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Abstract

In model theory, a branch of mathematical logic, we can classify mathematical

structures based on their logical complexity. This yields the so-called stability

hierarchy. Independence relations play an important role in this stability

hierarchy. An independence relation tells us which subsets of a structure

contain information about each other, for example: linear independence in

vector spaces yields such a relation.

Some important classes in the stability hierarchy are stable, simple and

NSOP1, each being contained in the next. For each of these classes there exists

a so-called Kim-Pillay style theorem. Such a theorem describes the interaction

between independence relations and the stability hierarchy. For example:

simplicity is equivalent to admitting a certain independence relation, which

must then be unique.

All of the above classically takes place in full first-order logic. Parts of it have

already been generalised to other frameworks, such as continuous logic, positive

logic and even a very general category-theoretic framework. In this thesis we

continue this work.

We introduce the framework of AECats, which are a specific kind of accessible

category. We prove that there can be at most one stable, simple or NSOP1-

like independence relation in an AECat. We thus recover (part of) the original

stability hierarchy. For this we introduce the notions of long dividing, isi-dividing

and long Kim-dividing, which are based on the classical notions of dividing and

Kim-dividing but are such that they work well without compactness.

Switching frameworks, we generalise Kim-dividing in NSOP1 theories to

positive logic. We prove that Kim-dividing over existentially closed models has

all the nice properties that it is known to have in full first-order logic. We also

provide a full Kim-Pillay style theorem: a positive theory is NSOP1 if and only

if there is a nice enough independence relation, which then must be given by

Kim-dividing.
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1

Introduction

Independence relations are a central notion in model theory. They go back to

Shelah’s notion of forking independence in stable theories [She90], which

generalises, for example, linear independence in vector spaces and algebraic

independence in algebraically closed fields. In a stable first-order theory forking

independence enjoys many nice properties. Later, in work of Kim and Pillay

[Kim98, KP97] it was shown that forking independence also satisfies most of

these nice properties in simple theories, a broader class than stable. In fact,

Kim proved in [Kim01] that certain nice properties, such as symmetry and

transitivity, always fail for forking independence in non-simple theories. Still,

examples were known of non-simple theories that admit a relatively nice

independence relation. For example infinite-dimensional vector spaces with a

generic bilinear form [Gra99], ω-free PAC fields [Cha02, Cha08], and

parametrised equivalence relations [CR16]. These turn out to be all NSOP1

theories, a class of theories that was introduced by Džamonja and Shelah

[DS04], which is more general than the class of simple theories. Inspired by

ideas from Kim [Kim09], Kaplan and Ramsey developed the notion of

Kim-independence [KR20]. Combined with some results following up on their

original paper, [KRS17, KR19], they proved that Kim-independence in NSOP1

theories satisfies all the nice properties that forking independence has in simple

theories, except for one called base-monotonicity.

The classes of stable, simple and NSOP1 theories form a hierarchy of

increasing generality. This is sometimes referred to as the stability hierarchy. Or

rather, a part of it, but it is the part that this thesis focuses on. Theories in

each of these classes admit a nice independence relation, where moving to a

more general class comes at the cost of certain properties that this

independence relation has. It turns out that the existence of a nice

independence relation actually characterises in which class a theory belongs.

This is called a Kim-Pillay style theorem, after a result by Kim and Pillay

[KP97, Theorem 4.2]. Roughly the statement is as follows:

A theory is simple if and only if it admits an independence relation

satisfying a certain list of properties. Furthermore, in this case that

relation is given by forking independence.
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Such a theorem tells us three things:

1. structure theory : assuming something about the complexity of the theory

involved (in this case, simplicity), there is a nice independence relation;

2. characterisation: having a nice independence relation says something about

the complexity of the theory (in this case that the theory is simple);

3. canonicity : there can be at most one such a nice independence relation.

A similar result was proved much earlier for stable theories [HH84]. For NSOP1

theories the characterisation part was already proved in [CR16, Proposition 5.8]

and it was later completed to a full Kim-Pillay style theorem in [KR20], with

respect to Kim-independence.

So far we only considered the classical setting of first-order logic. However,

there are many interesting classes of structures that do not fit in this framework.

There are more general logical frameworks that do allow us to study these classes.

For example, Banach spaces and Hilbert spaces can be studied in continuous logic

[BYBHU08]. There is also positive logic, which allows us to study for example

the existentially closed models of an inductive theory, such as existentially closed

exponential fields [HK21]. We can also use positive logic to study hyperimaginary

extensions, for example T heq for a first-order theory T , see section 2.2. Finally,

there is a very general category-theoretic approach via accessible categories, which

subsumes all the above frameworks.

Positive logic is a proper generalisation of full first-order logic where negation

is not built in, but can be added as desired. This is only slightly more general than

what Shelah called model theory of kind III in [She75], where he studied stable

theories. Later, work of Pillay [Pil00] and Ben-Yaacov [BY03a, BY03b] developed

the theory for forking independence in positive simple theories. For this, Ben-

Yaacov developed a framework called “cats” or “compact abstract theories”. He

proves that these are essentially positive theories [BYBHU08, Theorem 2.38].

Then there is the very general category-theoretic setting of accessible

categories. For a theory T (in full first-order logic), the category of models of T

with elementary embeddings forms an accessible category, but accessible

categories are much more general. For example, we can also obtain a category

of models from a positive theory, which will be an accessible category. Then

even more general, there is Shelah’s notion of AEC (abstract elementary class,

see e.g. [She09]), which is a class of structures with a choice of embedding,

satisfying a few axioms. Every AEC can naturally be seen as an accessible

category. Going in a different direction, we can consider the category of models

of a continuous theory. This will not be an AEC, but it is still an accessible

category. The cats we mentioned earlier turn out to be accessible categories in

practice. Even then, accessible categories are more general, they are generally
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the category of models of some infinitary theory with homomorphisms as

arrows, see [AR94, Theorem 5.35]. In [LRV19] Lieberman, Rosický and Vasey

studied stable independence relations in accessible categories and proved,

among other things, a canonicity theorem.

Very roughly, the contents of this thesis and its place the aforementioned

literature can be summarised in the following table, the work in this thesis

being contained in the three cells on the bottom right. Each cell describes

where a (partial) Kim-Pillay style theorem is developed for a given place in the

stability hierarchy (the row) and in a given framework (the column).

Full first-order logic Positive logic Accessible categories

Stable Harnik, Harrington,

Lascar, Shelah

[Las76, HH84,

She90]

Ben-Yaacov, Pillay,

Shelah [She75, Pil00,

BY03a, BY03b]

Lieberman, Vasey,

Rosický [LRV19]

Simple Kim, Pillay

[KP97, Kim98]

Ben-Yaacov, Pillay

[Pil00, BY03a,

BY03b]

Theorem 5.4

(canonicity)

NSOP1 Chernikov, Kaplan,

Kim, Ramsey

[Kim09, CR16,

KR20, CKR20]

Theorem 6.79, joint

with Jan

Dobrowolski

Theorem 5.6

(canonicity)

The work in [LRV19] was a big source of inspiration for the category-theoretic

results in this thesis. Still, our approach is slightly different. In [LRV19] an

independence relation is defined as a collection of commutative squares. This

has the benefit that it allows for a more category-theoretic study of the

independence relation. For example, assuming transitivity of the independence

relation, these squares form a category. In our approach we will define an

independence relation as a relation on triples of subobjects (see section 4.1). We

lose the nice way of viewing the independence relation as a category, but the

benefit is that the calculus we get is more intuitive and easier to work with.

Under some mild assumptions both approaches are essentially the same, in the

sense that we can recover one from the other, see Remark 4.17.

1.1 Main results

For the category-theoretic part we define a specific kind of accessible category, an

abstract elementary category, or AECat (Definition 3.2). This still covers all the

previously mentioned examples of accessible categories, so categories of models

in various logical frameworks and AECs (section 3.1). We then make sense of an

independence relation in such an AECat as a relation on triples of subobjects.
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We can then state the properties that such an independence relation can have

in category-theoretic language (section 4.1). This results in the definition of

stable, simple and NSOP1-like independence relations (Definition 4.9), by listing

the properties of independence relations that characterise those classes in the

classical first-order setting.

In the classical setting of first-order logic (and also positive logic) there is

also the notion of dividing, which is stronger than forking. In simple (and thus

in stable) theories forking and dividing coincide. For AECats we introduce the

notions of isi-forking and isi-dividing (section 4.4), which are closely related to

the original notions of forking and dividing. The definitions of isi-forking and

isi-dividing are such that they work well without any form of compactness. This

is necessary because generally we do not have compactness in AECats.

Theorem 5.4, paraphrased. Let (C,M) be an AECat with the amalgamation

property. Suppose that there is a simple independence relation in (C,M). Then

this independence relation is given by isi-forking and isi-dividing, which then

coincide.

As explained before, in NSOP1 theories we have to consider a different

notion of independence, namely Kim-independence. This is given by

Kim-dividing, which is stronger than dividing. Again we have to sidestep any

dependency on compactness, so we define a notion of long Kim-dividing

(Definition 4.47).

Theorem 5.6, paraphrased. Let (C,M) be an AECat with the amalgamation

property. Suppose that non-isi-forking sequences exist in (C,M) and that there is

an NSOP1-like independence relation in (C,M). Then this independence relation

is given by long Kim-dividing.

For a discussion about the assumption on the existence of non-isi-forking

sequences, we refer the reader to Example 4.50 (where this assumption has been

given the name “B-existence axiom”). All we say now is that it is a reasonable,

and necessary, assumption, already in the very concrete setting of full first-order

logic.

Similar to the classical setting, when isi-forking and isi-dividing coincide we

have that non-isi-forking sequences exist. This allows us to put the previous two

theorems together to get a canonicity statement. We recover the original stability

hierarchy, because any nice enough independence relation will tell us where in

the hierarchy the AECat fits and because by definition any stable independence

relation is also simple, and any simple independence relation is also NSOP1-like.

Theorem 5.7, paraphrased. Let (C,M) be an AECat with the amalgamation

property. Suppose that there is a simple or stable independence relation in

(C,M). Then any NSOP1-like independence relation will be the same relation.
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Furthermore, this unique relation is given by isi-forking, isi-dividing and long

Kim-dividing, which all coincide.

The category-theoretic results are (mainly) about canonicity of certain

independence relation. We do not link this independence relation to any

combinatorial properties. For example, in full first-order logic being stable

roughly means that we cannot find an infinite linear order in (a big enough

model of) that theory. So the structure theory and characterisation parts of a

Kim-Pillay style theorem are then about linking this combinatorial property to

the existence of an independence relation. We do mention that [LRV19]

explores such a link for stable independence relations in accessible categories,

and [GMA21] explores such a link for simple-like independence relations in

AECs. In this thesis we do not further explore this link for AECats, although it

is an interesting question (see section 7.2).

However, in positive logic we do explore the link with the combinatorial

property of being NSOP1. This is joint work with Jan Dobrowolski. Our work

can be summarised as a full Kim-Pillay style theorem (see below). So we do not

only prove the canonicity part (as in AECats), but we also prove the structure

theory and characterisation parts. Most of the work goes to proving that

Kim-independence in a positive NSOP1 theory satisfies all the nice properties

that it is known to have in full first-order logic.

We briefly mentioned this before, but in the definition of Kim-independence

the existence of non-forking sequences is essential. Kaplan and Ramsey solve this

in [KR20] by only considering types over models, and thus they develop Kim-

independence over models. This approach works because a type over a model

always extends to a global invariant type (in any theory). In positive logic this

is no longer true (see Example 2.24). However, under the very mild assumption

of thickness we can always extend a type over an existentially closed model to a

global Lascar-invariant type. This is enough to find the non-forking sequences we

were after. Thickness was introduced in [BY03c] for positive logic and it states

that being an indiscernible sequence is type-definable. Theories in full first-order

logic, and their hyperimaginary extensions, are always thick.

Theorem 6.79, paraphrased. Let T be a a thick positive theory. Then T is

NSOP1 if and only if there is an independence relation over existentially closed

models satisfying a certain list of properties. Furthermore, in this case that

independence relation is Kim-independence.

The “certain list of properties” is then of course the list of properties that

Kim-independence is known to have in NSOP1 theories in full first-order logic.

This is also the same list as what we call an NSOP1-like independence relation for

AECats (albeit stated slightly differently because of the different framework).
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1.2 Overview

We start by discussing some preliminaries in chapter 2. The necessary

background for positive logic and accessible categories is established there. We

also dedicate section 2.2 to the construction of hyperimaginary extensions in

positive logic.

In chapter 3 we introduce the framework of abstract elementary categories,

or AECats for short. We make sense of types in this setting through the notion of

Galois types. We also give a definition of something we call Lascar strong Galois

types, which are meant to play the role of Lascar strong types in the framework

of AECats.

In chapter 4 we define the notion of an independence relation in an AECat.

We list certain properties that it can have and using these we give the definition

of stable, simple and NSOP1-like independence relations. We also introduce the

notions of isi-dividing, isi-forking and long Kim-dividing in this chapter (section

4.4).

Chapter 5 is devoted to proving the canonicity theorems for independence

relations in AECats. Towards the end of the chapter we study the link between

Lascar strong Galois types and independence relations more closely.

We then switch frameworks. Chapter 6 is all about developing

Kim-independence in positive NSOP1 theories. This results in a full Kim-Pillay

style theorem.

Finally, in chapter 7 we make some final remarks and summarise some

questions that have been left unanswered.
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Preliminaries

The preliminaries can be divided in two major subjects. The first is positive

logic and the second is accessible categories. Both are frameworks in which we

can do model theory and both are more general than the classical setting of full

first-order logic.

In section 2.1 we start with the basic definitions for positive logic. Positive

logic is like full first-order logic, but we do not allow the negation symbol.

Through a process called Morleyisation we can always add as much negation as

we want in a positive theory (Remark 2.12). So full first-order logic can be

studied as a special case of positive logic.

We give all the basic definitions and discuss how we can make sense of a

positive variant of the usual notions and tools that we have in full first-order

logic. This includes compactness, types and a monster model. In this setup one

can already do some serious model theory, see for example [Pil00, BY03b]. We

also discuss some notions from [BY03a, BY03c] that are particular to positive

logic, namely that of being Hausdorff, semi-Hausdorff or thick. These notions

capture properties that types in full first-order logic always have, but that may

not hold in a positive theory. We provide examples and counterexamples for each

of these notions.

Positive logic allows us to study more classes of structures than we could

with full first-order logic, for example, the class of existentially closed structures

of some inductive theory (see subsection 6.10.2). Another important class arises

when we add hyperimaginaries as parameters to our monster model. Then we

leave the framework of full first-order logic, but we remain in the framework

of positive logic. This was the main motivation in [BY03a] to study positive

logic. We work out their construction for adding hyperimaginaries in far greater

detail in section 2.2. This allows us to prove that certain properties are invariant

under the operation of adding hyperimaginaries. We then obtain a whole class

of theories where the results in chapter 6 apply (see subsection 6.10.3).

The second framework we will discuss is that of accessible categories. The idea

in this approach is to study the category of models of some theory. For example,

this can be a theory in full first-order logic, positive logic or continuous logic.

The framework is much more general. For example, every abstract elementary
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class (AEC) can naturally be seen as an accessible category.

We will discuss the necessary background for accessible categories in section

2.3. We also provide concrete examples of the above mentioned cases. Later, in

chapter 3, we build on this to define a specific kind of accessible category, an

abstract elementary category, or AECat, which still covers all the above

mentioned cases.

2.1 Positive logic

In this section we will discuss positive logic. Positive logic is a proper

generalisation of full first-order logic. Most of this section already appears in

literature and most of it is standard. So we will omit proofs and just refer to

the relevant literature. The main references are [BY03a, PY18]. Also a lot

appears in [Hod93, Chapter 8], albeit in a technically slightly less general set

up, but the relevant techniques still work in the full generality of positive logic.

Incidentally, positive logic is also heavily studied in topos theory under the

name of coherent logic, see for example [MM94, Joh02]. As a side project I

explored this connection further from the perspective of type space functors, see

[Kam22]. This has not been included in this thesis.

Definition 2.1. Fix a signature L. A positive existential formula in L is one

that is obtained from combining atomic formulas using ∧, ∨, ⊤, ⊥ and ∃. An

h-inductive sentence is a sentence of the form ∀x(φ(x)→ ψ(x)), where φ(x) and

ψ(x) are positive existential formulas. A positive theory is a set of h-inductive

sentences.

We do not notationally distinguish between a single variable or element, or a

(possibly infinite) tuple. So the x in φ(x) generally denotes a tuple of variables.

Note that every positive existential formula φ(x) is equivalent to something of

the form ∃yψ(x, y), where ψ(x, y) is positive quantifier-free. Positive existential

sentences and their negations can be used as axioms in a theory, since ∀xφ(x)
and ∀x¬φ(x) are equivalent to ∀x(⊤ → φ(x)) and ∀x(φ(x)→ ⊥) respectively.

There is a good semantic reason for Definition 2.1. Positive existential

formulas are exactly those formulas whose truth is preserved by

homomorphisms of structures (see Definition 2.3). The h-inductive sentences

are precisely the sentences that are preserved under taking unions of chains

with respect to homomorphisms (or equivalently: directed colimits). That is, if

(Mi)i<λ is a chain of models of some positive theory T with homomorphisms

between them then M =
⋃
i<λMi is again a model of T [BY03a, Lemma 1.14].

Conversely, if T is a theory in full first-order logic such that its models are

closed under chains of homomorphisms then T is equivalent to a positive theory,

see e.g. [Hod93, Theorem 6.5.9].
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Since we will only be considering full first-order logic as a special case of

positive logic, see Remark 2.12, we will make the following convention.

Convention 2.2. Whenever we say “formula” or “theory” we will mean “positive

existential formula” and “positive theory” respectively, unless explicitly stated

otherwise. This also means that every formula and theory we consider will be

implicitly assumed to be positive (existential).

In full first-order logic we consider elementary embeddings because they

preserve and reflect truth of all first-order formulas. Since we do not have

negation in positive logic, there is a difference between preserving and reflecting

truth of positive existential formulas.

Definition 2.3. A function f : M → N between L-structures is called a

homomorphism if it preserves constant symbols, functions symbols and relation

symbols. That is:

(i) f(cM ) = cN for every constant symbol c;

(ii) f(gM (a)) = gN (f(a)) for every function symbol g and every tuple a ∈M ;

(iii) for any a ∈M and any relation symbol P we have that M |= P (a) implies

N |= P (f(a)).

In this case we also call N a continuation of M .

If f : M → N is a homomorphism then for every φ(x) and every a ∈ M we

have

M |= φ(a) =⇒ N |= φ(f(a)),

which immediately follows from induction on the complexity of the formula.

Definition 2.4. We call a homomorphism f : M → N an immersion if it also

reflects truth of all formulas. That is, if for every φ(x) and every a ∈M we have

M |= φ(a) ⇐⇒ N |= φ(f(a)).

Definition 2.5. We call a model M of T an existentially closed model or an e.c.

model if the following equivalent conditions hold:

(i) every homomorphism f :M → N with N |= T is an immersion;

(ii) for every a ∈M and φ(x) such that there is a homomorphism f :M → N

with N |= T and N |= φ(f(a)), we have that M |= φ(a);

(iii) for every a ∈ M and φ(x) such that M ̸|= φ(a) there is ψ(x) with T |=
¬∃x(φ(x) ∧ ψ(x)) and M |= ψ(a).
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See for example [PY18, Lemma 2] or [Hod93, Theorem 8.2.4] for the

equivalence of the conditions in Definition 2.5.

In positive model theory we study the e.c. models of a theory. A brief

category-theoretic motivation for this would be that the arrows between e.c.

models preserve and reflect truth of the formulas. A brief (equivalent) logical

motivation would be that e.c. models give a definite answer about the truth of

any formula for any of its elements. That is, its (positive) diagram is maximal.

Remark 2.6. Some literature also uses the term positively closed model or p.c.

model for Definition 2.5. It is good to be aware of the reason for this.

In older treatments of positive model theory, like [Hod93, Chapter 8] and

[Pil00], the focus is on just existential formulas. So formulas of the form ∃yφ(x, y)
where φ(x, y) is quantifier-free (possibly with negations). Then the h-inductive

sentences are precisely the ∀∃-sentences and homomorphisms are precisely the

embeddings of L-structures. The term “e.c. model” is then already defined in

that setting, so one might want to define “p.c. model” to emphasise the difference

in framework.

We can treat this setting in positive logic by introducing a relation symbol

R′ for every relation symbol R (including equality) in the language, and having

our theory express that R′ is the negation of R. This is an application of a

more general technique called Moreylisation, which is discussed in more detail in

Remark 2.12. Then the term “p.c. model” would specialise to “e.c. model”. In

line with our other terminology, we will reuse terms from more specialised settings

if the new definition coincides with the original definition when specialising to

that setting.

Fact 2.7. Let T be some theory.

(i) The union of a directed system of (e.c.) models is an (e.c.) model.

(ii) If one of M1 ← M → M2 is an immersion then there are M1 → N ← M2

making the relevant square commute. In particular, every e.c. model is an

amalgamation base.

(iii) For every M |= T there is a homomorphism f : M → N , where N is an

e.c. model of T .

Proof. These can all be found in [BY03a], as Lemma 1.14, Lemma 1.37 and

Lemma 1.20 respectively.

We have to be careful when using compactness. Because we are interested in

e.c. models, we are only interested in realisations in e.c. models. This means that

we can only use compactness for positive existential formulas. We will give the

proof of this, because it is instructive.
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Proposition 2.8 (Compactness). Let T be a theory and let Σ(x) be a set of

positive existential formulas. Suppose that for every finite Σ0(x) ⊆ Σ(x) there is

M |= T with a ∈ M such that M |= Σ0(a). Then there is an e.c. model N of T

with a ∈ N such that N |= Σ(a).

Proof. By the compactness theorem for full first-order logic we find a model M ′

of T and a′ ∈ M ′ such that M ′ |= Σ(a′). By Fact 2.7 there is a homomorphism

f :M ′ → N , where N is an e.c. model of T . Because Σ(x) only contains positive

existential formulas we have N |= Σ(f(a′)). So we set a = f(a′), which concludes

the proof.

To illustrate that we can generally not get more compactness, we consider the

following two examples.

Example 2.9. Consider the theory T with a symbol for inequality and ω many

disjoint unary predicates Pn(x). Then e.c. models of T are precisely those which

consist of ω-many disjoint infinite sets, one for each predicate. If we had full

compactness then the set

Σ(x) = {¬Pn(x) : n < ω}

would have a realisation in some e.c. model, which is impossible.

Example 2.10. It could happen that there is a definable set that is infinite

and bounded. This does not contradict compactness: it just means that

inequality is not positively definable on that set. Such situations might arise

when adding hyperimaginaries as parameters, which can be done in positive

logic (see Example 2.48), but we give a simpler example here.

The signature consists of ω many constant symbols cn. The theory T just

declares all these symbols to be distinct. There is precisely one e.c. model of T

(up to isomorphism), which consists of just (the interpretations of) the constant

symbols. So the trivial definable set x = x is bounded, but infinite. Again, with

full compactness we would run into trouble because

Σ((xi)i<ω1) = {xi ̸= xj : i < j < ω1}

would then yield a realisation with uncountably many elements.

Definition 2.11. We call a positive theory T Boolean if the following equivalent

conditions hold:

(i) every model of T is an e.c. model;

(ii) for every positive existential formula φ(x) there is positive existential ψ(x)

such that T |= ∀x(¬φ(x)↔ ψ(x));
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(iii) for every full first-order formula φ(x) there is positive existential ψ(x) such

that T |= ∀x(φ(x)↔ ψ(x));

(iv) every homomorphism between models of T is an elementary embedding.

The conditions in Definition 2.11 are essentially just as in [Hod93, Theorem

8.3.1], so the proof of their equivalence there applies here as well.

The name Boolean in Definition 2.11 is because it states that for T the

Lindenbaum-Tarski algebra of positive existential formulas forms a Boolean

algebra. In [Hay19] the name “positively model complete” is used instead,

referring to condition (iv) in Definition 2.11. While that name is also accurate,

we think the name Boolean is more descriptive.

In a Boolean theory the positively definable sets and definable sets in full

first-order logic coincide. So these are essentially the kind of theories that we

study in full first-order model theory. The following remark describes a process

to turn any theory in full first-order logic into a positive Boolean theory, showing

that we can indeed study full first-order model theory as a special case of positive

model theory. We will therefore often refer to Boolean theories as theories in full

first-order logic.

Remark 2.12. Let us recall the process of Morleyisation. We extend our

signature L to include a relation symbol Rφ(x) for every full first-order formula

φ(x) in L. We will construct a theory T expressing that ∀x(Rφ(x) ↔ φ(x)),

after which any full first-order axiom can be added in the form of some Rφ.

Clearly this yields a Boolean theory.

We do have to be careful, because φ(x) might be a very complex formula in full

first-order logic, so something like ∀x(Rφ(x)→ φ(x)) is not h-inductive. To solve

this, we add axioms to express ∀x(Rφ(x)↔ φ(x)) by induction on the structure of

φ(x). Only the induction step for negation is non-trivial and should also directly

make clear how this approach solves the issue. So suppose that φ(x) is of the

form ¬ψ(x). By induction hypothesis we have already expressed that Rψ(x) and

ψ(x) are equivalent. So φ(x) is equivalent to ¬Rψ(x). It is thus sufficient to

add the h-inductive sentences ∀x(Rφ(x)∨Rψ(x)) and ∀x¬(Rφ(x)∧Rψ(x)) to our

theory.

It should be clear from the above that we can perform the Morleyisation

process up to any level of complexity we wish. The application in Remark 2.6 is

an example of this.

Definition 2.13. Let M be an e.c. model, B ⊆ M and a ∈ M . Then the type

of a over B is defined as:

tp(a/B) = {φ(x) with parameters in B :M |= φ(a)}.
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In other words, it is a maximal consistent set of formulas with parameters in B.

A partial type over B is just any consistent set of formulas over B.

For a, a′ ∈M and B ⊆M with tp(a/B) = tp(a′/B) we will also write a ≡B a′.

Note that in the above notation, following Convention 2.2, a (partial) type, so

also tp(a/B), is a set of positive existential formulas. So once again we overload

the notation from full first-order logic, and in Boolean theories it coincides with

the original definition.

Now that we have a notion of type, the notion of indiscernible sequences

naturally translates to the positive setting.

Definition 2.14. Let I be an infinite linear order, M an e.c. model, B ⊆ M

and (ai)i∈I some sequence of compatible tuples in M . We say that (ai)i∈I is

B-indiscernible if for any i1 < . . . < in and j1 < . . . < jn in I we have

ai1 . . . ain ≡B aj1 . . . ajn .

Because e.c. models are generally not the same as just models of some theory

there can be h-inductive sentences that are true in all e.c. models, but fail in some

models, see Example 2.17. Such sentences can be added to the theory without

changing the class of e.c. models. It will be useful to give the maximal theory

that we obtain in this way a name.

Definition 2.15. Let T be a theory. We write

T ec = {χ an h-inductive sentence :M |= χ for every e.c. model M of T}

for the theory of all h-inductive consequences of e.c. models of T .

Fact 2.16 ([PY18, Section 3.1]). For any positive theory T the theories T and

T ec have the same e.c. models.

Example 2.17. Even though T and T ec have the same e.c. models, they may not

have the same consequences and thus different models. A concrete example of

this would be to consider the theory T with a symbol for inequality (and asserting

that it is indeed inequality). Then models are just sets and homomorphisms are

just injective functions. The e.c. models are precisely the infinite sets. So for

every n we have that T ec expresses “there are at least n elements”, which can be

done by an h-inductive sentence because we have inequality. This can clearly not

be a consequence of T , because the finite sets are also models of T .

The following definitions, except for being Boolean, are taken from [BY03c].

These assumptions are very useful for developing (neo)stability theory for

positive logic, while the weaker ones—thickness, and even being

semi-Hausdorff—are relatively mild.
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Definition 2.18. Let T be a positive theory. We call T :

� Boolean if every formula in full first-order logic is equivalent to some positive

existential formula, modulo T (or any of the equivalent statements from

Definition 2.11);

� Hausdorff if for any two distinct types p(x) and q(x) there are φ(x) ̸∈ p(x)
and ψ(x) ̸∈ q(x) such that T ec |= ∀x(φ(x) ∨ ψ(x));

� semi-Hausdorff if equality of types is type-definable, so there is a partial

type Ω(x, y) such that for any a, b in some e.c. model M we have tp(a) =

tp(b) if and only if M |= Ω(a, b);

� thick if being an indiscernible sequence is type-definable, so there is a partial

type Θ((xi)i<ω) such that for any sequence (ai)i<ω in some e.c. model M

we have that (ai)i<ω is indiscernible if and only if M |= Θ((ai)i<ω).

The reason for the name Hausdorff is that this corresponds to the type spaces

being Hausdorff, where formulas correspond to closed sets.

We mentioned Boolean theories in Definition 2.18 again because they fit

very well in the hierarchy mentioned there, as is apparent from the following

proposition.

Proposition 2.19. Boolean implies Hausdorff implies semi-Hausdorff implies

thick.

Proof. This is already mentioned in [BY03c], but the proof is omitted. We give

it here for completeness’ sake.

Boolean implies Hausdorff. Let p(x) and q(x) be distinct types. Pick any

φ(x) ∈ q(x) such that φ(x) ̸∈ p(x). Because the theory is Boolean there must

be ψ(x) that is equivalent to ¬φ(x), modulo the theory. So we have ψ(x) ̸∈ q(x)
while also T |= ∀x(φ(x) ∨ ψ(x)), so in particular T ec |= ∀x(φ(x) ∨ ψ(x)), as

required.

Hausdorff implies semi-Hausdorff. Define

Ω(x, y) = {φ(x, y) : for all a, b in some e.c. model M with tp(a) = tp(b)

we have M |= φ(a, b)}.

Let a, b be arbitrary in some arbitrary e.c. model M . By construction we have

that tp(a) = tp(b) implies M |= Ω(a, b). For the other direction we prove the

contrapositive. So suppose that tp(a) ̸= tp(b). Because the theory is Hausdorff

there are φ(x) ̸∈ tp(a) and ψ(x) ̸∈ tp(b) such that T ec |= ∀x(φ(x) ∨ ψ(x)). The

latter means that by definition of Ω(x, y) we then have (φ(x) ∧ φ(y)) ∨ (ψ(x) ∧
ψ(y)) ∈ Ω(x, y). The former means thatM ̸|= (φ(a)∧φ(b))∨(ψ(a)∧ψ(b)), hence
M ̸|= Ω(a, b), as required.
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Semi-Hausdorff implies thick. Define the partial type Θ((xi)i<ω) as:⋃
{Ω(xi1 , . . . , xin ;xj1 , . . . , xjn) : n < ω, i1 < . . . < in < ω, j1 < . . . < jn < ω}.

Here Ω(xi1 , . . . , xin ;xj1 , . . . , xjn) is the partial type expressing that xi1 , . . . , xin

and xj1 , . . . , xjn have the same type, which exists by the semi-Hausdorff

assumption. So Θ((xi)i<ω) expresses that any two finite subsequences of (xi)i<ω

of the same length have the same type, and hence it expresses

indiscernibility.

We also mention the following useful characterisation of Hausdorff theories,

taken from [PY18, Section 3.5].

Definition 2.20. We say that a theory T has the h-amalgamation property or

APh if for any span M1 ← M → M2 of homomorphisms between models of T

there is an amalgam of homomorphisms M1 → N ←M2 with N |= T .

Fact 2.21 ([PY18, Theorem 8]). A theory T is Hausdorff precisely if T ec has

APh.

We now consider some examples to show that none of the implications in

Proposition 2.19 are reversible.

Example 2.22. We give an example of a Hausdorff non-Boolean theory.

Consider a signature L with four unary relation symbols: P1, P2, Q and Q′. Let

M be an L-structure with underlying set {a, b, c} such that P1(M) = {a, b},
P2(M) = {b, c}, Q(M) = {b} and Q′(M) = {a, c}. We take T to be the set of all

h-inductive L-sentences that are true in M . Then T specifies that there are at

most three elements because it contains the sentence ∀x1x2x3x4
∨
i ̸=j xi = xj . It

also specifies that there are three elements and what unary relation symbols

they each satisfy, from which it follows that these three elements are distinct.

For example, T contains the sentences ∃x(P1(x) ∧ Q(x)) and

∀xy(P1(x) ∧Q(x) ∧ P1(y) ∧Q(y)→ x = y). In other words, T determines M up

to isomorphism so in particular M is an e.c. model and T = T ec.

Because T = T ec determines M up to isomorphism it has APh and is thus

Hausdorff by Fact 2.21. However, T is not Boolean because the set ¬P1(M) = {c}
is not positively definable. This is easily seen by verifying that every positively

existential formula is equivalent to a positive quantifier free formula (modulo T ).

The above example is specifically constructed to be Hausdorff and

non-Boolean. A more interesting example would be the theory of existentially

closed exponential fields, studied in [HK21], see Proposition 6.98 and the

discussion afterwards.
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Example 2.23. We give an example of a semi-Hausdorff non-Hausdorff theory.

This is essentially [PY18, Example 4]. Let our signature consist of ω many

constants cn and let T express cn ̸= ck for all n ̸= k. There is then only one e.c.

model (up to isomorphism), namely ω with cn interpreted as n. Then for any

tuples a and b we have a ≡ b if and only if a and b are equal to the same tuple

of constants if and only if a = b. So T is semi-Hausdorff. To show that T is not

Hausdorff we show that APh fails for T ec. By (positive) quantifier elimination

one quickly sees that T ec does not specify anything more than T does, so up to

logical equivalence they are the same. Let M be ω together with one extra point

∗, which is then a model of T ec. We define a homomorphism f1 : M → ω by

taking the identity on ω and setting f1(∗) = 1. Similarly we define f2 : M → ω

with f2(∗) = 2. The span ω
f1←−M f2−→ ω cannot be amalgamated.

Example 2.24. We give an example of a thick theory that is not semi-Hausdorff.

The construction is taken from [Poi10, section 4]. Consider the signature L with

unary relation symbols Pn and P ′
n for all n < ω, and a binary relation symbol R.

We define the L-structure M = {an, bn : n < ω} as follows. The interpretation of

Pn is {an, bn} and P ′
n is the complement of Pn. We take R to be the symmetric

anti-reflexive relation {(an, bn), (bn, an) : n < ω}, so R is the inequality relation

on each Pn. Let T be the h-inductive theory of M . Then M is an e.c. model of

T . There is a maximal e.c. model N of T given by N = M ∪ {aω, bω}, where
N |= P ′

n(aω) ∧ P ′
n(bω) for all n < ω and also N |= R(aω, bω) ∧R(bω, aω).

Since N is maximal, the only indiscernible sequences are the constant ones.

So T is a thick theory. However, T is not semi-Hausdorff. By [BY03c, Lemma

3.11] every type over an e.c. model M in a semi-Hausdorff theory extends to

a global M -invariant type. It was observed by Rosario Mennuni that in T the

type tp(aω/M) does not extend to a global M -invariant type, hence T cannot be

semi-Hausdorff. To see this, suppose that there is a global M -invariant extension

q ⊇ tp(aω/M). Then either q = tp(aω/N) or q = tp(bω/N). So since aω ≡M bω

we must have by M -invariance that R(x, aω) and R(x, bω) are both in q. The

only realisations possible of q are aω and bω, so this contradicts the fact that

T |= ∀x¬R(x, x).

Example 2.25. In [BY03b, Example 4.3] the theory of ultrametric spaces with

distances in N is discussed. We will not work out the details, but this is an

example of theory that is not thick. An explanation of why this is, is given at

the start of section 1 in [BY03c].

In full first-order logic we usually work with complete theories. This translates

to the following notion in positive logic.

Definition 2.26. We say that a theory T has the joint embedding property or

JEP if the following equivalent conditions hold:
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(i) for any two models M1 and M2 there are homomorphisms M1 → N ←M2

with N |= T ;

(ii) if T |= ¬φ ∨ ¬ψ then T |= ¬φ or T |= ¬ψ.

See for example [PY18, Section 3.6] for more details. For a Boolean theory T

the joint embedding property is equivalent to the theory being complete.

In model theory it is convenient to work in a monster model (some authors

use the term universal domain). As is usual, we leave the notion of ‘small’ a bit

vague and up to the set-theoretic framework that the reader wants to assume.

For example, one could fix some inaccessible cardinal κ and then ‘small’ means

‘< κ’. A different approach would be to fix a cardinal larger than any model or

set involved. A monster model M is then an e.c. model that is:

� very homogeneous: any partial immersion f : M → M with small domain

and codomain extends to an automorphism on all of M;

� very saturated : any finitely satisfiable small set of formulas over M is

satisfiable in M.

Assuming JEP, it directly follows that for any small model M there is a

homomorphism M →M, which is of course an immersion if M is an e.c. model.

The exact construction of such a monster model depends on the notion of

smallness that the reader chooses, but the usual proofs go through in positive

logic as well.

Fact 2.27. If T has JEP then there is a monster model M.

The JEP assumption is merely convenient. We can always ‘refine’ a theory

to one that has JEP and then just consider a monster model for each such

‘refinement’.

For the rest of this section we will work in some monster model M, and thus

follow the following convention. This implicitly assumes that the theory T has

JEP.

Convention 2.28. Whenever we work in a monster model M of T , we will

simplify notation as follows. All sets and tuples will assumed to be ‘small’ with

respect to M. We will use lowercase Latin letters a, b, . . . for (possibly small

infinite) tuples inside the monster model and uppercase Latin letters A,B, . . . for

(small) parameter sets inside the monster model. We will use letters M and N

when these sets are e.c. models. We will also omit M from the notation. For

example, we write |= φ(a) instead of M |= φ(a).

Definition 2.29. Let B be some set of parameters. We write Aut(M/B) for the

group of automorphisms on M over B. That is, automorphisms f : M→M that

fix B pointwise.
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By homogeneity of the monster model we have tp(a/B) = tp(a′/B) if and

only if there is f ∈ Aut(M/B) such that f(a) = a′.

Definition 2.30. Let a, a′ be two tuples and let B be any parameter set. We

write dB(a, a
′) ≤ n if there are a = a0, a1, . . . , an = a′ such that ai and ai+1

are on a B-indiscernible sequence for all 0 ≤ i < n. The minimal n such that

dB(a, a
′) ≤ n is called the Lascar distance over B between a and a′. If there is

no such n, we say that the Lascar distance is infinite.

Fact 2.31 ([BY03c, Proposition 1.5]). A theory is thick if and only if the property

“dB(x, x
′) ≤ n” is type-definable over B for all B and n < ω.

In full first-order logic having the same type over a model implies that the

Lascar distance is at most two. In fact, the same holds in semi-Hausdorff theories.

Fact 2.32 ([BY03c, Proposition 3.13]). In semi-Hausdorff theories we have that

if a ≡M a′, where M is an e.c. model, then dM (a, a′) ≤ 2.

In thick theories this is no longer necessarily true, as we will see in

Example 2.33 below. The solution is to work over models that are saturated

enough, as we will prove in Proposition 2.39. Before we do that we first need to

recall a few definitions and tools.

Example 2.33. We continue Example 2.24. We have there that M is an e.c.

model and that aω ≡M bω. Since the only indiscernible sequences are the constant

ones, we have that the Lascar distance between aω and bω (over M) is infinite.

So we see that outside the semi-Hausdorff setting having the same type over an

e.c. model no longer guarantees having finite Lascar distance.

There are some subtle differences in possible definitions of saturatedness, see

for example [PY18, Section 2.4]. We are only interested in e.c. models, so for us

it will mean the following. Constructing models of a certain level of saturation is

then standard (see e.g. [TZ12, Lemma 6.1.2]).

Definition 2.34. Let M be an e.c. model of some theory T . We say that M is

κ-saturated if for every A ⊆M with |A| < κ we have that a set Σ(x) of formulas

over A is satisfiable in M if and only if it is finitely satisfiable in M .

Fact 2.35. For any κ ≥ |A|+ |T | there is a κ+-saturated N ⊇ A with |N | ≤ 2κ.

We will actually make a slight improvement by considering a weaker notion

of saturation.

Definition 2.36. We call an e.c. model M finitely λ-saturated if for every finite

tuple a ∈M there is a λ-saturated e.c. model M0 ⊆M with a ∈M0.
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Clearly every λ-saturated e.c. model is also finitely λ-saturated. The point

of this definition is that the class of finitely λ-saturated models is closed under

unions of chains. This will be relevant later on, see Remark 3.21.

Fact 2.37 ([BY03b, Lemma 1.2]). Let B be any parameter set, κ any cardinal

and λ = ℶ(2|T |+|B|+κ)+. Then for any sequence (ai)i<λ of κ-tuples there is a B-

indiscernible sequence (a′i)i<ω such that for all n < ω there are i1 < . . . < in < λ

with a′1 . . . a
′
n ≡B ai1 . . . ain.

Definition 2.38. For a theory T we write λT = ℶ(2|T |)+ .

The significance of λT is that given any sequence of length λT of finite tuples

and any finite set of parameters B, we can find a B-indiscernible sequence based

on it by Fact 2.37, which we will directly use in the following proposition.

Proposition 2.39. Let T be a thick theory and let M be a finitely λT -saturated

e.c. model. Then a ≡M a′ implies dM (a, a′) ≤ 2.

Proof. By thickness, dM (x, y) ≤ 1 is M -type-definable. Let φ(x, y) be a finite

conjunction of formulas in dM (x, y) ≤ 1. It is enough to show that φ(x, a) ∧
φ(x, a′) is satisfiable, because then the partial type “dM (x, a) ≤ 1 and dM (x, a′) ≤
1” is finitely satisfiable.

Since φ is just a formula, we may as well assume a and a′ to be finite. Let

m denote the (finite) part of M that appears in φ. Let M0 ⊆ M be such

that M0 is λT -saturated and a, a′,m ∈ M0. Then there is a sequence (ai)i<λT
in M0 such that ai(aj)j<i ≡m a(aj)j<i for all i < λT . Using Fact 2.37 we

then find m-indiscernible (a′i)i<ω based on (ai)i<λT . So |= φ(a′0, a
′
1), and thus

there are i0 < i1 < λT such that |= φ(ai0 , ai1). By construction we have that

ai1ai0 ≡m aai0 , so |= φ(ai0 , a). Since a ≡M a′ and ai0 ∈ M0 ⊆ M we also have

|= φ(ai0 , a
′), and we are done.

Definition 2.40. Let T be a thick theory. We say that a and a′ have the same

Lascar strong type over B, and write a ≡Ls
B a′ if the following equivalent conditions

hold:

(i) dB(a, a
′) ≤ n for some n < ω;

(ii) for each bounded B-invariant equivalence relation E(x, y) we have E(a, a′);

(iii) for some n < ω, there are finitely λT -saturated e.c. models M1, . . . ,Mn,

each containing B, and a = a0, . . . , an = a′ such that ai ≡Mi+1 ai+1 for all

0 ≤ i < n.

