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Abstract Wheat is one of the world’s three main crops, with global consump-
tion projected to reach more than 850 million tons by 2050. Stabilizing yield and
quality of wheat cultivation is a major issue. With the use of remote sensing and
non-invasive imaging technology, the internet of things (IoT) has allowed us to
constantly monitor crop development in agriculture. The output of such techno-
logies may be analyzed using machine-learning algorithms and image processing
methods to extract useful information for crop management assistance. Counting
wheat spikelets from infield images is considered one of the challenges related to
estimating yield traits of wheat crops. For this challenging problem, we propose
a density estimation approach related to crowd counting, SpikeCount. Our pro-
posed counting methods are based on deep learning architectures as those have the
advantage of being able to identify features automatically. Annotation of images
with the ground truth are required for machine learning approaches, but those
are expensive in terms of time and resources. We use Transfer Learning in both
tasks, segmentation and counting. Our results indicate the segmentation is benefi-
cial as focusing only on the regions of interest improves counting accuracy in most
scenarios. In particular, Transfer Learning from similar images produced excellent
results for the counting task for most of the stages of wheat development.
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1 Introduction

Object counting from images is a challenging problem that arises in a variety
of situations, including crowd surveillance [7, 35, 50], ecological census [4], and
counting blood cells in images [16].

Sometimes, the problem is framed in the context of counting objects in still
images [3, 4, 8] whereas in other cases, the problem involves counting moving
objects in videos [13].

Counting objects can be achieved by a number of approaches including count-
ing by detection [25, 46], segmentation [36] and approaches based on regression,
such as global regression [9, 15, 20], local regression [10], and density estimation
[23].

The approach we propose in this paper involves the use of a density estimation
method, a well-known technique in the context of crowd counting [23], and we
apply it to the complex problem of count spikelets in real infield wheat images.

Counting wheat spikelets task from infield images (as opposed to images cap-
tured in a controlled laboratory setting) presents some significant hurdles due to
their self-similarity, high volume per image, and extreme occlusion, as well as the
issues given by lighting and other imaging alterations.

Another challenge is that current methods for counting and related tasks in
image analysis often require manual feature identification before applying image
processing or machine learning techniques. This relies on expertise of the crop
specialists and thus the feature engineering approach may differ from one problem
to another.

An alternative powerful approach which we employ to avoid the feature identi-
fication problem is to apply deep learning to automatically extract useful features.
Deep learning is based on learning data representations through the application of
multi-layered neural networks, so features do not need to be identified beforehand.
Also, it can lead to a high degree of accuracy in image classification tasks [22].

Convolutional Neural Networks (CNNs), a subset of deep learning models, can
autonomously train their own features and generate distinct representations from
raw images, and have shown great promise in a variety of areas in computer vision
and plant phenotyping [42]. As a result of this, and because density estimation is
a structural problem (requiring a prediction for each pixel in the image), we tackle
the task using a Fully Convolutional Network (FCN) [26].

Furthermore, as data annotation requires us to extract ‘ground truth’ from
images, particularly in the context of complex counting problems, it is expensive
in terms of time and resources. Therefore, we employed Transfer Learning [34, 48]
to accomplish the task of density estimation because of a lack of time and resources.
This enables us to use already labelled images from other context to help build
our model. Transfer learning enhances the training set of images with additional
labelled images, which can be utilised to pre-train some of the parameters, thereby
improving the model fit and reducing training time.

Therefore, the contribution of this paper is as follows:

– We produce a high-quality high-resolution dataset that consists of three se-
quences : CQ 2015, CQ 2016, and CQ 2017. It represents three growing sea-
sons of four near isogenic lines (NILs) of bread wheat that were cloned at John
Innes Centre (JIC) [39, 40]. They were monitored by distributed CropQuant
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workstations [51] in real field environments and measured manually during the
key growth stages in wheat growing seasons from 2015 to 2017. Each sequence
is composed of 30 images divided into four key growth stages: booting, heading,
flowering and grain filling.

– Each sequence is annotated with two types of labels : the spike regions in each
image have been labelled and each spikelet in each image was annotated with
a dot at the centre. We make the data available through https://github.com/

tanh86/SpikeProject.
– We develop a deep learning solution (SpikeCount) to tackle the problem of

counting spikelets from infield images.
– We also investigate the efficacy of eliminating the background and isolating

the region of interests (ROI), which is the spike region in our case.
– We investigate whether the knowledge transferred from similar but yet sim-

pler images captured in a more controlled settings can improve application to
spikelet counting.

Note that this extends our previous work [2] where we first introduced and ex-
perimented with the counting approach, although in this paper we provide a more
robust dataset for validation, an enhanced deep learning solution and new com-
prehensive results. Furthermore, we provided details of our semantic segmentation
deep-learning pipeline in our previous paper [1].

The outline of this paper is as follows: Section 2 presents research that is relev-
ant to the problem and our methods. Section 3 summarises the datasets we used.
Section 4 presents the architecture of SpikeCount, details on the model optimisa-
tion and training procedures. Section 5 presents the full experimental setups of
this work. Section 6 describes the performance results of testing SpikeCount and
the interpretation for each experimental setup. Also, we discuss results of testing
SpikeCount for each growth stage. Finally, Section 7 presents our conclusions from
this experiments.

2 Related Work

2.1 Object Counting Methods

Counting objects can be achieved by a number of approaches, including for ex-
ample counting by detection of objects [4]. However, detection could be challenging
particularly if there are overlapping objects causing occlusion, differences in scale,
or a lack of detectable background between distinct objects. Detection of humans
is often used in crowd counting [25, 46] but humans can adopt many different pos-
tures which may make human body recognition more challenging. Segmentation
can be used in various ways to aid to the counting task. For instance, Chan et al.
[6] used foreground segmentation to segment the crowd into homogeneous groups
and applied regression to estimate the number of people in each group.

