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Abstract: In previous work, it was shown that a camera can theoretically be made more
colorimetric–its RGBs become more linearly related to XYZ tristimuli–by placing a specially
designed color filter in the optical path. While the prior art demonstrated the principle, the
optimal color-correction filters were not actually manufactured. In this paper, we provide a
novel way of creating the color filtering effect without making a physical filter: we modulate the
spectrum of the light source by using a spectrally tunable lighting system to recast the prefiltering
effect from a lighting perspective. According to our method, if we wish to measure color under
a D65 light, we relight the scene with a modulated D65 spectrum where the light modulation
mimics the effect of color prefiltering in the prior art. We call our optimally modulated light, the
matched illumination. In the experiments, using synthetic and real measurements, we show that
color measurement errors can be reduced by about 50% or more on simulated data and 25% or
more on real images when the matched illumination is used.
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1. Introduction

Digital cameras measure the color information in a real-world scene like a human observer only if
a camera meets the Luther condition [1,2]. The Luther condition requires the camera sensitivity
functions are a linear combination of the color matching functions of the human visual system
[3]. If a camera meets the Luther condition, the colors it measures are linearly related to the
device-independent tristimulus values, such as CIE XYZ tristimuli [4]. Such a camera is said to
be colorimetric. However, off-the-shelf RGB cameras do not satisfy the Luther condition and so
cannot be used for precise color measurement [5].

A viable way to improve the colorimetric accuracy of a camera is to capture multiple images,
each with a different color filter placed in front of the camera [6–12]. This multi-shot technique
can gather more color information than in a single shot (greater than 3-dimensional color signals)
and when they are mapped to colorimetric XYZ values, we can obtain greater accuracy. Generally,
the color filters are chosen from commercial products [13] either heuristically or by using an
exhaustive search process [14]. An alternative way is to capture images under multiple lights,
such as using a light booth with different illuminants [15,16]. Here, the multiple lights perform
an analogous role as the filters. However, both methods require multiple shots of images which
take a longer capture process and if nothing else, the registration between images is a problem
itself.

Finlayson and Zhu [17–19] recently proposed to improve the colorimetric accuracy of a digital
camera by placing a carefully-designed color filter in the optical path way with a single-shot
image. The spectral transmittances of such a filter can be optimally designed for making a camera
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better meet the Luther condition. In Fig. 1, the top row illustrates how a color-correction filter
can make a camera more colorimetric. Figure 1(a) shows the spectral sensitivities of a camera,
which are notably different from the CIE XYZ color matching functions (see the solid lines
in Fig. 1(c)). The physical effect of placing a color filter - such as the one shown in Fig. 1(b)
- in front of a camera can be reasonably modeled as the multiplication of the filter spectral
transmittance and the camera sensitivities on a per wavelength basis over the visible spectrum.
After prefiltering, the camera sensitivity functions are linearly fitted to the reference CIE XYZ
color matching functions [4]. The corrected sensitivities are shown in Fig. 1(c). The solid lines
show the reference color matching functions and the dashed lines show the effective camera
sensitivities after the best linear fitting. Clearly, we see that by using a color filter we can make
the camera curves a close approximation to the visual sensitivities. At the time of writing this
manuscript, it is not known whether the optimal color filters can, in fact, be manufactured.

Fig. 1. In the top panel, we show the filter-modified Luther-condition. Given a camera
with known RGB sensitivities as in (a), an optimal filter (b) can be found that after a linear
regression fit, the corrected camera sensitivities (dashed lines in (c)) are good approximation
to the XYZ color matching functions (solid lines in (c)). A matched illumination (f) is
determined given the spectral characteristics of the desired measurement light (d) and the
optimal color filter (e).

Our contribution begins with the observation that for typical color measurement scenarios, the
effect of a color filter placed in front of the camera can be achieved by placing the same filter in
front of the light source. We call the modulated light source the Matched Illumination. It follows
that if we wish to measure colors under a target measurement light source, say the standard
daylight of D65 (see the bottom panel in Fig. 1), we need to match it to a new illumination,
effectively a filtered D65 (that is not D65). Then the camera will capture the object colors using
this matched illumination to predict the ground-truth XYZ tristimuli of the desired measurement
light source. Note that the derived filter shown in Fig. 1(e) is not the same as Fig. 1(b) since it is
derived with respect to a tunable LED illuminator (discussed below). This illuminator places
more physical constraints on the design of the filter and matched illumination compared with the
original camera+filter work.

In this paper, our theory of matched illumination is developed using a Gamma Scientific
RS-5B spectral illuminator. The Gamma Scientific illuminator has eight narrow and two broad
band LEDs. We will show how, for a given light (produced by the illuminator), we can solve for
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the best matched illumination. While our algorithm development is tied to the Gamma Scientific
illuminator, the techniques are generally phrased and so could be deployed to other multi-band
lights. As an important detail, we deal with the ornery issue that the spectral shape of LED
outputs shift as the driving voltage changes.

The work of [20] is related to our approach. There, a similar illuminator is tuned - by means
of a genetic algorithm - to find a spectrum of light that better allows reflectance spectra to be
recovered from camera RGBs. Though, for the SFU reflectance set [21] (used in [20] and our
study), the spectra recovered under their derived optimal illuminant are no more accurate than
the spectra recovered under a fixed illuminant.

Experiments validate our approach. We show that we can significantly reduce color measure-
ment error for a desired measurement light by solving for and then measuring with respect to the
matched illumination. A novel aspect of our experimental work is that we develop and deploy a
novel new technique for generating large spectra data sets given only a small number of spectral
measurements. We exploit the idea that - in raw image capture - the RGBs computed from
a linear combination of RGBs - up to noise - must be the same as the single RGB measured
by viewing a linear combination of the underlying reflectances. Using this idea, we generate
the RGBs for the large set of 1995 reflectances (SFU reflectance data set) using only 24 RGBs
measured in a Macbeth ColorChecker chart [22].

