.37 370.61
df 342 342 341 341
p-value < 0.001 < 0.001 < 0.001 0.13

¶: The resulting model is the same as the standard factor model; pdemographic: demographic variable
of respondent’s parents.
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2.5.3 Swiss consumption survey

Irincheeva et al. (2012b) considered measuring the latent variable ‘financial wealth

of the household’ in its different realizations by analysing seven household variables

of n = 9960 respondents to the Swiss consumption survey. Out of these seven,

three were continuous (food, clothing and leisure expenses), three were binary (dish-

washer, car, and motorcycle), and one was a count variable (the number of bicycles

in possession of the household).

Figure 2.1: Bivariate normal scores plots, along with correlations and semi-correlations for
the continuous data from the Swiss consumption survey.
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Irincheeva et al. (2012b), with simple descriptive statistics such as scatter plots

of the original data, have shown that these mixed responses have reflection asym-

metric dependence, and fitted their latent variable approach with one and two latent

variables. In Figure 2.1 we depict the bivariate normal scores plots for the continu-

ous data along with their correlations and semi-correlations. With a bivariate normal

scores plot one can check for deviations from the elliptical shape that would be ex-

pected with the BVN copula, and hence assess if tail asymmetry and tail dependence

exists on the data. For all the pairs the upper semi-correlation is larger, and inter-

estingly, contrasting the bivariate normal scores plots in Figure 2.1 with the contour

plots in Figure 1.2, it is apparent that for the continuous variables the linking copulas

might be the BB10 copulas.

Table 2.6 shows that the sample correlation matrix of the mixed responses has

a 2-factor structure based on linear factor analysis. The sample semi-correlations in

Table 2.6 show that there is more probability in the upper tail and lower tail among

the continuous variables and between each of the continuous variables with the count

variable, respectively, suggesting that a factor model with bivariate parametric cop-

ulas with asymmetric tail dependence might provide a better fit. Table 2.7 gives the

estimated parameters, their standard errors (SE) in Kendall’s tau scale, the joint log-

likelihoods, the 95% CIs of Vuong’s test, and the M2 statistics for the 1-factor and

2-factor copula models. The best fitted 1- and 2-factor models result when we use

BB10 copulas with asymmetric quadrant tail independence to link the latent variable

to each of the continuous observed variables and copulas with lower tail dependence

to link the latent variables to the discrete observed variables. Once again the one-

factor copula model is not adequate to explain the dependence amongst the mixed

responses based on the M2 statistic (Table 2.7, 1-factor). To apply the M2 statis-
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Table 2.6: The sample correlation ρN , lower semi-correlation ρ−N , and upper semi-
correlation ρ+N for each pair of variables, along with the measures of discrepancy between
the sample and the resulting correlation matrix of linear factor analysis with 1, 2 and 3 fac-
tors for the Swiss consumption survey dataset.

pairs of variables ρN ρ−N ρ+N

food clothes 0.65 0.21 0.76
food leisure 0.60 0.18 0.76
food dishwasher 0.31 - -
food car 0.38 - -
food motorcycle 0.11 - -
food bicycles 0.21 0.22 0.02
clothes leisure 0.52 0.02 0.63
clothes dishwasher 0.23 - -
clothes car 0.25 - -
clothes motorcycle 0.07 - -
clothes bicycles 0.18 0.15 0.02
leisure dishwasher 0.24 - -
leisure car 0.18 - -
leisure motorcycle 0.01 - -
leisure bicycles 0.08 0.04 0.08
dishwasher car 0.43 - -
dishwasher motorcycle 0.03 - -
dishwasher bicycles 0.24 - -
car motorcycle 0.18 - -
car bicycles 0.26 - -
motorcycle bicycles 0.21 - -

# factors D1 D2 D3

1 0.27 0.06 0.26
2 0.12 0.02 0.06
3 0.03 0.01 0.01

tic, we transformed the continuous to ordinal variables with 3 categories using the

unsupervised strategy in Section 2.4.2 and the count variable bicycle was treated as

ordinal where the 6th category contained all the high counts (5 bicycles or more).

While it is revealed that the selected 2-factor copula model is the best model

(lowest AIC) and there is substantial improvement over the standard 2-factor model,

it is not apparent from the M2 statistic that the response patterns are satisfactorily
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Table 2.7: Estimated parameters, their standard errors (SE) in Kendall’s τ scale, joint log-
likelihoods, the 95% CIs of Vuong’s statistics, and the M2 statistics for the 1- and 2-factor
copula models for the Swiss consumption survey dataset.

1-factor BVN¶ t5 Frank Selected

τ̂ SE τ̂ SE τ̂ SE Copulas τ̂ SE

food 0.69 0.01 0.73 0.01 0.74 0.01 reflected BB10 0.79 0.00
clothes 0.53 0.01 0.53 0.01 0.53 0.01 BB10 0.38 0.00
leisure 0.47 0.01 0.50 0.01 0.50 0.01 BB10 0.39 0.00
dishwasher 0.24 0.01 0.25 0.01 0.23 0.01 reflected Joe 0.28 0.01
car 0.27 0.01 0.30 0.01 0.28 0.01 reflected Joe 0.23 0.01
motorcycle 0.07 0.01 0.06 0.01 0.08 0.01 reflected Joe 0.13 0.01
bicycles 0.15 0.01 0.15 0.01 0.16 0.01 reflected Joe 0.17 0.01

AIC 55004.24 54221.36 55105.88 48932.32
Vuong 95% CI (0.032,0.046) (-0.015,0.005) (0.286,0.324)
M2 2775.73 2734.05 2808.53 1626.54
df 71 71 71 68
p−value < 0.001 < 0.001 < 0.001 < 0.001

2-factor BVN¶ t7 Frank Selected

τ̂ τ̂ SE τ̂ SE copulas τ̂ SE

1st factor
food 0.61 0.34 0.03 0.48 0.01 BB10 0.38 0.00
clothes 0.51 0.32 0.03 0.42 0.01 BB10 0.36 0.01
leisure 0.49 0.35 0.02 0.42 0.01 BB10 0.38 0.01
dishwasher 0.14 -0.07 0.03 0.08 0.01 reflected Joe 0.19 0.02
car 0.12 -0.13 0.03 0.07 0.01 reflected Joe 0.10 0.01
motorcycle 0.01 -0.10 0.02 -0.08 0.01 Frank 0.02 0.01
bicycles 0.07 -0.10 0.02 -0.05 0.01 Frank 0.04 0.01
2nd factor
food 0.36 0.66 0.01 0.66 0.01 BB10 0.53 0.01
clothes 0.18 0.46 0.02 0.40 0.01 BVN 0.28 0.01
leisure 0.07 0.41 0.02 0.36 0.01 BB10 0.30 0.01
dishwasher 0.33 0.37 0.01 0.26 0.01 BVN 0.42 0.01
car 0.48 0.46 0.02 0.36 0.01 reflected Joe 0.35 0.01
motorcycle 0.19 0.15 0.01 0.21 0.02 reflected Joe 0.17 0.01
bicycles 0.27 0.27 0.01 0.31 0.01 reflected Gumbel 0.27 0.01

AIC 54245.91 53482.23 53514.75 46233.00
Vuong 95% CI (0.032,0.045) (0.028,0.046) (0.386,0.419)
M2 1920.27 1886.66 1945.07 450.32
df 65 64 64 59
p-value < 0.001 < 0.001 < 0.001 < 0.001

¶: The resulting model is the same as the standard factor model.
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explained by even 2 latent variables. This is not surprising since one should expect

discrepancies between the postulated parametric model and the population probabil-

ities, when the sample size is sufficiently large (Maydeu-Olivares and Joe, 2014). In

Table 2.8 we list the maximum deviations of observed and expected counts for each

bivariate margin, that is, Dj1j2 = nmaxy1,y2 |pj1,j2,y1,y2 − πj1,j2,y1,y2(θ̂)|. From

the table, it is revealed, that there is no misfit. The maximum discrepancy occurs

between the continuous variables ‘food’ and ‘leisure’. For this bivariate margin, the

discrepancy of 509/9960 maximum occurs in the BVN factor copula model, while

this drops to 133/9960 in the selected 2-factor copula model.

Table 2.8: Maximum deviations Dj1j2 of observed and expected counts for each bivari-
ate margin (j1, j2) for the 1- and 2-factor copula models for the Swiss consumption survey
dataset.

1-factor model 2-factor model

Dj1,j2 BVN t5 Frank Selected BVN t7 Frank Selected

D1,2 347 317 303 167 349 311 270 40
D1,3 511 468 456 183 509 460 428 133
D1,4 158 177 163 70 159 185 161 56
D1,5 231 189 223 119 233 181 230 60
D1,6 87 117 88 60 87 130 72 12
D1,7 78 92 79 88 78 110 89 81
D2,3 442 418 431 69 433 403 393 54
D2,4 59 80 84 145 38 56 64 86
D2,5 96 107 107 201 60 47 93 36
D2,6 18 3 18 27 19 15 29 39
D2,7 51 76 60 83 49 91 52 61
D3,4 182 146 141 196 253 216 168 83
D3,5 82 105 106 191 59 13 83 61
D3,6 59 58 69 71 13 23 27 45
D3,7 62 54 64 103 65 67 69 59
D4,5 289 276 286 223 66 74 207 2
D4,6 9 5 11 29 133 138 100 96
D4,7 82 81 81 88 28 20 46 54
D5,6 111 123 111 77 15 22 19 20
D5,7 101 96 95 68 33 25 40 64
D6,7 70 74 70 61 80 96 87 52
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For the selected 2-factor model based on the proposed algorithm, note that, with-

out the need for a varimax rotation, the unique loadings show that one factor is loaded

only on the discrete variables (dishwasher, car, motorcycle, and bicycles), while both

factors are loaded on the continuous variables (food, clothes, and leisure). This re-

veals that the one latent variable which is only associated with the continuous vari-

ables measures the expenses, while the the other which is associated with all the

mixed variables measures the possession.

2.6 Simulations

An extensive simulation study is conducted to (a) examine the performance of the

diagnostics to show that the correlation matrix of the simulated variables has a factor

structure, (b) check the small-sample efficiency of the sample versions of ρN , ρ+N , ρ
−
N ,

(c) gauge the small-sample efficiency of the proposed estimation method and inves-

tigate the misspecification of the bivariate pair-copulas, (d) examine the reliability

of using the heuristic algorithm to select the correct bivariate linking copulas, and

(e) study the small-sample performance of the M2 statistic after transforming the

continuous and count variables to ordinal.

We randomly generated samples of size n = {100, 300, 500} from each selected

one- and two-factor copula models in the three application examples in Section 2.5.

We set the type of the variables, the univariate margins and the bivariate linking

copulas, along with their univariate and dependence parameters to mimic the real

data. The binary variables don’t have tail asymmetries, hence parametric copulas are

less distinguishable. Therefore instead of binary, we simulated from ordinal with 3

equally weighted categories.
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Table 2.9 contains the simulated means and standard deviations (SD) of the dis-

crepancy measures D1, D2 and D3. The resultant summaries show that all the dis-

crepancy measures correctly recognize both that the correlation structure has a factor

structure and the number of factors. Among the discrepancy measures,D2 has a good

performance even for a small sample size (n = 100), while this is not the case for

D1 and D3 which require larger sample sizes to successively determine the number

of adequate factors.

To check the small-sample efficiency of the sample versions of ρN , ρ+N and ρ−N

we have generated 104 random samples of size n = {100, 300, 500} from all the

aforementioned bivariate copulas that join the distributions of two continuous vari-

ables, two ordinal variables, one continuous and one ordinal variable, one continuous

and one count variable, one ordinal and one count, and two count variables with

small (τ = 0.3), moderate (τ = 0.5) and strong dependence (τ = 0.7). Represen-

tative results are shown in Table 2.10 for the Gumbel copula. Note that the count

variable was treated as ordinal with 5 categories where the 5th category contained all

the counts greater than 3. The resultant biases, root mean square errors (RMSEs),

and standard deviations (SDs), scaled by n, show the estimation of the correlations

and semi-correlations is highly efficient. Note in passing that because only part of

the data are used in computing sample semi-correlations, their variability is larger

than the correlations. However, if there is a consistent direction to the tail asymmetry

based on semi-correlations, this is useful information for choosing potential bivariate

parametric copulas.
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Table 2.9: Small sample of sizes n = {100, 300, 500} simulations (104 replications) from
the selected factor copula models in Section 2.5 to assess the measures of discrepancy D1,
D2, andD3 between the observed and the resulting correlation matrix of linear factor analysis
for 1, 2 and 3 factors, with resultant means and standard deviations (SD).

D1 D2 D3

n # factors mean SD mean SD mean SD

Political-economic dataset – 1-factor model

100
1 0.061 0.027 0.016 0.006 0.101 0.071
2 0.022 0.016 0.004 0.003 0.014 0.023

300 1 0.038 0.017 0.010 0.004 0.036 0.023
2 0.011 0.008 0.002 0.002 0.004 0.005

500
1 0.033 0.014 0.009 0.003 0.024 0.015
2 0.009 0.006 0.002 0.001 0.002 0.003

General social survey – 1-factor model

100
1 0.178 0.048 0.048 0.010 0.192 0.074
2 0.119 0.037 0.025 0.006 0.077 0.039
3 0.066 0.030 0.010 0.004 0.021 0.016

300
1 0.104 0.028 0.028 0.006 0.062 0.023
2 0.068 0.021 0.015 0.004 0.024 0.012
3 0.036 0.017 0.006 0.002 0.006 0.005

500
1 0.081 0.022 0.022 0.004 0.038 0.014
2 0.053 0.016 0.012 0.003 0.014 0.007
3 0.028 0.013 0.005 0.002 0.004 0.003

Swiss consumption survey – 1-factor model

100
1 0.223 0.059 0.059 0.011 0.291 0.101
2 0.144 0.046 0.029 0.007 0.106 0.053
3 0.077 0.035 0.011 0.004 0.028 0.022

300
1 0.162 0.044 0.045 0.007 0.156 0.044
2 0.091 0.030 0.018 0.005 0.036 0.019
3 0.044 0.021 0.007 0.003 0.009 0.007

500
1 0.150 0.039 0.041 0.006 0.130 0.032
2 0.071 0.024 0.014 0.004 0.022 0.011
3 0.034 0.016 0.005 0.002 0.005 0.004

General social survey – 2-factor model

100
1 0.360 0.066 0.102 0.018 0.691 0.183
2 0.117 0.042 0.027 0.007 0.118 0.059
3 0.059 0.028 0.010 0.004 0.028 0.023

300
1 0.332 0.045 0.101 0.012 0.573 0.103
2 0.066 0.023 0.017 0.004 0.042 0.021
3 0.033 0.015 0.006 0.003 0.009 0.008

500
1 0.326 0.037 0.101 0.010 0.552 0.078
2 0.052 0.017 0.014 0.004 0.027 0.014
3 0.026 0.012 0.005 0.002 0.006 0.005

Swiss consumption survey – 2-factor model

100
1 0.249 0.070 0.060 0.013 0.343 0.129
2 0.130 0.047 0.026 0.007 0.111 0.056
3 0.065 0.031 0.010 0.004 0.028 0.023

300
1 0.200 0.047 0.048 0.009 0.198 0.061
2 0.075 0.028 0.017 0.004 0.040 0.020
3 0.036 0.017 0.006 0.003 0.009 0.007

500
1 0.191 0.038 0.046 0.007 0.171 0.045
2 0.059 0.021 0.014 0.004 0.026 0.013
3 0.027 0.013 0.005 0.002 0.006 0.005
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Table 2.10: Small sample of sizes n = {100, 300, 500} simulations (104 replications) from the Gumbel copula with Kendall’s τ = {0.3, 0.5, 0.7} for
mixed continuous, ordinal, and count data with resultant biases, root mean square errors (RMSE) and standard deviations (SD), scaled by n, for the
estimated correlation ρN , lower semi-correlation ρ−N , and upper semi-correlation ρ+N .

(continuous, continuous) (continuous, ordinal) (continuous, count) (ordinal, ordinal) (ordinal, count) (count, count)

n τ ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N

100 0.3 True values 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46
nBias -1.09 -0.79 -4.18 -1.05 0.16 -9.25 1.62 1.40 -4.41 -0.55 2.35 -9.86 0.62 4.88 -8.25 2.03 9.54 -5.58
nSD 8.57 18.10 16.83 9.03 18.64 16.71 9.23 16.54 20.46 9.31 18.95 18.03 9.37 17.08 21.78 9.55 14.73 24.24
nRMSE 8.64 18.12 17.34 9.09 18.64 19.10 9.37 16.60 20.93 9.32 19.10 20.55 9.39 17.76 23.29 9.76 17.55 24.87

0.5 True values 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67
nBias -0.99 -1.65 -3.98 -0.16 -0.38 -10.21 2.43 0.10 -3.78 0.26 3.93 -8.58 1.41 7.42 -8.18 2.80 14.88 -5.57
nSD 5.77 15.73 11.72 6.26 15.67 12.41 6.19 14.49 14.93 6.30 15.91 13.52 6.35 14.71 16.73 6.34 12.18 17.35
nRMSE 5.85 15.82 12.37 6.26 15.68 16.07 6.65 14.49 15.40 6.31 16.39 16.01 6.51 16.48 18.62 6.94 19.23 18.22

0.7 True values 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85
nBias -0.71 -2.12 -2.74 0.78 -2.21 -8.77 2.16 -5.21 -0.28 0.55 4.34 -4.46 1.23 6.29 -4.75 2.12 13.76 -2.19
nSD 2.71 10.76 5.99 3.02 10.84 7.29 2.80 10.74 8.40 3.07 10.48 7.77 3.03 10.24 10.91 2.94 7.26 9.42
nRMSE 2.80 10.96 6.59 3.12 11.06 11.40 3.53 11.94 8.40 3.12 11.35 8.96 3.27 12.02 11.90 3.63 15.56 9.67

300 0.3 True values 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46
nBias -1.44 -1.48 -5.96 -2.88 1.14 -26.54 5.52 4.43 -12.35 -1.56 7.52 -28.59 2.04 14.61 -25.56 6.36 28.76 -16.44
nSD 15.04 30.94 28.32 15.75 31.26 27.83 16.11 28.02 33.34 16.32 32.42 30.34 16.45 28.98 36.06 16.65 25.39 40.28
nRMSE 15.11 30.97 28.94 16.01 31.28 38.46 17.03 28.37 35.55 16.39 33.29 41.69 16.58 32.46 44.20 17.82 38.36 43.50

0.5 True values 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67
nBias -1.23 -2.48 -5.34 -0.77 -1.16 -30.78 7.39 -0.39 -11.03 0.64 11.81 -25.37 4.11 21.74 -25.71 8.39 44.61 -16.40

Continued
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Table 2.10 – Continued

(continuous, continuous) (continuous, ordinal) (continuous, count) (ordinal, ordinal) (ordinal, count) (count, count)

n τ ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N

nSD 9.99 26.98 19.09 10.87 26.60 20.40 10.62 24.72 24.25 11.08 27.48 22.59 11.09 25.22 27.56 10.96 20.84 28.88
nRMSE 10.06 27.09 19.82 10.90 26.63 36.93 12.94 24.72 26.64 11.10 29.91 33.97 11.82 33.30 37.69 13.80 49.24 33.22

0.7 True values 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85
nBias -0.83 -2.93 -3.43 1.42 -7.89 -28.35 5.84 -18.52 -1.43 1.31 12.56 -13.92 3.27 17.32 -16.87 5.97 40.56 -7.09
nSD 4.60 18.37 9.35 5.16 18.37 11.94 4.71 18.05 13.58 5.34 18.16 13.05 5.26 17.59 18.02 5.04 12.35 15.54
nRMSE 4.68 18.61 9.96 5.35 19.99 30.76 7.50 25.86 13.66 5.50 22.08 19.08 6.20 24.68 24.69 7.81 42.40 17.08

500 0.3 True values 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46 0.46 0.16 0.46
nBias -1.37 -1.08 -7.04 -4.45 2.42 -44.04 9.65 7.93 -20.25 -2.25 12.60 -47.33 3.75 24.71 -42.32 10.96 48.14 -27.35
nSD 19.06 39.98 36.96 19.95 39.89 35.47 20.49 35.93 42.97 20.75 41.68 39.18 21.00 37.65 46.91 21.35 32.71 52.79
nRMSE 19.11 40.00 37.63 20.44 39.97 56.55 22.64 36.79 47.51 20.87 43.54 61.45 21.33 45.04 63.17 24.00 58.20 59.46

0.5 True values 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67 0.70 0.36 0.67
nBias -1.11 -2.31 -6.27 -1.16 -1.38 -51.40 12.58 -0.39 -18.48 1.34 19.78 -41.78 7.16 36.42 -42.79 14.31 74.64 -27.23
nSD 12.58 35.08 24.56 13.67 34.07 26.18 13.31 31.87 31.24 14.04 35.55 29.22 13.99 32.68 36.00 13.91 26.57 37.57
nRMSE 12.63 35.16 25.35 13.72 34.10 57.68 18.31 31.88 36.29 14.10 40.69 50.99 15.71 48.93 55.92 19.95 79.23 46.40

0.7 True values 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85 0.88 0.64 0.85
nBias -0.76 -2.83 -3.63 2.03 -13.45 -47.97 9.47 -31.71 -2.93 2.21 21.01 -22.91 5.43 28.29 -28.60 9.95 67.47 -11.82
nSD 5.81 23.66 11.69 6.48 23.48 15.30 5.95 23.22 17.23 6.75 23.36 16.73 6.68 22.72 23.21 6.42 15.65 20.03
nRMSE 5.86 23.82 12.24 6.79 27.06 50.35 11.18 39.30 17.48 7.10 31.42 28.37 8.61 36.29 36.84 11.84 69.26 23.26
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Table 2.11 contains the resultant biases, RMSEs, and SDs, scaled by n, for the

estimates obtained using the estimation approach in Section 2.2. The results show

that the proposed estimation approach is highly efficient according to the simulated

biases, SDs and RMSEs. We further investigated the misspecification of the bivariate

pair-copulas by deriving the same statistics but from 1-factor model with BVN pair

copulas, i.e. the standard 1-factor model. Once again, the simulated data are based

on the selected 1-factor copula models in Section 2.5. Table 2.12 contains the resul-

tant biases, RMSEs, and SDs, scaled by n. The results show that the Kendall’s tau

estimates are not robust to pair-copula misspecification if the true (simulated) factor

copula model has different dependence in the middle of the data, e.g. when the BB10

copulas that can provide a non convex shape of dependence (see e.g., Figure 1.2) are

used to specify the true factor copula model (Table 2.12, Swiss consumption survey).

As we have already mentioned the Kendall’s τ only accounts for the dependence

dominated by the middle of the data, and it is expected to be similar among para-

metric families of copulas that provide a convex shape of dependence (Table 2.12,

Political-economic dataset and general social survey).

Table 2.13 contains four common nominal levels of the M2 statistic under the

factor copula models for mixed data. We transformed the continuous and count vari-

ables to ordinal with K = {3, 4, 5} and K = {3, 4} categories, respectively, using

the unsupervised strategies proposed in Section 2.4.2. We also transformed the count

variables to ordinal with K = 5 categories by treating them as ordinal where the

5th category contained all the counts greater than 3. As the observed levels are close

to nominal levels, it is demonstrated that the M2 statistic remains reliable for mixed

data and that the information loss under transformation to ordinal is minimal.
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Table 2.11: Small sample of sizes n = {100, 300, 500} simulations (104 replications) from the selected factor copula models in Section 2.5 with resultant
biases, root mean square errors (RMSE) and standard deviations (SD), scaled by n, for the estimated parameters.

Political-economic dataset – 1-factor model

τ 0.51 0.58 0.80 0.68 0.74

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500
nBias 0.88 2.30 3.17 -1.36 -3.39 -4.87 0.75 -0.55 0.64 0.21 -0.27 0.19 0.29 2.57 0.73
nSD 4.28 7.60 9.63 4.19 7.50 9.08 5.41 10.91 11.98 4.58 8.43 9.84 4.46 14.92 11.78
nRMSE 4.37 7.95 10.13 4.40 8.23 10.31 5.47 10.92 12.00 4.59 8.44 9.84 4.47 15.13 11.80

General social survey – 1-factor model

τ 0.30 -0.14 0.46 0.33 0.55 -0.14 -0.27

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500
nBias -0.11 -0.86 -1.66 -0.06 -0.10 -0.19 0.29 0.17 0.53 0.19 0.26 0.27 0.72 0.89 0.94 -0.18 -0.37 -0.30 -0.09 -0.03 -0.03
nSD 7.46 12.41 16.01 6.55 11.12 14.00 8.53 13.76 17.97 8.33 14.07 17.75 9.45 14.63 18.92 6.89 11.89 15.05 7.75 12.90 16.54
nRMSE 7.46 12.44 16.10 6.55 11.12 14.00 8.53 13.76 17.98 8.33 14.07 17.75 9.47 14.65 18.94 6.89 11.90 15.05 7.75 12.90 16.54

Swiss consumption survey – 1-factor model

τ 0.69 0.38 0.39 0.28 0.23 0.13 0.17

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500
nBias -15.95 -0.78 -0.04 -7.85 -1.57 -3.22 -8.03 -1.62 -3.22 0.08 0.09 0.26 0.10 0.06 -0.11 0.23 0.12 0.40 0.13 0.06 0.20
nSD 8.81 9.93 13.16 9.58 6.24 7.98 9.54 6.52 8.11 7.69 13.02 16.80 7.72 13.02 17.02 7.46 13.01 16.90 7.51 12.79 16.67
nRMSE 18.23 9.96 13.16 12.38 6.43 8.60 12.47 6.72 8.73 7.69 13.02 16.81 7.72 13.02 17.02 7.46 13.01 16.91 7.51 12.79 16.67

Continued
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Table 2.11 – Continued

General social survey – 2-factor model n = 500

1st factor 2nd factor

τ 0.34 0.49 0.18 -0.13 -0.13 0.44 0.11 0.40 -0.14 0.65 0.29 0.49 -0.24 -0.26
nBias 1.18 -7.19 1.40 0.31 0.19 1.45 -0.44 -0.96 0.19 -0.05 0.22 2.59 -2.47 0.00
nSD 16.17 17.21 19.25 18.83 18.63 19.05 17.66 18.52 18.32 22.72 17.68 26.90 21.77 16.33
nRMSE 16.21 18.65 19.30 18.84 18.63 19.11 17.67 18.54 18.32 22.72 17.68 27.03 21.91 16.33

Swiss consumption survey – 2-factor model n = 500

1st factor 2nd factor

τ 0.34 0.36 0.38 0.19 0.09 0.02 0.04 0.53 0.28 0.30 0.42 0.35 0.17 0.27
nBias -2.31 -1.60 -0.69 -3.01 -1.04 -0.54 2.89 -4.27 0.64 1.00 3.41 1.27 0.59 -4.15
nSD 7.43 13.67 16.12 27.11 25.31 21.27 21.31 20.37 17.98 19.05 21.20 20.89 19.41 21.55
nRMSE 7.78 13.77 16.14 27.27 25.33 21.28 21.51 20.82 17.99 19.08 21.47 20.93 19.42 21.95
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Table 2.12: Small sample of sizes n = {100, 300, 500} simulations (104 replications) from the selected 1-factor copula models in Section 2.5 with
resultant biases, root mean square errors (RMSE) and standard deviations (SD), scaled by n, for the estimated parameters under an 1-factor copula model
with BVN copulas, i.e. the standard factor model.

