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Abstract: In previous work, it was shown that a camera can theoretically be made more
colorimetric–its RGBs become more linearly related to XYZ tristimuli–by placing a specially
designed color filter in the optical path. While the prior art demonstrated the principle, the
optimal color-correction filters were not actually manufactured. In this paper, we provide a
novel way of creating the color filtering effect without making a physical filter: we modulate the
spectrum of the light source by using a spectrally tunable lighting system to recast the prefiltering
effect from a lighting perspective. According to our method, if we wish to measure color under
a D65 light, we relight the scene with a modulated D65 spectrum where the light modulation
mimics the effect of color prefiltering in the prior art. We call our optimally modulated light, the
matched illumination. In the experiments, using synthetic and real measurements, we show that
color measurement errors can be reduced by about 50% or more on simulated data and 25% or
more on real images when the matched illumination is used.
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1. Introduction

Digital cameras measure the color information in a real-world scene like a human observer only if
a camera meets the Luther condition [1,2]. The Luther condition requires the camera sensitivity
functions are a linear combination of the color matching functions of the human visual system
[3]. If a camera meets the Luther condition, the colors it measures are linearly related to the
device-independent tristimulus values, such as CIE XYZ tristimuli [4]. Such a camera is said to
be colorimetric. However, off-the-shelf RGB cameras do not satisfy the Luther condition and so
cannot be used for precise color measurement [5].

A viable way to improve the colorimetric accuracy of a camera is to capture multiple images,
each with a different color filter placed in front of the camera [6–12]. This multi-shot technique
can gather more color information than in a single shot (greater than 3-dimensional color signals)
and when they are mapped to colorimetric XYZ values, we can obtain greater accuracy. Generally,
the color filters are chosen from commercial products [13] either heuristically or by using an
exhaustive search process [14]. An alternative way is to capture images under multiple lights,
such as using a light booth with different illuminants [15,16]. Here, the multiple lights perform
an analogous role as the filters. However, both methods require multiple shots of images which
take a longer capture process and if nothing else, the registration between images is a problem
itself.

Finlayson and Zhu [17–19] recently proposed to improve the colorimetric accuracy of a digital
camera by placing a carefully-designed color filter in the optical path way with a single-shot
image. The spectral transmittances of such a filter can be optimally designed for making a camera

#451839 https://doi.org/10.1364/OE.451839
Journal © 2022 Received 23 Dec 2021; revised 20 Feb 2022; accepted 10 Mar 2022; published 3 Jun 2022

https://orcid.org/0000-0001-7381-6607
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.451839&amp;domain=pdf&amp;date_stamp=2022-06-03


Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 22007

better meet the Luther condition. In Fig. 1, the top row illustrates how a color-correction filter
can make a camera more colorimetric. Figure 1(a) shows the spectral sensitivities of a camera,
which are notably different from the CIE XYZ color matching functions (see the solid lines
in Fig. 1(c)). The physical effect of placing a color filter - such as the one shown in Fig. 1(b)
- in front of a camera can be reasonably modeled as the multiplication of the filter spectral
transmittance and the camera sensitivities on a per wavelength basis over the visible spectrum.
After prefiltering, the camera sensitivity functions are linearly fitted to the reference CIE XYZ
color matching functions [4]. The corrected sensitivities are shown in Fig. 1(c). The solid lines
show the reference color matching functions and the dashed lines show the effective camera
sensitivities after the best linear fitting. Clearly, we see that by using a color filter we can make
the camera curves a close approximation to the visual sensitivities. At the time of writing this
manuscript, it is not known whether the optimal color filters can, in fact, be manufactured.

Fig. 1. In the top panel, we show the filter-modified Luther-condition. Given a camera
with known RGB sensitivities as in (a), an optimal filter (b) can be found that after a linear
regression fit, the corrected camera sensitivities (dashed lines in (c)) are good approximation
to the XYZ color matching functions (solid lines in (c)). A matched illumination (f) is
determined given the spectral characteristics of the desired measurement light (d) and the
optimal color filter (e).

Our contribution begins with the observation that for typical color measurement scenarios, the
effect of a color filter placed in front of the camera can be achieved by placing the same filter in
front of the light source. We call the modulated light source the Matched Illumination. It follows
that if we wish to measure colors under a target measurement light source, say the standard
daylight of D65 (see the bottom panel in Fig. 1), we need to match it to a new illumination,
effectively a filtered D65 (that is not D65). Then the camera will capture the object colors using
this matched illumination to predict the ground-truth XYZ tristimuli of the desired measurement
light source. Note that the derived filter shown in Fig. 1(e) is not the same as Fig. 1(b) since it is
derived with respect to a tunable LED illuminator (discussed below). This illuminator places
more physical constraints on the design of the filter and matched illumination compared with the
original camera+filter work.