In Section 2, we present the prior art to our method as well as the relevant background on
image formation. In Section 3, we present our method for calculating the matched illumination.
Experiments are reported in Section 4. In Section 5, there is a short conclusion.

2. Background

2.1. Color formation with a filter

The physical process of forming a color pixel underpins our idea of illumination matching. The
color recorded by a digital camera mainly depends on the light stimulus, the object reflectance,
and the sensitivity responses of the camera. They are respectively represented by the spectral
functions E(λ), R(λ), and Qk(λ). The RGB response is written as:

ρk =

∫
ω

R(λ)E(λ)Qk(λ) dλ, k ∈ {R, G, B} (1)

where ρk denotes one of the RGB color values. Here and henceforth, λ denotes the wavelength
variable defined over the visible spectrum ω.

When a transmissive color filter F(λ) is placed in the optical pathway, the filtered RGB is
written as:

ρ
filtered
k =

∫
ω

R(λ)E(λ)F(λ)Qk(λ) dλ, k ∈ {R, G, B} (2)

where F(λ) denotes the spectral transmittance of the filter with respect to the wavelength variable.
It is useful to sample spectral data and describe them in the discrete vector-matrix representation.

Let Q denote the spectral sensitivities of a camera. The columns in the matrix represent the
spectral sensitivity functions for each sensor channel and the rows denote the sensor responses at
sampled wavelengths. Hence, Q is an n × 3 matrix where n is the number of sampled points
across the visible range. In this paper, the spectral data are collected in the visible range from
400 nm to 700 nm for every 10 nm. Thus, we have n = 31.

Similarly, let the 31-vectors e and r denote sampled representations of a light and a surface.
Let diag() denote the function which takes an n-vector as an argument and maps it to an n × n
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diagonal matrix. We can rewrite the image formation in Equation (1) as:

ρ = QTdiag(e)r (3)

where we assume the wavelength sampling is incorporated in Q and ρ is a 3 × 1 vector denoting
the RGB triplet values.

2.2. Luther condition

A camera is said to be colorimetric if it satisfies the Luther condition: the camera sensitivities are
a linear combination of the standard color matching functions [3]. Let X denote the 31× 3 matrix
where the columns are the X, Y and Z color matching functions (again we sample from 400 nm
to 700 nm at a 10 nm sampling interval). In this discrete representation, the Luther condition is
written as:

X = QM (4)

where M is a 3× 3 full rank matrix denoting the linear transform between two sets of sensitivities.
The Luther condition is rarely met by an off-the-shelf digital camera. In [18], we proposed a

new filtered version of the Luther condition. If there exists a color filter vector f such that:

X = diag(f)QM (5)

then the Filtered Luther condition is met.
Of course neither the Luther condition nor the filtered variant is likely to hold exactly. Thus, a

key focus of the prior art work on filter design [18] was to develop the numerical methods to find
filters that make cameras most colorimetric, i.e. that make them best satisfy the Luther condition.

2.3. Color correction

To use an off-the-shelf RGB camera for color measurement, whether we use a color filter or not,
the recorded camera RGBs are color corrected to XYZ counterparts using a 3 × 3 correction
matrix. While other non-linear color correction methods could be used (e.g. [23–25]), a linear
color correction has several advantages. First, based on arguments from image formation, a 3 × 3
matrix correction should work well [26]. Second, a linear transform is scalar invariant. If we
double the illumination intensity that lights a scene, then the corresponding RGBs and XYZs
also double and the goodness of fit afforded by a 3 × 3 matrix remains unchanged. Finally, if
colors fall on a line in the RGB space, they still fall on a line after color correction (an important
physical consideration for correctly mapping highlights in photographic images [27,28]).

Therefore, to assess the color measuring performance of a digital camera in practical use,
we will evaluate and present the color accuracy of our proposed method under the linear color
correction transform.

2.4. Gamma scientific RS-5B illuminator

The Gamma Scientific illuminator system has six lamps carefully arranged in the perimeter of
the integrating sphere with white diffusing baffles installed inside for creating spatially uniform
lighting, see Fig. 2. Uniformity is useful in our experiments because we will need to measure
RGBs and XYZs for the same surface lit the same way. And from these pairs, we will evaluate
how well RGBs under a given light and its matched illuminant can be color corrected to XYZ.
However, outside of this evaluation, we do not need to assume uniformity when deploying the
matched illuminant to unseen data. In detail, suppose that under a matched illuminant, a RGB for
a given surface is denoted as ρ. We multiply it by the color correction matrix M to estimate the
corresponding XYZ tristimuli, denoted as x: assume that Mρ ≈ x (with respect to the matched
illuminant we can map RGBs to estimate of XYZs). Because we are using linear color correction,
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the efficacy of this color correction mapping remains unchanged when exposure of the surface
changes. Mathematically, if we multiply the RGB by a scaling factor k, then it is also true that
Mkρ ≈ kx.

Fig. 2. On the left, we show the experimental setup: a digital camera is set on a tripod to
capture the image of the object on the table illuminated by a desired light generated by the
illuminator system. On the back of the half-sphere illuminator, a tele-spectroradiometer is
used to measure the spectrum of the light. The illuminator consists of six lamps arranged in
the integrating sphere. Its sectional arrangement is drawn on the top right. Each lamp has
10 LED channels and their relative spectral power distributions at their maximum intensity
are plotted on the bottom right.

In the sphere, each lamp consists of 10 different LED channels. The spectral power distributions
of each LED channel (when the maximum current is driven) are shown in the bottom right of
Fig. 2. Note that only nine spectra can be seen in the figure as two broad LED lights have almost
the same spectral shape. From the figure, we can see that eight of them are narrow-band LED
lights ranging from blue to red while two are identical yellowish broad-band LEDs. A broadband
LED is used because of the lack of green LEDs in the range between 525 nm to 615 nm.