Political-economic dataset – 1-factor model

τ 0.51 0.58 0.80 0.68 0.74

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500

nBias -0.35 -0.96 -1.56 -1.40 -3.90 -6.41 -1.29 -6.19 -10.54 0.51 0.89 1.40 -0.18 -1.08 -2.15
nSD 5.24 9.16 11.57 4.95 8.57 11.13 6.03 9.52 12.14 4.60 7.91 10.01 4.42 7.49 9.69
nRMSE 5.25 9.21 11.68 5.15 9.42 12.85 6.17 11.35 16.07 4.63 7.96 10.11 4.42 7.57 9.92

General social survey – 1-factor model

τ 0.30 -0.14 0.46 0.33 0.55 -0.14 -0.27

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500

nBias -1.68 -5.15 -8.75 -0.93 -3.17 -5.45 -0.09 -1.34 -2.11 -0.16 -0.92 -1.86 0.65 -0.07 -0.75 -2.20 -6.94 -11.32 -0.99 -2.53 -4.30
nSD 7.66 12.91 16.57 8.14 13.62 17.45 9.08 14.45 18.82 8.56 14.28 18.05 10.46 15.79 20.38 8.67 14.79 18.91 8.51 13.60 17.53
nRMSE 7.84 13.90 18.73 8.19 13.99 18.28 9.08 14.52 18.94 8.57 14.31 18.15 10.48 15.79 20.39 8.95 16.34 22.03 8.57 13.83 18.05

Swiss consumption survey – 1-factor model

τ 0.69 0.38 0.39 0.28 0.23 0.13 0.17

n 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500

nBias -16.40 -53.51 -90.99 3.02 8.67 14.58 3.02 8.30 13.91 -2.90 -8.03 -13.20 -2.26 -6.53 -11.09 -1.33 -4.02 -6.20 -3.02 -8.83 -14.50
nSD 12.86 21.36 26.83 10.08 17.97 23.59 10.36 18.07 23.67 9.36 16.40 21.17 9.17 15.68 20.71 8.77 15.06 19.80 8.36 14.33 18.63
nRMSE 20.84 57.62 94.87 10.53 19.95 27.73 10.79 19.88 27.45 9.80 18.27 24.94 9.45 16.99 23.49 8.87 15.58 20.75 8.88 16.83 23.61
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Table 2.13: Small sample of sizes n = {100, 300, 500} distribution for M2 (104 replica-
tions). Empirical rejection levels at α = {0.20, 0.10, 0.05, 0.01}, degrees of freedom (df),
and mean under the factor copula models. Continuous and count variables are transformed
to ordinal with K = {3, 4, 5} and K = {3, 4} categories, respectively, using the general
strategies proposed in Section 2.4.2. Count variables area also transformed to ordinal with
K = 5 categories by treating them as ordinal where the 5th category contained all the counts
greater than 3.

n = 100 n = 300 n = 500

K = 3 K = 4 K = 5 K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

Political-economic dataset – 1-factor model

df 92 121 152 92 121 152 92 121 152
mean 89.3 118.3 148.4 91.0 119.7 152.6 91.0 119.6 152.3
α = 0.20 0.183 0.192 0.197 0.196 0.194 0.195 0.196 0.189 0.190
α = 0.10 0.121 0.125 0.134 0.122 0.121 0.119 0.114 0.109 0.109
α = 0.05 0.083 0.089 0.098 0.076 0.077 0.077 0.072 0.070 0.067
α = 0.01 0.044 0.046 0.055 0.036 0.034 0.037 0.027 0.030 0.026
General social survey – 1-factor model

df 161 239 329 161 239 329 161 239 329
mean 161.5 240.0 333.0 160.7 239.4 329.7 161.3 240.2 329.6
α = 0.20 0.213 0.220 0.240 0.202 0.216 0.203 0.211 0.228 0.212
α = 0.10 0.110 0.121 0.122 0.106 0.118 0.102 0.118 0.127 0.108
α = 0.05 0.058 0.070 0.061 0.054 0.067 0.051 0.065 0.073 0.056
α = 0.01 0.013 0.018 0.014 0.014 0.019 0.012 0.016 0.023 0.011
Swiss consumption survey – 1-factor model

df 74 128 194 74 128 194 74 128 194
mean 75.4 130.1 197.8 74.6 128.5 195.1 74.5 128.0 194.4
α = 0.20 0.229 0.239 0.254 0.214 0.209 0.221 0.210 0.202 0.207
α = 0.10 0.121 0.135 0.147 0.111 0.104 0.113 0.105 0.099 0.103
α = 0.05 0.067 0.076 0.086 0.056 0.055 0.060 0.051 0.053 0.053
α = 0.01 0.016 0.024 0.030 0.011 0.013 0.013 0.012 0.011 0.012

General social survey – 2-factor Swiss consumption survey – 2-factor

n = 500 n = 500

K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

df 154 232 322 65 119 185
mean 154.8 234.0 323.3 65.6 119.7 185.5
α = 0.20 0.217 0.234 0.214 0.217 0.215 0.217
α = 0.10 0.113 0.131 0.116 0.114 0.111 0.113
α = 0.05 0.065 0.075 0.059 0.060 0.057 0.060
α = 0.01 0.018 0.022 0.018 0.013 0.013 0.017

Table 2.14 presents the number of times that the true bivariate parametric copu-

las are chosen over 100 simulation runs. If the true copula has distinct dependence

properties with medium to strong dependence, then the algorithm performs extremely

65



2.6. Simulations

well as the sample size increases. Low selection rates occur if the true copulas have

low dependence or similar tail dependence properties, since for that case it is difficult

to distinguish amongst parametric families of copulas (Nikoloulopoulos and Karlis,

2008). For example,

Table 2.14: Frequencies of the true bivariate copula identified using the model selection
algorithm from 100 simulation runs. Note: rCopula: reflected copula; 1rCopula: 1-reflected
copula; 2rCopula: 2-reflected copula.

Political-economic dataset – 1-factor model
Continuous Ordinal

n 1rJoe Joe rJoe Joe Gumbel
100 88 81 45 82 34
300 88 93 54 83 60
500 91 100 66 100 79
General social survey – 1-factor model

Continuous Ordinal Count
n Joe 2rJoe t5 t5 rGumbel 2rJoe 2r Gumbel
100 68 63 27 19 27 56 28
300 89 79 41 43 49 65 55
500 91 85 61 65 74 73 68
Swiss consumption survey – 1-factor model

Continuous Ordinal Count
n rBB10 BB10 BB10 rJoe rJoe rJoe rJoe
100 27 94 91 61 60 41 56
300 50 99 98 64 71 63 68
500 70 98 98 68 74 71 72
General social survey – 2-factor model

1st Factor Continuous Ordinal Count
n rGumbel rJoe BVN 1rJoe 1rJoe rJoe Gumbel
100 22 40 10 19 19 50 6
300 26 52 11 42 36 79 16
500 19 67 13 52 53 83 39
2nd Factor Continuous Ordinal Count
n Gumbel 2rJoe rJoe Gumbel t5 BVN 2rGumbel
100 13 28 28 7 14 21 17
300 26 39 56 30 45 28 47
500 32 67 65 53 59 33 70
Swiss consumption survey – 2-factor model

1st Factor Continuous Ordinal Count
n BB10 BB10 BB10 rJoe rJoe Frank Frank
100 57 77 55 31 28 23 34
300 81 94 82 51 40 19 21
500 88 94 87 49 50 21 16
2nd Factor Continuous Ordinal Count
n BB10 BVN BB10 BVN rJoe rJoe rGumbel
100 5 14 28 10 29 31 10
300 27 29 43 22 49 40 16
500 39 39 60 31 55 63 31
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• in the results from the 2-factor model for the general social survey, the true

copula for the first continuous variable (1st factor) is the reflected Gumbel

with τ = 0.34 and is only selected a considerable small number of times. The

algorithm instead selected with a high probability the reflected Joe (results not

shown here), because both reflected Joe and Gumbel copulas provide similar

dependence properties, i.e., lower tail dependence.

• in the results from the 2-factor model for the Swiss consumption survey, the

variables with Frank copulas have the lowest selection rates. This is due to the

fact that their true Kendall’s τ ’s parameters are close to 0 (independence).

2.7 Software

Our modelling framework is implemented in the package FactorCopula (Kadhem

and Nikoloulopoulos, 2021c) within the open source statistical environment R (R

Core Team, 2020). All the analyses presented in Sections 2.5.1 and 2.5.2 are given as

code examples in the package. The manual of the package is provided as an appendix.

2.8 Chapter summary

We have extended the factor copula models proposed in Krupskii and Joe (2013) and

Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete re-

sponses. We have shown that the factor copula models (obtained from the proposed

model selection algorithm) provide a substantial improvement over the standard fac-

tor models on the basis of the log-likelihood principle, Vuong’s, andM2 goodness-of-

fit statistics. This improvement relies on the fact that the latent variable distribution

is expressed via factor copulas instead of the MVN distribution.
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Chapter 3

Structured factor copula models

for item response data

In this chapter, we propose copula extensions for bi-factor and second-order models

for items that can be split into non-overlapping groups, where each group of items

has homogeneous dependence. They subsume the factor copula models proposed in

Chapter 2 as special cases when all variables are discrete and arise from the same

group. The construction of the bi-factor copula model exploits bivariate copulas to

link the observed variables with the common and group-specific factors. While for

the second-order copula model, there are bivariate copulas that link the observed

variables to the group-specific factors, and also bivariate copulas that link the group-

specific factors to the second-order factor.

To build plausible models, we propose model selection algorithms that automati-

cally select suitable bivariate copulas for the bi-factor and second-order copula mod-

els for item response data. In order to evaluate the fit of the models, we also propose

goodness-of-fit testing based on the M2 statistic of Maydeu-Olivares and Joe (2006).
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We examine the performance and reliability of the model selection algorithms and

goodness-of-fit statistic in an extensive simulation study.

The bi-factor and second-order copula models are suitable for capturing differ-

ent dependencies between and within different groups of observed variables, while

allowing for tail asymmetry or more probability in the tails than would be expected

with the MVN. We illustrate our methodology by re-analysing a real dataset, and

show that the proposed models with linking copulas (selected by the model selection

algorithm) provide better fit than the Gaussian bi-factor and second-order models.

The chapter is organised as follows. Section 3.1 introduces the bi-factor and

second-order copula models for item response and discusses their relationship with

the existing models. Estimation techniques and computational details are provided

in Section 3.2. Section 3.3 proposes a heuristic method to select suitable bivariate

copulas and build bi-factor and second-order copula models. Section 3.4 summarizes

the assessment of goodness-of-fit of these models using the M2 statistic of Maydeu-

Olivares and Joe (2006). Section 3.5 contains an extensive simulation study to gauge

the small-sample efficiency of the proposed estimation, investigate the misspecifica-

tion of the bivariate copulas, and examine the reliability of the model selection and

goodness-of-fit techniques. Section 3.6 presents an application of our methodology

to real world data. We conclude with a summary in Section 3.8.

3.1 Bi-factor and second-order copula models

Let Y11, . . . , Yd11︸ ︷︷ ︸
1

, . . . , Y1g, . . . , Ydgg︸ ︷︷ ︸
g

, . . . , Y1G, . . . , YdGG︸ ︷︷ ︸
G

denote the item response

variables classified into the G non-overlapping groups. There are dg items in group
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g; g = 1, . . . , G, j = 1, . . . , dg and collectively there are d =
∑G

g=1 dg items, which

are all measured on an ordinal scale; Yjg ∈ {0, . . . ,Kjg−1}. Let the cutpoints in the

uniform U(0, 1) scale for the jg’th item be ajg,k, k = 1, . . . ,K − 1, with ajg,0 = 0

and ajg,K = 1. These correspond to ajg,k = Φ(αjg,k), where αjg,k are cutpoints in

the normal N(0, 1) scale.

The bi-factor and second-order factor copula models are presented in Subsections

3.1.1 and 3.1.2, respectively. Subsection 3.1.3 discusses their relationship with the

existing Gaussian bi-factor and second-order models.

3.1.1 Bi-factor copula model

Consider a common factor X0 and G group-specific factors X1, . . . , XG, where

X0, X1, . . . , XG are independent and standard uniformly distributed. Let Yjg be the

jth observed variable in group g, with yjg being the realization. The bi-factor model

assumes that Y1g, . . . , Ydgg are conditionally independent given X0 and Xg, and that

Yjg in group g does not depend on Xg′ for g 6= g′. Figure 3.1 depicts a graphical

representation of the model.

X0

X1 Xg XG

Y11 · · · Yj1 · · · Yd11

Y11X
0

Y j1
X 0

Y d 1
1
X 0

· · · Y1g · · · Yjg · · · Ydgg

Y1gX0 Y
jg
X

0

YdggX0

· · · Y1G · · · YjG · · · YdGG

Y
1GX

0

Y
jGX

0

Y
d
GGX

0

Y11X1|X0

Y
j1
X

1
|X

0

Yd11X1|X0 Y1gXg|X0

Y
jg
X
g
|X

0

YdggXg|X0 Y1GXG|X0

Y
jG
X
G
|X

0

YdGGXG|X0

Figure 3.1: Graphical representation of the bi-factor copula model with G group-specific
factors and a common factor X0.
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The joint probability mass function (pmf) is given by

π(y) = Pr(Yjg = yjg; j = 1, . . . , dg, g = 1, . . . , G)

=

∫

[0,1]G+1

G∏

g=1

dg∏

j=1

Pr(Yjg = yjg|X0 = x0, Xg = xg)dx1 · · · dxGdx0.

According to Sklar’s theorem (Sklar, 1959) there exists a bivariate copula CYjg ,X0

such that Pr(Yjg ≤ yjg, X0 ≤ x0) = CYjg ,X0

(
FYjg(yjg), x0

)
, for x0 ∈ [0, 1], where

CYjg ,X0 is the copula that links observed variable with the common factor X0, FYjg

is the cumulative distribution function (cdf) of Yjg; note that FYjg is a step function

with jumps at 0, . . . ,K − 1, i.e., FYjg(yjg) = ajg,yjg+1. Then it follows that,

FYjg |X0
(yjg|x0) := Pr(Yjg ≤ yjg|X0 = x0) =

∂

∂x0
CYjg ,X0

(
FYjg(yjg), x0

)
.

For shorthand notation, we letCYjg |X0

(
FYjg(yjg)|x0

)
= ∂

∂x0
CYjg ,X0

(
FYjg(yjg), x0

)
.

The observed variables also load on the group-specific factors, hence to account

for this dependence, we let CYjg ,Xg |X0
be a bivariate copula that links the observed

variable Yjgwith the group-specific factor Xg given the common factor X0. Hence,

Pr(Yjg ≤ yjg|X0 = x0, Xg = xg) =
∂

∂xg
Pr(Yjg ≤ yjg, Xg ≤ xg|X0 = x0)

=
∂

∂xg
CYjg ,Xg |X0

(
FYjg|X0

(yjg|x0), xg
)

= CYjg |Xg ;X0

(
FYjg|X0

(yjg|x0)|xg
)
.
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To this end, the pmf of the bi-factor copula model takes the form

π(y) =

∫

[0,1]G+1

G∏

g=1

dg∏

j=1

{
CYjg |Xg ;X0

(
FYjg |X0

(yjg|x0)|xg
)

−CYjg |Xg ;X0

(
FYjg |X0

(yjg − 1|x0)|xg
)}
dx1 · · · dxGdx0

=

∫ 1

0

G∏

g=1

{∫ 1

0

dg∏

j=1

[
CYjg |Xg ;X0

(
FYjg |X0

(yjg|x0)|xg
)

−CYjg |Xg ;X0

(
FYjg |X0

(yjg − 1|x0)|xg
)]
dxg

}
dx0

=

∫ 1

0

G∏

g=1

{∫ 1

0

dg∏

j=1

[
CYjg |Xg ;X0

(
CYjg |X0

(ajg,yjg+1|x0)|xg
)

−CYjg |Xg ;X0

(
CYjg |X0

(ajg,yjg |x0)|xg
)]
dxg

}
dx0

=

∫ 1

0

G∏

g=1

{∫ 1

0

dg∏

j=1

fYjg |Xg ;X0
(yjg|xg, x0)dxg

}
dx0. (3.1)

It is shown that the pmf is represented as an one-dimensional integral of a function

which is in turn is a product of G one-dimensional integrals. Thus we avoid (G+ 1)-

dimensional numerical integration.

For the parametric version of the bi-factor copula model, we let CYjg ,X0 and

CYjg ,Xg |X0
be parametric copulas with dependence parameters θjg and δjg, respec-

tively.

3.1.2 Second-order copula model

Assume that for a fixed g = 1, . . . , G, the items Y1g, . . . , Ydgg are conditionally

independent given the first-order factors Xg ∼ U(0, 1), g = 1, . . . , G and that X =

(X1, · · · , XG) are conditionally independent given the second-order factor X0 ∼

U(0, 1). That is the joint distribution of X has an one-factor structure. We also
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3.1. Bi-factor and second-order copula models

assume that Yjg in group g does not depend on Xg′ for g 6= g′. Figure 3.2 depicts the

graphical representation of the model.

X0

X1 Xg XG

Y11 · · · Yj1 · · · Yd11

· · ·

Y1g · · · Yjg · · · Ydgg

· · ·

Y1G · · · YjG · · · YdGG

X0X1

X
0
X
g

X
0X

G

Y11X1

Y
j1
X

1

Yd11X1 Y1gXg
Y
jg
X
g

YdggXg Y1GXG

Y
jG
X
G

YdGGXG

Figure 3.2: Graphical representation of the second-order copula model with G first-order
factors and one second-order factor X0.

The joint pmf takes the form

π(y) =

∫

[0,1]G

{
G∏

g=1

dg∏

j=1

Pr(Yjg = yjg|Xg = xg)

}
cX(x1, . . . , xG)dx1 · · · dxG;

cX is the one-factor copula density (Krupskii and Joe, 2013) of X = (X1, . . . , XG),

viz.

cX(x1, . . . , xG) =

∫ 1

0

G∏

g=1

cXg ,X0(xg, x0)dx0,

where cXg ,X0 is the bivariate copula density of the copula CXg ,X0 linking Xg and

X0.

Letting CYjg ,Xg be a bivariate copula that joins the observed variable Yjg and the

group-specific factor Xg such that

FYjg |Xg
(yjg|xg) := Pr(Yjg ≤ yjg|Xg = xg) =

∂

∂xg
CYjg ,Xg

(
FYjg(yjg), xg

)

=CYjg |Xg

(
FYjg(yjg)|xg

)
,
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3.1. Bi-factor and second-order copula models

the pmf of the second-order copula model becomes

π(y) =

∫ 1

0

∫

[0,1]G

{
G∏

g=1

dg∏

j=1

(
CYjg|Xg

(
FYjg

(yjg)|xg
)

−CYjg|Xg

(
FYjg

(yjg − 1)|xg
))
}{

G∏

g=1

cXg,X0

(
xg, x0

)
}
dx1 · · · dxGdx0

=

∫ 1

0

{
G∏

g=1

∫ 1

0

[
dg∏

j=1

(
CYjg|Xg

(
FYjg

(yjg)|xg
)

−CYjg|Xg

(
FYjg

(yjg − 1)|xg
))
]
cXg,X0

(
xg, x0

)
dxg

}
dx0

=

∫ 1

0

{
G∏

g=1

∫ 1

0

[
dg∏

j=1

(
CYjg|Xg

(
ajg,yjg+1|xg

)

−CYjg|Xg

(
ajg,yjg

|xg
))
]
cXg,X0

(
xg, x0

)
dxg

}
dx0

=

∫ 1

0

{
G∏

g=1

∫ 1

0

[ dg∏

j=1

fYjg|Xg
(yjg|xg)

]
cXg,X0

(
xg, x0

)
dxg

}
dx0. (3.2)

Similarly with the bi-factor copula model, the pmf is represented as an one-

dimensional integral of a function which is in turn is a product of G one-dimensional

integrals.

For the parametric version of the second-order copula model, we let CYjg ,Xg and

CXg ,X0 be parametric copulas with dependence parameters θjg and δg, respectively.

3.1.3 Special cases

In this subsection we show what happens when all bivariate copulas are BVN. Let

Zjg be the underlying continuous variable of the ordinal variable Yjg, i.e., Yjg = yjg

if αjg,yjg ≤ Zjg ≤ αjg,yjg+1 with αjg,K =∞ and αjg,0 = −∞.
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3.1. Bi-factor and second-order copula models

For the bi-factor model, and letCYjg |Xg ;X0
= CYjg |Xg ;X0

(CYjg |X0
(Fjg(yjg)|x0)|xg)

for notational ease, if CYjg ,X0(·; θjg) and CYjg ,Xg |X0
(·; δjg) are BVN copulas,

CYjg|Xg;X0
= Φ



αjg,yjg+1 − θjgΦ−1(x0)− δjg

√
1− θ2jgΦ−1(xg)

√
(1− θ2jg)(1− δ2jg)


 ,

Hence, the pmf for the bi-factor copula model in (3.1) becomes

π(y) =

∫ 1

0

G∏

g=1

{∫ 1

0

dg∏

j=1

[
Φ



αjg,yjg+1 − θjgΦ−1(x0)− δjg

√
1− θ2jgΦ−1(xg)

√
(1− θ2jg)(1− δ2jg)


−

Φ



αjg,yjg

− θjgΦ−1(x0)− δjg
√

1− θ2jgΦ−1(xg)
√

(1− θ2jg)(1− δ2jg)



]
dxg

}
dx0

=

∫ ∞

−∞

G∏

g=1

{∫ ∞

−∞

dg∏

j=1

[
Φ



αjg,yjg+1 − θjgz0 − δjg

√
1− θ2jgzg√

(1− θ2jg)(1− δ2jg)




−Φ



αjg,yjg − θjgz0 − δjg

√
1− θ2jgzg√

(1− θ2jg)(1− δ2jg)



]
φ(zg)dzg

}
φ(z0)dz0.

This model is the same as the bi-factor Gaussian model (Gibbons and Hedeker, 1992;

Gibbons et al., 2007) with stochastic representation

Zjg = θjgZ0 + γjgZg +
√

1− θ2jg − γ2jgεjg, g = 1, . . . , G, j = 1, · · · , dg,

(3.3)

where γjg = δjg
√

1− θ2jg and Z0, Zg, εjg are i.i.d. N(0, 1) random variables. The

parameter θjg of CYjg ,X0 is the correlation of Zjg and Z0, and the parameter δjg of

CYjg ,Xg |X0
is the partial correlation between Zjg and Zg = Φ−1(Xg) given Z0 =

Φ−1(X0).

It implies that the underlying random variables Zjg’s have a multivariate Gaus-

sian distribution where the off-diagonal entries of the correlation matrix have the
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3.1. Bi-factor and second-order copula models

form θj1gθj2g+γj1gγj2g and θj1g1θj2g2 for j1 6= j2 and g1 6= g2, respectively. For the

Gaussian bi-factor model to be identifiable, the number of dependence parameters

has to be 2d − N1 − N2, where N1 and N2 is the number of groups that consist of

1 and 2 items, respectively. For a group g of size 1 with variable j, Zg is absorbed

with εjg because γjg would not be identifiable. For a group g of size 2 with variable

indices j1, j2, the parameters γj1g and γj2g appear only in one correlation, hence one

of γj1g, γj2g can be taken as 1 without loss of generality. For the bi-factor copula

with non-Gaussian linking copulas, near non-identifiability can occur when there are

groups of size 2; in this case, one of the linking copulas to the group latent variable

can be fixed at comonotonicity.

For the Gaussian second-order model let Z0, Z
′
1, . . . , Z

′
G be the dependent latent

N(0, 1) variables, where Z0 is the second-order factor and Z ′g = βgZ0+
√

1− β2gZg

is the first-order factor for group g. That is, there is an one second-order factor

Z0, and the first-order factors Z ′1, . . . , Z
′
G are linear combinations of the second-

order factor, plus a unique variable Zg for each first-order factor. The stochastic

representation is (Krupskii and Joe, 2015):

Zjg = βjgZ
′
g +

√
1− β2jgεjg

Z ′g = βgZ0 +
√

1− β2gZg, g = 1, . . . , G, j = 1, · · · , dg,

or

Zjg = βjgβgZ0 + βjg

√
1− β2gZg +

√
1− β2jgεjg, j = 1, · · · , dg. (3.4)

Hence, this is a special case of (3.3) where θjg = βjgβg and γjg = βjg
√

1− β2g .
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3.2. Estimation and computational details

3.2 Estimation and computational details

For the set of all parameters, let θ = (a,θg, δg) for the bi-factor copula model

and θ = (a,θg, δ) for the second-order copula model, where a = (ajg,k : j =

1, . . . , dg, g = 1, . . . , G, k = 1, . . . ,K − 1), θg = (θ1g, . . . , θjg, . . . , θdgg : g =

1, . . . , G), δg = (δ1g, . . . , δjg, . . . , δdgg : g = 1, . . . , G) and δ = (δ1, . . . , δG).

With sample size n and data y1, . . . ,yn, the joint log-likelihood of the bi-factor

and second-order copula is

`(θ; y1, . . . ,yn) =

n∑

i=1

log π(yi;θ), (3.5)

with π(yi;θ) as in (3.1) and (3.2), respectively. Maximization of (3.5) is numeri-

cally possible but time-consuming for large d because of many univariate cutpoints

and dependence parameters. Hence, we approach estimation using the two-step IFM

method proposed by Joe (2005) that can efficiently (in the sense of computing time

and asymptotic variance) estimate the model parameters.

