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Abstract. The paper investigates waves generated by the moving loads on ice plates float-
ing on an incompressible fluid. Two different viscoelastic approximations are considered for
the ice cover: a model depending on the strain-relaxation time, and a model including a
hereditary delay integral. The problem is formulated in terms of the exact dispersion rela-
tion and the Dirichlet-Neumann operator connected to the fluid motion. Weakly nonlinear
and linear approximations are derived by truncating the Dirichlet-Neumann operator. The
Laplace transform is used to find the exact solutions of the linearized problems for the two
viscoelastic models considered.

Dedication: We dedicate this article to the memory of Roger Hosking.

1. Introduction

The response of a floating ice sheet to moving loads is of great interest in the cold regions,
where roads and airfields are sometimes built on ice (see [2]). In the vast majority of cases
the icesheet floating on the water column is modelled as a thin elastic plate, and in many
of these cases, the hydroelastic (i.e. flexural-gravity) waves described by such a simplified
model are in good agreement with the experiments (see [22]). Hydroelastic waves have been
studied by a great number of authors, and there is now a rich literature on the subject (see
e.g. [10, 19, 23] for reviews). With regards to waves excited by a moving load, following the
classic works of Takizawa [24, 25] and Davys et al. [4], there have been subsequent works
investigating effects such wave resistance [18], compression [21] as well as the influence of
deceleration [5, 8, 14], and the effect of a moving body below the ice [20]. It was also recently
shown [3] that such wave patterns can be observed using satellite synthetic-aperture radar
(SAR) imagery.

Most of the theoretical studies of waves generated by moving loads are considering lin-
earized problems, which are adequate for a large range of speeds, but there are some critical
speeds where they fail. Near these critical speed, nonlinear effects may be important, and
there is an increasing number of papers investigating nonlinear effects near these critical
speeds (e.g. [12, 17]). Inspired by work on free surface water waves [1, 15, 27], some recent
contributions have focussed on retaining the full dispersion relation even in the nonlinear
framework [5, 6], which gives very good appxroximations for problems where the nonlinear
effect is small but nonzero.

A different approach to improving the thin elastic model of the ice sheet, partially moti-
vated by experimental observations, is the inclusion of viscoelastic effects such as for example
discussed in [11]. In the present paper we will concentrate on two viscoelastic models. The
first model was put forward by Zhestkaya in [28], following [9] where a strain-relaxation time
is included. The second model was used by Hosking et al. [7] and Wang et al. [26] and
includes a memory function based on a two-parameter Boltzmann hereditary delay integral.
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The two viscoelastic models will be delineated in Section 2, a weakly nonlinear approxi-
mation will be derived in Section 3, and the exact solution for the linearised problem will be
obtained in Section 4. and Numerical examples will be given in Section 5.

2. Hydro-elastic models

We consider a three-dimensional fluid of density ρ covered by an ice plate of thickness h,
under the influence of the gravitational acceleration g and with mean depthH. The Cartesian
coordinates xyz are used where the horizontal x and y axes are aligned with the ice sheet,
and z is the vertical coordinate. The moving load is travelling on top of the ice sheet along
the x-axis. The underlying fluid is assumed to be inviscid and incompressible, and the flow is
assumed irrotational. The fluid flow is described by the velocity potential φ(x, y, z, t) which
satisfies the Laplace equation in the fluid domain {(x, y, z) ∈ R3| −H < z < η(x, y, t)}

∇2φ = 0, (2.1)

and by the unknown fluid surface elevation η(x, y, t) that coincides with the vertical defor-
mation of the lower side of the ice cover. The level z = 0 corresponds to the water ice
interface at rest. The boundary conditions are the no-penetration condition at the bottom

φz = 0 at z = −H, (2.2)

the kinematic condition at the ice/water interface

ηt + φxηx + φyηy = φz, at z = η(x, y, t), (2.3)

and the dynamic condition at z = η(x, y, t).
If we assume the thin linear elastic plate approximation, coupled with some form of damp-

ing quantified by a parameter b, and the density of the ice sheet is ρ1, then it can be shown
(see [5, 22]) that the dynamic condition at the interface z = η(x, y, t) is the Bernoulli equation

κg∆2η − ρ1h
3

12ρ
∂2
t ∆η +

ρ1h

ρ
∂2
t η +

b

ρ
∂tη + gη + φt +

1

2
|∇φ|2 +

P

ρ
= 0.