The intensity of each LED light can be digitally controlled and programmed (using a serial
communication port) in any combination and proportion to generate a desired illumination
spectrum. Ideally, the light spectrum driven at partial intensity should have the same spectral
shape only with a scaling factor as that driven by the maximum intensity. In such a condition, we
say the spectrum scales linearly with the intensity levels. When the linearity holds and the light
spectra at its maximum intensity are measured, we are able to predict the illumination spectrum
when we program the intensity levels of the light sources.

However, in practice, when we adjust the intensity level (driving current) of the light sources,
we find that, for some LEDs, the peak wavelength of the spectra shifts. So, we characterize the
illuminator system by measuring the spectral distributions of each light source at varied driving
current levels between 0% and 100% of its full intensity, i.e. [0, 0.1, 0.2, . . . , 1]. Their spectral
distributions are plotted in Fig. 3(a). It can be seen that there is some shift in the peak wavelength
when intensity level changes. For example, as intensity decreases, the peaks of the fifth (from
left to right in Fig. 3(a)) LED channel shown in green lines slightly shift towards the longer
wavelength. The shift reaches 17 nm between the maximum and minimum intensities. We also
calculate the u’v’ chromaticity coordinates [29] for all intensity levels for each LED channel and
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plot in the chromaticity diagram, see Fig. 3(b). Each LED channel is depicted by one color. We
can see 9 colored clusters with respect to 9 LED types. Among them, we see that two LEDs
in the green-cyan area have noticeable chromatic shift while others are relatively stable (e.g.
red LEDs). When the chromatic shift is significant, we can no longer predict the illumination
spectrum under the assumption of linearity.

Fig. 3. The relative spectral power distributions at varied intensity levels are plotted in (a).
Their u’v’ coordinates are plotted in the chromaticity diagram in (b). Note the horse-shoe
shaped outline in (b) is the spectral locus.

As a final comment, returning to Figure 2, we see that different LEDs have significantly
different power ranges. The importance of this physical feature is that it places a constraint on
the spectral power distribution of any matched illumination. Indeed, for us to replicate the prior
art work on transmissive filters in the lighting world, we would need narrow band lights across
the visible spectrum that had the same peak maximum intensities. Thus, a priori we expect our
matched lights to perform less well than unconstrained optimized filters. This said, our matched
lights have the advantage over the prior filter design work that they can be - as we show next -
physically realized.

2.5. Optimized illumination

Before presenting our method, we wish to point the reader to prior art reported in the literature.
In [20], a lighting system with spectrally-tunable LEDs was used for the spectral reconstruction
(SR) problem. In SR, we attempt to recover spectra from camera RGB responses. In [20], the
best composition of the LED lights was sought that subserves the SR task. For a variety of
different regression-based SR algorithms, a genetic algorithm was used to solve for the optimal
measurement light.

While not the focus of their optimization, they did examine their recovery error - as we will
do later - in terms of errors in the CIELAB color space [29]. For the SFU reflectance set [21],
they found that their optimization method did not help them to significantly reduce ∆E∗ab error
(compared to using a non-optimized light). As we will report later, our optimization - based on a
different mathematical formalism - does lead to significantly lower error for this data set.

3. Matched illumination

Returning to Equation (2), it is apparent that we can think of a filter as modulating the spectral
sensitivities of the sensors - F(λ)Qk(λ) - or equivalently as modulating the spectral power of the
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light, E(λ)F(λ). We call the modulated light, Em(λ) the matched illumination:

Em(λ) = E(λ)F(λ). (6)

A camera with a filter F(λ) placed in its optical pathway viewing the scene lit by a light E(λ)
makes the same measurement as the same camera without any filter but where the scene is
illuminated by Em(λ) (assuming a simple viewing environment where we can ignore effects such
as interreflection).

Let us move our development of the matched illumination idea to the discrete domain. Given
a 31 × 1 illumination e, we are looking for a matched illuminant em that makes the camera more
colorimetric (more able to measure XYZs under the illuminant e). Noting that

em = diag(e)f. (7)

Our optimization statement for the design of matched illuminations is written as:

arg min
em,M

∥ diag(em)QM − diag(e)X ∥2F (8)

where ∥ ∥2F denotes the square of the Frobenius norm and, as before, M is a 3 × 3 full rank
matrix.

3.1. Simple matched illumination

It is convenient to think of the lights (in a spectral illuminator) as a simple linear basis which can
be used to describe a range of lights:

e = Bc , 0 ⪯ c ⪯ 1. (9)

For an illuminator with k LED lights, B is a 31 × k matrix. The ith column of the basis matrix
B lists the maximum power of the ith LED light spectrum. c is a k × 1 vector giving the intensity
weights of the LED light channels. Additionally, of course, each coefficient is restrained by
ci ∈ [0, 1]: it has to be between 0 and 100% maximum power. In the simple basis world, we
ignore the issue that the peaks of the basic light spectra shift as their intensity is changed.

For a viewing illuminant e = Bc, we can solve for the matched illumination em = Bcm (again
0 ⪯ cm ⪯ 1) by modifying Equation (8):

arg min
cm, M

∥ diag(Bcm)QM − diag(e)X ∥2F s.t. 0 ⪯ cm ⪯ 1. (10)

To solve this optimization, we must estimate two unknown variables: the coefficient vector cm

defining the matched illuminant and the 3 × 3 correction matrix M. There is no closed-form
solution to the problem. Analogously, to the prior art [18], we solve for cm and M using alternating
least-squares regression:

First, we make an initial guess for the light coefficients (for the matched illumination). Then, it
is straightforward to calculate the correction matrix M simply using the least-squares regression.
Then we hold M fixed and solve for the optimal solution for cm using Quadratic Programming
[30] (to enforce the boundedness constraints). The iteration continues until the difference between
the current and previous solutions is below a criterion amount. The optimization is guaranteed to
terminate.