In the first step, the cutpoints are estimated using the univariate sample propor-

tions. The univariate cutpoints for the jth item in group g are estimated as âjg,k =

∑k
y=0 pjg,y, where pjg,y , y = 0, . . . ,K − 1 for g = 1, . . . , G and j = 1, . . . , dg are

the univariate sample proportions. In the second step of the IFM method, the joint

log-likelihood in (3.5) is maximized over the copula parameters with the cutpoints

fixed as estimated at the first step. The estimated copula parameters can be obtained
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3.2. Estimation and computational details

by using a quasi-Newton (Nash, 1990) method applied to the logarithm of the joint

likelihood.

For the bi-factor copula model numerical evaluation of the joint pmf can be

achieved with the following steps:

1. Calculate Gauss-Legendre quadrature (Stroud and Secrest, 1966) points {xq :

q = 1, . . . , nq} and weights {wq : q = 1, . . . , nq} in terms of standard uni-

form.

2. Numerically evaluate the joint pmf

∫ 1

0

G∏

g=1

{∫ 1

0

dg∏

j=1

fYjg |Xjg ;X0
(yjg|xg, x0)dxg

}
dx0

in a double sum

nq∑

q1=1

wq1

G∏

g=1

{ nq∑

q2=1

wq2

dg∏

j=1

fYjg |Xjg ;X0
(yjg|xq2 , xq1)

}

For the second-order copula model numerical evaluation of the joint pmf can be

achieved with the following steps:

1. Calculate Gauss-Legendre quadrature points {xq : q = 1, . . . , nq} and weights

{wq : q = 1, . . . , nq} in terms of stand uniform.

2. Numerically evaluate the joint pmf

∫ 1

0

{
G∏

g=1

∫ 1

0

[ dg∏

j=1

fYjg |Xg
(yjg|xg; θjg)

]
cXg ,X0

(
xg, x0; δg

)
dxg

}
dx0
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3.3. Bivariate copula selection

in a double sum

nq∑

q1=1

wq1

{
G∏

g=1

nq∑

q2=1

wq2

[ dg∏

j=1

fYjg |Xg
(yjg|xq2|q1 ; θjg)

]}

where xq2|q1 = C−1Yjg |Xg ;X0
(xq2 |xq1 ; δg). Note that the independent quadra-

ture points {xq1 : q1 = 1, . . . , nq} and {xq2 : q2 = 1, . . . , nq} have been

converted to dependent quadrature points that have an one-factor copula distri-

bution CX(·; δ).

Our comparisons show that nq = 25 quadrature points provide good precision for

both the bi-factor and second-order copula models.

3.3 Bivariate copula selection

In line with Nikoloulopoulos and Joe (2015) and as discussed in the Introduction

1.5.2, we use bivariate parametric copulas that can be used when considering la-

tent maxima, minima or mixtures of means, namely the Gumbel, survival Gumbel

(s.Gumbel) and Student tν copulas, respectively. A model with bivariate Gumbel

copulas that possess upper tail dependence has latent (ordinal) variables that can be

considered as (discretized) maxima, and there is more probability in the joint upper

tail. A model with bivariate s.Gumbel copulas that possess lower tail dependence has

latent (ordinal) variables that can be considered as (discretized) minima, and there

is more probability in the joint lower tail. A model with bivariate tν copulas that

possess the same lower and upper tail dependence has latent (ordinal) variables that

can be considered as mixtures of (discretized) means, since the bivariate Student tν
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3.3. Bivariate copula selection

distribution arises as a scale mixture of bivariate normals. A small value of ν, such

as 1 ≤ ν ≤ 5, leads to a model with more probabilities in the joint upper and joint

lower tails compared with the BVN copula.

In the following subsection we describe a heuristic method that automatically

selects the bivariate parametric copula families that build either the bi-factor or the

second-order copula model. In the context of items that can be split into G non-

overlapping groups, such that there is homogeneous dependence within each group,

it is sufficient to (a) summarize the average of the polychoric semi-correlations pre-

sented in the previous chapter in Section 2.1.1 for all pairs within each of the G

groups and for all pairs of items, and (b) not mix bivariate copulas for a single fac-

tor; hence, for both the bi-factor and second-order copula models we allow G + 1

different copula families, one for each group specific factor Xg and one for X0.

3.3.1 Selection algorithm

We propose a heuristic method that selects appropriate bivariate copulas for each

factor of the bi-factor and second-order copula models. It starts with an initial as-

sumption, that all bivariate linking copulas are BVN copulas, i.e. the starting model

is either the Gaussian bi-factor or second-order model, and then sequentially other

copulas with lower or upper tail dependence are assigned to the factors where neces-

sary to account for more probability in one or both joint tails. The selection algorithm

involves the following steps:

1. Fit the bi-factor or second-order copula model with BVN copulas.
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3.4. Goodness-of-fit

2. Fit all the possible bi-factor or second-order copula models, iterating over all

the copula candidates that link all items Yjg’s in group g or each group-specific

factor Xg, respectively, to X0.

3. Select the copula family that corresponds to the lowest Akaike information

criterion (AIC), that is, AIC = −2× `+ 2×#copula parameters.

4. Fix the selected copula family that links the observed (bi-factor model) or latent

(second-order model) variables to X0.

5. For g = 1, . . . , G:

(a) Fit all the possible models, iterating over all the copula candidates that

link all the items in group g to the group-specific factor Xg.

(b) Select the copula family that corresponds to the lowest AIC.

(c) Fix the selected linking copula family for all the items in group g with

Xg.

3.4 Goodness-of-fit

We will use the limited information M2 statistic proposed by Maydeu-Olivares and

Joe (2006) to evaluate the overall fit of the proposed bi-factor and second-order cop-

ula models. The M2 statistic is based on a quadratic form of the deviations of sample

and model-based proportions over all bivariate margins. It has been utilised for fac-

tor copula models for item response data (Nikoloulopoulos and Joe, 2015), and for
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3.4. Goodness-of-fit

mixed continuous and discrete data (Kadhem and Nikoloulopoulos, 2021b) as shown

in Chapter 2. The M2 statistic has been summarised and discussed in Section 2.4.2.

TheM2 involves the first order derivatives of the univariate and bivariate marginal

probabilities with respect to the estimated model parameters. We summarise the form

of the derivatives of the univariate and bivariate marginal probabilities with respect

to the estimated model parameters in below tables for the bi-factor and second-order

copula models. Table 3.1 gives the derivatives of the univariate probability with

respect to the cutpoints. The derivatives of the bivariate margins with respect to

the cutpoints and copula parameters for the bi-factor copula model are given in Table

3.2 if bivariate margins are in the same group, and in Table 3.3 if bivariate margins

are in different non-overlapping groups. The derivatives of the bivariate margins with

respect to the cutpoints and copula parameters for the second-order copula model are

given in Table 3.4 if bivariate margins are within the same group, and in Table 3.5 if

bivariate margins are in different non-overlapping groups.

Table 3.1: Derivatives of the univariate probability πjg,y = Φ(αjg,y+1) − Φ(αjg,y) with
respect to the cutpoint αjg,k for g = 1 . . . , G, j = 1, . . . , dg, y = 1, . . . ,K − 1, and k =

1, . . . ,K − 1.

∂πjg,y/∂αjg,k If

φ(αjg,y+1) k = y + 1

−φ(αjg,y) k = y
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Table 3.2: Derivatives of the bivariate probability πj1j2g,y1,y2
= Pr(Yj1g = y1, Yj2g = y2) with respect to the cutpoint αjg,k, the copula parameter θjg

for the common factor X0, and the copula parameter δjg for the group-specific factor Xg for the bi-factor copula model for g = 1 . . . , G, j, j1, j2 =

1, . . . , dg, y, y1, y2 = 1, . . . ,K − 1, and k = 1, . . . ,K − 1.

∂πj1j2g,y1,y2/∂αjg,k If

φ(αj1g,y1+1)
∫ 1

0

∫ 1

0
fYj2g|Xg ;X0

(yj2g|xg;x0) cXgYj1g

(
xg, CYj1g|X0

(aj1g,y1+1|x0)
)
cX0Yj1g (x0, aj1g,y1+1) dxgdx0 j = j1, k = y1 + 1

−φ(αj1g,y1)
∫ 1

0

∫ 1

0
fYj2g|Xg ;X0

(yj2g|xg;x0) cXgYj1g

(
xg, CYj1g|X0

(aj1g,y1 |x0)
)
cX0Yj1g (x0, aj1g,y1) dxgdx0 j = j1, k = y1

φ(αj2g,y2+1)
∫ 1

0

∫ 1

0
fYj1g|Xg ;X0

(yj1g|xg;x0) cXgYj2g

(
xg, CYj2g|X0

(aj2g,y2+1|x0)
)
cX0Yj2g (x0, aj2g,y2+1) dxgdx0 j = j2, k = y2 + 1

−φ(αj2g,y2)
∫ 1

0

∫ 1

0
fYj1g|Xg ;X0

(yj1g|xg;x0) cXgYj2g

(
xg, CYj2g|X0

(aj2g,y2 |x0)
)
cX0Yj2g (x0, aj2g,y2) dxgdx0 j = j2, k = y2

∂πj1j2g,y1,y2/∂θjg If∫ 1

0

∫ 1

0
fYj2g|Xg ;X0

(yj2g|xg;x0) f̄Yj1g|Xj1g ;X0
(yj1g|xg;x0) dxgdx0 j = j1∫ 1

0

∫ 1

0
fYj1g|Xg ;X0

(yj1g|xg;x0) f̄Yj2g|Xj2g ;X0
(yj2g|xg;x0) dxgdx0 j = j2

∂πj1j2g,y1,y2/∂δjg If∫ 1

0

∫ 1

0
fYj2g|Xg ;X0

(yj2g|xg;x0) ḟYj1g|Xj1g ;X0
(yj1g|xg;x0) dxgdx0 j = j1∫ 1

0

∫ 1

0
fYj1g|Xg ;X0

(yj1g|xg;x0) ḟYj2g|Xj2g ;X0
(yj2g|xg;x0) dxgdx0 j = j2

Note that fYjg|Xg ;X0
(yjg|xg;x0) =

(
CYjg|Xg ;X0

(
CYjg|X0

(ajg,y+1|x0; θjg)|xg; δjg
)
− CYjg|Xg ;X0

(
CYjg|X0

(ajg,y|x0; θjg)|xg; δjg
))

where ajg,k = Φ(αjg,k),

cX0Yjg (x0, a) = ∂2CX0Yjg (x0, a)/∂x0∂a, Ċjg|X0
(·; θjg) = ∂Cjg|X0

(·; θjg)/∂θjg , ĊYjg|Xg ;X0
(·; δjg) = ∂CYjg|Xg ;X0

(·; δjg)/∂δjg , ḟYjg|Xjg ;X0
(yjg|xg;x0) =

∂fYjg|Xjg ;X0
(yjg|xg;x0)/∂δjg = ĊYjg|Xg ;X0

(
CYjg|X0

(ajg,y+1|x0)|xg
)
− ĊYjg|Xg ;X0

(
CYjg|X0

(ajg,y|x0)|xg
)
, f̄Yjg|Xjg ;X0

(yjg|xg;x0) =

∂fYjg|Xjg ;X0
(yjg|xg;x0)/∂θjg = cXgYjg

(
xg, CYjg|X0

(ajg,y+1|x0)
)
ĊYjg|X0

(ajg,y+1|x0)− cXgYjg

(
xg, CYjg|X0

(ajg,y|x0)
)
ĊYjg|X0

(ajg,y|x0).83
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Table 3.3: Derivatives of the bivariate probability πj1g1j2g2,y1,y2 = Pr(Yj1g1 = y1, Yj2g2 = y2) with respect to the cutpoint αjg,k, the copula parameter
θjg for the common factor X0, and the copula parameter δjg for the group-specific factor Xg for the bi-factor copula model for g = 1 . . . , G, j, j1, j2 =

1, . . . , dg, y, y1, y2 = 1, . . . ,K − 1, and k = 1, . . . ,K − 1.

∂πj1g1j2g2,y1,y2/∂αjg,k If

φ(αj1g1,y1+1)
∫ 1

0

∫ 1

0
fYj2g2

|Xg2
;X0

(yj2g2 |xg2 ;x0)dxg2
∫ 1

0
cXg1Yj1g1

(
xg1 , CYj1g1

|X0
(aj1g1,y1+1|x0)

)
cX0Yj1g1

(x0, aj1g1,y1+1)dxg1dx0 j = j1, g = g1, k = y1 + 1

−φ(αj1g1,y1)
∫ 1

0

∫ 1

0
fYj2g2

|Xg2
;X0

(yj2g2 |xg2 ;x0)dxg2
∫ 1

0
cXg1Yj1g1

(
xg1 , CYj1g1

|X0
(aj1g1,y1 |x0)

)
cX0Yj1g1

(x0, aj1g1,y1)dxg1dx0 j = j1, g = g1, k = y1

φ(αj2g2,y2+1)
∫ 1

0

∫ 1

0
fYj1g1

|Xg1
;X0

(yj1g1 |xg1 ;x0)dxg1
∫ 1

0
cXg2Yj2g2

(
xg2 , CYj2g2

|X0
(aj2g2,y2+1|x0)

)
cX0Yj2g2

(x0, aj2g2,y2+1)dxg2dx0 j = j2, g = g2, k = y2 + 1

−φ(αj2g2,y2)
∫ 1

0

∫ 1

0
fYj1g1

|Xg1
;X0

(yj1g1 |xg1 ;x0)dxg1
∫ 1

0
cXg2

Yj2g2

(
xg2 , CYj2g2

|X0
(aj2g2,y2 |x0)

)
cX0Yj2g2

(x0, aj2g2,y2)dxg2dx0 j = j2, g = g2, k = y2

∂πj1g1j2g2,y1,y2/∂θjg If∫ 1

0

∫ 1

0
fYj2g2

|Xg2
;X0

(yj2g2 |xg2 ;x0) dxg2
∫ 1

0
f̄Yj1g1

|Xj1g1
;X0

(yj1g1 |xg1 ;x0) dxg1dx0 j = j1, g = g1∫ 1

0

∫ 1

0
fYj1g1

|Xg1 ;X0
(yj1g1 |xg1 ;x0) dxg1

∫ 1

0
f̄Yj2g2

|Xj2g2
;X0

(yj2g2 |xg2 ;x0) dxg2dx0 j = j2, g = g2

∂πj1g1j2g2,y1,y2/∂δjg If∫ 1

0

∫ 1

0
fYj2g2

|Xg2 ;X0
(yj2g2 |xg2 ;x0) dxg2

∫ 1

0
ḟYj1g1

|Xj1g1
;X0

(yj1g1 |xg1 ;x0) dxg1dx0 j = j1, g = g1∫ 1

0

∫ 1

0
fYj1g1

|Xg1
;X0

(yj1g1 |xg1 ;x0) dxg1
∫ 1

0
ḟYj2g2

|Xj2g2
;X0

(yj2g2 |xg2 ;x0) dxg2dx0 j = j2, g = g2

Note that fYjg|Xg ;X0
(yjg|xg;x0) =

(
CYjg|Xg ;X0

(
CYjg|X0

(ajg,y+1|x0; θjg)|xg; δjg
)
− CYjg|Xg ;X0

(
CYjg|X0

(ajg,y|x0; θjg)|xg; δjg
))

where ajg,k = Φ(αjg,k),

cX0Yjg (x0, a) = ∂2CX0Yjg (x0, a)/∂x0∂a, Ċjg|X0
(·; θjg) = ∂Cjg|X0

(·; θjg)/∂θjg , ĊYjg|Xg ;X0
(·; δjg) = ∂CYjg|Xg ;X0

(·; δjg)/∂δjg , ḟYjg|Xjg ;X0
(yjg|xg;x0) =

∂fYjg|Xjg ;X0
(yjg|xg;x0)/∂δjg = ĊYjg|Xg ;X0

(
CYjg|X0

(ajg,y+1|x0)|xg
)
− ĊYjg|Xg ;X0

(
CYjg|X0

(ajg,y|x0)|xg
)
, f̄Yjg|Xjg ;X0

(yjg|xg;x0) =

∂fYjg|Xjg ;X0
(yjg|xg;x0)/∂θjg = cXgYjg

(
xg, CYjg|X0

(ajg,y+1|x0)
)
ĊYjg|X0

(ajg,y+1|x0)− cXgYjg

(
xg, CYjg|X0

(ajg,y|x0)
)
ĊYjg|X0

(ajg,y|x0).84
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Table 3.4: Derivatives of the bivariate probabilities πj1j2g,y1,y2
= Pr(Yj1g = y1, Yj2g = y2) with respect to the cutpoint αjg,k, the copula parameter θjg

for the first-order factorXg , and the copula parameter δg for the the second-order factorX0 for the second-order copula model for g = 1 . . . , G, j, j1, j2 =

1, . . . , dg, y, y1, y2 = 1, . . . ,K − 1, and k = 1, . . . ,K − 1.

∂πj1j2g,y1,y2/∂αjg,k If

φ(αj1g,y1+1)
∫ 1

0

∫ 1

0
fYj2g|Xg (yj2g|xg) cXgYj1g (xg, aj1g,y1+1) cXgX0(xg, x0) dxgdx0 j = j1, k = y1 + 1

−φ(αj1g,y1)
∫ 1

0

∫ 1

0
fYj2g|Xg (yj2g|xg) cXgYj1g (xg, aj1g,y1) cXgX0(xg, x0) dxgdx0 j = j1, k = y1

φ(αj2g,y2+1)
∫ 1

0

∫ 1

0
fYj1g|Xg (yj1g|xg) cXgYj2g (xg, aj2g,y2+1) cXgX0(xg, x0) dxgdx0 j = j2, k = y2 + 1

−φ(αj2g,y2)
∫ 1

0

∫ 1

0
fYj1g|Xg (yj1g|xg) cXgYj2g (xg, aj2g,y2) cXgX0(xg, x0) dxgdx0 j = j2, k = y2

∂πj1j2g,y1,y2/∂θjg If∫ 1

0

∫ 1

0
fYj2g|Xg (yj2g|xg) ḟYj1g|Xg (yj1g|xg) cXgX0(xg, x0) dxgdx0 j = j1∫ 1

0

∫ 1

0
fYj1g|Xg (yj1g|xg) ḟYj2g|Xg (yj2g|xg) cXgX0(xg, x0) dxgdx0 j = j2

∂πj1j2g,y1,y2/∂δg∫ 1

0

∫ 1

0
fYj1g|Xg (yj1g|xg) fYj2g|Xg (yj2g|xg) ċXgX0(xg, x0) dxgdx0

Note that fYjg|Xg (yjg|xg) = CYjg|Xg

(
ajg,y+1|xg; θjg

)
− CYjg|Xg

(
ajg,y|xg; θjg

)
, cXgYjg (xg, a) = ∂2CXgYjg (xg, a)/∂xg∂a, ĊYjg|Xg (·; θjg) =

∂CYjg|Xg (·; θjg)/∂θjg , ḟYjg|Xjg
(yjg|xg) = ∂fYjg|Xjg

(yjg|xg)/∂θjg = ĊYjg|Xg

(
ajg,y+1|xg

)
− ĊYjg|Xg

(
ajg,y|xg

)
, ċXgX0(xg, x0; δg) = ∂cXgX0(xg, x0; δg)/∂δg .
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Table 3.5: Derivatives of the bivariate probability πj1g1j2g2,y1,y2
= Pr(Yj1g1 = y1, Yj2g2 = y2) with respect to the cutpoint αjg,k, the copula parameter

θjg for the first-order factorXg , and the copula parameter δg for the second-order factorX0 for the second-order copula model for g = 1 . . . , G, j, j1, j2 =

1, . . . , dg, y, y1, y2 = 1, . . . ,K − 1, and k = 1, . . . ,K − 1.

∂πj1g1j2g2,y1,y2/∂αjg,k If

φ(αj1g1,y1+1)
∫ 1

0

∫ 1

0
fYj2g2

|Xg2
(yj2g2 |xg2) cXg2

X0(xg2 , x0) dxg2
∫ 1

0
cXg1

Yj1g1
(xg1 , aj1g1,y1+1) cXg1

X0(xg1 , x0) dxg1dx0 j = j1, g = g1, k = y1 + 1

−φ(αj1g1,y1)
∫ 1

0

∫ 1

0
fYj2g2

|Xg2
(yj2g2 |xg2) cXg2

X0(xg2 , x0) dxg2
∫ 1

0
cXg1

Yj1g1
(xg1 , aj1g1,y1) cXg1

X0(xg1 , x0) dxg1dx0 j = j1, g = g1, k = y1

φ(αj2g2,y2+1)
∫ 1

0

∫ 1

0
fYj1g1

|Xg1
(yj1g1 |xg1) cXg1

X0(xg1 , x0) dxg1
∫ 1

0
cXg2

Yj2g2
(xg2 , aj2g2,y2+1) cXg2

X0(xg2 , x0) dxg2dx0 j = j2, g = g2, k = y2 + 1

−φ(αj2g2,y2)
∫ 1

0

∫ 1

0
fYj1g1

|Xg1
(yj1g1 |xg1) cXg1

X0(xg1 , x0) dxg1
∫ 1

0
cXg2

Yj2g2
(xg2 , aj2g2,y2) cXg2

X0(xg2 , x0) dxg2dx0 j = j2, g = g2, k = y2

∂πj1g1j2g2,y1,y2/∂θjg If∫ 1

0

∫ 1

0
fYj2g2

|Xg2
(yj2g2 |xg2) cXg2

X0(xg2 , x0) dxg2
∫ 1

0
ḟYj1g1

|Xg1
(yj1g1 |xg1) cXg1

X0(xg1 , x0) dxg1dx0 j = j1, g = g1∫ 1

0

∫ 1

0
fYj1g1

|Xg1
(yj1g1 |xg1) cXg1

X0(xg1 , x0) dxg1
∫ 1

0
ḟYj2g2

|Xg2
(yj2g2 |xg2) cXg2

X0(xg2 , x0) dxg2dx0 j = j2, g = g2

∂πj1g1j2g2,y1,y2/∂δg If∫ 1

0

∫ 1

0
fYj2g2

|Xg2
(yj2g2 |xg2) cXg2

X0(xg2 , x0) dxg2
∫ 1

0
fYj1g1

|Xg1
(yj1g1 |xg1) ċXg1

X0(xg1 , x0) dxg1dx0 g = g1∫ 1

0

∫ 1

0
fYj1g1

|Xg1
(yj1g1 |xg1) cXg1

X0(xg1 , x0) dxg1
∫ 1

0
fYj2g2

|Xg2
(yj2g2 |xg2) ċXg2

X0(xg2 , x0) dxg2dx0 g = g2

Note that fYjg|Xg (yjg|xg) = CYjg|Xg

(
ajg,y+1|xg; θjg

)
− CYjg|Xg

(
ajg,y|xg; θjg

)
, cXgYjg (xg, a) = ∂2CXgYjg (xg, a)/∂xg∂a, ĊYjg|Xg (·; θjg) =

∂CYjg|Xg (·; θjg)/∂θjg , ḟYjg|Xjg
(yjg|xg) = ∂fYjg|Xjg

(yjg|xg)/∂θjg = ĊYjg|Xg

(
ajg,y+1|xg

)
− ĊYjg|Xg

(
ajg,y|xg

)
, ċXgX0(xg, x0; δg) = ∂cXgX0(xg, x0; δg)/∂δg .
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3.5 Simulations

An extensive simulation study is conducted to (a) gauge the small-sample efficiency

of the IFM estimation method and investigate the misspecification of the bivariate

pair-copulas, (b) examine the reliability of using the heuristic algorithm to select

the true (simulated) bivariate linking copulas, and (c) study the small-sample perfor-

mance of the M2 statistic.

We randomly generate 1,000 datasets with samples of size n = 500 or 1000

and d = 16 items, with K = 3 or K = 5 equally weighted categories, that are

equally separated into G = 4 non-overlapping groups from the bi-factor and second-

order copula model. In each simulated model, we use different linking copulas to

cover different types of dependence. To make the models comparable, we convert

the BVN/tν and Gumbel/s.Gumbel copula parameters to Kendall’s τ ’s via

τ(θ) =
2

π
arcsin(θ) (3.6)

and

τ(θ) = 1− θ−1, (3.7)

respectively. For the bi-factor copula models we set τ(θg) = (0.45, 0.55, 0.65, 0.75)

and τ(δg) = (0.30, 0.35, 0.40, 0.50) for g = 1, . . . , 4. For the second-order

copula models we set τ(θg) = (0.4, 0.5, 0.6, 0.7) for g = 1, . . . , 4 and τ(δ) =

(0.30, 0.35, 0.40, 0.45).

The Kendall’s tau parameters τ(θg) and τ(δg) as described above are common

for each group, hence Table 3.6 contains the group estimated average biases, root

mean square errors (RMSE), and standard deviations (SD), scaled by n, for the IFM

87



3.5.
Sim

ulations

Table 3.6: Small sample of size n = 500 simulations (103 replications) from the bi-factor and second-order factor models with Gumbel copulas and group
estimated average biases, root mean square errors (RMSE), and standard deviations (SD), scaled by n, for the IFM estimates under different pair-copulas
from the bi-factor and second-order copula models.