We write Lstp(a/B) for the ≡Ls
B -equivalence class of a.
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Conditions (i) and (ii) from Definition 2.40 are in fact equivalent in any

positive theory, see for example [Pil00, Lemma 3.15] or [BY03b, Lemma 1.38].

The implication (i) =⇒ (iii) also holds in every positive theory. To see this, let

a and a′ be on some B-indiscernible sequence I. Let M ′ be any finitely

λT -saturated e.c. model containing B. By Fact 2.37 and an automorphism we

find M ≡B M ′ such that I is M -indiscernible. The converse (iii) =⇒ (i)

follows from Proposition 2.39. By Fact 2.32 we can delete “finitely

λT -saturated” from (iii) in semi-Hausdorff theories.

Definition 2.41. Let Autf (M/B) be the group generated by⋃
{Aut(M/M) :M is a finitely λT -saturated model and B ⊆M}.

We call its elements Lascar strong automorphisms.

In a thick theory we have a ≡Ls
B a′ if and only if there is f ∈ Autf (M/B) such

that f(a) = a′.

2.2 Hyperimaginaries

We have already seen different examples of positive theories. There is one

important class of examples, namely theories that arise from adding

hyperimaginaries as real elements. It is well known that by doing so we leave

the framework of full first-order logic, for example because we can get a

bounded infinite definable set (Example 2.48). However, we do stay within the

framework of positive logic. We show that adding hyperimaginaries as real

elements does not essentially change anything. So working with

hyperimaginaries in positive logic requires no special treatment.

The construction in this section is based on [BY03a, Example 2.16], but we

work things out in far greater detail. This then allows us to prove that certain

properties are invariant under adding hyperimaginaries, see for example

Theorem 2.46 and Theorem 6.102.

We fix the following things throughout the rest of this section. A positive

theory T in a signature L with monster model M. For simplicity we assume L is

single sorted (extending this to the multi-sorted setting is straightforward). Let

E be a set of partial types (over ∅) E(x, y), where x and y are (possibly infinite,

but small) tuples of variables, such that each E defines an equivalence relation

in M.

Definition 2.42. We define the hyperimaginary language LE as a multi-sorted

extension of L. The sort of L will be called the real sort and is denoted by

Sreal. Then for each E ∈ E we add a sort SE , called a hyperimaginary sort .
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For a variable y of sort SE we denote by yr a tuple of variables of the real sort,

matching the length of the representatives of the E-equivalence classes.

For all E1, . . . , En ∈ E we add a relation symbol Rφ(x, y1, . . . , yn) of sort

S
|x|
real × SE1 × . . .× SEn for each L-formula φ(x, y1,r, . . . , yn,r).

In the above definition, not all variables in φ(x, y1,r, . . . , yn,r) need to actually

appear in the formula. In particular, it is not problem for the yi,r to be infinite

tuples. Similarly, when we write something like ∃yrφ(yr), then we really only

quantify over the variables that actually appear in φ.

Definition 2.43. We extend M to an LE -structure ME as follows. The real sort

Sreal is just M, and for each E ∈ E the sort SE is Mα/E, where α is the length of

the tuples of free variables in E. From now on we will use the shorthand notation

M/E and not mention α. For E1, . . . , En ∈ E and φ(x, y1,r, . . . , yn,r) we interpret

the relation symbol Rφ as follows. We let ME |= Rφ(a, c1, . . . , cn) if and only if

there are representatives b1, . . . , bn of c1, . . . , cn such that M |= φ(a, b1, . . . , bn).

For a real tuple b and some E ∈ E we will write [b] for the corresponding

hyperimaginary in M/E. To prevent cluttering of notation, we will actually also

use the notation [b] for a tuple of hyperimaginaries. This notation leaves implicit

which sort(s) [b] belongs to, but that should not be a problem in what follows.

Definition 2.44. We define the LE -theory T E as the set of all h-inductive LE -
sentences true in ME .

We will prove the following results about this construction. Along the way we

also develop some technical tools that will turn out to be useful in chapter 6. Let

us first just state these results, to make it clear what we are working towards.

Theorem 2.45. The structure ME is a monster model of T E .

Theorem 2.46. The following properties of T are preserved when adding

hyperimaginaries:

� Hausdorff,

� semi-Hausdorff,

� thick.

That is, if T has the property then T E has it as well.

Lemma 2.47. Let Γ(x, y) be a set of LE -formulas, where x is a tuple of real

variables and y is a tuple of hyperimaginary variables. Then there is a set of

L-formulas ΣΓ(x, yr) such that M |= ΣΓ(a, b) if and only if ME |= Γ(a, [b]).
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We set up our construction in such a way that we can add any set E of

hyperimaginaries. If we wish to study Mheq, where we have added all

hyperimaginaries, we would have to add a proper class of hyperimaginaries. We

can formalise this by taking E to be the set of all equivalence relations E(x, y)

where |x| ≤ |T |. Then, by [BY03c, Corollary 3.3], every possible

hyperimaginary is interdefinable with a set of hyperimaginaries in E . So we can

take Mheq and T heq to be ME and T E .

Before we prove the above statements we will first discuss one example.

After the example the rest of the section is devoted to the proofs of the above

statements.

Example 2.48. In this example we will consider the first order theory RCF of

the real closed field. We take E to consist of one equivalence relation E(x, y)

that says |x − y| ≤ 1
n for all n ∈ N. Following Definition 2.43 we then have a

relation symbol R≤(x, y), where x and y are of sort SE . So we have R≤([a], [b])

iff there are a′ and b′ that are arbitrarily close to a and b respectively such that

a′ ≤ b′. It is straightforward to check that R≤ defines a linear order on M/E. So

R≤([0], x)∧R≤(x, [1]) then essentially defines the closed unit interval of standard

real numbers and is thus an example of a bounded infinite definable set. We see

that even though RCF is a theory in full first-order logic, RCFE does no longer fit

in the framework of full first-order logic.

Lemma 2.49. Let φ(x, y) be an LE-formula, where x is a tuple of real variables

and y is a tuple of hyperimaginary variables. Then there is a set of L-formulas

Σφ(x, yr) such that M |= Σφ(a, b) if and only if ME |= φ(a, [b]).

Proof. We first assume that φ(x, y) is of the form

∃wz

(
ψ(x,w) ∧ ε(y, z) ∧

∧
i∈I

Rχi(x,w, y, z)

)
.

Here w is a tuple of real variables and z a tuple of hyperimaginary variables.

The formula ψ(x,w) is an L-formula and ε(y, z) is a conjunction of equalities of

hyperimaginaries.

We define the partial type Γφ as follows. For each i ∈ I we introduce tuples

of real variables yi and zi matching yr and zr respectively. We let Eε(yr, zr)

be the union of partial types in E expressing ε([yr], [zr]), and we close Eε under
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conjunctions. Then we set

Γφ(x, yr, w, zr, (yi)i∈I , (zi)i∈I) ={
ψ(x,w) ∧ ϵ(yr, zr) ∧

∧
i∈I

χi(x,w, yi, zi) : ϵ ∈ Eε

}
∪ (2.2.1)⋃

{Ey(yr, yi) : i ∈ I} ∪ (2.2.2)⋃
{Ez(zr, zi) : i ∈ I}. (2.2.3)

Here Ey and Ez are the equivalence relations corresponding to the hyperimaginary

variables y and z respectively.

Let Σφ(x, yr) express the following:

∃wzr(yi)i∈I(zi)i∈IΓφ(x, yr, w, zr, (yi)i∈I , (zi)i∈I).

Now suppose that a, b are such that M |= Σφ(a, b). Then we find realisations

such that

M |= Γφ(a, b, c, d, (bi)i∈I , (di)i∈I).

Then (2.2.2) and (2.2.3) tell us that [b] = [bi] and [d] = [di] for all i ∈ I, while
(2.2.1) guarantees that ME |= φ(a, [b]). This proves the forward direction and the

converse is straightforward by just taking representatives of the hyperimaginaries

that are involved.

We assumed φ to be of a particular form. Since every formula can be written

as a disjunction of regular formulas (i.e. formulas built using conjunction and

existential quantification), we are only left an induction step for disjunction. So

let φ1(x, y) and φ2(x, y) with Σφ1(x, yr) and Σφ2(x, yr) be given. We define

Σφ1∨φ2(x, yr) as

{ψ1 ∨ ψ2 : ψ1 ∈ Σφ1 , ψ2 ∈ Σφ2}.

One easily checks that M |= Σφ1∨φ2(a, b) precisely when M |= Σφ1(a, b) or M |=
Σφ2(a, b) or both, and the result follows.

Proof of Lemma 2.47. Define

ΣΓ(x, yr) =
⋃
φ∈Γ

Σφ(x, yr),

where Σφ is as in Lemma 2.49.

Lemma 2.50. If tp(a[b]) = tp(a′[b′]) then there is b′′ such that tp(ab) = tp(a′b′′)

and [b′] = [b′′].

Proof. Define

Σ(x, y) = tpL(ab) ∪ E(b′, y).
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It is enough to prove that Σ(a′, y) is finitely satisfiable. Let φ(x, y) ∈ tpL(ab).

Then ME |= Rφ(a, [b]), so ME |= Rφ(a
′, [b′]). So there is b′′ ∈ M with M |=

E(b′, b′′) and M |= φ(a′, b′′), as required.

Lemma 2.51. For every tuple of hyperimaginary variables y there is a partial

LE -type Ξ(yr, y) such that ME |= Ξ(a, [a′]) if and only if [a] = [a′].

Proof. We define

Ξ(yr, y) = {Rε(yr, y) : ε ∈ E},

where E is the equivalence relation corresponding to y. The right to left direction

is clear. For the forward direction we suppose ME |= Ξ(a, [a′]). Consider the

partial type

Γ(yr) = E(a, yr) ∪ E(yr, a
′).

For any ε(a, yr) ∈ E(a, yr) we have ME |= Rε(a, [a
′]). So there must be a∗ ∈M

such that [a∗] = [a′] and M |= ε(a, a∗). Thus M |= ε(a, a∗) ∧ E(a∗, a′). We thus

see that Γ is finitely satisfiable, so there is a realisation a′′. We conclude that

[a] = [a′′] = [a′].

Lemma 2.52. Any automorphism f : M → M uniquely extends to an

automorphism fE : ME →ME by setting fE([b]) = [f(b)].

Proof. It is straightforward to check that fE is well-defined and bijective. We

need to show that fE preserves and reflects truth of the new relation symbols in

LE (preservation of equality is just saying that fE is well-defined). Suppose that

ME |= Rφ(a, [b]). By definition there is b′ such that [b′] = [b] and M |= φ(a, b′).

Then M |= φ(f(a), f(b′)) and hence ME |= Rφ(f(a), [f(b
′)]) which is just ME |=

Rφ(f
E(a), fE([b])). The converse follows in a similar way.

Finally we check uniqueness of fE . Suppose that g : ME →ME also extends f .

For [b] ∈ME we have ME |= Ξ(b, [b]) by Lemma 2.51. So if g is an automorphism

we must have ME |= Ξ(g(b), g([b])), which means that g([b]) = [g(b)] = [f(b)], as

required.

Theorem 2.45, repeated. The structure ME is a monster model of T E .

Proof. We prove that ME is e.c. and is just as saturated and homogeneous as

M. So let κ be such that M is κ-saturated and κ-homogeneous. Note that this

means that κ is definitely bigger than the length of any tuple representing a

hyperimaginary.

Existentially closed. We will use (iii) from Definition 2.5. Suppose that

ME ̸|= φ(a, [b]). Then M ̸|= Σφ(a, b), where Σφ is from Lemma 2.47. So there is

ψ(x, yr) ∈ Σφ(x, yr) such that M ̸|= ψ(a, b). Because M is e.c. we find χ(x, yr)

with T |= ¬∃xyr(ψ(x, yr) ∧ χ(x, yr)) and M |= χ(a, b). We thus have

ME |= Rχ(a, [b]). We will conclude by proving that
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ME |= ¬∃xy(φ(x, y) ∧ Rχ(x, y)). Suppose for a contradiction that there are a′

and b′ such that ME |= φ(a′, [b′]) ∧ Rχ(a′, [b′]). Then there is b′′ with [b′] = [b′′]

and M |= χ(a′, b′′). So ME |= φ(a′, [b′′]) and thus M |= Σφ(a
′, b′′). We then get

that M |= ψ(a′, b′′) ∧ χ(a′, b′′), which cannot happen.

Saturation. Let Γ(x, y, c, [d]) be a finitely satisfiable partial LE -type with

|c[d]| < κ. Let ΣΓ(x, y, c, d) be the set of L-formulas from Lemma 2.47. By the

construction there we have

ΣΓ(x, y, c, d) =
⋃
φ∈Γ

Σφ(x, y, c, d),

where Σφ is as in Lemma 2.49. So finite satisfiability of Γ(x, y, c, [d]) implies finite

satisfiability of ΣΓ(x, y, c, d). We thus find a, b ∈M with M |= ΣΓ(a, b, c, d) and

hence ME |= Γ(a, [b], c, [d]).

Homogeneity. If tp(a[b]) = tp(a′[b′]), then by Lemma 2.50 there is b′′ such

that [b′′] = [b′] and tp(ab) = tp(a′b′′). Let f : M → M be an automorphism

with f(ab) = a′b′′. Then by Lemma 2.52 we find fE : ME →ME with fE(a[b]) =

f(a)[f(b)] = a′[b′′] = a′[b′], as required.

Lemma 2.53. A sequence (ai[bi])i∈I is indiscernible if and only if there are

representatives b′i of [bi] such that (aib
′
i)i∈I is indiscernible.

Proof. We first prove the left to right direction. By compactness we may assume

I to be long enough. We can find indiscernible (a∗i b
∗
i )i∈I based on (aibi)i∈I . Let

p((xiyi,r)i∈I) = tp((a∗i b
∗
i )i∈I) and define the following type

Γ = p((aiyi,r)i∈I) ∪ {Ξ(yi,r, [bi]) : i ∈ I}.

Then a realisation of Γ is precisely what we need, so we prove that Γ is finitely

satisfiable. That is, for i1 < . . . < in ∈ I we will produce a realisation of Γ

restricted to the variables yi1,r . . . yin,r and parameters

ai1 , . . . , ain , [bi1 ], . . . , [bin ]. By construction there are j1 < . . . < jn ∈ I such that

tp(a∗i1b
∗
i1
. . . a∗inb

∗
in
) = tp(aj1bj1 . . . ajnbjn). As

tp(ai1 [bi1 ] . . . ain [bin ]) = tp(aj1 [bj1 ] . . . ajn [bjn ]), by Lemma 2.50 we can find

b′i1 . . . b
′
in

with tp(ai1b
′
i1
. . . ainb

′
in
) = tp(aj1bj1 . . . ajnbjn) while also [b′ik ] = [bik ]

for all 1 ≤ k ≤ n. So b′i1 . . . b
′
in

is the desired realisation of Γ restricted to

yi1,r . . . yin,r and ai1 , . . . , ain , [bi1 ], . . . , [bin ].

For the right to left direction we note that for any i1 < . . . < in ∈ I and

j1 < . . . < jn ∈ I we have

Σtp(ai1 [bi1 ]...ain [bin ])
⊆ tp(ai1b

′
i1 . . . ainb

′
in) = tp(aj1b

′
j1 . . . ajnb

′
jn).

So tp(ai1 [bi1 ] . . . ain [bin ]) ⊆ tp(aj1 [bj1 ] . . . ajn [bjn ]), and the claim follows by

maximality of types.
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Theorem 2.46, repeated. The following properties of T are preserved when

adding hyperimaginaries:

� Hausdorff,

� semi-Hausdorff,

� thick.

That is, if T has the property then T E has it as well.

Proof. Hausdorff. Let a[b] ̸≡ a′[b′]. Then there is φ ∈ tp(a[b]) such that φ ̸∈
tp(a′[b′]). So there is a negation ψ ∈ tp(a′[b′]) of φ. By Lemma 2.47 we have Σφ

and Σψ are consistent while Σφ ∪ Σψ is inconsistent.

Fix some type q of T such that Σψ ⊆ q. We will produce formulas αq and βq

such that Σφ∪{αq} is inconsistent, βq ̸∈ q and T |= ∀xyr(αq(x, yr)∨βq(x, yr)). Let
p ⊇ Σφ be a type of T . Then because T is Hausdorff there are formulas χp and θp

such that χp ̸∈ p and θp ̸∈ q, while T |= ∀xyr(χp(x, yr)∨θp(x, yr)). Then Σφ∪{χp :
p ⊇ Σφ} is inconsistent, so there are p1, . . . , pn such that Σφ∪{χp1 ∧ . . .∧χpn} is
inconsistent. We can now take αq to be χp1 ∧ . . .∧χpn and βq to be θp1 ∨ . . .∨θpn .

Now Σψ∪{βq : q ⊇ Σψ} is inconsistent. So there are q1, . . . , qk such that Σψ∪
{βq1 ∧ . . .∧βqk} is inconsistent. We set β = βq1 ∧ . . .∧βqk and α = αq1 ∨ . . .∨αqn .
We then also have that Σφ∪{α} is inconsistent and T |= ∀xyr(α(x, yr)∨β(x, yr)).

Now consider the formulas Rα(x, y) and Rβ(x, y). By construction we have

T E |= ∀xy(Rα(x, y) ∨ Rβ(x, y)). We claim that Rα ̸∈ tp(a[b]). Suppose for

a contradiction that ME |= Rα(a, [b]). Then there is b∗ with [b∗] = [b] such

that M |= α(a, b∗). Since φ ∈ tp(a[b]) = tp(a[b∗]) we also have M |= Σφ(a, b
∗),

contradicting that Σφ∪{α} is inconsistent. So indeed Rα ̸∈ tp(a[b]). Analogously

we get that Rβ ̸∈ tp(a′[b′]), which concludes the proof that T E is Hausdorff.

Semi-Hausdorff. Suppose that equality of L-types is type-definable by a

partial L-type Ω. Then for a tuple x of real variables and a tuple y of

hyperimaginary variables, we consider the partial LE -type ΩE(xy, x′y′) that

expresses the following:

∃yry′r(Ξ(yr, y) ∧ Ξ(y′r, y
′) ∧ Ω(xyr, x

′y′r)).

We claim that ΩE expresses equality of LE -types.
If ME |= ΩE(a[b], a′[b′]) then we find c, c′ such that ME |= Ξ(c, [b])∧Ξ(c′, [b′])∧

Ω(ac, a′c′). By Lemma 2.51 we have that [c] = [b] and [c′] = [b′]. Hence φ ∈
tp(a[b]) = tp(a[c]) iff Σφ ⊆ tp(ac) = tp(a′c′) iff φ ∈ tp(a′[c′]) = tp(a′[b′]). So

tp(a[b]) = tp(a′[b′]), as required.

Conversely, if tp(a[b]) = tp(a′[b′]) then by Lemma 2.50 we find b′′ such that

[b′′] = [b′] and tp(ab) = tp(a′b′′). Hence |= Ξ(b, [b]) ∧ Ξ(b′′, [b′]) ∧ Ω(ab, a′b′′).
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Thick. Let Θ express indiscernibility of a sequence of real tuples, then

∃(yi,r)i<ω

(
Θ((xiyi,r)i<ω) ∧

∧
i<ω

Ξ(yi,r, yi)

)

expresses indiscernibility of (xiyi)i<ω in T E . Here we use that a sequence in ME

is indiscernible if and only if there is an indiscernible sequence of real

representatives, see Lemma 2.53.

2.3 Accessible categories

The general idea of the accessible categories approach to model theory is to

consider some category of models and then work in there. For example, we

can consider the category of models of some theory in full first-order logic, with

elementary embeddings as arrows. Due to the Löwenheim-Skolem theorem every

object in that category can be ‘built’ from ‘small’ objects. This is the main idea

behind accessible categories. We will treat the basics in this section. A great

reference for accessible categories is [AR94].

Convention 2.54. Throughout, κ, λ and µ will denote regular cardinals.

We will first concern ourselves with defining a notion of size in category-

theoretic language. This will allow us to make ‘small’ precise.

Definition 2.55. A poset P is called λ-directed if every subset A ⊆ P with

|A| < λ has an upper bound. A λ-directed diagram in some category C is a

functor F : P → C, where P is a λ-directed poset (considered as a category). If

X = colimi∈I Xi for some λ-directed diagram Xi then we call X the λ-directed

colimit of (Xi)i∈I . If λ = ℵ0 we will drop it from the notation and just say

directed diagram and directed colimit.

Example 2.56. In this example we consider the category Set of sets. Recall

that for a set X we write [X]<λ for the set of all subsets of X of cardinality < λ.

Ordered by inclusion, [X]<λ forms a λ-directed diagram whose colimit is X.

These diagrams can be used to get information about the cardinality of a set.

That is, we have that |X| < λ if and only if for every λ-directed diagram (Yi)i∈I

with colimit Y and every function f : X → Y we have that f factors essentially

uniquely through (Yi)i∈I .

Suppose that |X| < λ and let f : X → Y and (Yi)i∈I be as in the statement.

Write gi : Yi → Y for the coprojections. For every x ∈ X there is ix ∈ I such that

f(x) ∈ gi(Yi). By λ-directedness there is an upper bound j ∈ I of {ix : x ∈ X}.
So f factors through gj .

Conversely, we use that X is the λ-directed colimit of [X]<λ. So the identity

function IdX factors through the diagram [X]<λ and |X| < λ follows.
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The characterisation of cardinality in Example 2.56 can be stated in purely

category-theoretic terms, see Definition 2.57 below. When applying this definition

to other categories we see that it coincides with some notion of size using the same

technique from Example 2.56.

Definition 2.57. An object X in a category C is called λ-presentable if the

following equivalent conditions hold:

(i) Hom(X,−) preserves λ-directed colimits;

(ii) for every λ-directed colimit Y = colimi∈I Yi every arrow f : X → Y factors

essentially uniquely through the diagram (Yi)i∈I .

If λ = ℵ0 we will also say that X is finitely presentable.

For completeness we recall the precise meaning of “factors essentially uniquely

through the diagram (Yi)i∈I”. The diagram is actually a functor F : I → C where
F (i) = Yi. The colimit Y comes equipped with coprojections gi : Yi → Y . Then

saying that f : X → Y factors through (Yi)i∈I means that there is j ∈ I and

f ′ : X → Yj such that f = gjf
′. To say that this factorisation is essentially

unique means that if there is another arrow f∗ : X → Yj with f = gjf
∗ then

there is k ≥ j in I such that F (j ≤ k)f ′ = F (j ≤ k)f∗.

Fact 2.58 ([AR94, Proposition 1.16]). A colimit of a diagram with less than λ

arrows consisting of λ-presentable objects is again λ-presentable. In particular, if

κ < λ and (Xi)i<κ is a diagram of shape κ where each Xi is λ-presentable then

X = colimi<κXi (if it exists) is λ-presentable.

Now that we have a category-theoretic notion of size we can define accessible

categories, making precise the idea sketched in the beginning of this section.

Namely that every object can be ‘built’ from ‘small’ objects.

Definition 2.59. A category C is called λ-accessible if

(i) C has λ-directed colimits;

(ii) there is a set A of λ-presentable objects, such that every object in C can be

written as a λ-directed colimit of objects in A.

A category is called accessible if it is λ-accessible for some λ.

Recall that a chain is a diagram of shape δ for some ordinal δ. In model

theory it is often useful to have colimits of chains. Clearly we have colimits of

chains if we have directed colimits, but the converse is also true.

Fact 2.60 ([AR94, Corollary 1.7]). A category C has colimits of chains if and

only if it has directed colimits. For such C a functor F : C → D preserves colimits

of chains if and only if it preserves directed colimits.
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We also recall some terminology concerning chains. A chain (Xi)i<δ is called

continuous if for every limit ordinal ℓ < δ we have that Xℓ = colimi<ℓXi. A

chain bound for (Xi)i<δ is just a cocone.

Definition 2.61. Given a span Y1 ← X → Y2 in some category C we call a cospan
Y1 → Z ← Y2 an amalgam if the relevant square commutes. We call an object X

an amalgamation base if every span Y1 ← X → Y2 admits an amalgam. We say

that C has the amalgamation property or AP if every object is an amalgamation

base.

We close out this section with some examples of accessible categories. We

will refer back to those examples in chapter 3, as applications of the framework

we develop there.

Example 2.62. Let T be some positive theory. We write Mod(T ) for the

category of e.c. models of T with immersions as arrows. Recall from Remark 2.12

that this subsumes the usual construction for full first-order logic, where we take

models of some theory T and elementary embeddings between them.

By Löwenheim-Skolem and a similar argument as in Example 2.56 we have

for λ > |T | that any M |= T is λ-presentable in Mod(T ) if and only if |M | < λ.

Up to isomorphism there is only a set of models of cardinality ≤ |T |. So there is

a set A of |T |+-presentable models and every model is a |T |+-directed colimit of

models in A. We thus see that Mod(T ) is |T |+-accessible.
More is true. We mention a few properties that will be useful later on.

Clearly every arrow in Mod(T ) is a monomorphism. By Fact 2.7 we also see

that Mod(T ) has directed colimits and has AP.

Example 2.63. In this example we consider continuous logic in the sense of

[BYBHU08]. Let T be a continuous theory. We write MetMod(T ) for the

category of metric models. The arrows are elementary embeddings, in the

continuous sense. The right notion of size in this category is that of density

character : the smallest cardinality of a dense subset in the space. Denote the

density character of a space X by density(X). Write |T | for the cardinality of

the signature of T . Then for all λ > |T | we have that object M in MetMod(T )

is λ-presentable if and only if density(M) < λ.

Many of the tools we have in full first-order logic and positive logic also exist

in continuous logic. In particular we have compactness and Löwenheim-Skolem.

So we can follow the same arguments to see that MetMod(T ) is |T |+-accessible,
has all directed colimits and AP and every arrow is a monomorphism.

Example 2.64. Let K be an AEC (abstract elementary class). We refer to

[She09] for an extensive treatment of AECs. We can naturally view K as an

accessible category, and we will indeed do so, in the following way. The objects

are just the elements of K. The arrows are K-embeddings. That is, functions
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f : M → N such that f(M) ⪯K N and f is an isomorphism of M onto f(M).

The Tarski-Vaught chain axioms are then precisely saying that K has colimits

of chains, and hence all directed colimits by Fact 2.60. Writing LS(K) for the

Löwenheim-Skolem number, we get that K is LS(K)+-accessible.



3

Abstract Elementary Categories

In this chapter we introduce the framework of abstract elementary categories, or

AECats. These are a specific kind of accessible category, that is still general

enough to cover all the examples we discussed in section 2.3. In some

applications we would like to have access to the subsets of models, so the

framework is made flexible enough to also fit something like the category of

subsets of models. In section 3.1 we give the definition and provide the

motivating examples for AECats, arising from full first-order logic, positive

logic, continuous logic and AECs.

Even though the framework of AECats is very close to that of AECs, it is

still more general. Some settings are hard to handle as AECs, but naturally fit

the category-theoretic framework of AECats. For example, the class of metric

models of a continuous theory in the sense of [BYBHU08] is not an AEC, but

it does form an AECat (see Example 3.7). Of course, there are metric AECs as

introduced in [HH09], but AECats provide a unifying approach.

AECats do not have syntax, but we can still make sense of a notion of types

through the idea of Galois types, which we do in section 3.2. Since we do not

have access to single elements in our category, we instead consider (tuples of)

arrows, keeping in mind that each arrow can actually represent an entire tuple of

elements. In later chapters we will also need a substitute for Lascar strong types,

for which we introduce Lascar strong Galois types in section 3.4.

An interesting property for Galois types is being finitely short, which says

that the Galois type of a tuple is determined by the Galois types of its finite

subtuples (Definition 3.31). We do not need this property in the rest of this

thesis (except for section 4.5, where a further connection is explored), and in fact

there are interesting AECats that are not finitely short (see Example 3.35). We

mention finite shortness because it provides a nice link to existing frameworks.

One of the interesting consequences of finite shortness is that we can recover some

compactness.

It is standard in model theory to work with monster models. In the general

category-theoretic setting this would still be possible. For example, in [LR14] it

is shown that such monster objects exist in any accessible category with

directed colimits and the amalgamation property. This assumes some additional
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set theory, namely that there is a proper class of cardinals λ such that λ = λ<λ.

We choose not to work with monster objects. This might come at some

notational cost, but it keeps everything within the standard set theory.

3.1 Definition and examples

Before we give the definition of an abstract elementary category, or AECat, we

will first introduce the motivating example. We have already seen Mod(T ) for a

theory T in Example 2.62 and we will see that this gives us an AECat. Sometimes

we would want to have access to (certain) subsets of models. For this we introduce

the category of subsets of models.

Definition 3.1. Let T be some positive theory. We write SubMod(T ) for the

category of subsets of models of T . Its objects are pairs (A,M) where A ⊆ M

and M is an e.c. model of T . An arrow f : (A,M) → (B,N) is an immersion

f : A → B. That is, for every a ∈ A and every φ(x) we have M |= φ(a) if and

only if N |= φ(f(a)).

The role of the modelM in a pair (A,M) is just to make sense of the evaluation

of formulas with parameters in A. These formulas may contain quantifiers that

refer to the rest of M .

There is a full and faithfull embedding Mod(T ) ↪→ SubMod(T ) by sending

M to (M,M). So we consider Mod(T ) as a full subcategory of SubMod(T ).

In SubMod(T ) we have for any λ that (A,M) is λ-presentable precisely when

|A| < λ. Directed colimits exist in SubMod(T ). They are calculated by taking

the union in a big enough model. So we see that SubMod(T ) is an accessible

category.

The idea of an AECat is now to allow for categories like SubMod(T ), but

we need to keep track of which objects are considered to be models.

Definition 3.2. An AECat , short for abstract elementary category , consists of a

pair (C,M) where C andM are accessible categories andM is a full subcategory

of C such that:

(i) M has directed colimits, which the inclusion functor into C preserves;

(ii) all arrows in C (and thus inM) are monomorphisms.

The objects inM are called models. We say that (C,M) has the amalgamation

property (or AP) ifM has the amalgamation property.

The name “abstract elementary category” has been used before in [BR12,

Definition 5.3] for a very similar concept. As noted there as well, the name was

used even before that in an unpublished note by Jonathan Kirby [Kir08].

Note that if (C,M) is an AECat then (M,M) is an AECat as well.



Chapter 3: Abstract Elementary Categories 39

Example 3.3. As seen in the discussion before, both (Mod(T ),Mod(T )) and

(SubMod(T ),Mod(T )) are AECats with AP. These are the prototypical

examples of AECats to keep in mind.

We will only be interested in AECats with AP in the rest of this thesis.

To help with intuition that objects in C play the role of subsets of models,

the reader may assume that for every object A in C, there is an arrow A → M

with M inM. This is in fact true in all examples we consider and any object in

C we will consider in this thesis will always come with an arrow into some model

anyway.

Remark 3.4. By Fact 2.60 we could replace (i) in Definition 3.2 by: “M has

colimits of chains, which the inclusion functor into C preserves”.

Remark 3.5. If (C,M) is an AECat then C and M may be accessible for

different cardinals. By [AR94, Corollary 2.14] and [AR94, Theorem 2.19] there

are arbitrarily large κ such that both C and M are κ-accessible and the

inclusion M ↪→ C preserves κ-presentable objects. In fact, in such a situation

the inclusion functor preserves λ-presentable objects for all λ ≥ κ. This follows

from [BR12, Proposition 4.3], because M has directed colimits and the

inclusion functor preserves those. In their statement C would be required to

have directed colimits as well. However, this is not necessary if we are just

interested in preserving λ-presentability: for that part their proof goes through.

It will be useful to give the above situation a name.

Definition 3.6. We call an AECat (C,M) a κ-AECat if C and M are both

κ-accessible and the inclusion functor preserves κ-presentable objects.

So we can restate Remark 3.5 as: “for any AECat (C,M) there are arbitrarily

large κ such that (C,M) is a κ-AECat”.

We close out this section with a few examples of AECats arising from

continuous logic, AECs, compactes abstract theories and quasiminimal excellent

classes.

Example 3.7. Fix some continuous theory T in the sense of [BYBHU08].

Similar to Definition 3.1 we define a category of subsets of metric models

SubMetMod(T ). The objects are pairs (A,M) where M is a metric model of

T and A ⊆M is a closed subset. An arrow f : (A,M)→ (B,N) is then what is

called an “elementary map” from A to B in [BYBHU08, Definition 4.3(3)].

For any λ we have that (A,M) is λ-presentable in SubMetMod(T ) if and

only if density(A) < λ. We also have directed colimits: they are calculated

by taking the closure of the union in a big enough model. We thus see that

SubMetMod(T ) is accessible.
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Recall MetMod(T ) from Example 2.63. We have that

(MetMod(T ),MetMod(T )) and (SubMetMod(T ),MetMod(T )) are

AECats with AP.

Example 3.8. Let K be an AEC. We define the category SubSet(K) as follows.
Its objects are pairs (A,M) where M ∈ K and A ⊆ M . An arrow f : (A,M) →
(B,N) is then a K-embedding f :M → N such that f(A) ⊆ B.

Note that this is slightly different from the approach of SubMod(T ), where

an arrow (A,M) → (B,N) does not need to extend to an immersion M → N .

This does happen when N is |M |-saturated, so it should be clear that the model

theory considered in both constructions remains the same. In [Kam20, Example

2.11] we consider a slightly different construction for SubSet(K) that directly

generalises SubMod(T ). However, some assumptions on K are needed there,

like the amalgamation property and some type shortness. These assumptions

hold in SubMod(T ), but generally make the construction more complicated.

We also get a slightly different notion of size in SubSet(K). That is, for

λ > LS(K) we have that an object (A,M) is λ-presentable if and only if |M | < λ.

On the other hand, directed colimits are easier to compute: we just take the union

in each component. So we still end up with an accessible category SubSet(K).
Then (K,K) and (SubSet(K),K) are AECats, and they have AP exactly when

K has AP.

Example 3.9. In [BY03a] the concept of a compact abstract theory, or cat, is

introduced. Although no formal definition is given, it turns out that in practice

such a cat is in fact an AECat with AP. See also Example 3.33.

Example 3.10. In this example we consider Zilber’s quasiminimal excellent

classes. We use the terminology from [Kir10]. Let C be a quasiminimal excellent

class, also satisfying axiom IV, which states that C is closed under unions of

chains and has an infinite dimensional model. Then C together with strong

embeddings is a finitely accessible category, where M ∈ C is κ-presentable

precisely when M has dimension < κ. So (C, C) is an AECat with AP.

We have now covered how existing frameworks can be placed in the framework

of AECats. In section 3.6 we will do the converse. There we discuss how, under

some additional assumptions, AECats can be placed in existing frameworks.

3.2 Galois types

In [She87, Definition II.1.9] types are considered as the orbit of a tuple under

some automorphism group. Later this idea was generalised by replacing the

automorphisms by embeddings into a bigger model, and the name Galois type

was introduced (see [Gro02]). We use this idea, replacing elements by arrows.
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Definition 3.11. Let M be a model in an AECat. An extension of M is an

arrow M → N , where N is some model.

Convention 3.12. Usually, there will be only one relevant extension of models.

So to prevent cluttering of notation we will not give such an extension a name.

Given such an extensionM → N and some arrow a : A→M we will then denote

the arrow A
a−→M → N by a as well.

Definition 3.13. Let (C,M) be an AECat with AP. We will use the notation

((ai)i∈I ;M) to mean that the ai are arrows into M and that M is a model. We

will denote the domain of ai by Ai, unless specified otherwise.

We say that two tuples ((ai)i∈I ;M) and ((a′i)i∈I ;M
′) have the same Galois

type, and write

gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′),

if there is a common extension M → N ← M ′ such that, for all i ∈ I,

dom(ai) = dom(a′i) and ai and a′i give the same arrow into N . That is, the

following commutes for all i ∈ I:

N

M M ′

Ai

ai a′i

Note that AP ensures that having the same Galois type is an equivalence

relation. For this reason, we will only be interested in AECats with AP in the

rest of this thesis.

We consider tuples of arrows in Galois types, rather than just a single arrow,

even though an arrow itself can already represent a tuple of elements. When

reading through the proofs and constructions it should be clear why we do this,

but we will give a quick summary of the reasons here. First of all, our AECat

may not have unions. For example, if we work in an AECat of the form

(Mod(T ),Mod(T )) and we have models M and M ′ (in some bigger model N)

then there is generally not an arrow (into N) representing the union MM ′.

This would be problematic in dealing with parameters, because saying that M

and M ′ have the same type over some third model M0 amounts to saying that

MM0 and M ′M0 have the same type, see also Example 3.14. Finally, we will

often want to consider types of sequences, and a sequence is just a tuple of

arrows (see Section 4.3), just as a sequence classically is just a tuple of tuples.

Example 3.14. Let (C,M) be (SubMod(T ),Mod(T )) for some theory T .

Then Galois types in (C,M) coincide with syntactic types in the following
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sense. Let M and M ′ be two models of T , we will abbreviate the object (M,M)

in SubMod(T ) to M and similarly for M ′. Suppose we are given some arrows

{ai : (Ai,Mi) → M}i∈I and {a′i : (Ai,Mi) → M ′}i∈I for some index set I. For

each i ∈ I fix some enumeration of Ai. The image of that enumeration under

ai : Ai → M then yields a tuple āi ∈ M . Similarly we find a tuple ā′i ∈ M ′. We

write tpM ((āi)i∈I) for the type of (āi)i∈I in M , i.e. the set of all formulas

satisfied by (āi)i∈I in M . Then:

tpM ((āi)i∈I) = tpM
′
((ā′i)i∈I) ⇐⇒ gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M

′).

A similar statement holds for (SubMetMod(T ),MetMod(T )), where T is a

continuous theory.

We can also deal with parameters. Let M be a model of T . Fix some

parameter set B ⊆ M and tuples ā, ā′ ∈ M . We also fix some enumeration b̄ of

B. Then:

tpM (ā/B) = tpM (ā′/B) ⇐⇒ tpM (āb̄) = tpM (ā′b̄).

Let a and a′ be arrows intoM representing ā and ā′ and we let b : B →M be the

inclusion then the above is further equivalent to gtp(a, b;M) = gtp(a′, b;M). So

fixing a parameter set in a model corresponds to fixing an arrow in the categorical

setting.

Lemma 3.15. Let M → N be any extension, then for any tuple ((ai)i∈I ;M):

gtp((ai)i∈I ;M) = gtp((ai)i∈I ;N).

Proof. This is a good example of Convention 3.12. A more precise statement

would be to give the extension M → N a name, say f , then for any ((ai)i∈I ;M)

we have that gtp((ai)i∈I ;M) = gtp((fai)i∈I ;N). To see that the latter statement

holds, note that the diagram below commutes for all i ∈ I:

N

M N

Ai

f

ai fai

Proposition 3.16. If gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′) then:

(i) (restriction) we have gtp((ai)i∈I0 ;M) = gtp((a′i)i∈I0 ;M
′) for any I0 ⊆ I;
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(ii) (monotonicity) given an arrow bi : Bi → dom(ai) for each i ∈ I, then

gtp((ai)i∈I , (aibi)i∈I ;M) = gtp((a′i)i∈I , (a
′
ibi)i∈I ;M

′)

and thus gtp((aibi)i∈I ;M) = gtp((a′ibi)i∈I ;M
′);

(iii) (extension) for any (b;M) there is an extension M ′ → N and some (b′;N)

such that gtp(b, (ai)i∈I ;M) = gtp(b′, (a′i)i∈I ;N).

Proof. For (i) and (ii) the common extension witnessing the original equality

will also witness the new equality. The last claim in (ii) follows from (i).

For (iii) letM
f−→ N

g←−M ′ be witnesses of gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′).

We define b′ = fb, so that:

gtp(b, (ai)i∈I ;M) = gtp(fb, (fai)i∈I ;N) = gtp(b′, (ga′i)i∈I ;N).

Then the result follows directly if we take the extension M ′ → N to be g, so that

we would write the right-hand side as gtp(b′, (a′i)i∈I ;N).

Proposition 3.17. Suppose we have (a, b;M), such that a = bi for some arrow

i. If then (a′, b′;M ′) is such that

gtp(a, b;M) = gtp(a′, b′;M ′),

then a′ factors through b′ in the same way: a′ = b′i.

Proof. From gtp(a, b;M) = gtp(a′, b′;M ′) we get extensions M → N ←M ′ and

a diagram

N

M B M ′

A

f

b b′

g

a

i

a′

where everything commutes by definition except for possibly the bottom right

triangle (i.e. the triangle a′ = b′i). So we have ga′ = fa = fbi = gb′i and so

a′ = b′i because g is a monomorphism.

3.3 Galois type sets, an analogue of Stone spaces

In full first-order logic we can collect all types of a fixed arity in a topological

space called the Stone space. The topology is given by the logical structure. In

this section we do something similar for AECats: we show that all Galois types

with some fixed domains can be collected in a set. Putting a sensible topology

on this set would amount to recovering the logical structure of the AECat, which
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can be hard in full generality. While this would be an interesting problem to

study, it is outside the scope of this thesis and so we will not go into it. The main

use of this section is that the Galois types with some fixed domains actually form

a set, see Proposition 3.19.

Definition 3.18. Let (C,M) be an AECat with AP. For a tuple (Ai)i∈I of

objects in C, let S((Ai)i∈I) be the collection of all tuples ((ai)i∈I ;M) such that

dom(ai) = Ai. We define the Galois type set Sgtp((Ai)i∈I) as:

Sgtp((Ai)i∈I) = S((Ai)i∈I)/ ∼gtp,

where ∼gtp is the equivalence relation of having the same Galois type.

An AECat is generally a large category. So S((Ai)i∈I) will generally be a

proper class. Below we prove that Sgtp((Ai)i∈I) is small (i.e. a set), so the name

is justified.

The above notation clashes with standard notation. That is, classically one

would expect the notation Sn(T ) for the n-types of a theory T . Then, fixing some

parameter set A, we would write Sn(A) for the set of n-types with parameters in

A. However, for our Galois types the difference between domain and parameters

fades, see Example 3.14. So the only relevant information about a Galois type

set is the domains that we fix, that is the (Ai)i∈I .

Definition 3.18 allows us to talk about gtp((ai)i∈I ;M) as an object in itself:

it is one of the equivalence classes in Sgtp((Ai)i∈I).

Proposition 3.19. Let (C,M) be an AECat with AP. Then for any tuple (Ai)i∈I

of objects Sgtp((Ai)i∈I) is a set.

Proof. We prove that there is a subset S′((Ai)i∈I) ⊆ S((Ai)i∈I), such that for

every tuple ((ai)i∈I ;M) ∈ S((Ai)i∈I), there is some ((a′i)i∈I ;M
′) ∈ S′((Ai)i∈I)

with gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′).

Let λ be such that every Ai is λ-presentable, λ > |I| and the inclusion functor

M ↪→ C is λ-accessible and preserves λ-presentable objects. Such a λ must exist

since each object in an accessible category is presentable by [AR94, Proposition

1.16], and by Remark 3.5.