Here we have introduced the hydroelastic parameter κ = D/(ρg), where D = Eh3

12(1−ν2)
is the

flexural rigidity of the plate, E is the Young’s modulus and ν the Poisson ratio. The easiest
way to take dissipation into account is to assume that the damping force is proportional
to the vertical velocity. The corresponding proportionality factor b > 0 is assumed to be
constant.

There are a couple of ways to introduce visco-elastic effects into this equation. The first
is to regard the ice cover as a Kelvin-Voigt material with the strain-relaxation time τf .
Then in the first term of the expression one substitutes 1 → 1 + τf∂t. The corresponding
model was studied numerically by Zhestkaya [28]. The second is to regard the ice cover as
viscoelastic material with the memory function Ψ(t). Then in the first term of the expression
one substitutes η(t)→ η(t)−

∫∞
0

Ψ(τ)η(t− τ)dτ . The corresponding model was studied by
Hosking at al. [7] by using Fourier transforms. Note that in both cases we still keep the
’rough’ damping effects introduced via b > 0. The reason for this choice is that it is still
necessary to take into account effects that cannot be introduced via standard viscoelastic
models such as for example the influence of a snow layer atop an ice shell.

The main viscoelastic Bernoulli equation under consideration is

Qη − ρ1h
3

12ρ
∂2
t ∆η +

ρ1h

ρ
∂2
t η +

b

ρ
∂tη + gη + φt +

1

2
|∇φ|2 +

P

ρ
= 0 (2.4)

where the bending force Qη corresponds either to the model studied by Zhestkaya [28] or to
the model considered by Hosking et al. [7].
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The load P is considered to be a distributed pressure

P (x, y, t) = ρf(x− x0 − vt, y) (2.5)

moving along the x-axis at a constant speed v. Here x0 is the initial position of the truck.
Our main two examples used in the following calculations are a concentrated pressure with a
delta function f(x, y) = γδ(x, y) and a uniformly distributed over a rectangle pressure given
by f(x, y) = γχ[−a1,a1]×[−a2,a2](2x, 2y)/(a1a2) where γ is a loading constant parameter and
a1,2 > 0. Our calculations below show that both of these loads give similar results.

3. Weakly nonlinear approximation

In most situations where flexural-gravity waves occur under field conditions, it is usu-
ally sufficient to consider the linearized problem. Indeed, in the case of ice roads and air
strips, operational procedures usually adhere to very conservative estimates of the bearing
capacity of the ice, and the recorded responses are generally linear. However, nonlinear
flexural-gravity waves have also been observed in the field [13], and it may be desirable for
a mathematical model to have the ability to describe both linear and nonlinear regimes.

Considering the ice sheet displacement η(x, y, t) as above, we introduce the surface ve-
locity potential Φ(x, y, t) = φ(x, y, η(x, y, t), t). The unknowns η and Φ are the canonical
variables fully describing the motion of the free suface of a fluid with or without a floating
ice sheet. In what follows, both η and Φ are considered to be small together with their
derivatives. Moreover, if we consider a large characteristic non-dimensional wavelength λ,
then differentiation is given by the operator D = (−i∂x,−i∂y) = O(1/λ), so gradients are
small.

We may formally define

G(η)Φ = (∂zφ− ∂xη∂xφ− ∂yη∂yφ)z=η(x,y) . (3.1)

The dependence of the Dirichlet-Neumann operator G on η is non-linear, but it is analytic
in a certain sense [16] and can be expanded as a power series

G(η)Φ =
∞∑
j=0

Gj(η)Φ, (3.2)

where each operator Gj(η) is homogeneous of degree j in η. Now the first two approximations
of the Dirichlet-Neumann operator have the form

G0 = |D| tanh(H|D|), G1(η) = −∂xη∂x − ∂yη∂y −G0ηG0,

where D = (−i∂x,−i∂y) and |D| =
√
−∆ =

√
−∂2

x − ∂2
y .

