
Capturing Changes in Mood Over Time in Longitudinal Data Using
Ensemble Methodologies

Ana-Maria Bucur1,2, Hyewon Jang3, Farhana Ferdousi Liza4

1Interdisciplinary School of Doctoral Studies, University of Bucharest, Romania
2PRHLT Research Center, Universitat Politècnica de València, Spain

3Department of Linguistics, University of Konstanz, Germany
4School of Computing Sciences, University of East Anglia, UK

ana-maria.bucur@drd.unibuc.ro
hye-won.jang@uni-konstanz.de, f.liza@uea.ac.uk

Abstract

This paper presents the system description
of team BLUE for Task A of the CLPsych
2022 Shared Task on identifying changes in
mood and behaviour in longitudinal textual
data. These moments of change are signals
that can be used to screen and prevent suicide
attempts. To detect these changes, we experi-
mented with several text representation meth-
ods, such as TF-IDF, sentence embeddings,
emotion-informed embeddings and several clas-
sical machine learning classifiers. We chose to
submit three runs of ensemble systems based
on maximum voting on the predictions from the
best performing models. Of the nine participat-
ing teams in Task A, our team ranked second
in the Precision-oriented Coverage-based Eval-
uation, with a score of 0.499. Our best system
was an ensemble of Support Vector Machine,
Logistic Regression, and Adaptive Boosting
classifiers using emotion-informed embeddings
as input representation that can model both the
linguistic and emotional information found in
users’ posts.

1 Introduction

The changes in mood and behaviour in the social
media discourse of users are markers that can be
used for screening and prevention of future suicide
attempts. The emotional signals expressed in lan-
guage and switches to suicide ideation are used for
assessing the suicide risk of online users. How-
ever, identifying a person’s mood changes over
time based on their linguistic content from the post-
ing activity on online social media platforms is a
challenging task. Challenges come from different
perspectives, including methodological challenges
of noisy natural language understanding (Farzindar
and Inkpen, 2017), ethical implications of research
and deployment (Benton et al., 2017; Chancellor
et al., 2019; Resnik et al., 2021) and challenges
associated with longitudinal data analysis. Despite
different challenges, the potential role of Artificial

Intelligence (AI) based language technologies in
mental health is gaining increasing attention (Lee
et al., 2021). For example, some social media do-
mains started implementing auto-detection tools
to prevent suicide (Ji et al., 2020). In this pa-
per, we present the methodology and the results
of the machine learning models developed using
the 2022 CLPsych Shared Task dataset (Tsakalidis
et al., 2022a). We experiment with machine learn-
ing algorithms for the classification task using as
input text representations based on statistical TF-
IDF, pre-trained GloVe embeddings (Pennington
et al., 2014) and embeddings extracted from pre-
trained transformer models. After that, we develop
a majority voting scheme over the predictions to
report the final labels for a user timeline. Our best
strategy is based on majority voting of Logistic
Regression (LR), Support Vector Machine (SVM)
and Adaptive Boosting (AdaBoost) classifiers us-
ing as input the embeddings extracted from the
pre-trained transformer models fine-tuned for emo-
tion detection. Our team BLUE ranked second in
terms of Precision-oriented Coverage-based Eval-
uation (macro-avg) metric with an overall score
of 0.499, whereas the top score in this evaluation
metric is 0.506.

2 Related Work

With the rise in social media use, more people
started discussing their mental health problems and
seeking support online. This allowed Natural Lan-
guage Processing and Psychology researchers to
use social media data to search for cues of mental
illnesses. The frequently used social media plat-
forms for studying these issues are Twitter (Sawh-
ney et al., 2020b; Coppersmith et al., 2016) and
Reddit (Zirikly et al., 2019a; Losada et al., 2020).

