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Abstract

Fluid intelligence is the capacity to solve novel problems in the absence of task-specific knowledge and is highly predictive
of outcomes like educational attainment and psychopathology. Here, we modeled the neurocognitive architecture of fluid
intelligence in two cohorts: the Centre for Attention, Leaning and Memory sample (CALM) (N =551, aged 5-17 years) and the
Enhanced Nathan Kline Institute—Rockland Sample (NKI-RS) (N =335, aged 6-17 years). We used multivariate structural
equation modeling to test a preregistered watershed model of fluid intelligence. This model predicts that white matter
contributes to intermediate cognitive phenotypes, like working memory and processing speed, which, in turn, contribute to
fluid intelligence. We found that this model performed well for both samples and explained large amounts of variance in
fluid intelligence (R?carm = 51.2%, R?Nk1-rs = 78.3%). The relationship between cognitive abilities and white matter differed

with age, showing a dip in strength around ages 7-12 years. This age effect may reflect a reorganization of the
neurocognitive architecture around pre- and early puberty. Overall, these findings highlight that intelligence is part of a

complex hierarchical system of partially independent effects.
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Introduction

Fluid intelligence (g¢) is a core part of human cognition and
refers to the capacity to solve novel problems in the absence of
task-specific knowledge. It is highly predictive of a number of
important life span outcomes, including educational attainment
(Primi et al. 2010; Roth et al. 2015) and psychopathology (Gale
et al. 2010). Despite years of investigation, our understanding
of the neurocognitive architecture of g¢ remains limited. Long-
standing debates have considered, for instance, how g¢ relates to
more fundamental cognitive functions such as working memory
and processing speed and how all of these cognitive functions
relate to brain structure and function (Kyllonen and Christal
1990; Fry and Hale 2000; Chuderski 2013; Ferrer et al. 2013).

Working memory is the ability to hold and manipulate infor-
mation in the mind short-term. It has been suggested that
working memory is a key determinant of gr by limiting mental
information processing capacity (Fukuda et al. 2010; Chuderski
2013). Proponents of this working memory account of g cite high
correlations between the two domains ranging from 0.5 to 0.9 in
meta-analyses (Ackerman et al. 2005; Oberauer et al. 2005). Such
high correlations have led some to suggest that g and working
memory are isomorphic (Kyllonen and Christal 1990). However,
more recent work has highlighted that this isomorphism only
arises under conditions of high time constraints for g tasks
(Chuderski 2013). This suggests that gr and working memory are,
in fact, separable constructs and underlines the importance of
processing speed for gs.
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Processing speed, the speed of mental computations, is
thought to be rate-limiting to gr and is therefore sometimes
proposed to be a particularly good predictor of g (Kail and
Salthouse 1994; Salthouse 1996; Ferrer et al. 2013; Kail et al.
2015; Schubert et al. 2017). Proponents of the processing speed
account of gf cite moderate but robust correlations between
gr and processing speed of 0.2 in meta-analyses (Sheppard
and Vernon 2008) as well as longitudinal evidence (Finkel et
al. 2005; Coyle et al. 2011; Kail et al. 2015). Salthouse (1996)
argued in the context of cognitive aging that processing speed
is rate-limiting for high-level cognitive performance because
slow processing means that relevant sub-operations cannot
be completed in a given amount of time, or are not available
for successful integration. A complementary explanation of
individual differences in gf proposes that processing speed
may be a direct reflection of fundamental neuroarchitectonic
properties of the brain, such as myelination or white matter
microstructure (Lu et al. 2011; Chevalier et al. 2015).

White matter shows protracted development throughout
childhood and adolescence and into the third decade of life
(Mills et al. 2016). White matter tracts can be characterized in
vivo using diffusion tensor imaging (DTI), which is sensitive,
but not necessarily specific, to white matter microstructural
properties such as myelination or axonal density (Jones et
al. 2013; Wandell 2016). Fractional anisotropy (FA) is the
most commonly investigated DTI measure and quantifies
the directionality of water diffusion in different white mat-
ter tracts (Pfefferbaum et al. 2000; Wandell 2016). Working
memory, processing speed, and gr have each been linked to
individual differences in FA (Vestergaard et al. 2011; Kievit
et al. 2016; Bathelt et al. 2019). While some studies have
posited that FA in different tracts can be summarized by
sizable single components (Penke et al. 2010; Cox et al. 2016),
formal investigations using confirmatory factor analysis have
demonstrated that single-factor models of FA generally show
poor fit and do not adequately capture individual differences
in white matter microstructure (Lovdén et al. 2013; Kievit
et al. 2016). In a similar vein, a growing body of literature has
highlighted specific associations between white matter tracts
and cognitive abilities, with those connecting frontoparietal
regions usually showing largest contributions to complex
cognitive functions like g¢ (Vestergaard et al. 2011; Kievit et al.
2016; Bathelt et al. 2019).

We here seek to address several critical outstanding issues in
the field: First, there is limited systematic evidence on the con-
current relationships between g, working memory, processing
speed, and white matter. This leaves the relative contributions
of processing speed and working memory to g¢ unclear, which,
in turn, poses challenges for the design of effective cognitive
training interventions. Second, studies usually use a single task
as a proxy for complex and abstract constructs such as pro-
cessing speed, working memory, and g¢. This raises questions
about the generalizability of findings (Noack et al. 2014). Third,
our understanding of how the relationships between relevant
cognitive domains and between brain and cognition change with
age remains limited (Garrett 1946; Johnson 2000; Tamnes et al.
2017).

To address these issues, we here used structural equation
modeling (SEM) to model the associations between g, working
memory, processing speed, and white matter microstructure
and age in two large, independent samples: the Centre for
Attention, Leaning and Memory sample (CALM, N =551, aged
5-17 years), which consists of children and adolescents referred

white matter tracts

processing

4 Direction of hypothesized causal influence

Figure 1. The watershed model. Schematic representation of the watershed
model developed by Cannon and Keller (2006) and adapted for the present
study. Fluid ability is hypothesized to be the downstream product of working
memory and processing speed, which are, in turn, the product of white matter
contributions. Figure adapted from Kievit et al. (2016).

to a clinic for having problems with attention, learning, and
memory (Holmes et al. 2019); and the Enhanced Nathan Kline
Institute—Rockland Sample (NKI-RS, N =335, aged 6-17 years), a
community-ascertained sample (Nooner et al. 2012).