A priori, we know that the peak lights - for some of the LEDs in our illuminator - do shift.
But, if the shifts are small (generally they are), we should be able to adopt the simple algorithm
and still obtain a good matched illuminant.
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Algorithm 1 Algorithm for determining the channel weights in the simple model
1: cm = cguess, M = I3×3
2: repeat
3: Mprevious =M , cprevious = cm

4: min
M
∥ diag(Bcm)QM − diag(e)X ∥2F

5: min
cm
∥ diag(Bcm)QM − diag(e)X ∥2F, 0 ⪯ cm ⪯ 1

6: until ∥ diag(Bcm)QM − diag(Bcprevious)QMprevious ∥2F < ϵ
7: return cm

3.2. Complex Matched Illumination

In the complex model, we can still use the basic framework in Algorithm 1 to determine the
matched illumination and the mapping matrix. However, we will address the problem that peak
of the LED spectra shift as they are driven at different intensities.

To deal with the problem that the LED spectra shift, we will measure the spectra power
distribution emitted from each LED at a variety of intensity levels. Together, these spectra form
an extended basis function set that better characterizes the illuminator system. We choose to
use 10 uniform steps from 0 to maximum: w = [0, 0.1, 0.2, . . . , 1]. Note that the option of
0 intensity refers to the fact that the LED channel is powered off. With these measurements
in hand, and given an arbitrary intensity level, we can use interpolation to estimate the light
spectrum - for an arbitrary intensity level - as a convex combination of the two neighbouring
intensities. For example, if we would like to know the spectrum at the intensity of 0.65, we
calculate e0.65 = 0.5 ∗ e0.6 + 0.5 ∗ e0.7 (where respectively e0.6 and e0.7 denotes an LED light
driven at, respectively, 60 and 70% of its maximum intensity)

Let us group all the measured lights into an array A with size of 31 × 10 × 11, respectively
#SampledWavelengths × #Channels × #IntensityLevels. We can extract a ‘local’ basis from A.
For example, the 31 × 10 maximum intensity basis (used in Algorithm 1) B = A(:, :, 11) where
the ‘:’ means to use all indices in that dimension (for those that use Matlab, we take the notation
from there). The vectors A(:, 5, 7) and A(:, 5, 8) denote the 5th LED spectrum driven to 60%
and 70% of the maximum intensities. Let us now define a normalized array of lights An where
each light is divided by its intensity. As an example, An(:, 5, 8) = A(:, 5, 8)/w8, which implies
w8An(:, 5, 8) = A(:, 5, 8).

We use Algorithm 1 to calculate the matched illuminant (when using an illuminator where the
peaks change as function of intensity). At initialization, we use a basis driven at their maximum
intensities B = A(:, :, 11). As in Algorithm 1, we calculate M and then we calculate the weight
vector cm - for the matched illumination - again using Quadratic Programming. As the algorithm
proceeds, we update the basis matrix B.

Depending on the coefficient vector value solved in Step 5, we have an indication of the basis
that we ‘should’ use. For example, if the cm

6 = 0.5, then this is proposing the 6th light (which
on the first iteration has max power) should be driven at 50% of the maximum intensity. Since
we are aware of the spectral shift as the power changes, it makes sense to substitute the 50%
power spectrum (for the 6th light) into B for the next iteration. Actually, we substitute the power
normalized spectrum An(:, 6, 5) for B(:, 6). This is because on the next iteration if cm

6 = 0.5 we
do not want to swap the basis again. A similar algorithm was used by Mackiewicz and et al. [31]
to generate a light metamer for vision research. Interested readers are referred to the work for
more details.

3.2. Complex matched illumination

In the complex model, we can still use the basic framework in Algorithm 1 to determine the
matched illumination and the mapping matrix. However, we will address the problem that peak
of the LED spectra shift as they are driven at different intensities.

To deal with the problem that the LED spectra shift, we will measure the spectra power
distribution emitted from each LED at a variety of intensity levels. Together, these spectra form
an extended basis function set that better characterizes the illuminator system. We choose to
use 10 uniform steps from 0 to maximum: w = [0, 0.1, 0.2, . . . , 1]. Note that the option of
0 intensity refers to the fact that the LED channel is powered off. With these measurements
in hand, and given an arbitrary intensity level, we can use interpolation to estimate the light
spectrum - for an arbitrary intensity level - as a convex combination of the two neighbouring
intensities. For example, if we would like to know the spectrum at the intensity of 0.65, we
calculate e0.65 = 0.5 ∗ e0.6 + 0.5 ∗ e0.7 (where respectively e0.6 and e0.7 denotes an LED light
driven at, respectively, 60 and 70% of its maximum intensity)

Let us group all the measured lights into an array A with size of 31 × 10 × 11, respectively
#SampledWavelengths × #Channels × #IntensityLevels. We can extract a ‘local’ basis from A.
For example, the 31 × 10 maximum intensity basis (used in Algorithm 1) B = A(:, :, 11) where
the ‘:’ means to use all indices in that dimension (for those that use Matlab, we take the notation
from there). The vectors A(:, 5, 7) and A(:, 5, 8) denote the 5th LED spectrum driven to 60%
and 70% of the maximum intensities. Let us now define a normalized array of lights An where
each light is divided by its intensity. As an example, An(:, 5, 8) = A(:, 5, 8)/w8, which implies
w8An(:, 5, 8) = A(:, 5, 8).

We use Algorithm 1 to calculate the matched illuminant (when using an illuminator where the
peaks change as function of intensity). At initialization, we use a basis driven at their maximum
intensities B = A(:, :, 11). As in Algorithm 1, we calculate M and then we calculate the weight
vector cm - for the matched illumination - again using Quadratic Programming. As the algorithm
proceeds, we update the basis matrix B.