When the task is to count the number of instances of a particular object in an
image rather than detection, counting by regression may be easier due to the dif-
ficulty of the detection problem. Also, it may be the only way if the image suffers
from severe object overlapping or if the resolution of the image is low. Counting
by regression often maps image global and/or local features to the total number
of objects from the whole scene or various extracted parts of the scene. Extracting

https://github.com/tanh86/SpikeProject
https://github.com/tanh86/SpikeProject
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these features globally discards information about the location of the objects. Also,
an image level labelling is mandatory to represent the total number of objects for
training. Thus, it would require a very large number of labelled training samples,
which may not be available [23]. Unlike other counting regression methods that
use global region features, counting using density estimation regression incorpor-
ates the spatial information included in the objects. This would provide some
information about the location of the objects in the image. Regression on density
estimation learns a mapping from local features to pixel level densities. This en-
ables integral density estimation to be applied to any image region. In other words,
it is capable of calculating the density of any location inside an image. By applying
a normalised 2D Gaussian kernel to dot annotations, Lempitsky and Zisserman
[23] inferred density maps and utilised them as training ground truths. They then
developed a cost function for counting that minimises the distance between the
desired density map and the inferred ground truth. Subsequently, Fiaschi et al.
[12] utilised random forest regression, which optimises the training procedure to
predict the density map. Exploiting the advantage of integral density estimation
over any sub region of the image, a counting system was presented that estimates
object counts interactively [3].

Pham et al. [32] proposed a patch-based method to solve crowd density estim-
ation exploring structured learning using random decision forests. A fast density
estimation based visual object counting (DE-VOC) was presented which leveraged
the mapping between images and their corresponding density maps in two different
features spaces [45]. Xu et al. [47] proposed that using more image features can lead
to more robust crowd density estimation models. Also, they utilised more efficient
random projection forests to reduce the dimensionality resulting from traditional
random forests.

2.1.1 Counting using deep learning algorithms

Convolutional Neural Networks (CNN), which are capable of learning their own
features, are beginning to show real promise in the area of object counting [4, 8, 50].
Segúı et al. [38] argue that it is possible to learn to count using CNN focusing on the
multiplicity of the object of interest, without annotating the objects via detection
or bounding boxes. They achieve this in their CNN by using a two block structure,
with the first block made up of two or more convolutional layers which tries to
capture and represent the concept they are counting and a second block of fully
connected layers that produces the counts.

Arteta et al. [4] used foreground segmentation to aid the learning of density
estimation. They trained a segmentation map and a density map jointly to count
penguins. French et al. [13] used segmentation to count fish in a two stage pro-
cess:(1) foreground segmentation and (2) CNN edge detector to accurately segment
the severely occluded fish areas.

A recent work by Ren and Zeme [36] has used deep learning algorithms such
as Recurrent Neural Nets(RNNs) and CNN to adopt the visual attention that
humans use when counting. They locate and segment each object iteratively and
keep track of them.

Chattopadhyay et al. [8] explore applying deep learning to count different types
of objects in everyday scenes. They solve the counting problem by dividing it into
sub-problems on different cells in a non-overlapping grid and then adding the
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partial counts. They also take care of context across cells to improve their count.
However, they require annotated scenes as input with object bounding boxes and
they also require category wise counts for each type of object.

A problem in crowd counting is that small changes to the scene may make
the learned models useless for new data as models are often scene specific (e.g.
[44, 50]). For example, changes in lighting, resolution, distribution of crowds, and
perspective can make models poor in new scenes.There have been a number of
attempts to solve the problem of scale variation and perspective distortion [4, 50].

2.1.2 Object Counting in plant phenotyping

Counting the constituent parts of plants is a necessary and critical task in plant
phenotyping. For instance, TasselNet [27] was designed to count maize tassels in
images of infield maize crops taken between 2010 and 2015 in different places in
China. TasselNet performs local regression counting through the use of a deep
convolutional neural network-based technique. It was evaluated on eight test se-
quences and obtained positive outcomes. Also, three public plant counting data
sets and a new unmanned aircraft vehicle (UAV)-based data set of maize tassels,
wheat ears, and rice plants are used to test TasselNetV3 [28]. To increase model
performance, they employed guided upsampling and background suppression.

Another example of counting in plant phenotyping closer to our own applic-
ation is counting spikes and spikelets in wheat. Spikes and spikelets represent
important yield traits for wheat [24]. In this context, Pound et al. [34] developed
a multi-task deep learning model for counting and localizing wheat spikes and
spikelets with a 95.91 % and 99.66 % accuracy respectively using non-maximal
suppression (NMS). They tested the model using images of wheat crops taken in
a controlled environment inside a glasshouse. Thus, their task is similar to ours
but simpler, due largely to less fluctuation in a controlled laboratory environment
versus a real field image.

Additionally, Madec et al. [29] used two CNN-based models to evaluate count-
ing spikes from infield wheat crop images acquired by a UAV platform. The first
was Faster-R-CNN [37], an object detection model based on CNNs. The second
was a task-specific version of TasselNet [27], a CNN-based local regression model
designed for counting maize tassels in infield images. They concluded that both
models performed similarly well when tested on images of crops with a comparable
distribution of spikes to those used to train them. They discovered, however, that
when tested on images having more mature crops, Faster-RCNN outperformed
other models.

Fernandez-Gallego et al. [11] developed an image processing pipeline to count
and localise wheat spikes (also known as ears) by segmentation. They tested their
pipeline on infield durum wheat crops with two growth stages and reported high
success rate (over 90%) between algorithm count and manual (image based) counts.

Also, Hasan et al. [17] used an R-CNN object detector to solve the task of
counting spikes. They trained four different versions of R-CNN on images of infield
wheat at four distinct growth stages. They again observed good findings, with
detection accuracy ranging from 88% to 94% across several test image sets.
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3 Datasets

3.1 Wheat field experiments

The description of our data was already presented in our previous papers [1, 2]
but we include it here for completeness.