To investigate the neurocognitive architecture of g¢ in a prin-
cipled way, we used a watershed model of individual differ-
ences. Based on the metaphor of a watershed, the model pre-
dicts a hierarchical many-to-one mapping of partially indepen-
dent effects such that upstream tributaries (e.g., brain struc-
ture) contribute to intermediate cognitive phenomena (cognitive
endophenotypes, e.g., working memory and processing speed),
which then contribute to downstream, complex cognitive phe-
nomena such as g (Cannon and Keller 2006; Kievit et al. 2016).
See Figure 1 for a representation of the model.

SEM, as a statistical technique, is uniquely suited to model
the complex multivariate brain-behavior associations posited
by the watershed model (Kievit et al. 2011; Kline 2015). SEM
combines factor analysis and path analysis (a variant of regres-
sion analysis). It can model abstract cognitive constructs like g,
by estimating latent variables from observed task scores (i.e.,
manifest variables). This feature of SEM allowed us to model
gs, working memory, and processing speed in two independent
samples and thereby provided a direct test of the generalizability
of our findings. Second, SEM can test the simultaneous relations
between multiple cognitive and neural variables, allowing us
to address the relative contributions of different white matter
tracts and different cognitive endophenotypes to gf. Finally,
using SEM Trees (Brandmaier et al. 2013), a novel decision-tree-
based extension of SEM, we investigated whether the associa-
tions in the watershed model change with age.

Based on the watershed model, we made the following
preregistered predictions (http://aspredicted.org/blind.php?x=
u5pf6z :

1. Working memory, gf, and processing speed are separable
constructs.

2. Individual differences in g are predicted by working memory
and processing speed.

3. White matter microstructure is a multidimensional
construct.

4. There is a hierarchical relationship between white matter
microstructure, cognitive endophenotypes (working memory
and processing speed), and gf, such that white matter
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contributes to working memory and processing speed,
which, in turn, contribute to gs.

5. The contribution of working memory and processing speed
to g change with age.

Materials and Methods
Samples

We analyzed data from the CALM and NKI-RS sample, as
described in detail by Holmes et al. (2019) and Nooner et al.
(2012), respectively. See also Simpson-Kent et al. (2019). We
had also preregistered to analyze data from the Adolescent
Brain Cognitive Development (ABCD) cohort (Volkow et al. 2018).
The latter cohort contains only data for 9- and 10-year olds
at present, however, which limits comparability to CALM and
NKI-RS and currently makes it unsuitable for investigations of
developmental differences. We therefore opted to not analyze
ABCD data here and instead recommend a replication of the
analyses presented here once longitudinal ABCD data are
available. The CALM sample consists of children and adolescents
referred by health and educational professionals as having
difficulties in attention, learning, and/or memory. The NKI-RS is
a community-ascertained, lifespan sample, and representative
of the general population of Rockland, New York and the United
States as a whole, in terms of ethnicity, socioeconomic status,
etc. For NKI-RS, we included data for participants under the age
of 18 only to match the age range of CALM and excluded data
that were completed more than half a year after enrollment.
The latter criterion was implemented to ensure that age at
assessment did not differ substantively between cognitive
measures. The final samples included 551 participants from
CALM (30.85% female, aged 5.17-17.92 years, Nneuroimaging = 165)
and 335 participants from NKI-RS (44.48% female, aged 6.06-
17.92 years, Nneuroimaging =67)- See Table 1 for prevalence of
relevant disorders and learning difficulties in the samples.

Cognitive Tasks

We included cognitive tasks measuring the domains of g,
working memory, or processing speed for CALM and NKI-RS. See
Table 2 for the complete list of tasks used and the Supplemen-
tary Methods for task descriptions. Supplementary Figures 1
and 2 show raw scores on all tasks. The tasks modeled here
were preregistered for CALM but not NKI-RS.

Table 1 Prevalence of relevant disorders and learning difficulties in
the CALM and NKI-RS cohorts

Variable Percentage Percentage
CALM NKI-RS

ADHD 31.94 17.01
Dyslexia 5.81 5.67
Autism 6.72 0.60

Mood disorder 0.54 0.90
Anxiety disorder 2.36 18.21
Medicated! 10.53 17.01
Speech/language problems 38.11 19.40

Note. ! unspecified medication for NKI-RS, ADHD medication for CALM.
Diagnoses are not mutually exclusive.

White Matter Microstructure

We modeled mean FA for all 10 tracts of the Johns Hopkins
University white matter tractography atlas (Hua et al. 2008)
averaged over the hemispheres (Fig.2). See Supplementary
Methods for details of the magnetic resonance imaging (MRI)
acquisition and processing and Supplementary Figures 3 and 4
for raw FA values in all tracts.

Analysis Methods and SEM

Covariance matrices and scripts replicating key analyses can
be obtained from https://osf.io/4dusp/. Supplementary Figures 5
and 6 show correlation matrices of all tasks and white matter
tracts modeled. We modeled raw scores for g¢ and working
memory tasks, as preregistered. Raw scores on processing speed
tasks were transformed. This step was not preregistered but
found necessary to achieve model convergence and to ensure
interpretability of scores. First, we inverted response time scores
(using the formula y = 1/x) to obtain more intuitive measures of
"speed" for all but the Penn’s Computerized Neurocognitive Bat-
tery (CNB) Motor Speed task, for which raw scores were already a
measure of speed. Afterwards, we applied a log-transformation
to reaction time tasks to increase normality and aid estimation.
For the CNB Motor Speed task only, we additionally removed
values +2 standard deviation of the mean (N =6) because the
presence of these outliers had caused convergence problems.