Let Mλ be (a skeleton of) all the models that are λ-presentable. Then Mλ

is a set (see the remark after [AR94, Definition 1.9]). We define:

S′((Ai)i∈I) =
∐

M∈Mλ

∏
i∈I

Hom(Ai,M)

We check that S′((Ai)i∈I) has the required property. Let

((ai)i∈I ;M) ∈ S((Ai)i∈I). Then because M is λ-accessible, M is a λ-directed

colimit of λ-presentable objects (Mj)j∈J . That is, objects in Mλ. Since the
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inclusion functor M ↪→ C preserves directed colimits, we still have

M = colimj∈JMj in C. As Ai is λ-presentable for each i ∈ I, we have that each

ai factors through some Mji . Then since λ > |I|, there is j ∈ J such that every

ai factors through Mj . Write this factorisation as Ai
a′i−→ Mj

mj−−→ M , where mj

is the coprojection from the colimit. Then by construction

((a′i)i∈I ;Mj) ∈ S′((Ai)i∈I) and gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;Mj).

3.4 Lascar strong Galois types

In this section we will give a definition of Lascar strong Galois type. This will

coincide with the usual notion of Lascar strong type in (Mod(T ),Mod(T )) or

(SubMod(T ),Mod(T )) when T is a theory in full first-order logic. Even for

reasonable positive theories T this will coincide, see Remark 3.22 and

Definition 2.40. This notion will be useful later in the property Independence

Theorem for independence relations, see Definition 4.8.

To place the following definition in context, we quickly recall a possible

definition for Lascar strong types in full first-order logic. Tuples a and a′ have

the same Lascar strong type over B if there are a = a0, . . . , an = a′ and models

M1, . . . ,Mn, each containing B, such that tp(ai/Mi+1) = tp(ai+1/Mi+1) for all

0 ≤ i < n.

Definition 3.20. Let (C,M) be an AECat with AP and fix some ((bj)j∈J ;M).

We write ((ai)i∈I/(bj)j∈J ;M) ∼Lgtp ((a′i)i∈I/(bj)j∈J ;M) if there is some

extension M → N and some m0 : M0 → N , where M0 is a model, such that bj

factors through m0 for all j ∈ J and gtp((ai)i∈I ,m0;N) = gtp((a′i)i∈I ,m0;N).

We write

Lgtp((ai)i∈I/(bj)j∈J ;M) = Lgtp((a′i)i∈I/(bj)j∈J ;M)

for the transitive closure of ∼Lgtp and we say that ((ai)i∈I ;M) and ((a′i)i∈I ;M)

have the same Lascar strong Galois type over (bj)j∈J .

Remark 3.21. Let T be a semi-Hausdorff theory (recall this includes theories

in full full first-order logic, see Remark 2.12). Let C be either SubMod(T ) or

Mod(T ) and let M be Mod(T ). Then having the same Lascar strong Galois

type in (C,M) coincides with have the same Lascar strong type in the usual

sense, see Fact 2.32. A similar statement is true for continuous theories.

If T is a thick theory we need to slightly adjust the category of models. This

is because in a thick theory, having the same type over an e.c. model is generally

not enough to guarantee having the same Lascar strong type. See Example 2.33.

So following Proposition 2.39 we can take M to be the category of finitely λT -

saturated models. Then Lascar strong Galois types once again coincide with
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Lascar strong types. Here the notion of being finitely λT -saturated, rather than

being λT -saturated, is important to guarantee thatM has directed colimits.

Remark 3.22. In the usual definition for Lascar strong types we have two more

equivalent conditions, see Definition 2.40.

One condition states that a and b have the same Lascar strong type if they

can be connected by indiscernible sequences. Outside the finitely short setting

indiscernible sequences may not be the right tool to work with. They are

usually so nice because we can make them arbitrarily long and they are highly

homogeneous, but both of these properties require at least finite shortness (see

section 4.5).

The other condition states that a and b have the same Lascar strong type if

they are equivalent under every bounded invariant equivalence relation. This can

be made sense of in general AECats, see Definition 5.12. However, it is hard to

prove any properties for this, like Proposition 3.24 or Proposition 3.25.

So the main missing link is a good replacement of homogeneous enough

sequences that can be extended to arbitrary lengths. In section 5.3 we show

that a nice enough independence relation provides this link. In particular we

get the familiar equivalent characterisations of Lascar strong types for Lascar

strong Galois types, replacing indiscernible sequences by something we call

strongly 2-indiscernible sequences.

The following proposition shows that having the same Lascar strong Galois

type is preserved under having the same Galois type. For ease of notation we

prove this for single arrows, but the proof goes through word for word if we

replace those by tuples of arrows.

Proposition 3.23. Suppose that gtp(a1, a2, b;M) = gtp(a′1, a
′
2, b

′;M ′). Then

we have Lgtp(a1/b;M) = Lgtp(a2/b;M) if and only if

Lgtp(a′1/b
′;M ′) = Lgtp(a′2/b

′;M ′).

Proof. It suffices to prove that (a1/b;M) ∼Lgtp (a2/b;M) implies

(a′1/b
′;M ′) ∼Lgtp (a′2/b

′;M ′). Let M → N with M0 ≤ N witness

(a1/b;M) ∼Lgtp (a2/b;M). So we have that b factors through M0, that is

b = m0b
∗ for some representative m0 of M0 and b∗ : B → M0, and

gtp(a1,m0;N) = gtp(a2,m0;N). Let N → N ′ ← M ′ witness

gtp(a1, a2, b;N) = gtp(a1, a2, b;M) = gtp(a′1, a
′
2, b

′;M ′). Then we get the
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following commuting diagram:

N ′

N M ′

M M0

A1 B A2

So we haveM0 ≤ N ′ and b′ factors thoughM0. This follows from the fact that the

above diagram commutes, so b′ : B →M ′ → N ′ and B →M0 → N → N ′ are the

same arrow. Furthermore, we have that gtp(a1,m0;N
′) = gtp(a2,m0;N

′) and

because a1 and a2 are the same arrows into N ′ as a′1 and a′2 respectively, we get

gtp(a′1,m0;N
′) = gtp(a′2,m0;N

′). So we conclude (a′1/b
′;M ′) ∼Lgtp (a′2/b

′;M ′),

as required.

Having the same Lascar strong Galois type has a bounded number of

equivalence classes. We will again give a proof for single arrows, which again

also works for tuples of arrows.

Proposition 3.24. Given objects A and B there is λ such that for any b : B →
M the relation of having the same Lascar strong Galois type over b partitions

Hom(A,M) into at most λ many equivalence classes.

Proof. We will first prove the following claim: for any b : B → M there is λb

such that for any b′ : B →M ′ with gtp(b′;M ′) = gtp(b;M) there are at most λb

many equivalence classes of Lascar strong Galois types over b′ in Hom(A,M ′).

By Proposition 3.19 the collection Sgtp(A,M) is a set. We pick

λb = |Sgtp(A,M)|. Now let M → N ←M ′ witness gtp(b′;M ′) = gtp(b;M). For

any two arrows a, a′ : A → M ′ we have that gtp(a,m;N) = gtp(a′,m;N)

implies that Lgtp(a/b′;M ′) = Lgtp(a′/b′;M ′), by Proposition 3.23. The claim

then follows by choice of λb.

By the claim we can take λ to be the supremum of λb, where b ranges over

the representatives of the Galois types in Sgtp(B).

Proposition 3.25. If Lgtp((ai)i∈I/b;M) = Lgtp((a′i)i∈I/b;M) then:

(i) (restriction) we have Lgtp((ai)i∈I0/b;M) = Lgtp((a′i)i∈I0/b;M) for any

I0 ⊆ I;

(ii) (monotonicity) given an arrow ci : Ci → dom(ai) for each i ∈ I, then

Lgtp((ai)i∈I , (aici)i∈I/b;M) = Lgtp((a′i)i∈I , (a
′
ici)i∈I/b;M)
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and thus Lgtp((aici)i∈I/b;M) = Lgtp((a′ici)i∈I/b;M);

(iii) (extension) for any (c;M) there is an extension M → N and some (c′;N)

such that Lgtp(c, (ai)i∈I/b;N) = Lgtp(c′, (a′i)i∈I/b;N).

Proof. This is essentially the same Proposition 3.16, but then for Lascar strong

Galois types. To prove it, apply the definition of Lascar strong Galois types to

reduce to some equality of Galois types and then apply Proposition 3.16.

3.5 Subobjects

Later we will define independence relations as a relation on subobjects. In this

section we recall the definition and some basic properties about subobjects. We

also briefly explain how they interact with Galois types.

The intuition is that subobjects correspond to just subsets, while arrows

correspond to indexed tuples. For example, if we consider the inclusion

i : Z → R then this enumerates the subset Z ⊆ R. The arrow

f : Z → R, x 7→ −x enumerates the same subset but in a different way. So from

the point of view of subsets i and f are ‘equivalent’, the idea is then that a

subobject is an equivalence class of ‘equivalent’ arrows.

Definition 3.26. Let C be an arbitrary category and fix some object X. Let

f : A→ X and g : B → X be two monomorphisms. We write f ≤ g if f factors

through g. That is, there is some h : A→ B such that f = gh.

X

A B

f

h

g

It is easy to check that ≤ defines a pre-order on the collection of monomorphisms

into X. So we can define an equivalence relation ∼ on this collection by saying

that f ∼ g if and only if f ≤ g and g ≤ f . An equivalence class of ∼ is called a

subobject of X. We write Sub(X) for the collection of subobjects of X, and the

pre-order on the monomorphisms induces a partial order ≤ on Sub(X).

Fact 3.27. Let everything be as in Definition 3.26.

(i) If f ≤ g then the comparison arrow h is a monomorphism.

(ii) If f ∼ g then the comparison arrow h is an isomorphism.

Proof. For (i): let p, q : Y → A be arrows such that hp = hq. Then fp = ghp =

ghq = fq. So p = q because f is a monomorphism. For (ii): let h′ : B → A

be such that fh′ = g. We claim that h′ is the inverse of h. We have that

fIdA = f = gh = fh′h, so h′h = IdA because f is a monomorphism. Similarly

we find hh′ = IdB.
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Convention 3.28. We make the following notational conventions about

subobjects in AECats.

(i) Any arrow in an AECat is a monomorphism, and is thus a representative

of some subobject. Whenever we have an unnamed arrow A → B we also

write A for the subobject represented by it.

(ii) Due to Fact 3.27(i) we have that whenever A,B ∈ Sub(X) and A ≤ B then

we may also consider A as a subobject of B, that is A ∈ Sub(B). So we

use the notation A ≤ X to also mean A ∈ Sub(X).

(iii) In line with Convention 3.12, if we have a subobject A ≤ M and an

extension M → N then we will consider A as a subobject of N as well (by

composing with the extension).

(iv) Due to Fact 3.27(ii) we have that whenever f and g represent the same

subobject A then their domains are isomorphic. So it makes sense to talk

about the presentability of a subobject. More precisely, when we say that

a subobject A is λ-presentable then we mean that the domain of some

(equivalently: every) representative is λ-presentable.

Fact 3.29 ([AR94, Chapter 1]). In any accessible category the collection Sub(X)

is small, meaning that it is a set. In particular this is true in any AECat.

It would be natural to ask whether we can make sense of Galois types for

subobjects. This is in fact possible and was done in [Kam20], see the example

below. However, we have to be careful with such a definition, as is illustrated in

that example. The definition turned out to be a source of confusion and it is easy

to work around it by explicitly picking representatives of subobjects whenever

necessary. So ultimately we opted out of such a definition for this thesis and only

work with Galois types of arrows.

Example 3.30. In classical model theory we would say that two sets A and A′

have the same type if there is an enumeration a of A and a′ of A′ such that a

and a′ have the same type. So given a tuple of subobjects (Ai)i∈I of some model

M and a tuple (A′
i)i∈I of some model M ′, we could define gtp((Ai)i∈I ;M) =

gtp((A′
i)i∈I ;M

′) to mean that there are representatives (ai)i∈I of (Ai)i∈I and

(a′i)i∈I of (A′
i)i∈I such that gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M

′). This turns out

to be equivalent to having extensions M → N ← M ′ such that Ai = A′
i as

subobjects of N for all i ∈ I. The latter formulation is in fact [Kam20, Definition

3.5], and the equivalence between the two formulations is [Kam20, Proposition

3.6].

We now illustrate why we have to be careful in applying the above definition.

Consider the category of infinite sets with injective functions. This is easily seen
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to be an AECat with AP if we takeM to be the entire category. Alternatively,

this is precisely Mod(Tinf), where Tinf is the theory of infinite sets, and is thus

an AECat with AP as discussed in Example 3.3.

Let f : N → N be the bijection that swaps the odd and even numbers. So

f(0) = 1, f(1) = 0, f(2) = 3, and so on. Denote by 2N the set of even numbers

and let e : 2N → N be the inclusion. So we have the following commuting

diagram:

N

N 2Nf

IdN

f

e

We denote by [IdN] the subobject represented by IdN, and likewise for f and e.

Then [IdN] = [f ], so we definitely have

gtp([IdN], [e];N) = gtp([f ], [e];N).

However, we cannot have

gtp(IdN, e;N) = gtp(f, e;N).

If this equality of Galois types were to hold then there would be injective functions

g, h : N → X, where X is some infinite set, such that g = hf and ge = he.

However, this would mean that g(2) = ge(2) = he(2) = h(2) = hf(3) = g(3),

contradicting injectivity of g.

Intuitively what happens is that e plays the role of fixing a parameter set,

because we use the same arrow on both sides of the equality of Galois types. The

arrows IdN and f both play the role of enumerating N, but do this in different

ways. What we have shown is that these different enumerations yield different

types over the set of even numbers 2N. In classical model-theoretic notation we

would write tp(0, 1, 2, 3, . . . /2N) ̸= tp(1, 0, 3, 2, . . . /2N).
So subobjects are like sets without a specific enumeration, while picking a

representative of such a subobject is like picking an enumeration of the set. This

example shows that we cannot just pick any representatives of subobjects when

considering Galois types, in the same way that we have to be careful when picking

enumerations of sets in syntactic types.

3.6 Finitely short AECats

In this section we discuss an important property that connects AECats with

existing frameworks and allows us to recover a bit of compactness, see

Proposition 3.38. Nothing in this section will be used in the rest of this thesis,

except in section 4.5, where a further connection to indiscernible sequences is
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explored. However, that section too is used nowhere else in this thesis.

This property is to have some locality for Galois types (inspired by [GV06]):

the Galois type of an infinite tuple should be determined by the Galois types of

all of its finite subtuples.

Definition 3.31. We say that an AECat is finitely short if for any two (infinite)

tuples ((ai)i∈I ;M) and ((a′i)i∈I ;M
′) such that for all finite I0 ⊆ I

gtp((ai)i∈I0 ;M) = gtp((a′i)i∈I0 ;M
′),

we have that

gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′).

Example 3.32. The AECats (Mod(T ),Mod(T )) and (SubMod(T ),Mod(T ))

from Example 3.3 are both finitely short (recall that this includes the full first-

order case), because Galois types coincide with the usual syntactic types.

For the same reasons, for a continuous theory T ,

(MetMod(T ),MetMod(T )) and (SubMetMod(T ),MetMod(T )) from

Example 3.7 are finitely short.

An AEC K with AP that is fully < ℵ0-type short over the empty set yields

AECats (K,K) and (SubSet(K),K), as per Example 3.8, which are both finitely

short.

Example 3.33. In Example 3.9 we mentioned cats from [BY03a]. One

definition there allows for a nice comparison to AECats, namely that of an

elementary category (with amalgamation) [BY03a, Definition 2.27]. This is a

concrete category C that satisfies a few additional assumptions, similar to the

axioms of an AEC. Every such elementary category C will form an AECat with

AP as (C, C), if we additionally assume C to be accessible1.

Conversely, given an AECat (C,M) we can make it into a concrete category

using a version of the Yoneda embedding. Let λ be such that C is λ-accessible

and let A be the full subcategory of λ-presentable objects in C. Then there is a

fully faithful canonical functor E : C → SetA
op

that preserves λ-directed colimits,

see [AR94, 1.25 and 2.8]. If (C,M) has AP then taking the image of M under

E, we obtain an elementary category with amalgamation.

In [BY03a, Definition 2.32] a few properties are defined for the Galois types:

� type boundedness: this is always true in an AECat, see Proposition 3.19;

� type locality : this is precisely what we called being finitely short;

1Technically, [BY03a, Definition 2.27] does not require the existence of directed colimits but
something slightly weaker called the “elementary chain property”. However, it is likely that
actually directed colimits are meant and in practice this is what we have.
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� weak compactness: this is what we call “compactness for Galois types”, see

Definition 3.36, which holds for example in categories obtained from a full

first-order, positive or continuous theory.

Note that Example 3.33 does generally not yield an AEC. For example, take

C = M to be the category of infinite sets with injective functions. If we make

this category into a concrete category through the functor E : C → SetA
op

then

E(ω + ω) contains the arrow f : ω → ω + ω where f(n) = ω + n. If this would

be an AEC then E(ω+ω) =
⋃
n<ω E(ω+n), but f is not in E(ω+n) for any n.

So the Tarski-Vaught chain axiom for AECs fails. The point is of course that a

directed colimit can be more than just the union of underlying sets.

In [BR12, Corollary 5.7] a characterisation is given of those accessible

categories that are equivalent to an AEC. It also describes how to construct an

AEC from such an accessible category, through a construction very similar to

Example 3.33.

Example 3.34. Let (C,M) be a finitely short AECat with AP. Suppose

furthermore thatM is connected. That is, it has the joint embedding property:

for any two models M1 and M2 there is a third model N with arrows

M1 → N ← M2. Then there is a strong connection with homogeneous model

theory [BL03]. We sketch the construction and would like to thank an

anonymous referee of [Kam20] for pointing this out.

As discussed in Example 3.33, we can turn M into a concrete category. So

using the usual tools we can build a monster model M, which we will fit in the

framework of [BL03]. The elements in M are arrows in C, and having the same

Galois type corresponds to having the same orbital type in M. For every Galois

type of a finite tuple we add a relation symbol, and we close these under finite

conjunctions and disjunctions. Then two (infinite) tuples of elements are in the

same orbit of M iff they have the same Galois type iff their finite subtuples have

the same Galois type iff the finite subtuples satisfy the same relation symbols.

The constructions in Example 3.33 and Example 3.34 do not change our

category, they only add data to make it into a concrete category. So any notion

that is defined on just the objects and arrows in our category is preserved by this

operation. In particular independence relations, as we define in chapter 4, are

preserved. It would be interesting to study these connections further, but that is

beyond the scope of this thesis.

Quasiminimal excellent classes, as discussed in Example 3.10, are generally

not finitely short. The motivating example, Zilber’s exponential field, is not

finitely short. We treat an easier example.

Example 3.35. We consider the quasiminimal excellent class in [Kir10, Example

1.2(4)]. Models are are sets with an equivalence relation, where each equivalence
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class has cardinality ℵ0. For a subset A of some modelM we write clM (A) for the

closure of A, which is the union of all equivalence classes in M that A intersects.

We define C to be the category of subsets of models as follows. Objects are pairs

(A,M), where A ⊆M and M is a model. An arrow f : (A,M)→ (B,N) is then

an injection f : A→ B such that:

(i) it preserves and reflects the equivalence relation: a ∼ a′ iff f(a) ∼ f(a′);

(ii) if clM (a) ⊆ A then f(clM (a)) = clN (f(a)).

We letM be the full subcategory of (objects isomorphic to) objects of the form

(M,M). One easily checks that C is ω1-accessible and that (A,M) is λ-presentable

precisely when |A| < λ, for λ ≥ ω1. It is then straightforward to verify that

(C,M) is an AECat with AP.

To see that finite shortness fails, we consider N as a model with just one

equivalence class. For each n ∈ N we consider arrows an, bn : ({n},N) → (N,N)
given by an(n) = n and bn(n) = 2n. For any finite n1, . . . , nk ∈ N we let

h : N → N be a bijection such that h(2ni) = ni for all 1 ≤ i ≤ k. Since h is a

bijection, it is in fact an arrow h : (N,N)→ (N,N). So the following commutes:

(N,N)

(N,N) (N,N)

({n1},N) . . . ({nk},N)

h

an1

bn1
ank

bnk

We thus have gtp(an1 , . . . , ank
; (N,N)) = gtp(bn1 , . . . , bnk

; (N,N)). If we would

have finite shortness, then this would imply

gtp((an)n∈N; (N,N)) = gtp((bn)n∈N; (N,N)). However, this cannot happen,

because then we would find f, g : (N,N) → (N,N) such that fan = gbn for all

n ∈ N. By property (ii) of the arrows, both f and g must be surjective. Set

m = g(1) and let n be such that f(n) = m. So we have

g(2n) = gbn(n) = fan(n) = m, but then g(2n) = g(1) which contradicts

injectiveness of g.

As suggested by Jonathan Kirby we can easily generalise this example by

replacing ℵ0 by any infinite cardinal. So we get equivalence classes of cardinality

κ for some fixed infinite κ. This is no longer a quasiminal excellent class, but

the rest of this example goes through. That is, the category C of subsets of these

models is κ+-accessible and (A,M) is λ-presentable precisely when |A| < λ for

λ > κ. We again have that (C,M) is an AECat with AP, whereM is the category

of models. In this case, the AECat even fails to be < κ-type short, by a similar

argument as above. That is, there are two tuples that have different Galois types,

while all subtuples of cardinality <κ have the same Galois type.
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In the remainder of this section we show how we can recover some compactness

from finite shortness. The argument is standard, just translated to the framework

of AECats. See for example [BY03a, Remark 2.34]

Definition 3.36. Let (Ai)i∈I be some (infinite) tuple of objects in some AECat

with AP. Given a subset I0 ⊆ I, we call a tuple ((aI0,i)i∈I0 ;MI0) an interpretation

for (Ai)i∈I0 in MI0 .

Let I ⊆ P(I) be a downwards closed set of subsets of I. Denote by Ī the ideal

generated by I (i.e. close it under finite unions). Then a system of satisfiability

for I consists of an interpretation for each element of Ī, such that for all I0 ⊆ I1,
with I0 ∈ I and I1 ∈ Ī, we have

gtp((aI0,i)i∈I0 ;MI0) = gtp((aI1,i)i∈I0 ;MI1).

If I is the set of all finite subsets of I, then we call such a system a system of

finitary satisfiability . Note that in that case I = Ī.
A realisation for a system of satisfiability is an interpretation for all of I, such

that for each I0 ∈ I we have

gtp((aI,i)i∈I0 ;MI) = gtp((aI0,i)i∈I0 ;MI0).

For such a realisation we will drop the subscript I, so the notation becomes

gtp((ai)i∈I0 ;M) = gtp((aI0,i)i∈I0 ;MI0).

We say that we have directed compactness for Galois types if every system of

finitary satisfiability admits a realisation. We say that we have compactness for

Galois types if every system of satisfiability admits a realisation.

Example 3.37. Let (C,M) = (SubMod(T ),Mod(T )) for some theory T . We

will sketch how one can see that (C,M) has compactness for Galois types.

Recall that in our terminology a type is a maximal consistent set of formulas,

see Definition 2.13.

Let (xi)i∈I be some tuple of variables indexed by I and let I ⊆ P(I) be a

downwards closed set of subsets of I. A system of satisfiability then consists of

a type pI0((xi)i∈I0) for each I0 ∈ Ī such that for each I0 ⊆ I1 with I0 ∈ I and

I1 ∈ Ī we have that pI0 ⊆ pI1 . A realisation of this system is then precisely a

realisation of

p((xi)i∈I) =
⋃
I0∈I

pI0((xi)i∈I0).

By compactness, Proposition 2.8, it is enough to show that p is finitely satisfiable.

So let φ1, . . . , φn ∈ p. Then there are I1, . . . , In ∈ I such that φk ∈ pIk for all

1 ≤ k ≤ n. Take J = I1 ∪ . . . ∪ In, so J ∈ Ī. Hence φ1, . . . , φn ∈ pJ for all
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1 ≤ k ≤ n. So since pJ is satisfiable, we conclude that {φ1, . . . , φn} is satisfiable,
as required.

Proposition 3.38. A finitely short AECat with AP has directed compactness for

Galois types.

Proof. Suppose we have a tuple (Ai)i∈I of objects. We prove by induction on

the cardinality |I| that every system of finitary satisfiability for (Ai)i∈I has a

realisation. The case where I is finite is trivial.

For the induction step we assume that every system of finitary satisfiability

of cardinality < κ has a realisation. So suppose we are given some system of

finitary satisfiability, using the same notation as in Definition 3.36, with |I| = κ.

Then we may actually assume I = κ and thus write (Ai)i<κ. By induction we

will construct a chain of models (Ni)i<κ and ai : Ai → Ni+1, such that for all

α < κ the tuple (ai)i<α is a realisation for (Ai)i<α in Nα.

Base case. We just take N0 to be M∅.

Successor step. Suppose we have constructed (Ni)i≤α and (ai)i<α. Since |α+1| <
κ, we can use the induction hypothesis on κ to find a realisation (a′i)i<α+1 in some

M ′, of our system of finitary satisfiability restricted to (Ai)i<α+1. Then for all

i1 < . . . < in < α we have

gtp(ai1 , . . . , ain ;Nα) = gtp(a′i1 , . . . , a
′
in ;M

′),

because both are realisations of the same (restricted) system of finitary

satisfiability. Being finitely short implies

gtp((ai)i<α;Nα) = gtp((a′i)i<α;M
′).

Then apply Proposition 3.16(iii) to a′α to find Nα → Nα+1 and aα : Aα → Nα+1.

Limit step. For ℓ < κ a limit, we just take Nℓ = colimi<ℓNi.

Now take Nκ = colimi<κNi, so (ai)i<κ in Nκ is the required realisation.

Remark 3.39. Suppose we have a system of finitary satisfiability where

everything is interpreted in the same model M . Suppose furthermore that all

interpretations of some P ⊆ I are fixed. That is, ap = aI0,p does not depend on

I0 ⊆ I. If we assume that the AECat is finitely short, then for a realisation

((ai)i∈I ;N):

gtp((ap)p∈P ;N) = gtp((ap)p∈P ;M).
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So we may assume N to be an extension of M , and the realisation of p ∈ P to

be given by Ap
ap−→M → N .



4

Independence relations

In this chapter we discuss independence relations in AECats. In section 4.1 we

define an abstract independence relation |⌣ as a ternary relation on triples of

subobjects of models. We then formulate the properties that such a relation can

have. Classically, in theories (e.g. in full first-order logic) the properties that an

abstract independence relation has, if it exists, can be used to characterise that

theory as stable, simple or NSOP1. Following this we define which properties

make an independence relation in an AECat stable, simple or NSOP1-like.

In section 4.2 we study the connection between three properties that an

independence relation can have: Independence Theorem, 3-amalgamation

and Stationarity. Roughly summarised we prove that the first two properties

are equivalent, and that the last one implies the first two.

In stable and simple theories in full first-order (or positive) logic, independence

is given by dividing. We introduce the notions of long dividing and isi-dividing

in section 4.4. These are closely related to dividing, but they are better suited

for settings that lack compactness or even settings that are not finitely short. In

NSOP1 theories in full first-order logic—and also in positive theories, see chapter

6—independence is given by Kim-dividing. Accordingly, we also introduce the

notion of long Kim-dividing, also in section 4.4. Again, this is closely related,

but better suited for AECats in general.

In the last section of this chapter, section 4.5, we continue the exploration of

the link between finitely short AECats and existing frameworks. The contents of

this section are not needed anywhere else in this thesis. We prove that the finite

shortness assumption allows us to create and manipulate indiscernible sequences

as usual in more concrete settings.

4.1 Independence relations in AECats

Definition 4.1. In an AECat with AP, an independence relation is a relation

on triples of subobjects of models. If such a triple (A,B,C) of subobjects of a
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model M is in the relation, we call it independent and denote this by:

A
M

|⌣
C

B.

This notation should be read as “A is independent from B over C (in M)”.

We also allow each of the subobjects in the notation to be replaced by an arrow

representing them. For example, if a is an arrow representing the subobject A

then a |⌣
M
C
B means A |⌣

M
C
B.

We may want to restrict the objects that can appear in the base of the

independence relation. For example, in chapter 6, we will develop independence

only over e.c. models.

Definition 4.2. Let (C,M) be an AECat with AP and let B be a collection of

objects in C withM⊆ B. Then we call B a base class. An independence relation

|⌣ is called an independence relation over B if it only allows subobjects with their

domain in B in the base. That is, A |⌣
M
C
B implies that the domain of C is in B.

We will also say that B is the base class of |⌣, written as B = base( |⌣).

Convention 4.3. For a base class B and some subobject C ≤ M we will also

write C ∈ B to mean that the domain of C is in B, and similarly for C ̸∈ B.

Definition 4.4. We call an independence relation |⌣ a basic independence

relation if it satisfies the following properties.

Invariance a |⌣
M
c
b and gtp(a, b, c;M) = gtp(a′, b′, c′;M ′) implies a′ |⌣

M ′

c′
b′.

Monotonicity A |⌣
M
C
B and A′ ≤ A implies A′ |⌣

M
C
B.

Transitivity A |⌣
M
B
C and A |⌣

M
C
D with B ≤ C implies A |⌣

M
B
D.

Symmetry A |⌣
M
C
B implies B |⌣

M
C
A.

Existence A |⌣
M
C
C for all A,C ≤M with C ∈ base( |⌣).

Extension If a |⌣
M
c
b and (b′;M) is such that b factors through b′ then there

is an extension M → N with some (a′;N) such that gtp(a′, b, c;N) =

gtp(a, b, c;M) and a′ |⌣
N
c
b′.

Union Let (Bi)i∈I be a directed system with a cocone into some model M , and

suppose B = colimi∈I Bi exists. Then if A |⌣
M
C
Bi for all i ∈ I, we have

A |⌣
M
C
B.

Before we define some additional properties for independence relations, we

first need to translate the notion of a club set to categorical language.
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Definition 4.5. Let (C,M) be an AECat. For a modelM and a regular cardinal

κ we write SubκM(M) for the poset of κ-presentable subobjects ofM inM. That

is, SubκM(M) is the set of M ′ ≤M such that M ′ is κ-presentable.

Note that if we are given a chain (Mi)i<θ in SubκM(M) with θ < κ then its

join in SubκM(M) exists and is given by colimi<θMi. This is the reason why we

restrict ourselves toM, because there we have directed colimits. If C has directed
colimits as well then all these definitions would make sense for C as well.

Definition 4.6. Let F ⊆ SubκM(M) be a nonempty set.

(i) We call F unbounded if for every M0 ∈ SubκM(M) there is M1 ∈ F such

that M0 ≤M1.

(ii) We call F closed if for any chain (Mi)i<θ in F with θ < κ its join colimi<θMi

is again in F .

(iii) We call F a club set if it is closed and unbounded.

Fact 4.7. The following two facts are standard.

(i) The intersection of two club sets on SubκM(M) is again a club set.

(ii) If M = colimi<κMi, where (Mi)i<κ is a continuous chain of κ-presentable

models, then {Mi : i < κ} is a club set on SubκM(M).

Proof. Fact (i) is standard, see for example [Jec03, Theorem 8.2]. We just apply

the argument to the poset SubκM(M) instead of to a cardinal considered as a

poset. Fact (ii) is just unfolding definitions. The chain (Mi)i<κ is unbounded

because it is κ-directed, so any κ-presentable M ′ ≤ M will factor through the

chain, and continuity is precisely saying that the chain is a closed set.

Definition 4.8. We also define the following properties for an independence

relation.

Base-Monotonicity A |⌣
M
C
B and C ≤ C ′ ≤ B with C ′ ∈ base( |⌣) implies

A |⌣
M
C′ B.

Club Local Character For every regular cardinal λ there is a regular

cardinal Υ(λ) such that the following holds for all regular κ ≥ Υ(λ). Let

A,M ≤ N , with A λ-presentable and M a model. Then there is a club set

F ⊆ SubκM(M) such that for all M0 ∈ F we have A |⌣
N
M0

M .

Stationarity If gtp(a,m;N) = gtp(a′,m;N), where the domain of m is a

model, then a |⌣
N
m
b and a′ |⌣

N
m
b implies gtp(a,m, b;N) = gtp(a′,m, b;N).
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Independence Theorem Suppose we have a |⌣
M
c
b, a′ |⌣

M
c
b′, b |⌣

M
c
b′ and

Lgtp(a/c;M) = Lgtp(a′/c;M). Then there is an extension M → N with

(a∗;N) such that a∗ |⌣
N
c
M , Lgtp(a∗/c, b;N) = Lgtp(a/c, b;N) and

Lgtp(a∗/c, b′;N) = Lgtp(a′/c, b′;N).

Definition 4.9. Let |⌣ be a basic independence relation.

� We call |⌣ a stable independence relation if it additionally satisfies

Base-Monotonicity, Club Local Character, Stationarity and

Independence Theorem.

� We call |⌣ a simple independence relation if it additionally satisfies

Base-Monotonicity, Club Local Character and Independence

Theorem.

� We call |⌣ an NSOP1-like independence relation if it additionally satisfies

Club Local Character and Independence Theorem;

Remark 4.10. A few remarks about the properties for independence relations.

1. The Symmetry property is part of the definition of a basic independence

relation. So, for example, we can applyMonotonicity to both sides. That

is, if A |⌣
M
C
B and A′ ≤ A, then A′ |⌣

M
C
B. We will often suppress mentions

of Symmetry when using the symmetric version of another property. If

the independence relation does not have Symmetry, one would have to

distinguish between “left” and “right” versions (e.g. Left-Monotonicity

and Right-Monotonicity).

2. The Union property is our version of what is usually known as “finite

character”. In a concrete setting it follows directly from finite character,

but this formulation is more suited for our category-theoretic setting. In

the setting of AECs one often sees the name “(< ℵ0)-witness property”,

which implies Union.

3. In the statement of Union: we can view B as a subobject ofM because the

universal property of the colimit guarantees an arrow B →M , which must

be a monomorphism because all arrows are monomorphisms in an AECat.

If every Bi is a model, then the colimit B always exists and is a model. We

will only need to apply Union to directed systems of models.

4. In a more traditional definition of local character, such as in simple

theories, one would just require that for A,M ≤ N as above there is some

Υ(λ)-presentable M0 ≤ M such that A |⌣
N
M0

M . This is (almost) the

definition that was used in [Kam20], where we also have access to

Base-Monotonicity. We then get Club Local Character by
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considering the club set F = {M0 ∈ SubκM(M) :M0 ≤M}. In NSOP1-like

settings we do generally not have Base-Monotonicity. So Club Local

Character then still gives us a good amount of Base-Monotonicity,

namely on a club set. These ideas are due to [KRS17].

5. Stationarity is sometimes also called “uniqueness”.

Example 4.11. A natural question would be to ask whether there are

examples that are not finitely short, but where there still is an independence

relation satisfying Union. Quasiminimal excellent classes as discussed in

Example 3.10 are such an example: the pregeometry there yields a stable

independence relation. We discussed one such example in detail in

Example 3.35, where models are equivalence relation with equivalence classes of

cardinality ℵ0. In fact, the independence relation there admits an easy

description: we set A |⌣
M
C
B if clM (A) ∩ clM (B) ⊆ clM (C). It is easy to check

that this is indeed a stable independence relation.

Other examples can be found in AECs with intersections. For example [Vas17,

Appendix C] discusses how to find a stable independence relation in such AECs.

There is no direct mention of the Union property there, but the “(< ℵ0)-witness
property” directly implies Union. Also [GMA21, Section 8.2] comes close to

giving a simple example, rather than stable, although no explicit examples are

given and they do not get the full (< ℵ0)-witness property.

Proposition 4.12 (Strong extension). Let |⌣ be a basic independence relation

and suppose that a |⌣
M
c
b. Then for any (d;M) there is an extension M → N

and (d′;N) such that Lgtp(d′/b, c;N) = Lgtp(d/b, c;N) and a |⌣
N
c
d′.

Proof. We first apply Extension to find M → N1 with m′ : M → N1 such

that a |⌣
N1

c
m′ and gtp(m′, b, c;N1) = gtp(m, b, c;N1). In particular this means

that b and c factor through m′. We apply Extension again to find an

extension n1 : N1 → N and n′1 : N1 → N with a |⌣
N
c
n′1 and

gtp(n′1,m
′;N) = gtp(n1,m

′;N). We define d′ to be the composition

D
d−→M → N1

n′
1−→ N . By Monotonicity we then have a |⌣

N
c
d′. We also have

gtp(d′,m′;N) = gtp(d,m′;N), so since b and c factor through m′, and m′ has a

model as domain, we indeed get Lgtp(d′/b, c;N) = Lgtp(d/b, c;N).

Corollary 4.13. Let |⌣ be a basic independence relation and suppose that

a |⌣
M
c
b. Then for any (d;M) there is an extension M → N and (a′;N) such

that Lgtp(a′/b, c;N) = Lgtp(a/b, c;N) and a′ |⌣
N
c
d.

Proof. Apply Proposition 4.12 to find M → N ′ with (d′;N ′) such that a |⌣
N ′

c
d′

and Lgtp(d′/b, c;N) = Lgtp(d/b, c;N). Then just pick (a′;N) in an extension

N ′ → N such that Lgtp(a′, d/b, c;N) = Lgtp(a, d′/b, c;N).
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Convention 4.14. We call the class function Υ for Club Local Character

a local character function. For an object A we write Υ(A) for Υ(λ) where λ is

the least regular cardinal such that A is λ-presentable.

Lemma 4.15 (Chain local character). Let |⌣ be an independence relation in a

λ-AECat (C,M) with AP, satisfying Club Local Character. Let A ≤ N

and κ ≥ Υ(A) + λ. Suppose that we are given a continuous chain (Mi)i<κ of

κ-presentable models with M = colimi<κMi ≤ N . Then there is i0 < κ such that

A |⌣
N
Mi0

M .

Proof. Let F ⊆ SubκM(M) be the club set from Club Local Character. By

Fact 4.7(ii) the chain (Mi)i<κ forms a club set on SubκM(M). So by Fact 4.7(i)

{Mi : i < κ} ∩ F is nonempty.

Remark 4.16. For all our results we only need chain local character. That is,

the conclusion of Lemma 4.15. In particular the canonicity theorems in section

5.1 go through even if we would just assume chain local character.

Given that we actually only need chain local character, as per Remark 4.16,

it is natural to ask whether the converse of Lemma 4.15 holds. That is, if chain

local character implies Club Local Character. This is not so clear, so we

leave it at this.

Remark 4.17. As opposed to [LRV19] we have defined an independence relation

here on triples of subobjects, while they define it as a relation on commuting

squares. Their notion has the advantage of the independent squares forming

an accessible category, and allowing for a more category-theoretic study of the

independence relation itself (see also [LRV20]). Our approach has the benefit

that the calculus we get from it is more intuitive and easier to work with.

In an AECat of the form (C, C), these two notions are essentially the same.

That is, assuming basic properties on the relevant independence relations, one

can be recovered from the other and vice versa. This is done as follows. Suppose

we have an independence relation |⌣ on subobjects and a commutative square

A M

C B

a

c
b

where the dashed arrow is just to give the arrow C → M a name. Then we

declare this square to be independent if a |⌣
M
c
b. Conversely, given subobjects

A,B,C ≤M with representatives a, b, c respectively, we set A |⌣
M
C
B if there are

dashed arrows as in the diagram below, such that the diagram below commutes
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and the outer square is independent.

A′ N

A M

B

C B′

a

b

c

In [LRV19] the 3-amalgamation is not mentioned, but as we will see in

Theorem 4.21 we get that for free given the rest of the properties of a stable

independence relation.

4.2 Independence theorem, 3-amalgamation and

stationarity

It is well known that the property Independence Theorem can also be

formulated as an amalgamation property of some independent system. This

allows for a more categorical statement without any mention of Lascar strong

Galois types. However, we need to restrict ourselves to work only over models.

We will give this property its own name and prove its equivalence to

Independence Theorem, modulo some basic properties, in Theorem 4.20.

Definition 4.18. An independence relation |⌣ has 3-amalgamation if the

following holds. Suppose that we have

A
N1

|⌣
M

B, B
N2

|⌣
M

C, C
N3

|⌣
M

A,

overloading notation for subobjects of different models. Suppose furthermore

that M is a model and that

gtp(a,m;N1) = gtp(a,m;N3),

gtp(b,m;N1) = gtp(b,m;N2),

gtp(c,m;N2) = gtp(c,m;N3),

where a, b, c and m are representatives for the subobjects A, B, C and M

respectively (again, overloading notation for different models). Then we can find

extensions from N1, N2 and N3 to some N such that the diagram we obtain in
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that way commutes:

N1 N

A N3

B N2

M C

Furthermore, these extensions are such that A |⌣
N
M
N2.

Remark 4.19. For the canonicity theorem for simple independence relations,

Theorem 5.4, we only need 3-amalgamation. Or equivalently, by Theorem 4.20,

Independence Theorem over models. Even if base( |⌣) is more than justM,

e.g. base( |⌣) = C. See also Remark 5.5

Theorem 4.20. Let |⌣ be a basic independence relation. If |⌣ satisfies

Independence Theorem then it also satisfies 3-amalgamation. Conversely,

if |⌣ satisfies 3-amalgamation then it satisfies Independence Theorem

over models (i.e. we require the base C to be a model).

Proof. We first prove that Independence Theorem implies

3-amalgamation. Let the set up be as in Definition 4.18. In the diagram

below we find the dashed arrows by first using gtp(c,m;N2) = gtp(c,m;N3) and

then gtp(b,m;N1) = gtp(b,m;N2).

N ′

N1 •

A N3

B N2

M C

We write a1 for the arrow A → N1 → N ′ and a3 for the arrow A → N3 → N ′.

Then we have Lgtp(a1/m;N ′) = Lgtp(a3/m;N ′). We can thus apply

Independence Theorem to find some extension N ′ → N∗ with some

a∗ : A → N∗ such that Lgtp(a∗/m, b;N∗) = Lgtp(a1/m, b;N
∗),
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Lgtp(a∗/m, c;N∗) = Lgtp(a3/m, c;N
∗) and a∗ |⌣

N∗

M
N ′. So in particular we

have a∗ |⌣
N∗

M
N2 by Monotonicity. Using

gtp(a, b,m;N1) = gtp(a1, b,m;N∗) = gtp(a∗, b,m;N∗) and

gtp(a, c,m;N3) = gtp(a3, c,m;N∗) = gtp(a∗, c,m;N∗) after each other we find

an extension N∗ → N together with extensions from N1 and N3 to N and we

just forget about the previous extensions from N1 and N3 to N∗. These two

new extensions, together with N2 → N∗ → N , then form the solution to our

3-amalgamation problem.