To evaluate key yield-related traits in UK bread wheat, we conducted field
experiments using four near isogenic lines (NILs) representing genetic and pheno-
typic variation with a similar genetic background known as“Paragon,” an elite UK
spring wheat that is also used in the Biotechnology and Biological Sciences Re-
search Council’s (BBSRC) Designing Future Wheat (DFW) Programme. The four
NILs include the Paragon wildtype (WT), Ppd (photoperiod insensitive), and Re-
duced Height (Rht) genes (semi-dwarf) genotypes cloned at the John Innes Centre
(JIC) [39, 40], which were monitored and measured manually during key growth
stages in wheat growing seasons from 2015 to 2017.

3.2 Image acquisition

The high-quality RGB image series used in this work were acquired during a
three-year field experiment from 1.5-metre-wide (5-metre-long) wheat plots. Four
CQ workstations were dedicated to conducting high-frequency (one image per
hour) and high-resolution (2592x1944 pixels) imaging in order to acquire target
yield-related trait expression. Each CQ workstation or terminal is comprised of
a single-board computer, climate sensors, a sensors integration circuit, an ima-
ging sensor, local storage, network components, a Debian operating system, and
a custom-written Python software package for cropping images and collecting cli-
mate data[52]. Between May and July, CQ devices generated about 60 GB of image
datasets encompassing three growing seasons (i.e. from booting ,GS41–GS49, to
grain filling stages ,GS71–GS77). For each growth season, 30 typical images were
chosen for phenotypic analysis using deep learning.

To maintain consistent contrast and clarity of wheat images under varying
lighting conditions in the field, the latest versions of the open-source picamera
imaging library [33] and Scikit-image [43] were used to automate white balance,
exposure mode, shutter speed, and calibration adjustments during image acquisi-
tion [52]. Using the Internet-of-Things-based CropSight technology, in-field image
datasets were synchronized with centrally stored data at Norwich Research Park
(NRP). Figure 1 illustrates examples of wheat plot images acquired by CQ work-
stations from 2015 to 2017 (in columns), indicating that the images selected for
yield-related trait analyses were taken under a variety of in-field illumination and
weather conditions, and included a variety of background objects throughout the
experiments.

3.3 Wheat growth dataset for training, validation, and testing

The images were acquired over three consecutive years and cover four important
growth phases (Figure 1). We chose the 2015 sequence to train the models due to
the this series having consistent clarity and contrast. The 2016 sequence is then
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Fig. 1: Wheat growth image series in the field collected by CropQuant workstations, from 2015
growing season to 2017 growing season, covering booting to grain filling growth stages

used to validate our learning model, and the 2017 sequence is used to test the
model. This training strategy provides a rather robust validation of our model’s
performance, as the unseen sequence in 2017 is used to assess the model’s gener-
alisation. Figure 2 depicts the distribution of selected images during each growing
season (30 images per year, 90 in total). Flowering has the most images (37 out of
90), followed by heading (22 images), grain filling phases (19 images), and booting
(12 images). The rationale for this arrangement is that the flowering stage cor-
responds to the phase during which spikes fully emerge, whereas wheat spikes are
typically buried during the booting and heading stages (i.e. GS41-598). It’s worth
noting that the 2015 sequence lacks booting images because to the transient nature
of wheat booting, which typically lasts 1-2 days. As such, it is an intriguing test
case for us to train a deep learning model that can segment spike areas gathered
over numerous years and at different stages of the ear emerging process (e.g., spikes
may only be partially developed) under tough in-field lighting conditions. Figure
3 illustrates a 2017 sequence image with associated labels, spike area masks, and
spikelet density maps.
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3.4 Wheat growth dataset Labelling

Using the UEA Computer Vision - Image Labelling Tool [14], we have manually
labelled images with polygonal labels for the segmentation task and dot annotation
for density estimation task. The tool runs as a web-based application and is written
in Python 2.7. All images that need to be labelled are stored in a certain folder.
Then, the tool detects and load these images. The tool provides a number of
options to label the image. We selected the polygonal option to trace the spike
shape. Once the tracing is done, we then select the appropriate label and then
the corresponding coordinates of polygons are stored in matched encoding file for
each image. For the density estimation task, we adjusted the tool to make the dot
annotation option - which are represented by a circle- by reducing the size of the
circle. The centre coordinates of each circle, representing each spikelet, are stored
in the corresponding encoding file for each image.

Fig. 2: The distribution of selected images in each growth stage between 2015 and 2017 growing
season, which are used for training, validation and testing when establishing the deep-learning ar-
chitecture
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Booting
(GS43- 47)

Heading
(GS51- 59)

Flowering or 
anthesis

(GS61- 69)

Grain filling
(GS71- 77)

Original Density Map GTMasks GT

Fig. 3: Wheat growth image series in the field collected by CropQuant workstations of the 2017
growing season, covering booting to grain filling growth stages and showing the corresponding spike
regions segmentation masks and density estimation maps

3.5 The Annotated Crop Image Dataset (ACID)

The Annotated Crop Image Dataset (ACID) [34], which is publicly available, has
520 images of wheat plants taken from 21 pots in a glasshouse at a resolution
of 1956 × 1530. Cameras with 12 MP are used to capture the images, which all
have a black background. The images represent a variety of spike arrangements
and leaves and were taken in uniform lighting. Additionally, dot annotations were
added to the images by placing a dot in the center of each spikelet. There are a
total of 48,000 spikelets in all images, and the average number of spikelets per
scene is 92.3, with a standard deviation of 28.52.

Figure 4 illustrates the similarities and differences between CropQuant and
ACID images. For example, all ACID images have a black background and consist-
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ent lighting whereas our images can contain a number of objects in the background
as well as parts of the sky, variations in lighting, wind conditions, etc. Neverthe-
less, their dataset of dot annotated wheat images, which is publicly available, may
be of use for our own models as the images represent the same physical entity as
we are studying and may be used within Transfer Learning.