The definition of the fluid velocity together with Definition (3.1) of the Dirichlet-Neumann
operator G implies

ηt = GΦ. (3.3)

This equation connects the functions η and Φ. To close the system, we first calculate
derivatives of the potential φ on the surface. We need to express derivatives of φ in terms of
derivatives of η, Φ. The gradient ∇φ is found from the definitions of Φ and G as follows:

∇φ =

 1 0 ηx
0 1 ηy
−ηx −ηy 1

−1Φx

Φy

GΦ

 . (3.4)

Now differenting the fluid surface potential Φ with respect to t and applying (3.3) results in

Φt = φt + φzηt = φt + φzGΦ.
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This together with the velocity ∇φ from (3.4) and after disregarding third-order nonlinear
terms gives us the acceleration potential of the inviscid fluid on surface in the form

φt +
1

2
|∇φ|2 = Φt +

1

2
Φ2
x +

1

2
Φ2
y. (3.5)

This expression can be substituted into equation (2.4) to give

Qη − ρ1h
3

12ρ
∂2
t ∆η +

ρ1h

ρ
∂2
t η +

b

ρ
∂tη + gη + Φt +

1

2
Φ2
x +

1

2
Φ2
y +

P

ρ
= 0. (3.6)

Here the first and second derivatives of η with respect to time can be eliminated by means
of equation (3.3) with G = G0 +G1. Indeed, truncating nonlinearity of the second order we
obtain

∂2
t η = (G0 +G1(η))Φt.

Now define the operator K by

K = 1 +
ρ1h

ρ

(
1− h2∆

12

)
G0, (3.7)

with the symbol

K(ξ1, ξ2) = 1 +
ρ1h

ρ

(
1 +

h2

12
(ξ2

1 + ξ2
2)

)√
ξ2

1 + ξ2
2 tanh

(
H
√
ξ2

1 + ξ2
2

)
. (3.8)

The fully-dispersive weakly nonlinear system for two-dimensional waves in the ice sheet is

ηt = G0Φ− ∂x(ηΦx)− ∂y(ηΦy), (3.9)

Φt = − g

K
η−K−1Qη− b

ρ

G0

K
Φ−Γ− 1

2
Φ2
x−

1

2
Φ2
y−

ρ1gh

2ρ
∆η2 +

b

ρ
∂x(η∂xΦ)+

b

ρ
∂y(η∂yΦ) (3.10)

with

Γ = w − ρ1h

ρ

(
1− h2∆

12

)
K−1G1(η)w (3.11)

and

w(x, y, t) = K−1P/ρ

where the operator K and the corresponding symbol K(ξ) are defined by (3.7) and (3.8). In
case of the distributed moving load

P (x, y, t) = ρf(x− x0 − vt, y)

one finds

w(x, y, t) =
1

(2π)2

∫
R2

ei(x−x0−vt)ξ1+iyξ2 f̂(ξ1, ξ2)

K(ξ1, ξ2)
dξ1dξ2.

As it appears, even in case of a point load f(x, y) = δ(x, y) the function w will be smooth
with respect to space variables because of the smoothing properties of the operator K−1.
This justifies making use of the system (3.9)-(3.10) even for the load concentrated at a
point. It is worth to notice that this advantageous property is achieved by keeping rotary
inertia in the viscoelastic Bernoulli equation (2.4) that is usually neglected by other authors.
Thus there is no need for regularization of the point load. It is smoothed naturally in our
framework by the inverse operator K−1.