Now we prove the converse. So we assume 3-amalgamation and we prove

Independence Theorem over models. So suppose that a |⌣
N
m
b, a′ |⌣

N
m
c and

b |⌣
N
m
c and Lgtp(a/m;N) = Lgtp(a′/m;N). We will again go through a few

extensions of N , and by replacing N by these extensions each time we assume

everything we find already lives in N . Let (d;N) be such that both a and b

factor through d. Then we can apply strong extension, Proposition 4.12, to

b |⌣
N
m
c to find (d0;N) such that d0 |⌣

N
m
c and

Lgtp(d0/m, b;N) = Lgtp(d/m, b;N). Now let (d′;N) be such that both a and c

factor through d′ and find d′0 such that d0 |⌣
N
m
d′0 and

Lgtp(d′0/m, c;N) = Lgtp(d0/m, c;N). Applying the dual of strong extension,

Corollary 4.13, we find (a1;N) such that a1 |⌣
N
m
d0 and

Lgtp(a1/m, b;N) = Lgtp(a/m, b;N). Similarly we find (a′1;N) with a′1 |⌣
N
m
d′0

with Lgtp(a′1/m, c;N) = Lgtp(a′/m, c;N). We can now fit all this in the

diagram below, where 3-amalgamation gives us the dashed arrows.

N N ′

A N

D N

M D′

f1

a1 a′1 f2

d0

d0

f3

d′0

d′0

We can indeed apply 3-amalgamation because gtp(a1,m;N) = gtp(a,m;N) =

gtp(a′,m;N) = gtp(a′1,m;N). To see that this indeed gives the solution required

for Independence Theorem we take the extension N → N ′ to be f3. Then a
∗

is f1a1 = f2a
′
1. So indeed a∗ |⌣

N ′

m
f3 and hence a∗ |⌣

N ′

m
N because we chose the

extension N → N ′ to be f3, so f3 is a representative of the subobject N . We

will conclude the proof by showing that Lgtp(a∗/m, b;N ′) = Lgtp(a/m, b;N ′),

while Lgtp(a∗/m, c;N ′) = Lgtp(a′/m, c;N ′) follows analogously. Write a0 for the

composition A→ D
d0−→ N ′. Then by construction

Lgtp(a0/m, b;N
′) = Lgtp(a/m, b;N ′) = Lgtp(a1/m, b;N

′).
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From the commutativity of the above diagram we get

gtp(a∗, d0,m;N ′) = gtp(a1, d0,m;N ′). By construction b factors through d0, so

we find gtp(a∗, a0, b,m;N ′) = gtp(a1, a0, b,m;N ′). The result then follows by

applying this to the above string of equalities of Lascar strong Galois types.

The following is a standard argument (see e.g. [Hru06, Lemma 4.1]) translated

into the framework of AECats. For example, it is helpful in comparing our notion

of stable independence relation to that of [LRV19], see Remark 4.17.

Theorem 4.21. Let |⌣ be a basic independence relation satisfying

Stationarity then it also satisfies 3-amalgamation.

Proof. By Theorem 4.20 it is enough to prove Independence Theorem over

models, not concerning ourselves with Lascar strong Galois types. So suppose

that

a1
N

|⌣
m

b, a2
N

|⌣
m

c, b
N

|⌣
m

c,

and gtp(a1,m;N) = gtp(a2,m;N), where m has a model as domain. Apply

Extension twice to find an extension n : N → N ′ together with copies

n1 : N → N ′ and n2 : N → N ′ such that a1 |⌣
N ′

m
n1, a2 |⌣

N ′

m
n2,

gtp(n1, b,m;N ′) = gtp(n, b,m;N ′) and gtp(n2, c,m;N ′) = gtp(n, c,m;N ′). So

we have gtp(n2,m;N ′) = gtp(n1,m;N ′), and we thus find N ′ → N ′′ together

with (a′2;N
′′) such that gtp(a′2, n1,m;N ′′) = gtp(a2, n2,m;N ′′). In particular

a′2 |⌣
N ′′

m
n1 and gtp(a′2,m;N ′′) = gtp(a2,m;N ′′) = gtp(a1,m;N ′′).

We can thus apply Stationarity to obtain

gtp(a1, n1,m;N ′′) = gtp(a′2, n1,m;N ′′) = gtp(a2, n2,m;N ′′). So there is an

extension N ′′ → N∗ with some (a∗;N∗) such that:

gtp(a∗, n,m;N∗) = gtp(a1, n1,m;N ′′) = gtp(a2, n2,m;N ′′).

By Invariance we then have a∗ |⌣
N∗

m
N and by restricting Galois types we have

gtp(a∗,m, b;N∗) = gtp(a1,m, b;N
∗) and gtp(a∗,m, c;N∗) = gtp(a2,m, c;N

∗), as

required.

4.3 Sequences and isi-sequences

Sequences play a big role in independence relations. They are essential in

defining various notions of dividing, see Section 4.4, which in turn yield various

independence relations. We generally only consider sequences where any two

elements are compatible in some sense. For example, in classical model theory

we would require all the tuples in the sequence to have the same length. In the

setting of AECats elements are replaced by arrows in some model, and the
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compatibility translates to requiring that these arrows all have the same

domain.

Definition 4.22. A sequence is a tuple ((ai)i∈I ;M) where every ai has the same

domain and I is a linear order.

We will only be interested in ordinal-shaped sequences. So from now on I

will be an ordinal.

We will often need to treat an initial segment of a sequence as one object.

The following definition makes sense of this in a category-theoretic setting.

Definition 4.23. A chain of initial segments for a sequence (ai)i<κ in some M

is a continuous chain (Mi)i<κ of models with chain bound M , such that for all

i < κ we have that ai factors (necessarily uniquely) through Mi+1.

If an arrow c : C → M factors as C → M0 → M , then we say that c embeds

in (Mi)i<κ.

We have required the objects in the chain of initial segments to be models.

This allows us to have a continuous chain, because an AECat always has

directed colimits of models. Another reason is more technical, but chains of

initial segments will interact with various independence relations in later proofs

(for example, as witnesses of independence, see Definition 4.27). The fact that

the objects involved are models will then allow us to use things such as

3-amalgamation.

Convention 4.24. For a chain of initial segments (Mi)i<κ for some sequence

(ai)i<κ in M we will also view ai as an arrow into Mj for i < j. Similarly, if c

embeds in (Mi)i<κ, we view c as an arrow into Mi for all i < κ. Unless explicitly

stated otherwise, we will denote the extension Mi →M by mi.

Below is a picture of a sequence (ai)i<κ in some modelM with chain of initial

segments (Mi)i<κ and c embedded in the chain of initial segments.

C M0 M1 M2 . . . M

A A A . . .

a0 a1 a2

Definition 4.25. We call a sequence (ai)i<κ in M , together with a chain of

initial segments (Mi)i<κ, an isi-sequence (short for initial segment invariant) if

for all i ≤ j < κ we have:

gtp(ai,mi;M) = gtp(aj ,mi;M).

For c : C →M we say this is an isi-sequence over c if c embeds in (Mi)i<κ.
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So under the intuition that Mi plays the role of the initial segment a<i we

should think of the above condition as saying that ai and aj have the same Galois

type over ca<i.

Classically, indiscernible sequences are used a lot in the context of

independence relations. Indiscernible sequences are very homogeneous, in the

sense that any two subsequences with the same order type have the same

(Galois) type. However, to construct and manipulate indiscernible sequences

one often needs some extra assumptions, such as finite shortness (see Section

4.5). The idea of isi-sequences is to have something weaker than indiscernible

sequences so that we can work with them in more general settings, while still

keeping enough homogeneity.

In finitely short settings any indiscernible sequence is indeed an isi-sequence,

see Proposition 4.58. The converse is not true, even in very nice settings such as

full first-order logic, see the example below.

Example 4.26. In this example we consider the theory (in full first-order logic)

of the random graph and we work in a monster model. The theory states that for

any two disjoint finite sets of vertices A and B there is a vertex c such that c has

an edge to every vertex in A and no edge to any vertex in B. This property makes

compactness arguments very easy, which we will (implicitly) use repeatedly below.

It is well known that the theory of the random graph has quantifier elimination

(see e.g. [TZ12, Exercise 3.3.1]), so two tuples have the same type if and only if

they are isomorphic as graphs.

Fix some (infinite) cardinal κ, we will inductively construct a sequence (ai)i<κ

with chain of initial segments (Mi)i<κ forming an isi-sequence, but such that

(ai)i<κ is not indiscernible. Each ai will just be a single element and will be so

that there is an edge between ai and aj if and only if min(i, j) is an even ordinal.

At stage i we will have constructed Mi, which will contain (aj)j<i.

We start by taking M0 to be any model. Then having constructed Mi we let

ai be outside of Mi as follows: for b ∈ Mi there is an edge between ai and b if

and only if b = aj for some even j < i. Then we take Mi+1 to be any model

containing aiMi. At limit stages we take the union of the models constructed so

far.

To see that (ai)i<κ together with (Mi)i<κ forms an isi-sequence we let i ≤
j < κ and we need to prove that tp(ai/Mi) = tp(aj/Mi). Let b ∈ Mi, then by

construction there is an edge between ai and b if and only if b = ak for some even

k < κ if and only if there is an edge between aj and b. So (ai)i<κ together with

(Mi)i<κ does indeed form an isi-sequence.

However, (ai)i<κ is not indiscernible. For example, we have

tp(a1a2) ̸= tp(a2a3), because there is no edge between a1 and a2 while there is

an edge between a2 and a3. Generally, the type tp(aiaj) for i < j < κ depends
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on the parity of i.

Note that we can find an indiscernible subsequence. For example, if we take

I = {i < κ : i is even} then (ai)i∈I is an indiscernible subsequence of length

λ. This phenomenon can never really be ruled out, because if there would be

a Ramsey cardinal λ then any sequence of length λ has a cofinal indiscernible

subsequence (see Lemma 4.56).

Definition 4.27. Suppose we have an independence relation |⌣. Let (ai)i<κ be

a sequence in some M and let c : C →M be an arrow. Suppose that (Mi)i<κ is

a chain of initial segments for (ai)i<κ and that c embeds in the chain. Then we

call (Mi)i<κ witnesses of |⌣c
-independence for (ai)i<κ if

ai
M

|⌣
c

Mi

for all i < κ. We say that a sequence is |⌣c
-independent if it admits a chain of

witnesses of |⌣c
-independence.

The following proposition is the standard argument showing that we can

find arbitrarily long independent sequences, assuming very few properties for our

independence relation (see e.g. [Kim14, Proposition 2.2.4]). The proposition after

that shows that if we additionally assume Union we can actually get arbitrarily

long independent isi-sequences.

Proposition 4.28. Let |⌣ be an independence relation satisfying Invariance,

Existence and Extension. Then for any (a, c;M) with dom(c) ∈ base( |⌣) and

any κ there is some extension M → N containing a |⌣c
-independent sequence

(ai)i<κ with gtp(ai, c;N) = gtp(a, c;M) for all i < κ.

Proof. We construct the witnesses of independence (Mi)i<κ and sequence (ai)i<κ

by induction. At stage i we will construct ai and Mi+1. By Existence we have

a |⌣
M
c
c, and so we will have a |⌣

Mi

c
c for all i < κ. At every stage we will apply

Extension to the latter.

Base case. Set M0 = M and use Extension to find a0 and M → M1 with

gtp(a0, c;M1) = gtp(a, c;M) and a0 |⌣
M1

c
M0.

Successor step. By Extension we find Mi+1 → Mi+2 and ai+1 such that

ai+1 |⌣
Mi+2

c
Mi+1 and gtp(ai+1, c;Mi+2) = gtp(a, c;M).

Limit step. For limit ℓ < κ let Mℓ = colimi<ℓMi. We use Extension to find

Mℓ →Mℓ+1 and aℓ with gtp(aℓ, c;Mℓ+1) = gtp(a, c;M) and aℓ |⌣
Mℓ+1

c
Mℓ.

We finish the construction by taking N = colimi<κMi.
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Proposition 4.29. Suppose that |⌣ is an independence relation satisfying

Invariance, Existence, Extension and Union. Then given (a, c;M) with

dom(c) ∈ base( |⌣) and any κ, there is a |⌣c
-independent isi-sequence (ai)i<κ

over c in some extension M → N such that gtp(ai, c;N) = gtp(a, c;M) for all

i < κ.

Proof. We inductively build chains of models (Mi)i<κ and (Ni)i<κ together with

arrows ai : A→Mi+1, where N0 is an extension of M and c embeds in (Mi)i<κ,

such that:

(i) there is an extension Mi → Ni, and this is natural in the sense that

Nj Ni

Mj Mi

commutes for all j < i;

(ii) a |⌣
Ni

c
Mi;

(iii) for successor i = j + 1, we have gtp(aj ,mj ;Ni) = gtp(a,mj ;Ni).

Base case. By Existence we have a |⌣
M
c
c, so we can apply Extension to find

M → N0 and m0 : M → N0 with gtp(m0, c;N0) = gtp(m, c;M) and a |⌣
N0

c
m0.

We take the extension M0 → N0 to be m0.

Successor step. We use the induction hypothesis to apply Extension to find

and extension Ni → Ni+1 and mi+1 : Ni → Ni+1 such that a |⌣
Ni+1

c
mi+1 and

gtp(mi+1,mi;Ni+1) = gtp(IdNi ,mi;Ni). We take the extension Mi+1 → Ni+1 to

be mi+1. Properties (i) and (ii) follow directly. We had an arrow a : A→ Ni, and

Mi+1 is the same object as Ni. So we have an arrow ai+1 : A→Mi+1. Applying

monotonicity of Galois types to gtp(mi+1,mi;Ni+1) = gtp(IdNi ,mi;Ni) then

shows that property (iii) holds.

Limit step. For limit ℓ < κ we let Mℓ = colimi<ℓMi and Nℓ = colimi<ℓNi. For

every i < ℓ we can compose Mi → Ni with the coprojection Ni → Nℓ. By

property (i) this makes Nℓ into a cocone for (Mi)i<ℓ. So the universal property

gives us an arrow Mℓ → Nℓ, clearly satisfying property (i). Property (ii) follows

from Union.

Having finished the inductive construction, we set N = colimi<κNi. Then

property (iii) ensures that (ai)i<κ with chain of initial segments (Mi)i<κ is an

isi-sequence over c. Since c embeds in (Mi)i<κ, we also see that
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gtp(ai, c;N) = gtp(a, c;M) for all i < κ. Finally, the (Mi)i<κ are witnesses of

independence, which follows from combining (ii) and (iii).

Lemma 4.30. Let |⌣ be an independence relation in (C,M) satisfying Right-

Monotonicity and let (ai)i<κ be a |⌣c
-independent sequence in someM . If κ is

such that dom(ai) (which is the same for all i) and dom(c) are κ-presentable and

(C,M) is a κ-AECat then there is a chain (Mi)i<κ of witnesses of independence

such that each Mi is κ-presentable.

Proof. Let (M ′
i)i<κ be a chain of witnesses of independence. We build a chain of

initial segments (Mi)i<κ by induction, such that Mi ≤M ′
i for all i < κ. The fact

that these are witnesses of independence then follows by Right-Monotonicity.

Base case. We have that c : C → M ′
0 factors as C → M0 → M ′

0 for some κ-

presentable M0, because C is κ-presentable.

Successor step. Having constructed Mi we write M ′
i+1 = colimj∈J Nj for some

κ-directed diagram of κ-presentable objects (Nj)j∈J . Then there is j ∈ J such

that ai, as an arrow into M ′
i+1, and Mi → M ′

i+1 both factor through Nj . Set

Mi+1 = Nj .

Limit step. For limit ℓ set Mℓ = colimi<ℓMi. Then by the universal property of

the colimit Mℓ ≤M ′
ℓ.

4.4 Long dividing and isi-dividing

In this section we introduce various notions of dividing, each yielding its own

independence relation. These notions are based on the classical notion of dividing,

as we know it from full first-order logic. For the convenience of the reader, and

to compare it to the new definitions, we recall the classical definition of dividing

for full first-order logic.

Definition 4.31. In the setting of full first-order logic, we say that a type

p(x, b) = tp(ab/C) divides over C if there is a C-indiscernible sequence (bi)i<ω

such that tp(bi/C) = tp(b/C) for all i < ω and
⋃
i<ω p(x, bi) is inconsistent.

In many proofs, to use this definition, one has to apply compactness in one

way or another. This is generally an issue in AECats, because we do not have

compactness there. The following are some places where compactness is useful

in combination with Definition 4.31.

1. Finding an indiscernible sequence is often done by constructing some very

long sequence and then use some combinatorial tools (such as the
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Erdoös-Rado theorem) together with compactness to extract an

indiscernible sequence. In fact, finite shortness would be enough here, see

Lemma 4.54, but we generally also do not have that.

2. Whenever (bi)i<ω is a C-indiscernible sequence that witnesses dividing of

p(x, b) there is some k < ω such that for any i1 < . . . < ik < ω we

have that p(x, bi1)∪ . . .∪ p(x, bk) is inconsistent. This follows directly from

compactness and indiscernibility.

3. As a consequence of the previous point we can use compactness to elongate

(bi)i<ω to (bi)i<κ for any cardinal κ, while keeping the same properties. In

fact, finite shortness is again enough, see Lemma 4.53.

To solve these issues we introduce the notion of long dividing. The name is

due to the fact that we consider arbitrarily long sequences in the definition,

something that we would normally have to use compactness for. Based on that

we also introduce a notion of isi-dividing, which uses isi-sequences to have some

homogeneity in the sequences involved. Of course, indiscernible sequence would

be even more homogeneous (see Example 4.26), but the little bit that isi-sequences

offer us turns out to be enough.

Definition 4.32. Let (C,M) be an AECat with AP and fix some (a, b, c;M).

1. Suppose that we also have some sequence ((bi)i∈I ;M) such that

gtp(bi, c;M) = gtp(b, c;M) for all i ∈ I. We say that gtp(a, b, c;M) is

consistent for (bi)i∈I if there is an extension M → N and an arrow (a′;N)

such that

gtp(a, b, c;M) = gtp(a′, bi, c;N)

for all i ∈ I. We call a′ a realisation of gtp(a, b, c;M) for (bi)i∈I .

Being inconsistent is the negation of the above. So we say that

gtp(a, b, c;M) is inconsistent for (bi)i∈I if there is no extension of M with

a realisation a′ of gtp(a, b, c;M) for (bi)i∈I .

2. We say that gtp(a, b, c;M) long divides over c if there is µ such that for

every λ ≥ µ there is a sequence (bi)i<λ in some extension M → N with

gtp(bi, c;N) = gtp(b, c;M) for all i < λ, such that for some κ < λ and every

I ⊆ λ with |I| = κ we have that gtp(a, b, c;M) is inconsistent for (bi)i∈I .

3. We say that gtp(a, b, c;M) isi-divides if it long divides with respect to

isi-sequences over c. That is, we require the sequence (bi)i<λ to be an

isi-sequence over c.

We already discussed how long dividing and isi-dividing are inspired by

dividing. In fact, the classical definition we gave of dividing, Definition 4.31,
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works for positive logic and homogeneous model theory as well (see

[Pil00, BY03b] and [BL03]). A natural question would be to ask whether or not

long dividing and isi-dividing are actually the same in those settings. We give a

partial answer in two propositions below and leave the rest as a question

(Question 4.37).

All of the settings mentioned above are finitely short AECats, see Section 3.6.

So to be precise we formulate the propositions below in terms of finitely short

AECats. Part of the tools and definitions necessary are developed later in Section

4.5, but the reader is welcome to read the propositions as if they were written

for a more concrete case such as full first-order logic, and then these tools are

standard consequences of compactness.

Definition 4.33. Let (C,M) be a finitely short AECat with AP. We say that

gtp(a, b, c;M) divides over c if there is some extension M → N an infinite c-

indiscernible sequence (bi)i<λ in N , with gtp(bi, c;N) = gtp(b, c;M) for all i < λ,

such that gtp(a, b, c;M) is inconsistent for (bi)i<λ.

Proposition 4.34. Let (C,M) be a finitely short AECat with AP. If

gtp(a, b, c;M) divides over c then it isi-divides over c, and hence also long

divides over c.

Proof. Let (bi)i<κ be an infinite c-indiscernible sequence, in some extension

M → N , witnessing that gtp(a, b, c;M) divides over c. The µ in the definition

of isi-dividing will be κ+. By Lemma 4.53 we can elongate the sequence (bi)i<κ

to (bi)i<λ for any λ ≥ µ = κ+. We can inductively construct a chain of initial

segments that make (bi)i<λ into an isi-sequence, as is done in Proposition 4.58.

Take any I ⊆ λ of cardinality κ. Write δ for its order-type, so κ ≤ δ < κ+. We

then have that gtp((bi)i<δ;N
′) = gtp((bi)i∈I ;N

′), by indiscernibility and finite

shortness. We thus see that gtp(a, b, c;M) is inconsistent for (bi)i∈I , because it

is inconsistent for (bi)i<κ and hence for (bi)i<δ. We have thus shown that for

every cardinal λ ≥ µ there is an isi-sequence (bi)i<λ such that gtp(a, b, c;M) is

inconsistent for every subsequence of cardinality κ and by construction κ < λ,

so we conclude that gtp(a, b, c;M) isi-divides. The final claim follows because

isi-dividing implies long dividing, which is direct from the definition.

Proposition 4.35. Let (C,M) be a finitely short AECat with AP and assume

the existence of a proper class of Ramsey cardinals. If gtp(a, b, c;M) long divides

over c then it divides over c. Consequently, isi-dividing also implies dividing.

Proof. Pick a big enough Ramsey cardinal λ and let (bi)i<λ be a sequence in

some extension M → N witnessing long dividing. So there is κ < λ such that for

every I ⊆ λ with |I| ≥ κ we have that gtp(a, b, c;M) is inconsistent for (bi)i∈I .

Because we chose λ big enough we can apply Lemma 4.56 and find I ⊆ λ of
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order-type λ such that (bi)i∈I is a c-indiscernible subsequence. So gtp(a, b, c;M)

is inconsistent for (bi)i∈I and we conclude that gtp(a, b, c;M) divides over c. The

final claim follows because isi-dividing implies long dividing, which is direct from

the definition.

Corollary 4.36. Let (C,M) be a finitely short AECat with AP and assume the

existence of a proper class of Ramsey cardinals. Then dividing, long dividing and

isi-dividing all coincide.

The question that remains is whether the use of large cardinals is necessary.

Question 4.37. Do long dividing and isi-dividing imply dividing in finitely short

AECats?

In the full first-order and positive logic setting, dividing in a simple theory

will give what we call a simple independence relation (see Example 5.8). Then

by our canonicity theorem for simple independence relations, Theorem 5.4, this

must coincide with the independence relation given by isi-dividing. So in simple

theories dividing and isi-divding will coincide, even without assuming the

existence of large cardinals.

The point of introducing these various notions of dividing is that they yield

independence relations. We can already prove some basic properties about these

independence relations in arbitrary AECats, similar to the basic properties that

dividing always has. The first thing we prove is that the dividing notions are

invariant under taking different representatives of subobjects (Proposition 4.38),

and so it is really a property of the subobjects. This corresponds to the fact that

classically dividing is invariant under changing the enumeration of the tuples

involved, and it is thus really a property of the sets involved. This then allows

for Definition 4.39, where we define an independence relation on subobjects.

Proposition 4.38. Let A,B,C ≤ M be subobjects and let (a, b, c;M) and

(a′, b′, c′;M) be two sets of representatives. Then gtp(a, b, c;M) long divides

over c if and only if gtp(a′, b′, c′;M) long divides over c′. The same statement

holds for isi-dividing.

Proof. This comes down to checking all the definitions, which is lengthy to do

in detail. However, there is only one trick that we repeatedly use, and that is

Proposition 3.16(ii). We recall for the convenience of the reader that this means

the following. Suppose we have some ((di)i∈I ;N) and ((d′i)i∈I ;N
′) such that

gtp((di)i∈I ;N) = gtp((d′i)i∈I ;N
′). Write Di = dom(di) = dom(d′i) and suppose

we have fi : Ei → Di for every i ∈ I. Then we also have gtp((difi)i∈I ;N) =

gtp((d′ifi)i∈I ;N
′).

To apply this trick we let f, g, h be isomorphisms such that a′ = af , b′ = bg

and c′ = ch. Then, using the above trick, we easily see that for any sequence
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(bi)i<λ witnessing long dividing of gtp(a, b, c;M) we have that (big)i<λ witnesses

long dividing for gtp(a, bg, c;M) = gtp(a, b′, c;M). Similarly we can replace c

by ch = c′ and a by af = a′. The same holds for isi-dividing, noting that any

isi-sequence over c is also an isi-sequence over ch = c′.

Definition 4.39. For subobjects A,B,C ≤ M we write A |⌣
ld,M
C

B if

gtp(a, b, c;M) does not long divide for all (equivalently: some) representatives

a, b, c of A,B,C. Similarly, we write A |⌣
isi-d,M
C

B if gtp(a, b, c;M) does not

isi-divide.

Proposition 4.40. Long dividing and isi-dividing always satisfy the following

properties: Invariance, Left-Monotonicity, Existence and

Base-Monotonicity. In addition, long dividing also satisfies

Right-Monotonicity

Proof. Everything is direct from the definition, except for

Right-Monotonicity for long dividing and Base-Monotonicity. For both

we will prove the contrapositive.

For Base-Monotonicity let (a, b, c, c′;M) be such that gtp(a, b, c′;M) long

divides over c′ and C ≤ C ′ ≤ B, where C,C ′, B are the subobjects represented

by c, c′, b respectively. Let µ be as in the definition of long dividing and let λ ≥ µ.
Then there is (bi)i<λ in some N that witnesses long dividing of gtp(a, b, c′;M)

over c′. We will prove that it also witnesses long dividing of gtp(a, b, c;M). Indeed

we have for all i < λ that gtp(bi, c
′;N) = gtp(b, c′;M) and thus gtp(bi, c;N) =

gtp(b, c;M), because C ≤ C ′. Let κ < λ be such that for I ⊆ λ with |I| = κ we

have that gtp(a, b, c′;M) is inconsistent for (bi)i∈I . We claim that for such I we

also have that gtp(a, b, c;M) is inconsistent for (bi)i∈I . Suppose that there would

be a realisation (a′;N ′) for some extension N → N ′, then gtp(a′, bi, c;N
′) =

gtp(a, b, c;M) for all i ∈ I. Since c′ factors through b and bi in the same way for all

i < λ, we then have gtp(a′, bi, c
′;N ′) = gtp(a, b, c′;M) for all i ∈ I, contradicting

that gtp(a, b, c′;M) is inconsistent for (bi)i∈I . This proves Base-Monotonicity

for long dividing. We have shown that the same sequences that witness long

dividing of gtp(a, b, c′;M) also witness long dividing of gtp(a, b, c;M). As any

isi-sequence over c′ is an isi-sequence over c, the same proof shows that isi-dividing

has Base-Monotonicity.

Now we prove Right-Monotonicity for long dividing. Let (a, b, b′, c;M)

be such that gtp(a, b, c;M) long divides over c and b factors through b′. For any

sequence (bi)i<λ in some N witnessing long dividing we can form (b′i)i<λ by letting

b′i be such that gtp(b′i, bi, c;N) = gtp(b′, b, c;M) for all i < λ (possibly replacing

N by an extension in the process). Then for I ⊆ λ a realisation of gtp(a, b′, c;M)

for (b′i)i∈I would also be a realisation of gtp(a, b, c;M) for (bi)i∈I . So if we let

κ < λ be such that every I ⊆ λ with |I| = κ we have that gtp(a, b, c;M) is
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inconsistent for (bi)i∈I , we also get that gtp(a, b′, c;M) is inconsistent for (b′i)i∈I

for any such I. We conclude that gtp(a, b′, c;M) long divides over c.

We note that in the above proof we did not have to change the sequence

involved for Base-Monotonicity, which was why the proof directly works for

isi-dividing as well. In the proof of Right-Monotonicity we had to build a

new sequence, which might not be an isi-sequence again. This is why that proof

only works for long dividing.

An important property that misses in Proposition 4.40 is Extension.

Classically this is fixed by considering forking instead of dividing. Basically this

forces the Extension property as follows. Suppose that Extension is fails for

some type p = tp(a/Cb). Then there is some set, say D, such that every

extension of p to D divides over C. In other words, p implies a disjunction of

types over D such that every type in that disjunction divides over C.

Classically we could even further reformulate this by using compactness and

having p actually imply a disjunction of dividing formulas, but that is not

necessary and we want to avoid compactness in our definitions. So our

definition of isi-forking will be the semantical way of saying “implies a (possibly

infinite) disjunction of types that each isi-divide”.

Definition 4.41. We say that gtp(a, b, c;M) isi-forks over c if there is some

extension M → N with ((aj)j∈J , (dj)j∈J ;N) such that:

(i) gtp(aj , dj , c;N) isi-divides over c for each j ∈ J ;

(ii) given an extension N → N ′ with some (a′;N ′) such that gtp(a′, b, c;N ′) =

gtp(a, b, c;N) there is j ∈ J such that gtp(a′, dj , c;N
′) = gtp(aj , dj , c;N).

Note that we do not require that b actually factors through the dj (i.e. as

subobjects they do not have to extend each other). This is because we also want

to force in Right-Monotonicity, which we now get for free.

Of course, one could also define a notion of long forking by replacing isi-

dividing by long dividing in the above. However, we will have no use for this.

Remark 4.42. The definition of isi-forking is just the semantical way of saying

“gtp(a, b, c;M) implies a (possibly infinite) disjunction of Galois types that each

isi-divide over c”. In the full first-order setting and in the positive setting (see

[Pil00]) forking has been defined and can be formulated as follows: a type forks

over C if it implies a (possibly infinite) disjunction of types that each divide

over C. It should then be clear that forking implies isi-forking. This uses the

fact that dividing implies isi-dividing, see Proposition 4.34. If isi-dividing and

dividing coincide then the converse is true, so isi-forking would then imply

forking. This happens if there is a proper class of Ramsey cardinals, or in

simple theories already without the large cardinal assumption, see

Proposition 4.35 and the discussion after Question 4.37.
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As before, we will prove various basic properties of isi-forking. Again we start

with the fact that isi-forking is invariant under taking different representatives of

the same subobject, so that we can again define an independence relation based

on isi-forking (Definition 4.44).

Proposition 4.43. Let A,B,C ≤ M be subobjects and let (a, b, c;M) and

(a′, b′, c′;M) be two sets of representatives. Then gtp(a, b, c;M) isi-forks over c

if and only if gtp(a′, b′, c′;M) isi-forks over c′.

Proof. We use the same trick as we did in Proposition 4.38. Let f be the

isomorphism such that a′ = af . Let M → N be an extension with

((aj)j∈J , (dj)j∈J ;N) witnessing isi-forking of gtp(a, b, c;M). Then using

Proposition 4.38 we have that gtp(ajf, dj , c
′;N) isi-divides over c′ for all j ∈ J .

We claim that ((ajf)j∈J , (dj)j∈J ;N) witnesses isi-forking of gtp(a′, b′, c′;M), for

which we are now left to check (ii) from Definition 4.41.

Let g and h be isomorphisms such that b′ = bg and c′ = ch. Let N → N∗ be

an extension with some (a∗;N∗) such that gtp(a∗, b′, c′;N∗) = gtp(a′, b′, c′;N).

Then

gtp(a∗f−1, b, c;N∗) = gtp(a∗f−1, b′g−1, c′h−1;N∗)

= gtp(a′f−1, b′g−1, c′h−1;N)

= gtp(a, b, c;N),

so there is j ∈ J with gtp(a∗f−1, dj , c;N
∗) = gtp(aj , dj , c;N). Hence

gtp(a∗, dj , c
′;N∗) = gtp(a∗f−1f, dj , ch;N

∗) = gtp(ajf, dj , c
′;N).

Definition 4.44. For subobjects A,B,C ≤ M we write A |⌣
isi-f,M
C

B if

gtp(a, b, c;M) does not isi-fork for all (equivalently: some) representatives a, b, c

of A,B,C.

Proposition 4.45. Isi-forking satisfies the following properties: Invariance,

Monotonicity on both sides, Extension and Base-Monotonicity.

Proof. The properties Invariance and Right-Monotonicity are direct from

the definition. We prove the contrapositive of the remaining three.

For Left-Monotonicity suppose that gtp(a′, b, c;M) isi-forks over c and

let (a;M) be such that a′ factors through a. Let ((a′j)j∈J , (dj)j∈J ;N) in some

extension M → N witness the isi-forking. Let f be such that af = a′. The

following is a set by Proposition 3.19:

F = {gtp(a∗, dj , c;N∗) :N∗ is an extension of N and

gtp(a∗, b, c;N∗) = gtp(a, b, c;M) and

gtp(a∗f, dj , c;N
∗) = gtp(a′j , dj , c;N)}.
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By Left-Monotonicity of isi-dividing, every Galois type in F isi-divides over

c. By inductively amalgamating things we find one extension N → N∗ with

((ak)k∈K , (dk)k∈K ;N∗) such that every Galois type in F is realised by

(ak, dk, c;N
∗) for some k ∈ K. This then witnesses isi-forking of gtp(a, b, c;M)

over c.

For Extension let (a, b, b′, c;M) be such that b factors through b′ and for

every (a′;N) in some extension M → N with gtp(a′, b, c;N) = gtp(a, b, c;M) we

have that gtp(a′, b′, c;N) isi-forks over c. So the conclusion of the Extension

property for gtp(a, b, c;M) fails. We have to prove that then gtp(a, b, c;M) isi-

forks over c. By Proposition 3.19 and the definition of isi-forking, the following

is a set:

F = { gtp(a′, d, c;N) : N is an extension of M and

gtp(a′, b, c;N) = gtp(a, b, c;M) and

gtp(a′, d, c;N) is one of the witnesses of isi-forking of gtp(a′, b′, c;N)}.

By inductively amalgamating things we find one extension N → N∗ with

((aj)j∈J , (dj)j∈J ;N
∗) such that every Galois type in F is realised by

(aj , dj , c;N
∗) for some j ∈ J . This then witnesses isi-forking of gtp(a, b, c;M)

over c.

Finally, for Base-Monotonicity let (a, b, c, c′;M) be such that

gtp(a, b, c′;M) isi-forks over c′ and C ≤ C ′ ≤ B, where C,C ′, B are the

subobjects represented by c, c′, b respectively. Let ((aj)j∈J , (dj)j∈J ;N) witness

this in some extension M → N . We claim that this also witnesses isi-forking of

gtp(a, b, c;M) over c. Indeed, let a′ : A → N ′ for some extension N → N ′ be

such that gtp(a′, b, c;N ′) = gtp(a, b, c;N). We have C ′ ≤ B, so

gtp(a′, b, c′;N ′) = gtp(a, b, c′;N). So there must be some j ∈ J such that

gtp(a′, dj , c
′;N ′) = gtp(aj , dj , c

′;N). As C ≤ C ′ this restricts to

gtp(a′, dj , c;N
′) = gtp(aj , dj , c;N), which concludes the proof.

Proposition 4.46. For any A,B,C ≤M we always have

A
isi-f,M

|⌣
C

B =⇒ A
isi-d,M

|⌣
C

B.

The converse holds if and only if isi-dividing satisfies Right-Monotonicity

and Extension.

Proof. The first implication is just the contrapositive of the trivial statement

that isi-dividing implies isi-forking. If the converse of this implication holds,

then isi-dividing and isi-forking coincide and so isi-dividing satisfies

Right-Monotonicity and Extension by Proposition 4.45.

We are left to prove that if isi-dividing satisfies Right-Monotonicity and
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Extension that then isi-forking implies isi-dividing. Suppose for a

contradiction that gtp(a, b, c;M) isi-forks over c but does not isi-divide over c.

Let ((aj)j∈J , (dj)j∈J ;N) for some extension M → N witness the isi-forking of

gtp(a, b, c;M). By Extension for isi-dividing we find an extension N → N ′

with (a′;N ′) such that gtp(a′, b, c;N ′) = gtp(a, b, c;N) and gtp(a′, N, c;N ′) does

not isi-divide. By isi-forking, there must be j ∈ J such that gtp(a′, dj , c;N
′)

isi-divides over c contradicting Right-Monotonicity of isi-dividing.

When considering NSOP1-theories in full first-order logic (and in positive

logic, see chapter 6) the useful notion of independence is given by Kim-dividing,

see for example [KR20]. The idea is to only consider dividing with respect to

Morley sequences, that is, with respect to indiscernible nonforking sequences.

We adapt that definition to our earlier ideas as follows.

Definition 4.47. We say that gtp(a, b, c;M) long Kim-divides over c if it long

divides over c with respect to |⌣
isi-f
c

-independent sequences. That is, the definition

is exactly as long dividing, but we require the sequence (bi)i<λ to be |⌣
isi-f
c

-

independent. We write A |⌣
lK,M
C

B if gtp(a, b, c;M) does not long Kim-divide

over c for all (equivalently: some) representatives a, b, c of the subobjects A,B,C.

We implicitly used a combination of Proposition 4.38 and Proposition 4.43

to conclude that long Kim-dividing is invariant under taking different

representatives of subobjects.

We have defined |⌣
lK
C
-independence using |⌣

isi-f
C

-independent sequences, but

these may not exist. For this we define the following axiom, from which the

existence of such sequences follows.

Definition 4.48. Let (C,M) be an AECat and let B be a base class. We say

that (C,M) satisfies the B-existence axiom if |⌣
isi-f with its base restricted to B

satisfies Existence. That is, for all A,C ≤M with C ∈ B we have A |⌣
isi-f,M
C

C.

Corollary 4.49. If (C,M) satisfies the B-existence axiom then for any (a, c;M)

with dom(c) ∈ B and any κ there is some extension M → N containing a |⌣
isi-f
c

-

independent sequence (ai)i<κ with gtp(ai, c;N) = gtp(a, c;M).

Proof. Combine Proposition 4.28 and Proposition 4.45.

Example 4.50. We discuss some examples of the B-existence axiom. These are

either settings where we have the axiom, or where it is natural to assume the

axiom.

(i) If T is a semi-Hausdorff positive theory (this includes theories in full first-

order logic) then any type over an e.c. model M can be extended to a

global M -invariant type, see [BY03c, Lemma 3.11]. This can be used in

a standard argument to show that such types do not fork over M , see for
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example Proposition 6.17. We can use the same technique to show that

such types do not isi-fork over M . So for any e.c. model M we have that

any tp(a/M) does not isi-fork overM . We thus have the Mod(T )-existence

axiom.

In fact, we can also make this argument work if we just assume T to be

thick. In that case we can extend tp(a/M) to what we call a global M -Ls-

invariant type, see Lemma 6.13. This can be used in a similar way to show

non-isi-forking. This is done in Lemma 6.91, which is stated in terms of

long dividing but also works for isi-dividing and isi-forking.

(ii) Analogous to the previous point, for a continuous theory T we have the

MetMod(T )-existence axiom.

(iii) For an NSOP1 theory T in full first-order logic it is common to assume the

existence axiom for forking. It is still an open problem whether or not the

existence axiom for forking holds in every NSOP1 theory T , but it has been

proved in many particular instances, see [DKR19, Fact 2.14].

If for such T we take (C,M) = (SubMod(T ),Mod(T )) then we are very

close to having the C-existence axiom. The only difference is that we work

with isi-forking, see Remark 4.42 for a comparison. In particular, the C-
existence axiom implies the existence axiom for forking. Furthermore, if

there is a proper class of Ramsey cardinals then isi-forking and forking

coincide and so the converse would hold as well. Additionally, it is quite

likely that techniques to prove existence for forking also work for isi-forking.

For example, in [DKR19, Remark 2.15] it is shown that in the theory of

parametrised equivalence relations any type over any set A can be extended

to a global A-invariant type. Following point (i) we then see that such a

type does not isi-fork over A.

(iv) If (C,M) is an AECat with a simple independence relation |⌣ then it

will satisfy the base( |⌣)-existence axiom. This follows from canonicity,

Theorem 5.4, because then |⌣ = |⌣
isi-f over base( |⌣). This mirrors the fact

that simple theories in full first-order logic (and even simple thick positive

theories, see [BY03c]) have the existence axiom for forking, see also the

previous point.

Remark 4.51. The usual definition of Kim-dividing states that a type

Kim-divides if it divides with respect to non-forking Morley sequences, see e.g.

[DKR19]. To compare this to long Kim-dividing we first note that by

Remark 4.42 any |⌣
isi-f-independent sequence is also a forking-independent

sequence, and the converse is true if isi-dividing coincides with dividing. As

before, if we assume that there is a proper class of Ramsey cardinals then long
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Kim-dividing and Kim-dividing coincide, using the same arguments as in

Proposition 4.34 and Proposition 4.35.

If we do not want to assume large cardinals then we can again use canonicity,

this time Theorem 5.6, to see that long Kim-dividing and Kim-dividing coincide

in NSOP1-theories where it has been developed. See Example 5.9 for a more

detailed discussion.

4.5 Indiscernible sequences in finitely short AECats

In this section we will continue exploring the connections of AECats to existing

frameworks, as we did in section 3.6. We mention again that nothing in this

section is needed elsewhere in this thesis.

To be more precise, in this section we will show that we can create and

manipulate indiscernible sequences in finitely short AECats. We close out by

proving that any indiscernible sequence can be made into an isi-sequence.

Nothing in this section is really a new insight. We just verify that the standard

constructions and arguments go through in finitely short AECats.

Definition 4.52. Let (C,M) be a finitely short AECat with AP and let

((ck)k∈K ;M) be a tuple of arrows into a model. Then we say that a sequence

(ai)i∈I in M is (ck)k∈K-indiscernible if for all i1 < . . . < in and j1 < . . . < jn in

I we have:

gtp(ai1 , . . . , ain , (ck)k∈K ;M) = gtp(aj1 , . . . , ajn , (ck)k∈K ;M),

The following is just a standard compactness argument for extending

indiscernible sequences.

Lemma 4.53. Let (C,M) be a finitely short AECat with AP, and let (ai)i∈I be an

infinite (ck)k∈K-indiscernible sequence in M . Then given any linear order J ⊇ I,
there is an extension M → N and a (ck)k∈K-indiscernible sequence (aj)j∈J in N

extending (ai)i∈I .

Proof. We will use directed compactness for Galois types to construct (aj)j∈J .

Let A be the common domain of the (ai)i∈I . We construct a system of finitary

satisfiability for (Ck)k∈K together with a copy Aj of A for each j ∈ J .
Every interpretation will be in M , and we always interpret Ck as ck. For

finite J0 ⊆ J , we enumerate J0 as j1 < . . . < jn and fix some i1 < . . . < in in

I. Then we let the interpretations aJ0,j1 , . . . , aJ0,jn be ai1 , . . . , ain respectively. It

follows from (ck)k∈K-indiscernibility of (ai)i∈I that this indeed forms a system of

finitary satisfiability.

Applying compactness for Galois types, we find a realisation (a′j)j∈J and

(c′k)k∈K in some extension M → N . By construction of our system of finitary
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satisfiability and because (C,M) is finitely short, (a′j)j∈J is (c′k)k∈K-indiscernbile.

Furthermore:

gtp((a′i)i∈I , (c
′
k)k∈K ;N) = gtp((ai)i∈I , (ck)k∈K ;M).