We modeled the associations between cognition and white
matter microstructure using SEM in R (R Core Team 2015) and the
lavaan package (Rosseel 2012). All models were fit using maxi-
mum likelihood estimation with robust Huber-White standard
errors and a scaled test statistic. Missing data were addressed
using full information maximum likelihood estimation.

We used SEM Trees to investigate whether the associations
among cognitive and neural measures differed with age. SEM
Trees use decision-tree methods to hierarchically split a data set
into subgroups based on a covariate of interest—in this case, age
(Brandmaier et al. 2013). We first ran the watershed model
in OpenMx (Boker et al. 2011) and then passed the model to
semtree to compute the SEM Trees. We ran one SEM Tree for
each parameter of interest (e.g., the covariance between working
memory and processing speed). All other parameters in each
semtree object were set to be invariant across groups to ensure
that splits were specific to the parameter of interest. We used
a 10-fold cross-validation estimation method as recommend by
Brandmaier et al. (2013). For the path from the cingulate gyrus to
working memory only, we used 5-fold cross-validation because
the model did not converge using 10-fold cross-validation. Mini-
mum sample size in age group was set to N =50 to ensure reliable
estimation of standard errors. Note that this choice effectively
limited search space for potential splits to 6.58-12.42 years for
CALM and 8.12-15.49 years for NKI-RS.

Results

To evaluate the hypotheses generated by the watershed model,
we built up the watershed model in steps and carried our
comprehensive tests of model fit at each step. First, we
assessed the overall fit of our models to the data using the
chi-square test, root mean square error of approximation
(RMSEA), comparative fit index (CFI), and standardized root
mean square residual (SRMR). Good absolute fit was defined
as RMSEA < 0.05, CFI>0.97, and SRMR < 0.05 and acceptable
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Table 2 Cognitive tasks modeled

CALM

NKI-RS

Working memory

AWMA Dot Matrix
AWMA Mr X

'R WASI-II Matrix Reasoning

DKEFS Trail-Making
PhAB Rapid Naming
TEA-Ch RBBS

Processing speed

AWMA Digit Recall (Forward Digit Span)
AWMA Backward Digit Span

WISC-R Forward Digit Span
WISC-R Backward Digit Span

CNB N-Back Task

WASI-II Matrix Reasoning
WASI-II Block Design
WASI-II Similarities

CNB Verbal Reasoning
DKEFS Trail-Making

CNB Motor Speed
CNB Sensory Motor Speed

Note. See the Supplementary Methods for task descriptions. Abbreviations: AWMA—Automated Working Memory Assessment (Alloway 2007), CNB—Computerized
Neurocognitive Battery (Gur et al. 2001), DKEF—Delis-Kaplan Executive Functioning System (Delis et al. 2004), PhAB—Phonological Assessment Battery
(Gallagher and Frederickson 1995), TEA-Ch RBBS—Test of Everyday Attention for Children, Red & Blues, Bags & Shoes subscale (Manly et al. 2001), WASI—Wechsler
Abbreviated Scale of Intelligence—Second Edition (Wechsler 2011), WISC-R—Wechsler Intelligence Scale for Children—Revised (Kaufman 1975).

Figure 2. White matter tracts modeled in the analyses.

fit as RMSEA =0.08-0.05, CFI=0.95-0.97, and SRMR=0.05-0.10
(Schermelleh-Engel et al. 2003). Second, we assessed specific
predictions from our models by comparing them to alternative
models. Comparative model fit for nested models was assessed
using the chi-square difference test. Non-nested models were
compared using the Akaike information criterion (AIC) weights,
which indicates the probability of a model being the data-
generating model compared with all other models tested
(Wagenmakers and Farrell 2004). Lastly, we evaluated the
significance and strength of relationships between specific
variables in our models by inspecting the Wald test for individual
parameters, noting the joint R? where relevant and reporting
standardized parameter estimates. Absolute standardized
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parameter estimates above 0.10 were defined as small effects,
0.20 as typical, and 0.30 as large (Gignac and Szodorai 2016).

The Measurement Model of Cognition

To examine the neurocognitive architecture of g, we started by
modeling the cognitive components of the watershed model:
gs, working memory, and processing speed. Specifically, we fit
a 3-factor model of cognition (Fig. 3) and compared it with alter-
native measurement models. This approach allowed us to test
Hypothesis 1, namely that g¢, working memory, and processing
speed form three separable, albeit likely correlated cognitive
factors.
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Figure 3. Different measurement models of cognition. Abbreviations: WM: working memory, PS: processing speed

The 3-factor model (Figure 3) showed excellent absolute fit
for both the CALM and NKI-RS sample (Table 3), indicating that
overall, the data were compatible with a model of g¢, working
memory, and processing speed as 3 separate factors.

The 3-factor model also showed very good comparative fit
for NKI-RS as well, with a 96.60% probability of being the data-
generating model compared with all alternative models tested,
as indicated by its AIC weight (Fig. 3). The evidence was more
mixed for CALM, for which the 3-factor model showed a 27.15%
probability of being the data-generating model, while 2-factor
model B (Fig. 3, treating working memory and g as a unitary
factor) showed a 72.85% probability of being the data-generating
model, highlighting a close relationship between gr and working
memory for this sample. The single-factor model and 2-factor
model A (Fig. 3, treating speed and gr as a unitary factor) showed
a very low (approximately 0%) probability of being the data-
generating model, indicating that speed and gf were clearly
separable in both samples.

Overall, these results provide mixed evidence for Hypoth-
esis 1: even though working memory, processing speed, and
gs were highly correlated (Table 4), processing speed formed a
clearly separable factor from working memory and g¢ in both
samples. Working memory and g, however, were clearly sepa-
rable only in NKI-RS but not CALM, suggesting greater similar-
ity between gr and working memory in the CALM sample. To
facilitate comparison across samples and in accordance with
our preregistered analysis plan, we nonetheless used the 3-
factor measurement model (Table 4, Supplementary Table 1) in
all subsequent analyses.