For suicide detection, there are two methodolo-
gies for screening the online content: at the user
level or post level. For user-level classification, the
aim is to detect from the whole history of the user



if they are at risk of suicide or if they show suicide
ideation prior to the attempt, for an intervention to
be made and for trying to save their life (Copper-
smith et al., 2018; Zirikly et al., 2019b; Sawhney
et al., 2020a).

Post-level classification is performed by screen-
ing one post at a time, searching for posts that are
indicative of a user being at risk of suicide (O’dea
et al., 2015; Sawhney et al., 2018; Tadesse et al.,
2019). O’dea et al. (2015) collect suicide-related
tweets and annotate them as strongly concerning,
possibly concerning or safe to ignore. Afterwards,
the authors train machine learning classifiers (SVM,
LR) to distinguish the concern level for these tweets
containing suicide-related words.

Coppersmith et al. (2016) explore the language
of Twitter users prior to a suicide attempt to find
quantifiable signals that can be used for screening
and prevention. Their article reveals that users have
more posts expressing anger and sadness before
trying to commit suicide. However, these emo-
tions get to the same level as control users after
the attempt. Furthermore, people who attempt sui-
cide have a higher proportion of emotional posts,
increasing after the incident. In line with these find-
ings, several works are modelling the emotional in-
formation found in the online discourse of users for
classifying the suicide risk (Ji et al., 2021; Sawhney
et al., 2021; Bitew et al., 2019; Chen et al., 2019).

Regarding longitudinal approaches for suicide
detection, De Choudhury et al. (2016) extract mark-
ers of shifts to suicide ideation from users engaged
in the online discourse revolving around mental
illnesses, such as hopelessness, high self-attention
focus, anxiety, impulsiveness and others. Using
these markers, the authors can predict which indi-
viduals are more prone to express suicide ideation
in future posts. Through a time-aware approach,
Sawhney et al. (2021) propose a framework that
uses people’s historical and emotional spectrum
when assessing the risk of a specific post.

Tsakalidis et al. (2022b) propose to take the tem-
poral information into account by identifying the
changes in people’s behaviour and mood on social
media. The changes considered are switches (sud-
den mood changes) and escalation (gradual mood
progression). These changes in mood or emotion
found in the online discourse can be used for as-
sessing the suicide risk of users.

Although the potential role of language tech-
nology in mental health using information from

social media datasets is gaining increasing atten-
tion, continued progress on NLP for mental health
is hampered by obstacles to shared, community-
level access to relevant data. The 2021 CLPsych
Shared Task was introduced to address this problem
by conducting a shared task using sensitive data
in a secure environment (MacAvaney et al., 2021)
and continued in the 2022 CLPsych Shared Task
(Tsakalidis et al., 2022a). The goal of the tasks
from the previous year was to assess the suicide
risk of a user from posts 30 days or 6 months prior
to a suicide attempt. The best-performing mod-
els used approaches such as weighted ensemble of
different machine learning classifiers (LR, Naive
Bayes classifiers, linear SVM) (Bayram and Ben-
hiba, 2021), LSTM architecture with topic mod-
elling and dictionary-based features (Gollapalli
et al., 2021) and Bayesian modelling of features
from Linguistic Inquiry and Word Count (LIWC)
(Pennebaker et al., 2001), behavioural information
or other features derived from already available or
custom dictionaries (Gamoran et al., 2021).

3 Data and Task A

We participate in Task A in the 2022 CLPsych
Shared Task, intending to capture the mood
changes of individuals in a given time window
based on their Reddit posts. The dataset for this
task was collected in Tsakalidis et al. (2022b). The
posts from Reddit’s mental health-related subred-
dits in a given time window (timeline) (Losada
et al., 2020; Losada and Crestani, 2016; Zirikly
et al., 2019a; Shing et al., 2018) were annotated by
four annotators on the basis of three labels hinting
at moments of change (Tsakalidis et al., 2022b):
none (O), escalation (IE), and switch (IS). A total
of 256 timelines and 6,205 posts are available for
Task A. Thus, given a user’s timeline, the aim is to
classify each post as either a ‘switch’ (IS), or an
‘escalation’ (IE) or ‘none’ (O).