(a) (b)

Fig. 4: Example of images from (a) ACID dataset and (b) CropQuant dataset

3.6 The protocol for training and validation

For training and testing, we randomly selected sub-images from the original im-
ages. We then follow a two-step high-level workflow:

1. Detecting Spike Regions using Semantic Segmentation, in which we first use
random sampling to extract patches from the original scene and corresponding
mask. Then, we train SpikeSEG [1] with a Fully Convolutional Neural Network
to learn non-linear transformations for segmenting spike regions. In the testing
phase, a window with the same size as the sampled patch is slid over the test
image, and SpikeSEG is used to generate a spike segmentation prediction map.

2. Spikelet Count Estimation Using density estimation, we begin by applying
random sampling to extract patches from the original or optimal scene images
without background and corresponding dot annotation. Second, we apply a
Gaussian smoothing filter (sigma = 2.5) to each dot to generate a spikelet
density that can be summed to one. Then, for each pixel, we train SpikeCount
to perform spikelet density regression. Finally, we perform an integral operation
(summation) over the entire map to obtain the spikelet count from a predicted
density map.

4 Methods

In this section, we are going to explain the problem statement, SpikeCount ar-
chitecture, the specification of model training including the cost function, the
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(a) (b) (c)

Fig. 5: An example of spikelets density generation where: (a) represents sub-image of a wheat crop,
(b) represents corresponding dot annotation and (c) the generated density map from the dot an-
notation

training hyperparameters, and the protocol of splitting the sequences into train-
ing, validation and test sets. Again some of this section was presented earlier as
part of preliminary published experiments [2] but we include it here for a complete
description of our method.

4.1 Problem Statement

We define the problem of spikelet counting mathematically. We model it as a
density estimation problem as follows. Given N input images I1, I2, ..., IN with a
size of H × W × D, in our cases representing infield wheat crop plots, for each
image, Ii, there is a corresponding dot map Pi that can be represented as a set
of 2D points Pi = {P1, ..., PSPCi

}, where |Pi| is the number of spikelets in image
Ii. Each point is placed at the centre of each spikelet as shown in Fig 5(b). To
generate the ground truth map GTi (shown in Fig 5 (c)), a 2D Gaussian kernel
N (p;P, σ212×2) is applied to the dot map Pi which generates a density for each
pixel p of image Ii. Therefore, the size of GTi is the same as the input image:
GTi = {DP1 , ..., DPH×W } where DPj is the generated density for the jth pixel in
image Ii.

By using the Gaussian kernel, it is possible to reflect the crowding around a
spikelet by updating the pixel’s density value using information about its neigh-
bours. In other words, the greater the spikelet occlusion in a region, the higher the
density values assigned to its pixels.

The total number of spikelets in a certain image Ii is the sum of all pixels
densities in density map:

|Pi| = SPCi =
∑
p∈Ii

Dp.

4.2 SpikeCount Architecture

To tackle the problem of spikelet counting, we employ a fully convolutional net-
work. Our architecture is represented in Figure 6. The last fully connected layers
attached in any CNN-based classifiers are converted to convolutions. This preserves
the semantics of target objects, which is critical for tasks requiring structural pre-
dictions (predictions for each pixel), such as segmentation, because converting
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those layers to convolutions provides information about target objects’ location
and shape. The FCN model is easily adaptable to address the issue of density
estimation because (1) it is a task that requires a structural target (pixel densit-
ies) and (2) density estimation can benefit from semantic recognition of the target
objects to be counted.

Our model, SpikeCount, is composed of a Very Deep Convolutional Network
(VGG16) (Fig. 6 conv1-P5), which is composed of two fully convolutional (Fig. 6
FC6 and FC7) layers and three upsampling layers. All convolutional layers have a
filter size of 3 times 3 with a stride of 1, while the max-pool layers have a pooling
size of 2 times 2 with a stride of 2. By adding two skip connections (Fig. 6 after P3
and P4), we can fuse local features associated with spikelets from lower layers with
shape and semantic features associated with wheat crops from higher layers. We
added upsampling layers to ensure that we recover the original image size that has
been reduced due to the application of repetitive convolutions and subsampling.

conv1 conv2 conv3 conv4 conv5
F
C
6

F
C
7

P1 P4P3P2 P5 Upsample
(FCN-32) 

Upsample 
(FCN-16) 

Upsample
(FCN-8) 

Score 

Score 
P 4

Score
P 3

Fig. 6: SpikeCount Architecture established for wheat spikelets density estimation regression.

4.3 SpikeCount Training

4.3.1 Cost Function

We found that using a pixel-wise L2 loss function for model optimisation gave the
best results to regress the per pixel density (Equation 1) where Dp

GTi
is the density

ground truth and Dp
predicted is the predicted density for a certain pixel p in image

Ii:

L =
∑
p∈Ii

(Dp
GTi
−Dp

predicted)2 (1)

4.3.2 Training hyperparameters

Hyperparameters need to be initialised before the training process starts. Then,
the training algorithm learns new parameters as part of the learning process [41].
A summary of the SpikeCount training hyperparameters values used in our study
follows:

– Weight θ (parameters) /Bias initialisation: We used He et al.’s [18] initialisa-
tion. This technique generates a mean centred normal distribution with stand-
ard deviation σ equal to

√
2/nl where nl is the number of inputs in a certain

layer l.
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– Dropout rate probability: We used two dropout layers, with a value of 0.5 for p,
which represents the probability of keeping the unit activation or not. This is
recommended when using layers with large numbers of units [41] such as FC6
and FC7. Therefore, the dropout is implemented after every fully convolutional
layer FC6 and FC7.

– Intermediate non-linearity unit: As a default, we have selected Rectified Linear
Unit (ReLu) for this parameter which is an element-wise thresholding operation
that is applied on the output of the convolutional layer (resulting feature map)
to suppress negative values: F(x)=max(0,x) where x is an element in the feature
map.

– Epochs: This refers to the number of training iterations, and is different from
one experimental setup to another.