The Relationship Between Working Memory, Processing
Speed, and gs

We next examined the relationships between working memory,
processing speed, and g¢ in more detail. Specifically, we fit a SEM

including regression paths between working memory and g, as
well as speed and gy, to test Hypothesis 2—that working memory
and processing speed each predict individual differences in gs.
We found that this model showed good absolute fit for both
samples (CALM: x2(18)=41.74, P =0.001; RMSEA =0.049 [0.030—
0.068]; CFI=0.983; SRMR =0.032, NKI-RS: x2(32)=54.15, P =0.009;
RMSEA =0.045 [0.024-0.065]; CFI=0.981; SRMR =0.030), indicat-
ing that, overall, the data were compatible with our model.

To further scrutinize the relationship between gf, working
memory, and speed, we compared our freely estimated model
with a set of alternative models with different constraints
imposed upon the regression paths. First, to test whether
working memory and speed each made different contributions,
we tested an alternative model in which the paths from
processing speed and working memory to g¢ were constrained
to be equal. In CALM (Ax?(1)=15.53, P <0.001), but not NKI-RS
(Ax?(1)=3.25, P =0.072), the freely estimated model fit better
than the equality-constrained model, indicating that working
memory and speed each made different contributions in CALM
but not NKI-RS. Next, we tested whether the freely estimated
model fit better than a model in which the path between g and
working memory was constrained to zero. We found that that
the freely estimated model fit better for both samples (CALM:
Ax2(1)=20.77, P < 0.001; NKI-RS: Ax2(1)=12.97, P <0.001). In line
with our hypothesis, this result indicates that working memory
makes a significant incremental contribution to g¢. Finally, we
tested a model in which the path between gf and processing
speed was constrained to zero. This model showed no difference
in fit to the freely estimated model for CALM (Ax?(1)=0.02,
P =0.875) or NKI-RS (Ax%(1)=0.04, P =0.849). Contrary to our
hypothesis, this indicates that there was no clear incremental
contribution of processing speed to gs.

Finally, we inspected standardized path estimates of the
freely estimated model to assess the effect seizes of working
memory and processing speed. Parameter estimates showed
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Table 3 Model fit of competing measurement models

Single-factor model

2-factor model A

2-factor model B 3-factor model

CALM

x2(20)=70.28, P <0.001 x2(19)=67.99, P <0.001 x2(19) =41.66, P =0.002 x2(18)=41.74, P =0.001

RMSEA =0.068 RMSEA =0.068 RMSEA =0.047 RMSEA =0.049

[0.051-0.085] [0.052-0.086] [0.027-0.066] [.030-.068]

CFI=0.963 CFI=0.964 CF1=0.983 CF1=0.983

SRMR =0.047 SRMR =0.043 SRMR =0.032 SRMR =0.032

AIC=9697.18 AIC =9696.44 AIC =9668.58 AIC=9670.55

BIC =9800.66 BIC =9804.24 BIC=9776.37 BIC=9782.66

AlCyeight =0% AlCyeight =0% AlCyeight =72.85% AlCyeight =27.15%
NKI-RS

x2(35)=109.96, P <0.001 x2(34)=108.15, P <0.001 x2(34) =64.85, P =0.001 x2(32) =54.15, P =0.009

RMSEA =0.080 RMSEA =0.081 RMSEA =0.052 RMSEA =0.045

[0.064-0.097] [0.064-0.098] [0.033-0.071] [0.024-0.065]

CFI1=0.936 CFI=0.936 CF1=0.974 CFI=0.981

SRMR =0.045 SRMR =0.044 SRMR =0.035 SRMR =0.030

AIC=7155.64 AIC=7155.74 AIC=7109.43 AIC=7102.74

BIC=7270.07 BIC=7273.98 BIC=7227.67 BIC =7228.60

AICweight =0%

AICweight =0%

AlCyeight =3.40% AlCyeight =96.60%

Note. See Figure 3 for the configuration of different models. Abbreviations: Akaike information criterion—AIC, Bayesian Information Criterion—BIC, Akaike weight—

AICweight-

Table 4 Covariance between cognitive measures in the 3-factor

model

Sample Path Standardized estimate

CALM gf <> memory 0.71,z=28.42,P <0.001
gs < speed 0.55,z =12.20, P <0.001
memory <> speed 0.79,z=19.35,P <0.001

NKI-RS g <> memory 0.91,z=19.51,P <0.001

gs <> speed
memory < speed

0.81,7z=24.73,P <0.001
0.87,2=17.43,P <0.001

Note. See Supplementary Table 1 for factor loadings.

that working memory showed a greater effect on gr than pro-
cessing speed, particularly in CALM (Table 5) even though raw
correlations between g¢ and speed were high in both samples
(Table 4).

Overall, these results provide mixed evidence for Hypoth-
esis 2: there was good evidence that working memory and
speed made a significant joint contribution to gf and that work-
ing memory made an incremental contribution to g in CALM.
Contrary to our hypothesis, and the watershed model, however,
processing speed showed no significant incremental contribu-
tion to g, above and beyond working memory. We explore likely
explanations for this finding in the Discussion.

The Measurement Model of White Matter

We next examined the measurement model of white matter to
test Hypothesis 3, namely that white matter microstructure
is a multidimensional construct. Specifically, we examined
absolute model fit of a single-factor model to test whether
a unidimensional model could adequately capture white
matter microstructure. As expected, the single-factor model
of white matter microstructure did not fit the data well (CALM:
x2(35)=124.63, P <0.001; RMSEA =0.125 [0.103-.147]; CFI1=0.933;

SRMR =0.039; NKI-RS: x2(35)=132.33, P <0.001; RMSEA =0.204
[0.167-0.242]; CFI=0.885; SRMR =0.023). This indicates that white
matter microstructure could not be reduced to a single "global
FA" dimension in our samples, in line with Lovdén et al. (2013),
Kievit et al. (2016), and supporting Hypothesis 3. We therefore
modeled each of the 10 white matter tracts separately in all
subsequent models.

The Watershed Model: Relationships Between
Cognition and White Matter

Next, we fit the full watershed model including white mat-
ter, working memory, processing speed, and g¢. Following our
general analysis procedure, we investigated overall model fit,
alternative models, and individual path estimates to gain a com-
prehensive understanding of the relationships in the watershed
model and to test Hypothesis 4—that white matter contributes
to working memory capacity and processing speed, which, in
turn, contribute to gs.