So we may indeed assume that c′k is just ck (composed with the extension to N),

for each k ∈ K, and that (a′j)j∈J is an extension of (ai)i∈I .

The following lemmas (Lemma 4.54 and Lemma 4.56) show that we can find

an indiscernible sequence based on a long enough sequence. The first one is a

standard argument and appears for example in [BY03a, BL03, Pil00]. The second

one is stronger and much shorter, but assumes the existence of large cardinals

(this trick is also well-known).

Lemma 4.54. Let (C,M) be a finitely short AECat with AP, and A and (Ck)k∈K

be objects. Then there is λ (depending on those objects) such that the following

holds. Given a sequence (ai)i∈I in some M and arrows {ck : Ck →M}k∈K , with

|I| ≥ λ and dom(ai) = A for all i ∈ I, there is a (ck)k∈K-indiscernible sequence

(a′i)i<ω in some extension M → N such that for all n < ω there are i1 < . . . < in

in I with

gtp(a′1, . . . , a
′
n, (ck)k∈K ;N) = gtp(ai1 , . . . , ain , (ck)k∈K ;M).

The proof of Lemma 4.54 relies on a combination of compactness and the

Erdős-Rado theorem (see e.g. [Jec03, Theorem 9.6]).

Theorem 4.55 (Erdős-Rado). For all infinite cardinals µ we have

ℶ+
n (µ)→ (µ+)n+1

µ .

Recall that the notation κ→ (λ)nµ means that for every function f : [κ]n → µ

we can find a subset X ⊆ κ with |X| = λ such that f is constant on [X]n.

Proof of Lemma 4.54. Let τ be such that | Sgtp(An, (Ck)k∈K)| < τ for all n <

ω, where An denotes n copies of A. Take λ to be ℶτ+ . Then λ has the following

properties:

(i) cf(λ) > τ ;

(ii) for all κ < λ and n < ω, there is some κ′ < λ such that κ′ → (κ)nτ .

Property (i) should be clear, and (ii) follows from the Erdős-Rado theorem.

Let (ai)i∈I in M and ((ck)k∈K ;M) be as in the statement. By induction we

will build In ⊆ I, for all n < ω, such that

(1) |In| = n;
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(2) for all m ≤ n and I ′n ⊆ In with |I ′n| = m we have:

gtp((ai)i∈I′n , (ck)k∈K ;M) = gtp((ai)i∈Im , (ck)k∈K ;M);

(3) for all κ < λ there is some I ′ ⊆ I with |I ′| = κ such that for any I ′′ ⊆ I ′ of
size n we have

gtp((ai)i∈In , (ck)k∈K ;M) = gtp((ai)i∈I′′ , (ck)k∈K ;M).

The base case, where n = 0 is easy. We just take I0 = ∅. Property (2) is vacuous

and (3) becomes trivial.

So suppose we have constructed In, we will construct In+1. Let κ < λ be

arbitrary. Then by property (ii) of λ, there is κ′ < λ such that κ′ → (κ)n+1
τ .

Property (3) from the induction hypothesis gives us I ′ ⊆ I with |I ′| = κ′, such

that for all I ′′ ⊆ I ′ of size n we have

gtp((ai)i∈In , (ck)k∈K ;M) = gtp((ai)i∈I′′ , (ck)k∈K ;M).

We define f : [I ′]n+1 → Sgtp(A
n+1, (Ck)k∈K) by f(J) = gtp((ai)i∈J , (ck)k∈K ;M).

From how we chose I ′ we find a subset Iκ ⊆ I ′ ⊆ I with |Iκ| = κ and such that

for all J, J ′ ⊆ Iκ of size n+ 1 we have

gtp((ai)i∈J , (ck)k∈K ;M) = gtp((ai)i∈J ′ , (ck)k∈K ;M).

So we can associate a single Galois type in n+ 1 copies of A and (ck)k∈K to Iκ.

Since κ < λ was arbitrary, we can construct such Iκ for all κ < λ. By property

(i) of λ there must be cofinally many κ that are associated to the same Galois

type. We will take In+1 to be any subset of size n + 1 of such an Iκ. More

precisely, let K be this cofinal subset of λ. Pick any κ∗ ∈ K and let In+1 be

any subset of Iκ∗ of size n+ 1. Property (1) then holds by construction, and (3)

follows from K being cofinal, so we check (2).

We constructed Iκ∗ as the subset of some I ′ ⊆ I, where any I ′′ ⊆ I ′ of size n
satisfies

gtp((ai)i∈In , (ck)k∈K ;M) = gtp((ai)i∈I′′ , (ck)k∈K ;M).

So in particular, this is true for any I ′′ ⊆ In+1 of size n. Then the statement

for all m ≤ n follows from the induction hypothesis for In, and by restriction of

Galois types. This proves property (2).

This finishes the inductive construction of the In. We now claim that we

can use the In to form a system of finitary satisfiability. We consider the tuple

(An)n<ω where An = A for all n < ω, together with (Ck)k∈K . We will interpret

everything in M and we will always interpret Ck as ck for k ∈ K. Then for any
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finite J ⊆ ω we let n = |J |, and we interpret (Aj)j∈J as (ai)i∈In . Property (2)

from the induction hypothesis then guarantees that this indeed is a system of

finitary satisfiability.

Using directed compactness for Galois types, we find a realisation (a′i)i<ω in

some extension M → N . By Remark 3.39 we may assume the realisation of

(Ck)k∈K to be (ck)k∈K . Then for any finite J0, J1 ⊂ ω of size n, we have

gtp((a′i)i∈J0 , (ck)k∈K ;N) = gtp((ai)i∈In , (ck)k∈K ;M) = gtp((a′i)i∈J1 , (ck)k∈K ;N),

which proves both the claim about the existence of i1 < . . . < in (take J0 =

{1, . . . , n} and let i1 < . . . < in enumerate In) and indiscernibility over (ck)k∈K .

We recall that a Ramsey cardinal is a cardinal λ such that λ→ (λ)<ωκ for all

κ < λ. That is, for every function f : [λ]<ω → κ, there is some subset X ⊆ λ

with |X| = λ such that for every n < ω we have that f is constant on [X]n.

Lemma 4.56. Let (C,M) be an AECat with AP. Let A and (Ck)k∈K be objects

and suppose that there is a Ramsey cardinal λ such that |Sgtp(Aω, (Ck)k∈K)| < λ,

where Aω denotes ω many copies of A. Then given a sequence (ai)i<λ in some

M there is a subset I ⊆ λ with |I| = λ such that the subsequence (ai)i∈I is

(ck)k∈K-indiscernible.

Proof. We define

f : [λ]<ω →
⋃
n<ω

Sgtp(A
n, (Ck)k∈K),

I0 7→ gtp((ai)i∈I0 , (ck)k∈K ;M).

Then because λ is a Ramsey cardinal, we find I ⊆ λ with |I| = λ such that f is

constant on [I]n for each n < ω. Then by the definition of f , we have that (ai)i∈I

is (ck)k∈K-indiscernible.

By combining Lemma 4.53 and Lemma 4.54 we can make any indiscernible

sequence indiscernible over a parameter set of any desired shape.

Corollary 4.57. Let (C,M) be a finitely short AECat with AP. Let (ai)i<κ be

some (ck)k∈K-indiscernible sequence in M and let d : D → M be any arrow.

Then there is an extension M → N and some arrow d′ : D → N such that

(ai)i<κ is d′-indiscernible in N and gtp(d′, (ck)k∈K ;N) = gtp(d, (ck)k∈K ;M).

Proof. By Lemma 4.53 we may assume κ to be big enough to apply Lemma 4.54.

This then yields an extension M → N ′ with a d(ck)k∈K-indiscernible sequence

(a′i)i<ω such that for all n < ω there are i1 < . . . < in in I with

gtp(a′1, . . . , a
′
n, (ck)k∈K ;N ′) = gtp(ai1 , . . . , ain , (ck)k∈K ;M).
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By Lemma 4.53 we can elongate (a′i)i<ω to a d(ck)k∈K-indiscernible sequence

(a′i)i<κ in some extension N ′ → N ′′. In particular this sequence is (ck)k∈K-

indiscernible and all finite subtuples of (ai)i<κ and (a′i)i<κ have the same Galois

type over (ck)k∈K . So finite shortness yields

gtp((ai)i<κ, (ck)k∈K ;M) = gtp((a′i)i<κ, (ck)k∈K ;N ′′).

Using Proposition 3.16(iii) we then find an extension N ′′ → N and d′ : D → N

such that

gtp(d′, (ai)i<κ, (ck)k∈K ;N) = gtp(d, (a′i)i<κ, (ck)k∈K ;N ′′),

which is then clearly the d′ we had to construct.

We close out by showing that any indiscernible sequence can be made into an

isi-sequence. Basically what happens is that we inductively apply Corollary 4.57

to build a chain of initial segments. Such that each time the tail is indiscernible

over the relevant link in the chain.

Proposition 4.58. Let (C,M) be a finitely short AECat with AP. Then given a

c-indiscernible sequence (ai)i<κ in M , there is an extension M → N and a chain

of initial segments (Mi)i<κ in N witnessing that (ai)i<κ is an isi-sequence over

c.

Proof. We will use transfinite induction to construct chains of models (Mi)i<κ

and (Ni)i<κ, with the following induction hypothesis:

(i) there is an extension M → N0;

(ii) we have an extension mi :Mi → Ni, and these are natural in the sense that

for all j ≤ i, the square

Nj Ni

Mj Mi

mj mi

of extensions commutes;

(iii) for successor i = j + 1, the arrow aj (as an arrow into Ni) factors through

Mi;

(iv) the tail segment (aj)i≤j<κ in Ni is mi-indiscernible.

Once we have constructed such chains, we can take N = colimi<κNi. Then this

gives us the required extension M → N and chain of initial segments (Mi)i<κ

(we check this in more detail at the end of the proof).
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Base case. We take M0 to be M . Then we apply Corollary 4.57 to (ai)i<κ as a

c-indiscernible sequence in M , where we take D to be M0 (so d is the identity

arrow). Then we find an extension M → N0 and an arrow m0 : M0 → N0 such

that (ai)i<κ is m0-indiscernible (note that m0 is not the same as the extension

M → N0) and gtp(m0, c;N0) = gtp(m, c;N0). So c will embed in the chain

(Mi)i<κ. Properties (i) and (iv) now hold by construction, and properties (ii)

and (iii) are trivial.

Successor step. Suppose we have constructed (Mi)i≤α and (Ni)i≤α. Then by the

induction hypothesis (iv) we have that (ai)α≤i<κ is mα-indiscernible, so

(ai)α+1≤i<κ is mαaα-indiscernible. We can thus apply Corollary 4.57 to

(ai)α+1≤i<κ with Nα in the role of M , Mα and Aα in the role of (Ck)k∈K and in

the role of D we also take Nα. We then obtain an extension Nα → Nα+1, and

some d′ : Nα → Nα+1 such that (ai)α+1≤i<κ is indiscernible over d′. We take

mα+1 :Mα+1 → Nα+1 to be d′.

This directly takes care of (iv) in the induction hypothesis. The application

of Corollary 4.57 also gives us the following fact:

gtp(mα+1,mα, aα;Nα+1) = gtp(nα,mα, aα;Nα+1).

This means that aα and mα factor through Nα and Mα+1 in the same way. This

takes care of properties (ii) and (iii). Finally, property (i) says nothing about

this stage.

Limit step. Let ℓ < κ be a limit. Set Mℓ = colimi<ℓMi and Nℓ = colimi<ℓNi.

For every i < ℓ we have an extension Mi → Nℓ by composing mi :Mi → Ni with

the coprojection Ni → Nℓ. This makes Nℓ in the vertex of a cocone for (Mi)i<ℓ,

and so by the universal property of colimits we find an extension mℓ :Mℓ → Nℓ.

This takes care of property (ii). Properties (i) and (iii) are vacuous.

That leaves property (iv). By the induction hypothesis we have that for each

i0 < ℓ the tail (ai)ℓ≤i<κ is mi0-indiscernible. So if we let I0, I1 ⊆ {i : ℓ ≤ i < κ}
be two finite subsets, then we have

gtp((ai)i∈I0 ,mi0 ;Nℓ) = gtp((ai)i∈I1 ,mi0 ;Nℓ),

and thus

gtp((ai)i∈I0 , (mj)j≤i0 ;Nℓ) = gtp((ai)i∈I1 , (mj)j≤i0 ;Nℓ).

Then because (C,M) is finitely short we can conclude that

gtp((ai)i∈I0 , (mi)i<ℓ;Nℓ) = gtp((ai)i∈I1 , (mi)i<ℓ;Nℓ),
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and so we see that (ai)ℓ≤i<κ is (mi)i<ℓ-indiscernible. We can thus apply

Corollary 4.57 to (ai)ℓ≤i<κ in Nℓ with (Mi)i<ℓ in the role of (Ck)k∈K and Mℓ in

the role of D. Then we obtain m′ : Mℓ → N for some extension Nℓ → N , such

that (ai)ℓ≤i<κ is indiscernible over m′ in N and

gtp(m′, (mi)i<ℓ;N) = gtp(mℓ, (mi)i<ℓ;Nℓ). The latter means that m′ is a

morphism of cocones from Mℓ = colimi<ℓMi to N . By the universal property of

the colimit, this morphism is unique, so we have m′ = mℓ (composed with the

extension Nℓ → N). We can thus conclude that (ai)ℓ≤i<κ is mℓ-indiscernible.

This finishes the construction of (Mi)i<κ and (Ni)i<κ. As mentioned before, we

get the required extension M → N by setting N = colimi<κNi, using property

(i) that gives us an extension M → N0 → N . Then properties (ii) and (iii)

guarantee that (Mi)i<κ actually forms a chain of initial segments for (ai)i<κ in

N . Finally, (iv) together with the fact that c embeds into (Mi)i<κ (as discussed

in the base case) then gives us that this chain actually witnesses (ai)i<κ being an

isi-sequence over c.



5

Canonicity of independence

This chapter contains the main results for AECats: canonicity of independence.

These results are contained in section 5.1. The first main theorem, Theorem 5.4,

states that there can only be one simple independence relation in an AECat.

The second main theorem, Theorem 5.6, states the same thing for NSOP1-like

independence relations, under the assumption of the B-existence axiom. These

can then nicely be put together to rebuild part of the classical stability hierarchy,

which is done in Theorem 5.7. In the second section of this chapter, section 5.2,

we describe the link with known results and how these theorems can be applied

in more concrete settings such as positive logic (and thus full first-order logic)

and continuous logic.

In positive logic (and thus also in full first-order logic) Lascar strong types

interact heavily with nice enough independence relations. In section 5.3 we

explore this interaction in the setting of AECats and prove very similar results.

We originally defined Lascar strong Galois types in one particular way, but

classically there are a few equivalent definitions, e.g. as the finest bounded

invariant equivalence relation. We recover these equivalent definitions in an

arbitrary AECat, given a nice enough independence relation.

5.1 Canonicity

Theorem 5.1. Let (C,M) be an AECat with AP and let |⌣ be a basic

independence relation that also satisfies Club Local Character. Then

A |⌣
isi-d,M
C

B implies A |⌣
M
C
B for any C ∈ base( |⌣).

If |⌣ satisfies the same assumptions, except possibly Union, then we still

have that A |⌣
ld,M
C

B implies A |⌣
M
C
B for any C ∈ base( |⌣).

Proof. Suppose that gtp(a, b, c;M) does not isi-divide over c. Let κ ≥ Υ(A)

such that (C,M) is a κ-AECat and dom(a) and dom(c) are κ-presentable. By

Proposition 4.29 we find a long enough |⌣c
-independent isi-sequence (bi)i<λ over

c in some M → N with λ > κ and gtp(bi, c;N) = gtp(b, c;M) for all i < λ. Let

(Mi)i<λ be witnesses of independence. Since gtp(a, b, c;M) does not isi-divide

over c there is I ⊆ λ with |I| = κ such that gtp(a, b, c;M) is consistent for
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(bi)i∈I . Let a′ be a realisation for (bi)i∈I , which for convenience we may assume

to be in N . By possibly deleting an end segment from I we may assume that I

has the order type of κ. Using Lemma 4.30 we may assume that each object in the

chain (Mi)i∈I is κ-presentable. Then by chain local character, Lemma 4.15, we

find i0 ∈ I such that a′ |⌣
N
Mi0

MI where MI = colimi∈IMi. By Monotonicity

and Symmetry we then have

bi0
N

|⌣
Mi0

a′.

We also have

bi0
N

|⌣
c

Mi0 .

So by Transitivity we have bi0 |⌣
N
c
a′ and the result follows by Symmetry and

because gtp(a′, bi0 , c;N) = gtp(a, b, c;M).

For the final claim we just note that if we do not have Union we can still

apply Proposition 4.28 instead of Proposition 4.29 to get an arbitrarily long |⌣c
-

independent sequence. It might just not be an isi-sequence. Then the rest of the

proof goes through as written.

The following lemma generalises the Independence Theorem property to

independent sequences of any length. The original Independence Theorem

can be viewed as just considering an independent sequence of length two.

Lemma 5.2 (Generalised independence theorem). Suppose that |⌣ is a basic

independence relation satisfying Independence Theorem. Let δ be any

(possibly finite) ordinal. Suppose we have (a, b, c;N) such that a |⌣
N
c
b and a

|⌣c
-independent sequence (bi)i<δ in N with Lgtp(bi/c;N) = Lgtp(b/c;N) for all

i < δ. Then there is an extension N → N ′ with (a′;N ′) such that a′ |⌣
N ′

c
N and

Lgtp(a′, bi/c;N
′) = Lgtp(a, b/c;N ′) for all i < δ.

In particular, gtp(a, b, c;N) is consistent for (bi)i<δ.

Proof. Let (Mi)i<δ be witnesses of independence for (bi)i<δ. We will add one

more link Mδ to the chain. If δ is a limit ordinal we set Mδ = colimi<δMi. If δ

is a successor ordinal we set Mδ = N .

We will by induction construct a chain (Ni)i≤δ with N0 extending N , together

with extensions {m′
i : Mi → Ni}i≤δ and an arrow (a′′;N0) such that m′

0 = m0

and Lgtp(a′′/c;N0) = Lgtp(a/c;N0) while at stage i we have:

(i) the extensions {m′
j :Mj → Nj}j≤i are natural in the sense that

Nj Ni

Mj Mi

m′
j m′

i
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commutes for all j ≤ i;

(ii) if i is a successor, say i = j + 1, then Lgtp(a′′, b′j/c;Ni) = Lgtp(a, b/c;Ni),

where b′j is the composition B
bj−→Mi

m′
i−−→ Ni;

(iii) a′′ |⌣
Ni

c
m′
i.

Base case. By Existence we have a |⌣
N
c
c, so we can apply strong extension

(Corollary 4.13) to find N → N0 and (a′′;N0) with a′′ |⌣
N0

c
M0 and

Lgtp(a′′/c;N0) = Lgtp(a/c;N0).

Successor step. Suppose we have constructed Ni and m′
i. By (i) and since

m′
0 = m0 have gtp(m′

i,m0;Ni) = gtp(mi,m0;Ni), so

Lgtp(m′
i/c;Ni) = Lgtp(mi/c;Ni). We can thus find (a∗,m∗

i+1;N
∗) for some

Ni → N∗ such that Lgtp(m∗
i+1,m

′
i/c;N

∗) = Lgtp(mi+1,mi/c;N
∗) and

Lgtp(a∗, b∗i /c;N
∗) = Lgtp(a, b/c;N∗), where b∗i is given by

B
bi−→ Mi+1

m∗
i+1−−−→ N∗. For this last construction we used that

Lgtp(bi/c;N) = Lgtp(b/c;N) and that bi factors through mi+1. Then

a′′ |⌣
N∗

c
m′
i, a∗ |⌣

N∗

c
b∗i and b∗i |⌣

N∗

c
m′
i. So we can apply Independence

Theorem to find N∗ → Ni+1 and (a∗∗;Ni+1) with a∗∗ |⌣
Ni+1

c
N∗. By

Monotonicity we get a∗∗ |⌣
Ni+1

c
m∗
i+1. We have

Lgtp(a∗∗/c,m′
i;Ni+1) = Lgtp(a′′/c,m′

i;Ni+1), so we find m′
i+1 : Mi+1 → Ni+1

(possibly after replacing Ni+1 by an extension) such that

Lgtp(a∗∗,m∗
i+1/c,m

′
i;Ni+1) = Lgtp(a′′,m′

i+1/c,m
′
i;Ni+1). We verify the

induction hypothesis:

(i) we have by construction that gtp(m′
i+1,m

′
i;Ni+1) = gtp(m∗

i+1,m
′
i;Ni+1) =

gtp(mi+1,mi : Ni+1), so m
′
i factors through m

′
i+1 in the same way that mi

factors through mi+1, and naturality follows;

(ii) Lgtp(a′′, b′i/c;Ni+1) = Lgtp(a∗∗, b∗i /c;Ni+1) = Lgtp(a∗, b∗i /c;Ni+1) =

Lgtp(a, b/c;Ni+1);

(iii) this follows from a∗∗ |⌣
Ni+1

c
m∗
i+1 and Invariance.

Limit step. For limit ℓ let Nℓ = colimi<ℓNi. By (i) from the induction hypothesis

the arrows m′
i composed with the coprojections Ni → Nℓ form a cocone on

(Mi)i<ℓ. By continuity Mℓ = colimi<ℓMi, so there is a universal arrow m′
ℓ :

Mℓ → Nℓ. This directly establishes (i). Property (ii) is vacuous. Property (iii)

follows from the induction hypothesis and Union.

Having finished the inductive construction, we have two arrows Mδ → Nδ,

namely mδ : Mδ → N → Nδ and the m′
δ we just constructed. By (i) from the
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induction hypothesis we have gtp(mδ,m0;Nδ) = gtp(m′
δ,m0;Nδ). So we find an

extension Nδ → N ′ and some (a′;N ′) such that

gtp(a′,mδ,m0;N
′) = gtp(a′′,m′

δ,m0;Nδ). Using that c factors through m0 and

(ii) from the induction hypothesis, we find that for any i < δ we have

Lgtp(a′, bi/c;N
′) = Lgtp(a′′, b′i/c;N

′) = Lgtp(a, b/c;N ′). By (iii) from the

induction hypothesis we also have a′ |⌣
N ′

c
Mδ. So if δ was a successor ordinal we

had Mδ = N and we are done. Otherwise we can just apply Extension and

relabel things to get a′ |⌣
N ′

c
N .

The final claim follows because a′ is a realisation of gtp(a, b, c;N) for (bi)i<δ.

Remark 5.3. In the context of Lemma 5.2 if C is a model then there is no need to

concern ourselves with Lascar strong Galois types. That is, the proof as written

then goes through if we replace “Lascar strong Galois type” by just “Galois type”

everywhere. We also only apply Independence Theorem with C in the base.

So if C is a model then it would be enough to just have Independence Theorem

over models. Or equivalently, to have 3-amalgamation, see Theorem 4.20.

A slightly weaker version of the following theorem has been published in

[Kam20].

Theorem 5.4 (Canonicity of simple independence). Let (C,M) be an AECat

with AP, and suppose that |⌣ is a simple independence relation. Then |⌣ =

|⌣
isi-d = |⌣

isi-f over base( |⌣).

Proof. The implication |⌣
isi-d =⇒ |⌣ is already given by Theorem 5.1. For the

converse we will assume that A |⌣
M
C
B and we will prove that A |⌣

isi-d,M
C

B. Pick

some representatives a, b, c of A,B,C. Let µ be such that (C,M) is a µ-AECat

and let λ > Υ(B)+µ. Let (bi)i<λ be an isi-sequence over c in someM → N , with

chain of initial segments (Mi)i<λ and gtp(bi, c;N) = gtp(b, c;M) for all i < λ.

Let Υ(B)+µ ≤ κ < λ. By a similar argument as Lemma 4.30 (we can just ignore

the independence relation there) we may assume that Mi is κ-presentable for all

i < κ. We can thus apply chain local character, Lemma 4.15, to find i0 < κ

such that bκ |⌣
N
Mi0

Mκ. We will aim to show that gtp(a, b, c;M) is consistent

for (bi)i0≤i<κ. We use gtp(bi0 , c;N) = gtp(b, c;M) to find a common extension

M → N ′ ← N where b = bi0 as arrows into N ′. By applying Extension

to the assumption a |⌣
M
c
b we then find (a′;N ′) (possibly after replacing N ′ by

an extension) such that a′ |⌣
N ′

c
N and gtp(a′, b, c;N ′) = gtp(a, b, c;M). Then

by Base-Monotonicity and Monotonicity we find a |⌣
N ′

Mi0

b. For any i0 ≤
i < κ we have gtp(bi,mi,mi0 ;N

′) = gtp(bκ,mi,mi0 ;N
′) because (bi)i<λ is an

isi-sequence. So by Monotonicity and Invariance and the earlier fact that
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bκ |⌣
N
Mi0

Mκ, we find

bi
N ′

|⌣
Mi0

Mi

for all i0 ≤ i < κ. So (bi)i0≤i<κ is a |⌣Mi0

-independent sequence. We can thus

apply the generalised independence theorem, Lemma 5.2, to conclude that

gtp(a′, b, c;N ′) = gtp(a, b, c;M) is indeed consistent for (bi)i0≤i<κ. As κ was

arbitrarily large below λ, λ itself was arbitarily large and (bi)i0≤i<κ is a

subsequence of an arbitrary isi-sequence of length λ we conclude that indeed

A |⌣
isi-d,M
C

B.

Finally, the claim |⌣
isi-d = |⌣

isi-f follows from Proposition 4.46 because

|⌣
isi-d = |⌣ has Extension and Right-Monotonicity.

Remark 5.5. We follow up on Remark 4.19. In the proof of Theorem 5.4 we

only applied the Independence Theorem indirectly through Lemma 5.2. The

base, i.e. C in that lemma, is by construction always a model. So by Remark 5.3

it would be enough to only assume 3-amalgamation instead of Independence

Theorem.

Theorem 5.6 (Canonicity of NSOP1-like independence). Let (C,M) be an

AECat with AP and let B be some base class. Suppose that (C,M) satisfies the

B-existence axiom and suppose that there is an NSOP1-like independence

relation |⌣ over B. Then |⌣ = |⌣
lK over B.

Proof. Suppose that A |⌣
M
C
B with C ∈ B and pick some representatives a, b, c

of A,B,C. There is a bound µ on the cardinality of the set of Lascar strong

Galois types compatible with (b, c;M), see Proposition 3.24. Let λ > µ and let

(bi)i<λ be a |⌣
isi-f
c

-independent sequence in some M → N with gtp(bi, c;N) =

gtp(b, c;M) for all i < λ. Then (bi)i<λ is also |⌣c
-independent, by Theorem 5.1

and Proposition 4.46. We have to show that for every κ < λ there is I ⊆ λ with

|I| = κ such that gtp(a, b, c;M) is consistent for (bi)i∈I . So let κ < λ. Then

by the choice of µ and λ there must be some I ⊆ λ with |I| = κ such that

Lgtp(bi/c;N) = Lgtp(bj/c;N) for all i, j ∈ I. Pick some i0 ∈ I and let (a′;N ′)

for some extension N → N ′ be such that gtp(a′, bi0 , c;N
′) = gtp(a, b, c;M).

Then we can apply the generalised independence theorem, Lemma 5.2, to see

that gtp(a′, bi0 , c;N
′) = gtp(a, b, c;M) is consistent for (bi)i∈I . We conclude that

indeed A |⌣
lK,M
C

B.

For the other direction, suppose that A |⌣
lK,M
C

B with C ∈ B. Let κ ≥ Υ(A)

be such that (C,M) is a κ-AECat and A and C are κ-presentable. Let (bi)i<λ

be a long enough |⌣
isi-f
c

-independent sequence in some extension M → N , with

λ > κ, witnesses of independence (Mi)i<λ and gtp(bi, c;N) = gtp(b, c;M) for all

i < λ. Such a sequence exists because we assumed the B-existence axiom, so we

can apply Corollary 4.49. As before, this is also a |⌣c
-independent sequence. By
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definition of long Kim-dividing there is I ⊆ λ with |I| = κ such that gtp(a, b, c;N)

is consistent for (bi)i∈I . Let a′ be a realisation for this (we may assume a′ is an

arrow into N). By possibly deleting an end segment from I we may assume

that I has the order type of κ. Using Lemma 4.30 we may assume that each

object in the chain (Mi)i∈I is κ-presentable. Then by chain local character,

Lemma 4.15, we find i0 ∈ I such that a′ |⌣
N
Mi0

MI where MI = colimi∈IMi. So

by Monotonicity and Symmetry we have

bi0
N

|⌣
Mi0

a′.

Furthermore, we have

bi0
N

|⌣
C

Mi0 .

So by Transitivity we have bi0 |⌣
N
C
a′. The result then follows by Symmetry

and the fact that gtp(a′, bi0 , c;N) = gtp(a, b, c;M).

By definition any stable independence relation is also simple, and any simple

independence relation is also NSOP1-like. The canonicity theorems then tell us

that these are indeed unique in a given AECat with AP and with what notion of

dividing they coincide. We make this precise in the following theorem.

Theorem 5.7. Let (C,M) be an AECat with AP and suppose that |⌣ is a stable

or a simple independence relation in (C,M). Suppose furthermore that |⌣
∗ is an

NSOP1-like independence relation in (C,M) with base( |⌣) = base( |⌣
∗). Then

|⌣ =
∗
|⌣ =

isi-d

|⌣ =
isi-f

|⌣ =
lK

|⌣ .

Proof. This follows directly from Theorem 5.4 and Theorem 5.6. To apply the

latter we need the base( |⌣)-existence axiom. This is automatic, as |⌣ = |⌣
isi-f

over base( |⌣) by Theorem 5.4 and we have Existence by assumption.

We can classify AECats based on the existence of certain independence

relations, just as we can classify theories in full first-order logic in that way. For

example, suppose that we have an AECat (C,M) with AP and an NSOP1-like

independence relation |⌣ where Base-Monotonicity fails. Then we can never

find a simple independence relation in (C,M) (with the same base class).

Because if we would have such a simple independence relation |⌣
′ then by

Theorem 5.7 we would have |⌣ = |⌣
′, but that is impossible because a simple

independence relation must satisfy Base-Monotonicity. So we can classify

(C,M) as NSOP1, but non-simple. See Example 6.101 for a concrete example of

this.
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5.2 Relationship with known results

In this section we discuss how this work extends and brings together previously

known results. We also describe precisely how to apply the canonicity theorems,

Theorem 5.4 and Theorem 5.6, in these more concrete settings.

Example 5.8. Let T be a thick theory (recall that this includes theories in full

first-order logic, see Remark 2.12). Let C be either SubMod(T ) or Mod(T ).

Following Remark 3.21 we take M to be the category of finitely λT -saturated

models. If T is semi-Hausdorff we can instead just takeM = Mod(T ).

If T is stable or simple then there is respectively a stable or simple

independence relation |⌣ in (C,M) with base( |⌣) = C. This follows from a

combination of [BY03b, BY03c]. So Theorem 5.4 applies.

The Stationarity property in a stable theory follows from [BY03b, Theorem

2.8]. In their statement the base model M is assumed to be |T |+-saturated. This
is necessary for only two reasons. The first reason is that types over M should

coincide with Lascar strong types over M , but by our choice of M and the

thickness assumption this happens for all M ∈ M. The second reason is that

types over M should be what they call extendible, but in a simple thick theory

every type is extendible, see [BY03c, Theorem 1.15].

Example 5.9. Let (C,M) be an AECat based on some semi-Hausdorff or thick

theory T as in Example 5.8. Then by Example 4.50(i) we have the Mod(T )-

existence axiom. If T is NSOP1 then it has an NSOP1-like independence relation

|⌣ with base( |⌣) = Mod(T ), see chapter 6. So Theorem 5.6 applies. See also

section 6.10 for more concrete examples.

Here we had to restrict the base class to e.c. models, simply because Kim-

independence in positive logic has only been developed over e.c. models. It is quite

likely that this work can be extended to arbitrary base sets, see Question 6.105.

For theories in full first-order logic this has already been done, see [CKR20,

DKR19]. To make this work we need to assume the existence axiom, see also

Example 4.50(iii). So let T be an NSOP1 theory in full first-order logic and

set (C,M) = (SubMod(T ),Mod(T )), which satisfies the C-existence axiom.

Then the aforementioned sources show that there is an NSOP1-like independence

relation |⌣ with base( |⌣) = C and so Theorem 5.6 applies.

Finally we note that there is a Kim-Pillay style theorem in [CKR20,

Theorem 5.1] for Kim-independence over arbitrary sets. They still rely on a

syntactical property “strong finite character”, which could be replaced by just

“finite character”. Theorem 5.6 gives us just the canonicity part. To conclude

that a theory with such an independence relation is NSOP1, without using

strong finite character, we can restrict ourselves to work over models and use

the proof from Theorem 6.79.
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Example 5.10. Let T be a continuous theory, in the sense of [BYBHU08]. Let C
be either SubMetMod(T ) or MetMod(T ), and letM be MetMod(T ). Then

(C,M) is an AECat with AP, as discussed in Example 3.7.

If T is stable or simple then there is respectively a stable or simple

independence relation |⌣ in (C,M) with base( |⌣) = C. Every continuous

theory is in particular a Hausdorff compact abstract theory, and so the

machinery of [BY03b, BY03c] applies. This shows we can indeed find an

appropriate independence relation in any simple or stable continuous theory.

There is also [BYBHU08, section 14] for a further discussion about stability

specifically in continuous theories. So Theorem 5.4 applies.

In [BYBHU08] some examples of stable continuous theories and their

corresponding independence relations are given, including Hilbert spaces and

atomless probability spaces.

Example 5.11. In this example we consider the continuous theory TN of

Hilbert spaces with a distance function to a random subset, as studied in

[BHV18]. They prove that this theory has TP2 and can thus not be simple.

They also define an independence relation |⌣
∗ over arbitrary sets that has all

the properties of an NSOP1-like independence relation. Except that they do not

prove the full Independence Theorem, but enough for 3-amalgamation. So

setting C = SubMetMod(TN ) and M = MetMod(TN ), and taking

base( |⌣
∗) = MetMod(T ), we have that |⌣

∗ is an NSOP1-like independence

relation in (C,M). By Example 4.50(ii) we also have the

MetMod(T )-existence axiom. So Theorem 5.6 applies.

5.3 More on Lascar strong Galois types

In this section we will show that in the presence of a nice enough independence

relation there are some equivalent definitions of Lascar strong Galois types. This

includes the usual definition of being the finest bounded invariant equivalence

relation.

It is well known that Lascar strong types heavily interact with independence

relations in full first-order logic. For example, independence relations can be used

to show that having the same Lascar strong type is type-definable in any simple

theory (we say that the theory is “G-compact”), see [Kim14, Proposition 5.1.11].

The same technique applies to any NSOP1 theory in full first-order logic that

satisfies the existence axiom [DKR19, Corollary 5.9]. We essentially adapt this

technique in this section, while at the same time using independence relations to

build what we call “strongly 2-indiscernible” sequences (Definition 5.15), which

take the role of the usual indiscernible sequences in settings with compactness.

Throughout this section we will work with single arrows a, b, c and objects A

and C, where dom(a) = dom(b) = A and dom(c) = C. This leads to cleaner



Chapter 5: Canonicity of independence 96

notation and when working with independence relations we can only work with

single arrows anyway (i.e. the sides and base of an independence relation do

not allow tuples of arrows in our definition). However, it is not too difficult to

extend the main result of this section (Theorem 5.17) to arbitrary tuples, see

Remark 5.23.

Definition 5.12. Let (C,M) be an AECat with AP and fix some objects A and

C. Suppose that for each M and each c : C → M we are given an equivalence

relation ≡c,M on Hom(A,M). Then we say that the family ≡ is an equivalence

relation over C.

We call ≡ a bounded equivalence relation if there is λ such that ≡c,M has at

most λ many equivalence classes for any M and c : C →M .

We call ≡ an invariant equivalence relation if it is invariant under equality of

Galois types over C. That is, if gtp(a, b, c;M) = gtp(a′, b′, c′;M ′) then we have

that a ≡c,M b if and only if a′ ≡c′,M ′ b′.

Convention 5.13. We will only deal with invariant equivalence relations. To

further simplify the notation we will drop the M from the notation. So we write

a ≡c b instead of a ≡c,M b. This makes sense because of invariance, because then

it does not matter if we consider a and b as arrows into M or as arrows into an

extension of M .

Example 5.14. We give some familiar examples.

(i) Taking just equality as equivalence relation is an equivalence relation over

any C. This relation is invariant, but generally not bounded because

Hom(A,M) may become arbitrarily large.

(ii) The trivial equivalence where everything is equivalent is a bounded invariant

equivalence relation over any C.

(iii) Having the same Galois type is a bounded invariant equivalence relation

over any C. That is, we define ≡ as a ≡c b if and only if gtp(a, c;M) =

gtp(b, c;M). Clearly ≡ is invariant, and by Proposition 3.19 it is bounded.

(iv) Having the same Lascar strong Galois type is a bounded invariant

equivalence relation. Similar to the previous point we define ≡ as a ≡c b if
and only if Lgtp(a/c;M) = Lgtp(a′/c;M). This is invariant by

Proposition 3.23 and bounded by Proposition 3.24.

(v) In any theory T , any hyperimaginary yields an invariant equivalence

relation (see section 2.2). That is, if E(x, y) is a set of formulas that

defines an equivalence relation modulo T then we can define an invariant

equivalence relation ≡E over ∅ as follows: for tuples a, b ∈ M we set

a ≡E b iff M |= E(a, b).
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Usually bounded invariant equivalence relations are linked to Lascar strong

types using indiscernible sequences (see Definition 2.40). This requires some

compactness, see section 4.5, which we generally do not have. To solve this we

will adapt the idea of strongly indiscernible sequences from [HL06].

Definition 5.15. We call sequence (ai)i<κ in some M 2-c-indiscernible if for

any i1 < i2 < κ and j1 < j2 < κ we have gtp(ai1 , c;M) = gtp(ai2 , c;M) and

gtp(ai1 , ai2 , c;M) = gtp(aj1 , aj2 , c;M). We call such a sequence strongly 2-c-

indiscernible if it can be extended to a 2-c-indiscernible sequence (possibly in

some extension model) of arbitrary length.

Given an independence relation |⌣ we define a 2- |⌣c
-Morley sequence to be a

2-c-indiscernible sequence that is also |⌣c
-independent. Such a sequence is called

a strong 2- |⌣c
-Morley sequence if it can be extended to a 2- |⌣c

-Morley sequence

(possibly in some extension model) of arbitrary length.

Definition 5.16. For (a, b, c;M) we write a ∼2
c b if a and b are on some strongly

2-c-indiscernible sequence. We write ≡2
c for the transitive closure of ∼2

c . Similarly,

given an independence relation |⌣, we write a ∼ |⌣
c b if a and b are on some strong

2- |⌣c
-Morley sequence and ≡ |⌣

c for its transitive closure. Finally, we write a ≡Bc b

if a and b are equivalent for every bounded invariant relation over c.

One easily verifies that ≡2 and ≡B are equivalence relations over any C. For

≡ |⌣ we may generally not have reflexivity, but we will have that in the situations

we are interested in. In particular, Lemma 5.21 shows that ≡ |⌣ has reflexivity

over models.

Theorem 5.17. Let (C,M) be an AECat with AP, and suppose that |⌣ is a basic

independence relation that also satisfies 3-amalgamation. Then the following

are equivalent for any (a, b, c;M):

(i) Lgtp(a/c;M) = Lgtp(b/c;M);

(ii) a ≡Bc b, so a and b are equivalent under every bounded invariant equivalence

relation over C;

(iii) a ≡2
c b, so a and b can be connected by strongly 2-c-indiscernible sequences.

We note that the above conditions are equivalent in any thick positive

theory, without assuming the existence of any independence relation, see

Definition 2.40 and the discussion afterwards. In this very general setting we

need the independence relation as a replacement for where we would usually use

compactness. More concretely, we need it to build strong 2-Morley sequences

(which are then strongly 2-indiscernible by definition), see Lemma 5.20.

Proving the equivalence of the above conditions without a nice independence

relation seems a lot harder, if not impossible in this generality.
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Remark 5.18. In Theorem 5.17 we only required |⌣ to have

3-amalgamation. So in the assumptions of the theorem do not mention

anything about Lascar strong Galois types. That means that, in the presence of

such an independence relation, we can take any of the equivalent conditions in

Theorem 5.17 as the definition for Lascar strong Galois types, without any

circularity in the definitions.

This might be relevant if one would then want to prove the full Independence

Theorem, which does mention Lascar strong Galois types, from the rest of the

properties of |⌣. For example, something like this is done in [DKR19]. There they

use the fact that NSOP1 theories in full first-order logic satisfy the independence

theorem over models, and they used that to prove the independence theorem over

arbitrary sets.

The remainder of this section is devoted to proving Theorem 5.17.

Lemma 5.19. For any (a, b, c;M) and any independence relation |⌣ we always

have

a ≡ |⌣
c b =⇒ a ≡2

c b =⇒ a ≡Bc b =⇒ Lgtp(a/c;M) = Lgtp(b/c;M).

Proof. The first implication follows because any strong 2- |⌣c
-Morley sequence

is in particular strongly 2-c-indiscernible. The final implication follows because

having the same Lascar strong Galois type is a bounded invariant equivalence

relation, see Example 5.14(iv). We prove the middle implication. So let ≡ be a

bounded invariant equivalence relation over C. It is enough to prove that a ∼2
c b

implies a ≡c b. Let κ be the bound of ≡. Since a ∼2
c b we find a 2-c-indiscernible

sequence (ai)i<κ+ in some extension N of M with a and b on it. Without loss

of generality we may assume a0 = a and a1 = b. By boundedness we find

i < j < κ+ such that ai ≡c aj . By 2-c-indiscernibility we have gtp(a, b, c;N) =

gtp(ai, aj , c;N). So a ≡c b follows from invariance.

Lemma 5.20. Suppose that |⌣ is a basic independence relation that also satisfies

3-amalgamation. Let m be an arrow with a model as domain and let δ ≥ 2 be

any ordinal (possibly finite). Then any 2- |⌣m
-Morley sequence (ai)i<δ is a strong

2- |⌣m
-Morley sequence. In particular a |⌣

N
m
b and gtp(a,m;N) = gtp(b,m;N)

implies a ∼ |⌣
m b.

Proof. By Remark 5.3 we can apply the generalised independence theorem,

Lemma 5.2, while avoiding referring to Lascar strong Galois types. We can thus

inductively apply Lemma 5.2 to elongate (ai)i<δ to any length we want. We do

this by letting a0, a1 and m play the roles of b, a and c respectively.
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Lemma 5.21. Suppose that |⌣ is a basic independence relation that also satisfies

3-amalgamation. If gtp(a,m;N) = gtp(b,m;N), where dom(m) is a model,

then a ≡ |⌣
m b.