– Optimisation algorithm: The weights are updated for every learning iteration
using mini-batch RMSprop optimising algorithm [19], which we selected be-
cause it worked better with the density estimation regression problem we have,
with a learning rate of 0.001. We have selected the initial learning rate by ex-
perimenting with lowest learning rate ( 1 × 10−5) and linearly increasing it
until we reached the optima, i.e. when we reach the lowest validation loss for
mini-batch of 20.

We trained the model using an early stopping technique. Early stopping enables
us to keep track of the validation learning for each learning epoch (e.g., cost and
accuracy). It is a straightforward and inexpensive method for regularising the
model and avoiding overfitting as soon as possible [5, 21]. We have chosen the
validation cost as the metric for determining when to stop early. The maximum
number of epochs used to observe the change in validation cost is 20. In other
words, after 20 epochs, if the validation cost has not decreased, the model training
is halted and the model weights with the lowest validation cost are saved.

5 Spikelet Number Estimation set-up

In order to help understand and evaluate the impact of different CNN learning
factors that can affect spikelets estimation, we have divided the experimentation
into different experimental setups. For all experimental setups, we test SpikeCount
on three sets of CQ 2016 and CQ 2017: Original, Optimal and Prediction for
2016 and 2017 image sets respectively. The “Original set” contains images with a
complete background, that is, no background is removed, which turned out to be
the hardest problem as may be expected. The “Optimal set” refers to images with
background removed according to the segmentation ground truth; this scenario
enables us to measure the quality of spikelet counting when the background is
eliminated completely so we can measure the effect of reducing the complexity of
the problem. However, it would require quality segmentation annotations for each
image, which may not be available in a “live” crop monitoring scenario. Finally,
the “Prediction set” refers to the segmented images when using the prediction of
the segmentation model proposed in [1]. This can give us an assessment of the
model performance of spikelets estimation relative to the segmentation quality of
SpikeCount. It would provide for a completely automated model which could be
employed in crop monitoring, but clearly overall quality will be affected by quality
of the segmentation model. On the other hand, the removal of the background
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even if not perfect would reduce complexity in respect to the Original set. Testing
on each set allows us to measure the model performance on specific scenarios.

Our experiments are as follows:

– Experiment 1: Training SpikeCount from Scratch - with these set of ex-
periments we try to understand how well the architecture does when trained
from scratch in a conventional way.

– Experiment 2: Training SpikeCount by loading ACID learnt weights The
aim of this experiment is to investigate whether high quality labelled wheat
images (ACID images) that are similar to our images but captured in more
controlled environment can aid the model learning and improve the overall
performance.
To conduct the experiments described in this paper, we first split the ACID
dataset into a training and validation set using the 80:20 split rule. Then, for
each set, we randomly sampled sub-images with a size of 512×512. Following
that, we manually selected 1241 sub-images containing spike regions from the
training set and 303 sub-images containing spike regions from the validation
set. For the Transfer Learning experiments, we trained the model on those
images for 100 epochs. As described previously, we then loaded parameters
learned during model training on the ACID dataset and continued fine tuning
the model using the CQ 2016 sequence Original images. For segmented images,
we repeated the experiments.

6 Results

After training SpikeCount on CQ 2015 and validating it on CQ 2016 we assess the
performance of the model for each experimental set using Original, Prediction and
Optimal for both CQ 2016 and CQ 2017. Similar to standard CNN approaches,
a form of sliding window (tiling) is used to validate performance on the 2016 and
then to test on the 2017 sequence. We scan the target wheat scene sequentially
with a window of a size equal to the subsampled patch size selected when training
the model with a fixed stride (step size) of s equal to the window size. For each
scanned region, the model is applied to predict for spikelet density estimation.
Then, the predicted sub-map will be copied in its appropriate location to create a
prediction map. The window size corresponds to the sub-image size that is chosen
by the experimental setting.

We will analyse the results of spikelet counting in general and in terms of each
growth stage as such breakdown may be important from a biological point of view.
To analyse the results for each sequence, we need to take the average number of
spikelets per growing season into context; these are 2027.50 spikelets for CQ 2016
and 2758.00 spikelets for CQ 2017. We also break down the counting results into
background and spike regions for Original and Prediction sets to have a closer look
at how the presence of background affects the model’s performance.

We evaluate the advantages of Transfer Learning using the additional images
in the ACID dataset (Experiment 2) by comparing that to training from scratch
(Experiment 1). Transferring knowledge from high quality labelled wheat images
(ACID images) that are similar to our images but captured in more controlled
environment can aid the model learning and improve the overall performance; the
additional annotated images can enhance our training set. Tables 1 and 2 present
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the results of testing SpikeCount on CQ 2016 and CQ 2017 respectively. In both
tables the results of training SpikeCount on CQ 2015 from scratch and loading
ACID learnt weights are compared.

Table 1 corresponding to the 2016 images shows that for the Original set,
the model performed better (results highlighted in bold) without the Transfer
Learning. When using Transfer Learning weights, the MSE increases by 30% with
respect to the values without Transfer Learning and the MAE increases by 26.43%.
On the other hand, SMAPE decreased in % value by 34 showing that for this
particular measure, performance is better with Transfer Learning.

Table 1: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows): training
SpikeCount from scratch and by loading ACID dataset learned parameters for the Original, pre-
segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on CQ 2016 images

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2709.92 2566.43 89.43 1112.86 1015.39 33.58 1904.82 1789.72 64.46
Loading ACID Weights 3864.54 3488.43 55.43 354.57 299.44 10.44 1718.22 1590.85 47.99

Abs. Difference 1154.62 922.00 34.00 758.29 715.95 23.14 186.6 198.87 16.47
Improvement as % 29.99 26.43 - 68.14 70.51 - 9.80 11.11 -

Similar to CQ 2016 results, the CQ 2017 results in Table 2 illustrates that for
the Original set the model performed better when trained from scratch on measures
of MSE and MAE. The MSE decreased by 31.87% and the MAE decreased by
32.25% with respect to values with Transfer Learning. SMAPE, on the other hand,
decreased by 33.4% when using Transfer Learning showing an improvement for this
particular measure.