We found largely converging results across samples.
The watershed model showed good absolute fit in CALM
(x2(78)=107.78,P =0.014; RMSEA = 0.026 [0.012-0.038]; CF1=0.981;
SRMR=0.043) and acceptable fit in NKI-RS (x?(112)=219.22,
P <0.001; RMSEA =0.053 [0.043-0.064]; CFI=0.928; SRMR =0.088).
White matter explained large amounts of variance in working
memory (R%carm =32.3%; R2Nk1-rs =46.1%) and processing speed
(R%caLm = 38.2%; R?Nki-rs = 54.4%), which, in turn, explained even
more variance in g¢ (R?caim =51.2%; R’Nkirs =78.3%). In line
with Hypothesis 4, this indicates that the watershed model fit
the data overall.

Comparing the freely estimated watershed model to
alternative, constrained, models showed that white matter
contributed significantly to memory and processing speed.
Specifically, a model in which paths from white matter to
processing speed were constrained to zero fit worse than the
freely estimated model (CALM: Ax?%(10)=50.26, P <0.001; NKI-
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Table 5 Regression path estimates

Sample Path Standardized Estimate

CALM speed — g —0.01,z=-0.16,P =0.876
memory — gg 0.72,z=7.65,P <0.001

NKI-RS speed — g 0.06,z=0.21,P =0.836

memory — gg¢ 0.86,z=1.81,P =0.070

RS: Ax?%(10)=27.19, P =0.002), as did a model in which paths
from white matter to working memory were constrained to
zero (CALM: Ax2(10)=52.15, p <0.001; NKI-RS: Ax2(10)=25.85,
p =0.004). As hypothesized, white matter therefore contributed
to both processing speed and working memory.

We next inspected the relationship between individual white
matter tracts and working memory and speed in more detail. A
model in which paths from white matter to working memory
and speed were constrained to be equal fit worse than the freely
estimated watershed model for CALM (A x?%(18)=47.76, P < 0.001)
and NKI-RS (Ax?(18)=30.42, P =0.034), indicating that the role
of white matter microstructure in supporting working memory
and processing speed differed across tracts. This supports the
notion that there is a many-to-one mapping between white
matter and cognition—a core tenet of the watershed model.

Investigating individual standardized parameter estimates
of the different white matter tracts showed that for CALM,
only the anterior thalamic radiation contributed significantly to
processing speed, whereas the superior longitudinal fasciculus,
forceps major, and cingulate gyrus were significantly, indepen-
dently, and positively related to working memory (Fig. 4). For
NKI-RS, the superior longitudinal fasciculus was significantly
and positively related to processing speed and working memory

Model fit: Y2(78) = 107.78, p = .014;
RMSEA = .026 [.012 .038];
CFl=.981; SRMR = .043
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(Fig.5). Two tracts showed an unexpected, strongly negative
(<—1), relationship: the forceps minor for CALM and the infe-
rior fronto-occipital fasciculus for NKI-RS. We found that these
negative estimates occurred only when all other brain to cog-
nition pathways were also estimated; when estimated on their
own, path estimates were positive (forceps minor to working
memory: standardized estimate =0.36, z =4.05, P < 0.001; inferior
fronto-occipital fasciculus to working memory: standardized
estimate =0.14, z =0.86, P =0.390; inferior fronto-occipital fasci-
culus to processing speed: standardized estimate =0.26,z =1.41,
P =0.158). This sign-flip suggests that the negative pathways
were potentially due to modeling several highly correlated paths
at the same time (Joreskog 1999). Overall, these results further
support the watershed prediction that multiple white matter
tracts map onto working memory and processing speed.
Finally, we probed the watershed model in more detail
by testing a set of alternative expressions of the watershed
model still compatible with the core tenants of the watershed
model—as well as a set of alterative models incompatible
with the watershed model. We compared all alternatives
(see Fig.6 for graphical representations) with the original
watershed model by inspecting each model’s relative probability
of being the data-generating model as indicated by AIC weights
(Wagenmakers and Farrell 2004). We found that the original
watershed model showed a very high probability (98.58%) of
being the data-generating model for CALM but only a 0.10%
probability for NKI-RS. For NKI-RS, a different expression of
the watershed model, such that g was regressed on working
memory, which was regressed on processing speed, which was
then regressed on white matter (Alternative A, Fig. 6), showed
a 97.04% probability of being the data-generating model. This
model only showed a 0.37% probability for CALM. Another
expression of the watershed model, in which all tasks were
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Figure 4. Watershed model in CALM. See Supplementary Table 2 for regression estimates. Residual covariances between white matter tracts were allowed but are not
shown for simplicity. Abbreviations: uncinate fasciculus: UF, superior longitudinal fasciculus: SLF, inferior fronto-occipital fasciculus: IFOF, anterior thalamic radiations:
ATR, cerebrospinal tract: CST, forceps major: FMaj, forceps minor: FMin, dorsal cingulate gyrus: CG, ventral cingulate gyrus: CH, inferior longitudinal fasciculus: ILF.
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Model fit: x*(112) = 219.22,
p<.001; RMSEA = .053
[.043 - .064]; CFl = .928;
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Figure 5. The watershed model in NKI-RS. See Supplementary Table 3 for regression estimates. Residual covariances between white matter tracts were allowed but are

not shown for simplicity.
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Figure 6. Configuration of alternative models. Alternatives A and B are watershed compatible, while C and D are watershed incompatible. The best-fitting model
for CALM is the original watershed model; the best-fitting model for NKI-RS is Alternative A. Regression paths only are shown for simplicity. Square shapes denote

manifest variables and oval shapes latent variables.

modeled separately as manifest, rather than latent, variables
(Alternative B, Fig. 6), showed no advantage over the watershed
model for CALM (0.00% probability) or NKI-RS (0.00% probability).
We next tested 2 alternative models incompatible with the
tenets of the watershed model. We found that a model in

which the hierarchy between cognitive endophenotypes and
gr was inverted (Alternative C, Fig. 6) showed comparatively
low probability of being the data-generating model for both
CALM (0.00%) and NKI-RS (2.86%). Similarly, a model in
which gf was directly regressed on white matter, working
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memory, and processing speed (Alternative D, Fig. 6) showed
no clear advantage over the watershed model for CALM (1.05%
probability) or NKI-RS (0.00% probability). Overall, these model
comparisons highlight that while the watershed model fit the
data for both samples and had large explanatory power (as
indicated by R?s), the precise configuration of the watershed
model may differ somewhat between cohorts.