Bi-factor copula model Second-order copula model

τ(θg), g = 1, . . . , 4 τ(δg), g = 1, . . . , 4 τ(δ) τ(θg), g = 1, . . . , 4

Fitted model K 0.45 0.55 0.65 0.75 0.30 0.35 0.40 0.50 0.30 0.35 0.40 0.45 0.40 0.50 0.60 0.70

nbias BVN 3 2.65 2.54 2.66 2.16 6.60 7.81 6.99 6.39 5.58 5.34 5.33 5.60 0.41 0.86 0.62 0.27
5 1.98 2.27 2.54 2.53 5.99 6.27 5.42 2.31 8.71 8.36 7.94 8.52 0.93 0.51 0.58 2.52

Gumbel 3 0.39 0.35 0.28 0.34 0.89 1.02 1.62 3.40 -0.18 0.18 0.18 1.88 0.22 0.67 1.14 2.37
5 0.23 0.23 0.07 0.20 0.84 0.85 1.02 1.98 0.22 0.13 -0.25 1.15 0.23 0.43 0.63 0.60

s.Gumbel 3 3.59 3.03 1.51 0.31 4.86 4.52 4.21 1.19 18.43 18.29 18.54 18.68 6.32 6.18 5.47 3.67
5 0.79 2.25 3.80 5.30 15.89 15.82 13.89 14.52 25.65 24.80 23.58 22.59 3.77 2.54 1.24 2.74

t5 3 1.65 2.81 3.28 3.48 6.99 8.20 7.07 4.89 7.98 8.55 9.18 9.55 3.36 3.56 4.71 3.81
5 0.49 0.49 0.84 0.92 5.81 6.09 5.58 1.69 9.71 10.05 9.82 9.87 2.24 2.29 2.64 0.36

nSE BVN 3 15.03 13.42 12.37 11.06 30.77 31.20 33.07 39.93 22.80 24.94 24.97 27.03 16.82 16.41 17.06 21.32
5 13.68 11.89 10.63 8.95 24.58 25.33 25.70 29.86 21.28 23.04 22.45 24.72 15.09 14.27 14.01 15.41

Gumbel 3 15.10 13.81 12.33 10.97 29.61 31.34 32.82 42.17 22.58 24.73 25.35 27.87 16.99 16.73 17.66 22.02
5 13.67 12.29 10.55 8.76 23.60 24.72 25.39 31.13 20.75 22.75 22.69 24.86 15.31 14.62 14.33 15.72

s.Gumbel 3 15.58 13.76 12.60 11.27 33.77 34.80 38.18 51.31 25.34 26.80 27.19 29.36 17.40 16.49 16.59 18.46
5 14.11 12.30 11.16 9.66 27.08 28.44 30.18 40.10 22.61 24.13 23.36 25.46 15.90 14.57 14.38 16.89

t5 3 15.29 13.54 12.27 10.79 31.43 31.74 33.02 39.02 23.59 25.57 25.65 27.61 17.48 16.69 17.64 22.03
5 13.84 11.99 10.55 8.80 24.79 25.35 25.66 29.10 21.67 23.52 22.67 24.52 15.40 14.52 14.03 14.88

nRMSE BVN 3 15.28 13.66 12.66 11.27 31.48 32.19 33.81 40.45 23.47 25.50 25.53 27.60 16.83 16.44 17.08 21.33
5 13.83 12.11 10.93 9.30 25.31 26.10 26.27 29.96 22.99 24.51 23.81 26.14 15.12 14.28 14.03 15.62

Gumbel 3 15.10 13.81 12.34 10.98 29.63 31.37 32.87 42.31 22.58 24.73 25.35 27.94 16.99 16.75 17.71 22.15
5 13.67 12.30 10.55 8.77 23.62 24.74 25.42 31.20 20.75 22.75 22.69 24.88 15.31 14.63 14.35 15.73

s.Gumbel 3 16.00 14.09 12.69 11.27 34.13 35.13 38.42 51.33 31.33 32.45 32.91 34.80 18.52 17.65 17.49 18.82
5 14.14 12.51 11.79 11.02 31.41 32.55 33.22 42.67 34.19 34.60 33.19 34.04 16.35 14.82 14.44 17.13

t5 3 15.40 13.83 12.71 11.34 32.21 32.80 33.77 39.32 24.91 26.97 27.24 29.21 17.80 17.08 18.27 22.36
5 13.85 12.01 10.59 8.86 25.47 26.08 26.26 29.16 23.75 25.58 24.71 26.43 15.56 14.71 14.29 14.8988
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estimates under different pair-copulas from the bi-factor and second-order copula

models. In the true (simulated) models the linking copulas are Gumbel copulas.

Conclusions from the values in the table are the following:

• IFM with the true bi-factor or second-order model is highly efficient according

to the simulated biases, SDs and RMSEs.

• The IFM estimates of τ ’s are not robust under copula misspecification and

their biases increase when the assumed bivariate copula has tail dependence of

opposite direction from the true bivariate copula. For example, in Table 3.6

the scaled biases for the IFM estimates increase substantially when the linking

copulas are the s.Gumbel copulas.

To examine the reliability of using the heuristic algorithm to select the true (sim-

ulated) bivariate linking copulas, samples of size 500 were generated from various

bi-factor and second-order copula models. Table 3.7 presents the number of times

that the true (simulated) linking copulas were chosen over 1,000 simulation runs. It

is revealed that the model selection algorithm performs extremely well for various

bi-factor and second-order copulas models with different choices of linking copulas

as the number of categories K increases. For a small K dependence in the tails can-

not be easily quantified. Hence, for example, when the true copula is the t5 which

has the same upper and lower tail dependence, the algorithm selected either t5 or

BVN which has zero lower and upper tail dependence, because both copulas provide

reflection symmetric dependence.

To check whether the χ2
s−q is a good approximation for the distribution of the

M2 statistic under the null hypothesis, samples of sizes 500 and 1000 were generated
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Table 3.7: Small sample of size n = 500 simulations (103 replications) from the bi-factor and second-order factor models with various linking copulas
and frequencies of the true bivariate copula identified using the model selection algorithm.

Bi-factor Model 1 Model 2 Model 3 Model 4

Copula K = 3 K = 5 Copula K = 3 K = 5 Copula K = 3 K = 5 Copula K = 3 K = 5

X0 Gumbel 992 1000 t5 984 1000 Gumbel 996 1000 t5 975 1000
X1 Gumbel 858 956 t5 597 806 t5 585 789 Gumbel 888 958
X2 Gumbel 870 951 t5 588 799 t5 569 775 Gumbel 894 969
X3 Gumbel 846 950 t5 546 777 s.Gumbel 844 945 s.Gumbel 865 947
X4 Gumbel 844 942 t5 589 805 s.Gumbel 878 949 s.Gumbel 900 956

Second-order Model 1 Model 2 Model 3 Model 4

Copula K = 3 K = 5 Copula K = 3 K = 5 Copula K = 3 K = 5 Copula K = 3 K = 5

X0 Gumbel 901 848 t5 664 819 Gumbel 892 987 t5 648 765
X1 Gumbel 895 975 t5 735 939 t5 756 933 Gumbel 918 990
X2 Gumbel 892 962 t5 686 911 t5 705 910 Gumbel 918 991
X3 Gumbel 891 981 t5 711 915 s.Gumbel 901 980 s.Gumbel 902 982
X4 Gumbel 900 984 t5 743 926 s.Gumbel 904 984 s.Gumbel 919 980
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from various bi-factor second-order copula models. Table 3.8 contains four common

nominal levels of theM2 statistic under the bi-factor and second-order copula models

with different bivariate copulas. As can be seen in the table the observed levels of

M2 are close to the nominal α levels and remain accurate even for extremely sparse

tables (d = 16 and K = 5).

Table 3.8: Small sample of size n = {500, 1000} simulations (103 replications) from
bi-factor and second-order copula models and the empirical rejection levels at α =

{0.20, 0.10, 0.05, 0.01}, degrees of freedom (df), mean and variance.

M2

Copula n K df Mean Variance α=0.20 α=0.10 α=0.05 α=0.01

Bi-factor copula model

BVN 500 3 448 449.0 912.8 0.206 0.100 0.060 0.016
5 1888 1885.5 4858.3 0.210 0.117 0.065 0.024

1000 3 448 448.7 879.0 0.192 0.097 0.051 0.020
5 1888 1886.5 4332.5 0.202 0.108 0.064 0.015

Gumbel 500 3 448 449.9 887.3 0.216 0.111 0.053 0.011
5 1888 1886.6 4709.7 0.225 0.126 0.070 0.015

1000 3 448 448.9 864.0 0.201 0.102 0.050 0.015
5 1888 1888.6 4332.1 0.226 0.107 0.069 0.014

t5 500 3 448 448.7 907.3 0.202 0.088 0.048 0.018
5 1888 1886.6 4479.4 0.204 0.107 0.053 0.017

1000 3 448 448.6 834.9 0.184 0.090 0.050 0.014
5 1888 1890.3 4008.5 0.218 0.103 0.052 0.015

Second-order copula model

BVN 500 3 460 462.2 1001.2 0.220 0.113 0.055 0.016
5 1900 1903.5 3736.2 0.214 0.112 0.052 0.010

1000 3 460 461.3 1023.9 0.220 0.109 0.064 0.013
5 1900 1906.5 3918.2 0.230 0.130 0.068 0.012

Gumbel 500 3 460 464.5 1011.3 0.233 0.117 0.073 0.024
5 1900 1909.2 5099.8 0.245 0.129 0.064 0.008

1000 3 460 461.9 871.2 0.203 0.106 0.049 0.009
5 1900 1908.5 3977.0 0.239 0.129 0.067 0.015

t5 500 3 460 465.3 1362.4 0.247 0.145 0.091 0.039
5 1900 1904.7 3740.6 0.226 0.113 0.050 0.010

1000 3 460 461.8 900.1 0.214 0.108 0.055 0.010
5 1900 1908.1 3864.9 0.229 0.131 0.072 0.015
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3.6 Application

Alexithymia is a personality construct that is defined as a difficulty identifying, expe-

riencing or describing emotions (Schroeders et al., 2021). The most utilized measure

of alexithymia in empirical research is the Toronto Alexithymia Scale (Bagby et al.

1994; Gignac et al. 2007; Tuliao et al. 2020). It is composed of d = 20 items that

can be subdivided into G = 3 non-overlapping groups: d1 = 7 items to assess

difficulty identifying feelings (DIF), d2 = 5 items to assess difficulty describing feel-

ings (DDF) and d3 = 8 items to assess externally oriented thinking (EOT). We use

a dataset of 1925 university students from the French-speaking region of Belgium

(Briganti and Linkowski, 2020). Students were 17 to 25 years old and 58% of them

were female and 42% were male. They were asked to respond to each item using one

of K = 5 categories: “1 = completely disagree”, “2 = disagree”, “3 = neutral, “4 =

agree”, “5 = completely agree”. The dataset and full description of the items can be

found in Table 3.9 and the R package BGGM (Williams and Mulder, 2020).

For these items, a respondent might be thinking about the average “sensation”

of many past relevant events, leading to latent means. That is, based on the item

descriptions, this seems more natural than a discretized maxima or minima. Since

the sample is a mixture (male and female students) we can expect a priori that a bi-

factor or second-order copula model with tν copulas might be plausible, as in this

case the items can be considered as mixtures of discretized means.

In Table 3.10 we summarize the averages of polychoric semi-correlations for all

pairs within each group and for all pairs of items along with the theoretical semi-

correlations in Section 2.1.1 under different choices of copulas. For a BVN/tν cop-

ula the copula parameter is the sample polychoric correlation, while for a Gum-
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Table 3.9: The Toronto Alexithymia Scale with 20 items categorized into 3 groups.

Number Item Group

1 I am often confused about what emotion I am feeling Difficulty identifying feelings
2 It is difficult for me to find the right words for my feelings Difficulty describing feelings
3 I have physical sensations that even doctors don’t understand Difficulty identifying feelings
4 I am able to describe my feelings easily Difficulty describing feelings
5 I prefer to analyze problems rather than just describe them Externally oriented thinking
6 When I am upset, I don’t know if I am sad, frightened, or angry Difficulty identifying feelings
7 I am often puzzled by sensations in my body Difficulty identifying feelings
8 I prefer to just let things happen rather than to understand why they turned out that way Externally oriented thinking
9 I have feelings that I can’t quite identify Difficulty identifying feelings
10 Being in touch with emotions is essential Externally oriented thinking
11 I find it hard to describe my feelings more Difficulty describing feelings
12 People tell me to describe my feelings more Difficulty describing feelings
13 I don’t know what’s going on inside me Difficulty identifying feelings
14 I often don’t know why I am angry Difficulty identifying feelings
15 I prefer talking to people about their daily activities rather than their feelings Externally oriented thinking
16 I prefer to watch “light” entertainment shows rather psychological dramas Externally oriented thinking
17 It is difficult for me to reveal my innermost feelings, even to close friends Difficulty describing feelings
18 I can feel close to someone, even in moments of silence Externally oriented thinking
19 I find examination of my feelings useful in solving personal problems Externally oriented thinking
20 Looking for hidden meanings in movies or plays distracts from their enjoyment Externally oriented thinking
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Table 3.10: Average observed polychoric correlations and semi-correlations for all pairs within each group and for all pairs of items for the Toronto
Alexithymia Scale (TAS), along with the corresponding theoretical semi-correlations for BVN, t5, Frank, Gumbel , and survival Gumbel (s.Gumbel)
copulas.

All items Items in group 1 Items in group 2 Items in group 3

ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N

Observed 0.17 0.21 0.20 0.34 0.36 0.29 0.42 0.37 0.40 0.19 0.26 0.29
BVN 0.17 0.07 0.07 0.34 0.16 0.16 0.42 0.21 0.21 0.19 0.08 0.08
t5 0.17 0.23 0.23 0.34 0.31 0.31 0.42 0.35 0.35 0.19 0.24 0.24
Frank 0.17 0.04 0.04 0.34 0.10 0.10 0.42 0.13 0.13 0.19 0.05 0.05
Gumbel 0.17 0.05 0.22 0.34 0.11 0.37 0.42 0.14 0.43 0.19 0.05 0.24
s.Gumbel 0.17 0.22 0.05 0.34 0.37 0.11 0.42 0.43 0.14 0.19 0.24 0.05
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bel/s.Gumbel copula the polychoric correlation was converted to Kendall’s tau with

the relation in (3.6) and then from Kendall’s τ to Gumbel/s.Gumbel copula parameter

via the functional inverse in (4.10). The summary of findings from the diagnostics in

the table show that:

• for the first group of items there is more probability in the joint lower tail

suggesting s.Gumbel linking copulas to join each item in this group with the

DIF factor;

• for the second group of items there is more probability in the joint lower and

upper tail suggesting tν linking copulas to join each item in this group with the

DDF factor;

• for the third group of items there is more probability in the joint lower and

upper tail suggesting tν linking copulas to join each item in this group with the

EOT factor;

• for the items overall there is more probability in the joint lower and upper

tail suggesting tν linking copulas to join each item or group specific factor

(second-order model) with the common factor.

Hence, a bi-factor or second-order copula model with the aforementioned linking

copulas might provide a better fit that the (Gaussian) models with BVN copulas.

Then, we fit the bi-factor and second-order models with the copulas selected by

the heuristic algorithm in Section 3.3.1. For a baseline comparison, we also fit their

special cases; these are the one- and two-factor copula models where we have also

selected the bivariate copulas using the heuristic algorithm proposed by Kadhem and

Nikoloulopoulos (2021b) which is presented in Section 2.3 from previous chapter. To
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show the improvement of the copula models over their Gaussian analogues, we have

also fitted all the classes of copula models with BVN copulas. The fitted models are

compared via the AIC, since the number of parameters is not the same between the

models. In addition, we use Vuong’s test (Vuong, 1989) to show if (a) the best fitted

model according to the AICs provides better fit than the other fitted models and (b) a

model with the selected copulas provides better fit than the one with BVN copulas.

The Vuong test is the sample version of the difference in Kullback-Leibler divergence

between two models and can be used to differentiate two parametric models which

could be non-nested. For the Vuong’s test we provide the 95% confidence interval of

the test statistic (Joe, 2014, page 258). If the interval does not contain 0, then the best

fitted model according to the AICs is better if the interval is completely above 0. To

assess the overall goodness-of-fit of the bi-factor and second-order copula models,

we use the M2 statistic (Maydeu-Olivares and Joe, 2006).

Table 3.11 gives the AICs, the 95% CIs of Vuong’s tests and the M2 statistics

for all the fitted models. The best fitted bi-factor copula model results when we use

s.Gumbel for the DIF factor, t3 for both the DDF and EOT factors and t2 for the

common factor (alexithymia). This is in line with the preliminary analyses based on

the interpretations of items as mixtures of means and the diagnostics in Table 3.10.

It is revealed that the DIF items and DIF factor are discretized and latent minima,

respectively, as the participants seem to reflect that they “disagree” or “completely

disagree” having difficulty identifying feelings. From the Vuong’s 95% Cls and M2

statistics it is shown that factor copula models provide a big improvement over their

Gaussian analogues and that the selected bi-factor copula model outperforms all the

fitted models.
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Table 3.11: AICs, Vuong’s 95% CIs, and M2 statistics for the 1-factor, 2-factor, bi-factor and second-order copula models with BVN copulas and selected
copulas, along with the maximum deviations of observed and expected counts for all pairs within each group and for all pairs of items for the Toronto
Alexithymia Scale.

1-factor 2-factor Bi-factor Second-order

BVN Selected BVN Selected BVN Selected BVN Selected

AIC 107135.8 105504.0 106189.5 103893.5 105507.7 103200.9 105878.6 104133.7
Vuong’s 95% CIa (0.35,0.50) (0.53,0.69) (0.51,0.69) (0.38,0.52)
Vuong’s 95% CIb (0.93,1.13) (0.55,0.67) (0.69,0.88) (0.13,0.23) (0.51,0.69) (0.61,0.80) (0.21,0.29)
M2 14723.8 9865.0 9195.7 7383.7 11664.7 6381.5 13547.1 7341.2
df 3020 3020 3001 3000 3000 3000 3017 3017
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Maximum discrepancy

Items in Group 1 71 63 71 60 69 55 70 61
Items in Group 2 112 98 113 83 77 48 84 55
Items in Group 3 87 74 81 52 80 45 82 53
All items 112 98 113 83 80 55 84 61

aSelected factor copula model versus its Gaussian special case.
bSelected Bi-factor copula model versus any other fitted model.
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Although the selected bi-factor copula model shows substantial improvement

over the Gaussian bi-factor model or any other fitted model, it is not so clear from

the goodness-of-fit p-values that the response patterns are satisfactorily explained by

using the linking copulas selected by the heuristic algorithm. This is not surprising

since one should expect discrepancies between the postulated parametric model and

the population probabilities, when the sample size or dimension is sufficiently large

(Maydeu-Olivares and Joe, 2014). To further show that the fit has been improved

we have calculated the maximum deviations of observed and model-based counts for

each bivariate margin, that is, Dj1j2 = nmaxy1,y2 |pj1,j2,y1,y2 − πj1,j2,y1,y2(θ̂)|. In

Table 3.11 we summarize the averages of these deviations for all pairs within each

group and for all pairs of items. Overall, the maximum discrepancies have been

sufficiently reduced in the selected bi-factor model.

Table 3.12 gives the copula parameter estimates in Kendall’s τ scale and their

standard errors (SEs) for the selected bi-factor copula model and the Gaussian bi-

factor model as the benchmark model. The SEs of the estimated parameters are ob-

tained by the inversion of the Hessian matrix at the second step of the IFM method.

These SEs are adequate to assess the flatness of the log-likelihood. Proper SEs that

account for the estimation of cutpoints can be obtained by jackknifing the two-stage

estimation procedure. The loading parameters (τ̂ ’s converted to BVN copula param-

eters via the functional inverse in (3.6) and then to loadings using the relations in

Section 3.1.3) show that the common alexithymia factor is mostly loaded on DIF and

DDF items, suggesting that items in the domains DIF and DDF are good indicators

for alexithymia. The items in the EOT although they loaded on the EOT latent factor,

they had poor loadings in the common alexithymia factor.
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Table 3.12: Estimated copula parameters and their standard errors (SE) in Kendall’s τ scale for the Bi-factor copula models with BVN copulas and selected
copulas for the Toronto Alexithymia Scale.

Bi-factor copula model with BVN copulas Bi-factor copula model with selected copulas

Common factor Group-specific factors Common factor Group-specific factors

Items Est SE Est SE Copulas Est SE Copulas Est SE

1 0.42 0.01 0.23 0.02 t2 0.49 0.02 s.Gumbel 0.09 0.03
3 0.14 0.02 0.24 0.02 t2 0.16 0.02 s.Gumbel 0.37 0.02
6 0.22 0.02 0.29 0.02 t2 0.29 0.02 s.Gumbel 0.23 0.02
7 0.11 0.02 0.31 0.02 t2 0.09 0.02 s.Gumbel 0.53 0.04
9 0.38 0.01 0.34 0.02 t2 0.47 0.02 s.Gumbel 0.24 0.02
13 0.36 0.01 0.46 0.02 t2 0.49 0.02 s.Gumbel 0.32 0.03
14 0.21 0.02 0.36 0.02 t2 0.30 0.02 s.Gumbel 0.27 0.03

2 0.71 0.02 -0.24 0.10 t2 0.46 0.02 t3 0.53 0.02
4 0.55 0.01 0.02 0.04 t2 0.41 0.02 t3 0.58 0.03
11 0.35 0.01 0.13 0.03 t2 0.33 0.02 t3 0.20 0.03
12 0.34 0.02 0.29 0.04 t2 0.29 0.02 t3 0.23 0.03
17 0.31 0.02 0.38 0.06 t2 0.24 0.02 t3 0.25 0.03

5 0.06 0.02 0.33 0.02 t2 0.10 0.02 t3 0.34 0.02
8 0.11 0.02 0.30 0.02 t2 0.16 0.02 t3 0.33 0.02
10 0.12 0.02 0.27 0.02 t2 0.14 0.02 t3 0.30 0.02
15 0.15 0.02 0.19 0.02 t2 0.12 0.02 t3 0.19 0.02
16 0.03 0.02 0.23 0.02 t2 0.03 0.02 t3 0.24 0.02
18 -0.02 0.02 0.28 0.02 t2 0.03 0.02 t3 0.29 0.02
19 0.07 0.02 0.40 0.02 t2 0.10 0.02 t3 0.43 0.02
20 0.06 0.02 0.27 0.02 t2 0.10 0.02 t3 0.26 0.02
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3.7 Software

R functions for estimation, simulation, model selection and goodness-of-fit of the

bi-factor and second-order copula models are part of the R package FactorCopula

(Kadhem and Nikoloulopoulos, 2021c). All the analyses presented in Section 3.6 are

given as code examples in the package.

3.8 Chapter summary

We have proposed bi-factor and second-order copula models for item response data

that can be split into non-overlapping groups. Our copula constructions include the

Gaussian bi-factor and second-order models as special cases when we construct the

proposed models with BVN copulas. They also provide substantial improvement

over the Gaussian and other competing models (one and two factor copula model

with BVN and selected copulas) based on AIC, Vuong’s and M2 goodness-of-fit

statistics. This improvement relies on the fact that when we use appropriate bivariate

copulas other than BVN copulas in the construction, there is an interpretation of latent

variables that can be maxima/minima or mixture of means instead of means.
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Chapter 4

Factor tree copula models for item

response data

The factor copula models in Chapter 2 require the conditional independence assump-

tion, where the observed variables are conditionally independent given some latent

variables. This assumption implies that the dependence among the observed variables

is adequately explained by those latent variables. However, this assumption might not

be realistic in some scenarios. For example, violation of the conditional independence

assumption can occur if we have items that can be split into non-overlapping groups.

To alleviate the violation of this assumption, a possibility is to use the bi-factor and

second-order copulas proposed in Chapter 3 to model dependencies between and

within different groups.

In this chapter, without a priori knowledge of the subgroups of items, we extend

the factor copula models in Chapter 2 for item response data to model the residual

dependence. The main new contribution in this chapter is the construction of factor

copula models with conditional dependence structure, where we combine the factor

101



4.1. Factor tree copula models for item response

copula models with an 1-truncated vine copula for item response data. These models

introduce conditional dependence structure given very few latent variables.

The proposed models are built based on arbitrary bivariate parametric copula

families and thus allow for a flexible vine structure. Bivariate copulas other than

BVN can be called to model tail asymmetry/dependence in the data. In order to build

plausible models, accounting for different tail behaviour, we propose model selec-

tion algorithms that select a suitable vine structure and bivariate parametric copulas.

Hereafter, we will refer to the model as factor tree copula.

We illustrate the proposed methodology by re-analysing a real dataset. We show

that the factor tree copula models with the selected vine tree and copulas (obtained

from the model selection algorithms) provide a substantial improvement over relevant

benchmark models.

The rest of the chapter is as follows. In Section 4.1, we introduce the combined

factor/truncated vine copula models for item response data. Section 4.2 provides es-

timation techniques and computational details. Section 4.3 discusses vine tree and

bivariate copula selection. Section 4.4 has an extensive simulation study to assess

the estimation techniques and model selection algorithms. Our methodology is illus-

trated using real data in Section 4.5, followed with a summary in Section 4.6.

4.1 Factor tree copula models for item response

This section introduces the theory of the combined factor/truncated vine copula mod-

els for item response data. Before that, the first two sections provide some back-

ground about factor (Nikoloulopoulos and Joe, 2015) and truncated vine (Panagiotelis

et al., 2012, 2017) copula models for discrete responses.
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4.1.1 Factor copula models

We first introduce the notation used in this chapter. Let Y = {Y1, . . . , Yd} denote

the vector with the item response variables that are all measured on an ordinal scale;

Yj ∈ {0, . . . ,Kj − 1}. Let the cutpoints in the uniform U(0, 1) scale for the jth

item be aj,k, k = 1, . . . ,K − 1, with aj,0 = 0 and aj,K = 1. These correspond to

aj,k = Φ(αj,k), where αj,k are cutpoints in the normal N(0, 1) scale.

The p-factor model assumes that Y, with corresponding realizations y =

{y1, . . . , yd}, is conditionally independent given the p-dimensional latent vector

X = (X1, . . . , Xp). The joint probability mass function (pmf) of the p-factor model

is

πd(y) = Pr(Y1 = y1, . . . , Yd = yd) (4.1)

=

∫ d∏

j=1

Pr(Yj = yj |X1 = x1, . . . , Xp = xp) dFX(x),

where FX is the distribution of the latent vector X. The factor copula methodol-

ogy uses a set of bivariate copulas that link the items to the latent variables to specify

Pr(Yj = yj |X1 = x1, . . . , Xp = xp). Below we include the theory for one and two

factors.