Three metrics are used for evaluating the perfor-
mance of the models in Task A (Tsakalidis et al.,
2022b). Post-level evaluation calculates the tra-
ditional Precision, Recall, and F1 scores per post
and class, with the macro-average to get the final
score. Apart from the traditional post-level metric,
timeline-based scores are also used for the eval-
uation, given the sequential nature of Task A. In
the window-based evaluation, Precision and Re-
call scores are calculated based on whether correct
labels are in a certain time window. In the coverage-



based evaluation, Precision and Recall scores are
calculated based on the models’ ability to capture
regions of change.

4 Method

4.1 Text Representation

We experiment with several methods for encoding
the textual data, such as TF-IDF, GloVe embed-
dings and transformer-based representations.
Term Frequency–Inverse Document Frequency
(TF-IDF) As a baseline approach, we use TF-IDF
vectorization to model our data. We experiment
with different N-gram sizes and find that converting
text into TF-IDF matrix using unigrams only (N=1)
produces the best results.
Sentence Embeddings We experiment with pre-
trained models from the Sentence Transform-
ers library (Reimers and Gurevych, 2019) that
are not specifically fine-tuned on emotion data:
paraphrase-MiniLM-L6-v2 (Wang et al., 2020),
distilbert-base-uncased (Sanh et al., 2019), and
average_word_embeddings_glove.6B.300d (Pen-
nington et al., 2014). We chose these models based
on the small model size and computational effi-
ciency.
Emotion-Informed Embeddings Given the na-
ture of the task and the presence of different posi-
tive and negative emotions in the users’ timelines,
we posit that models fine-tuned on the emotion
detection task could provide better textual repre-
sentations for our data, by modelling both the lin-
guistic and emotion information found in users’
posts. We experiment with various text representa-
tions extracted using pre-trained transformer mod-
els fine-tuned on several datasets for emotion detec-
tion (Saravia et al., 2018; Mohammad et al., 2018;
Busso et al., 2008; Poria et al., 2019) provided by
Hugging face1. The models used in this work, that
were compatible with the Sentence Transformers li-
brary, are: bertweet-emotion-base 2 (fine-tuned ver-
sion of BERTweet (Nguyen et al., 2020) for emo-
tion detection), distilbert-base-uncased-emotion
3 (fine-tuned version of DistilBERT (Sanh et al.,
2019)), emoberta-base 4 (Kim and Vossen, 2021),
twitter_emotions 5 (fine-tuned version of MiniLM

1https://huggingface.co/
2https://huggingface.co/Emanuel/bertweet-emotion-

base
3https://huggingface.co/bhadresh-savani/distilbert-base-

uncased-emotion
4https://huggingface.co/tae898/emoberta-base
5https://huggingface.co/trnt/twitter_emotions

(Wang et al., 2020)), albert-base-v2-emotion 6

(ALBERT (Lan et al., 2019) fine-tuned), roberta-
base-emotion 7 and twitter-roberta-base-emotion 8

(RoBERTa (Liu et al., 2019) models fine-tuned for
emotion detection).

4.2 Models
For classifying the data using the different text rep-
resentation methods, we train several classical ma-
chine learning models for detecting the escalation
(IE) and switch (IS) in the dataset, including Lo-
gistic Regression (LR), Decision Trees (DT), Ran-
dom Forest (RF), Support Vector Machine (SVM),
the Adaptive Boosting (AdaBoost). We develop a
majority voting scheme over the predictions to re-
port the final labels for a user timeline. In order to
choose which machine learning classifier to use, we
experiment with multiple models trained on 70%
of the data and evaluate them using the remaining
held-out 30% of the data (the validation data). Our
final submissions were the top-performing models
evaluated on the validation data.