In summary, we found that the watershed model performed
well overall for both cohorts. As hypothesized, white matter
contributed to working memory and processing speed, which, in
turn, contributed to gf, and explained large amounts of variance
therein. Also as predicted by the watershed model, there was a
many-to-one mapping between white matter tracts and cogni-
tion. The exact configuration of the watershed model, however,
may differ slightly between cohorts. These differences may be a
function of cohort differences in sample size, average levels of
cognitive ability, and/or the specific tasks used—a topic we will
return to in the Discussion.

Testing for Potential Confounds

We carried out a series of supplementary and non-preregistered
analyses to examine whether possible confounders influenced
our models. These analyses showed that our findings were
robust to the inclusion of covariates such as scanner motion
or socio-economic status. They were also robust across genders
and participants taking or not taking medication. There were no
differences in the structure of the model between participants
with and without diagnosed disorders for CALM. Potential small
differences cannot be ruled out for NKI-RS, for which the multi-
group model showed poor fit. This is likely due to the low
number of diagnosed participants of N = 106 (see Supplementary
Analyses).

Age-Related Differences in the Neurocognitive
Architecture of g¢

Finally, we tested Hypothesis 5—that the contribution of work-
ing memory and processing speed to g¢ varied with age. We first
inspected cross-sectional differences in gf, working memory,
and processing speed and then used SEM Trees to investigate
potential age differences in the relationships between these
factors. In additional non-preregistered analyses, we also used
SEM Trees to investigate potential age differences in the rela-
tionship between white matter and cognitive endophenotypes
by inspecting paths that were positive and significant in the
watershed model (Figs 4 and 5).

SEM Trees combine SEMs with decision tree methods,
separating a data set into subgroups (in this case age groups)
if SEM parameter estimates of interest differ sufficiently
(Brandmaier et al. 2013). SEM Trees allowed us to investigate age
as a potential moderator without imposing a priori categorical
age splits. We initially allowed for no more than 2 age groups.
This yielded inconsistent results for CALM and NKI-RS (see
Supplementary Table 4). To test whether these inconsistencies
were an artifact of allowing for only 2 groups, we repeated our
analysis and allowed for up to 4 age groups. This analysis yielded
consistent results between CALM and NKI-RS (Table 6). This
pattern of results indicates that the initial parameters of our
analysis caused us to miss relevant age differences.

As shown in Figure 7, g¢, working memory, and processing
speed factor scores increased with age for all 3 cognitive
phenotypes. In line with our hypothesis, SEM Trees showed
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Figure 7. Cognitive factor scores by age.

that there were pronounced age-related differences in brain-
behavior in childhood and adolescence (Table 6). For both
samples and all but one path, there was an initially strong
relationship between components of the watershed model,
then a dip around ages 7-9 years for CALM and age 8 years
for NKI-RS, followed by an increase in path strength around
ages 11-12 years (see Supplementary Figure 7 for a graphical
representation of these results). Speculatively, this pattern of
results is consistent with an interpretation of a reorganization
of neurocognitive faculties in late childhood, followed by a
consolidation of neurocognitive pathways around the onset of
adolescence (Johnson 2000, 2011).

Discussion

We here used multivariate statistical techniques to investigate
the neurocognitive architecture of gf in 2 large (Ncaim =551,
Nnki-rs =335) developmental cohorts and, for the first time,
investigated how the neurocognitive architecture of g¢ changes
dynamically with age. We tested a preregistered watershed
model of g¢, which predicts a hierarchy of partially independent
effects. As might be expected from a multi-cohort study, there
were some differences between the community-ascertained
cohort (NKI-RS) and the cohort of children and adolescents
with learning difficulties (CALM) in specific path estimates.
Overall, however, we found convergent results across these
2 heterogeneous samples. The watershed model performed
well for both CALM and NKI-RS; white matter contributed
to working memory and processing speed, which, in turn,
contributed to gf and explained 51% of variance therein for
the CALM sample and 78% of variance for NKI-RS. Models
were robust across genders, participants taking or not taking
medication, and when controlling for socio-economic status
and scanner motion. Investigations of age effects showed
that the relationship between cognitive abilities and white
matter dipped in strength around ages 7-12 years. Speculatively,
this age effect may reflect a reorganization of the neurocog-
nitive architecture during pre-puberty and early puberty
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Table 6 SEM Tree results for the watershed model

Path Estimate Age Split Estimate Age Split Estimate Age Split Estimate
Before 1 Between 2 Between 3 After
CALM
memory < speed 0.85 8.46 0.97 9.46 0.74 — —
memory — gs 0.83 9.38 0.42 10.04 1.14 10.88 0.94
speed — g 0.04 6.88 —0.19 11.21 0.17 — —
SLF — memory 0.67 7.21 0.18 11.21 0.76 — —
FMaj — memory 0.59 7.71 0.14 9.29 0.33 11.13 0.74
CG — memory ! 0.64 6.96 0.09 11.04 0.70 — —
ATR — speed 0.96 7.13 0.68 7.96 0.17 11.96 0.65
NKI-RS
memory < speed 0.90 9.82 0.48 14.72 1.11 - —
memory — gg 1.10 8.59 0.59 12.67 1.03 — —
speed — g 0.53 8.59 —-0.12 12.96 0.52 — —
SLF — memory 2.15 8.30 1.47 12.15 1.93 — —
SLF — speed 3.12 8.63 1.83 15.09 2.31 — —

Note. The table shows differences in parameter estimates for paths of interest (as shown in Figs 4 and 5) depending on participants’ age in years. Our analyses allowed
for a maximum of 3 age splits (and thus 4 age groups). An absence of a third age split (denoted by"—"in the table) indicates that the SEM tree split only twice, suggesting
no further changes in parameter strength after the second split. See Supplementary Figure 7 for a graphical representation of these results.