MOVING LOADS ON ICE PLATES: VISCOELASTIC APPROXIMATIONS 5

4. Exact solutions of linearized problems

As mentioned above, for flexural-gravity waves due to moving loads under regular oper-
ating conditions, it is usually sufficient to consider the linearized problem. In the case when
the load is moving at a constant speed, these linearized equations can then be solved exactly.

We introduce the operators

R =
bG0

2ρK
, Q =

gκ∆2

K
,

U =

√
g(1 + κD4)G0

K
−R2,

and denote the corresponding Fourier symbols by the same letters R(ξ), Q(ξ) and U(ξ).
Clearly, these symbols are strictly positive for ξ 6= 0 and equal zero at ξ = 0. Note that
we also include the situation b = 0 and so R = 0 for any frequency. Below, we solve the

linearized systems using the Laplace transformation L. Let η̂, Φ̂ and ŵ be Laplace transforms
of η, Φ and w. The latter has the transform

ŵ(x, y, s) =
1

(2π)2

∫
R2

ei(x−x0)ξ1+iyξ2 f̂(ξ1, ξ2)

(s+ iξ1v)K(ξ1, ξ2)
dξ1dξ2. (4.1)

For the initial values we use notations η0 = η(t = 0), Φ0 = Φ(t = 0).

4.1. Zhestkaya problem [28]. In this case Q = κg∆2(1 + τf∂t) and the linearized system
has the form

ηt = G0Φ, (4.2)

Φt = −(R2 + U2)G−1
0 η − (2R + τfQG0)Φ− w. (4.3)

This system transforms to

η̂(s) =
1

d(s)

{
(s+ 2R + τfQG0)η0 +G0Φ0 −G0ŵ(s)

}
,

Φ̂(s) =
1

d(s)

{
− (R2 + U2)G−1

0 η0 + sΦ0 − sŵ(s)
}

with the denominator d(s) = s2 + (2R + τfQG0)s + R2 + U2. Introducing the symbols

α(ξ) =
√
R2 + U2 and β(ξ) = R + τfQG0/2 one can rewrite the denominator as d(s) =

(s + β)2 + α2 − β2. The roots s1 = −β −
√
β2 − α2 and s2 = −β +

√
β2 − α2 define the

dynamical behaviour of the system. For the damping symbol, we have β(ξ) > 0 provided
ξ 6= 0 and either b 6= 0 or τf 6= 0. On the other hand, we have α(ξ) = 0 if and only if ξ = 0.
As a result the system is stable: <s1,2 < 0. A simple analysis shows that α(ξ) ∼

√
gH|ξ| and

β(ξ) ∼ bH
2ρ
|ξ|2 as |ξ| → 0. Thus s1,2(ξ) ∼ ∓i

√
gH|ξ| as |ξ| → 0. Similarly α(ξ) ∼

√
E

ρ1(1−ν2)
|ξ|

and β(ξ) ∼ τfE

2ρ1(1−ν2)
|ξ|2 as |ξ| → ∞.

The solution of this system has the form η(t) = S11(t)η0 + S12(t)Φ0 + ηw(t) and Φ(t) =
S21(t)η0 + S22(t)Φ0 + Φw(t) where the terms ηw, Φw are due to the external force:

ηw(t) = L−1

(
−G0

d(s)
ŵ(s)

)
, Φw(t) = L−1

(
−s
d(s)

ŵ(s)

)
and

S11 =
s2e

s1t − s1e
s2t

s2 − s1

, S12 =
G0 (es1t − es2t)

s1 − s2

,

S21 =
α2 (es1t − es2t)
G0(s2 − s1)

, S22 =
s1e

s1t − s2e
s2t

s1 − s2

.
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And so we have

ηw(x, y, t) = F−1
(
Aη(ξ)e

s1t +Bη(ξ)e
s2t + Cη(ξ)e

−iξ1vt
)

(x− x0, y),

Φw(x, y, t) = F−1
(
AΦ(ξ)es1t +BΦ(ξ)es2t + CΦ(ξ)e−iξ1vt

)
(x− x0, y),

where the symbols corresponding to the ice sheet deformation are

Aη(ξ) =
f̂(ξ)K(ξ)−1G0(ξ)