Proof. By Existence we have a |⌣
N
m
m, so we can apply Extension to find

N → N ′ and some (a′;N ′) such that a′ |⌣
N ′

m
N while

gtp(a′,m;N ′) = gtp(a,m;N ′). By Monotonicity we then have a′ |⌣
N ′

m
a and

a′ |⌣
N ′

m
b. So by Lemma 5.20 we have a ∼ |⌣

m a′ ∼ |⌣
m b, and we are done.

Proof of Theorem 5.17. By Lemma 5.19 we only need to prove that

Lgtp(a/c;M) = Lgtp(b/c;M) implies a ≡2
c b. It is enough to prove that

(a/c;M) ∼Lgtp (b/c;M) implies a ≡2
c b. So let M → N be an extension and let

m0 : M0 → N be such that c factors through m0, M0 is a model and

gtp(a,m0;N) = gtp(b,m0;N). Then by Lemma 5.21 we get a ≡ |⌣
m0 b. So by

Lemma 5.19 we have a ≡2
m0

b. Any strongly 2-m0-indiscernible sequence is also

strongly 2-c-indiscernible, because c factors through m0. So we conclude that

indeed a ≡2
c b.

Remark 5.22. The proof of Theorem 5.17 also shows that if dom(c) is a model

then Lgtp(a/c;M) = Lgtp(b/c;M) is further equivalent to a ≡ |⌣
c b.

Remark 5.23. We have stated Theorem 5.17 for single arrows, rather than for

tuples of arrows. We briefly sketch how we can get the result for tuples of arrows

as well. That is, if we replace a, b and c by (ai)i∈I , (bi)i∈I and (cj)j∈J respectively.

First we extend the definitions of (strongly) 2-indiscernible, ≡2 and ≡B to

tuples of arrows in a straightforward way. Then following the same proof as in

Lemma 5.19 we get:

(ai)i∈I ≡2
(cj)j∈J

(bi)i∈I =⇒

(ai)i∈I ≡B(cj)j∈J
(bi)i∈I =⇒

Lgtp((ai)i∈I/(cj)j∈J ;M) = Lgtp((bi)i∈I/(cj)j∈J ;M).

So we are left to prove that Lgtp((ai)i∈I/(cj)j∈J ;M) = Lgtp((bi)i∈I/(cj)j∈J ;M)

implies (ai)i∈I ≡2
(cj)j∈J

(bi)i∈I . It is enough to prove that

((ai)i∈I/(cj)j∈J ;M) ∼Lgtp ((bi)i∈I/(cj)j∈J ;M) implies (ai)i∈I ≡2
(cj)j∈J

(bi)i∈I .

So let M → N be an extension and let m0 : M0 → N be such that all arrows in

(cj)j∈J factor through m0, M0 is a model and

gtp((ai)i∈I ,m0;N) = gtp((bi)i∈I ,m0;N). Pick some d : D → N such that every

arrow in (ai)i∈I factors through d. We then find an extension N → N ′ and

d′ : D → N ′ such that every arrow in (bi)i∈I factors through d′ and

gtp(d,m0;N
′) = gtp(d′,m0;N

′). Now we can apply the original result

Theorem 5.17 to obtain d ≡2
m0

d′ and hence (ai)i∈I ≡2
(cj)j∈J

(bi)i∈I , as required.
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Remark 5.24. In Remark 5.18 we explained why we only assumed

3-amalgamation. If we also assume Independence Theorem together with

base( |⌣) = C, as is for example true in any simple thick theory where |⌣ is he

usual dividing independence (see Example 5.8). We would then get a little bit

more, namely that Lgtp(a/c;M) = Lgtp(b/c;M) is further equivalent to

a ≡ |⌣
c b.

The proof of this is largely the same as the proof in this section. We sketch

where some changes would need to be made. We adjust Lemma 5.20 as follows:

any 2- |⌣c
-Morley sequence (ai)i<δ such that Lgtp(ai/c;M) = Lgtp(aj/c;M) for

all i < j < δ is a strong 2- |⌣c
-Morley sequence. Here the extra assumption

“Lgtp(ai/c;M) = Lgtp(aj/c;M)” is necessary to still apply Lemma 5.2, and so

the proof goes through. Then Lemma 5.21 can be restated as Lgtp(a/c;M) =

Lgtp(b/c;M) implies a ≡ |⌣
c b. The only change in the proof is that we need to

apply strong extension Corollary 4.13. This then already concludes the proof.

This also tells us that in this case we will need at most two strong

2- |⌣c
-Morley sequences to connect a and b. That is, there is some a′ in an

extension of M such that a ∼ |⌣
c a′ ∼ |⌣

c b. In particular this also means that we

need at most two strongly 2-c-indiscernible sequences to connect a and b,

because strong 2- |⌣c
-Morley sequences are in particular strongly

2-c-indiscernible. This is closely related to the notion of G-compactness (in

settings where that makes sense), which is equivalent to saying that having the

same Lascar strong type is type-definable. More precisely, for thick theories we

get G-compactness in the above situation. To see this, note that being on a

strongly 2-c-indiscernible sequence is the same as being on a c-indiscernible

sequence, because we can elongate the 2-c-indiscernible sequence to something

long enough to then base an indiscernible sequence on (this works in any finitely

short AECat by Lemma 4.54). Furthermore, in a thick theory having the same

Lascar strong Galois type coincides with having the same Lascar strong type,

see Remark 3.21. So by the above we have a ≡Ls
c b if and only if dc(a, b) ≤ 2 and

the latter is type-definable in a thick theory.
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Kim-independence in positive logic

This chapter is joint work with Jan Dobrowolski and the work is also contained

in [DK21].

While forking and dividing have been developed for simple theories in positive

logic [Pil00, BY03b], Kim-dividing for NSOP1 theories has only been developed

in full first-order logic. This work was started by Kaplan and Ramsey in [KR20],

inspired by ideas from Kim [Kim09]. In this chapter we generalise this work

on Kim-independence in NSOP1 theories to thick positive theories. We start by

recalling basic notions of forking, dividing, heirs and coheirs for positive logic in

section 6.1. Then in section 6.2 we give the definition for NSOP1 in positive logic.

We have to be careful here not to rely on any negations that are implicit in the

definition for full first-order logic. This can be solved by an idea of [HK21], see

also Remark 6.7.

In section 6.4 we give the definition of Kim-dividing and we prove some basic

properties. In [KR20] Kim-dividing is defined as dividing with respect to a Morley

sequence in some global invariant type. This would work in positive logic as

well, if these global invariant types exist. In semi-Hausdorff theories they do

exist [BY03c, Lemma 3.11], but in thick theories they might not (see subsection

6.10.1). We solve this by using global Lascar-invariant types, which we discuss

one section earlier, in section 6.3.

Section 6.5 contains mostly technical tools. One of the technical challenges

in adapting the results from [KR20, KR19] to the positive setting is that the

tree modelling property [KKS14, Theorem 4.3], on which most of the

constructions there rely, is not available in the positive setting. This forced us

in particular to work only with trees of finite height, which turns out to be

enough due to compactness and a careful choice of the global types with which

we work. Consequently, we substitute the notion of a tree Morley sequence used

in [KR20] with a weaker notion of a CR-Morley sequence, see Definition 6.48.

In the next few sections we prove the main properties of Kim-independence,

one in each section. That is: symmetry (section 6.6), the independence theorem

(section 6.7) and transitivity (section 6.8).

In section 6.9 we prove a Kim-Pillay style theorem, characterising which

thick positive theories are NSOP1 by the existence of a certain independence
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relation. Furthermore, this independence relation must then be the same as

Kim-independence. In this section we also verify that Kim-independence has

(club) local character.

Finally, in section 6.10, we discuss three examples. The first example,

subsection 6.10.1, is a thick non-semi-Hausdorff NSOP1 theory, which shows

that the generality of thick theories in which we work is really more general

than semi-Hausdorff theories. The next example, subsection 6.10.2, is that of

existentially closed exponential fields, as studied in [HK21]. This is an example

of a Hausdorff NSOP1 theory that does not fit in the framework of full

first-order logic. We use our Kim-Pillay style theorem, Theorem 6.79, to verify

that the independence relation given in [HK21] is indeed Kim-independence.

The third example, subsection 6.10.3, continues the study of hyperimaginaries

from section 2.2. So this is not so much an example of one concrete theory, but

rather an entire class of theories to which our work applies. The main result is

that being NSOP1 is preserved when moving to a hyperimaginary extension, so

in particular our work applies to T heq for every theory T in full first-order logic.

Throughout this entire chapter, when we consider a theory T we will implicitly

assume that it has JEP and work in a monster model M of T .

6.1 Forking, dividing, heirs and coheirs

In this section we discuss some definitions about various notions of independence

in positive logic, namely those of forking, dividing, heirs and coheirs. Throughout

we work in (a monster model of) some positive theory T .

The definition of dividing in positive theories is the same as in full first-order

logic [Pil00, BY03b]. Following [Pil00] we have to adjust forking to allow infinite

disjunctions because compactness can no longer guarantee disjunctions to be

finite.

Definition 6.1. We say that a partial type Σ(x, b) divides over C if there is a C-

indiscernible sequence (bi)i<ω with b0 ≡C b such that
⋃
i<ω Σ(x, bi) is inconsistent.

We say that Σ(x, b) forks over C if there is a (possibly infinite) set of formulas

Φ(x) with parameters, each of which divides over C, such that Σ(x, b) implies∨
Φ(x).

We write a |⌣
d
C
b (or a |⌣

f
C
b) if tp(a/Cb) does not divide (fork) over C.

Remark 6.2. We have that tp(a/Cb) divides over C if and only if there is

a formula φ(x, b) ∈ tp(a/Cb) that divides over C. This follows directly from

compactness. Note that for forking this is no longer necessarily true, because the

disjunction may be infinite so we cannot apply compactness.

Definition 6.3. For a type p over a set B and a subset A ⊆ B, the restriction

of p to A is a type over A which we denote by p|A.
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Definition 6.4. Let M ⊆ B and let p = tp(a/B) be a type over B. We say that

p is a coheir of p|M , and write a |⌣
u
M
B, if p is finitely satisfiable in M . We say

that p is an heir of p|M if for every formula φ(x, y), with parameters in M , and

every b ∈ B such that φ(x, b) ∈ p there is some b′ ∈M such that φ(x, b′) ∈ p. In
this case we write a |⌣

h
M
B.

Remark 6.5. It is direct from the definition that we always have a |⌣
u
M
M and

a |⌣
h
M
M . It also directly follows from the definition that a |⌣

h
M
b if and only if

b |⌣
u
M
a.

In Proposition 6.17 we compare the above notions of independence further.

6.2 NSOP1

The goal of this chapter is to study Kim-independence in positive logic. In simple

theories Kim-independence coincides with forking independence, and thus with

dividing independence as well. The class of NSOP1 theories is more general than

the class of simple theories. In this class Kim-independence is still well-behaved,

while forking independence may not be as well-behaved any more. Note that

all the claims in this introduction follow easily from existing Kim-Pillay style

theorems (e.g. [BY03b]) for stable and simple theories, together with the one

that we prove for NSOP1 theories (Theorem 6.79).

In this section we give the definition of (N)SOP1 and a useful lemma,

Lemma 6.8, for showing that a theory has SOP1. It is really that lemma that

we will use the most.

We recall that 2<ω is the set of all finite sequences of zeroes and ones. For

η, ν ∈ 2<ω we write η ⪯ ν if ν continues the sequence η. We write η⌢ν for

concatenation, so for example η⌢0 is the sequence η with a 0 concatenated to it.

Definition 6.6. Let T be a theory and let φ(x, y) be a formula. We say that

φ(x, y) has SOP1 if there are ψ(y1, y2) and (aη)η∈2<ω such that:

(i) for every σ ∈ 2ω the set {φ(x, aσ|n) : n < ω} is consistent;

(ii) ψ(y1, y2) implies that φ(x, y1) ∧ φ(x, y2) is inconsistent, that is

T |= ∀y1y2¬[ψ(y1, y2) ∧ ∃x(φ(x, y1) ∧ φ(x, y2))];

(iii) for every η, ν ∈ 2<ω such that η⌢0 ⪯ ν we have |= ψ(aη⌢1, aν).

We say that T is NSOP1 if no formula has SOP1.

Remark 6.7. The idea of introducing the inconsistency witness ψ(y1, y2) is due

to Haykazyan and Kirby, [HK21]. In a theory in full first-order logic we can

just take ψ(y1, y2) to be ¬∃x(φ(x, y1) ∧ φ(x, y2)), so we see that the definitions
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coincide there. The point of having ψ is that the inconsistency in (iii) is again

definable by a single formula for all relevant η and ν. This enables us to apply

compactness to make the tree (aη)η∈2<ω as big as we wish.

The following lemma gives us a condition that implies SOP1. It is the

contrapositive that will actually be useful to us: if, in an NSOP1 theory, we

have two sequences that are ‘parallel to each other’ in a certain way then we

can transfer consistency for a formula along one sequence to the other.

Lemma 6.8 (Parallel sequences lemma). Suppose that φ(x, y) is a formula, and

(c̄i) = (ci,0, ci,1)i∈I is an indiscernible sequence satisfying:

(i) ci,0 ≡c̄<i ci,1 for all i ∈ I;

(ii) {φ(x; ci,0) : i ∈ I} is consistent;

(iii) {φ(x; ci,1) : i ∈ I} is inconsistent.

Then T has SOP1.

Proof. This is the same as [KR20, Lemma 2.3] and that proof mostly goes

through. We sketch a few small changes that are needed. Obviously we already

start with an indiscernible sequence and by compactness we can freely change

the order type of I preserving properties (i)–(iii). Then in the claim in that

proof we need to make the array (ai,0, ai,1) sufficiently long. This can easily be

done by elongating the original indiscernible sequence (c̄i). Then we can find an

indiscernible sequence based on (āi) = (ai,0, ai,1). Note that properties (1)–(3) in

that claim are preserved by this operation. The reason for all this is because we

need to start with an indiscernible sequence in [KR20, Lemma 2.2] as well. Then

the rest of that proof goes through. Finally, inconsistency of {φ(x, cl,1), χ(x, dl′,0)}
should be witnessed by some formula (similarly for [KR20, Lemma 2.2]), but the

existence of such a witness easily follows from the construction of χ.

6.3 Global Lascar-invariant types

In this section we define the notion of a global Lascar-invariant type. These are

like global invariant types, but we work with Lascar strong types everywhere

instead of normal types. The reason for this is that in a thick theory not every

type over an e.c. model has a global invariant extension (see subsection 6.10.1),

while this is crucial in the definition of Kim-dividing. In this section we prove

that global Lascar-invariant extensions do exist in thick theories, and that they

can be used to define Morley sequences in a similar way to global invariant types.

This turns out to be enough for the definition of Kim-dividing.
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Convention 6.9. Recall that a global type is a type over the monster model

M. Building on Convention 2.28 about the monster model, we will use lowercase

Greek letters α, β, . . . for realisations of global types (in a bigger monster).

Definition 6.10. A global type q is called A-Ls-invariant , short for A-Lascar-

invariant , if for a realisation α |= q we have that b ≡Ls
A b′ implies αb ≡Ls

A αb′.

Note that this definition does not depend on the choice of α. If α′ is any

other realisation of q, then α ≡M α′. So there is an automorphism f of the

bigger monster over M with f(α) = α′. So if b ≡Ls
A b′ then αb ≡Ls

A αb′ and hence

f(α)f(b) ≡Ls
f(A) f(α)f(b

′) which is just α′b ≡Ls
A α′b′, since f fixes M.

Remark 6.11. Let q be any global type in a thick theory, α |= q and let A be

any (small) parameter set. Then there is a ∈ M with a ≡Ls
A α. To see this, let

M ⊇ A be a λT -saturated model, and take any a |= q|M .

Lemma 6.12. Suppose that q is a global A-Ls-invariant type in a thick theory.

Then:

(i) for any f ∈ Aut(M/A) the type f(q) is A-Ls-invariant;

(ii) for any B ⊇ A, q is also B-Ls-invariant.

Proof. Point (i) is straightforward, we prove (ii). Let α |= q and b ≡Ls
B b′. Then

there are λT -saturated modelsM1, . . . ,Mn, all containing B, and b = b0, . . . , bn =

b′ such that bi ≡Mi+1 bi+1 for all 0 ≤ i < n. Let 0 ≤ i < n, it is enough to

show αbi ≡Mi+1 αbi+1. We have biMi+1 ≡Ls
A bi+1Mi+1, so by A-Ls-invariance

αbiMi+1 ≡Ls
A αbi+1Mi+1, which implies the desired result.

Lemma 6.13. Let T be thick and let p = tp(a/B) be a coheir over M ⊆ B.

Then there is a global M -Ls-invariant type extending p.

Proof. Define

Γ(x) = p(x) ∪
⋃
{dM (xc, xc′) ≤ 1 : c, c′ ∈M with dM (c, c′) ≤ 1}.

We claim that Γ(x) is consistent. For finite p0(x) ⊆ p(x) there is d ∈ M such

that d |= p0. Then for any c, c′ with dM (c, c′) ≤ 1 we have that dM (dc, dc′) ≤ 1

because d is in M . Any maximal extension of Γ(x) will be a desired global

M -Ls-invariant type.

Definition 6.14. For A ⊆ B we say that Lstp(c/B) extends Lstp(c′/A) if c ≡Ls
A

c′.

Corollary 6.15. In a thick theory we have that Lstp(a/M) extends to a global

M -Ls-invariant type for any a and M .
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Proof. By Lemma 6.13 we have that p = tp(a/M) extends to some global M -

Ls-invariant type q. For α |= q let a′ ≡Ls
M α. Then there is f ∈ Aut(M/M) such

that f(a′) = a. So by Lemma 6.12(i) f(q) is global M -Ls-invariant and is exactly

what we need.

Definition 6.16. For a type p = tp(a/Cb) write a |⌣
iLs
C

b if there is a global

C-Ls-invariant extension of p.

Proposition 6.17. In any thick theory T we have

a
u

|⌣
C

b =⇒ a
iLs

|⌣
C

b =⇒ a
f

|⌣
C

b =⇒ a
d

|⌣
C

b.

Proof. Standard, but we write out the arguments to check they hold with the

slightly changed definitions for positive logic. The first implication is precisely

Lemma 6.13, while the last implication is direct from the definition of dividing

and forking.

We prove the middle implication. Assume a |⌣
iLs
C

b and suppose for a

contradiction that p(x) = tp(a/Cb) forks over C. Let Φ(x) be a set of formulas

that all divide over C, such that p(x) implies
∨

Φ(x). Let q be a global

C-Ls-invariant extension of p and let α |= q. Then there must be φ(x, d) ∈ Φ(x)

such that |= φ(α, d). Let (di)i<ω be C-indiscernible with d0 = d. For all i < ω

we have d ≡Ls
C di and thus αd ≡Ls

C αdi. So in particular α |= {φ(x, di) : i < ω},
which contradicts that φ(x, d) divides over C.

In the remainder of this section we will develop tensoring of global Ls-invariant

types. This comes down to verifying that the usual constructions for global

invariant types (see e.g. [Sim15, Section 2.2.1]) work when we carefully replace

types by Lascar strong types everywhere.

Lemma 6.18. Suppose T is thick, q a global A-Ls-invariant type and

p = Lstp(a∗/A). Then, for β |= q, the set

Rp,q(A) = {(a, b) ∈M : a ≡Ls
A a∗ and b ≡Ls

Aa β}

is (the set of realisations of) a Lascar strong type over A.

Proof. Clearly this does not depend on the choice of a∗ or β. The set is non-

empty, as for any b ≡Ls
Aa∗ β we have (a∗, b) ∈ Rp,q(A).

Let (a, b), (a′, b′) ∈ Rp,q(A). Then a ≡Ls
A a∗ ≡Ls

A a′, so by A-Ls-invariance

ab ≡Ls
A aβ ≡Ls

A a′β ≡Ls
A a′b′. Conversely, suppose (a, b) ∈ Rp,q(A) and ab ≡Ls

A

a′b′. Then a′ ≡Ls
A a ≡Ls

A a∗. Furthermore, by A-Ls-invariance βab ≡Ls
A βa′b′,

so applying an automorphism to b ≡Ls
Aa β we get b′ ≡Ls

Aa′ β and conclude that

(a′, b′) ∈ Rp,q(A).
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Theorem 6.19. Suppose T is thick with global A-Ls-invariant types q and r.

Then there is a unique global A-Ls-invariant type q ⊗ r such that for any α |= q,

β |= r and (α′, β′) |= q ⊗ r the following are equivalent for all B ⊇ A:

(i) ab ≡Ls
B α′β′,

(ii) a ≡Ls
B α and b ≡Ls

Ba β.

In particular this implies that also α′ |= q and β′ |= r.

Proof. Throughout, let α |= q and β |= r. For B ⊇ A, denote by qB the

Lascar strong type Lstp(α/B). By Lemma 6.12(ii) and Lemma 6.18, we have a

well-defined Lascar strong type RqB ,r(B).

Claim. For A ⊆ B ⊆ C we have RqC ,r(C) ⊆ RqB ,r(B).

Proof of claim. Let (a, b) ∈ RqC ,r(C). Then a ≡Ls
C α and b ≡Ls

Ca β. Hence a ≡Ls
B α

and b ≡Ls
Ba β, so (a, b) ∈ RqB ,r(B).

For M ⊇ A a λT -saturated model RqM ,r(M) corresponds to the usual

syntactic type over M . So viewing RqM ,r(M) as a set of formulas over M , we

get by the claim that the following is a well-defined global type:

q ⊗ r :=
⋃
{RqM ,r(M) :M is a λT -saturated model and A ⊆M}.

First we verify that q ⊗ r satisfies the universal property we claimed. So let

(α′, β′) |= q ⊗ r and B ⊇ A. Let M ⊇ B be a λT -saturated model and pick

a′b′ ≡Ls
M α′β′. Then by construction (a′, b′) ∈ RqM ,r(M) and so by the claim

(a′, b′) ∈ RqB ,r(B). So for any a, b we have ab ≡Ls
B α′β′ if and only if ab ≡Ls

B a′b′

if and only if (a, b) ∈ RqB ,r(B) if and only if a ≡Ls
B α and b ≡Ls

Ba β.

Uniqueness follows because any global type satisfying this universal property

must restrict to RqM ,r(M) = (q ⊗ r)|M for all λT -saturated M ⊇ A.
Finally we prove A-Ls-invariance. Let d ≡Ls

A d′, and pick a, b in M such that

ab ≡Ls
Add′ α

′β′. So a ≡Ls
Add′ α

′ and thus by A-Ls-invariance of q:

ad ≡Ls
A α′d ≡Ls

A α′d′ ≡Ls
A ad′.

Then A-Ls-invariance of r gives us β′ad ≡Ls
A β′ad′. From the universal property

we get b ≡Ls
Add′a β

′, so abd ≡Ls
A abd′. Because, by assumption, ab ≡Ls

Add′ α
′β′, we

conclude that α′β′d ≡Ls
A α′β′d′ and we are done.

Lemma 6.20. For any global A-Ls-invariant types p, q, r in a thick theory we

have:

(i) associativity: (p⊗ q)⊗ r = p⊗ (q ⊗ r);
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(ii) monotonicity: for any q′(x0) = q(x0, x1)|x0 ⊆ q(x0, x1) and

r′(y0) = r(y0, y1)|y0 ⊆ r(y0, y1), we have q′ ⊗ r′ ⊆ q ⊗ r.

Proof. (i) Let (α, β, γ) |= (p⊗ q)⊗ r and (α′, β′, γ′) |= p⊗ (q⊗ r). We will prove

that αβγ ≡Ls
B α′β′γ′ for all B ⊇ A. Let abc ≡Ls

B αβγ, then b ≡Ls
Ba β and c ≡Ls

Bab γ.

So we have bc ≡Ls
Ba β

′γ′. Since also a ≡Ls
B α we thus conclude that abc ≡Ls

B α′β′γ′.

(ii) Let (α, β) = ((α0, α1), (β0, β1)) |= q ⊗ r and let ab ≡Ls
B αβ, where B ⊇ A

is arbitrary. Then in particular a0 ≡Ls
B α0 and b0 ≡Ls

Ba0
β0. So if we let (α′, β′) |=

q′ ⊗ r′ then α0β0 ≡Ls
B a0b0 ≡Ls

B α′β′. So (α0, β0) |= q′ ⊗ r′ and we are done.

Definition 6.21. For a global A-Ls-invariant type, we define q⊗δ for an ordinal

δ ≥ 1 by induction as follows.

� q⊗1 = q,

� q⊗δ+1 = q⊗δ ⊗ q,

� q⊗δ =
⋃
γ<δ q

⊗γ when δ is a limit.

A Morley sequence in q (over A) is a sequence (ai)i<δ such that (ai)i<δ ≡Ls
A

(αi)i<δ, where (αi)i<δ |= q⊗δ.

Lemma 6.22. Suppose that q is a global A-Ls-invariant type and let

(αi)i<δ |= q⊗δ. Then for any strictly increasing sequence (iη)η<γ in δ we have

that (αiη)η<γ |= q⊗γ.

Proof. From the construction of q⊗δ it is clear that for γ < δ and (αi)i<δ |= q⊗δ

we have (αi)i<γ |= q⊗γ .

We prove the lemma by induction to γ. The base case and the limit step are

easy, so we prove the successor step. So suppose (αiη)η<γ |= q⊗γ . We will prove

(αiη)η<γαiγ ≡Ls
B α<γαγ for all B ⊇ A. Let a≤iγ ≡Ls

B α≤iγ , then in particular

(aiη)η<γ ≡Ls
B (αiη)η<γ and aiγ ≡Ls

B(aiη )η<γ
αiγ . By the induction hypothesis and

the universal property this means (aiη)η<γaiγ ≡Ls
B α<γαγ , which concludes the

successor step.

By Lemma 6.22 we have that (ai)i<δ |= q⊗δ|A if and only if (ai1 , . . . , ain) |=
q⊗n|A for all i1 < . . . < in < δ. From this perspective it makes sense to make

the following convention, even though we technically have not defined q⊗I for

arbitrary linear orders I.

Convention 6.23. Let I be any linear order and let q be a global A-Ls-invariant

type. Then by (ai)i∈I |= q⊗I |A we mean that for any i1 < . . . < in in I we have

(ai1 , . . . , ain) |= q⊗n|A.

Proposition 6.24. For any Morley sequence (ai)i<δ in a global A-Ls-invariant

type q the following hold:
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(i) for all i < δ, ai ≡Ls
Aa<i

α, where α |= q;

(ii) (ai)i<δ is A-indiscernible.

Proof. We first prove (i). Let (αi)i<δ |= q⊗δ and i < δ. Then a<iai ≡Ls
A α<iαi.

As α<iαi |= q⊗i ⊗ q, the universal property yields ai ≡Ls
Aa<i

αi, as required.

For (ii), consider any i1 < . . . < in < δ. By Lemma 6.22 we have that

αi1 . . . αin ≡M α1 . . . αn, so in particular αi1 . . . αin ≡Ls
A α1 . . . αn. As (ai)i<δ ≡A

(αi)i<δ, we conclude that ai1 . . . ain ≡A a1 . . . an.

6.4 Kim-dividing

The idea of Kim-dividing is to restrict dividing witnesses to non-forking Morley

sequences. Proving the existence of such sequences over arbitrary sets turns out

to be difficult, and is in fact an open problem for NSOP1 theories in full first-order

logic, see [DKR19, Remark 2.6, Question 6.6]. In [KR20] this is solved by using

Morley sequences in some global invariant type. In first-order logic any type over

a model extends to a global invariant type. In positive logic we need to assume the

theory to be semi-Hausdorff to find global invariant extensions [BY03c, Lemma

3.11], because they may not exist otherwise (see Subsection 6.10.1). In the more

general setting of thick positive theories we can always find global Ls-invariant

extensions and the notion of a Morley sequence makes sense in such a global

Ls-invariant type, see Section 6.3. Since we can generally only extend types over

e.c. models to global Ls-invariant types, we will consider Kim-dividing only over

e.c. models (cf. Question 6.105).

Definition 6.25. Let Σ(x, b) be a partial type in a thick theory, possibly with

parameters inM , and let q be a globalM -Ls-invariant extension of tp(b/M). We

say that Σ(x, b) q-divides over M if for any (equivalently: some) Morley sequence

(bi)i<ω in q (over M) the set
⋃
i<ω Σ(x, bi) is inconsistent.

By compactness q-dividing does not depend on the length of the Morley

sequence, as long as it is infinite.

Proposition 6.26. Let T be thick, let q be a global M -Ls-invariant extension of

tp(b/M) and write p(x, y) = tp(ab/M). Then the following are equivalent.

(i) The type p(x, b) does not q-divide.

(ii) For any f ∈ Aut(M/M) the type p(x, b) does not f(q)-divide.

(iii) For any (equivalently some) (bi)i<ω |= q⊗ω|M the set
⋃
i<ω p(x, bi) is

consistent.

(iv) There is an Ma-indiscernible sequence (bi)i<ω |= q⊗ω|M with b0 = b.
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Proof. (i) ⇔ (ii) ⇔ (iii) This follows because consistency of
⋃
i<ω p(x, bi) only

depends on tp((bi)i<ω/M), together with the fact that given a Morley sequence

(bi)i<ω in q we have that (f(bi))i<ω is a Morley sequence in f(q).

(i) =⇒ (iv) Let (bi)i<λ be a Morley sequence in q for big enough λ. Let a∗

realise
⋃
i<λ p(x, bi) and let (b′i)i<ω be Ma∗-indiscernible, based on (bi)i<λ. So

there is i < λ such that a∗b′0 ≡M a∗bi ≡M ab. Let (b′′i )i<ω with b′′0 = b be such that

a(b′′i )i<ω ≡M a∗(b′i)i<ω. Then (b′′i )i<ω is Ma-indiscernible. Furthermore, since

(bi)i<λ was already M -indiscernible, we have (b′′i )i<ω ≡M (b′i)i<ω ≡M (bi)i<ω, so

(b′′i )i<ω |= q⊗ω|M .

(iv) =⇒ (iii) For such an Ma-indiscernible sequence (bi)i<ω we have ab =

ab0 ≡M abi for all i < ω. So a realises
⋃
i<ω p(x, bi).

Proposition 6.27. Let T be thick, let Σ(x, b) be a partial type with parameters in

M and let q be a global M -Ls-invariant extension of tp(b/M). If Σ(x, b) does not

q-divide over M then there is a complete p(x, b) ⊇ Σ(x, b) that does not q-divide

over M .

Proof. Let (bi)i<λ |= q⊗λ|M with b0 = b. Then there is some a |=
⋃
i<λΣ(x, bi).

Then, assuming we chose λ large enough, there is some i0 < λ such that for

infinitely many i < λ we have abi ≡M abi0 . Set p(x, y) = tp(abi0/M), then

p(x, bi0) does not q-divide while also Σ(x, bi0) ⊆ p(x, bi0). By invariance p(x, b)

does not q-divide.

The following lemma is the core of the connection between Kim-dividing and

NSOP1 theories. It tells us that q-dividing does not depend on the global Lascar-

invariant type q. More discussion on the origins of this lemma can be found in

[KR20]. Briefly put: Kim proved that in simple theories a formula divides with

respect to every Morley sequence if and only if it divides with respect to some

Morley sequence [Kim98, Proposition 2.1]. The lemma below is an analogue of

that for NSOP1 theories.

Proposition 6.28 (Kim’s lemma). If T is thick NSOP1, then q-dividing does not

depend on q. That is, if q and r are global M -invariant types extending tp(b/M)

then a partial type Σ(x, b) q-divides if and only if it r-divides.

Proof. This is essentially the proof of [KR20, Proposition 3.15], adapted to the

thick positive logic setting. By Proposition 6.26(ii) we may assume that q and r

extend Lstp(b/M). Suppose that Σ(x, b) does not q-divide while it r-divides. We

will prove that T has SOP1. Let (b̄i)i<ω = (bi,0, bi,1)i<ω be a Morley sequence

in q ⊗ r. By Lemma 6.20(ii) and induction, (bi,0)i<ω and (bi,1)i<ω are Morley

sequences in q and r respectively.

Since Σ(x, b) r-divides, the set
⋃
i<ω Σ(x, bi,1) is inconsistent. So by

compactness there is an M -formula φ(x, y) ∈ Σ(x, y) such that
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{φ(x, bi,1) : i < ω} is inconsistent. Because Σ(x, b) does not q-divide we have

that {φ(x, bi,0) : i < ω} is consistent.
We wish to apply the parallel sequences lemma, Lemma 6.8, to φ(x, y) and

(b̄i)i<ωop where ωop carries the opposite order of ω. So we are left to prove

that bi,0 ≡Mb̄>i
bi,1 for all i < ω. We do this by proving that bi,0(b̄i)i<j<n ≡M

bi,1(b̄i)i<j<n for all i < n < ω. Let (β̄i)i<ω |= (q⊗r)⊗ω. By Lemma 6.20(i) we have

(q⊗r)⊗n = (q⊗r)⊗i+1⊗(q⊗r)⊗n−i−1. So we have β̄<n |= (q⊗r)⊗i+1⊗(q⊗r)⊗n−i−1

and as b̄<n ≡Ls
M β̄<n we have (b̄j)i<j<n ≡Ls

Mb̄≤i
(β̄j)i<j<n. As bi,0 ≡Ls

M b ≡Ls
M bi,1

we get by M -Ls-invariance that bi,0(β̄j)i<j<n ≡Ls
M bi,1(β̄j)i<j<n. Putting the two

together yields the required result.

Definition 6.29. We say Σ(x, b) Kim-divides (over M) if it q-divides for some

globalM -Ls-invariant q that extends tp(b/M). We write a |⌣
K
M
b when tp(a/Mb)

does not Kim-divide over M and call this Kim-independence.

Remark 6.30. By Lemma 6.13 we can extend any type over an e.c. model M

in a thick theory to a global M -Ls-invariant type. So assuming NSOP1, we have

by Proposition 6.28 that tp(a/Mb) Kim-divides if and only if it q-divides for any

global M -invariant extension q of tp(b/M).

In some constructions it will be necessary to stay within the same Lascar

strong type. For this we introduce the technical tool of q-Ls-dividing.

Definition 6.31. Let T be thick and let q be a global M -Ls-invariant extension

of Lstp(b/M). We say that Lstp(a/Mb) does not q-Ls-divide (over M) if there is

a Morley sequence (bi)i<ω in q with b0 = b that is Ma-indiscernible.

Remark 6.32. The length of the Morley sequence does not matter in

Definition 6.31, as long as it is infinite. However, the argument here takes a

little more care than for q-dividing.

One direction is clear: if there is an Ma-indiscernible Morley sequence (bi)i<δ

in q for some δ ≥ ω, then we can just take an initial segment. For the other

direction we let N ⊇M be λT -saturated and (bi)i<ω |= q⊗ω|N . Then (bi)i<ω is a

Morley sequence in q. Applying a Lascar strong automorphism we find a′b0 ≡Ls
M ab

such that (bi)i<ω is Ma′-indiscernible. Let n be such that dM (a′b0, ab) ≤ n.

Consider the set of formulas

q⊗δ|N ((yi)i<δ) ∪ “(xyi)i<δ is M -indiscernible” ∪ dM (xy0, ab) ≤ n.

This set is finitely satisfiable, hence it has a realisation. So we find an Ma′′-

indiscernible Morley sequence (b′i)i<δ in q with a′′b′0 ≡Ls
M ab. The result follows

by applying a Lascar strong automorphism.
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Lemma 6.33. Let T be thick and let q be a global M -Ls-invariant extension

of Lstp(b/M). A type p = tp(a/Mb) does not q-divide if and only if there is a

realisation a′ |= p such that Lstp(a′/Mb) does not q-Ls-divide.

Proof. The right to left direction is clear by Proposition 6.26(iv). For the other

direction we let (b′i)i<ω be a Morley sequence in q with b′0 = b. By

Proposition 6.26(iv) there is (bi)i<ω |= q⊗ω|M that is Ma-indiscernible with

b0 = b. Pick a′ such that a′(b′i)i<ω ≡M a(bi)i<ω and we are done.

Corollary 6.34. Let T be thick and let q be a global M -Ls-invariant extension

of Lstp(b/M). Suppose that there is M ⊆ N ⊆ b such that N is λT -saturated.

Then tp(a/Mb) does not q-divide if and only if Lstp(a/Mb) does not q-Ls-divide.

Proof. By Lemma 6.33 we only need to prove the left to right direction. So

suppose that tp(a/Mb) does not q-divide. Then there is a′ with a′ ≡Mb a such

that Lstp(a′/Mb) does not q-Ls-divide. In particular we have that a′b ≡N ab, so

a′b ≡Ls
M ab. It follows that Lstp(a/Mb) does not q-Ls-divide.

Proposition 6.35. In a thick NSOP1 theory Kim-independence always satisfies

the following properties.

(i) Strong finite character: if a ̸ |⌣
K
M
b then there is a formula φ(x, b,m) ∈

tp(a/Mb) such that for any a′ |= φ(x, b,m) we have a′ ̸ |⌣
K
M
b.

(ii) Existence over models: a |⌣
K
M
M .

(iii) Monotonicity: aa′ |⌣
K
M
bb′ =⇒ a |⌣

K
M
b.

Proof. All follow directly from the definitions, using compactness for (i).

Remark 6.36. Let T be a thick theory. Then Kim-dividing implies dividing

because any Morley sequence in some q is in particular an indiscernible sequence.

So by Proposition 6.17:

a
u

|⌣
M

b =⇒ a
iLs

|⌣
M

b =⇒ a
f

|⌣
M

b =⇒ a
d

|⌣
M

b =⇒ a
K

|⌣
M

b

The following lemma is a slightly stronger version of obtaining an indiscernible

sequence from a very long sequence (Fact 2.37). By assuming that the input

sequence is A-indiscernible and assuming thickness, we can find a B-indiscernible

sequence that has the same Lascar strong type over A.

Lemma 6.37. Let T be a thick theory. Let B ⊇ A, κ any cardinal and set

λ = λ|T |+|B|+κ. Then for any A-indiscernible sequence (ai)i<λ of κ-tuples, there

is B-indiscernible (a′i)i<λ based on (ai)i<λ such that dA((ai)i<λ, (a
′
i)i<λ) ≤ 1.
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Proof. By Fact 2.37 there is B-indiscernible (bi)i<ω based on (ai)i<λ. Prolong

this to B-indiscernible (bi)i<λ. Define

Σ((xi)i<λ) = tp((bi)i<λ/B) ∪ “ dA((xi)i<λ, (ai)i<λ) ≤ 1”,

and let Σ0(xi1 , . . . , xin) ⊆ Σ((xi)i<λ) be finite, only mentioning parameters in B

and ai1 , . . . , ain . Let j1 < . . . < jn < λ be such that aj1 . . . ajn ≡B b1 . . . bn ≡B
bi0 . . . bin . It follows from the proof of Fact 2.37 that we may choose j1 to be

arbitrarily large below λ, so we may assume j1 > in. Then aj1 . . . ajn realises Σ0.

By compactness we find the required (a′i)i<λ as a realisation of Σ.

Proposition 6.38. Let T be a thick theory, M an e.c. model of T , and let a, b, c

be tuples. Let also q(x, y) be a global M -Ls-invariant extension of Lstp(bc/M)

and write r(x) = q|x. If Lstp(a/Mb) does not r-Ls-divide then there is c∗b ≡Ls
M cb

such that Lstp(a/Mbc∗) does not q-Ls-divide.

Proof. Let (bi, ci)i<λ be a Morley sequence over M in q for some big enough λ.

Since (bi)i<λ is a Morley sequence overM in r and Lstp(a/Mb) does not r-divide

there is a′ with a′b0 ≡Ls
M ab such that (bi)i<λ is Ma′-indiscernible.

Let f ∈ Autf (M/M) be such that f(a′b0) = ab and put

(b′i, c
′
i) = (f(bi), f(ci)). Then b

′
0 = b, (b′i)i<λ is Ma-indiscernible and (b′i, c

′
i)i<λ is

a Morley sequence over M in q.

Let M ′ ⊇Ma be λT -saturated and use Lemma 6.37 to find M ′-indiscernible

(b′′i , c
′′
i )i<λ based on (b′i, c

′
i)i<λ and such that dM ((b′′i , c

′′
i )i<λ, (b

′
i, c

′
i)i<λ) ≤ 1. In

particular (b′′i , c
′′
i )i<λ is a Morley sequence over M in q. Let i < λ be such that

b′′0 ≡M ′ b′i then b
′′
0 ≡Ls

Ma b
′
i ≡Ls

Ma b
′
0 = b. So there is g ∈ Autf (M/Ma) such that

g(b′′0) = b. Set c∗ = g(c′′0), so bc
∗ ≡Ls

M b′′0c
′′
0 ≡Ls

M b′0c
′
0 ≡Ls

M b0c0 ≡Ls
M bc. Finally,

since (g(b′′i ), g(c
′′
i ))i<λ is a Morley sequence over M in q starting with bc∗ that is

Ma-indiscernible, we conclude that Lstp(a/Mbc∗) does not q-Ls-divide.

Corollary 6.39 (Extension). In a thick NSOP1 theory we have that if a |⌣
K
M
b

then for any c there is c′ ≡Ls
Mb c such that a |⌣

K
M
bc′.

Proof. We first prove a weaker version where we conclude c′ ≡Mb c instead of

c′ ≡Ls
Mb c.

Let q(x, y) be an M -Ls-invariant extension of Lstp(bc/M) and write r(x) =

q|x, where x matches b. Since a |⌣
K
M
b there is a′b ≡M ab such that Lstp(a′/Mb)

does not r-Ls-divide. By Proposition 6.38 we thus find bc∗ ≡Ls
M bc such that

Lstp(a′/Mbc∗) does not q-Ls-divide. Letting c′ be such that abc′ ≡M a′bc∗ then

satisfies a |⌣
K
M
bc′ and furthermore we have bc′ ≡M bc∗ ≡M bc.

Now we use the weaker version to prove the full version. Let N ⊇Mb be some

λT -saturated model. By the above we can find N ′ ≡Mb N such that a |⌣
K
M
N ′.

Then using the above again we find c′ ≡N ′ c such that a |⌣
K
M
N ′c′. SinceMb ⊆ N ′

we thus get c′ ≡Ls
Mb c and a |⌣

K
M
bc′, as required.
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6.5 EM-modelling and CR-Morley sequences

In this section we will introduce some tools which will be useful later in certain

tree constructions.

Definition 6.40 ([KKS14, Defintion 2.1]). The Shelah language

Ls = {⊴,∧, <lex, (Pα)α<ω}

consists of binary relation symbols ⊴, <lex, a binary function symbol ∧, and

unary relation symbols Pα. We will consider a tree ω≤k (with k < ω) as an

Ls-structure, where ⊴ is interpreted as the containment relation, <lex as the

lexicographic order, ∧ as the meet function and Pα as the α-th level of the tree.