Table 2: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percent-
age Error of estimating the number of spikelets for two experimental setups (displayed as rows):
training SpikeCount from scratch and by loading ACID dataset learned parameters for Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (dis-
played in columns) on CQ 2017 images

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3747.92 3414.08 93.90 1877.36 1643.33 43.35 2738.24 2461.06 73.67
Loading ACID Weights 5501.65 5039.17 60.46 876.56 658.15 18.00 2252.97 1993.42 54.49

Abs. Difference 1753.73 1625.09 33.44 1000.8 985.18 25.35 485.27 467.64 19.18
Improvement as % 31.87 32.25 - 53.3 59.95 - 17.72 19.00 -

To better understand performance, we analysed errors separately for both spike
and background regions. This is because the counts may be made of objects that
were missed or overestimated in the spike region, but also from objects that were
counted in the background region where the count should be zero. On aggregation
those may counteract each other so we looked at them separately. We only need
to do this for the Original and Prediction sets, since the Optimal set is supposed
to remove all the background. For the Original data, we found that the majority
of errors were made on the spike regions, though there are a few also in the back-
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ground region. However, for Experiment 2 when we apply Transfer Learning the
majority of errors are attributable to the background region. Hence, for Original
data we can see that the ACID features which contain a very constant background
may have a negative impact which translates into maximising the errors on the
background regions for our own images with a more complex background. That
may explain why Transfer Learning has a negative effect on the Original images for
both MSE and MAE measures. The ACID images aid with spike regions because
they contain similar detail and features which explains the decrease in SMAPE,
but they detract when it comes to counting on the background as they do not
add anything for this, having a black background with no objects. This effect is
not repeated in the Prediction set where the ratio of errors on the background
and spikelet areas is more proportional in both experiments 1 and 2. Note that
the Prediction set may have a reduced background area where the segmentation
algorithm has not produced particularly good segmentation results, and that in
itself would reduce background errors.

For the Optimal set with no background, according to Table 1 representing
CQ 2016, the MSE, and MAE have decreased by 68.14%, 70.51% respectively
with respect to values without Transfer Learning and there is also a decrease of
23.14% in SMAPE. Similar reductions of 53.3% for MSE, 59.95% for MAE and
25.35% for SMAPE are seen in Table 2 representing CQ 2017.

Among the three scenarios, eliminating the background completely, as in the
Optimal set, has resulted in the best performance for CQ 2016, only missing on
average 354.57 spikelets per image for MSE and 299.44 spikelets for MAE and
with a relative error of 10.44%. Eliminating the background with our model also
produces some gains with respect to the Original images. For CQ 2017, eliminating
the background completely has also resulted in the best performance with only
missing on average of 876.6 per image for MSE and 658.2 for MAE and with a
relative percentage error of 18%. It is clear that focusing the counting on the ROI
is important to obtain more accurate counting results.

It is clear also that for both CQ 2016 and CQ 2017 removing the background
completely as it is the case with the Optimal set allows the features learned from
the ACID dataset through Transfer Learning to have the most marked impact.
There is also a positive impact on the Prediction set but not as marked.

6.1 Phenotypic analysis Spikelets Estimation for Growth Stages

In this section, we briefly discuss spikelets estimation results from the perspect-
ive of wheat growth stages across the experimental setups. This is important
from a biological perspective as growth stages may present very different images
with varying numbers of spikelets. As mentioned previously, the wheat images for
CQ 2015, CQ 2016 and CQ 2017 were sampled from four different growth stages:
booting, Heading, Flowering, and Grain filling. To analyse the results for each
growth stage, we need to take the average number of spikelets per growth stage
and the number of images into the context.
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(a) Late Booting: GS47 (b) Late Booting: GS49 (c) start of Heading: GS51 (d) start of Heading: GS57

Fig. 7: The sequence of spike(ear) emergence at two growth stage Booting and Heading [30, 31]

6.1.1 G40-49: Booting

According to the Zadoka growth decimal scale [49], there are ten major cereal
growth stages with each growth stage divided into ten sub-stages [31]. Booting
(G40-49) is the fifth growth stage on the Zadoka growth decimal scale. It starts
after the stem elongation (G30-39). Booting growth stage starts with visibility of
flag leaf sheath (the uppermost leaf on the stem) which contains the spike (ear)
inside. So while the ear remains protected by the leaf sheath the stage is booting
[30]. Initially, a lower number of spikes may be visible but in late booting they
become more partially visible as shown in Figure 7.

There are only two wheat images in the booting growth stage in CQ 2016
with an average of 298 spikelets between them. On the other hand CQ 2017 has
five booting images. The last three images of the sequence have an average of
259 spikelets between them. However, for this early growth stage there are no
apparent spikes in the first two images of CQ 2017. On inspection, the wheat
scenes captured at this growth stage are complex as they are overwhelmed with
noisy background objects (i.e leaves) similar in colour and texture to the not so
many undeveloped and partially hidden spikes. Therefore, this growth stage will
be challenging particularly when testing Original sets.

