Ocean mover’s distance: using optimal transport for analysing oceanographic data

Hyun, Sangwon, Mishra, Aditya, Follett, Christopher, Jonsson, Bror, Kulk, Gemma, Forget, Gael, Racault, Marie-Fanny ORCID: https://orcid.org/0000-0002-7584-2515, Jackson, Thomas, Dutkiewicz, Stephanie, Muller, Christian and Bien, Jacob (2022) Ocean mover’s distance: using optimal transport for analysing oceanographic data. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478 (2262). ISSN 1364-5021

[thumbnail of rspa.2021.0875]
PDF (rspa.2021.0875) - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview


Remote sensing observations from satellites and global biogeochemical models have combined to revolutionize the study of ocean biogeochemical cycling, but comparing the two data streams to each other and across time remains challenging due to the strong spatial-temporal structuring of the ocean. Here, we show that the Wasserstein distance provides a powerful metric for harnessing these structured datasets for better marine ecosystem and climate predictions. The Wasserstein distance complements commonly used point-wise difference methods such as the root-mean-squared error, by quantifying differences in terms of spatial displacement in addition to magnitude. As a test case, we consider chlorophyll (a key indicator of phytoplankton biomass) in the northeast Pacific Ocean, obtained from model simulations, in situ measurements, and satellite observations. We focus on two main applications: (i) comparing model predictions with satellite observations, and (ii) temporal evolution of chlorophyll both seasonally and over longer time frames. The Wasserstein distance successfully isolates temporal and depth variability and quantifies shifts in biogeochemical province boundaries. It also exposes relevant temporal trends in satellite chlorophyll consistent with climate change predictions. Our study shows that optimal transport vectors underlying the Wasserstein distance provide a novel visualization tool for testing models and better understanding temporal dynamics in the ocean.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
Depositing User: LivePure Connector
Date Deposited: 25 Jul 2022 09:30
Last Modified: 13 Sep 2022 00:29
URI: https://ueaeprints.uea.ac.uk/id/eprint/86840
DOI: 10.1098/rspa.2021.0875

Actions (login required)

View Item View Item