Definition 6.41 ([KKS14, Definition 3.7]). Let I be an arbitrary index structure

and C an arbitrary set of parameters. The EM-type of a tuple A = (ai)i∈I over C

is the partial type in variables (xi)i∈I , consisting of all the formulas of the form

φ(xī) over C (where ī is a tuple in I) satisfying the following property: |= φ(aj̄)

holds whenever j̄ is a tuple in I with qftpI(j̄) = qftpI (̄i). We let EMI(A/C)

denote this partial type.

In particular, we will write EMs(A/C) [respectively, EM<(A/C)] for

EMI(A/C) where I is considered as an Ls-structure [respectively, a

{<}-structure].

Definition 6.42. Let I be an index structure and let A = (ai)i∈I and B = (bi)i∈I

be I-indexed tuples of compatible parameters. We will say that A is EMI-based

on B over C if EMI(A/C) ⊇ EMI(B/C).

Corollary 6.43. If A is any set of parameters, then for any compatible

sequence (ai)i<ω there is an A-indiscernible sequence (bi)i<ω which is

EM<-based on (ai)i<ω over A.

Proof. By compactness there is a sequence (a′i)i<λ|T |+|A|+|a0|
which is EM<-based

on (ai)i<ω over A. Then by Fact 2.37 there is an A-indiscernible sequence (bi)i<ω

which is EM<-based on (a′i)i<λ|T |+|A|+|a0|
over A, hence EM<-based on (ai)i<ω

over A.

In what follows we consider ω≤k as an Ls-structure (see Definition 6.40). We

will only work with trees of width ω, as we will only need those, but everything

naturally works for arbitrary (infinite) widths.

Definition 6.44. We call a tree (aη)η∈ω≤k s-indiscernible over C if for any η̄, ν̄ ⊆
ω≤k such that η̄ ≡qf ν̄ we have that aη̄ ≡C aν̄ .

Lemma 6.45. Suppose η̄ = (η0, . . . , ηn−1) ≡qf ν̄ = (ν0, . . . , νn−1) are tuples of

elements of ω≤k for some k < ω. Then there exists a sequence I of n-tuples of

elements of ω≤k such that η̄ ⌢ I and ν̄ ⌢ I are qf-indiscernible sequences in ω≤k.
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Proof. Let l < ω be such that η̄, ν̄ ⊆ {∅} ∪ {ξ ∈ ω≤k\{∅} : ξ(0) < l}. For every

0 < m < ω choose a tuple χ̄m ⊆ {∅}∪{ξ ∈ ω≤k\{∅} : ml ≤ ξ(0) < (m+1)l} such
that χ̄m ≡qf η̄ ≡qf ν̄ (for example, for every n′ < n put χmn′(0) = ηn′(0)+ml and

χmn′(i) = ηn′(i) for every 0 < i ≤ k). Finally, put I = (χ̄m)0<m<ω.

Corollary 6.46. If T is thick then s-indiscernibility is type-definable, i.e. for

every k < ω and a tuple of variables y there is a partial type π((xη)η∈ω≤k , y) over

∅ such that ((aη)η∈ω≤k , D) |= π if and only if (aη)η∈ω≤k is s-indiscernible over

D. More specifically, π((xη)η∈ω≤k , y) can be taken as the type expressing that

(xη0 , . . . , xηn−1) and (xν0 , . . . , xνn−1) are at Lascar distance at most 2 over y for

any (η0, . . . , ηn−1) ≡qf (ν0, . . . , νn−1).

Proof. Let π be as above and consider arbitrary (aη)η∈ω≤k and D. If

((aη)η∈ω≤k , D) |= π then (aη)η∈ω≤k is indiscernible over D as being at Lascar

distance at most 2 over D implies equality of types over D.

Conversely, if ((aη)η∈ω≤k , D) is s-indiscernible over D and

η̄ = (η0, . . . , ηn−1) ≡qf ν̄ = (ν0, . . . , νn−1), then with I = (χ̄m)0<m<ω given by

Lemma 6.45 we have that aη̄ ⌢ (aχ̄m)0<m<ω and aν̄ ⌢ (aχ̄m)0<m<ω are both

indiscernible sequences over D, so aη̄ and aν̄ are at Lascar distance at most 2

over D.

We now adapt the proof of [KKS14, Theorem 4.3] to obtain the EMs-modeling

property for positive logic.

Proposition 6.47. Suppose T is thick and consider arbitrary set of parameters

D and k < ω. Then for any tree A = (aη)η∈ω≤k of compatible tuples there is an

s-indiscernible over D tree C = (cη)η∈ω≤k which is EMs-based on A over D.

Proof. We proceed by induction on k. The case k = 0 is trivial. Suppose the

assertion holds for some k and consider any A = (aη)η∈ω≤k+1 . For any i < ω

consider an ω≤k-indexed tree Ai := (ai⌢η)η∈ω≤k . Using the inductive hypothesis

we choose inductively for each i < ω a tree Bi = (biη)η∈ω≤k which is s-indiscernible

over Da∅B<iA>i and EMs-based on Ai over Da∅B<iA>i. Let B = (bη)η∈ω≤k+1

where b∅ = a∅ and bi⌢ξ = biξ for every i < ω and ξ ∈ ω≤k.

Claim 1. Bi is s-indiscernible over Db∅B ̸=i for every i < ω.

Fix i < ω. We will show by induction on j that Bi is s-indiscernible over

Db∅B<iBi+1 . . . Bj−1A≥j for every j > i, which is enough by Corollary 6.46. For

j = i + 1 this follows directly from the choice of Bi. Now suppose the assertion

holds for some j > i. By Corollary 6.46 there is a type π((xη)η∈ω≤k , ȳ) over

D′ := Db∅B<iBi+1 . . . Bj−1A>j , where ȳ = (yη)η∈ω≤k , expressing that (xη)η∈ω≤k

is s-indiscernible over D′ȳ. Then BiAj |= π. Note that the type π(Bi, ȳ) is

invariant under all permutations of ȳ, hence if φ(yη0 , . . . , yηn−1) ∈ π(Bi, ȳ) then

φ(yν0 , . . . , yνn−1) ∈ tp(Aj/D
′Bi) for all ν0, . . . , νn−1 ∈ ω≤k. In particular,
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π(Bi, ȳ) ⊆ EMs(Aj/D
′Bi). Thus, by the choice of Bj , we have that

π(Bi, ȳ) ⊆ EMs(Bj/D
′Bi), so in particular BiBj |= π. Hence Bi is indiscernible

over D′Bj = Db∅B<iBi+1 . . . BjA≥j+1, as required.

Claim 2. B is EMs-based on A over D.

Consider any i < ω and the trees E = (eη)η∈ω≤k+1 and F = (fη)η∈ω≤k+1

given by e∅ = f∅ = a∅, ej⌢η =

bj⌢η for j < i

aj⌢η for j ≥ i
, and fj⌢η =

bj⌢η for j ≤ i

aj⌢η for j > i
.

We will prove that π0 := EMs(E/D) ⊆ EMs(F/D) =: π1 which clearly is

sufficient to prove the claim. Let x̄ = (xη)η∈ω≤k+1 be a tuple of variables

compatible with aη’s. We naturally view π0 and π1 as partial types in the

variable x̄. Consider any formula φ(xη0 , . . . , xηl , xηl+1
, . . . , xηl′ ) ∈ π0 over D

with η0, . . . , ηl ∈ Ki := {i ⌢ ξ : ξ ∈ ω≤k} and ηl+1, . . . , ηl′ ∈ ω≤k+1\Ki. We will

be done if we show that |= φ(fη0 , . . . , fηl′ ). Write ηt = i ⌢ ξt for t = 0, 1, . . . , l.

For any ξ′0, . . . , ξ
′
l ∈ ω≤k with qftpLs

(ξ′0, . . . , ξ
′
l) = qftpLs

(ξ0, . . . , ξl) we have

qftpLs
(η0, . . . , ηl′) = qftpLs

(i ⌢ ξ0, . . . , i ⌢ ξl, ηl+1, . . . , ηl′) = qftpLs
(i ⌢

ξ′0, . . . , i ⌢ ξ′l, ηl+1, . . . , ηl′), hence, as φ ∈ π0, we get that

|= φ(ei⌢ξ′0 , . . . , ei⌢ξ′l , eηl+1
, . . . , eηl′ ). This shows that

φ(yξ0 , . . . , yξl , eηl+1
, . . . , eηl′ ) ∈ EMs(Ai/a∅A<iB>i) where Ai is naturally

indexed by ω≤k, so, by the choice of Bi we get that

|= φ(biξ0 , . . . , b
i
ξl
, eηl+1

, . . . , eηl′ ). As

(biξ0 , . . . , b
i
ξl
, eηl+1

, . . . , eηl′ ) = (fi⌢ξ0 , . . . , fi⌢ξl , fηl+1
, . . . , fηl′ ) = (fη0 , . . . , fηl′ ),

this means that |= φ(fη0 , . . . , fηl′ ), as required.

By Fact 2.37 we find a sequence (Ci)i<ω = ((ciη)η∈ω≤k)i<ω which is EM<-based

on (Bi)i<ω over Db∅ and indiscernible over Db∅. Let C = (cη)η∈ω≤k+1 be given by

c∅ = b∅ and ci⌢ξ = ciξ for any ξ ∈ ω≤k and i < ω. By Claim 1 and Corollary 6.46

we get that Ci is s-indiscernible over C ̸=iDc∅ for every i < ω, which, together

with Dc∅-indiscernibility of (Ci)i<ω easily gives that C is s-indiscernible over D

(as in [KKS14]). It is left to prove:

Claim 3. C is EMs-based on B (and hence on A) over D.

Consider any formula φ(xi1⌢ξ1 , . . . , xil⌢ξl , x∅) ∈ EMs(B/D) with i1, . . . , il ∈
ω and ξ1, . . . , ξl ∈ ω≤k. Then for every j1, . . . , jl ∈ ω with qftp{<}(j1, . . . , jl) =

qftp{<}(i1, . . . , il) we have that qftpLs
(j1 ⌢ ξ1, . . . , jl ⌢ ξl, ∅) = qftpLs

(i1 ⌢

ξ1, . . . , il ⌢ ξl, ∅), so |= φ(bj1⌢ξ1 , . . . , bjl⌢ξl , b∅). This means that

φ(xi1⌢ξ1 , . . . , xil⌢ξl , b∅) ∈ EM<((Bi)i<ω/b∅D),

hence by the choice of C we have |= φ(ci1⌢ξ1 , . . . , cil⌢ξl , c∅) so

φ(xi1⌢ξ1 , . . . , xil⌢ξl , x∅) ∈ EMs(C/D), as required.
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Definition 6.48. Let I be a linearly ordered set. For a global M -Ls-invariant

type q, we will call a sequence (ai)i∈I a CR-Morley sequence in q over M (CR

stands for the Chernikov-Ramsey criterion on SOP1), if there is some (bi)i∈I |=
q⊗I |M such that the pair (ai, bi) starts an Ma>ib>i-indiscernible sequence for

every i ∈ I. We will say that (ai)i∈I is a CR-Morley sequence in tp(a/M) if it is

a CR-Morley sequence in some global M -Ls-invariant type q ⊇ tp(a/M).

In the semi-Hausdorff case we can replace the condition “(ai, bi) starts an

Ma>ib>i-indiscernible sequence” by “ai ≡Ma>ib>i
bi”. The reason for which

we need the stronger condition in thick theories is that equality of types is not

necessarily type-definable there, so some of the compactness arguments below

would not work with the weaker condition.

We slightly reformulate the parallel sequences lemma, Lemma 6.8:

Lemma 6.49. Let T be thick and suppose φ(x, y) is a formula and (ci,0, ci,1)i∈I

is an infinite sequence of pairs with (ci,1)i∈I indiscernible, such that:

(i) for every i ∈ I, the pair (ci,0, ci,1) starts a c>i,0c>i,1-indiscernible sequence;

(ii) {φ(x; ci,0) : i ∈ I} is consistent;

(iii) {φ(x; ci,1) : i ∈ I} is inconsistent.

Then T has SOP1.

Proof. We may assume the tuples ci,0 and ci,1 to be finite. As (ci,1)i∈I is

indiscernible and {φ(x, ci,1) : i ∈ I} is inconsistent, there is some ψ(y1, . . . , yk)

that implies ¬∃x(φ(x, y1) ∧ . . . ∧ φ(x, yk)) such that for any i1 < . . . < ik ∈ I we

have |= ψ(ci1,1, . . . , cik,1). Call this ψ-inconsistent. By compactness there is a

sequence of pairs (c̄′i)i<λT = (c′i,0, c
′
i,1)i<λT such that (c′i,0, c

′
i,1) starts a

c̄′>i-indiscernible sequence for every i < λT , {φ(x, c′i,0) : i < λT } is consistent

and {φ(x, c′i,1) : i < λT } is ψ-inconsistent. Then an indiscernible sequence based

on (c̄′i)i<λT will satisfy the assumptions of Lemma 6.8, so T has SOP1.

By Kim’s Lemma (Proposition 6.28) and Lemma 6.49 we easily get the

following.

Corollary 6.50. Suppose T is thick NSOP1 with an e.c. model M , Σ(x, b) is a

partial type, I is an infinite linearly ordered set, and (bi)i∈I a CR-Morley sequence

in tp(b/M). If
⋃
{Σ(x, bi) : i ∈ I} is consistent then Σ(x, b) does not Kim-divide

over M . If (bi)i∈I is indiscernible over M , then the converse also holds.

Definition 6.51. Let M be an e.c. model and q a global M -Ls-invariant type.

(i) We say that a tree (cη)η∈ω≤k is q-spread-out over M if for any η1 ∈ ω1, η2 ∈
ω2, . . . , ηk ∈ ωk such that η1 >lex η2 >lex · · · >lex ηk and (∀l < l′ ≤
k)(ηl′ ∧ ηl ∈ ωl−1) we have that (cηk , . . . , cη1) is a Morley sequence in q over

M .
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(ii) We will say that (cη)η∈ω≤k is weakly q-spread-out over M if (cηk , . . . , cη1) |=
q⊗k|M for ηi’s as in (i).

η4

η3

η2

η1

Figure 6.5.1: An example of ηi’s from Definition 6.51

Clearly q-spread-outness implies weak q-spread-outness. We will freely use the

above definition for trees of parameters indexed by trees naturally isomorphic to

trees of the form ω′≤k′ , e.g. subtrees of ω≤k consisting of all nodes extending a

fixed node.

The point of the conditions on the ηi’s in Definition 6.51 is that this is

quantifier-free definable by an Ls-formula. This is useful for preservation when

EMs-basing trees on one another, as we do in the following lemma.

Lemma 6.52. Let k be a natural number, M an e.c. model and q a global M -

Ls-invariant type.

(i) If ((ci⌢η)η∈ω≤k−1)i<ω is a Morley sequence in a global M -Ls-invariant type

r(x, z) ⊇ q(x) over M , where x corresponds to the elements ci and

(c0⌢η)η∈ω≤k−1 is q-spread-out over M then also (cη)η∈ω≤k is q-spread-out

over M for any choice of root c∅.

(ii) If (cη)η∈ω≤k is weakly q-spread-out over M and

(c′η)η∈ω≤k |= EMs((cη)η∈ω≤k/M), then also (c′η)η∈ω≤k is weakly

q-spread-out over M .

(iii) If (cη)η∈ω≤k is weakly q-spread-out overM and s-indiscernible overM , then

for ai = c0k−i we have that (ai)i<k is a CR-Morley sequence in q over M .

Proof. (i) Let ηk ∈ ωk, . . . , η1 ∈ ω1 be such that η1 >lex . . . >lex ηk and (∀l <
l′ ≤ k)(ηl′ ∧ ηl ∈ ωl−1). We will prove that (cηk , . . . , cη1) is a Morley sequence in

q. For each ℓ ≥ 2 let βℓ ∈ ω1 be such that ηℓ ⊵ βℓ. For every ℓ > 2 we have by

assumption that η2∧ηℓ = η2|1 = β2, hence βℓ = β2 =: β (and η1 >lex β as η1 >lex

η2). In particular (cηk , . . . , cη2) is contained in (cβ⌢η)η∈ω≤k−1 , which has the same

Lascar strong type over M as (c0⌢η)η∈ω≤k−1 . So, as (c0⌢η)η∈ω≤k−1 is q-spread-out

by assumption, (cηk , . . . , cη2) is a Morley sequence in q. As ((ci⌢η)η∈ω≤k−1)i<ω

is a Morley sequence in r, we have that (cη1⌢η)η∈ω≤k−1 , which contains cη1 , has
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z

x

Morley sequence in r(x, z)

(a) Part (i)

a0
a1
a2
a3
a4

a′0
a′1
a′2
a′3
a′4

|= q⊗5|M

CR-Morley in q

(b) Part (iii)

Figure 6.5.2: Illustrations of Lemma 6.52

the same Lascar strong type over M(cβ⌢η)η∈ω≤k−1 , which contains Mcηk . . . cη2 ,

as some realisation of r. Since q(x) = r|x we see that cη1 has the same Lascar

strong type over Mcηk , . . . , cη2 as some realisation of q. So we conclude that

(cηk , . . . , cη1) is indeed a Morley sequence in q.

(ii) This holds because the condition on (η1, . . . , ηk) in the definition of weak

q-spread-outness is expressible by a quantifier-free Ls-formula.

(iii) Put a′i := c0k−i−1⌢1 for i < k. Then (a′i)i<k |= q⊗k|M by weak q-spread-

outness, and (ai, a
′
i) starts an Ma>ia′>i

-indiscernible sequence for each i < k by

s-indiscernibility.

6.6 Symmetry

Lemma 6.53 (Chain lemma). Let T be a thick NSOP1 theory and let M be an

e.c. model. Let (bi)i<κ be a Morley sequence in some global M -Ls-invariant q(x).

If (bi)i<κ is Ma-indiscernible then a |⌣
K
M
(bi)i<κ.

Proof. We will prove that a |⌣
K
M
bi1 . . . bik for all i1 < . . . < ik < κ. This is

indeed enough by finite character. By Ma-indiscernibility of (bi)i<κ we may

assume {i1, . . . , ik} = {0, . . . , k − 1}.
We have (bi)i<ω ≡Ls

M (βi)i<ω for some (βi)i<ω |= q⊗ω. Define the tuple γi =

(βik, βik+1, . . . , βik+k−1) for all i < ω. Then (γi)i<ω |= (q⊗k)⊗ω by associativity of

tensoring (Lemma 6.20). We let ci = (bik, bik+1, . . . , bik+k−1) for all i < ω. Then

(ci)i<ω ≡Ls
M (γi)i<ω. So (ci)i<ω is a Morley sequence in q⊗k over M and (ci)i<ω is

Ma-indiscernible. So tp(a/Mc0) = tp(a/Mb0 . . . bk−1) does not q⊗k-divide, and

thus a |⌣
K
M
b0 . . . bk−1 as required.

Definition 6.54. Suppose M is an e.c. model, q a global type extending

Lstp(a/M) and λ a cardinal. We will say that the extension q ⊇ Lstp(a/M)

satisfies (∗)λ if for every c with |c| ≤ λ there is a global M -Ls-invariant type

r(x, y) ⊇ Lstp(ac/M) extending q(x) (in particular, q is M -Ls-invariant).
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Lemma 6.55. For any e.c. model M , tuple a and cardinal λ there is

q ⊇ Lstp(a/M) satisfying (∗)λ.

Proof. Let M , a and λ be as in the statement. Choose a small tuple d such

that for any c with |c| ≤ λ there is some d′ ⊆ d with Lstp(ad′/M) = Lstp(ac/M)

(this is possible as the number of Lascar types of tuples of fixed length over M

is bounded). Now take a global M -Ls-invariant extension r(x, y) of Lstp(ad/M),

where x corresponds to a. Then q := r|x is an extension of Lstp(a/M) satisfying

(∗)λ.

Remark 6.56. If q ⊇ Lstp(a/M) is finitely satisfiable in M then it satisfies

(∗)λ for any cardinal λ, see [Men20, Lemma 3.4]. However, finitely satisfiable

extensions may not exist in thick theories.

Theorem 6.57 (Symmetry). In a thick NSOP1 theory a |⌣
K
M
b implies b |⌣

K
M
a.

Proof. We may assume that b enumerates a λT -saturated model containing M .

If this is not the case let N ⊇ Mb be a λT -saturated model. By extension,

Corollary 6.39, we find N ′ ≡Mb N such that a |⌣
K
M
N ′. Now we replace b by N ′

and we continue the proof.

Set λ = |ab|. By Lemma 6.55 we can choose a global extension q ⊇ Lstp(a/M)

satisfying (∗)λ. Let p(y, a) = tp(b/Ma). We will show that there is a CR-Morley

sequence (ai)i<ω in q overM such that
⋃
i<ω p(y, ai) is consistent, which is enough

by Corollary 6.50. All the properties we wish (ai)i<ω to have are type-definable.

It is thus enough to find such a sequence of length k for every k < ω.

So fix any k < ω. By backward induction on k′ = k+1, k, . . . , 1 we will define

trees (cη)η∈Sk′ where Sk′ = {ξ ∈ ω≤k+1 : 0k
′−1 ⊴ ξ}. We will write S∗

k′ for Sk′

without the root, so S∗
k′ = Sk′−{0k

′−1}. For each k′ the tree (cη)η∈Sk′ will satisfy

the following conditions:

(A1)k′ cηcν ≡Ls
M ab for all ν ▷ η ∈ Sk′ with ν ∈ ωk+1 and η ∈ ω≤k;

(A2)k′ (cη)η∈Sk′∩ω≤k is q-spread-out over M ;

(A3)k′ (the root is independent from the rest) we have c0k′−1 |⌣
K
M
(cη)η∈S∗

k′
.

For k′ = k+1 we let t be a global M -Ls-invariant extension of Lstp(b/M). Since

a |⌣
K
M
b we have that tp(a/Mb) does not t-divide. By Corollary 6.34 and our

assumption on b this means that Lstp(a/Mb) does not t-Ls-divide. So we find an

Ma-indiscernible Morley sequence (c0k⌢α)α<ω in t with c0k+1 = b. By Lemma 6.53

we have that a |⌣
K
M
(c0k⌢α)α<ω. So we pick c0k = a and directly satisfy (A3)k′ .

Condition (A2)k′ is vacuous and (A1)k′ follows directly from Ma-indiscernibility

of (c0k⌢α)α<ω and the fact that c0k+1 = b.

For the inductive step, suppose that we have constructed (cη)η∈Sk′ . By

(A1)k′ there is a tuple d such that c0k′−1(cη)η∈S∗
k′
≡Ls
M ad. So, by (∗)λ there is a
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global M -Ls-invariant type r(x, z) ⊇ q(x) extending Lstp(c0k′−1(cη)η∈S∗
k′
/M).

By (A3)k′ we have that c0k′−1 |⌣
K
M
(cη)η∈S∗

k′
. So since b ⊆ (cη)η∈S∗

k′
and using

our assumption on b we have by Corollary 6.34 that Lstp(c0k′−1/M(cη)η∈S∗
k′
)

does not r|z-Ls-divide. By extension for Ls-dividing, Proposition 6.38, we find c

such that c(cη)η∈S∗
k′
≡Ls
M c0k′−1(cη)η∈S∗

k′
and Lstp(c/M(cη)η∈Sk′ ) does not

r-Ls-divide. So there is an Mc-indiscernible Morley sequence ((dη,i)η∈Sk′ )i<ω in

r such that (dη,0)η∈Sk′ = (cη)η∈Sk′ . We set c0k′−2 = c and c0k′−2⌢i⌢ζ = d0k′−1⌢ζ,i.

Again, using Lemma 6.53 we directly get (A3)k′−1.

Now (A2)k′−1 follows from Lemma 6.52(i). We verify (A1)k′−1. Everything

above the root consists of copies (via a Lascar strong automorphism over M) of

(cη)η∈Sk′ , so we only need to check that c0k′−2cν ≡Ls
M ab for all ν ∈ Sk′−1 ∩ ωk+1.

By indiscernibility we may assume ν ∈ Sk′ ∩ ωk+1. Then (A1)k′−1 follows from

(A1)k′ and the fact that c0k′−2(cη)η∈S∗
k′
≡Ls
M c0k′−1(cη)η∈S∗

k′
.

Thus the inductive step, and hence the construction of the tree (cη)η∈ωk+1 =

(cη)η∈S1 , is completed.

Consider the following condition:

(A1’)1 cηcν ≡M ab for all ν ▷ η with ν ∈ ωk+1 and η ∈ ω≤k;

which is clearly implied by (A1)1 as it is seen by the EMs-type of (cη)η∈ω≤k+1

over M . Letting (c′η)η∈ω≤k+1 be an s-indiscernible tree which is EMs-based on

(cη)η∈ω≤k+1 over M , we get that (c′η)η∈ω≤k+1 satisfies (A1’)1, and (c′η)η∈ω≤k is

weakly q-spread-out over M by Lemma 6.52(ii).

Put ai = c′
0k+1−i . Then (a1, . . . , ak) is a CR-Morley sequence in q over M by

Lemma 6.52(iii), and by (A1’)1 we have that
⋃

1≤i≤k p(y, ai) is consistent because

it is realised by c′
0k+1 . This completes the proof.

Lemma 6.58. Let T be a thick theory. Suppose that φ(x, y) has SOP1, witnessed

by ψ(y1, y2). Then there is an e.c. model M and b1, b2, c1, c2 such that c1 |⌣
u
M
c2,

c1 |⌣
u
M
b1, c2 |⌣

u
M
b2 and b1c1 ≡Ls

M b2c2 and |= φ(b1, c1) ∧ φ(b2, c2) ∧ ψ(c1, c2).

Proof. The proof is mostly the same as [HK21, Proposition A.7] but we have to

adjust a few things throughout to get equality of Lascar strong types rather than

just equality of types. As in that proof, we will use a Skolemisation technique

for positive logic [HK21, Lemma A.6]. In such a Skolemised theory the positively

definable closure of any set is an e.c. model and the reduct of an e.c. model (to

the original language) is an e.c. model (of the original theory). It is not directly

clear whether this Skolemisation construction preserves thickness, but that is not

a problem. Ultimately we are interested in Lascar strong types in our original

theory. So even though we technically work in a Skolemised theory the (type-

definable) predicate d(x, y) ≤ 1 should be taken as in our original theory.

Let κ be any cardinal. By compactness we find parameters (aη)η∈2<κ such

that:
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(i) for every σ ∈ 2κ the set {φ(x, aσ|i) : i < κ} is consistent,

(ii) for every η, ν ∈ 2<κ such that η⌢0 ⪯ ν we have |= ψ(aη⌢1, aν).

For a big enough cardinal λ, we construct by induction a sequence (ηi, νi)i<λ with

ηi, νi ∈ 2<κ such that:

(1) ηi ⊴ ηj and ηi ⊴ νj for all i < j < λ;

(2) ηi ⊵ (ηi ∧ νi) ⌢ 0, νi = (ηi ∧ νi) ⌢ 1, and (aηi , aνi) starts an aη<iaν<i-

indiscernible sequence for every i < λ.

Assume (ηj , νj)j<i has been constructed and set η =
⋃
j<i ηj . If we chose κ

to be large enough then, by applying Fact 2.37 to (aη⌢0α⌢1)α>0, it follows that

there are 0 < α < β < κ such that (aη⌢0α⌢1, aη⌢0β⌢1) starts an {ηj , νj : j < i}-
indiscernible sequence. We set νi = η⌢0α⌢1 and ηi = η⌢0β⌢1.

By (i) and (1), there is b2 realising {φ(x, aηi) : i < λ}. Now let (ei, di)i<ω+2

be indiscernible over b2 based on (aηi , aνi)i<λ.

Let M be the positively definable closure of {ei, di : i < ω}. As discussed,

we may assume M to be an e.c. model. Set c1 = dω and c2 = eω+1. Then

c1 |⌣
u
{ei,di:i<ω}

c2 and c2 |⌣
u
{ei,di:i<ω}

b2 by indiscernibility. So c1 |⌣
u
M
c2, c2 |⌣

u
M
b2

and |= φ(b2, c2). By construction c1c2 = dωeω+1 ≡ aνi0aηi1 for some i0 < i1 < λ

and thus |= ψ(c1, c2) by (ii), (1), and (2).

To find b1 we first claim that dM (eω, dω) ≤ 1. By compactness it suffices to

prove that dA(eω, dω) ≤ 1 for all finite A ⊆M . By how we constructedM it then

suffices to prove that (eω, dω) starts an indiscernible sequence over {ei, di : i < n}
for all n < ω. To prove this last statement we let i0 < . . . < in+1 < λ be such

that

e0d0 . . . endneωdω ≡ aηi0aνi0 . . . aηinaνinaηin+1
aνin+1

.

By how we constructed (ηi, νi)i<λ we have (aηin+1
, aνin+1

) starts an indiscernible

sequence over {aηi0aνi0 . . . aηinaνin}. So the claim follows after applying the

automorphism.

Now we leave the Skolemised theory and work in the original theory, so

d(x, y) ≤ 1 corresponds to actually having Lascar distance one. We have

c2 = eω+1 ≡Ls
M eω ≡Ls

M dω = c1, so there is f ∈ Autf (M/M) such that f(c2) = c1.

Let b1 = f(b2). Then c2b2 ≡Ls
M c1b1, hence also |= φ(b1, c1) and c1 |⌣

u
M
b1, as

required.

Theorem 6.59. Let T be a thick theory. The following are equivalent:

(i) T is NSOP1;

(ii) (symmetry) a |⌣
K
M
b implies b |⌣

K
M
a;

(iii) (weak symmetry) a |⌣
iLs
M

b implies b |⌣
K
M
a.
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Proof. Theorem 6.57 is precisely (i) =⇒ (ii). For (ii) =⇒ (iii) we just note

that a |⌣
iLs
M

b implies a |⌣
K
M
b. Finally, for (iii) =⇒ (i) we proceed is as in

[KR20, Proposition 3.22] replacing their reference to [CR16] by Lemma 6.58 and

being careful about using global Ls-invariant types instead of just global invariant

types.

We prove the contrapositive, so assume T has SOP1. Then by Lemma 6.58

there is an e.c. modelM and b1, b2, c1, c2 such that c1 |⌣
u
M
c2, c1 |⌣

u
M
b1, c2 |⌣

u
M
b2

and b1c1 ≡Ls
M b2c2. Furthermore, for p(x, c1) = tp(b1c1/M), we have that p(x, c1)∪

p(x, c2) is inconsistent. In particular we have that Lstp(c1/Mc2) extends to a

global M -Ls-invariant q. Then as c1 ≡Ls
M c2 there is a Morley sequence (di)i<ω

in q with d0d1 = c2c1. We thus have that
⋃
{p(x, di) : i < ω} is inconsistent. So

b2 ̸ |⌣
K
M
c2. Since also c2 |⌣

u
M
b2 and thus c2 |⌣

iLs
M

b2 we see that weak symmetry

fails and this concludes our proof.

6.7 Independence theorem

We recall the following facts. The first is the same as [KR20, Lemma 7.4] and

the second is the same as the claim in [DKR19, Lemma 5.3]. Their proofs work

in our setting as well.

Fact 6.60. The following hold in any thick NSOP1 theory.

(i) If a |⌣
d
M
bc and b |⌣

K
M
c then ab |⌣

K
M
c.

(ii) If a |⌣
K
M
b and a |⌣

K
M
c then there is c′ with ac′ ≡M ac such that a |⌣

K
M
bc′.

For the following lemma we borrow a trick from [DKR19, Lemma 5.4].

Lemma 6.61. Let T be thick NSOP1 and let a ≡Ls
M a′, a |⌣

K
M
b and a′ |⌣

K
M
c.

Then there is c′ such that ac′ ≡Ls
M a′c and a |⌣

K
M
bc′.

Proof. Let c∗ be such that ac∗ ≡Ls
M a′c, so a |⌣

K
M
c∗. Let N ′ ⊇ M be λT -

saturated and let q be a global M -Ls-invariant extension of Lstp(N ′/M). Let N

realise q|Mabc∗ , so we have N |⌣
iLs
M

abc∗. By Fact 6.60(i) we then have Na |⌣
K
M
b

and Na |⌣
K
M
c∗. So by fact Fact 6.60(ii) we find c′ with Nac′ ≡M Nac∗ and

Na |⌣
K
M
bc′. We thus have ac′ ≡Ls

M ac∗ ≡Ls
M a′c, as required.

Definition 6.62. We write b |⌣
∗
M
c to mean that Lstp(b/Mc) extends to a global

M -Ls-invariant type tp(N/M) for some ℶω(λT+|Mbc|)-saturated model N ⊇M .

Extending Lstp(b/Mc) here means that there is some β ∈ N with β ≡Ls
Mc b.

The point of the enormous cardinal ℶω(λT + |Mbc|) is that we will want to

find a λT -saturated model M ′ containing M and a copy of b in N , and then

again some λT -saturated M
′′ ⊇ M ′ inside N . By Fact 2.35 we can choose these
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λT -saturated models small enough so that this process can be repeated any finite

number of times.

We easily see that |⌣
∗ is invariant under automorphisms and, assuming

thickness, that b |⌣
∗
M
M for all M .

Lemma 6.63. We have that |⌣
∗ satisfies the following extension properties.

(i) (left extension) If b |⌣
∗
M
c and |d| < ℶω(λT + |Mbc|), then there is d′ ≡Ls

Mb d

such that bd′ |⌣
∗
M
c.

(ii) (right extension) If b |⌣
∗
M
c and |d| < ℶω(λT+|Mbc|), then there is d′ ≡Ls

Mc d

such that b |⌣
∗
M
cd′.

Proof. In both cases we assume b |⌣
∗
M
c. So let q = tp(N/M) be a global M -Ls-

invariant extension of Lstp(b/Mc) for some ℶω(λT + |Mbc|)-saturated N ⊇M .

We first prove left extension. Let N ′ ≡Ls
Mc N be in M. By moving things by

a Lascar strong automorphism over Mc we may assume b ∈ N ′. By Fact 2.35

there is Mb ⊆M ′ ⊆ N ′ where M ′ is λT -saturated and of cardinality ≤ 2λT+|Mb|.

Let d′ realise tp(d/M ′) in N ′. So d′ ≡Ls
Mb d while q also extends Lstp(bd′/Mc), so

indeed bd′ |⌣
∗
M
c.

Now we prove right extension. Let β ∈ N be such that β ≡Ls
Mc b. Pick b

′ ∈M

such that b′ ≡Ls
Mcd β. Then clearly b′ |⌣

∗
M
cd. We finish the proof by picking d′

such that bd′ ≡Ls
Mc b

′d.

Proposition 6.64 (Weak independence theorem). Let T be thick NSOP1.

Suppose that a ≡Ls
M a′, a |⌣

K
M
b, a′ |⌣

K
M
c and b |⌣

∗
M
c. Then there is a′′ with

a′′ ≡Ls
Mb a and a′′ ≡Ls

Mc a
′ such that a′′ |⌣

K
M
bc.

Proof. We may assume that b and c both enumerate a λT -saturated model

containing M . If this is not the case let N ⊇ Mb be λT -saturated and such

that |N | < ℶω(λT + |Mbc|). By left extension from Lemma 6.63 we then find

N ′ ≡Ls
Mb N with N ′ |⌣

∗
M
c. By Corollary 6.39 we find a0 with a0 ≡Ls

Mb a and

a0 |⌣
K
M
N ′. Now we can replace a by a0 and b by N ′ and continue the proof. The

case for c is analogous.

By Lemma 6.61 there is c′ such that ac′ ≡Ls
M a′c and a |⌣

K
M
bc′. Apply left

extension from Lemma 6.63 to b |⌣
∗
M
c and c′ to find c′′ ≡Ls

Mb c with bc′ |⌣
∗
M
c′′.

Let b∗ be such that b∗c′′ ≡Ls
M bc′ and apply right extension from Lemma 6.63 to

bc′ |⌣
∗
M
c′′ and b∗ to find b′′ ≡Ls

Mc′′ b
∗ with bc′ |⌣

∗
M
b′′c′′. In particular we have

b′′c′′ ≡Ls
M bc′ and Lstp(bc′/Mb′′c′′) extends to a global M -Ls-invariant type q. So

there is a Morley sequence (bici)i<ω in q with (b0, c0) = (b′′, c′′) and (b1, c1) =

(b, c′). As a |⌣
K
M
bc′, we can find a∗ with a∗b′′c′′ ≡M abc′ such that (bici)i<ω is

Ma∗-indiscernible. By construction we had c′′ ≡Ls
Mb c, so there is a Lascar strong

automorphism σ over Mb such that σ(c′′) = c. Set a′′ = σ(a∗), we check that

this is indeed the a′′ we are looking for.
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By the chain lemma (Lemma 6.53) we have a∗ |⌣
K
M
(bici)i<ω, so we have

a∗ |⌣
K
M
bc′′ and a′′ |⌣

K
M
bc then follows by invariance. By Ma∗-indiscernibility

we have a′′b ≡M a∗b ≡M a∗b′′ ≡M ab. We assumed b to enumerate a

λT -saturated model, so indeed a′′ ≡Ls
Mb a. By construction of c′ we have

a′′c ≡M a∗c′′ ≡M ac′ ≡M a′c. We assumed c to enumerate a λT -saturated

model, so indeed a′′ ≡Ls
Mc a

′, which concludes the proof.

Fact 6.65. In a thick theory, if N ⊇M is (2|M |+λT )+-saturated and q and r are

global M -Ls-invariant types with q|N = r|N then q = r.

Proof. By Fact 2.35 there is M ⊆ M ′ ⊆ N where M ′ is a λT -saturated model

and |M ′| < (2|M |+λT )+. Let φ(x, b) be any formula with parameters b. Let b′ ∈ N
realise tp(b/M ′). Then b ≡Ls

M b′. By M -Ls-invariance and q|N = r|N we have

φ(x, b) ∈ q ⇔ φ(x, b′) ∈ q ⇔ φ(x, b′) ∈ r ⇔ φ(x, b) ∈ r,

which concludes the proof.

Theorem 6.66 (Independence theorem). Let T be a thick NSOP1 theory.

Suppose that a ≡Ls
M a′, a |⌣

K
M
b, a′ |⌣

K
M
c and b |⌣

K
M
c. Then there is a′′ with

a′′ ≡Ls
Mb a, a

′′ ≡Ls
Mc a

′ and a′′ |⌣
K
M
bc.

Proof. We may assume that b and c both enumerate a λT -saturated model

containing M . If this is not the case let N ⊇Mb be λT -saturated. By extension

(Corollary 6.39) and symmetry then find N ′ ≡Ls
Mb N with N ′ |⌣

K
M
c. Applying

extension again we find a0 with a0 ≡Ls
Mb a and a0 |⌣

K
M
N ′. Now we can replace a

by a0 and b by N ′ and continue the proof. The case for c is analogous.

Let N0 ⊇ M be (2|M |+λT )+-saturated and let κ be a big enough cardinal

(depending only on |N0bc|). Pick some global M -Ls-invariant type q(y, z)

extending Lstp(bc/M) such that q also extends to a global M -Ls-invariant type

tp(N/M) for some saturated enough N ⊇M (depending only on κ). So there is

β realising q|y with β ≡Ls
M b. Let (bici)i<κ be a Morley sequence in q with b0 = b

and let bκ ≡Ls
M(bici)i<κ

β. Then we have bici |⌣
∗
M
b<ic<i for all i < κ and

bκ |⌣
∗
M
(bici)i<κ.

We will inductively construct a sequence (b′i)i≤κ with b′0 = b such that at step

i:

(i) c |⌣
K
M
b′≤i,

(ii) cb′i ≡Ls
M cb,

(iii) b′≤i ≡Ls
M b≤i.

The base case is already fixed: b′0 = b. So suppose we have constructed b′≤i.

By induction hypothesis (iii) we can find b∗b′≤i ≡Ls
M bi+1b≤i. So b∗ |⌣

∗
M
b′≤i. Let
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c∗ be such that c∗b∗ ≡Ls
M cb, so c∗ |⌣

K
M
b∗. So also using (i) from the induction

hypothesis we can apply the weak independence theorem (Proposition 6.64) to

find c′ such that c′ |⌣
K
M
b′≤ib

∗, c′ ≡Ls
Mb∗ c

∗ and c′ ≡Ls
Mb′≤i

c. We now pick b′i+1 to be

such that cb′i+1 ≡Ls
Mb′≤i

c′b∗. Then indeed c |⌣
K
M
b′≤i+1. We also have b′≤ib

′
i+1 ≡Ls

M

b′≤ib
∗ ≡Ls

M b≤ibi+1. Finally, cb′i+1 ≡Ls
M c′b∗ ≡Ls

M c∗b∗ ≡Ls
M cb. So this concludes the

successor step. For the limit stage we assume we have constructed b′<i. We then

have c |⌣
K
M
b′<i by finite character. We also have b′≤j ≡Ls

M b≤j for all j < i. So we

have b′<i ≡M b<i. We assumed b to enumerate a λT -saturated model containing

M , so because b′0 = b = b0 we do in fact have b′<i ≡Ls
M b<i. We then construct b′i

in an analogous way to the successor step.

We let (c′i)i<κ be such that b′κ(b
′
ic

′
i)i<κ ≡Ls

M bκ(bici)i<κ. So byM -Ls-invariance

of q|y we have βb′κ(b′ic′i)i<κ ≡Ls
M βbκ(bici)i<κ and thus by how we chose bκ we have

b′κ ≡Ls
M(b′ic

′
i)i<κ

β.

Since q ⊆ tp(N/M) for some saturated enough N we can find

βγ(βi, γi)i<κ ≡Ls
M b′κc(b

′
i, c

′
i)i<κ in N , where βγ |= q. Here we used the fact that

b′κc ≡Ls
M bc. Set q′((yi, zi)i<κ, y, z) = tp((βi, γi)i<κβγ/M). Then q′ is global

M -Ls-invariant because tp(N/M) is global M -Ls-invariant. By Fact 6.65 and

our choice of κ we get that some global M -Ls-invariant type q′|yiziyz occurs for

κ many i (modulo identifying the the variables for different i’s). We now focus

on a subsequence of length ω such that (after relabelling) q′|yiziyz does not

depend on i, and we forget about κ. We also relabel b′κ to b′.

Claim 1. In summary, we have just constructed the following.

(i) A Morley sequence (b′ic
′
i)i<ω in q, where q is a global M -Ls-invariant

extension of Lstp(bc/M).

(ii) For every i < ω we have b′ic ≡Ls
M b′c ≡Ls

M bc.

(iii) Let β |= q|y then b′ ≡Ls
M(b′ic

′
i)i<ω

β.

(iv) q(y, z) ⊆ q′((yi, zi)i<ω, y, z) and q′ is global M -Ls-invariant and extends

Lstp((b′i, c
′
i)i<ωb

′c/M).

(v) There is some sufficiently saturated N such that q′ ⊆ tp(N/M) and

tp(N/M) is M -Ls-invariant.

(vi) The type q′|yiziyz does not depend on i, modulo identifying variables for

different i’s.