(s2(ξ)− s1(ξ))(s1(ξ) + iξ1v)
,

Bη(ξ) =
f̂(ξ)K(ξ)−1G0(ξ)

(s1(ξ)− s2(ξ))(s2(ξ) + iξ1v)
,

Cη(ξ) = − f̂(ξ)K(ξ)−1G0(ξ)

(s1(ξ) + iξ1v)(s2(ξ) + iξ1v)

and the symbols corresponding to the trace of the velocity potential are

AΦ(ξ) =
f̂(ξ)K(ξ)−1s1(ξ)

(s2(ξ)− s1(ξ))(s1(ξ) + iξ1v)
,

BΦ(ξ) =
f̂(ξ)K(ξ)−1s2(ξ)

(s1(ξ)− s2(ξ))(s2(ξ) + iξ1v)
,

CΦ(ξ) =
f̂(ξ)K(ξ)−1iξ1v

(s1(ξ) + iξ1v)(s2(ξ) + iξ1v)
.

These formulae represent the exact solution of the system (4.2)-(4.3). Moreover, it is easy
to implement them. One can see that functions under the inverse Fourier transform are
continuous and fast decreasing with respect to ξ. Note that the fundamental matrix oper-
ator S satisfies the group property S(t1 + t2) = S(t1)S(t2). This operator together with
the symbols Aη(ξ), Bη(ξ) and AΦ(ξ), BΦ(ξ) are overdamped by exponents exp(s1,2t) after a
short time. As a result the main part of the solution is due to Cη(ξ) and CΦ(ξ). However,
these symbols are singular at ξ = 0 and their inverse Fourier transform is not even defined.
On the other hand approximating the exponents linearly one can see that for small fre-
quencies Aη(ξ)e

s1t +Bη(ξ)e
s2t + Cη(ξ)e

−iξ1vt ≈ 0 and AΦ(ξ)es1t +BΦ(ξ)es2t + CΦ(ξ)e−iξ1vt ≈
−tf̂(ξ)K(ξ)−1. The meaning of the first identity is conservation of fluid mass

∫
ηdxdy =∫

η0dxdy. The second identity tells us that
∫

Φdxdy is proportional to time t which is in line
with the fact that a potential is always defined up to a nonphysical constant. So one should
not discard exponentially decreasing symbols Aη(ξ), Bη(ξ) since their appearance guarantees
good behaviour near zero ξ = 0 of the function standing under the inverse Fourier transform,
in particular they provide its continuity. Though in practical calculations after discretization
of the problem one can exclude zero-harmonics and the symbols Aη and Bη together. The
same is true for Φ(x, y, t).

Finally, one should notice that even though these symbols are continuous when it comes
to numerical evaluation of the integrals there may be problems if some grid points are close
to the relation s2(ξ) = s1(ξ). If s2 = s1 then

S11 = (1− s1t)e
s1t, S12 = G0te

s1t,

S21 = α2G−1
0 tes1t, S22 = (1 + s1t)e

s1t

and

Aη(ξ)e
s1t +Bη(ξ)e

s2t =
f̂(ξ)G0(ξ)(1− (s1(ξ) + iξ1v)t)es1t

K(ξ)(s1(ξ) + iξ1v)2
,
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AΦ(ξ)es1t +BΦ(ξ)es2t = − f̂(ξ)(iξ1v + (s1(ξ) + iξ1v)s1t)e
s1t

K(ξ)(s1(ξ) + iξ1v)2
.