Table 3 for CQ 2016 and Table 4 for CQ 2017 report on the experimental
setups for three sets: Original, Optimal and Prediction. Also, Figures 8 and 9
show visualisation of the spikelet density maps for the Booting stage of 2016/2017
image series.
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Table 3: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for the experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Booting growth stage of CQ 2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 673.17 662.24 99.80 195.98 187.88 45.42 555.07 543.19 98.55
Loading ACID Weights 1942.26 1925.73 99.67 179.06 177.64 45.37 741.20 719.47 97.13

Table 4: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for the experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Booting growth stage of CQ 2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 1165.53 1072.40 99.14 82.57 77.73 50.55 407.63 329.50 92.39
Loading ACID Weights 5944.61 5832.97 97.56 12.34 11.61 41.28 405.26 330.83 89.02

222.31

376.00

176.0
309.37

Original Optimal Prediction

GT density map

Fig. 8: Visualisation of the spikelets density maps for the Booting stage of 2016 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while
the second row shows the best resulting density map with predicted spikelets number(top right).
For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

Booting is a difficult stage to analyse because the background becomes very
prominent given the lack of spikelets in images. Therefore best results are ob-
tained when the background is removed completely (Optimal set) as that reduces
background errors. This is particularly the case with Transfer Learning as that
may help with spikelet identification given additional images from ACID. For the
Original set, training from scratch gives best results as that reduces background
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Original Optimal Prediction

GT density map
0.00

222.0516.13878.75

Fig. 9: Visualisation of the spikelets density maps for the Booting stage of 2017 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while
the second row shows the best resulting density map with predicted spikelets number(top right).
For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

errors while maintaining spike errors constant. For the Prediction set results are
more mixed.

6.1.2 G51-59: Heading

The Heading (ear emergence) is the sixth growth stage according to to the Zadoka
growth decimal scale [49]. The Heading stage is considered a key development
stage [31] which begins when the ear starts to emerge gradually from the flag leaf
sheath until fully emerged [30]. Two key sub stages are important to recognise: half
Heading, which is when 50% of the spike has emerged (G55), and full Heading when
the full spike has fully emerged (G59). Figure 7 (c) and (d) show two examples of
spike emergence in Heading stage.

There are seven wheat images in the Heading growth stage in CQ 2016 with
an average of 1464.40 spikelets. For CQ 2017, there are also seven Heading images,
which show more crowded spikelet scenes averaging 2970.12 spikelets per image.

The analysis of Heading growth stage for CQ 2016 and CQ 2017 is reported in
Table 5 and Table 6 respectively for three sets: Original, Optimal and Prediction.
In addition, Figures 10 and 11 show visualisation of the spikelet density maps for
the Heading stage of 2016/2017 image series.

For the Heading stage which has more spikelets to count in the images, best
results by far are obtained by removing the background (Optimal set) once again.
For the Original images, training from scratch gives good results for CQ 2016.
For the Prediction set, training from scratch is the best option for CQ 2016 but
Transfer Learning has improved the results for CQ 2017 in this stage .
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Table 5: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Heading growth stage of CQ 2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2212.95 2070.73 88.35 812.22 717.45 31.88 1718.51 1601.91 72.91
Loading ACID Weights 5135.41 4839.04 70.46 308.93 255.21 10.606 1912.97 1806.62 64.38

Table 6: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Heading growth stage of CQ 2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3788.10 3515.00 93.83 2061.41 1827.91 42.21 3024.86 2795.54 77.00
Loading ACID Weights 5757.32 5441.61 64.95 1245.19 1063.64 19.54 2785.21 2587.53 62.90

Original Optimal Prediction

GT density map
683.00

2205.27
(492.31,1712.96)

595.0879.77
(73.26,806.51)

Fig. 10: Visualisation of the spikelets density maps for the Heading stage of 2016 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while
the second row shows the best resulting density map with predicted spikelets number(top right).
For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

6.1.3 G61-69: Flowering (anthesis)

The Flowering is the seventh growth stage according to to the Zadoka growth
decimal scale [49]. The Flowering stage is considered an key development stage
[31] which begins after the Heading stage is complete and can be summarised
according to Pask et al. [31] as: “when the 50% of spikes have extruded at least
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Original Optimal Prediction

GT density map
702.00

1722.11562.23416.73

Fig. 11: Visualisation of the spikelets density estimation maps for the Heading stage of 2017 image
series. The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction
image while the second row shows the best resulting density map with predicted spikelets number(top
right. For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

one anther and [...] mid-anthesis (mid Flowering) is recorded when 50% of spikes
have extruded 50% of their anthers”.

For this growth stage we have more representatives with 12 wheat images in
CQ 2016 with an average of 2244.28 spikelets. For CQ 2017, there are 13 Flowering
images, which are more crowded, with spikelets counts averaging 3371.07 per image
as was exemplified in Figure 3.

Results for CQ 2016 are presented in Table 7 and for CQ 2017 in Table 8. Again
we report each time for three sets: Original, Optimal and Prediction. Figures 12
and 13 show visualisation of the spikelet density maps for the Flowering stage of
2016/2017 image series.

Table 7: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Flowering growth stage of CQ 2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2753.53 2709.59 88.20 1098.63 1050.07 30.20 1893.45 1846.88 57.43
Loading ACID Weights 3350.92 3066.16 47.06 406.91 357.91 8.11 1656.17 1546.81 38.85

For the Flowering growth stage we have more images and high number of
spikelets to count. Again, removing the background altogether, as we do for the
Optimal set, results in the best errors. For the Optimal set it is using ACID images
that results in the best performance in both years. For the Original set, loading
ACID weights has not improved the results for both years. For the Prediction set,
ACID weights gives the best results. The results of Optimal set are better than
the Prediction set results results (Tables 7 and 8).
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Table 8: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Flowering growth stage of CQ 2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3971.32 3920.14 92.19 2061.11 2016.67 42.58 2960.75 2915.79 67.57
Loading ACID Weights 5128.09 4679.23 50.28 831.05 713.41 11.63 2319.48 2230.08 41.91

Original Optimal Prediction

GT density map
2556.62

22782105.10410.53

Fig. 12: Visualisation of the spikelets density maps for the Flowering stage of 2016 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set while
the second row shows the best resulted density map with predicted spikelets number(top right).
For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

6.1.4 GS71-73: Grain filling

The Grain filling is the eighth growth stage according to to the Zadoka growth
decimal scale [49]. The Grain filling stage is considered a key development stage
[31] which begins after the Flowering stage is complete and is related to the de-
velopments of grains [30]. Our dataset for all sequences only contains sub stages
from G71 to G73 which are stages when most of Grains contain watery fluids [31].
There are 9 wheat images in the Grain filling growth stage in CQ 2016 with an
average of 2560.75 spikelets. For CQ 2017, there are 5 Grain filling images with
spikelets counts averaging 3454.62 as shown in Figure 3.