Depending on the coefficient vector value solved in Step 5, we have an indication of the basis
that we ‘should’ use. For example, if the cm

6 = 0.5, then this is proposing the 6th light (which
on the first iteration has max power) should be driven at 50% of the maximum intensity. Since
we are aware of the spectral shift as the power changes, it makes sense to substitute the 50%
power spectrum (for the 6th light) into B for the next iteration. Actually, we substitute the power
normalized spectrum An(:, 6, 5) for B(:, 6). This is because on the next iteration if cm

6 = 0.5 we
do not want to swap the basis again. A similar algorithm was used by Mackiewicz and et al. [31]
to generate a light metamer for vision research. Interested readers are referred to the work for
more details.
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Algorithm 2 Algorithm for determining the channel weights in the complex model
1: B = A(:, 11, :), cm = cguess, M = I3×3
2: repeat
3: Mprevious =M , cprevious = cm

4: min
M
∥ diag(Bcm)QM − diag(e)X ∥2F

5: min
cm
∥ diag(Bcm)QM − diag(e)X ∥2F, 0 ⪯ cm ⪯ 1

6: for i← 1 : #Channels do
7: if cm

i ≤ w1 then
8: B(:, i) = An(:, i, 1)
9: else wj−1 ≤ cm

i < wj
10: a = (cm

i − wj−1)/(wj − wj−1)
11: B(:, i) = (1 − a) ∗ An(:, i, j − 1) + a ∗ An(:, i, j)
12: end if
13: end for
14: until ∥ diag(Bcm)QM − diag(Bcprevious)QMprevious ∥2F < ϵ2
15: return cm

3.3. Algorithm for Making New Reflectance Data

In the next section, we will present synthetic and real color correction results for two object data
sets: the ColorChecker Color Rendition Chart (often referred to as Macbeth) [22] and 1995
reflectance spectra (SFU1995) [21]. The Macbeth chart is a standard chart used for characterizing
and evaluating cameras. And SFU1995 is a composite set comprising 1269 Munsell chips [32],
120 Dupont paint chips [33], 170 natural objects [33], 350 surfaces in [34], 24 Macbeth chart
patches and 57 surfaces measured in Simon Fraser University.

The Macbeth Color checker only has 24 patches. And we do not - nor does anyone else - have
access to the physical samples in the SFU1995 data set. But, this reflectance set is often used to
benchmark algorithms; so we’d like to quote real experimental results for SFU1995.

To bridge this experimental gap, we propose to describe the reflectances in SFU1995 by a
linear combination of no more than 4 color samples in the Macbeth data set:

rtarget ≈ c1r1 + c2r2 + c3r3 + c4r4 = rfit (11)

where r1, r2, r3 and r4 are 4 spectra selected from the Macbeth chart and rtarget is one of the
reflectances in SFU1995 . To simplify matters further, we used only 1 (out of 6) achromatic
scale. Thus we wished to describe each reflectance - e.g. in SFU1995 data set - as a combination
of 4 (selected out of 19) Macbeth reflectances.

Assuming raw image capture, the RGB response to the target color can be calculated as the
linearly composed RGBs of the 4 chosen color patches:

ρtarget ≈ c1ρ1 + c2ρ2 + c3ρ3 + c4ρ4. (12)

It follows that we can simulate the response to an unseen reflectance by applying the same
linear combination - that approximates rtarget - to the measured Macbeth RGBs.

As a design choice, we choose to limit the number of reflectances to 4 in order to try and
prevent linear combinations with large negative and positive coefficients (these coefficients could
result in the RGB estimates to be susceptible to noise).

Let us validate our method for the X-rite ColorChecker Digital SG chart. We will take the 19
Macbeth reflectances (again, we choose only one achromatic color) to predict the SG reflectances
using our method. That is, per color patch in the SG chart, we calculate the linear combination
coefficients of 4 Macbeth colors selected that best predict each spectral reflectance (with the least

3.3. Algorithm for making new reflectance data

In the next section, we will present synthetic and real color correction results for two object data
sets: the ColorChecker Color Rendition Chart (often referred to as Macbeth) [22] and 1995
reflectance spectra (SFU1995) [21]. The Macbeth chart is a standard chart used for characterizing
and evaluating cameras. And SFU1995 is a composite set comprising 1269 Munsell chips [32],
120 Dupont paint chips [33], 170 natural objects [33], 350 surfaces in [34], 24 Macbeth chart
patches and 57 surfaces measured in Simon Fraser University.

The Macbeth Color checker only has 24 patches. And we do not - nor does anyone else - have
access to the physical samples in the SFU1995 data set. But, this reflectance set is often used to
benchmark algorithms; so we’d like to quote real experimental results for SFU1995.

To bridge this experimental gap, we propose to describe the reflectances in SFU1995 by a
linear combination of no more than 4 color samples in the Macbeth data set:

rtarget ≈ c1r1 + c2r2 + c3r3 + c4r4 = rfit (11)

where r1, r2, r3 and r4 are 4 spectra selected from the Macbeth chart and rtarget is one of the
reflectances in SFU1995 . To simplify matters further, we used only 1 (out of 6) achromatic
scale. Thus we wished to describe each reflectance - e.g. in SFU1995 data set - as a combination
of 4 (selected out of 19) Macbeth reflectances.

Assuming raw image capture, the RGB response to the target color can be calculated as the
linearly composed RGBs of the 4 chosen color patches:

ρtarget ≈ c1ρ1 + c2ρ2 + c3ρ3 + c4ρ4. (12)

It follows that we can simulate the response to an unseen reflectance by applying the same
linear combination - that approximates rtarget - to the measured Macbeth RGBs.

As a design choice, we choose to limit the number of reflectances to 4 in order to try and
prevent linear combinations with large negative and positive coefficients (these coefficients could
result in the RGB estimates to be susceptible to noise).

Let us validate our method for the X-rite ColorChecker Digital SG chart. We will take the 19
Macbeth reflectances (again, we choose only one achromatic color) to predict the SG reflectances
using our method. That is, per color patch in the SG chart, we calculate the linear combination
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coefficients of 4 Macbeth colors selected that best predict each spectral reflectance (with the least
fitting error). The results are summarized in Table 1 where we show a percentage fitting error
and a CIELAB ∆E∗ab. The percentage error is defined as | |rtarget−rfit | |

| |rtarget | | × 100% and ∆E∗ab calculates
the color error between the desired and predicted reflectance in the CIELAB color space [4] for a
D65 viewing illuminant. The fit is surprisingly good, especially in terms of the CIELAB error.
The mean and median fit are less than 1 ∆E∗ab and the max is 3.5 ∆E∗ab.