For the 1-factor model, let X1 be a latent variable that is standard uniform. From

Sklar (1959), there is a bivariate copula CX1j such that Pr(X1 ≤ x, Yj ≤ y) =

CX1j

(
x, Fj(y)

)
for 0 ≤ x ≤ 1 where Fj(y) = aj,y+1 is the cdf of Yj . Then it

follows that

Fj|X1
(y|x) := Pr(Yj ≤ y|X1 = x) =

∂CX1j(x, aj,y+1)

∂x
= Cj|X1

(aj,y+1|x). (4.2)
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Hence, the pmf for the 1-factor copula model becomes

πd(y) =

∫ 1

0

d∏

j=1

Pr(Yj = yj |X1 = x) dx =

∫ 1

0

d∏

j=1

fj|X1
(yj |x) dx,

where

fj|X1
(y|x) = Cj|X1

(aj,y+1|x)− Cj|X1
(aj,y|x). (4.3)

For the 2-factor copula model, let X1, X2 be latent variables that are independent

uniform U(0, 1) random variables. Let CX1j be defined as in the 1-factor copula

model and CX2j be a bivariate copula such that

Pr(X2 ≤ x2, Yj ≤ y|X1 = x1) = CX2j

(
x2, Fj|X1

(y|x1)
)
,

where Fj|X1
is given in (4.2). Then for 0 ≤ x1, x2 ≤ 1,

FX2j|X1
(x2,y|x1) := Pr(Yj ≤ y|X1 = x1, X2 = x2)

=
∂

∂x2
Pr(X2 ≤ x2, Yj ≤ y|X1 = x1) =

∂

∂x2
CX2j

(
x2, Fj|X1

(y|x1)
)

= Cj|X2

(
Fj|X1

(y|x1)|x2
)
. (4.4)

Hence, the pmf for the 2-factor copula model is

πd(y) =

∫ 1

0

∫ 1

0

d∏

j=1

Pr(Yj = yj |X1 = x1, X2 = x2) dx1dx2

=

∫ 1

0

∫ 1

0

d∏

j=1

fX2j|X1

(
x2, yj |x1

)
dx1dx2,

where

fX2j|X1
(x2, y|x1) = Cj|X2

(
Fj|X1

(y|x1)|x2
)
−Cj|X2

(
Fj|X1

(y− 1|x1)|x2
)
. (4.5)
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4.1.2 1-truncated vine copula models

Vine copula models involve d−1 trees, the first tree represents dependence (as edges)

amongst d variables (as nodes). Then the edges become nodes in the next tree, involv-

ing the conditional dependencies given a common variable. This process continues

until tree d − 1 that includes two nodes and one edge, representing conditional de-

pendence of two variables given d− 2 variables (Chang and Joe, 2019).

If one is restricted to the first tree, that is truncation at level 1, then the result is a

Markov tree dependence structure where two variables not connected by an edge are

conditionally independent given the variables in the tree between them. In a Markov

tree or 1-truncated vine with d variables, d − 1 of the d(d − 1)/2 possible pairs are

identified as the edges of a tree with d nodes corresponding to the items, i.e., there

are a total of d − 1 edges, where two connected pairs of items form an edge. Let j

and k be indices for any pairs of items with 1 ≤ k < j ≤ d. For a given vine tree

structure, let E denote the set of edges. Each edge of jk ∈ E is represented with a

bivariate copula Cjk such that

Pr(Yj ≤ yj , Yk ≤ yk) = Cjk
(
Fj(yj), Fk(yk)

)
= Cjk(aj,yj+1, ak,yk+1).

Since the densities of vine copulas can be factorized in terms of bivariate linking

copulas and lower-dimensional margins, they are computationally tractable for high-

dimensional continuous variables. Nevertheless, the cdf of d-dimensional vine copula

lacks a closed form and requires (d− 1)-dimensional integration (Joe, 1997). Hence,

in order to derive the d-dimensional pmf using finite differences of the d-dimensional

cdf (e.g., Braeken et al. 2007 or Nikoloulopoulos 2013a) poses non-negligible nu-

merical challenges. This problem has been solved by Panagiotelis et al. (2012) who
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decomposed the d-dimensional pmf into finite differences of bivariate copula cdfs.

Hence, the pmf of an 1-truncated vine model takes the form

πd(y) =

d∏

j=1

Pr(Yj = yj)
∏

jk∈E

Pr(Yj = yj , Yk = yk)

Pr(Yj = yj) Pr(Yk = yk)
, (4.6)

where Pr(Yj = yj , Yk = yk) = Cjk(aj,yj+1, ak,yk+1) − Cjk(aj,yj , ak,yk+1) −

Cjk(aj,yj+1, ak,yk) + Cjk(aj,yj , ak,yk) and Pr(Y = y) = aj,y+1 − aj,y.

4.1.3 Combined factor/truncated vine copula models

In this section we combine the factor copula model with an 1-truncated vine copula to

account for the residual dependence. The pmf of an 1-truncated vine copula in (4.6)

can be used in the pmf of the factor copula model in (4.1) instead of the product to

capture any residual dependencies. Hence the pmf of the combined factor/truncated

vine copula model takes the form

πd(y) =

∫ d∏

j=1

Pr (Yj = yj |X = x)×

∏

[jk]∈E

Pr (Yj = yj , Yk = yk|X = x)

Pr (Yj = yj |X = x) Pr (Yk = yk|X = x)
dFX(x).

With one factor and an 1-truncated vine given the latent variable X1 (hereafter

1-factor tree) let Cjk;X1 be a bivariate copula such that

Pr(Yj ≤ yj , Yk ≤ yk|X1 = x1) = Cjk;X1

(
Fj|X1

(yj |x1), Fk|X1
(yk|x1)

)
,
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where Fj|X1
and Fk|X1

are given in (4.2). Then for a given 1-truncated vine structure

with a set of edges E , the pmf of the 1-factor tree copula model is

πd(y) =

∫ 1

0

d∏

j=1

fj|X1
(yj |x)

∏

jk∈E

fjk|X1
(yj , yk|x1)

fj|X (yj |x) fk|X (yk|x)
dx, (4.7)

where

fjk|X1
(yj , yk|x1) = Cjk|X1

(
F+
j|X1

, F+
k|X1

)
− Cjk|X1

(
F−j|X1

, F+
k|X1

)

− Cjk|X1

(
F+
j|X1

, F−k|X1

)
+ Cjk|X1

(
F−j|X1

, F−k|X1

)

and fj|X (yj |x), fk|X (yk|x) are given in (4.3). In the above F+
j|X1

= Fj|X1
(y|x) and

F−j|X1
= Fj|X1

(y − 1|x).

Figure 4.1 depicts the graphical representation of a 1-factor tree copula model

with d = 5 items as a 2-truncated vine. Tree 1 shows the typical 1-factor model, while

Tree 2 accounts for the residual dependence by the pairwise conditional dependencies

of two items conditioned on the factor X1.

X

Y1 Y2 Y3 Y4 Y5Tree 1

Y1X Y 2
X

Y
3
X

Y
4X Y

5X

Y1X Y2X Y3X Y4X Y5XTree 2
Y1Y2|X Y2Y3|X

Y2Y4|X
Y4Y5|X

Figure 4.1: Graphical representation of a 1-factor tree copula model with d = 5 items.
The first tree is the 1-factor model. The residual dependence is captured in Tree 2 with an
1-truncated vine model.
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4.1. Factor tree copula models for item response

With two factors and an 1-truncated vine given the latent variables X1, X2 (here-

after 2-factor tree), let Cjk;X1,X2 be a bivariate copula cdf such that

Pr(Yj ≤ yj , Yk ≤ yk|X1, X2) = Cjk;X1X2

(
FX2j|X1

(x2, yj |x1), FX2k|X1
(x2, yk|x1)

)
,

where FX2j|X1
and FX2k|X1

are given in (4.4). Then for a given vine structure with

a set of edges E , the pmf of the 2-factor tree copula model is

πd(y) =

∫ 1

0

∫ 1

0

d∏

j=1

fX2j|X1
(x2, yj |x1)×

∏

[jk]∈E

fjk|X1X2
(yj , yk|x1, x2)

fX2j|X1
(x2, yj |x1) fX2k|X1

(x2, yk|x1)
dx1dx2, (4.8)

where

fjk|X1X2

(
yj ,yk|x1, x2) = Cjk|X1X2

(
F+
X2j|X1

, F+
X2k|X1

)
− Cjk|X1X2

(
F−X2j|X1

, F+
X2k|X1

)

− Cjk|X1X2

(
F+
X2j|X1

, F−X2k|X1

)
+ Cjk|X1X2

(
F−X2j|X1

, F−X2k|X1

)
.

and fX2j|X1
(x2, yj |x1), fX2k|X1

(x2, yk|x1) are as in (4.5). In the above F+
X2j|X1

=

FX2j|X1
(x2, y|x1) and F−X2j|X1

= FX2j|X1
(x2, y − 1|x1).

Figure 4.2 depicts the graphical representation of a 2-factor tree copula model

with d = 5 items as a 3-truncated vine. Trees 1 and 2 show the common 2-factor

model, while Tree 3 involves the pairwise conditional dependencies of two items

given the factors.

For parametric 1-factor and 2-factor tree copula models, we let CX1j , CX2j and

Cjk;X be parametric bivariate copulas, say with parameters θ1j , θ2j , and δjk, re-

spectively. For the set of all parameters, let θ = {ajk, θ1j , δjk : j = 1, . . . , d; k =
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Y4Y5|X1X2

Figure 4.2: Graphical representation of a 2-factor tree copula model with d = 5 items. The
first and second trees represent the 2-factor model. The residual dependence is captured in
Tree 3 with an 1-truncated vine model. Note that the factors are linked to one another with
an independent copula in Tree 1.

1, . . . ,K−1; jk ∈ E} for the 1-factor tree copula model and θ = {ajk, θ1j , θ2j , δjk :

j = 1, . . . , d; k = 1, . . . ,K − 1; jk ∈ E} for the 2-factor tree copula model.

4.1.4 Choices of parametric bivariate copulas

In line with Nikoloulopoulos and Joe (2015), we use bivariate parametric copulas

that can be used when considering latent maxima, minima or mixtures of means. For

different dependent items based on latent maxima or minima, multivariate extreme

value and copula theory (e.g., Joe 1997 ) can be used to select suitable copulas that

link observed to latent variables. Copulas that arise from extreme value theory have

more probability in one joint tail (upper or lower) than expected with a discretized

MVN distribution or a MVN copula with discrete margins. If item responses are

based on discretizations of latent variables that are means, then it is possible that

there can be more probability in both the joint upper and joint lower tail, compared
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4.1. Factor tree copula models for item response

with discretized MVN models. This happens if the respondents consist of a ‘mix-

ture’ population (e.g., different locations or genders). From the theory of elliptical

distributions and copulas (e.g., McNeil et al. 2005), it is known that the multivari-

ate Student-t distribution as a scale mixture of MVN has more dependence in the

tails. Extreme value and elliptical copulas can model item response data that have

reflection asymmetric and symmetric dependence, respectively.

Choices of copulas with upper or lower tail dependence are better if the items

have more probability in joint lower or upper tail than would be expected with the

BVN copula. We provide below the bivariate copula choices we consider:

• A model with BVN copulas has latent (ordinal) variables that can be consid-

ered as (discretized) means and and there is less probability in both the joint

upper and joint lower tail as the BVN copula has reflection symmetry and tail

independence.

• A model with bivariate Gumbel copulas has latent (ordinal) variables that can

be considered as (discretized) maxima and there is more probability in the

joint upper tail as the Gumbel copula has reflection asymmetry and upper tail

dependence.

• A model with bivariate survival Gumbel copulas has latent (ordinal) variables

that can be considered as (discretized) minima and there is more probability

in the joint lower tail as the survival Gumbel copula has reflection asymmetry

and lower tail dependence.

• A model with bivariate tν copulas has latent (ordinal) variables that can be

considered as mixtures of (discretized) means, since the bivariate Student-t

distribution arises as a scale mixture of bivariate normals. A small value of
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ν, such as 1 ≤ ν ≤ 5, leads to a model with more probabilities in the joint

upper and joint lower tails compared with the BVN copula as the tν copula has

reflection symmetric upper and lower tail dependence.

For the residual part of the model in addition to the aforementioned bivariate

parametric copulas for computational improvements we can use the Archimedean

Frank copula. For all the bivariate margins to have more probability in the joint lower

or upper tail, it only suffices that the bivariate copulas in the first trees (factor part)

to have upper/lower tail dependence and is not necessary for the bivariate copulas in

the higher trees (residual part) to have tail dependence. For discrete data, such as

item response, the Frank copula has the same tail behaviour with the BVN copula but

provides simplified computations as it has a closed from cdf and thus it can preferred

over the BVN copula for the residual part of the model that involves finite differences

of bivariate copula cdfs.

4.2 Estimation

With sample size n and data y1, . . . ,yn, the joint log-likelihood of the factor tree

copula models is

`(θ; y1, . . . ,yn) =
n∑

i=1

log πd(yi;θ), (4.9)

with πd(y) as defined in (4.7) and (4.8) for the 1-factor and 2-factor tree copula

model, respectively. Maximization of (4.9) is numerically possible but time-

consuming for large d because of many univariate cutpoints and dependence param-

eters. Hence, we approach estimation using the two-step IFM method proposed by

Joe (2005).
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4.2. Estimation

In the first step, the cutpoints are estimated using the univariate sample propor-

tions. The univariate cutpoints for the jth item are estimated as âj,k =
∑k

y=0 pj,y,

where pj,y , y = 0, . . . ,K− 1 for j = 1, . . . , d are the univariate sample proportions.

In the second step of the IFM method, the joint log-likelihood in (4.9) is maximized

over the copula parameters with the cutpoints fixed as estimated at the first step. The

estimated copula parameters can be obtained by using a quasi-Newton (Nash, 1990)

method applied to the logarithm of the joint likelihood.

For the 1-factor tree copula model, numerical evaluation of the joint pmf can be

achieved with the following steps:

1. Calculate Gauss-Legendre quadrature (Stroud and Secrest, 1966) points {xq :

q = 1, . . . , nq} and weights {wq : q = 1, . . . , nq} in terms of standard uni-

form.

2. Numerically evaluate the joint pmf in (4.7) via the following approximation:

nq∑

q=1

wq

d∏

j=1

fj(yj |xq)
∏

[jk]∈E

fjk|X1
(yj , yk|xq)

fj|X(yj |xq)fk|X(yk|xq)
.

For the 2-factor tree copula model, numerical evaluation of the joint pmf can be

achieved with the following steps:

1. Calculate Gauss-Legendre quadrature (Stroud and Secrest, 1966) points {xq1 :

q1 = 1, . . . , nq} and {xq2 : q2 = 1, . . . , nq} and weights {wq1 : q1 =

1, . . . , nq} and {wq2 : q2 = 1, . . . , nq} in terms of standard uniform.
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4.3. Model selection

2. Numerically evaluate the joint pmf in (4.8) via the following approximation in

a double sum:

nq∑

q1=1

nq∑

q2=1

wq1wq2

d∏

j=1

fX2j|X1
(xq2 , yj |xq1)×

∏

[jk]∈E

fjk|X1X2
(yj , yk|xq1 , xq2)

fX2j|X1
(xq2 , yj |xq1)fX2k|X1

(xq2 , yk|xq1)
.

Our comparisons show that nq = 15 quadrature points provide good precision

for both the 1-factor and 2-factor tree copula models.

4.3 Model selection

In this section we will discuss model selection strategies for the factor tree cop-

ula models. Section 4.3.1 proposes vine tree structure selection methods for the

residual part of the model that assume the factor tree copula models are constructed

with bivariate normal (BVN) copulas. Section 4.3.2 proposes a heuristic algorithm

that sequentially selects suitable bivariate copulas to account for any tail depen-

dence/asymmetry as in Kadhem and Nikoloulopoulos (2021a,b).

4.3.1 1-truncated vine tree structure selection

We propose two selection algorithms to choose the 1-truncated vine tree structure

E for the residual part of the model, namely the polychoric and partial selection al-

gorithms. Before that, we provide the necessary tools to form the aforementioned

algorithms. These are the estimated polychoric correlations (Olsson, 1979), correla-

tions between each of the items and the first factor and partial correlations between

each of the items and the second factor given the first factor (Nikoloulopoulos and

Joe, 2015).
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4.3. Model selection

The sample polychoric correlation for all possible pairs of items can be estimated

as

ρ̂jk = argmaxρ

n∑

i=1

log
(

Φ2(αj,yij+1, αk,yik+1; ρ)− Φ2(αj,yij+1, αk,yik ; ρ)−

Φ2(αj,yij , αk,yik+1; ρ) + Φ2(αj,yij , αk,yik ; ρ)
)
, 1 ≤ j < k ≤ d,

where Φ2(·, ·; ρ) is the BVN cdf with correlation parameter ρ.

When all the bivariate copulas are BVN the p-factor copula model is the same as

the discretized MVN model with a p-factor correlation matrix, also known as the p-

dimensional normal ogive model (Jöreskog and Moustaki, 2001). The 1-factor copula

model in (4.3) is the same as the variant of Samejima’s (1969) graded response IRT

model, known as normal ogive model (McDonald, 1997) with a 1-factor correlation

matrix R = (rjk) with rjk = θ1jθ1k for j 6= k. The 2-factor model in (4.5) is the

same as the bidimensional (2-factor) normal ogive model with a 2-factor correlation

matrix R = (rjk) with rjk = θ1jθ1k + θ2jθ2k[(1 − θ21j)(1 − θ21k)]
1/2 for j 6= k.

The parameter θ1j of CX1j is the correlation of the underlying normal variable Zj

of Yj with Z01 = Φ−1(X1), and the parameter θ2j of CX2j is the partial correlation

between Zj and Z02 = Φ−1(X1) given Z01.

Subsequently, for all possible pair of items we can estimate the partial correla-

tions between Zj and Zk given Z01 and the partial correlations between Zj and Zk

given Z01, Z02 via the relations

ρ̂jk;Z01 =
ρ̂jk − θ̂1j θ̂1k√

(1− θ̂21j)(1− θ̂21k)
and ρ̂jk;Z01,Z02 =

ρ̂jk;Z01 − θ̂2j θ̂2k√
(1− θ̂22j)(1− θ̂22k)

,
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respectively, where θ̂1j , θ̂1k are the estimated unidimensional normal ogive model’s

parameters and θ̂1j , θ̂1k, θ̂2j , θ̂2k are the estimated bidimensional normal ogive

model’s parameters.

The polychoric and partial correlation algorithms select the best vine tree using

the minimum spanning tree algorithm (Prim, 1957). The former algorithm selects the

edges E of the tree that minimize the sum of the weights log(1− ρ̂2jk), while the latter

algorithm the sum of the weights log(1− ρ̂2jk;Z01
) for the 1-factor tree copula model

and log(1− ρ̂2jk;Z01,Z02
) for the 2-factor tree copula model.

4.3.2 Bivariate copula selection

We propose a heuristic method that selects appropriate bivariate copulas for the pro-

posed models. It starts with an initial assumption that all bivariate copulas are BVN

and independent copulas in the factor and 1-truncated vine copula model, respec-

tively. Then sequentially suitable copulas with lower or upper tail dependence are

assigned where necessary to account for more probability in one or both joint tails.

For ease of interpretation, we do not mix Gumbel, s.Gumbel, tν and BVN for a sin-

gle tree of the model; e.g., for the 2-factor tree copula model we allow three different

copula families, one for the first factor, one for the second factor and one for the

1-truncated vine (residual dependence part of the model).

The selection algorithm involves the following steps:

1. Start with a factor tree copula model with BVN and independent copulas in the

factor and 1-truncated vine copula parts of the model, respectively.

2. Factor part

(a) Factor 1
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i. Fit all the possible models, iterating over all the bivariate copula

candidates that link each of the items to X1.

ii. Select the bivariate copula that corresponds to the highest log-

likelihood.

iii. Replace the BVN with the selected bivariate copula that links each

of the items to X1.

(b) Factor 2

i. Fit all the possible models, iterating over all the copula candidates

that link each of the items to X2.

ii. Select the bivariate copula that corresponds to the highest log-

likelihood.

iii. Replace BVN with the selected bivariate copula that links each of

the items to X2.

3. 1-truncated vine part

(a) Select the best 1-truncated vine tree structure E using both the polychoric

and partial selection algorithms proposed in Subsection 4.3.1.

(b) Fit all the possible models, iterating over all the bivariate copula candi-

dates that link the pairs of items ∈ E given the factors.

(c) Select the bivariate copula that corresponds to the highest log-likelihood.

(d) Replace the independence copula with the selected bivariate copula that

links each pair of items ∈ E given the factors.
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4.4 Simulations

An extensive simulation study is conducted to assess the (a) efficiency of the proposed

estimation method and (b) reliability of using the model selection algorithms to select

the correct 1-truncated vine tree structure for the residual dependence part of the

model. We randomly generated 1, 000 datasets with sample size n = 500 and d =

{8, 16, 24} items with K = 5 equally weighted categories from an 1-factor and 2-

factor tree copula models with Gumbel copulas. The items in the last tree are either

serially connected in ascending order with an 1-truncated drawable vine or randomly

connected with a 1-truncated regular vine. Note in passing that the drawable vine is

a boundary regular vine case.

We set the copula parameters in Kendall’s τ scale, i.e., τ(θ1j , j = 1, . . . , d) =

{0.70, . . . , 0.40} and τ(θ2j , j = 1, . . . , d) = {0.55, . . . , 0.25} for the factor copula

parts of the models and τ(δjk, jk ∈ E) = {0.55, . . . , 0.25} and τ(δjk, jk ∈ E) =

{0.40, . . . , 0.10} for the 1-truncated vine copula part of the model for the 1-factor

and 2-factor tree copula model, respectively. The τ ’s as above form equally spaced

sequences and are strictly increasing functions of the true (simulated) Gumbel copula

parameters, viz.

τ(θ) = 1− θ−1. (4.10)

Table 4.1 and Table 4.2 present the resulting biases, standard deviations (SD)

and root mean square errors (RMSE), scaled by n, from the simulations of the 1-

factor and 2-factor tree copula models with Gumbel copulas, respectively and an

1-truncated drawable vine residual dependence structure. The results indicate that
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the proposed approximation method is efficient for estimating the factor tree copula

models and the efficiency improves as the dimension increases.

In Figure 4.3 we report the frequency of a pair of items is correctly selected as an

edge for each of the edges of the 1-truncated vine from the simulations of the 1- and

2-factor tree copula models with Gumbel copulas with d = 8, d = 16 and d = 24

items for both the partial and polychoric selection algorithms. It has been shown

that the partial selection algorithm as the dimension increases performs extremely

well for the 1-truncated drawable vine residual dependence structure, but poorly for

the 1-truncated regular vine structure. The quite contrary (or complimentary) re-

sults are seen for the polychoric algorithm. The polychoric selection algorithm rather

performs extremely well in selecting the true edges in the 1-truncated regular vine

residual dependence structure. It is most accurate for the initial edges, while it is less

accurate for the final edges. This is because the dependence strength is represented in

descending order as τ = {0.40, . . . , 0.10}, so the polychoric selection algorithm is

highly reliable to select the edges with stronger dependence. The edges with weaker

dependence are not easily quantified and can be approximated with other edges that

lead to a similar correlation matrix or even accounted for by the previous trees (factor

copula models).
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Table 4.1: Small sample of size n = 500 simulations (103 replications) and d = {8, 16, 24} items with K = 5 equally weighted categories from an
1-factor tree copula model with Gumbel copulas and an 1-truncated drawable vine residual dependence structure for d = {8, 16, 24} and resultant biases,
root mean square errors (RMSE), and standard deviations (SD), scaled by n, for the IFM estimates.

d = 8 1st tree (1-factor copula) 2nd tree (vine copula)

τ 0.70 0.66 0.61 0.57 0.53 0.49 0.44 0.40 0.40 0.35 0.30 0.25 0.20 0.15 0.10

nBias 6.19 5.83 8.34 7.30 4.13 -0.46 -2.47 -2.77 -14.23 -16.11 -15.79 -9.90 -2.86 1.19 1.42
nSD 20.48 21.24 19.05 17.56 16.43 16.56 15.79 16.05 44.97 33.61 28.66 25.17 21.68 19.87 18.54
nRMSE 21.40 22.03 20.80 19.01 16.94 16.57 15.98 16.29 47.17 37.27 32.72 27.05 21.87 19.91 18.60

d = 16 1st tree (1-factor copula)

τ 0.70 0.68 0.66 0.64 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40

nBias 2.76 3.43 5.22 6.18 6.02 4.66 2.96 2.19 0.79 0.20 0.05 -1.43 -1.74 -1.02 -1.80 -0.93
nSD 10.89 11.31 11.85 11.94 12.08 11.91 12.35 12.45 12.65 13.26 12.96 13.66 13.66 14.51 14.55 14.19
nRMSE 11.23 11.81 12.95 13.45 13.49 12.79 12.70 12.64 12.68 13.26 12.96 13.74 13.77 14.55 14.66 14.22

2nd tree (1-truncated vine copula)

τ 0.40 0.38 0.36 0.34 0.31 0.29 0.27 0.25 0.23 0.21 0.19 0.16 0.14 0.12 0.10

nBias -6.55 -9.58 -12.27 -11.32 -9.85 -6.42 -4.51 -2.46 -1.01 0.46 0.70 1.35 1.96 1.17 1.59
nSD 22.62 22.71 21.92 20.66 19.36 18.59 18.95 18.22 17.92 18.02 17.21 17.20 16.79 16.91 16.62
nRMSE 23.55 24.65 25.12 23.56 21.72 19.67 19.48 18.39 17.95 18.02 17.22 17.25 16.90 16.95 16.70

d = 24 1st tree (1-factor copula)

τ 0.70 0.69 0.67 0.66 0.65 0.63 0.62 0.61 0.60 0.58 0.57 0.56 0.54 0.53 0.52 0.50 0.49 0.48 0.47 0.45 0.44 0.43 0.41 0.40

nBias 1.61 1.89 3.41 4.20 4.35 3.84 3.13 2.52 2.29 1.68 1.03 0.44 -0.21 0.05 -0.53 -0.55 -0.28 -0.05 -0.12 -0.33 -0.44 -0.12 -0.25 -0.60
nSD 9.72 10.39 10.86 11.06 11.13 10.86 11.28 11.32 11.61 11.99 11.76 11.90 12.10 12.54 12.71 12.70 12.82 13.21 13.54 13.43 13.86 13.74 13.57 13.84
nRMSE 9.86 10.56 11.38 11.83 11.95 11.52 11.70 11.59 11.83 12.11 11.80 11.91 12.11 12.54 12.73 12.71 12.82 13.21 13.54 13.43 13.87 13.74 13.58 13.85

2nd tree (1-truncated vine copula)