(Byrne et al. 2017). These findings have implications for under-
standing and targeting cognitive impairments in populations
with learning difficulties.

The watershed model tested here consists of 3 levels: g¢
forms the most down-stream point, with working memory and
processing speed as intermediate tributaries, and white matter
microstructural tracts as upstream sources. Previous studies
suggested that matter microstructure is best characterized
by a single global FA factor (Penke et al. 2010), while others
have contended that association patterns among different
white matter tracts are more complex (Lovdén et al. 2013;
Kievit et al. 2016). Here we found strong evidence for a
multifactorial view of white matter tracts—for both samples,
a unidimensional model of white matter fit poorly and for
CALM, multiple tracts also showed partially independent
contributions to distal cognitive outcomes. This is in line
with the watershed model. There were some differences
between cohorts as to which tracts contributed most to working
memory and processing speed: In line with previous research
(Kievit et al. 2016; MacPherson et al. 2017; Bathelt et al
2019), we found that the anterior thalamic radiation was
related to processing speed, as were the forceps major, forceps
minor, and the cingulate gyrus to working memory for CALM.
However, these tracts were not significant for NKI-RS. A possible
explanation for these differences between samples is the
discrepancy in the number of participants with imaging data
(N =165 in CALM vs. N =67 in NKI-RS). This discrepancy likely
confers differential power to detect weaker pathways. Other,
not mutually exclusive, explanations are that the observed
differences reflect differences in brain-behavior mapping
between more atypical and typical cohorts (Bathelt et al. 2019),
sampling variance across 2 independent cohorts collected
under somewhat different socio-economic conditions (United
Kingdom and United States of America), or a more uniform age
distribution in NKI-RS. While DTI images were processed with
the same pipeline across sites, the scanner and MRI acquisition
protocol were also different. Although previous work suggests
that FA is relatively robust measure in multi-site comparisons

(Vollmar et al. 2010), we cannot rule out site differences as
a potential confound. It will be necessary to replicate these
findings in large typical and atypical cohorts collected in
the same setting. Of note, however, the superior longitudinal
fasciculus was robustly associated with working memory
across the 2 different samples and settings. For NKI-RS,
the superior longitudinal fasciculus was also associated
with processing speed. The superior longitudinal fasciculus
is a large bilateral association fiber connecting temporal,
occipital, parietal, and frontal regions (Kamali et al. 2014). It
is therefore well situated for supporting cognitive processes
such as g¢, which rely on integrative multiple-demand systems
(Jung and Haier 2007; Fedorenko et al. 2013; Parlatini et al. 2017).

Our findings for the cognitive levels of the watershed model
highlighted a close relationship between working memory and
gs. Previous studies had variably suggested that gf and working
memory (Kyllonen and Christal 1990; Fukuda et al. 2010) or g¢
and processing speed (Kail and Salthouse 1994; Salthouse 1996;
Coyle et al. 2011; Ferrer et al. 2013) may be most closely related.
We found that all 3 cognitive factors were highly correlated for
both samples. Nonetheless, processing speed formed a cognitive
factor clearly separable from working memory and gy Working
memory and g, in turn, were separable in the community-
ascertained NKI-RS but not in CALM, the cohort of children and
adolescents with learning difficulties. This close relationship
between gf and working memory was also evident in other
models of CALM where processing speed and working memory
were used as joint predictors of gs: contrary to our hypotheses,
processing speed became nonsignificant after controlling for
working memory. There are several possible, and not mutually
exclusive, explanations for this finding and the apparent dif-
ferences between cohorts. First, a broader set of speed tasks
(which might be captured by several latent variables for cler-
ical speed, choice reaction time, and speed variability) might
show higher predictive power than the single latent variable for
speed, which could be modeled here. This may be particularly
pertinent for heterogeneous cohorts like CALM. Second, and in
line with previous work showing that time-constraints increase

220z AInr 0z uo Jasn ebuy 1sed o Ausiaaiun Aq 9€SE L SS/6EE/L/0E/819111B/100190/W02 dNO"dIWapEIE//:SdNY WO} POPEOJUMO(]


https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz091#supplementary-data

Fluid Intelligence in Childhood and Adolescence D.Fuhrmannetal. | 349

isomorphism of gf and working memory (Chuderski 2013), even
standard implementations of gy tasks may place considerable
time pressure on struggling learners, thereby increasing g
working memory covariance in CALM as compared with NKI-RS.
Conversely, less subjective or objective time pressure may also
confer a differentiation of cognitive domains and the watershed
hierarchy in cohorts of older ages and/or higher ability levels,
such as NKI-RS. There was some evidence that, for this sample,
speed formed an intermittent level in the hierarchy between
white matter and working memory (Alternative A, Fig. 6). Future
longitudinal research will be necessary to differentiate these
alternative configurations of the watershed model and scruti-
nize the causal flow of effects. For now, our findings highlight
the value of replicating analyses in different cohorts using differ-
ent tasks. While evidence was mixed for the association between
gr and processing speed, the strong associations between g and
working memory across samples indicate a robust and likely
generalizable relationship between these two domains, sup-
porting the notion that mental information processing capac-
ity is a key determinant of g (Kyllonen and Christal 1990;
Fukuda et al. 2010).

The associations in the watershed model differed between
ages in a complex, non-monotonic fashion. Previous research
suggested either a decrease in covariance among cognitive
domains with age (age differentiation; Garrett 1946), an increase
in covariance with age (age de-differentiation; Blum and
Holling 2017), or no changes with age (Tucker-Drob 2009;
de Mooij et al. 2018). These investigations have traditionally
focused on relations between cognitive domains, however, not
on relationships between brain and cognition—although see
de Mooij et al. (2018). Possible linear and nonlinear changes
in brain-behavior mapping with age have remained mostly
unexplored (Tamnes et al. 2017). Using SEM Trees, a novel
decision-tree-based technique, we here found evidence of
complex developmental differences consistent across samples
and relationships in the watershed model. Initially strong path
estimates showed a pronounced decrease in strength around
ages 7-9 years, followed by a renewed increase in the strength,
even surpassing initial levels, around ages 10-15 years.