Table 1. Results of predicting the SG chart reflectances
by the proposed linear fitting.

Mean Median Max

percentage error 2.33% 2.54% 8.66%

∆E∗ab error 0.72 0.64 3.51

Let us now apply our method to the more challenging SFU1995 set of 1995 reflectances
(which includes surfaces that are highly chromatic). In Fig. 4, we show three statistically
representative reflectances (solid black lines) drawn from SFU1995 and three reconstructions
(dashed lines) according to the method above. In order from panels (a) to (c), we are showing
the median spectral error fit, the 75-percentile and the max error fit. In panel (d), we show
the histogram of the coefficients for the 1995 reflectances (where each reflectance is fit with 4
different Macbeth spectra). The coefficients are in the range [-3, 3] indicating that any noise
increase in the transformed RGBs will be small. Notice the peak of the histogram seems to be

Fig. 4. In Panels (a), (b) and (c), the solid and dashed lines show respectively the actual
and fitted reflectances for the median, 75-percentile and max error fits. Panel (d) shows the
histogram of the fitting coefficients
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at 0. Actually, there are not many coefficients that are exactly zero, the histogram bin counts a
range of coefficients. Evidently, some Macbeth reflectances make only small contributions to the
linear combination matching to a target reflectance.

Overall, the fit of Macbeth reflectances to the SFU1995 is surprisingly good.

4. Results

A D65 illuminant metamer generated by the LED Illuminator system is shown in Fig. 5(a) (where
its maximum power is normalized to one). In the figure, we also plot the theoretical CIE D65 in
solid line. A D65 metamer is a spectrum that produces the same XYZ tristimulus values (relative
XYZ tristimulus values of [0.9385, 1.0000, 1.0472]) as the theoretical D65 illuminant; yet, they
are different in the spectral composition [35]. Our illuminator can make many D65 metamers
[36], here we chose the metamer that has the least spectral error from the standard D65.

Fig. 5. Relative spectral power distributions of the CIE D65 (solid line) and its metamer
(dashed line) generated by the LED illuminator. (b) The matched illuminations solved by
the simple (dashed line) and complex models (solid line).

In Fig. 5(b), we show the matched illuminations calculated with respect to the simple and
complex illuminator models (respectively, solved using Algorithms 1 and 2). From the figure, we
see that the two matched illuminants are similar. There are, however, small spectral differences
in the range of 450 nm to 550 nm. Both matched lights are even bluer (have more radiant power
in the short-wave region of the visible spectrum) than the actual measurement D65 metamer.

In the results that follow, we will calculate the XYZ tristimuli and compute color difference
errors. In our own papers [17–19], we have used CIELAB error metric to measure color
performance (as many other filter design papers [12,37–39]). Thus, the results presented here can
be directly compared to the prior art. For reference where we report performance on experiments
with real illuminants in Section 4.2, we will also tabulate the CIEDE2000 color error [40] (where
we will see the trend in the data is very similar).

4.1. Simulated experiments

In the simulated experiments, we evaluated how well a Nikon camera (see Fig. 6(a)) can measure
the colors of two object sets: the Macbeth ColorChecker Chart and 1995 reflectance spectra
(SFU1995). The reflectance data of the Macbeth chart were measured by a Konica Minolta
spectrophotometer CM700d in the range of 400 nm to 700 nm for every 10 nm at our laboratory.
And the Simon Fraser dataset SFU1995 is described in [21].

We first calculated the camera RGB responses of the Nikon camera according to Equation (3)
provided the spectral data of the D65 metamer, the matched illuminations, the reflectances, and
the camera. In the tables that follow we respectively call the matched illuminations derived using
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Fig. 6. (a) The spectral sensitivity functions of a Nikon D5100 camera. (b) The linearity
property of the camera responses with respect to six neutral colors on the Macbeth color
chart captured under the D65 illuminant.

Algorithms 1 and 2 the Simple and Complex matched illuminations. Also, the corresponding
ground-truth XYZ values under the D65 illuminant metamer were computed.

Our three sets of camera RGBs - for the D65 metamer and the simple and complex matched
illuminants - were separately mapped (color corrected) using least-squares regression to estimate
the XYZs. The predicted and the ground-truth XYZs were converted into the CIELAB color
space and then the color difference between them was evaluated in terms of ∆E∗ab [4]. The error
statistics were calculated over all test reflectances.

The results of this experiment for D65 illumination are summarized in Table 2. The left
and right of the table report the experiments for, respectively, the Macbeth and SFU1995 data
sets. We calculated the ∆E∗ab color errors for three cases. First, when the native camera RGBs -
recorded under the D65 metamer - were color corrected to XYZs. Then we color corrected the
RGBs measured under the Simple and Complex matched illuminations. The Mean, Median and
Max errors are shown for both reflectance sets. For the SFU1995 set which has a much larger
number of reflectances, we also calculated the 95- and 99-percentile errors.

Table 2. ∆E∗ab statistics of simulated color correction performance for two testing datasets
when using the color corrected native camera under D65 metamer, the color corrected

camera with the matched illuminations generated by the illuminator system under the simple
and complex models for a Nikon D5100 camera.

Macbeth chart SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

D65 Metamer 1.54 1.62 4.88 1.61 0.92 5.23 11.70 21.28

Simple matched illuminant 0.86 0.58 4.11 0.97 0.61 3.03 5.02 7.80

Complex matched illuminant 0.80 0.57 3.71 0.86 0.49 2.73 5.04 17.87

From Table 2, it is clear that measuring and then color correcting RGBs measured under
the matched illumination lead to better color measurement accuracy compared to the original
D65 metamer. For the Macbeth color chart, respectively by the simple and complex matched
illuminations, we find there is a reduction of 44% and 48% in terms of mean ∆E∗ab error, 64% and
65% for median ∆E∗ab error, and 24% and 16% for max ∆E∗ab error. For the SFU1995 dataset, the
95- and 99- percentile errors are substantially improved; they are halved for the complex matched
illumination.