τ 0.40 0.39 0.37 0.36 0.35 0.33 0.32 0.30 0.29 0.28 0.26 0.25 0.24 0.22 0.21 0.20 0.18 0.17 0.15 0.14 0.13 0.11 0.10

nBias -4.29 -6.22 -7.94 -8.53 -7.72 -6.13 -6.24 -4.19 -2.61 -2.03 -1.33 -0.34 0.17 -0.32 0.59 -0.06 0.44 1.32 0.74 0.60 0.46 0.04 0.73
nSD 20.39 19.93 19.75 19.11 19.40 18.36 18.93 18.26 18.15 18.02 17.04 17.40 16.77 17.03 17.64 16.52 17.28 16.69 17.22 16.72 17.12 16.88 16.79
nRMSE 20.84 20.88 21.28 20.93 20.88 19.36 19.94 18.73 18.33 18.14 17.10 17.41 16.78 17.04 17.65 16.52 17.29 16.74 17.24 16.73 17.13 16.88 16.80
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Table 4.2: Small sample of size n = 500 simulations (103 replications) and d = 24 items with K = 5 equally weighted categories from a 2-factor tree
copula model with Gumbel copulas and an 1-truncated drawable vine residual dependence structure and resultant biases, root mean square errors (RMSE),
and standard deviations (SD), scaled by n, for the IFM estimates.

d = 24

1st tree (1st factor of 2-factor copula)

τ 0.70 0.69 0.67 0.66 0.65 0.63 0.62 0.61 0.60 0.58 0.57 0.56 0.54 0.53 0.52 0.50 0.49 0.48 0.47 0.45 0.44 0.43 0.41 0.40

nBias -5.74 -3.26 -0.07 2.35 3.96 4.12 3.60 3.94 4.05 3.73 4.58 4.27 3.74 4.83 4.17 5.08 4.28 4.56 5.15 4.80 4.82 4.05 4.42 2.96
nSD 26.55 26.96 27.90 27.43 25.80 24.89 25.15 24.57 23.62 23.93 23.89 23.53 23.21 23.04 22.38 23.15 22.39 23.75 22.93 22.04 22.38 21.99 22.71 21.74
nRMSE 27.16 27.15 27.90 27.53 26.11 25.23 25.41 24.89 23.97 24.22 24.33 23.91 23.51 23.54 22.77 23.70 22.80 24.18 23.50 22.56 22.89 22.36 23.14 21.94

2nd tree (2nd factor of 2-factor copula)

τ 0.55 0.54 0.52 0.51 0.50 0.48 0.47 0.46 0.45 0.43 0.42 0.41 0.39 0.38 0.37 0.35 0.34 0.33 0.32 0.30 0.29 0.28 0.26 0.25

nBias 4.31 1.24 2.81 0.39 -0.58 -1.81 -2.58 -3.06 -6.03 -6.58 -8.23 -9.13 -9.58 -12.73 -13.14 -11.90 -9.67 -10.48 -12.89 -11.57 -11.57 -12.77 -11.14 -8.04
nSD 40.65 41.80 42.93 45.05 43.16 42.69 41.67 40.68 40.38 41.00 41.35 39.73 41.24 41.35 40.48 40.60 41.84 42.41 40.90 38.62 40.15 37.78 39.96 38.41
nRMSE 40.88 41.82 43.02 45.05 43.17 42.73 41.75 40.79 40.83 41.52 42.16 40.76 42.34 43.27 42.56 42.31 42.94 43.68 42.88 40.31 41.78 39.88 41.49 39.25

3rd tree (1-truncated vine copula)

τ 0.40 0.39 0.37 0.36 0.35 0.33 0.32 0.30 0.29 0.28 0.26 0.25 0.24 0.22 0.21 0.20 0.18 0.17 0.15 0.14 0.13 0.11 0.10

nBias 0.10 -4.49 -9.56 -10.74 -9.52 -9.21 -6.47 -4.90 -2.94 -3.25 -0.50 -0.21 0.85 1.52 2.04 0.34 1.66 1.66 1.76 2.45 2.02 2.29 2.25
nSD 32.64 35.17 31.46 28.61 27.74 24.35 24.49 22.53 25.08 23.54 22.79 20.38 21.06 20.56 20.37 22.01 20.16 20.08 19.14 19.56 18.21 18.11 18.33
nRMSE 32.64 35.46 32.88 30.56 29.33 26.03 25.33 23.06 25.25 23.76 22.80 20.38 21.07 20.61 20.48 22.01 20.23 20.15 19.22 19.71 18.33 18.25 18.47
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Figure 4.3: Small sample of size n = 500 simulations (103 replications) and d = {8, 16, 24} items with K = 5 equally weighted categories from 1-factor
and 2-factor tree copula models with Gumbel copulas and an 1-truncated drawable/regular vine residual dependence structure and resultant number of
times a pair of items is correctly selected as an edge for each of the edges of the 1-truncated drawable and regular vine copula for both the partial and
polychoric selection algorithms.
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4.5 Application

In this section we illustrate the proposed methodology by analysing d = 20 items

from a subsample of n = 221 veterans who reported clinically significant Post Trau-

matic Stress Disorder (PTSD) symptoms (Armour et al., 2017). PTSD can be defined

as a mental disorder associated with extreme distress and disruption of daily activ-

ities as a result of experiencing or witnessing a traumatic event. The PTSD items

are divided into four domains: (1) intrusions (e.g., repeated, disturbing and unwanted

memories), (2) avoidance (e.g., avoiding external reminder of the stressful experi-

ence), (3) cognition and mood alterations (e.g., trouble remembering important parts

of the stressful experience) and (4) reactivity alterations (e.g., taking too many risks

or doing things that could cause you harm). Each item is answered in a five-point

ordinal scale: “0 = Not at all”, “1 = A little bit”, “2 = Moderately”, “3 = Quite a bit”

and “4 = Extremely”. The dataset and its complete description can be found in Table

4.3 and Armour et al. (2017) or in the R package BGGM (Williams and Mulder,

2020).

For some items, it is plausible that a veteran might be thinking about the maxi-

mum trauma (or a high quantile) of many past events. For example, for the items in

the first domain, a participant might reflect on past relevant events where an intrusion

affected their life; then by considering the worst case, i.e., the event where the neg-

ative effect of an intrusion in their life was substantial, they choose an appropriate

ordinal response. For some of the other items, one might consider a median or less

extreme harm of past relevant events. To sum up, the items appear to be a mixed

selection between discretized averages and maxima so that a factor model with more
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4.5. Application

Table 4.3: The Post Traumatic Stress Disorder (PTSD) with 20 items categorized into 4
groups.

Number Item Group

1 Intrusive Thoughts Intrusions
2 Nightmares
3 Flashbacks
4 Emotional cue reactivity
5 Psychological cue reactivity

6 Avoidance of thoughts Avoidance
7 Avoidance of reminders

8 Trauma-related amnesia Cognition and mood alterations
9 Negative beliefs
10 Blame of self or others
11 Negative trauma-related emotions
12 Loss of interest
13 Detachment
14 Restricted affect

15 Irritability/anger Arousal and reactivity alterations
16 Self-destructive/reckless behavior
17 Hypervigilance
18 Exaggerated startle response
19 Difficulty concentrating
20 Sleep disturbance

probability in the joint upper tail might be an improvement over a factor model based

on a discretized MVN.

The interpretations as above suggest that a factor tree with a combination of

Gumbel and BVN or tν copulas might provide a better fit. To further explore the

above interpretations, we calculate the average of lower and upper polychoric semi-

correlations (Kadhem and Nikoloulopoulos, 2021a,b) for all variables to check if

there is any overall tail asymmetry. For comparison, we also report the theoretical

semi-correlations under different choices of copulas. Table 4.4 shows averages of the

polychoric semi-correlations for all pairs along with the theoretical semi-correlations

under different choices of copulas. Overall, we see that there is more correlation in
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4.5. Application

the joint upper tail than the joint lower tail, suggesting that factor tree copula models

with Gumbel bivariate copulas might be plausible.

Table 4.4: Average observed polychoric correlations and semi-correlations for all pairs of
items for the Post Traumatic Stress Disorder dataset, along with the corresponding theoretical
semi-correlations for BVN, t2, t5, Frank, Gumbel , and survival Gumbel (s.Gumbel) copulas.

ρN ρ−N ρ+N

Observed 0.35 0.26 0.47
BVN 0.35 0.16 0.16
t2 0.35 0.49 0.49
t5 0.35 0.35 0.35
Frank 0.35 0.10 0.10
Gumbel 0.35 0.11 0.37
s.Gumbel 0.35 0.37 0.11

We then select a suitable vine tree structure using the partial and polychoric selec-

tion algorithms proposed in Section 4.3.1 and compute various discrepancy measures

between the observed polychoric correlation matrix Robserved and the correlation

matrix Rmodel based on factor tree copula models with BVN copulas. We report

the maximum absolute correlation difference D1 = max |Rmodel − Robserved|, the

average absolute correlation differenceD2 = avg|Rmodel−Robserved| and the corre-

lation matrix discrepancy measureD3 = log
(
det(Rmodel)

)
−log

(
det(Robserved)

)
+

tr(R−1modelRobserved) − d. For a baseline comparison, we also compute the discrep-

ancy measures for the 1- and 2-factor copula models with BVN copulas. We aim to

obtain a dependence structure that results in the lowest discrepancy measure; this will

indicate a suitable vine structure for the item response data on hand.

After finding a suitable vine structure, we construct a plausible factor tree copula

model, to analyse any type of items, by using the proposed heuristic algorithm in

Section 4.3.2. We use the AIC at the IFM estimates as a rough diagnostic measure for
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4.5. Application

model selection between the models. In addition, we use the Vuong (1989) procedure

that is based on the sample version of the difference in Kullback-Leibler divergence.

Note in passing that the 2-factor (tree) copula models with BVN copulas will

have one dependence parameter less as one copula in the second factor is set to inde-

pendence for identification purposes.

Table 4.5 shows that the sample correlation matrix of the data has a 2-factor tree

structure according to the discrepancy measures. The table also gives the AICs and

the 95% CIs of Vuong’s tests for all the fitted models. The best fitted model, based on

AIC values, is the 2-factor tree copula model obtained from the partial selection al-

gorithm. The best fitted 2-factor tree copula model has the t2 for the 1st tree, Gumbel

for the 2nd tree, and t5 for the 3rd tree. From the Vuong’s 95% Cls it is shown that

2-factor tree copula model provides a big improvement over its Gaussian analogue

and outperforms all the other fitted models except the 2-factor tree obtained from the

polychoric selection algorithm. The tree selection algorithms might not yield into

the same ‘true’ vine tree, however, closely approximated factor tree copula models

are achieved. The factor tree copula model is mostly constructed with t2 bivariate

copulas which are suitable for both positive and negative dependence, however the

highest dependence is found in the 2nd factor which is constructed with Gumbel

copulas. This is in line with both the initial interpretations and preliminary analysis

which suggest that some items can be considered as discretized maxima.

Table 4.6 includes the copula parameter estimates in Kendall’s τ scale and their

standard errors (SE) for the selected 2-factor and 2-factor tree copula models. The

latter is obtained from the partial selection algorithm. To make it easier to compare
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Table 4.5: Measures of discrepancy between the sample and the resulting correlation matrix from the 1-factor, 2-factor, 1-factor tree, and 2-factor tree
copula models with BVN copulas for the Post Traumatic Stress Disorder dataset, along with the AICs, Vuong’s 95% CIs, for the 1-factor, 2-factor, 1-factor
tree, and 2-factor tree copula models with BVN and selected copulas. Alg.1: partial selection algorithm; Alg.2: polychoric selection algorithm.

Factor copula 1-factor tree copula 2-factor tree copula

1-factor 2-factor Alg.1 Alg.2 Alg.1 Alg.2

BVN copulas

D1 0.40 0.30 0.23 0.20 0.15 0.20
D2 0.08 0.05 0.05 0.05 0.03 0.05
D3 4.53 2.80 1.75 1.83 1.17 1.75
#parameters 20 39 39 39 58 58
AIC 12031.1 11764.0 11632.4 11642.1 11549.1 11611.8

Selected copulas

#parameters 20 40 39 39 59 59
AIC 11800.4 11413.5 11355.3 11344.89 11189.1 11240.3
Vuong’s 95% CIa ( 0.21, 0.63) (0.25, 0.79) (0.37, 0.89) (0.43, 0.91) ( 0.54, 1.09) (0.58, 1.11)
Vuong’s 95% CIb (1.50, 2.31) (0.99, 1.67) (0.79, 1.40) (0.83, 1.40) - (0.69, 1.24)
Vuong’s 95% CIc (1.17, 1.80) (0.60, 1.02) (0.30, 0.63) (0.27, 0.61) - (-0.002, 0.23)

aSelected factor (tree) copula models versus their Gaussian analogues.
bSelected 2-factor tree copula model with Alg.1 versus other fitted models with BVN copulas.
cSelected 2-factor tree copula model with Alg.1 versus other fitted models with selected copulas.
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4.5. Application

Table 4.6: Estimated copula parameters and their standard errors (SE) in Kendall’s τ scale
for the selected 2-factor and 2-factor tree copula models obtained from the partial selection
algorithm for the Post Traumatic Stress Disorder dataset.

2-factor copula 2-factor tree copula

Tree 1st factor 2nd factor 1st factor 2nd factor Vine model

Copula t2 Gumbel t2 Gumbel t5

Items τ̂ SE τ̂ SE τ̂ SE τ̂ SE E τ̂ SE

1 0.16 0.06 0.49 0.04 -0.17 0.06 0.50 0.04 1, 18 -0.18 0.06
2 0.11 0.06 0.49 0.04 -0.08 0.06 0.45 0.04 18, 17 0.22 0.06
3 0.14 0.06 0.54 0.04 -0.12 0.06 0.52 0.04 18, 14 -0.20 0.07
4 0.32 0.06 0.56 0.05 -0.34 0.06 0.57 0.05 18, 10 -0.10 0.06
5 0.21 0.06 0.55 0.04 -0.21 0.06 0.56 0.04 10, 11 0.36 0.05
6 0.13 0.06 0.28 0.05 -0.13 0.06 0.26 0.05 11, 9 0.29 0.06
7 0.11 0.06 0.40 0.04 -0.09 0.06 0.39 0.04 9, 2 -0.18 0.06
8 -0.03 0.06 0.21 0.05 0.04 0.06 0.19 0.05 2, 3 0.26 0.06
9 -0.17 0.06 0.38 0.04 0.24 0.06 0.33 0.04 3, 20 0.05 0.07

10 0.16 0.06 0.34 0.05 -0.12 0.06 0.30 0.04 2, 16 0.13 0.06
11 0.09 0.06 0.52 0.04 -0.07 0.06 0.48 0.04 16, 15 0.17 0.06
12 -0.23 0.06 0.50 0.04 0.28 0.06 0.50 0.04 9, 4 0.29 0.08
13 -0.35 0.06 0.55 0.05 0.34 0.05 0.49 0.05 20, 5 0.05 0.07
14 -0.37 0.05 0.41 0.05 0.35 0.05 0.36 0.05 14, 13 0.27 0.07
15 -0.09 0.06 0.48 0.04 0.11 0.06 0.44 0.04 5, 6 0.12 0.07
16 -0.08 0.06 0.31 0.05 0.10 0.06 0.28 0.04 6, 7 0.23 0.06
17 -0.04 0.06 0.34 0.04 0.04 0.06 0.33 0.04 7, 19 -0.21 0.06
18 -0.06 0.06 0.45 0.04 0.12 0.06 0.46 0.04 16, 8 0.12 0.06
19 -0.26 0.06 0.45 0.04 0.28 0.06 0.43 0.04 19, 12 0.08 0.07
20 -0.11 0.06 0.41 0.04 0.13 0.06 0.40 0.04 - - -

strengths of dependence, we convert the BVN/tν and Gumbel/s.Gumbel copula pa-

rameters to Kendall’s τ ’s via the relation τ(θ) = 2
π arcsin(θ) and (4.10), respectively.

Interestingly, the Kendall’s τ ’s in the 2-factor copula model are roughly equivalent to

the estimates in the 1st and 2nd factors of the 2-factor tree copula model. Most of the

dependence is captured in the first two trees, resulting in weak to medium residual

dependencies in the 1-truncated vine copula model, but significantly larger from in-

dependence. Overall, the items, in the Markov tree, are mostly positively associated

to one another with only few negative conditional dependencies. The residual de-

pendencies reveal that there is stronger association between the 10th and 11th items
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that are “Blame of self or others” and “Negative trauma-related emotions”, respec-

tively. In addition, there is moderate association between items 9 and 11 that are

“Negative beliefs” and “Negative trauma-related emotions”, respectively. With sim-

ilar moderate dependence found between items 9 and 4 that are “Negative beliefs”

and “Emotional cue reactivity”, respectively.

4.6 Chapter summary

In this chapter, we have proposed factor tree copula models for item response data.

These are truncated vine copula models that involve both observed and latent vari-

ables. This construction allows for conditional dependence of observed variables

given very few latent variables.

The proposed models preserve the flexible dependence properties of the fac-

tor/vine copulas. They are parsimonious models and offer dependence modelling

with different tail behaviour. We consider the proposed combined factor/truncated

vine structure to be reasonable as most of the dependence is explained via a fac-

tor copula model and any residual dependence is captured by an additional layer of

dependence in the form of an 1-truncated vine copula.
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Chapter 5

Discussion and future research

Factor copula models can provide flexible reflection asymmetric tail and non-linear

dependence. They are parsimonious models and favourable for large dimensions, so

the number of parameters is O(d) instead of O(d2). Factor copulas can be viewed

as a truncated canonical vine copulas (Brechmann et al., 2012) rooted at the latent

variables, that are constructed from a sequence of bivariate copulas in hierarchies

or tree levels. Joe et al. (2010) show that in order for a vine copula to have (tail)

dependence for all bivariate margins, it is only necessary for the bivariate copulas

in level 1 to have (tail) dependence and not necessary for the conditional bivariate

copulas in levels 2, . . . , d− 1 to have tail dependence.

In this thesis, we made new contributions in proposing several extensions of fac-

tor copula models, along with model selection algorithms and goodness-of-fit statis-

tics. For clarity, the proposed modelling frameworks are summarised and discussed

in the subsequent sections along with a preview of future research, followed with

final remarks.

129



5.1. Factor copula models for mixed data

5.1 Factor copula models for mixed data

In Chapter 2, we have extended the factor copula model proposed in Krupskii and

Joe (2013) and Nikoloulopoulos and Joe (2015) to the case of mixed continuous

and discrete responses. It is the most general factor model as (a) it has the standard

factor model with an additive latent structure as a special case when the BVN copulas

are used, (b) it can have a latent structure that is not additive if other than BVN

copulas are called, (c) the parameters of the univariate distributions are separated

from the copula (dependence) parameters which are interpretable as dependence of

an observed variable with a latent variable, or conditional dependence of an observed

variable with a latent variable given preceding latent variables. Other non-linear (e.g.,

Rizopoulos and Moustaki 2008), semi- (e.g., Gruhl et al. 2013) or non-parametric

models (e.g., Kelava et al. 2017) with latent variables have either an additive latent

structure or allow polynomial and interaction terms to be added in the linear predictor,

hence are not as general. Another mixed-variable model in the literature that is called

a factor copula model (Murray et al., 2013) is restricted to the MVN copula as the

model proposed by Gruhl et al. (2013), hence has an additive latent structure.

We have shown that factor copula models provide a substantial improvement over

the standard factor model on the basis of the log-likelihood principle, Vuong’s and

M2 statistics. Hence, superior statistical inference for the loading parameters of in-

terest can be achieved. This improvement relies on the fact that the latent variable

distribution is expressed via factor copulas instead of the MVN distribution. The

latter is restricted to linear and reflection symmetric dependence. Rizopoulos and

Moustaki (2008) stressed that the inadequacy of normally distributed latent variables

can be caused by the non-linear dependence on the latent variables. The factor copula
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can provide flexible reflection asymmetric tail and non-linear dependence as it is a

truncated canonical vine copula (Brechmann et al., 2012) rooted at the latent vari-

ables. The 1-factor copula has bivariate copulas with tail dependence in the 1st level

and independence copulas in all the remaining levels of the vine (truncated after the

1st level). The 2-factor copula has bivariate copulas with tail dependence in the 1st

and 2nd level and independence copulas in all the remaining levels (truncated after

the 2nd level). Hence, the tail dependence among the latent variables and each of the

observed variables is passed to the tail dependence among the observed variables.

Even in case where the effect of misspecifying the bivariate linking copula to

build the factor copula models can be seen as minimal for the Kendall’s τ (load-

ing) parameters, the tail dependence varies, as explained in Section 1.3, and is a

property to consider when choosing amongt different families of copulas and hence

affects prediction. Rabe-Hesketh et al. (2003) highlighted the importance of the cor-

rect distributional assumptions for the prediction of latent scores. The latent scores

will essentially show the effect of different model assumptions, because it is an in-

ference that depends on the joint distribution. Factor copula models have bivariate

copulas that link the latent variables to each of the observed variables. If these bi-

variate copulas have upper or lower tail dependence, then this type of dependence is

passed to the dependence between the factor scores and each of the observed vari-

ables. Hence, factor scores are fairly different than the ones for the standard factor

model if the sample size is sufficient. Figure 5.1 demonstrates these differences by

revisiting the political-economic dataset in Section 2.5.1 and comparing the political-

economic risk ranking obtained via our selected model, the factor copula model with

BVN copulas (standard factor model), and the mixed-data factor analysis of Quinn
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(2004). It is revealed that even for a small sample size (n = 62) there are differences.

Between the factor copula model with BVN copulas and the factor analysis model of

Quinn (2004), there are small to moderate differences, because while these models

share the same latent variables distribution, the former model does not assume the

observed variables to be normally distributed, but rather uses the empirical distribu-

tion of the continuous observed variables, i.e. allows the margins to be quite free and

not restricted by normal distribution. The differences in the lower panel graph are

solely due the miss-specification the latent variable distribution.

Figure 5.1: Comparison of the political-economic risk rankings obtained via our selected
model, the standard factor model, and the mixed-data factor analysis of Quinn (2004).
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5.2. Structured factor copula models for item response data

As stated by many researchers (e.g., Rabe-Hesketh and Skrondal 2001; Skrondal

and Rabe-Hesketh 2004), the major difficulty of all the models with latent variables

is identifiability. For example, for the standard factor model or the more flexible

model in Irincheeva et al. (2012b) one of loadings in the second factor has to be set

to zero, because the model with 2d loadings is not identifiable. The standard factor

model arises as special case of our model if we use as bivariate linking copulas the

BVN copulas. Hence, for the 2-factor copula model with BVN copulas, one of the

BVN copulas in the second factor has to be set as an independence copula. However,

using other than BVN copulas, the 2-factor copula model is near-identifiable with 2d

bivariate linking copulas as it has been demonstrated by Krupskii and Joe (2013) and

Nikoloulopoulos and Joe (2015).

5.2 Structured factor copula models for item response data

For item response data that can be split into non-overlapping groups, we have pro-

posed bi-factor and second-order copula models where we replace BVN distributions,

between observed and latent variables, with bivariate copulas. Our copula construc-

tions include the Gaussian bi-factor and second-order models as special cases and can

provide a substantial improvement over the Gaussian models based on AIC, Vuong’s

and goodness-of-fit statistics. Hence, superior statistical inference for the loading pa-

rameters of interest can be achieved. The improvement relies on the fact that when

we use appropriate bivariate copulas other than BVN copulas in the construction,

there is an interpretation of latent variables that can be maxima/minima or mixture of

means instead of means.
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Our constructions have a latent structure that is not additive as in (3.3) and (3.4) if

other than BVN copulas are called and the bi-factor copula (dependence) parameters

are interpretable as dependence of an observed variable with the common factor, or

conditional dependence of an observed variable with the group-specific latent vari-

able given the common factor.

We have proposed a fast and efficient likelihood estimation technique based on

Gauss-Legendre quadrature points. The joint pmfs in (3.1) and (3.2) reduce to one-

dimensional integrals of a function which in turn is a product of G one-dimensional

integrals. Hence, the evaluation of the joint likelihood requires only low-dimensional

integration, as in the one- and two-factor copula models, regardless of the dimension

G + 1 of the factors. This is an advantage over the p-factor (p > 2) copula models

where the joint pmf requires p-dimensional integration and becomes intractable as the

number of factors increases. Hence, the proposed structured multidimensional factor

models provide parsimonious factor solutions without any computational deficiencies

as in the p-factor copula models when p increases.

Building on the bi-factor and second-order copula models in Chapter 3, there are

several extensions that can be implemented. The adoption of the structure of the

Gaussian tri-factor and the third-order models (e.g., Rijmen et al. 2014), to account

for any additional layer of dependence, is feasible using the notion of truncated vine

copulas that involve both observed and latent variables.

5.3 Factor tree copula models for item response data

We have proposed combined factor/truncated vine copula models to capture the resid-

ual dependence for item response data. Due to residual dependencies, the factor
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copula models might be too parsimonious as they are restricted to the conditional in-

dependence assumption. By combining the factor copula models with an 1-truncated

vine copula model, we construct conditional dependence models given very few inter-

pretable latent variables. The combined factor/truncated vine structure has the form

of (i) primary dependence being explained by one or more latent variables, and (ii)

conditional dependence of observed variables given the latent variables (Joe, 2018).

We have shown that the proposed models provide a substantial improvement over

the 1-factor and 2-factor copula models with BVN and selected copulas on the basis

of the AIC and Vuong’s statistics. We consider the 1-factor and 2-factor tree copula

models to be reasonable parsimonious models as most of the dependence is explained

via the first few trees in the factor model. This is because that for all the bivariate mar-

gins to have upper/lower tail dependence, it only suffices that the bivariate copulas

in the first trees (factor part) to have upper/lower tail dependence and is not neces-

sary for the bivariate copulas in the higher trees after the 1-truncated vine to have tail

dependence (Joe et al., 2010).

The proposed combined factor with 1-truncated vine copula models in Chapter 4

can be extended to variety of parsimonious factor and vine models. For example, the

bi-factor or second-order models for non-overlapping groups of items (See e.g., Gib-

bons and Hedeker 1992; Gibbons et al. 2007; Kadhem and Nikoloulopoulos 2021a)

can be combined with vine copula models to capture the residual dependence for item

response data in overlapping groups.
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5.4 Final remarks

Although the proposed models require bi-dimensional integration, the evaluation of

their likelihood might be time consuming for high-dimensional data. Krupskii and

Joe (2022) have shown that proxy variables that are unweighted averages computed

from the observed variables can be used for the latent variables when the dimension

is large. Alternative log-likelihoods without integrals can be used for parameter es-

timation and the proxy variables can help to select appropriate linking copulas in

some factor copula models and to perform numerically faster maximum likelihood

estimation of parameters.