We perform a hyperparameter grid search for the
classification models that use the emotion-informed
embeddings to find the best hyperparameters for
these models. The search space used for grid search
can be found in Appendix A. We choose the best
performing classification model and the best hy-
perparameters for each method of representing the
input (based on the fine-tuned models for emotion
detection).

4.3 Submitted Runs
We submitted three runs for Task A using the fol-
lowing models:
Run 1: ensemble_without_emotion_features: We
use an ensemble method based on maximum vot-
ing on the classification results obtained from the
Adaptive Boosting Ensemble classifier using non-
emotion embeddings (TF-IDF and sentence embed-
dings).
Run 2: ensemble_with_all_models: We experi-
ment with the same ensemble method based on
maximum voting on the classification results ob-
tained from all our models (Run 1 and Run 3).
Run 3: ensemble_with_emotion_features: For the
third run, we use the ensemble method based on

6https://huggingface.co/bhadresh-savani/albert-base-v2-
emotion

7https://huggingface.co/bhadresh-savani/roberta-base-
emotion

8https://huggingface.co/cardiffnlp/twitter-roberta-base-
emotion



maximum voting on the predictions obtained from
the classifiers using as input the emotion-informed
embeddings. The ensemble was comprised of pre-
dictions from LR, SVM and AdaBoost classifiers
(the best performing models).

5 Results and Discussion

At the time of writing the paper, we do not have ac-
cess to the test data ground truth labels. Therefore,
we present the performance of our three ensemble
systems on the validation data and the official re-
sults from the task organisers on the test data. In
addition, we perform an error analysis by exploring
in more detail at the predictions of the models on
the validation data.

Post-Level Window-based Coverage-based
Run P R F1 P R P R
Run 1 0.52 0.55 0.53 0.55 0.61 0.39 0.49
Run 2 0.67 0.55 0.59 0.67 0.56 0.55 0.44
Run 3 0.64 0.55 0.58 0.67 0.58 0.49 0.45

Table 1: Macro Average of Validation Scores. Precision
(P), Recall (R), F1 score (F1) for post-level, window-
based (window=1), and coverage-based metrics.

Post-Level Window-based Coverage-based
Run P R F1 P R P R
Run 1 0.50 0.50 0.50 0.54 0.57 0.38 0.45
Run 2 0.48 0.46 0.46 0.51 0.51 0.33 0.38
Run 3 0.63 0.46 0.46 0.62 0.50 0.50 0.38
Baseline 1 0.55 0.50 0.49 0.38 0.42 0.50 0.54
Baseline 2 0.52 0.39 0.38 0.26 0.20 0.58 0.39

Table 2: Macro Average of Official Test Scores. Pre-
cision (P), Recall (R), F1 score (F1) for post-level,
window-based (window=1), and coverage-based met-
rics. Baseline 1 is a LR approach on TF-IDF features,
Baseline 2 is a BERT model trained on Talklife data
using focal loss.

5.1 Results
Nine teams participated in Task A of the 2022
CLPsych Shared Task. Our team ranked second
in the Precision-oriented Coverage-based Evalua-
tion, with a score of 0.499, whereas the score of
the top-ranking system was 0.506.

In Table 1, we present the results on the vali-
dation data for the identification of moments of
change. We report the macro-average of the scores
for the post-level, window-based and coverage-
based evaluation methods. Table 2 shows the of-
ficial results for the three runs and two baselines
provided by the organisers. Baseline 1 is an LR
model trained on TF-IDF features, and Baseline 2

is a BERT model trained on Talklife data (Tsaka-
lidis et al., 2022b) using focal loss (Lin et al., 2017).
All our runs surpass the baseline methods in the
window-based evaluation. The ensemble model
using as input the emotion-informed embeddings
(Run 3) has the highest Precision for the three
evaluation metrics, post-level, window-based and
coverage-based. In contrast, the ensemble from
Run 1 performs best in terms of Recall. Even if the
system from Run 2 is the best performing model
on the validation data, its performance is the lowest
when predicting on test data.