However, readers will notice that there are very large color errors for a few of the SFU1995
reflectances and this is true for the D65 Metamer and the matched illuminant (as indicated by the
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99-percentile and maximum error values in Table 2). By looking into the data set, we find that
the reflectances giving the highest color errors are highly saturated surface colors. The high error
is also related to the fact that we are using a linear color correction (which is known to struggle
with the most saturated colors).

Overall, there is a modest improvement when the complex (as opposed to the simple) matched
illumination is used. This is encouraging since it is the complex model that actually corresponds
to the physical properties of the illuminator we have in our lab.

4.1.1. Multiple cameras

To test the robustness of the proposed methods, we extend the color correction experiments to a
much broader collection of digital cameras. The data set consists of 28 cameras with measured
spectral sensitivity data, including professional single-lens reflex, industrial and mobile cameras
[41]. For each camera, we solve for the optimized matched illumination under D65. As before,
we calculate the best - post color correction - estimates of XYZs for each camera using the actual
D65 light and the per-camera matched counterpart.

Figure 7 summarizes the per camera (a) mean and (b) 99-percentile ∆E∗ab performance for
the SFU1995 data set. The color errors for the matched illuminations are shown with light blue
(dashed) bars and are compared with D65, solid blue bars. Right (in green) we record the average
results for the 28 cameras. For these cameras, by using the matched illuminations, the mean color
error reduces from 1.60 ± 0.51 to 0.81 ± 0.29 and the 99-percentile error from 11.38 ± 2.54 to
4.49 ± 1.31 (where the ± value is the standard deviation of the error metric). It is evident that
using the filtered illuminations supports improved color measurement accuracy for all 28 testing
cameras and on average the performance increment is significant.

4.1.2. Multiple illuminants

For our Nikon D5100 camera, we repeated the simulation experiments for 3 extra illuminants:
CIE A, D55 and D75 Illuminants. As before, we found the optimal illuminant metamer that
could be produced by our illuminator for these 3 lights. Then, we solved for their simple and
complex matched illuminants, see Fig. 8.

The experimental results of these illuminants are summarized in Tables 3–5. We see the trend
of the data is the same as for the D65 illuminant. As before, there is a significant improvement
in color measurement error when colors are recorded and corrected under matched illuminants.
And, once more, we find there is a small advantage of using the complex illuminator model.

Table 3. ∆E∗ab statistics of simulated color correction performance for two testing data sets when
using the color corrected native camera under A Metamer, the color corrected camera with the

matched illuminations generated by the illuminator system under the simple and complex models
for Nikon D5100 camera.

Macbeth chart SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

A Metamer 1.55 1.07 5.91 1.51 0.79 4.68 13.17 21.59

Simple matched illuminant 0.65 0.48 2.35 0.61 0.38 2.04 4.61 7.31

Complex matched illuminant 0.63 0.50 2.25 0.58 0.36 1.97 4.04 6.08

4.2. Experiments using measured data

Images of the Macbeth checker - under the D65 Metamer and the simple and complex matched
illuminants - were captured with a Nikon D5100 digital single-lens reflex camera. The camera
used a fixed focal length of 35 mm with f-number of 5, ISO at 1600 and exposure time at 1/40 s.
To check camera linearity, we plot mean reflectance, for the 6 achromatic colors on the Macbeth
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Fig. 7. Color correction performance for a collection of 28 cameras with and without using
the matched illumination evaluated in terms of average (a) mean and (b) 99-percentile color
errors. Note that the last color bar (depicted in different color) shows the averaged results
across all 28 testing cameras.

Table 4. ∆E∗ab statistics of simulated color correction performance for two testing data sets
when using the color corrected native camera under D55 Metamer, the color corrected

camera with the matched illuminations generated by the illuminator system under the simple
and complex models for Nikon D5100 camera.

Macbeth chart SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

D55 Metamer 1.57 1.70 4.75 1.64 0.91 5.38 12.51 22.20

Simple matched illuminant 0.92 0.62 3.31 0.90 0.61 2.94 4.68 8.19

Complex matched illuminant 0.81 0.67 2.69 0.87 0.58 2.79 4.99 9.60
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Fig. 8. Relative spectral power distributions of the CIE A (a), D55 (c) and D75(e) illuminants
(solid line) and its metamer (dashed line) generated by the LED illuminator. The right
column shows the matched illuminations solved by the simple (dashed line) and complex
models (solid line).

Table 5. ∆E∗ab statistics of simulated color correction performance for two testing data sets
when using the color corrected native camera under D75 Metamer, the color corrected

camera with the matched illuminations generated by the illuminator system under the simple
and complex models for Nikon D5100 camera.

Macbeth chart SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

D75 Metamer 1.53 1.57 4.94 1.59 0.93 5.06 11.11 20.50

Simple matched illuminant 0.94 0.63 3.26 0.95 0.65 2.99 4.87 11.03

Complex matched illuminant 0.88 0.55 3.05 0.88 0.55 2.80 4.66 17.96
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chart - against the mean of their RGB responses, see Fig. 6(b). The dashed lines are the linear
fitting curves with its function shown in the figure. We see that the curves almost pass through
the origin which confirms the good linearity of our camera.

To obtain the RGBs that we will use in our experiments, raw Nikon image files (NEF) of the
Macbeth chart were captured, converted and demosaiced into TIFF format using DCRAW [42].
Then the camera raw RGBs of a selected area of about 200 × 200 pixels were averaged for each
color patch in the Macbeth chart. To ensure lighting uniformity, we also captured images of
an X-rite White Balance chart placed at the same spot as the Macbeth chart. By dividing out
the RGBs in the checker by the corresponding RGBs measured in the white chart, we corrected
for non-uniform illumination. Of course dividing by white can be thought of as multiplying
by a diagonal matrix (whose diagonal components are the reciprocal of the RGBs in the white
reference chart). This, however, does not change our color correction optimization. If M denotes
a 3 × 3 matrix optimally mapping the RGBs of a camera under a given light to the corresponding
XYZs and we then multiply the RGBs by a diagonal matrix D, then least-squares color correction
will return D−1M. That is, the output from color correction will be the same.