Selecting a suitable copula model via minimizing AIC is extensively used in the

copula literature (see, e.g., Nagler et al. 2019; Panagiotelis et al. 2017; Joe 2014;

Dißmann et al. 2013; Czado et al. 2013). In our work we have followed a similar ap-

proach in optimising the AIC for the search of a suitable model in Chapters 2, 3 and

4. Nevertheless, as the model structure is tuned by optimising the AIC there is a risk

of over-fitting the AIC (Cawley and Talbot, 2010), which can be viewed a random

variable and will vary from one sample of data to another. This might be substantial

if many bivariate copula choices are made. Thus, we only use a few bivariate linking

copulas that have distinct tail dependence properties. We have also developed simple

diagnostics based on semi-correlations to identify a plausible model. In the data ex-

amples in this thesis, the conclusions from the simple diagnostics strongly agree with

the conclusions from the proposed model selection algorithms. This, in conjunction

with the extensive simulated evidence about the performance of the model selection

algorithms, shows that the proposed model selection algorithms can be called without

any caveat.
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wise likelihood estimation for factor analysis models with ordinal data. Computa-

tional Statistics & Data Analysis, 56(12):4243–4258.
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• estimation of the factor copula models in Krupskii and Joe (2013), Nikoloulopoulos and Joe
(2015), and Kadhem and Nikoloulopoulos (2021a, 2021b);

• model selection of the factor copula models in Krupskii and Joe (2013), Nikoloulopoulos and
Joe (2015) and Kadhem and Nikoloulopoulos (2021a, 2021b) using the heuristic algorithms
in Kadhem and Nikoloulopoulos (2021a, 2021b) that automatically selects the bivariate para-
metric copula families that link the observed to the latent variables;

• goodness-of-fit of the factor copula models in Krupskii and Joe (2013), Nikoloulopoulos and
Joe (2015) and Kadhem and Nikoloulopoulos (2021a, 2021b) using theM2 statistic (Maydeu-
Olivares and Joe, 2006). Note that the continuous and count data have to be transformed to
ordinal.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Joe, H. (2014). Dependence Modelling with Copulas. Chapman & Hall, London.

Maydeu-Olivares, A. and Joe, H. (2006). Limited information goodness-of-fit testing in multidi-
mensional contingency tables. Psychometrika, 71, 713–732. doi: 10.1007/s1133600512959.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021a) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021b) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Krupskii, P. and Joe, H. (2013) Factor copula models for multivariate data. Journal of Multivariate
Analysis, 120, 85–101. doi: 10.1016/j.jmva.2013.05.001.

Nikoloulopoulos, A.K. and Joe, H. (2015) Factor copula models with item response data. Psy-
chometrika, 80, 126–150. doi: 10.1007/s1133601393874.
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discrepancy Diagnostics to detect a factor dependence structure

Description

The diagnostic method in Joe (2014, pages 245-246) to show that each dataset has a factor structure
based on linear factor analysis. The correlation matrix Robserved has been obtained based on the
sample correlations from the bivariate pairs of the observed variables. These are the linear (when
both variables are continuous), polychoric (when both variables are ordinal), and polyserial (when
one variable is continuous and the other is ordinal) sample correlations among the observed vari-
ables. The resulting Robserved is generally positive definite if the sample size is not small enough;
if not one has to convert it to positive definite. We calculate various measures of discrepancy be-
tween Robserved and Rmodel (the resulting correlation matrix of linear factor analysis), such as the
maximum absolute correlation differenceD1 = max |Rmodel−Robserved|, the average absolute cor-
relation difference D2 = avg|Rmodel −Robserved|, and the correlation matrix discrepancy measure
D3 = log

(
det(Rmodel)

)
− log

(
det(Robserved)

)
+ tr(R−1

modelRobserved)− d.

Usage

discrepancy(cormat, n, f3)

Arguments

cormat Robserved.

n Sample size.

f3 If TRUE, then the linear 3-factor analysis is fitted.

Value

A matrix with the calculated discrepancy measures for different number of factors.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Joe, H. (2014). Dependence Modelling with Copulas. Chapman & Hall, London.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Examples

#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
#correlation
continuous.PE1 <- -PE[,1]
continuous.PE <- cbind(continuous.PE1, PE[,2])
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u.PE <- apply(continuous.PE, 2, rank)/(nrow(PE)+1)
z.PE <- qnorm(u.PE)
categorical.PE <- data.frame(apply(PE[, 3:5], 2, factor))
nPE <- cbind(z.PE, categorical.PE)

#-------------------------------------------------
# Discrepancy measures----------------------------
#-------------------------------------------------
#correlation matrix for mixed data
cormat.PE <- as.matrix(polycor::hetcor(nPE, std.err=FALSE))
#discrepancy measures
out.PE = discrepancy(cormat.PE, n = nrow(nPE), f3 = FALSE)

#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME,AGE)
continuous.GSS <- apply(continuous.GSS, 2, rank)/(nrow(GSS)+1)
z.GSS <- qnorm(continuous.GSS)
ordinal.GSS <- cbind(DEGREE,PINCOME,PDEGREE)
count.GSS <- cbind(CHILDREN,PCHILDREN)

# Transforming the count variables to ordinal
# count1 : CHILDREN
count1 = count.GSS[,1]
count1[count1 > 3] = 3

# count2: PCHILDREN
count2 = count.GSS[,2]
count2[count2 > 7] = 7

# Combining both transformed count variables
ncount.GSS = cbind(count1, count2)

# Combining ordinal and transformed count variables
categorical.GSS <- cbind(ordinal.GSS, ncount.GSS)
categorical.GSS <- data.frame(apply(categorical.GSS, 2, factor))

# combining continuous and categorical variables
nGSS = cbind(z.GSS, categorical.GSS)

#-------------------------------------------------
# Discrepancy measures----------------------------
#-------------------------------------------------
#correlation matrix for mixed data
cormat.GSS <- as.matrix(polycor::hetcor(nGSS, std.err=FALSE))
#discrepancy measures
out.GSS = discrepancy(cormat.GSS, n = nrow(nGSS), f3 = TRUE)

GSS The 1994 General Social Survey
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Description

Hoff (2007) analysed seven demographic variables of 464 male respondents to the 1994 General
Social Survey. Of these seven, two were continuous (income and age of the respondents), three
were ordinal with 5 categories (highest degree of the survey respondent, income and highest degree
of respondent’s parents), and two were count variables (number of children of the survey respondent
and respondent’s parents).

Usage

data(GSS)

Format

A data frame with 464 observations on the following 7 variables:

INCOME Income of the respondent in 1000s of dollars, binned into 21 ordered categories.

DEGREE Highest degree ever obtained (0:None, 1:HS, 2:Associates, 3:Bachelors, 4:Graduate).

CHILDREN Number of children of the survey respondent.

PINCOME Financial status of respondent’s parents when respondent was 16 (on a 5-point scale).

PDEGREE Highest degree of the survey respondent’s parents (0:None, 1:HS, 2:Associates, 3:Bache-
lors, 4:Graduate).

PCHILDREN Number of children of the survey respondent’s parents - 1.

AGE Age of the respondents in years.

Source

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals
of Applied Statistics, 1, 265–283.

M2.Factor Goodness-of-fit of factor copula models for mixed data

Description

The limited information M2 statistic (Maydeu-Olivares and Joe, 2006) of factor copula models for
mixed continuous and discrete data.

Usage

M2.1F(tcontinuous, ordinal, tcount, cpar, copF1, gl)
M2.2F(tcontinuous, ordinal, tcount, cpar, copF1, copF2, gl, SpC)

Arguments

tcontinuous n × d1 matrix with the transformed continuous to ordinal reponse data, where
n and d1 is the number of observations and transformed continous variables,
respectively.

ordinal n × d2 matrix with the ordinal reponse data, where n and d2 is the number of
observations and ordinal variables, respectively.
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6 M2.Factor

tcount n × d3 matrix with the transformed count to ordinal reponse data, where n and
d3 is the number of observations and transformed count variables, respectively.

cpar A list of estimated copula parameters.

copF1 (d1 + d2 + d3)-vector with the names of bivariate copulas that link the each of
the oberved variabels with the 1st factor. Choices are “bvn” for BVN, “bvtν”
with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank, “gum”
for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel,
“2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe”
for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for re-
flected BB1, “BB7” for BB7, “rBB7” for reflected BB7,“BB8” for BB8, “rBB8”
for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

copF2 (d1 + d2 + d3)-vector with the names of bivariate copulas that link the each of
the oberved variabels with the 2nd factor. Choices are “bvn” for BVN, “bvtν”
with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank, “gum”
for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel,
“2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe”
for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for re-
flected BB1, “BB7” for BB7, “rBB7” for reflected BB7,“BB8” for BB8, “rBB8”
for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

gl Gauss legendre quardrature nodes and weights.

SpC Special case for the 2-factor copula model with BVN copulas. Select a bivariate
copula at the 2nd factor to be fixed to independence. e.g. "SpC = 1" to set the
first copula at the 2nd factor to independence.

Details

The M2 statistic has been developed for goodness-of-fit testing in multidimensional contingency
tables by Maydeu-Olivares and Joe (2006). Nikoloulopoulos and Joe (2015) have used the M2

statistic to assess the goodness-of-fit of factor copula models for ordinal data. We build on the
aforementioned papers and propose a methodology to assess the overall goodness-of-fit of factor
copula models for mixed continuous and discrete responses. Since the M2 statistic has been devel-
oped for multivariate ordinal data, we propose to first transform the continuous and count variables
to ordinal and then calculate the M2 statistic at the maximum likelihood estimate before transfor-
mation.

Value

A list containing the following components:

M2 The M2 statistic which has a null asymptotic distribution that is χ2 with s − q
degrees of freedom, where s is the number of univariate and bivariate margins
that do not include the category 0 and q is the number of model parameters.

df s− q.

p-value The resultant p-value.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>
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References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Maydeu-Olivares, A. and Joe, H. (2006). Limited information goodness-of-fit testing in multidi-
mensional contingency tables. Psychometrika, 71, 713–732. doi: 10.1007/s1133600512959.

Nikoloulopoulos, A.K. and Joe, H. (2015) Factor copula models with item response data. Psy-
chometrika, 80, 126–150. doi: 10.1007/s1133601393874.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE2 = PE[,2]
continuous.PE <- cbind(continuous.PE1, continuous.PE2)

categorical.PE <- PE[, 3:5]
#------------------------------------------------
# Estimation
#------------------ -----------------
#------------------ One-factor -----------------
# one-factor copula model
cop1f.PE <- c("joe", "joe", "rjoe", "joe", "gum")
est1factor.PE <- mle1factor(continuous.PE, categorical.PE,

count=NULL, copF1=cop1f.PE, gl, hessian = T)
#------------------------------------------------
# M2
#------------------------------------------------
#Transforming the continuous to ordinal data:
ncontinuous.PE = continuous2ordinal(continuous.PE, 5)
# M2 statistic for the one-factor copula model:

m2.1f.PE <- M2.1F(ncontinuous.PE, categorical.PE, tcount=NULL,
cpar=est1factor.PE$cpar, copF1=cop1f.PE, gl)

#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME,AGE)
ordinal.GSS <- cbind(DEGREE,PINCOME,PDEGREE)
count.GSS <- cbind(CHILDREN,PCHILDREN)

#------------------------------------------------
# Estimation
#------------------ -----------------
# one-factor copula model
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8 M2.Factor

cop1f.GSS <- c("joe","2rjoe","bvt3","bvt3",
"rgum","2rjoe","2rgum")

est1factor.GSS <- mle1factor(continuous.GSS, ordinal.GSS,
count.GSS, copF1=cop1f.GSS, gl, hessian = T)

#two-factor copula model
cop1.2f <- c("rgum","rjoe","bvn","1rjoe",

"1rjoe","rjoe","gum")
cop2.2f <- c("gum","2rjoe","rjoe","gum",

"bvt5","bvn","2rgum")
est2factor.GSS <- mle2factor(continuous.GSS, ordinal.GSS,

count.GSS, copF1=cop1.2f, copF2=cop2.2f, gl, hessian = T)

#------------------------------------------------
# Transformation
#------------------ -----------------
# Transforming the continuous to ordinal data:

# continuous1: Income
continuous1 = as.integer(cut(continuous.GSS[,1],
c(0,10,19,29,40,100), include.lowest = T))
continuous1 = continuous1 - 1

# continuous2: AGE
continuous2 = as.integer(cut(continuous.GSS[,2] ,
c(0, 24, 44, 64, 100), include.lowest = T))
continuous2 = continuous2 - 1

# Combining the transformed continuous variables.
ncontinuous.GSS <- cbind(continuous1, continuous2)

#---------------- COUNT VARIABLE -----------------
# count1 : CHILDREN
count1 = count.GSS[,1]
count1[count1 > 3] = 3

# count2: PCHILDREN
count2 = count.GSS[,2]
count2[count2 > 7] = 7

# Combining both transformed count variables
ncount.GSS = cbind(count1, count2)

#------------------------------------------------
# M2
#------------------------------------------------
# M2 statistic for the one-factor copula model:

m2.1f.GSS <- M2.1F(ncontinuous.GSS, ordinal.GSS,
ncount.GSS, cpar = est1factor.GSS$cpar,
copF1 = cop1f.GSS, gl)

#------------------------------------------------
# M2 statistic for the two-factor copula model:

m2.2f.GSS <- M2.2F(ncontinuous.GSS, ordinal.GSS, ncount.GSS,
cpar = est2factor.GSS$cpar, copF1 = cop1.2f,
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copF2 = cop2.2f, gl)

M2.StructuredFactor Goodness-of-fit of bi-factor and second-order copula models for item
response data

Description

The limited informationM2 statistic (Maydeu-Olivares and Joe, 2006) of bi-factor and second-order
copula models for item response data.

Usage

M2Bifactor(y,cpar, copnames1, copnames2, gl, ngrp, grpsize)
M2Second_order(y,cpar, copnames1, copnames2, gl, ngrp, grpsize)

Arguments

y n × d matrix with the ordinal reponse data, where n and d is the number of
observations and variables, respectively.

cpar A list of estimated copula parameters.

copnames1 For the bi-factor copula: d-vector with the names of bivariate copulas that link
each of the oberved variabels with the common factor. For the second-order
factor copula: G-vector with the names of bivariate copulas that link the each
of the group-specific factors with the common factor, where G is the number
of groups of items. Choices are “bvn” for BVN, “bvtν” with ν = {2, . . . , 9}
degrees of freedom for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum”
for reflected Gumbel, “1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected
Gumbel.

copnames2 For the bi-factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. For the
second-order factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. Choices are
“bvn” for BVN, “bvtν” with ν = {2, . . . , 9} degrees of freedom for t-copula,
“frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for
1-reflected Gumbel, “2rgum” for 2-reflected Gumbel.

gl Gauss legendre quardrature nodes and weights.

ngrp number of non-overlapping groups.

grpsize vector indicating the size for each group, e.g., c(4,4,4) indicating four items in
all three groups.

Details

The M2 statistic has been developed for goodness-of-fit testing in multidimensional contingency
tables by Maydeu-Olivares and Joe (2006). We use the M2 to assess the overall fit for the bi-factor
and second-order copula models for item resposne data (Kadhem & Nikoloulopoulos, 2021).
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10 M2.StructuredFactor

Value

A list containing the following components:

M2 The M2 statistic which has a null asymptotic distribution that is χ2 with s − q
degrees of freedom, where s is the number of univariate and bivariate margins
that do not include the category 0 and q is the number of model parameters.

df s− q.

p-value The resultant p-value.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Maydeu-Olivares, A. and Joe, H. (2006). Limited information goodness-of-fit testing in multidi-
mensional contingency tables. Psychometrika, 71, 713–732. doi: 10.1007/s1133600512959.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
data(TAS)
grp1=c(1,3,6,7,9,13,14)
grp2=c(2,4,11,12,17)
grp3=c(5,8,10,15,16,18,19,20)
#Rearrange items within testlets
ydat=TAS[,c(grp1,grp2,grp3)]

d=ncol(ydat);d
n=nrow(ydat);n

#size of each group
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)

grpsize=c(g1,g2,g3)#group size
#number of groups
ngrp=length(grpsize)

#------------------------------------------------
# M2
#------------------------------------------------
#BI-FACTOR
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tauX0 = c(0.49,0.16,0.29,0.09,0.47,0.49,0.30,
0.46,0.41,0.33,0.29,0.24,0.10,0.16,
0.14,0.12,0.03,0.03,0.10,0.10)

tauXg = c(0.09,0.37,0.23,0.53,0.24,0.32,0.27,
0.53,0.58,0.20,0.23,0.25,0.34,0.33,
0.30,0.19,0.24,0.29,0.43,0.26)

copX0 = rep("bvt2", d)
copXg = c(rep("rgum", g1), rep("bvt3", g2+g3))
#converting taus to cpars
cparX0=mapply(function(x,y) tau2par(x,y),x=copX0,y=tauX0)
cparXg=mapply(function(x,y) tau2par(x,y),x=copXg,y=tauXg)
cpar=c(cparX0,cparXg)

m2_Bifactor = M2Bifactor(y=ydat, cpar, copX0, copXg, gl, ngrp, grpsize)

#SECOND-ORDER
tauX0Xg=c(0.60,0.74,0.18)
tauXgY=c(0.48,0.23,0.34,0.25,0.51,0.56,0.37,0.64,0.57,
0.37,0.35,0.32,0.33,0.33,0.29,0.23,0.23,0.25,0.39,0.28)
cparX0Xg=tau2par("bvn",tauX0Xg)
cparXgY=tau2par("bvn",tauXgY)

cpar=c(cparX0Xg,cparXgY)
copX0Xg = rep("bvn", ngrp)
copXgY = rep("bvn", g1+g2+g3)
m2_Second_order = M2Second_order(y=ydat,cpar, copX0Xg, copXgY, gl, ngrp, grpsize)

mapping Mapping of Kendall’s tau and copula parameter

Description

Bivariate copulas: mapping of Kendall’s tau and copula parameter.

Usage

par2tau(copulaname, cpar)
tau2par(copulaname, tau)

Arguments

copulaname Choices are “bvn” for BVN, “bvtν” with ν = {1, . . . , 9} degrees of freedom
for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel,
“1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected Gumbel, “joe” for Joe,
“rjoe” for reflected Joe, “1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe,
“BB1” for BB1, “rBB1” for reflected BB1, “BB7” for BB7, “rBB7” for reflected
BB7, “BB8” for BB8, “rBB8” for reflected BB8, “BB10” for BB10, “rBB10”
for reflected BB10.

cpar Copula parameter(s).

tau Kendall’s tau.
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Value

Kendall’s tau or copula parameter.

References

Joe H (1997) Multivariate Models and Dependence Concepts. Chapman & Hall, London.

Joe H (2014) Dependence Modeling with Copulas. Chapman & Hall, London.

Joe H (2014) CopulaModel: Dependence Modeling with Copulas. Software for book: Dependence
Modeling with Copulas, Chapman & Hall, London 2014.

Examples

# 1-param copulas
#BVN copula
cpar.bvn = tau2par("bvn", 0.5)
tau.bvn = par2tau("bvn", cpar.bvn)

#Frank copula
cpar.frk = tau2par("frk", 0.5)
tau.frk = par2tau("frk", cpar.frk)

#Gumbel copula
cpar.gum = tau2par("gum", 0.5)
tau.gum = par2tau("gum", cpar.gum)

#Joe copula
cpar.joe = tau2par("joe", 0.5)
tau.joe = par2tau("joe", cpar.joe)

# 2-param copulas
#BB1 copula
tau.bb1 = par2tau("bb1", c(0.5,1.5))

#BB7 copula
tau.bb7 = par2tau("bb7", c(1.5,1))

#BB8 copula
tau.bb8 = par2tau("bb8", c(3,0.8))

#BB10 copula
tau.bb10 = par2tau("bb10", c(3,0.8))

mle.Factor Maximum likelhood estimation of factor copula models for mixed data

Description

We use a two-stage etimation approach toward the estimation of factor copula models for mixed
continuous and discrete data.
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Usage

mle1factor(continuous, ordinal, count, copF1, gl, hessian, print.level)
mle2factor(continuous, ordinal, count, copF1, copF2, gl, hessian, print.level)
mle2factor.bvn(continuous, ordinal, count, copF1, copF2, gl, SpC, print.level)

Arguments

continuous n × d1 matrix with the continuous reponse data, where n and d1 is the number
of observations and continous variables, respectively.

ordinal n × d2 matrix with the ordinal reponse data, where n and d2 is the number of
observations and ordinal variables, respectively.

count n × d3 matrix with the count reponse data, where n and d3 is the number of
observations and count variables, respectively.

copF1 (d1 + d2 + d3)-vector with the names of bivariate copulas that link the each of
the oberved variabels with the 1st factor. Choices are “bvn” for BVN, “bvtν”
with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank, “gum”
for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel,
“2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe”
for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for
reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8,
“rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

copF2 (d1 + d2 + d3)-vector with the names of bivariate copulas that link the each
of the oberved variabels with the 2nd factor. Choices are “bvn” for BVN,
“bvtν” with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank,
“gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gum-
bel, “2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe,
“1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1”
for reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8,
“rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

gl Gauss legendre quardrature nodes and weights.

SpC Special case for the 2-factor copula model with BVN copulas. Select a bivariate
copula at the 2nd factor to be fixed to independence. e.g. "SpC = 1" to set the
first copula at the 2nd factor to independence.

hessian If TRUE, the hessian of the negative log-likelihood is calculated during the min-
imization process.

print.level Determines the level of printing which is done during the minimization process;
same as in nlm.

Details

Estimation is achieved by maximizing the joint log-likelihood over the copula parameters with
the univariate parameters/distributions fixed as estimated at the first step of the proposed two-step
estimation approach.

Value

A list containing the following components:

cutpoints The estimated univariate cutpoints (fitting the univariate probit model).

negbinest The estimated univariate parametes for the count responses (fitting the negative
binomial distribution).
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loglik The maximized joint log-likelihood.

cpar Estimated copula parameters in a list form.

taus The estimated copula parameters in Kendall’s tau scale.

SEs The SEs of the Kendall’s tau estimates.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Krupskii, P. and Joe, H. (2013) Factor copula models for multivariate data. Journal of Multivariate
Analysis, 120, 85–101. doi: 10.1016/j.jmva.2013.05.001.

Nikoloulopoulos, A.K. and Joe, H. (2015) Factor copula models with item response data. Psy-
chometrika, 80, 126–150. doi: 10.1007/s1133601393874.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE2 = PE[,2]
continuous.PE <- cbind(continuous.PE1, continuous.PE2)

categorical.PE <- PE[, 3:5]
#------------------------------------------------
# Estimation
#------------------ -----------------
#------------------ One-factor -----------------
# one-factor copula model
cop1f.PE <- c("joe", "joe", "rjoe", "joe", "gum")
est1factor.PE <- mle1factor(continuous.PE, categorical.PE,

count=NULL, copF1=cop1f.PE, gl, hessian = T)
est1factor.PE
#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME, AGE)
ordinal.GSS <- cbind(DEGREE, PINCOME, PDEGREE)
count.GSS <- cbind(CHILDREN, PCHILDREN)
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#------------------------------------------------
# Estimation
#------------------ -----------------
#------------------ One-factor -----------------
# one-factor copula model
cop1f.GSS <- c("joe","2rjoe","bvt3","bvt3",

"rgum","2rjoe","2rgum")
est1factor.GSS <- mle1factor(continuous.GSS, ordinal.GSS,

count.GSS, copF1 = cop1f.GSS, gl, hessian = T)

#------------------ Two-factor -----------------
# two-factor copula model
cop1.2f <- c("rgum","rjoe","bvn","1rjoe",

"1rjoe","rjoe","gum")
cop2.2f <- c("gum","2rjoe","rjoe","gum",

"bvt5","bvn","2rgum")
est2factor.GSS <- mle2factor(continuous.GSS, ordinal.GSS,

count.GSS, copF1 = cop1.2f, copF2 = cop2.2f, gl, hessian = T)

mle.StructuredFactor Maximum likelihood estimation of the bi-factor and second-order cop-
ula models for item response data

Description

We approach the estimation of the bi-factor and second-order copula models for item response data
with the IFM method of Joe (2005).

Usage

mleBifactor(y, copnames1, copnames2, gl, ngrp, grpsize,
hessian, print.level)
mleSecond_order(y, copnames1, copnames2, gl, ngrp, grpsize,
hessian, print.level)

Arguments

y n× d matrix with the item reponse data, where n and d is the number of obser-
vations and variables, respectively.

copnames1 For the bi-factor copula: d-vector with the names of bivariate copulas that link
the each of the oberved variabels with the common factor. For the second-order
factor copula: G-vector with the names of bivariate copulas that link the each
of the group-specific factors with the common factor, where G is the number
of groups of items. Choices are “bvn” for BVN, “bvtν” with ν = {1, . . . , 9}
degrees of freedom for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum”
for reflected Gumbel, “1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected
Gumbel.
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copnames2 For the bi-factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. For the
second-order factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. Choices are
“bvn” for BVN, “bvtν” with ν = {1, . . . , 9} degrees of freedom for t-copula,
“frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for
1-reflected Gumbel, “2rgum” for 2-reflected Gumbel.

gl Gauss legendre quardrature nodes and weights.

ngrp number of non-overlapping groups.

grpsize vector indicating the size for each group, e.g., c(4,4,4) indicating four items in
all three groups.

hessian If TRUE, the hessian of the negative log-likelihood is calculated during the min-
imization process.

print.level Determines the level of printing which is done during the minimization process;
same as in nlm.

Details

Estimation is achieved by maximizing the joint log-likelihood over the copula parameters with the
univariate cutpoints fixed as estimated at the first step of the proposed two-step estimation approach.

Value

A list containing the following components:

cutpoints The estimated univariate cutpoints (fitting the univariate probit model).

taus The estimated copula parameters in Kendall’s tau scale.