In this paper, our theory of matched illumination is developed using a Gamma Scientific
RS-5B spectral illuminator. The Gamma Scientific illuminator has eight narrow and two broad
band LEDs. We will show how, for a given light (produced by the illuminator), we can solve for
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the best matched illumination. While our algorithm development is tied to the Gamma Scientific
illuminator, the techniques are generally phrased and so could be deployed to other multi-band
lights. As an important detail, we deal with the ornery issue that the spectral shape of LED
outputs shift as the driving voltage changes.

The work of [20] is related to our approach. There, a similar illuminator is tuned - by means
of a genetic algorithm - to find a spectrum of light that better allows reflectance spectra to be
recovered from camera RGBs. Though, for the SFU reflectance set [21] (used in [20] and our
study), the spectra recovered under their derived optimal illuminant are no more accurate than
the spectra recovered under a fixed illuminant.

Experiments validate our approach. We show that we can significantly reduce color measure-
ment error for a desired measurement light by solving for and then measuring with respect to the
matched illumination. A novel aspect of our experimental work is that we develop and deploy a
novel new technique for generating large spectra data sets given only a small number of spectral
measurements. We exploit the idea that - in raw image capture - the RGBs computed from
a linear combination of RGBs - up to noise - must be the same as the single RGB measured
by viewing a linear combination of the underlying reflectances. Using this idea, we generate
the RGBs for the large set of 1995 reflectances (SFU reflectance data set) using only 24 RGBs
measured in a Macbeth ColorChecker chart [22].

In Section 2, we present the prior art to our method as well as the relevant background on
image formation. In Section 3, we present our method for calculating the matched illumination.
Experiments are reported in Section 4. In Section 5, there is a short conclusion.

2. Background

2.1. Color formation with a filter

The physical process of forming a color pixel underpins our idea of illumination matching. The
color recorded by a digital camera mainly depends on the light stimulus, the object reflectance,
and the sensitivity responses of the camera. They are respectively represented by the spectral
functions E¹� º, R¹� º, and Qk¹� º. The RGB response is written as:

� k =
¹

!
R¹� ºE¹� ºQk¹� º d� , k 2 fR, G, Bg (1)

where � k denotes one of the RGB color values. Here and henceforth, � denotes the wavelength
variable defined over the visible spectrum ! .

When a transmissive color filter F¹� º is placed in the optical pathway, the filtered RGB is
written as:

� filtered
k =

¹

!
R¹� ºE¹� ºF¹� ºQk¹� º d� , k 2 fR, G, Bg (2)

where F¹� º denotes the spectral transmittance of the filter with respect to the wavelength variable.
It is useful to sample spectral data and describe them in the discrete vector-matrix representation.

Let Q denote the spectral sensitivities of a camera. The columns in the matrix represent the
spectral sensitivity functions for each sensor channel and the rows denote the sensor responses at
sampled wavelengths. Hence, Q is an n � 3 matrix where n is the number of sampled points
across the visible range. In this paper, the spectral data are collected in the visible range from
400 nm to 700 nm for every 10 nm. Thus, we have n = 31.

Similarly, let the 31-vectors e and r denote sampled representations of a light and a surface.
Let diag¹º denote the function which takes an n-vector as an argument and maps it to an n � n
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diagonal matrix. We can rewrite the image formation in Equation (1) as:

� = QTdiag¹eºr (3)

where we assume the wavelength sampling is incorporated in Q and � is a 3 � 1 vector denoting
the RGB triplet values.

2.2. Luther condition

A camera is said to be colorimetric if it satisfies the Luther condition: the camera sensitivities are
a linear combination of the standard color matching functions [3]. Let X denote the 31 � 3 matrix
where the columns are the X, Y and Z color matching functions (again we sample from 400 nm
to 700 nm at a 10 nm sampling interval). In this discrete representation, the Luther condition is
written as:

X = QM (4)

where M is a 3 � 3 full rank matrix denoting the linear transform between two sets of sensitivities.
The Luther condition is rarely met by an off-the-shelf digital camera. In [18], we proposed a

new filtered version of the Luther condition. If there exists a color filter vector f such that:

X = diag¹f ºQM (5)

then the Filtered Luther condition is met.
Of course neither the Luther condition nor the filtered variant is likely to hold exactly. Thus, a

key focus of the prior art work on filter design [18] was to develop the numerical methods to find
filters that make cameras most colorimetric, i.e. that make them best satisfy the Luther condition.