There are at least 2 possible explanations for this develop-
mental dip in brain-cognition relationships. First, there may be
a true decrease in relationship strength during this time of life.
Possibly other cognitive skills such as verbal reasoning, tem-
porarily support gs, resulting in weaker relationships between
gr and working memory. Alternatively, the configuration of the
watershed model may change temporarily during this time,
which could also manifest in an apparently weaker covariance
structure. In this case, the true relationship between gf, mem-
ory, speed, and white matter may still be strong, just config-
ured differently from the watershed model. We note that both
explanations are compatible with the interactive specialization
theory (Johnson 2000, 2011), which predicts as remapping of the
relationships between brain substrates and cognitive abilities
during development.

On a physiological level, this age effect may be driven
by neuroendocrine changes during pre- and early puberty.
Puberty is driven by a complex and only partially under-
stood set of hormonal events including gonadarche and
andrenarche (Sisk and Zehr 2005). Gonadarche begins with
the secretion of gonadotropin-releasing hormone from the
hypothalamus around ages 10-11 years and closely tracks the
overt bodily changes of puberty (Dorn 2006). Andrenarche,
beginning with the maturation of the andrenal gland, starts

as early as 6 years of age and is increasingly recognized as
a complimentary driver of puberty and brain development
(Byrne et al. 2017). It is possible that the hormonal changes
of andrenarche and early gonadarche may lead to a level of
neural reorganization, which may initially appear as weaker
relationships in the watershed model. The sweeping bodily,
social, and cognitive changes happening in early adoles-
cence may then drive a consolidation of the neurocognitive
architecture of g¢.

On a more general level, these age effects suggest the exis-
tence of potential nonlinear changes in brain-behavior mapping
during childhood and adolescence and underline the value of
modern statistical approaches, such as SEM Trees, for the study
of age-related differences. It is worth noting, however, that these
findings, which are based on an inherently exploratory tech-
nique, will need to be replicated in future confirmatory studies
with fine-grained data on puberty and larger sample sizes. The
latter will also allow for detailed investigations of potential
gender differences. Moreover, while we were able to investigate
individual differences in g¢, we could not assess intra-individual
changes during childhood and adolescence. Although the rela-
tively narrow age range makes large cohort effects unlikely, it
may still be that there were differences in recruitment and selec-
tion that varied across the age range. As such, the cross-sectional
nature of our samples limits our ability to make inferences about
developmental dynamics.

Our study illustrates some of the advantages and challenges
of preregistered secondary data analyses. We agree with others
in the field that secondary data analysis need not be and
should not be confounded with purely exploratory research
(Mills and Tamnes 2014; Orben and Przybylski 2019;
Scott and Kline 2019). Preregistrations, as well as dedicated
multivariate methods such as SEM, can help reduce the scope
for analytic flexibility and increase scientific rigor when using
rich, secondary data sets. Preregistrations also do not preclude
the use of exploratory methods or the ability to ask exploratory
questions, as we did in our analysis of age effects. Preregistra-
tions merely facilitate the distinction between exploratory and
confirmatory research (Wagenmakers et al. 2012). There are,
however, some unique challenges to preregistering secondary
data analyses that are worth noting. First, information on
the precise measures collected is not always available prior
to data access, which can limit the level of detail in which
an analysis can be preregistered. Second, data quality and
the level of data processing, the latter being particularly
relevant for MRI data, are not always clear a priori (e.g., see
Kievit et al. 2018), which can necessitate changes to analyses
plans after data inspection. Third, convergence issues are fairly
common when using complex multivariate methods such as
SEM. We found it necessary to transform some of our speed
variables, for instance, to achieve model convergence. Such post
hoc modifications, not guided by the palatability of the results,
but rather by unforeseen, and sometimes unforeseeable, prac-
tical considerations, mean that preregistration can sometimes
fall short of full compliance. Nevertheless, we believe that even
imperfect preregistrations, alongside shared code, data, and
the transparent presentation of results, can help the reader
distinguish between confirmatory and exploratory results and
adjust their level of confidence in conclusions accordingly. For
guidance on maximizing transparency in preregistration of
secondary data, see Weston et al. (2018).

Finally, the findings from our study have implications in
understanding and targeting cognitive impairments in popu-
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lations with learning difficulties. First, the close relationship
between working memory and g¢ found here and in other studies
(Fukuda et al. 2010; Chuderski 2013) indicates that children and
adolescents struggling with working memory are likely to also
struggle in terms of complex reasoning tasks. Either reducing
working memory load, decreasing time constraints, or training
working memory and fluid ability capacity in such populations
may therefore be promising lines of inquiry for intervention
studies. It is worth highlighting, however, that cognitive train-
ing studies have so far shown little evidence of far transfer;
training abstract reasoning, a common measure of g5, has not
resulted in robust increases in working memory (Knoll et al.
2016), and working memory training has not been shown to
transfer to reasoning skills or school performance (Dunning
et al. 2013; Schwaighofer et al. 2015). Similarly, transfer from
processing speed to reasoning seems to be limited (Mackey et
al. 2011). The results obtained here suggest that interventions
may increase their chance of success by implementing pro-
grams of sufficient complexity to affect the entire neurocogni-
tive architecture of effects (see also Kievit et al. 2016). The level
of intensity required to produce sustained benefits may need
to be as demanding and consistent as education itself, which
shows robust effects in increasing general cognitive abilities
over time (Ritchie and Tucker-Drob 2018). Our work and work
by others (Noack et al. 2014) also highlight the value of assess-
ing, modeling, and potentially intervening on multiple tasks,
rather than relying on a single task to capture complex cognitive
domains such as gs. Finally, the age-related differences in the
relationships of the watershed model observed using SEM Trees
suggest that some interventions may work best at particular
developmental phases.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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