5.2 Error analysis

We perform a brief error analysis on the predictions
of our systems on the validation data. There are
cases when the user has a large number of posts in a
row labelled as escalations, and the model can iden-
tify most of them successfully. However, in some
cases, the model failed to identify the escalations.
Furthermore, in some cases, the model can recog-
nise the mood changes, but it fails to distinguish
whether the changes are escalations or switches.

The system also predicts false positives (IS or
IE) when the users mentions about someone close
who has suicide ideation or has depression in their
posts and do not talk about themselves (e.g., "my
friend talks about taking their own life with me",
"you suffer from depression", "I despise seeing you
suffer.9). To address this, we plan to incorporate
anaphora resolution techniques into the modelling
in the future.

There is a specific case when the system cannot
recognise a moment of change because it seems
a neutral text. However, it contains a mention
of klonopin10, a drug from the class of benzodi-
azepines, used for treating different phys ical and
mental health problems. This drug can cause ad-
diction and lead to overdose when combined with
other drugs or alcohol. To improve the identifica-
tion of mood changes in these special cases, addi-
tional knowledge related to specific medications
for mental health problems can be added to the
modelling.

It is worth mentioning that some of the errors
may stem from the difficulty associated with the
longitudinal labelling of data. It is generally hard
to determine what is an escalation of a mood and

9not actual examples from the dataset, but equivalent
sentences in order to maintain anonymity

10https://drugabuse.com/benzodiazepines/klonopin/
overdose/



what is a sudden switch. In one example of our
error analysis, our system (Run 2) classified several
posts in a row as IE (escalation) when the ground
truth labels were mostly O (no mood change) with
occasional IS (switch). This example shows that
a model performance can exponentially degrade
due to the connectivity of each data point to the
adjacent ones; IS (switch) is less likely to appear
if the preceding texts are not O (no mood change).
It would mean that if a model makes a mistake for
one post, the following predictions are likely to be
wrong accordingly (domino effect).

Moreover, there are instances where we agreed
more with the classification labels produced by our
system than the ground truth labels. For instance,
I’ve messed up a lot of stuff. (...) I am sorry. (...) I
am so sorry. (...)11 showed obvious signs of emo-
tional turbulence and can facilitate prominently in
understanding of the emotional underpinnings of
depressive symptoms (Kim et al., 2011); however,
the ground truth label was O (our system predicted
IE). As such, difficulty associated with the anno-
tation of longitudinal data could be addressed in
future research.

6 Conclusion

In this paper, we presented the system description
and results of team BLUE for the task of identify-
ing moments of change from the CLPSych 2022
Shared Task. We experimented with several text
representation methods, such as TF-IDF, sentence
embeddings (from pre-trained transformer mod-
els, GloVe) and emotion-informed embeddings (ex-
tracted from the pre-trained transformer models
fine-tuned for emotion detection). To identify the
mood changes, we trained several classical ma-
chine learning classifiers. We chose to submit
three ensemble systems based on maximum voting
on the best performing models (SVM, LR, Ad-
aBoost) with different inputs. Of the nine partici-
pating teams in Task A, our team ranked second in
the Precision-oriented Coverage-based Evaluation,
with a score of 0.499 (the top team had a score of
0.506). Our best run was an ensemble method of
SVM, LR, and AdaBoost classifiers using as input
emotion-informed embeddings that can model both
the linguistic and emotional information found in
users’ posts. Due to the Enclave data system’s tech-
nical difficulties, we have developed systems in

11not actual examples from the dataset, but equivalent
sentences in order to maintain anonymity

three working days after getting the data in our lo-
cal system. For future work, we plan to investigate
the dataset in detail and develop improved models
for identifying mood changes in longitudinal tex-
tual data and assess the suicide risk of social media
users.
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