2.3. Color correction

To use an off-the-shelf RGB camera for color measurement, whether we use a color filter or not,
the recorded camera RGBs are color corrected to XYZ counterparts using a 3 � 3 correction
matrix. While other non-linear color correction methods could be used (e.g. [23–25]), a linear
color correction has several advantages. First, based on arguments from image formation, a 3 � 3
matrix correction should work well [26]. Second, a linear transform is scalar invariant. If we
double the illumination intensity that lights a scene, then the corresponding RGBs and XYZs
also double and the goodness of fit afforded by a 3 � 3 matrix remains unchanged. Finally, if
colors fall on a line in the RGB space, they still fall on a line after color correction (an important
physical consideration for correctly mapping highlights in photographic images [27,28]).

Therefore, to assess the color measuring performance of a digital camera in practical use,
we will evaluate and present the color accuracy of our proposed method under the linear color
correction transform.

2.4. Gamma scientific RS-5B illuminator

The Gamma Scientific illuminator system has six lamps carefully arranged in the perimeter of
the integrating sphere with white diffusing baffles installed inside for creating spatially uniform
lighting, see Fig. 2. Uniformity is useful in our experiments because we will need to measure
RGBs and XYZs for the same surface lit the same way. And from these pairs, we will evaluate
how well RGBs under a given light and its matched illuminant can be color corrected to XYZ.
However, outside of this evaluation, we do not need to assume uniformity when deploying the
matched illuminant to unseen data. In detail, suppose that under a matched illuminant, a RGB for
a given surface is denoted as � . We multiply it by the color correction matrix M to estimate the
corresponding XYZ tristimuli, denoted as x: assume that M � � x (with respect to the matched
illuminant we can map RGBs to estimate of XYZs). Because we are using linear color correction,
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the efficacy of this color correction mapping remains unchanged when exposure of the surface
changes. Mathematically, if we multiply the RGB by a scaling factor k, then it is also true that
Mk � � kx.

Fig. 2. On the left, we show the experimental setup: a digital camera is set on a tripod to
capture the image of the object on the table illuminated by a desired light generated by the
illuminator system. On the back of the half-sphere illuminator, a tele-spectroradiometer is
used to measure the spectrum of the light. The illuminator consists of six lamps arranged in
the integrating sphere. Its sectional arrangement is drawn on the top right. Each lamp has
10 LED channels and their relative spectral power distributions at their maximum intensity
are plotted on the bottom right.

In the sphere, each lamp consists of 10 different LED channels. The spectral power distributions
of each LED channel (when the maximum current is driven) are shown in the bottom right of
Fig. 2. Note that only nine spectra can be seen in the figure as two broad LED lights have almost
the same spectral shape. From the figure, we can see that eight of them are narrow-band LED
lights ranging from blue to red while two are identical yellowish broad-band LEDs. A broadband
LED is used because of the lack of green LEDs in the range between 525 nm to 615 nm.

The intensity of each LED light can be digitally controlled and programmed (using a serial
communication port) in any combination and proportion to generate a desired illumination
spectrum. Ideally, the light spectrum driven at partial intensity should have the same spectral
shape only with a scaling factor as that driven by the maximum intensity. In such a condition, we
say the spectrum scales linearly with the intensity levels. When the linearity holds and the light
spectra at its maximum intensity are measured, we are able to predict the illumination spectrum
when we program the intensity levels of the light sources.

However, in practice, when we adjust the intensity level (driving current) of the light sources,
we find that, for some LEDs, the peak wavelength of the spectra shifts. So, we characterize the
illuminator system by measuring the spectral distributions of each light source at varied driving
current levels between 0% and 100% of its full intensity, i.e. »0, 0.1, 0.2, : : : , 1¼. Their spectral
distributions are plotted in Fig. 3(a). It can be seen that there is some shift in the peak wavelength
when intensity level changes. For example, as intensity decreases, the peaks of the fifth (from
left to right in Fig. 3(a)) LED channel shown in green lines slightly shift towards the longer
wavelength. The shift reaches 17 nm between the maximum and minimum intensities. We also
calculate the u’v’ chromaticity coordinates [29] for all intensity levels for each LED channel and
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plot in the chromaticity diagram, see Fig. 3(b). Each LED channel is depicted by one color. We
can see 9 colored clusters with respect to 9 LED types. Among them, we see that two LEDs
in the green-cyan area have noticeable chromatic shift while others are relatively stable (e.g.
red LEDs). When the chromatic shift is significant, we can no longer predict the illumination
spectrum under the assumption of linearity.