For the ground-truth values, we used the same XYZs that were calculated for the synthetic
experiments (discussed in Section 4.1). Our ground truth are the XYZ tristimuli of the Macbeth
color checker illuminated by the D65 metamer.

We now repeat the color correction experiment for real RGB data. But, we used the method
set forth in Section 3.3 to allow us to investigate the performance for the SFU1995 dataset. That
is, we model each SFU reflectance as a linear sum of four Macbeth reflectances. Because of the
linearity of capture, applying the same linear combination to the corresponding Macbeth RGBs
will result in an RGB that corresponds to the linearly combined reflectances. In this way, given
the measurements from a Macbeth checker, we can test the matched illuminant approach on a
much larger reflectance dataset. Also, although computing RGBs in this way will increase noise,
we are averaging the responses over 4200 × 200 pixels; so the effect of the noise is negligible.

The color performance results are evaluated in terms of ∆E∗ab in Table 6. From the table, we
see that the error between the color corrected native RGBs and the the ground truth XYZs is
significantly higher compared to those in the simulated experiments. This is to be expected.
We are choosing our matched illuminant based on estimated spectral sensitivities and measured
illuminants and there will certainly be discrepancies in both. Further, although care is taken to
measure the color checker to minimize any specular reflectance, there is likely a small specular
component in our data (not present in the synthetic experiment). For interest, we also show the
results in terms of CIEDE2000 errors in Table 7 and the results show very similar trend.

Table 6. Error statistics ∆E∗ab of experimental measured data for two object sets for the
color corrected native camera under D65 Metamer, the color corrected camera with the

matched illuminations generated by the illuminator system under the simple and complex
models for a Nikon D5100 camera.

Macbeth chart reconstructed SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

D65 Metamer 2.38 1.84 5.66 2.62 1.76 7.64 16.08 40.15

Simple matched illuminant 1.93 1.53 4.36 1.99 1.39 5.49 9.44 45.33

Complex matched illuminant 1.85 1.67 4.08 1.82 1.22 4.84 9.37 55.85

Significantly, when we measure and correct real RGBs measured under matched illuminations,
we record significantly lower color errors. The error for the Macbeth reflectances is reduced
by a modest amount (e.g. 16% for the mean metric by the complex matched illuminant).
The performance difference for the larger SFU1995 reflectance set is larger: the corrected
RGBs (measured under the D65 Metamer) are, for the mean, median and 99-percentile errors,
respectively 28%, 27% and 33% higher compared with the measurements taken under the
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Table 7. Error statistics CIEDE2000 of experimental measured data for two object sets for
the color corrected native camera under D65 Metamer, the color corrected camera with the
matched illuminations generated by the illuminator system under the simple and complex

models for a Nikon D5100 camera.

Macbeth chart reconstructed SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

D65 Metamer 1.52 1.47 3.36 1.73 1.24 4.81 7.13 16.31

Simple matched illuminant 1.32 1.30 2.60 1.38 1.04 3.51 6.23 15.66

Complex matched illuminant 1.28 1.27 2.58 1.25 0.91 3.24 4.77 13.76

complex matched illumination. As before, we find the complex matched illumination condition
leads to the lowest errors overall.

We also repeated this experiment for CIE A illuminant where we calculate the CIELAB ∆E∗ab
and CIEDE2000 errors, see Tables 8 and 9. We see similar trend in the results found with respect
to D65 illuminant. There is a significant improvement in color measurement error when colors
are recorded and corrected under a matched A illuminant.

Table 8. Error statistics ∆E∗ab of experimental tests for two object data sets for the color
corrected native camera under A Metamer, the color corrected camera with the matched

illuminations generated by the illuminator system under the simple and complex models for
Nikon D5100 camera.

Macbeth chart reconstructed SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

A Metamer 2.61 2.43 6.35 2.60 1.73 7.42 17.48 34.79

Simple matched illuminant 1.55 1.25 3.94 1.95 1.19 5.78 11.73 55.08

Complex matched illuminant 1.45 1.09 3.90 1.87 1.15 5.57 10.93 49.74

Table 9. CIEDE2000 statistics of experimental tests for two object data sets for the color
corrected native camera under A Metamer, the color corrected camera with the matched

illuminations generated by the illuminator system under the simple and complex models for
Nikon D5100 camera.

Macbeth chart reconstructed SFU1995 surfaces

Mean Median Max Mean Median 95% 99% Max

A Metamer 1.55 1.54 3.74 1.63 1.15 4.13 11.06 20.72

Simple matched illuminant 1.30 1.01 3.64 1.34 0.89 4.03 7.08 13.79

Complex matched illuminant 1.18 1.10 3.06 1.24 0.80 3.86 6.70 20.84

5. Conclusion

In prior work (e.g. [17–19]), it has been shown that it is possible to design a color prefilter that
when it is placed in the optical path of a camera it can make the camera almost colorimetric.
However, none of the filters previously designed have been manufactured. And, it is not known
to what extent they can be manufactured.

In this paper, we pose the filter-design problem in an equivalent form. We propose that placing
a filter in front of a light source is broadly equivalent to placing the filter in front of the camera.
Since we now have tunable multi-spectral LED illuminators, we can model the function of the
filter as a modulation of the light source. For a given measurement light and a camera, we show
how we can optimally modulate a light source to solve for a Matched Illumination. The matched
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illumination for D65 is spectrally quite different but results in RGBs which are more able to be
color corrected to CIE XYZ tristimuli than RGBs measured under D65.

Experiments validate our results. On synthetic and real data, we show that there is a significant
benefit (up to 50%) in using a matched illumination for measuring color (compared to those
under a desired measurement light). A novel aspect of our experimental methodology is that we
show how the measurements made for a Macbeth ColorChecker chart can be used to calculate
results for a much larger reflectance dataset.
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