SEs The SEs of the Kendall’s tau estimates.

loglik The maximized joint log-likelihood.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Joe, H. (2005) Asymptotic efficiency of the two-stage estimation method for copula-based models.
Journal of Multivariate Analysis, 94, 401–419. doi: 10.1016/j.jmva.2004.06.003.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
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data(TAS)
grp1=c(1,3,6,7,9,13,14)
grp2=c(2,4,11,12,17)
grp3=c(5,8,10,15,16,18,19,20)
#Rearrange items within testlets
ydat=TAS[,c(grp1,grp2,grp3)]

d=ncol(ydat);d
n=nrow(ydat);n

#size of each group
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)

grpsize=c(g1,g2,g3)#group size
#number of groups
ngrp=length(grpsize)

#BI-FACTOR
copX0 = rep("bvt2", d)
copXg = c(rep("rgum", g1), rep("bvt3", g2+g3))
mle_Bifactor = mleBifactor(y = ydat, copX0, copXg, gl, ngrp, grpsize, hessian=F, print.level=2)

#SECOND-ORDER
copX0Xg = rep("bvt5", ngrp)
copXgY = c(rep("bvt3", g1), rep("bvt2", g2+g3))
mle_Second_order = mleSecond_order(y = ydat, copX0Xg,

copXgY, gl, ngrp, grpsize,
hessian=F, print.level=2)

PE Political-economic risk of 62 countries for the year 1987

Description

Quinn (2004) used 5 mixed variables, namely the continuous variable black-market premium in
each country (used as a proxy for illegal economic activity), the continuous variable productivity
as measured by real gross domestic product per worker in 1985 international prices, the binary
variable independence of the national judiciary (1 if the judiciary is judged to be independent and 0
otherwise), and the ordinal variables measuring the lack of expropriation risk and lack of corruption.

Usage

data(PE)

Format

A data frame with 62 observations (countries) on the following 5 variables:

BM Black-market premium.

GDP Gross domestic product.

IJ Independent judiciary.
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XPR Lack of expropriation risk.

CPR Lack of corruption.

Source

Quinn, K. M. (2004). Bayesian factor analysis for mixed ordinal and continuous responses. Political
Analysis, 12, 338–353.

rFactor Simulation of factor copula models for mixed continuous and discrete
data

Description

Simulating dependent standard uniform and ordinal response data from factor copula models.

Usage

r1factor(n, d1, d2, categ, theta, copF1)
r2factor(n, d1, d2, categ, theta, delta, copF1, copF2)

Arguments

n Sample size.

d1 Number of standard uniform variables.

d2 Number of ordinal variables.

categ A vector of categories for the ordinal variables.

theta Copula parameters for the 1st factor.

delta Copula parameters for the 2nd factor.

copF1 (d1 + d2)-vector with the names of bivariate copulas that link the each of the
oberved variabels with the 1st factor. Choices are “bvn” for BVN, “bvtν”
with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank, “gum”
for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel,
“2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe”
for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for
reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8,
“rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

copF2 (d1 + d2)-vector with the names of bivariate copulas that link the each of the
oberved variabels with the 2nd factor. Choices are “bvn” for BVN, “bvt[ν]”
with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank, “gum”
for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel,
“2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe”
for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for
reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8,
“rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.

Value

Data matrix of dimension n× d, where n is the sample size, and d = d1 + d2 is the total number of
variables.
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Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Examples

# ---------------------------------------------------
# ---------------------------------------------------
# One-factor copula model
# ---------------------------------------------------
# ---------------------------------------------------
#Sample size ----------------------------------------
n = 100

#Continuous Variables ------------------------------
d1 = 5

#Ordinal Variables ---------------------------------
d2 = 3

#Categories for ordinal ----------------------------
categ = c(3,4,5)

#Copula parameters ---------------------------------
theta = rep(2, d1+d2)

#Copula names --------------------------------------
copnamesF1 = rep("gum", d1+d2)

#----------------- Simulating data ------------------
datF1 = r1factor(n, d1=d1, d2=d2, categ, theta, copnamesF1)

#------------ Plotting continuous data -------------
pairs(qnorm(datF1[, 1:d1]))

# ---------------------------------------------------
# ---------------------------------------------------
# Two-factor copula model
# ---------------------------------------------------
# ---------------------------------------------------
#Sample size ----------------------------------------
n = 100

#Continuous Variables ------------------------------
d1 = 5

#Ordinal Variables ---------------------------------
d2 = 3
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#Categories for ordinal ----------------------------
categ = c(3,4,5)

#Copula parameters ---------------------------------
theta = rep(2.5, d1+d2)
delta = rep(1.5, d1+d2)

#Copula names --------------------------------------
copnamesF1 = rep("gum", d1+d2)
copnamesF2 = rep("gum", d1+d2)

#----------------- Simulating data ------------------
datF2 = r2factor(n, d1=d1, d2=d2, categ, theta, delta,

copnamesF1, copnamesF2)

#----------------- Plotting data ------------------
pairs(qnorm(datF2[,1:d1]))

rStructuredFactor Simulation of bi-factor and second-order copula models for item re-
sponse data

Description

Simulating dependent item response data from the bi-factor and second-order copula models for
item response data.

Usage

rBifactor(n, d, grpsize, categ, copnames1,copnames2, theta1, theta2)
rSecond_order(n, d, grpsize, categ, copnames1, copnames2, theta1, theta2)

Arguments

n Sample size.

d Number of observed variables/items.

grpsize vector indicating the size for each group, e.g., c(4,4,4) indicating four items in
all three groups.

categ A vector of categories for the observed variables/items.

theta1 For the bi-factor model: copula parameter vector of size d for items with the
common factor. For the second-order copulas: copula parameter vector of size
G for the common factor and group-specific factors.

theta2 For the bi-factor model: copula parameter vector of size d for items with the
group-specific factor. For the second-order copulas: copula parameter vector
of size d for items with the group-specific factor.

copnames1 For the bi-factor copula: d-vector with the names of bivariate copulas that link
the each of the oberved variabels with the common factor. For the second-order
factor copula: G-vector with the names of bivariate copulas that link the each
of the group-specific factors with the common factor, where G is the number
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of groups of items. Choices are “bvn” for BVN, “bvtν” with ν = {1, . . . , 9}
degrees of freedom for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum”
for reflected Gumbel, “1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected
Gumbel.

copnames2 For the bi-factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. For the
second-order factor copula: d-vector with the names of bivariate copulas that
link the each of the oberved variabels with the group-specific factor. Choices are
“bvn” for BVN, “bvtν” with ν = {1, . . . , 9} degrees of freedom for t-copula,
“frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for
1-reflected Gumbel, “2rgum” for 2-reflected Gumbel.

Value

Data matrix of dimension n× d, where n is the sample size, and d is the total number of observed
variables/items.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Examples

# ---------------------------------------------------
# ---------------------------------------------------
#Sample size
n = 500

#Ordinal Variables ---------------------------------
d = 9
grpsize=c(3,3,3)
ngrp=length(grpsize)

#Categories for ordinal ----------------------------
categ = rep(3,d)

# ---------------------------------------------------
# ---------------------------------------------------
# Bi-factor copula model
# ---------------------------------------------------
# ---------------------------------------------------
#Copula parameters
theta = rep(2.5, d)
delta = rep(1.5, d)

#Copula names
copulanames1 = rep("gum", d)
copulanames2 = rep("gum", d)
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#----------------- Simulating data ------------------
data_Bifactor = rBifactor(n, d, grpsize, categ, copulanames1,
copulanames2, theta, delta)

# ---------------------------------------------------
# ---------------------------------------------------
# Second-order copula model
# ---------------------------------------------------
# ---------------------------------------------------
#Copula parameters
theta= rep(1.5, ngrp)
delta = rep(2.5, d)

#Copula names
copulanames1 = rep("gum", ngrp)
copulanames2 = rep("gum", d)

data_Second_order = rSecond_order(n, d, grpsize, categ,
copulanames1, copulanames2, theta, delta)

Select.Factor Model selection of the factor copula models for mixed data

Description

A heuristic algorithm that automatically selects the bivariate parametric copula families that link
the observed to the latent variables.

Usage

select1F(continuous, ordinal, count, copnamesF1, gl)
select2F(continuous, ordinal, count, copnamesF1, copnamesF2, gl)

Arguments

continuous n × d1 matrix with the continuous reponse data, where n and d1 is the number
of observations and continous variables, respectively.

ordinal n × d2 matrix with the ordinal reponse data, where n and d2 is the number of
observations and ordinal variables, respectively.

count n × d3 matrix with the count reponse data, where n and d3 is the number of
observations and count variables, respectively.

copnamesF1 A vector with the names of possible candidates of bivariate copulas that link the
each of the oberved variabels with the 1st factor. Choices are “bvn” for BVN,
“bvtν” with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk” for Frank,
“gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gum-
bel, “2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe,
“1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1”
for reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8,
“rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10.
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copnamesF2 A list with the names of possible candidates of bivariate copulas that link the
each of the oberved variabels with the 1st and 2nd factors. Choices are “bvn”
for BVN, “bvtν” with ν = {1, . . . , 9} degrees of freedom for t-copula, “frk”
for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-
reflected Gumbel, “2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for
reflected Joe, “1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for
BB1, “rBB1” for reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7,
“BB8” for BB8, “rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for
reflected BB10.

gl Gauss legendre quardrature nodes and weights.

Details

The linking copulas at each factor are selected with a sequential algorithm under the initial assump-
tion that linking copulas are Frank, and then sequentially copulas with non-tail quadrant indepen-
dence are assigned to any of pairs where necessary to account for tail asymmetry (discrete data) or
tail dependence (continuous data).

Value

A list containing the following components:

‘‘1st factor’’ The selected bivariate linking copulas for the 1st factor.

‘‘2nd factor’’ The selected bivariate linking copulas for the 2nd factor.

AIC Akaike information criterion.

taus The estimated copula parameters in Kendall’s tau scale.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Examples

#------------------------------------------------
# Estimation
#------------------ -----------------
# Setting quadreture points
nq<-25
gl<-gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE <- cbind(continuous.PE1, PE[,2])
categorical.PE <- PE[, 3:5]
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#------------------ One-factor -----------------
# listing the possible copula candidates:
d <- ncol(PE)
copulasF1 <- rep(list(c("bvn", "bvt3", "bvt5", "frk", "gum",
"rgum", "rjoe","joe", "1rjoe","2rjoe", "1rgum","2rgum")), d)
out1F.PE <- select1F(continuous.PE, categorical.PE,
count=NULL, copulasF1, gl)

#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME, AGE)
ordinal.GSS <- cbind(DEGREE, PINCOME, PDEGREE)
count.GSS <- cbind(CHILDREN, PCHILDREN)

#------------------ One-factor -----------------
# listing the possible copula candidates:
d <- ncol(GSS)
copulasF1 <- rep(list(c("bvn", "bvt3", "bvt5", "frk", "gum",
"rgum", "rjoe","joe", "1rjoe","2rjoe", "1rgum","2rgum")), d)
out1F.GSS <- select1F(continuous.GSS, ordinal.GSS, count.GSS, copulasF1, gl)

#------------------ two-factor -----------------
# listing the possible copula candidates:
copulasF1 = copulasF2 = rep(list(c("bvn", "bvt3", "bvt5", "frk",
"gum", "rgum", "rjoe","joe", "1rjoe","2rjoe", "1rgum","2rgum")), d)
out2F.GSS <- select2F(continuous.GSS, ordinal.GSS,
count.GSS, copulasF1, copulasF2, gl)

Select.StructuredFactor

Model selection of the bi-factor and second-order copula models for
item response data

Description

A heuristic algorithm that automatically selects the bivariate parametric copula families for the
bi-factor and second-order copula models for item response data.

Usage

selectBifactor(y, grpsize, copnames, gl)
selectSecond_order(y, grpsize, copnames, gl)

Arguments

y n× d matrix with the item reponse data, where n and d is the number of obser-
vations and variables, respectively.
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grpsize vector indicating the size for each group, e.g., c(4,4,4) indicating four items in
all three groups.

copnames A vector with the names of possible candidates of bivariate copulas to be se-
lected for the bi-factor and second-order copula models for item response data.
Choices are “bvn” for BVN, “bvtν” with ν = {1, . . . , 9} degrees of freedom
for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel,
“1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected Gumbel.

gl Gauss legendre quardrature nodes and weights.

Details

The linking copulas at each factor are selected with a sequential algorithm under the initial assump-
tion that linking copulas are BVN, and then sequentially copulas with tail dependence are assigned
to any of pairs where necessary to account for tail asymmetry.

Value

A list containing the following components:

‘‘common factor’’

The selected bivariate linking copulas for the common factor (Bi-factor: copulas
link items with the common factor. Second-order: copulas link group-specific
factors with the common factor).

‘‘group-specific factor’’

The selected bivariate linking copulas for the items with group-speicifc factors.

log-likelihood The maximized joint log-likelihood.

taus The estimated copula parameters in Kendall’s tau scale.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
data(TAS)
grp1=c(1,3,6,7,9,13,14)
grp2=c(2,4,11,12,17)
grp3=c(5,8,10,15,16,18,19,20)
ydat=TAS[,c(grp1,grp2,grp3)]
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#size of each group
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)
grpsize=c(g1,g2,g3)

# listing the possible copula candidates:
copnames=c("bvn", "bvt2", "bvt3",
"gum", "rgum")

Bifactor_model = selectBifactor(ydat, grpsize, copnames, gl)
Second_order_model = selectSecond_order(ydat, grpsize, copnames, gl)

semicorr Diagnostics to detect tail dependence or tail asymmetry.

Description

The sample versions of the correlation ρN , upper semi-correlation ρ+N (correlation in the joint up-
per quadrant) and lower semi-correlation ρ−N (correlation in the joint lower quadrant). These are
sample linear (when both variables are continuous), polychoric (when both variables are ordinal),
and polyserial (when one variable is continuous and the other is ordinal) correlations.

Usage

semicorr(dat,type)

Arguments

dat Data frame of mixed continuous and ordinal data.

type A vector with 1’s for the location of continuous data and 2’s for the location of
ordinal data.

Value

A matrix containing the following components for semicorr():

rho ρN .

lrho ρ−N .

urho ρ+N .

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Joe, H. (2014). Dependence Modelling with Copulas. Chapman and Hall/CRC.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.
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Examples

#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
#correlation
continuous.PE1 <- -PE[,1]
continuous.PE <- cbind(continuous.PE1, PE[,2])
categorical.PE <- data.frame(apply(PE[, 3:5], 2, factor))
nPE <- cbind(continuous.PE, categorical.PE)

#-------------------------------------------------
# Semi-correlations-------------------------------
#-------------------------------------------------
# Exclude the dichotomous variable
sem.PE = nPE[,-3]
semicorr.PE = semicorr(dat = sem.PE, type = c(1,1,2,2))
#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME,AGE)
ordinal.GSS <- cbind(DEGREE,PINCOME,PDEGREE)
count.GSS <- cbind(CHILDREN,PCHILDREN)

# Transforming the COUNT variables to ordinal
# count1 : CHILDREN
count1 = count.GSS[,1]
count1[count1 > 3] = 3

# count2: PCHILDREN
count2 = count.GSS[,2]
count2[count2 > 7] = 7

# Combining both transformed count variables
ncount.GSS = cbind(count1, count2)

# Combining ordinal and transformed count variables
categorical.GSS <- cbind(ordinal.GSS, ncount.GSS)
categorical.GSS <- data.frame(apply(categorical.GSS, 2, factor))

# combining continuous and categorical variables
nGSS = cbind(continuous.GSS, categorical.GSS)
#-------------------------------------------------
# Semi-correlations-------------------------------
#-------------------------------------------------
semicorr.GSS = semicorr(dat = nGSS, type = c(1, 1, rep(2,5)))
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TAS Toronto Alexithymia Scale (TAS)

Description

The Toronto Alexithymia Scale is the most utilized measure of alexithymia in empirical research
and is composed of d = 20 items that can be subdivided into G = 3 non-overlapping groups:
d1 = 7 items to assess difficulty identifying feelings (DIF), d2 = 5 items to assess difficulty
describing feelings (DDF) and d3 = 8 items to assess externally oriented thinking (EOT). Students
were 17 to 25 years old and 58% of them were female and 42% were male. They were asked to
respond to each item using one of K = 5 categories: “1 = completely disagree”, “2 = disagree”, “3
= neutral”, “4 = agree”, “5 = completely agree”.

Usage

data(TAS)

Format

A data frame with 1925 observations on the following 20 items:

DIF items: 1,3,6,7,9,13,14.

DDF items: 2,4,11,12,17.

EOT items: 5,8,10,15,16,18,19,20.

Source

Briganti, G. and Linkowski, P. (2020). Network approach to items and domains from the toronto
alexithymia scale. Psychological Reports, 123, 2038–2052.

Williams, D. and Mulder, J. (2020). BGGM: Bayesian Gaussian Graphical Models. R package
version 1.0.0.

transformation Continuous/count to ordinal responses

Description

Transforming a continuous/count to ordinal variable with K categories.

Usage

continuous2ordinal(continuous, categ)
count2ordinal(count, categ)

Arguments

continuous Matrix of continuous data.

count Matrix of count data.

categ The number of categories K.
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Examples

#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE <- PE[, 1:2]

#Transforming the continuous to ordinal data :
tcontinuous = continuous2ordinal(continuous.PE, categ=5)
table(tcontinuous)

#Transforming the count to ordinal data:
set.seed(12345)
count.data = rpois(1000, 3)
tcount = count2ordinal(count.data, 5)
table(tcount)

Vuong.Factor Vuong’s test for the comparison of factor copula models

Description

Vuong (1989)’s test for the comparison of non-nested factor copula models for mixed data. We
compute the Vuong’s test between the factor copula model with BVN copulas (that is the standard
factor model) and a competing factor copula model to reveal if the latter provides better fit than the
standard factor model.

Usage

vuong.1f(cpar.bvn, cpar, copF1, continuous, ordinal, count, gl, param)
vuong.2f(cpar.bvn, cpar, copF1, copF2, continuous, ordinal, count, gl, param)

Arguments

cpar.bvn copula parameters of the factor copula model with BVN copulas.

cpar copula parameters of the competing factor copula model.

copF1 copula names for the first factor of the competing factor copula model.

copF2 copula names for the second factor of the competing factor copula model.

continuous matrix of continuous data.

ordinal matrix of ordinal data.

count matrix of count data.

gl gauss-legendre quardature points.

param parameterization of estimated copula parameters. If FALSE, then cpar are the
actual copula parameters without any transformation/reparamterization.
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Value

A vector containing the following components:

z the test statistic.

p.value the p-value.

CI.left lower/left endpoint of 95% confidence interval.

CI.right upper/right endpoint of 95% confidence interval.

Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British
Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.

Vuong, Q.~H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econo-
metrica, 57, 307–333.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
continuous.PE1 = -PE[,1]
continuous.PE2 = PE[,2]
continuous.PE <- cbind(continuous.PE1, continuous.PE2)
categorical.PE <- PE[, 3:5]
d <- ncol(PE)
#------------------------------------------------
# Estimation
#------------------ -----------------
# factor copula model with BVN copulas
cop1f.PE.bvn <- rep("bvn", d)
PE.bvn1f <- mle1factor(continuous.PE, categorical.PE,
count=NULL, copF1=cop1f.PE.bvn, gl, hessian = T)

# Selected factor copula model
cop1f.PE <- c("joe", "joe", "rjoe", "joe", "gum")
PE.selected1f <- mle1factor(continuous.PE, categorical.PE,
count=NULL, copF1=cop1f.PE, gl, hessian = T)
#------------------------------------------------
# Vuong's test
#------------------ -----------------
v1f.PE.selected <- vuong.1f(PE.bvn1f$cpar$f1,
PE.selected1f$cpar$f1,cop1f.PE, continuous.PE,
categorical.PE, count=NULL, gl, param=F)
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#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME,AGE)
ordinal.GSS <- cbind(DEGREE,PINCOME,PDEGREE)
count.GSS <- cbind(CHILDREN,PCHILDREN)
d <- ncol(GSS)

#------------------------------------------------
# Estimation
#------------------ -----------------
# factor copula model with BVN copulas
# one-factor copula model
cop1f.GSS.bvn <- rep("bvn", d)
GSS.bvn1f <- mle1factor(continuous.GSS, ordinal.GSS,
count.GSS, copF1 = cop1f.GSS.bvn, gl, hessian = T)

# two-factor copula model
cop1f.GSS.bvn = cop2f.GSS.bvn = rep("bvn", d)
GSS.bvn2f <- mle2factor.bvn(continuous.GSS, ordinal.GSS,
count.GSS, copF1 = cop1f.GSS.bvn, copF2 = cop2f.GSS.bvn, gl, SpC =7)

# Selected factor copula model
# one-factor copula model
cop1f.GSS <- c("joe","2rjoe","bvt3","bvt3",

"rgum","2rjoe","2rgum")
GSS.selected1f <- mle1factor(continuous.GSS, ordinal.GSS,
count.GSS, copF1 = cop1f.GSS, gl, hessian = T)

# two-factor copula model
cop2f1.GSS <- c("rgum","rjoe","bvn","1rjoe","1rjoe","rjoe","gum")
cop2f2.GSS <- c("gum","2rjoe","rjoe","gum","bvt5","bvn","2rgum")
GSS.selected2f <- mle2factor(continuous.GSS, ordinal.GSS,
count.GSS, copF1 = cop2f1.GSS, copF2 = cop2f2.GSS, gl, hessian = T)

#------------------------------------------------
# Vuong's test
#------------------ -----------------
#1-factor
v1f.GSS.selected <- vuong.1f(GSS.bvn1f$cpar$f1,
GSS.selected1f$cpar$f1, cop1f.GSS, continuous.GSS,
ordinal.GSS, count=count.GSS, gl, param=F)

#2-factor
v2f.GSS.selected <- vuong.2f(GSS.bvn2f$cpar,
GSS.selected2f$cpar, cop2f1.GSS, cop2f2.GSS,
continuous.GSS, ordinal.GSS, count=count.GSS, gl, param=F)
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Vuong.StructuredFactor

Vuong’s test for the comparison of bi-factor and second-order copula
models

Description

The Vuong’s test (Vuong,1989) is the sample version of the difference in Kullback-Leibler diver-
gence between two models and can be used to differentiate two parametric models which could be
non-nested. For the Vuong’s test we provide the 95% confidence interval of the Vuong’s test statis-
tic (Joe, 2014, page 258). If the interval does not contain 0, then the best fitted model according to
the AICs is better if the interval is completely above 0.

Usage

vuong_structured(models, cpar.m1, copnames.m1, cpar.m2,
copnames.m2, y, grpsize)

Arguments

models choose a number from (1,2,3,4). 1: Model1 is bifactor, Model2 is bifactor. 2:
Model1 is second-order, Model2 is second-order. 3: Model1 is second-order,
Model2 is bifactor. 4: Model1 is bifactor, Model2 is nested.

cpar.m1 vector of copula paramters for model 1, starting with copula parameters that link
the items with common factor (bifactor), or group factors with common factor
(second-order).

cpar.m2 vector of copula paramters for model 2, starting with copula parameters that link
the items with common factor (bifactor), or group factors with common factor
(second-order).

copnames.m1 vector of names of copula families for model 1, starting with copulas that link
the items with common factor (bifactor), or group factors with common factor
(second-order).

copnames.m2 vector of names of copula families for model 2, starting with copulas that link
the items with common factor (bifactor), or group factors with common factor
(second-order).

y matrix of ordinal data.

grpsize vector indicating the size for each group, e.g., c(4,4,4) indicating four items in
all three groups.

Value

A vector containing the following components:

z the test statistic.

p.value the p-value.

CI.left lower/left endpoint of 95% confidence interval.

CI.right upper/right endpoint of 95% confidence interval.
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Author(s)

Sayed H. Kadhem <s.kadhem@uea.ac.uk>
Aristidis K. Nikoloulopoulos <a.nikoloulopoulos@uea.ac.uk>

References

Joe, H. (2014). Dependence Modelling with Copulas. Chapman and Hall/CRC.

Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Bi-factor and second-order copula models for
item response data. Arxiv e-prints, <arXiv:2102.10660>. https://arxiv.org/abs/2102.10660.

Vuong, Q.~H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econo-
metrica, 57, 307–333.

Examples

#------------------------------------------------
# Setting quadreture points
nq <- 25
gl <- gauss.quad.prob(nq)
#------------------------------------------------
# TAS Data
#------------------ -----------------
data(TAS)
grp1=c(1,3,6,7,9,13,14)
grp2=c(2,4,11,12,17)
grp3=c(5,8,10,15,16,18,19,20)
ydat=TAS[,c(grp1,grp2,grp3)]

d=ncol(ydat);d
n=nrow(ydat);n

#Rearrange items within testlets
g1=length(grp1)
g2=length(grp2)
g3=length(grp3)

grpsize=c(g1,g2,g3)#group size
#number of groups
ngrp=length(grpsize)
#------------------------------------------------
# M1 bifactor - M2 bifactor
cpar.m1 = rep(0.6,d*2)
copnames.m1 = rep("bvn",d*2)
cpar.m2 = rep(1.6,d*2)
copnames.m2 = rep("rgum",d*2)
vuong.bifactor = vuong_structured(models=1, cpar.m1, copnames.m1,

cpar.m2, copnames.m2,
y=ydat, grpsize)

# M1 seconod-order - M2 seconod-order
cpar.m1 = rep(0.6,d+ngrp)
copnames.m1 = rep("bvn",d+ngrp)
cpar.m2 = rep(1.6,d+ngrp)
copnames.m2 = rep("rgum",d+ngrp)
vuong.second_order = vuong_structured(models=2, cpar.m1,
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copnames.m1, cpar.m2, copnames.m2, y=ydat, grpsize)

# M1 seconod-order - M2 bifactor
cpar.m1 = rep(0.6,d+ngrp)
copnames.m1 = rep("bvn",d+ngrp)
cpar.m2 = rep(1.6,d*2)
copnames.m2 = rep("rgum",d*2)
vuong.2ndO_bif = vuong_structured(models=3, cpar.m1, copnames.m1,

cpar.m2, copnames.m2,
y=ydat, grpsize)

# M1 bifactor - M2 seconod-order
cpar.m1 = rep(0.6,d*2)
copnames.m1 = rep("bvn",d*2)
cpar.m2 = rep(1.6,d+ngrp)
copnames.m2 = rep("rgum",d+ngrp)
vuong.bif_2ndO = vuong_structured(models=4, cpar.m1, copnames.m1,

cpar.m2, copnames.m2,
y=ydat, grpsize)
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