Fig. 3. The relative spectral power distributions at varied intensity levels are plotted in (a).
Their u’v’ coordinates are plotted in the chromaticity diagram in (b). Note the horse-shoe
shaped outline in (b) is the spectral locus.

As a final comment, returning to Figure 2, we see that different LEDs have significantly
different power ranges. The importance of this physical feature is that it places a constraint on
the spectral power distribution of any matched illumination. Indeed, for us to replicate the prior
art work on transmissive filters in the lighting world, we would need narrow band lights across
the visible spectrum that had the same peak maximum intensities. Thus, a priori we expect our
matched lights to perform less well than unconstrained optimized filters. This said, our matched
lights have the advantage over the prior filter design work that they can be - as we show next -
physically realized.

2.5. Optimized illumination

Before presenting our method, we wish to point the reader to prior art reported in the literature.
In [20], a lighting system with spectrally-tunable LEDs was used for the spectral reconstruction
(SR) problem. In SR, we attempt to recover spectra from camera RGB responses. In [20], the
best composition of the LED lights was sought that subserves the SR task. For a variety of
different regression-based SR algorithms, a genetic algorithm was used to solve for the optimal
measurement light.

While not the focus of their optimization, they did examine their recovery error - as we will
do later - in terms of errors in the CIELAB color space [29]. For the SFU reflectance set [21],
they found that their optimization method did not help them to significantly reduce � E�

ab error
(compared to using a non-optimized light). As we will report later, our optimization - based on a
different mathematical formalism - does lead to significantly lower error for this data set.

3. Matched illumination

Returning to Equation (2), it is apparent that we can think of a filter as modulating the spectral
sensitivities of the sensors - F¹� ºQk¹� º - or equivalently as modulating the spectral power of the
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light, E¹� ºF¹� º. We call the modulated light, Em¹� º the matched illumination:

Em¹� º = E¹� ºF¹� º. (6)

A camera with a filter F¹� º placed in its optical pathway viewing the scene lit by a light E¹� º
makes the same measurement as the same camera without any filter but where the scene is
illuminated by Em¹� º (assuming a simple viewing environment where we can ignore effects such
as interreflection).

Let us move our development of the matched illumination idea to the discrete domain. Given
a 31 � 1 illumination e, we are looking for a matched illuminant em that makes the camera more
colorimetric (more able to measure XYZs under the illuminant e). Noting that

em = diag¹eºf . (7)

Our optimization statement for the design of matched illuminations is written as:

arg min
em,M

k diag¹emºQM � diag¹eºX k2
F (8)

where k k2
F denotes the square of the Frobenius norm and, as before, M is a 3 � 3 full rank

matrix.

3.1. Simple matched illumination

It is convenient to think of the lights (in a spectral illuminator) as a simple linear basis which can
be used to describe a range of lights:

e = Bc , 0 � c � 1. (9)

For an illuminator with k LED lights, B is a 31 � k matrix. The ith column of the basis matrix
B lists the maximum power of the ith LED light spectrum. c is a k � 1 vector giving the intensity
weights of the LED light channels. Additionally, of course, each coefficient is restrained by
ci 2 »0, 1¼: it has to be between 0 and 100% maximum power. In the simple basis world, we
ignore the issue that the peaks of the basic light spectra shift as their intensity is changed.

For a viewing illuminant e = Bc, we can solve for the matched illumination em = Bcm (again
0 � cm � 1) by modifying Equation (8):

arg min
cm, M

k diag¹BcmºQM � diag¹eºX k2
F s.t. 0 � cm � 1. (10)

To solve this optimization, we must estimate two unknown variables: the coefficient vector cm

defining the matched illuminant and the 3 � 3 correction matrix M . There is no closed-form
solution to the problem. Analogously, to the prior art [18], we solve for cm and M using alternating
least-squares regression:

First, we make an initial guess for the light coefficients (for the matched illumination). Then, it
is straightforward to calculate the correction matrix M simply using the least-squares regression.
Then we hold M fixed and solve for the optimal solution for cm using Quadratic Programming
[30] (to enforce the boundedness constraints). The iteration continues until the difference between
the current and previous solutions is below a criterion amount. The optimization is guaranteed to
terminate.

A priori, we know that the peak lights - for some of the LEDs in our illuminator - do shift.
But, if the shifts are small (generally they are), we should be able to adopt the simple algorithm
and still obtain a good matched illuminant.


