Results for this stage are reported in Table 9 for CQ 2016 and Table 10 for
CQ 2017 for three sets: Original, Optimal and Prediction. Also, Figures 14 and
15 show visualisation of the spikelets density maps for the Grain filling stage of
2016/2017 image series.
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Original Optimal Prediction

GT density map
2997.36

2834.242299.50406.79

Fig. 13: Visualisation of the spikelets density maps for the Flowering stage of 2017 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set while
the second row shows the best resulted density map with predicted spikelets number (top right).
For Original and Prediction images the counting is detailed as follows. Top is the total number
and bottom is predicted spikelet number within spike region and predicted spikelet number within
background when SpikeCount is tested on the corresponding image shown in the first row. The
ground truth density map and number of spikelets is presented rightmost.

Table 9: The Mean Squared Error, Mean Absolute Error, and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Grain filling growth stage of CQ 2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3201.12 3184.25 89.60 1413.25 1384.76 36.79 2161.81 2136.58 59.69
Loading ACID Weights 3510.72 3348.25 45.06 341.95 282.95 5.64 1724. 1675.39 36.52

Table 10: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows) of the
Original, pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images
(displayed in columns) on Grain filling growth stage of CQ 2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 4338.18 4298.70 93.22 2036.07 1979.84 39.74 2988.74 2942.03 66.16
Loading ACID Weights 4848.80 4617.84 43.56 802.25 593.29 9.07 2301.58 2208.93 40.87

Optimal is as always best as it removes background completely allowing the
algorithm to concentrate on the spike area. In this scenario, using ACID weights
gives best results. For the Original set, training from scratch has led to the best
results. For the Prediction set, using ACID weights gives best results for both
growing seasons.

6.2 computational cost

It is not feasible to test the model on a high resolution image (2592×1944) even
with a GPU cluster. Therefore, to reduce the computational cost, the testing
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123

Original Optimal Prediction

GT density map

2662.132391.001065.58

2693.51

Fig. 14: Visualisation of the spikelets density maps for the Grain filling stage of 2016 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set
while the second row shows the best resulting density map with predicted spikelets number(top
right). For Original and Prediction images the counting is detailed as follows. Top is the total
number and bottom is predicted spikelet number within spike region and predicted spikelet number
within background when SpikeCount is tested on the corresponding image shown in the first row.
The ground truth density map and number of spikelets is presented rightmost.

procedure as described previously was achieved using a form of sliding window
(tiling). The testing of each high-resolution image took on average less then 10
seconds using the sliding window approach. All experiments were done using High
Performance Computing Cluster supported by the Research and Specialist Com-
puting Support service at the University of East Anglia.

7 Conclusions

Counting spikelets from infield wheat crop images is a critical step in quantifying
yield traits that can be used to monitor wheat crop growth through automated
systems. This is a very challenging task given the variability, self-similarity, varying
backgrounds, severe occlusion, density, and changes in illumination etc. associated
with spikelets in real wheat images. In this paper, we introduced SpikeCount, a
fully convolutional network to count spikelets using a density estimation approach.
We have designed several experimental setups to evaluate the model performance
such as investigating the effect of transferring learnt features from wheat images
captured in controlled environment using Transfer Learning. We have also con-
ducted the evaluation on three variation sets (Original (images with background),
Optimal (images with predefined segmentation) and Prediction (the output pre-
diction from the segmentation model discussed in [1])) of two growing seasons 2016
and 2017.
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Original Optimal Prediction

GT density map
3749.44

123

53633315.891400.73

Fig. 15: Visualisation of the spikelets density maps for the Grain filling stage of 2017 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image
while the second row shows the best resulting density map with predicted spikelets number(top
right). For Original and Prediction images the counting is detailed as follows. Top is the total
number and bottom is predicted spikelet number within spike region and predicted spikelet number
within background when SpikeCount is tested on the corresponding image shown in the first row.
The ground truth density map and number of spikelets is presented rightmost.

From analysing the result, it is clear that isolating ROI, represented by eval-
uating on Optimal set, has led to the best results compared to Prediction and
Original for all experiments for both CQ 2016 and CQ 2017. The second best res-
ults are noted when evaluating on Prediction set. Not removing the background
as in Original set has resulted in the worse results which indicate that isolating
the ROI (i.e spike regions) plays an important role in solving this problem in this
context.

In terms of the best factor for the Optimal set, ACID Transfer Learning has
produced best results for CQ 2016 and CQ 2017 which indicates that the trans-
ferred features from the ACID parameters have important impact on helping to
extract the same traits from images with the same domain but captured in an
uncontrolled environment. This may have important implications for other plant
phenotyping problems where images captured on controlled or different environ-
ments may produce improvements in learning approaches.

Moving to the results of Prediction set, it is clear that employing ACID Transfer
Learning has a positive impact for both growing seasons. However, it did not
improve the results for the Original set as in this scenario the ACID images may
not improve prediction in the background areas, since they do not provide enough
information for those, leading to worse results. This shows that learning foreground
and background objects may require their own transfer learning examples for best
results.

Analysing the results based on growth stages of the Optimal set shows that for
more mature wheat images loading ACID weights has led to the best performance
for both 2016 and 2017 growing seasons. Regarding the Booting growth stage
in CQ 2017, initialising the model with ACID weights and continuing to train
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has improved the results of this stage. Finally, transferring ACID knowledge has
improve the Heading growth stage results for both seasons.

All in all, it is evident that both eliminating the background and transferring
the knowledge learnt from the ACID datasets has a significant effect on counting
spikelets from infield uncontrolled images. We conclude that our method, Spike-
Count is accurate in the context of very complex infield images and demonstrates
the power of deep learning for counting in complex plant phenotyping scenarios.

In further work, we will assess a multi-task learning approach which can lever-
age the segmentation map learning, for the task of spikelet counting.
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