4.2. Hosking problem [7]. In this case Qη = κg∆2
(
η −

∫∞
0

Ψ(τ)η(t− τ)dτ
)

and the sys-
tem has the form

ηt = G0Φ, (4.4)

Φt = −(R2 + U2)G−1
0 η +Q

∫ ∞
0

Ψ(τ)η(t− τ)dτ − 2RΦ− w. (4.5)

The hereditary integral is defined via the memory function

Ψ(t) =
n∑
j=0

Aje
−αjt (4.6)

where Aj > 0 and αj > 0 are the viscoelastic parameters. In what follows we regard the
particular case

Ψ(t) = Ae−αt. (4.7)

Note that A 6 α if we assume
∫∞

0
Ψ(τ)dτ 6 1 which is a natural physical condition. The

hereditary integral is the sum of the convolution of the memory function Ψ with the ice sheet
deflection η and the remainder I(t) =

∫∞
t

Ψ(τ)η(t − τ)dτ . Assuming that the load was at
rest for a long time before starting to move, i.e. η(t) ≡ η0 for all t 6 0, and accepting the
simplest memory function (4.7) we can calculate explicitly I(t) = η0Ae

−αt/α.
Applying the Laplace transform to the system (4.4)-(4.5), we obtain

η̂(s) =
1

(s+R)2 + U2 −G0QΨ̂(s)

(
(s+ 2R)η0 +G0Φ0 −G0ŵ(s) +G0QÎ(s)

)
,

Φ̂(s) =
1

(s+R)2 + U2 −G0QΨ̂(s)

(
(QΨ̂(s)− (R2 + U2)G−1

0 )η0 + sΦ0 − sŵ(s) + sQÎ(s)
)
,

where so far we have not applied any assumptions on the memory function Ψ and the values
of elevation for negative time. Taking the general view of the memory function (4.6) we
arrive at rational functions with respect to s. For the partial-fractions decomposition, one
has to find roots of the corresponding denominator. This can be done numerically without
any difficulties with an arbitrary a priory accuracy on a frequency grid used for spatial
discretisation of the problem. However, in the simplest case (4.7) one can find those roots
analytically. Indeed, with the memory function (4.7) and condition η(t) ≡ η0 for negative t,

we have Ψ̂(s) = A
s+α

, Î(s) = Aη0
α(s+α)

and the system in s-domain has the form

η̂(s) =
1

d(s)

(
(s2 + 2Rs+ αs+ 2Rα +G0QA/α)η0 + (s+ α)G0Φ0 − (s+ α)G0ŵ(s)

)
,

Φ̂(s) =
s+ α

d(s)

(
(QA/α− (R2 + U2)G−1

0 )η0 + sΦ0 − sŵ(s)
)
,

with the denominator d(s) = ((s+R)2 +U2)(s+α)−G0QA. Its roots we denote by s1,2,3(ξ).
It is easy to see that the same equations can be rewritten as

η̂(s) =
1

d(s)

(
(s2 − (s1 + s2 + s3)s+ s1s2 + s2s3 + s1s3 + s1s2s3/α)η0

+(s+ α)G0Φ0 − (s+ α)G0ŵ(s)) ,

Φ̂(s) =
s+ α

d(s)

(
s1s2s3

αG0

η0 + sΦ0 − sŵ(s)

)
.
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Explicit formulas for the roots s1,2,3(ξ) can be obtained using symbolic software without
any problem, but since these formulas are cumbersome, we omit the exact expressions here.
Obviously, there is at least one root s1(ξ) < 0 for any value of ξ. For ξ = 0, we keep
s2(0) = s3(0) = 0. Otherwise, as long as the physical condition α > A holds true, the Routh–
Hurwitz stability criterion guarantees stability of the system <s2,3 < 0. It is difficult to say
something more about the roots in general. However, it turns out that in practical physical
conditions all these roots are different. More precisely, their imaginary parts =s1(ξ) = 0,
=s2(ξ) > 0 and =s3(ξ) < 0 provided ξ 6= 0 (see below).

For each index i ∈ {1, 2, 3}, we introduce the operator

Si(t) =
(si + α)esit

(si − sj)(si − sk)
with different j, k ∈ {1, 2, 3} \ {i}.

As in the previous case, the solution η(t), Φ(t) can be represented via the fundamental matrix
operator

S11 =
1

α
(s2s3S1 + s1s3S2 + s1s2S3), S12 = G0(S1 + S2 + S3),

S21 =
s1s2s3

αG0

(S1 + S2 + S3), S22 = s1S1 + s2S2 + s3S3,

and

ηw(x, y, t) = F−1
(
Aη(ξ, t) + Cη(ξ)e

−iξ1vt
)

(x− x0, y),

Φw(x, y, t) = F−1
(
AΦ(ξ, t) + CΦ(ξ)e−iξ1vt

)
(x− x0, y)

where the symbols corresponding to the deflection are

Aη(ξ, t) = − f̂(ξ)G0(ξ)

K(ξ)

(
S1(ξ, t)

s1(ξ) + iξ1v
+

S2(ξ, t)

s2(ξ) + iξ1v
+

S3(ξ, t)

s3(ξ) + iξ1v

)
,

Cη(ξ) =
f̂(ξ)G0(ξ)(α− iξ1v)

K(ξ)(s1(ξ) + iξ1v)(s2(ξ) + iξ1v)(s3(ξ) + iξ1v)

and the symbols corresponding to the velocity potential are

AΦ(ξ, t) = − f̂(ξ)

K(ξ)

(
s1(ξ)S1(ξ, t)

s1(ξ) + iξ1v
+
s2(ξ)S2(ξ, t)

s2(ξ) + iξ1v
+
s3(ξ)S3(ξ, t)

s3(ξ) + iξ1v

)
,

CΦ(ξ) = − f̂(ξ)iξ1v(α− iξ1v)

K(ξ)(s1(ξ) + iξ1v)(s2(ξ) + iξ1v)(s3(ξ) + iξ1v)
.

5. Results and discussion

We will present some profiles of the solutions for the two viscoelastic cases considered here.
For calculations we have used physical parameters close the ones given in [24]. More exactly,
the gravitational acceleration is g = 9.8m/s2, the water depth H = 6.8m, the ice thickness
h = 0.17m, the water density ρ = 1026kg/m3, the ice density ρ1 = 917kg/m3 and the action
radius Lκ = 4

√
κ = 2m. Following Takizawa [24] we define the critical damping coefficent

as bc = 2
√
ρgρ1h. We set the relative rough damping b/bc = 0.2, the strain-relaxation time

τf = 0.1s, the viscoelastic memory parameters A = 0.4 and α = 0.5. The load has the
mass 235 kg with the length 2.43m and the width 0.79m. In fact, this load can be well
approximated by a concentrated load, as the numerical results will not change significantly
if one assumes the weight to be a δ-function. This is because the size of the truck is negligible
compared with the flexural waves it excites in the ice sheet.
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Figure 1. Dispersion relations c(ξ). The color coding is as follows: blue
– Zhestkaya model; green – Hosking model; black – c0(ξ) without damping
(almost indistinguishable from Hosking model).
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Figure 2. Displacement in the case v = 3m/s. The color coding is as follows:
blue – Zhestkaya system; green – Hosking system.

The dependence of the phase speed c on the wave number ξ of free flexural waves is
known as the dispersion relation. Without any damping, i.e. with b = 0, τf = 0, A = 0 the
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Figure 3. Displacement in case v = 6 m/s. The color coding is as follows:
blue – Zhestkaya system; green – Hosking system.
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Figure 4. Displacement in case v = 9 m/s. The color coding is as follows:
blue – Zhestkaya system; green – Hosking system.

dispersion relation is given by

c0(ξ) =

√
g(1 + κ|ξ|4)

tanh(H|ξ|)
|ξ|K(ξ)

.

By the dispersion relation for viscoelastic models we understand the expression

c(ξ) = =s2(ξ)/|ξ|,
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where it is supposed in the notation for the roots that the imaginary part is =s2(ξ) > 0.
We plot these dispersion relations in Figure 1. The first local minimum is approximately 5.7
m/s, which is close to the critical velocity 5.8m/s given in [24].

We plot some solutions for velocities below this minimum (Fig. 2), between this minimum
and the long-wave velocity

√
gH = 8.2m/s (Fig.3) and higher than the long-wave velocity

(Fig. 4). The load is located at x = 0 and moves to the right. Only the centreline (the
x-axis) is shown here. The type of solution changes, depending on the velocity of the load.
For low velocities, there is only a localised response of the ice sheet near the moving load.
For the Hosking system the asymmetry is more pronounced, with the rim behind the load
being lower than the one in front.

In the second example (Fig. 3) two trains of waves with different wavelengths are visible,
in front and behind the load. The waves behind the load are longer than the ones in front
of the load. One can observe the lag between the load and the minimum depression. The
waves travelling in front of the load predicted by the Hosking system have higher amplitudes
than the one predicted by Zhestkaya system for our choice of parameters.

In conclusion, we have obtained new exact solutions for two different viscoelastic formu-
lations of the problem of a load moving on a floating ice plate. Laplace transforms were
used to derive these exact solutions. Some examples have been presented for various values
of the parameters. The load was assumed to be a rectangle that is essentially equivalent to
δ-distribution.

6. Appendix

As calculations with data provided by Takizawa [24] show, all three zeroes s1,2,3 are differ-
ent in the case of the Hosking model. Thus the following limit formulas are given only the
sake of completeness. If s2 = s3 then

S11 =
1

α

(
s2s3S1 + s1e

s2t

(
αs1 − 2αs2 − s2

2

(s1 − s2)2
− (s2 + α)s2t

s1 − s2

))
,

S12 = G0

(
S1 − es2t

(
s1 + α

(s1 − s2)2
+

(s2 + α)t

s1 − s2

))
,

S21 =
s1s

2
2

αG0

(
S1 − es2t

(
s1 + α

(s1 − s2)2
+

(s2 + α)t

s1 − s2

))
,

S22 = s1S1 − es2t
(
αs1 + 2s1s2 − s2

2

(s1 − s2)2
+

(s2 + α)s2t

s1 − s2

)
,

Aη(ξ, t) = − f̂(ξ)G0(ξ)

K(ξ)

(
S1(ξ, t)

s1(ξ) + iξ1v
− Ãη(ξ)es2t

)
,

AΦ(ξ, t) = − f̂(ξ)

K(ξ)

(
s1(ξ)S1(ξ, t)

s1(ξ) + iξ1v
− ÃΦ(ξ)es2t

)
,

with

Ãη(ξ) =
iξ1v(s1 + α)− αs1 + 2αs2 + s2

2

(s1 − s2)2(s2(ξ) + iξ1v)2
+

(s2 + α)t

(s1 − s2)(s2(ξ) + iξ1v)
,

ÃΦ(ξ) =
iξ1v(αs1 + 2s1s2 − s2

2) + (s1 + α)s2
2

(s1 − s2)2(s2(ξ) + iξ1v)2
+

(s2 + α)s2t

(s1 − s2)(s2(ξ) + iξ1v)

If s1 = s2 = s3 then

S11 =

(
1− s1t+

(s1 + α)s2
1t

2

2α

)
es1t, S12 =

(
1 +

(s1 + α)t

2

)
G0te

s1t,
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S21 =

(
1 +

(s1 + α)t

2

)
s3

1te
s1t

αG0

, S22 =

(
1 + (2s1 + α)t+

(s1 + α)s1t
2

2

)
es1t

and

Aη(ξ, t) =
f̂(ξ)G0(ξ)es1t

K(ξ)

(
iξ1v − α

(s1(ξ) + iξ1v)3
− (iξ1v − α)t

(s1(ξ) + iξ1v)2
− (s1 + α)t2

2(s1(ξ) + iξ1v)

)
,

AΦ(ξ, t) = − f̂(ξ)es1t

K(ξ)

(
iξ1v(iξ1v − α)

(s1(ξ) + iξ1v)3
+

(s2
1 + 2iξ1vs1 + iξ1vα)t

(s1(ξ) + iξ1v)2
+

(s1 + α)s1t
2

2(s1(ξ) + iξ1v)

)
.
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