Claim 2. For every k < ω there are g0h0g1h1 . . . gk−1hk−1gk,

g′0h
′
0g

′
1h

′
1 . . . g

′
k−1h

′
k−1 and h′′0g

′′
1h

′′
1 . . . g

′′
k−1h

′′
k−1g

′′
k such that:

(i) (g′ih
′
i)i<k |= (q′|y0,z)⊗k|M ,
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(ii) (h′′i g
′′
i+1)i<k |= (q′|z0,y)⊗k|M ,

(iii) (gihi, g
′
ih

′
i) starts an Mg>ih>ig

′
>ih

′
>i-indiscernible sequence for every i < k,

(iv) (higi+1, h
′′
i g

′′
i+1) starts an Mh>ig>i+1h

′′
>ig

′′
>i+1-indiscernible sequence for

every i < k.

We first prove that the theorem follows from Claim 2. We set p0(x, y) = tp(ab/M)

and p1(x, z) = tp(a′c/M). We will prove that p0(x, b) ∪ p1(x, c) does not Kim-

divide over M . This is enough, because by Proposition 6.27 we can then extend

it to a complete type that does not Kim-divide over M . Since we assumed b

and c to enumerate λT -saturated models containingM , any realisation a′′ of that

complete type is then what we needed to construct.

By compactness we can find M -indiscernible (gihig
′
ih

′
ig

′′
i h

′′
i )i∈Z such that

(g′ih
′
i)i∈Z |= (q′|y0,z)⊗Z|M and (h′′i g

′′
i+1)i∈Z |= (q′|z0,y)⊗Z|M . Furthermore, we can

make it so that for every i ∈ Z we have gihi ≡Mg>ih>ig′>ih
′
>i

g′ih
′
i and

higi+1 ≡Mh>ig>i+1h′′>ig
′′
>i+1

h′′i g
′′
i+1. We have that q′|y,z0 ⊇ tp(b′c′0/M), by Claim

1(iv). So by Claim 1(iii) and (v) we have that b′ |⌣
∗
M
c′0. Then by

Proposition 6.64 we have that p0(x, g
′′
1) ∪ p1(x, h′′0) does not Kim-divide. Then

because (h′′i g
′′
i+1)i≥n |= (q′|z0,y)⊗ω|M for all n ∈ Z, we get that⋃

i∈Z p0(x, g
′′
i+1) ∪ p1(x, h′′i ) is consistent. By the parallel sequences lemma,

Lemma 6.8, we thus have that
⋃
i∈Z p0(x, gi+1) ∪ p1(x, hi) is consistent. This is

the same set as
⋃
i∈Z p0(x, gi) ∪ p1(x, hi). So again by Lemma 6.8 we get that⋃

i∈Z p0(x, g
′
i) ∪ p1(x, h′i) is consistent. By Claim 1(ii) and (iii) we have that

q′|y0,z extends Lstp(bc/M). So we conclude that p0(x, b) ∪ p1(x, c) does not

Kim-divide over M , as required.

We are left to verify Claim 2. We fix k and by backwards induction on k′ =

2k, 2k−1, . . . , 1 we will define trees (dηeη)η∈Sk′ where Sk′ = {ξ ∈ ω
≤2k+1 : 0k

′−1 ⊴

ξ} such that for each k′ the tree (dηeη)η∈Sk′ satisfies the following condition:

(P)k′ For every η ∈ ω≤2k−1 and i < ω such that η ⌢ i ∈ Sk′ we have that:

(dη⌢i⌢jeη⌢i⌢j)j<ωdη⌢ieη⌢i ≡Ls
M(d⊵η⌢i′e⊵η⌢i′ )i′<i

(βjγj)j<ωβγ.

Recall that q′ = tp((βjγj)j<ωβγ/M). So in particular (dη⌢jeη⌢j)j<ωdηeη ≡Ls
M

(βjγj)j<ωβγ for all η ∈ ω≤2k ∩ Sk′ .
For k′ = 2k we let (dηeη)η∈S2k

just be (b′ic
′
i)i<ωb

′c. Suppose now that we

have constructed (dηeη)η∈Sk′ . By (P)k′ we have that

(d0k′−1⌢ie0k′−1⌢i)i<ωd0k′−1e0k′−1 ≡Ls
M (βiγi)i<ωβγ. So by Claim 1(v) there is

global M -Ls-invariant r ⊇ q′ such that r also extends Lstp((dηeη)η∈Sk′/M).

Here we match (d0k′−1⌢ie0k′−1⌢i)i<ωd0k′−1e0k′−1 with the variables in q′. Let

((dη,ieη,i)η∈Sk′ )i<ω be a Morley sequence in r with (dη,0eη,0)η∈Sk′ = (dηeη)η∈Sk′ .

We set d0k′−2⌢i⌢ξe0k′−2⌢i⌢ξ = d0k′−1⌢ξ,ie0k′−1⌢ξ,i for all i < ω and ξ ∈ ω≤2k+2−k′ .

We directly get (P)k′−1 for η ∈ Sk′ − {0k
′−2} by virtue of ((dη,ieη,i)η∈Sk′ )i<ω
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being a Morley sequence. By Claim 1(iv) we have that (d0k′−2⌢ie0k′−2⌢i)i<ω is a

Morley sequence in q. So we can find d0k′−2e0k′−2 such that

(d0k′−2⌢ie0k′−2⌢i)i<ωd0k′−2e0k′−2 ≡Ls
M (βiγi)i<ωβγ and that concludes the

construction of (dηeη)η∈Sk′−1
.

Similarly as in the proof of Lemma 6.52, we will now show by induction on

n ≤ k that the following holds.

(Q)n Let η2k−2m ∈ ω2k−2m and ν2k−2m+1 ∈ ω2k−2m+1 for 0 ≤ m ≤ n.

Suppose that η2k−2m ◁ ν2k−2m+1 for all 0 ≤ m ≤ n, η2k >lex η2k−2 >lex . . . >lex

η2k−2n and for all 0 ≤ m′ < m ≤ n we have that η2k−2m ∧ η2k−2m′ ∈ ω2k−2m−1.

Then (dν2k−2m+1
eν2k−2m+1

dη2k−2m
eη2k−2m

)m≤n is a Morley sequence in q′|y0z0yz.
For n = 0 this follows immediately from (P)1 and Claim 1(vi). So suppose

(Q)n holds for some n < k and let η2k−2m ∈ ω2k−2m and ν2k−2m+1 ∈ ω2k−2m+1

for 0 ≤ m ≤ n + 1 be as in the statement of (Q)n+1. For any m < n we have

that η2k−2m ∧ η2k−2n−2 = η2k−2n−2|2k−2n−3. So we can write η2k−2n−2 = ξ ⌢ i

for some ξ ∈ ω2k−2n−3 and i < ω. We then have η2k−2m ⊵ ξ ⌢ i′ for some i′ < i

for all m ≤ n. So it follows from (P)1, Claim 1(vi) and the induction hypothesis

that (dν2k−2m+1
eν2k−2m+1

dη2k−2m
eη2k−2m

)m≤n+1 is a Morley sequence in q′|y0z0yz.
By exactly the same argument we also have the following condition. It differs

from (Q)n in that the levels have been shifted by one (so we only consider it for

n < k).

(Q’)n Let η2k−2m−1 ∈ ω2k−2m−1 and ν2k−2m ∈ ω2k−2m for 0 ≤ m ≤ n.

Suppose that η2k−2m−1 ◁ ν2k−2m for all 0 ≤ m ≤ n, η2k−1 >lex η2k−3 >lex . . . >lex

η2k−2n−1 and for all 0 ≤ m′ < m ≤ n we have that η2k−2m−1 ∧ η2k−2m′−1 ∈
ω2k−2m−2. Then (dν2k−2m

eν2k−2m
dη2k−2m−1

eη2k−2m−1
)m≤n is a Morley sequence in

q′|y0z0yz.
Now let (d′ηe

′
η)η∈ω2k+1 be an s-indiscernible over M tree which is EMs-based

on (dηeη)η∈ω2k+1 over M . We put gi = d′
02(k−i)+1 for i ≤ k, and for i < k we

put hi = e′
02(k−i) , g

′
i = d′

02(k−i)−1⌢1⌢0
, h′i = e′

02(k−i)−1⌢1
, g′′i+1 = d′

02(k−i−1)⌢1
and

h′′i = e′
02(k−i−1)⌢1⌢0

, see Figure 6.7.1. Then conditions (i) and (ii) from Claim

2 follow from (Q)k and (Q’)k−1, while conditions (iii) and (iv) follow from s-

indiscernibility.

Now that we have proved the independence theorem, we first note some

useful immediate consequences in Corollary 6.69. After that, the rest of this

section will be devoted to proving a stronger version of the independence

theorem, Theorem 6.74.

Definition 6.67. Let I be a linear order. We will say that (ai)i∈I is a |⌣
K
M
-

independent sequence if ai |⌣
K
M
a<i for every i ∈ I. We will say that (ai)i∈I is

|⌣
K
M
-Morley if it is |⌣

K
M
-independent and M -indiscernible.

Lemma 6.68. Let T be thick NSOP1 with an e.c. model M , and let a, b, c be any

tuples of parameters and x a tuple of variables. Then there exists a (partial) type
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d′η e′ηg0

h0

g1 h1

g2 h2

g′0

h′0

g′1

h′1

h′′0

g′′1
h′′1

g′′2

Figure 6.7.1: Choice of the gihig
′
ih

′
ig

′′
i h

′′
i .

Σ(x, y) over Mab such that for any x, y we have that

|= Σ(x, y) ⇐⇒ (y ≡Mb c) ∧ (xa
K

|⌣
M

yb).

In particular, taking y = ∅, we get that the condition xa |⌣
K
M
b is type definable

over Mab in the variable x.

Proof. Let q(y, z) be a global M -Ls-invariant type extending tp(cb/M). Then,

by Kim’s Lemma, for any y ≡Mb c and any x, the condition xa |⌣
K
M
yb is

equivalent to:

∃(yizi)i<ω
(
q⊗ω|M ((yizi)i<ω) and y0z0 = yb and (yizi)i<ω is Max-indiscernible

)
,

which is clearly a type-definable over Mab condition by thickness.

In particular, we get that being an |⌣
K
M
-independent sequence in a fixed type

over M is type-definable over M in thick NSOP1 theories. That is, for a linear

order I we can use the type ⋃
i∈I

Σ(x<i, xi),

where Σ is as in Lemma 6.68. Then by symmetry, Theorem 6.57, this (partial)

type expresses exactly what we wanted.

Corollary 6.69. Suppose T is thick NSOP1 with an e.c. model M .

(i) If a |⌣
K
M
b and a ≡Ls

M b then there exists an infiniteM -indiscernible sequence

starting with (a, b).

(ii) If a ≡Ls
M b then a and b are at Lascar distance at most 2 over M . In

particular, Lascar equivalence over e.c. models is type-definable.
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(iii) (Generalised independence theorem) Let (ai)i<κ an |⌣
K
M
-independent

sequence. Suppose bi ≡Ls
M b and bi |⌣

K
M
ai for every i < κ. Then there

exists b′ such that b′ai ≡Ls
M biai for every i < κ and b′ |⌣

K
M
(ai)i<κ.

Proof. (i) We can inductively find a sequence (ci)i<ω such that c0c1 = ab, ci ≡Ls
M

b, ci |⌣
K
M
c<i and cicj ≡M ab for all i < j < ω: indeed, if we have constructed c≤i

then by the independence theorem we can choose ci+1 such that ci+1 ≡Ls
Mc<i

ci,

cici+1 ≡Ls
M ab and ci+1 |⌣

K
M
c≤i.

By compactness we can find a sequence (c′i)i<λ|T |+|Ma| with c′ic
′
j ≡M ab for

all i < j < λ|T |+|Ma|. Choose an M -indiscernible sequence (di)i<ω based on

(c′i)i<λ|T |+|Ma| over M . Then d0d1 ≡M ab, so we conclude that the pair (a, b)

starts an M -indiscernible sequence.

(ii) By extension (Corollary 6.39) we can choose c ≡Ls
M a with c |⌣

K
M
ab. By (i)

we get that (a, c) and (b, c) both start M -indiscernible sequences.

(iii) We choose inductively a sequence (b′j)j≤κ such that b′jai ≡Ls
M biai for every

i < j and b′j |⌣
K
M
(ai)i<j , so that we can put b′ := bκ. The successor step follows

directly by the independence theorem, and the limit step follows by

type-definability of Lascar equivalence over M , Lemma 6.68 and

compactness.

Definition 6.70. We will say that a tree (cη)η∈ω≤k is spread-out over M if

(c⊵η⌢i)i<ω is a Morley sequence in some global M -Ls-invariant type for every

η ∈ ω≤k−1.

There are two differences between being spread-out over M and being q-

spread-out over M (see Definition 6.51 for the latter). In the latter the global

M -Ls-invariant type involved has to be q, while the former just requires some

global M -Ls-invariant type. The second difference is in the sequence in the tree

that is required to be a Morley sequence. In the former we consider a sequence of

subtrees above some fixed node, all at the same level. In the latter we consider a

sequence of nodes in the tree, one in every level (except for the root), as pictured

in Figure 6.5.1.

The following lemma follows from the independence theorem exactly as in

[KR20, Lemma 6.2/Remark 6.3], so we omit the proof.

Fact 6.71. Suppose T is thick NSOP1, M an e.c. model, a |⌣
K
M
b, (bη)η∈ω≤k (with

k < ω) is a spread-out over M tree such that bη |⌣
K
M
b▷η and bη ≡Ls

M b for every

η ∈ ω≤k. Then, writing p(x, b) = tp(a/Mb), there exists a′ |=
⋃
η∈ω≤k p(x, bη)

with a′ |⌣
K
M
(bη)η∈ω≤k and a′ ≡Ls

M a.

Lemma 6.72. Suppose T is thick NSOP1, M an e.c. model, b ≡Ls
M b′, b |⌣

K
M
b′

and I is a linear order with two distinct elements 0 and 1. Then there is a

|⌣
K
M
-Morley CR-Morley in tp(b/M) sequence (bi)i∈I with b0 = b and b1 = b′.
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Proof. By extension (Corollary 6.39) there is a λT -saturated model N ⊇ Mb

with N |⌣
K
M
b′. Then there is a λT -saturated model N ′ ⊇ Mb′ with N ′ ≡Ls

M N .

Hence, again by extension, we can find N ′′ ≡Ls
Mb′ N

′ with N |⌣
K
M
N ′′. So replacing

b and b′ by N and N ′′ we may assume without loss of generality that b and b′ are

λT -saturated models containing M . Put λ = |b| and (using Lemma 6.55) choose

a global M -Ls-invariant extension q of Lstp(b′/M) satisfying (∗)λ.
We claim that it is enough to show that for any 1 < k < ω there is a |⌣

K
M
-

independent CR-Morley sequence (ai)i<k in q overM with ai ≡Ls
M b′ and aiaj ≡M

bb′ for all i < j < k: indeed, if we show this, then, as all these conditions are

type-definable by Lemma 6.68 and Corollary 6.69(ii), we can find by compactness

a |⌣
K-independent over M CR-Morley sequence (ai)i<λ|T |+|b| in q over M with

aiaj ≡M bb′ for each i < j, and then taking an M -indiscernible sequence indexed

by I which is based on (ai)i<λ|T |+|Mb| over M and moving it by an automorphism

to guarantee that b0b1 = bb′ (note this may change q) will do the job.

So fix any 1 < k < ω and put p = tp(b′/Mb). By backward induction on

k′ = k + 1, k, . . . , 1 we will define trees (cη)η∈Sk′ where Sk′ := {ξ ∈ ω
≤k : 0k

′−1 ⊴

ξ} such that for each k′ the tree (cη)η∈Sk′ is spread-out over M and satisfies the

following conditions:

(A1)k′ cηcν ≡M bb′ for any ν, η ∈ Sk′ with ν ◁ η and cη ≡Ls
M b′ for any η ∈ Sk′ ;

(A2)k′ (cη)η∈Sk′ is q-spread-out over M ;

(A3)k′ cη |⌣
K
M
c▷η for every η ∈ Sk′ .

For k′ = k + 1 putting c0k = b′ works. Now suppose we are done for some

k′ ≤ k + 1. By Fact 6.71 we can find c′ |=
⋃
η∈Sk′

p(x, cη) with c′ ≡Ls
M b′ and

c′ |⌣
K
M
(cη)η∈Sk′ . By (A1)k′ there is a tuple d such c0k′−1(cη)η∈S∗

k′
≡Ls
M b′d. Now,

by (∗)λ there is some global M -Ls-invariant type r(x, z) ⊇ q(x) which extends

Lstp(b′d/M) = Lstp(c0k′−1(cη)η∈S∗
k′
/M). Also, as c′ |⌣

K
M
(cη)η∈Sk′ and cη’s are

λT -saturated models (as b′ is), we get by Corollary 6.34 that

Lstp(c′/M(cη)η∈Sk′ ) does not r(x, z)-Ls-divide over M . Hence, there is an

Mc′-indiscernible Morley sequence I := ((cη,i)η∈Sk′ )i<ω in r(x, z) over M with

cη,0 = cη for each η ∈ Sk′ . By the chain condition Lemma 6.53 we have that

c′ |⌣
K
M
I. Thus, putting c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i for all i < ω, ζ ∈ ω≤k+1−k′ , and

c0k′−2 := c′, we immediately get that the tree (cη)η∈Sk′−1
satisfies (A3)k′−1.

(A1)k′−1 follows from (A1)k′ , the choice of c′ and Mc′ indiscernibility of I.

(A2)k′−1 follows from (A2)k′ and Lemma 6.52(i). This completes the inductive

construction.

Letting (c′η)η∈ω≤k be an s-indiscernible over M tree which is EMs-based on

(cη)η∈ω≤k over Mb′, we get that (c′η)η∈ω≤k satisfies (A1)1 and (A3)1 (by

Lemma 6.68 and Corollary 6.69(ii)) and is weakly q-spread-out over M by

Lemma 6.52(ii).
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Put ai := c′
0k−i for i < k. Then by Lemma 6.52(iii) we have that (ai)i<k is

CR-Morley in q overM . Also, aiaj ≡M bb′ for all i < j < k by (A1)1, and (ai)i<k

is |⌣
K
M
-independent over M by (A3)1. This completes the proof.

Lemma 6.73 (Chain lemma for |⌣
K-Morley sequences). Suppose T is thick

NSOP1 with an e.c. model M , (di)i∈I is an infinite |⌣
K
M
-Morley sequence and

a |⌣
K
M
di0 for some i0 ∈ I. Then there exists a∗di0 ≡Ls

M adi0 such that (di)i∈I is

indiscernible over Ma∗ and a∗ |⌣
K
M
(di)i∈I .

Proof. By compactness there is a |⌣
K
M
-Morley sequence (d′′i )i<λ such that

(di)i∈I ⌢ (d′′i )i<λ is M -indiscernible, where λ = λ|T |+|Mad0|+|I|. As di0 ≡Ls
M d′′0,

a |⌣
K
M
di0 and (d′′i )i<λ is |⌣

K-independent over M , we get by Corollary 6.69(iii)

that there exists a′ with a′d′′i ≡Ls
M adi0 for every i < λ and a′ |⌣

K
M
(d′′i )i<λ. Let

(d′i)i∈I be an Ma′-indiscernible sequence based on (d′′i )i<λ over Maa′(di)i∈I .

Then (by finite character and invariance of |⌣
K) a′ |⌣

K
M
(d′i)i∈I ,

(d′i)i∈I ≡Ls
M (di)i∈I (as (di)i∈I ⌢ (d′i)i∈I is indiscernible over M), and

a′d′i0 ≡
Ls
M adi0 . Hence, letting f be a Lascar strong automorphism over M

sending (d′i)i∈I to (di)i∈I and putting a∗ = f(a′) we get that a∗ |⌣
K
M
(di)i∈I and

(di)i∈I is Ma∗-indiscernible. Also a∗di0 ≡Ls
M a′d′i0 ≡

Ls
M adi0 as required.

The following is a stronger version of the independence theorem,

Theorem 6.66. The assumptions are the same, but in the conclusion we get two

extra instances of independence.

Theorem 6.74 (Strong independence theorem). Suppose T is thick NSOP1 with

an e.c. model M , a0 |⌣
K
M
b, a1 |⌣

K
M
c, b |⌣

K
M
c, and a0 ≡Ls

M a1. Then there is a

such that a ≡Ls
Mb a0, a ≡Ls

Mc a1, a |⌣
K
M
bc, b |⌣

K
M
ac, c |⌣

K
M
ab.

Proof. By a similar trick as at the start of the proof of Theorem 6.66 we may

assume that b and c enumerate λT -saturated models containing M .

By the independence theorem there is a2 with a2 ≡Ls
Mb a0, a2 ≡Ls

Mc a1 and

a2 |⌣
K
M
bc. By extension (Corollary 6.39) there is b′ ≡Ls

Mc b such that b |⌣
K
M
b′c,

so b′c |⌣
K
M
b by symmetry. By extension again, there is c′ ≡Ls

Mb c with b
′c |⌣

K
M
bc′.

As b′c ≡Ls
M bc ≡Ls

M bc′, we get by Lemma 6.72 that there is a |⌣
K
M
-Morley CR-

Morley in tp(bc/M) sequence I = (bi, ci)i∈Z with b0c0 = bc′ and b1c1 = b′c. As

a2 |⌣
K
M
bc, we get by Lemma 6.73 that there is some a such that abc′ ≡Ls

M a2bc, I

is Ma-indiscernible and a |⌣
K
M
I.

Then by monotonicity a |⌣
K
M
bc. We also have ab ≡Ls

M a2b ≡Ls
M a0b, and, by

indiscernibility, ac ≡Ls
M ac′ ≡Ls

M a2c ≡Ls
M a1c. Since b and c were assumed to

enumerate λT -saturated models we get a ≡Ls
Mb a0 and a ≡Ls

Mc a1. Also, (bi)i≤0

is an Mac-indiscernible CR-Morley sequence in tp(b/M) with b0 = b, which

gives b |⌣
K
M
ac by Corollary 6.50. Similarly, as (ci)i≥1 is an Mab-indiscernible

CR-Morley sequence in tp(c/M) with c1 = c, we get that c |⌣
K
M
ab.
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6.8 Transitivity

Lemma 6.75. If M ⊆ N are e.c. models of a thick NSOP1 theory, a |⌣
K
M
N ,

and µ is a small cardinal, then there is a CR-Morley in tp(a/N) sequence (ai)i∈µ

with a0 = a such that ai |⌣
K
M
Na<i for every i < µ.

Proof. Put λ = |Na|+ℵ0 and (using Lemma 6.55) choose a globalN -Ls-invariant

extension q of Lstp(a/N) satisfying (∗)λ.
By Lemma 6.68, compactness, finite character of Kim-independence, and an

automorphism, it is enough to find for any given k < ω a CR-Morley sequence

(ai)i<k in q over N such that ai |⌣
K
M
Na<i for every i < k.

So fix any k < ω. By backward induction on k′ = k + 1, k, . . . , 1 we will

construct trees (cη)η∈Sk′ , where Sk′ := {ξ ∈ ω
≤k : 0k

′−1 ⊴ ξ}, such that for each

k′ the tree (cη)η∈Sk′ satisfies the following conditions:

(A1)k′ For any η ∈ Sk′ we have cη |⌣
K
M
Nc▷η and cη ≡Ls

N a;

(A2)k′ (cη)η∈Sk′ is q-spread-out over N .

For k′ = k+1 we let c0k = a. For the inductive step, suppose we are done for some

k′. By (A1)k′ we have c0k′−1 ≡Ls
N a, so by (∗)λ there is a globalN -Ls-invariant type

r(x, y) ⊇ q(x) extending Lstp(c0k′−1 , (cη)η∈S∗
k′
/N) where x corresponds to c0k′−1 .

Choose a Morley sequence I := ((cη,i)η∈Sk′ )i<ω in r(x, y) over N with cη,0 = cη

for each η ∈ Sk′ . By extension (Corollary 6.39) there is c′ ≡Ls
N a with c′ |⌣

K
M
NI.

Put c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i for all i < ω, ζ ∈ ω≤k+1−k′ , and c0k′−2 := c′. Then

(A2)k′−1 follows by Lemma 6.52(i), whereas (A1)k′−1 with η ∈ S∗
k′−1 follows by

invariance of Kim-independence, and (A1)k′−1 with η = 0k
′−2 follows by the

choice of c0k′−2 = c′. Thus the inductive step, and hence the construction of the

tree (cη)η∈ω≤k = (cη)η∈S1 , is completed.

Letting (c′η)η∈ω≤k be an s-indiscernible over N tree which is EMs-based on

(cη)η∈ω≤k over Na, we get that (c′η)η∈ω≤k satisfies (A1)1 by Lemma 6.68 and

Corollary 6.69(ii), and is weakly q-spread-out over N by Lemma 6.52(ii). Thus,

by Lemma 6.52(iii), putting ai = c′
0k−i for i < k we get a CR-Morley sequence

(ai)i<k in q over N satisfying the requirements.

Lemma 6.76. Suppose T is thick NSOP1 and M ⊆ N are e.c. models of T . If

a |⌣
K
M
N and c |⌣

K
M
N then there is c′ ≡Ls

N c such that ac′ |⌣
K
M
N and a |⌣

K
N
c′.

Proof. By Lemma 6.68 there is a type Γ(x;N, a) equivalent to the condition

ax |⌣
K
M
N . By Lemma 6.75 there is a CR-Morley in tp(a/N) sequence (ai)i<λT

with a0 = a such that ai |⌣
K
M
Na<i for every i < λT . Replacing (ai)i<λT with an

N -indiscernible sequence based on it over N and moving by an automorphism

(to keep a0 = a), we may assume (ai)i<λT is N -indiscernible.

Claim 4.
⋃
i<λT

Γ(x;N, ai) has a realisation c′′ such that c′′ ≡Ls
N c.
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Proof. By induction on n < ω we will find cn ≡Ls
N c such that cn |⌣

K
M
Na<n

and cn |=
⋃
i<n Γ(x;N, ai), which is enough by compactness, N -indiscernibility

of (ai)i<λT and Corollary 6.69(ii). For n = 0 put c0 = c. Assume we have

found cn and find by extension (Corollary 6.39) some c′ ≡Ls
M c be such that

c′ |⌣
K
M
an. By Theorem 6.74 there is cn+1 with cn+1a<n ≡Ls

N cna<n, cn+1an ≡Ls
M

c′an, cn+1 |⌣
K
M
Na<n+1 and ancn+1 |⌣

K
M
Na<n. In particular cn+1 ≡Ls

N cn ≡Ls
N c

and cn+1 |=
⋃
i<n+1 Γ(x;N, ai).

Let c′′ be given by the claim, and let (a′i)i<ω be an Nc′′-indiscernible sequence

based on (ai)i<λT over Nc′′a. Then a′0 ≡Ls
N a (as ai ≡Ls

N a for every i < λT ) so

there is a Lascar strong automorphism f over N sending a′0 to a = a0. Put

c′ := f(c′′). Then (f(a′i))i<ω is an Nc′-indiscernible CR-Morley sequence in

tp(a/N) starting with a, so c′ |⌣
K
N
a by Corollary 6.50. Also, c′ |= Γ(x;N, a), so

ac′ |⌣
K
M
N by the choice of Γ, and we are done.

Lemma 6.77. Suppose T is thick NSOP1 with e.c. models M ⊆ N and a |⌣
K
M
N .

Then there is a |⌣
K
N
-Morley CR-Morley in tp(a/M) sequence (ai)i<ω with a = a0.

Proof. By extension (Corollary 6.39) we may assume that a is a λT -saturated

model extending M . By Lemma 6.55 there is a global M -Ls-invariant extension

q(x) ⊇ tp(a/M) satisfying the property (∗)λ with λ = |a|+ ℵ0. We claim that it

is enough to find for any given k < ω a CR-Morley sequence (ai)i<k in q over M

such that ai |⌣
K
N
a<i and ai ≡N a for every i < k: indeed, if we prove this, then,

since the condition (ai ≡N a) ∧ (ai |⌣
K
N
a<i) is type-definable by Lemma 6.68,

we can find by compactness such a sequence of length λ|T |+|Na|. Then taking

an N -indiscernible sequence based on (ai)i<λ|T |+|Na| over N and moving it by an

automorphism we obtain a desired sequence.

So fix any k < ω. By backward induction on k′ = k+1, k, . . . , 1 we will define

trees (cη)η∈Sk′ , where Sk′ := {ξ ∈ ω
≤k : 0k

′−1 ⊴ ξ}, such that for each k′ the tree

(cη)η∈Sk′ satisfies the following conditions:

(A1)k′ For any η ∈ Sk′ we have cη |⌣
K
N
c▷η and cη ≡Ls

N a;

(A2)k′ (cη)η∈Sk′ is q-spread-out over M ;

(A3)k′ (cη)η∈Sk′ |⌣
K
M
N .

For k′ = k + 1 we let c0k = a. For the inductive step, suppose we are done

for some k′. By (∗)λ and (A1)k′ there is a global M -invariant type r(x, y)

extending Lstp(c0k′−1 , (cη)η∈S∗
k′
/M) and q(x). As cη’s are λT -saturated models,

we get by (A3)k′ and Corollary 6.34 that Lstp(N/(cη)η∈Sk′ ) does not r-Ls-divide

over M . Thus there is an N -indiscernible Morley sequence I = ((cη,i)η∈Sk′ )i<ω

in r(x, y) over M with cη,0 = cη for each η ∈ Sk′ and I |⌣
K
M
N . By Lemma 6.76

there is a′ ≡Ls
N a such that a′ |⌣

K
N
I and a′I |⌣

K
M
N . Put c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i
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for all i < ω, ζ ∈ ω≤k+1−k′ , and c0k′−2 := a′. Then we get (A2)k′−1 by

Lemma 6.52(i), (A1)k′−1, using that a′ |⌣
K
N
I, and (A3)k′−1 holds as a′I |⌣

K
M
N .

Thus the inductive step, and hence the construction of the tree

(cη)η∈ω≤k = (cη)η∈S1 , is completed.

Letting (c′η)η∈ω≤k be an s-indiscernible over N tree which is EMs-based on

(cη)η∈ω≤k over Na, we get that (c′η)η∈ω≤k is weakly q-spread-out over M by

Lemma 6.52(ii) and satisfies (A1)1 by Lemma 6.68 and Corollary 6.69(ii). Thus

putting ai = c′
0k−i for i < k we get by Lemma 6.52(iii) a CR-Morley sequence

(ai)i<k in q over M satisfying the requirements.

Theorem 6.78 (Transitivity). Suppose T is thick NSOP1 with e.c. models M ⊆
N . If a |⌣

K
M
N and a |⌣

K
N
c, then a |⌣

K
M
Nc.

Proof. By Lemma 6.77 there is a |⌣
K
N
-Morley CR-Morley in tp(a/M) sequence

I = (ai)i<ω with a0 = a. As a |⌣
K
N
c, we get by Lemma 6.73 an Nc-indiscernible

sequence I ′ = (a′i)i<ω ≡Na I. As I ′ is also CR-Morley in tp(a/M) and a′0 = a,

we get by Corollary 6.50 that Nc |⌣
K
M
a, so by symmetry we are done.

6.9 Kim-Pillay style theorem

We can characterise thick NSOP1 theories and Kim-independence by a

Kim-Pillay style theorem, see Theorem 6.79 below. This has some overlap with

the general canonicity theorem for NSOP1-like independence relations in

AECats, Theorem 5.6. However, there are some important differences. The

most important difference is that the theorem below links the existence of a

certain (NSOP1-like) independence relation to the combinatorial property of

being NSOP1, for thick positive theories. That is, it states that a thick positive

theory is NSOP1 if and only if there is a nice enough independence relation.

This link is not present in the theorem for AECats, we do not even have a

combinatorial definition of being NSOP1 in that generality (see also section

7.2). Another subtle difference is that in the theorem below we show that the

independence relation must be given by Kim-dividing instead of long

Kim-dividing. See Remark 4.51 for a more detailed comparison between those

two notions.

Theorem 6.79. Let T be a thick positive theory. Then T is NSOP1 if and only

if there is an automorphism invariant ternary relation |⌣ on small subsets of

the monster model, only allowing e.c. models in the base, satisfying the following

properties:

Finite Character if a |⌣M
b0 for all finite b0 ⊆ b then a |⌣M

b.

Existence a |⌣M
M for any model M .
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Monotonicity aa′ |⌣M
bb′ implies a |⌣M

b.

Symmetry a |⌣M
b implies b |⌣M

a.

Chain Local Character let a be a finite tuple and κ > |T | be regular then

for every continuous chain (Mi)i<κ, with |Mi| < κ for all i, there is i < κ

such that a |⌣Mi
M , where M =

⋃
i<κMi.

Independence Theorem if a |⌣M
b, a′ |⌣M

c and b |⌣M
c with a ≡Ls

M a′ then

there is a′′ such that a′′b ≡Ls
M ab, a′′c ≡Ls

M a′c and a′′ |⌣M
bc.

Extension if a |⌣M
b then for any c there is a′ ≡Mb a such that a′ |⌣M

bc.

Transitivity if a |⌣M
N and a |⌣N

b with M ⊆ N then a |⌣M
Nb.

Furthermore, in this case |⌣ = |⌣
K .

The properties in Theorem 6.79 are not as strong as they could be. For

example, we actually proved the strong independence theorem for |⌣
K , see

Theorem 6.74. The slightly simpler formulation of the properties in

Theorem 6.79 is easier to verify for an arbitrary independence relation |⌣.

Then it follows immediately from |⌣ = |⌣
K that such an independence relation

|⌣ also satisfies the stronger formulations.

Remark 6.80. In the existing Kim-Pillay style theorems for full first-order logic

[KR20, Theorem 9.1], [KR19, Theorem 6.11] and [CKR20, Theorem 5.1] there

are still various properties that mention syntax. Our Theorem 6.79 is completely

syntax-free. One syntax-dependent property is mentioned in all of the above

theorems, and is called Strong Finite Character: if a ̸ |⌣M
b then there is

φ(x, b,m) ∈ tp(a/Mb) such that for any a′ |= φ(x, b,m) we have a′ ̸ |⌣M
b.

We could replace Finite Character and Chain Local Character in

Theorem 6.79 by Strong Finite Character. Obviously Strong Finite

Character implies Finite Character and modulo the other properties it

also implies Chain Local Character by Lemma 6.86 and Lemma 6.87.

Remark 6.81. To conclude that a theory is NSOP1 it is enough to find an

independence relation with the properties Strong Finite Character,

Existence, Monotonicity, Symmetry and Independence Theorem, see

[HK21, Theorem 6.4]. However, that does not guarantee that the independence

relation is also Kim-independence, see [KR20, Remark 9.39] for an example

(already in full first-order logic). We also point out that [HK21, Theorem 6.4]

says nothing about the properties that Kim-independence generally has in

NSOP1 theories. Finally, our proof is also different because we do not rely on

the syntactic property Strong Finite Character.



Chapter 6: Kim-independence in positive logic 137

Remark 6.82. We point out a minor difference between Theorem 6.66 and

Independence Theorem in Theorem 6.79. In the former we get a′′ ≡Ls
Mb a,

which is generally stronger than the a′′b ≡Ls
M ab in the latter (and similar for

c). Again, the reason is that the latter is easier to verify. Definitely in semi-

Hausdorff theories, because then a′′b ≡Ls
M ab is equivalent to a′′b ≡M ab, so we do

not have to worry about Lascar strong types. For a concrete example of this, see

Fact 6.97(i). The only place where Independence Theorem is used, namely to

get consistency along a certain sequence, we only need this weaker version.

We have proved that |⌣
K has all properties in Theorem 6.79, except for

Chain Local Character. We will actually prove a stronger version, namely

Club Local Character, to really show that it is actually an NSOP1-like

independence relation as defined for AECats in Definition 4.9. We translate the

necessary definitions into the more concrete setting that we work in here. We

already mentioned it in Remark 4.10(4), but we mention it here again: these

ideas about using club sets are due to [KRS17].

Definition 6.83. Let κ be a regular cardinal and X any set. We write [X]<κ =

{Y ⊆ X : |Y | < κ}. We call a family of subsets F ⊆ [X]<κ ...

� ... unbounded if for every Z ∈ [X]<κ there is Y ∈ F with Z ⊆ Y .

� ... closed if for every chain (Yi)i<γ in F (i.e. i ≤ j < γ implies Yi ⊆ Yj)

with γ < κ we have that
⋃
i<γ Yi ∈ F .

� ... club if F is closed and unbounded.

Definition 6.84. We say that an independence relation |⌣ has Club Local

Character if there is a regular cardinal µ such that for any finite a, any e.c.

model M and any regular κ ≥ µ there is a club set of e.c. models F ⊆ [M ]<κ

with a |⌣M0
M for all M0 ∈ F .

Remark 6.85. There is a slight difference between the two statements of Club

Local Character. In the concrete statement (Definition 6.84) we talk about

the existence of one cardinal µ and we require a to be finite, while in the AECat

version (Definition 4.8) the cardinality of a can be anything and we require there

to be a regular cardinal Υ(λ) that works whenever |a| < λ. So a priori it seems

like Definition 6.84 only defines Club Local Character for λ = ℵ0 with

Υ(ℵ0) = µ. However, the full version follows from this, if we also assume Finite

Character.

To see this, we set Υ(λ) = λ+µ. Now let a be any infinite tuple with |a| < λ,

let M be any e.c. model and let κ ≥ Υ(λ). For every finite a0 ⊆ a there is some

club set of e.c. models Fa0 ⊆ [M ]<κ such that a0 |⌣M0
M for all M0 ∈ Fa0 . So

{Fa0 : a0 ∈ [a]<ω} is a family of club sets and

|{Fa0 : a0 ∈ [a]<ω}| ≤ |a|<ω = |a| < λ ≤ Υ(λ) ≤ κ.
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By [Jec03, Theorem 8.22] the intersection of < κ club sets in [M ]<κ is again a

club set. So F =
⋂
{Fa0 : a0 ∈ [a]<ω} is a club set of e.c. models in [M ]<κ. Now

for anyM0 ∈ F we have by construction that a0 |⌣M0
M for all finite a0 ⊆ a, and

hence a |⌣M0
M by Finite Character. So we do indeed have the full version

of Club Local Character, as stated in Definition 4.8.

Lemma 6.86. Let |⌣ satisfy Strong Finite Character, Existence,

Monotonicity and Symmetry. Then a |⌣
u
M
b implies a |⌣M

b.

Proof. Exactly as in [CR16, Proposition 5.8].

Lemma 6.87. Let |⌣ be as in Lemma 6.86. Then it satisfies satisfies Club

Local Character, and thus in particular Chain Local Character.

Proof. By Lemma 6.86 the proof from [KRS17, Theorem 3.2] applies. The proof

is actually quite elegant and instructive, so we repeat it here for completeness

sake.

Let a be finite and M be any e.c. model. We will prove that for regular

κ ≥ |T |+ there is a club set F ⊆ [M ]<κ of e.c. models such that for all M0 ∈ F
we have a |⌣M0

M .

Write p(x) = tp(a/M). We define

F = {M0 ∈ [M ]<κ :M0 is an e.c. model and p is an heir of p|M0}.

We first claim that F is a club set in [M ]<κ. The fact that F is closed follows

directly from the definition of being and heir, together with the fact that the

union of a chain of e.c. models is again an e.c. model.

To prove unboundedness we let A ⊆M with |A| < κ. We expand the structure

M in a way that forces p to be definable. That is, we expand our language L
to Lp as follows: for every L-formula φ(x, y) we add a relation Rφ(y). Then we

expand M to and Lp-structure Mp by interpreting every such Rφ(y) as {b ∈M :

φ(x, b) ∈ p(x)}. This does not change the Löwenheim-Skolem number, so there

must be an Lp-elementary substructure Np of Mp that contains A with |Np| < κ.

We let N be the L-reduct of Np. Then we have that p is an heir of p|N . Finally,
any elementary substructure of and e.c. model is again an e.c. model, so N ∈ F
while also A ⊆ N . This completes the proof of our claim that F is a club set.

We are now left to show that a |⌣M0
M for all M0 ∈ F . So let M0 ∈ F . We

have by construction that a |⌣
h
M0

M . By the duality between heirs and coheirs,

see Remark 6.5, we have M |⌣
u
M0

a. It then follows from Lemma 6.86 that

M |⌣M0
a, and thus a |⌣M0

M by Symmetry.

The final sentence follows just as in Lemma 4.15.

Corollary 6.88 (Local Character). In a thick NSOP1 theory |⌣
K satisfies Club

Local Character and hence also Chain Local Character.
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The notion of long dividing, Definition 4.32, will actually be useful in the proof

of Theorem 6.79. The reason for this is that it allows us to directly work with

a subsequence of some very long sequence, rather than just with sequence that

is based on that very long sequence. In particular, if we have a chain of models

that witnesses independence of the very long sequence (see Definition 6.90) then

we can use a subchain as witnesses of independence for a subsequence. This will

be relevant in Proposition 6.93 and we discuss this further after that proposition.

Even though we have defined these notions before, we will recall them here and

directly translate them into this more concrete setting.

Definition 6.89. We say that a type p(x, b) = tp(a/Cb) long divides over C if

there is µ such that for every λ ≥ µ there is a sequence (bi)i<λ with bi ≡C b for

all i < λ, such that for some κ < λ and every I ⊆ λ with |I| ≥ κ we have that⋃
i∈I p(x, bi) is inconsistent. We write a |⌣

ld
C
b if tp(a/Cb) does not long divide

over C.

We also recall the notion of witnesses of independence from Definition 4.27,

and directly translate it into this more concrete setting.

Definition 6.90. Let |⌣ be some independence relation and let (ai)i<κ be some

sequence. Suppose furthermore that there is a continuous chain (Mi)i<κ of e.c.

models, with M ⊆ M0, such that a<i ⊆ Mi and ai |⌣M
Mi for all i < κ. Then

we call (Mi)i<κ witnesses of |⌣M
-independence.

Lemma 6.91. We have that a |⌣
iLs
C

b implies a |⌣
ld
C
b.

Proof. Let p(x, y) = tp(ab/C) and let λ be any regular cardinal bigger than the

number of Lascar strong types over C (compatible with b). Let (bi)i<λ be any

sequence in tp(b/C). By choice of λ there must be I ⊆ λ such that bi ≡Ls
C bj for

all i, j ∈ I and |I| = λ. Pick some i0 ∈ I and let a′ be such that a′bi0 ≡C ab.

By assumption a |⌣
iLs
C

b, so a′ |⌣
iLs
C

bi0 . Let q ⊇ tp(a′/Cbi0) be a global C-

Ls-invariant extension and let α |= q. Then αbi ≡Ls
C αbi0 for all i ∈ I, so⋃

{p(x, bi) : i ∈ I} is consistent.

Remark 6.92. Let |⌣ be an independence relation satisfying Existence and

Extension, let a be any tuple and let M be any model. Then as usual we

can inductively build arbitrarily long sequences (ai)i<κ together with witnesses

(Mi)i<κ of |⌣M
-independence, such that a ≡M ai for all i < κ. In fact, this is

exactly Proposition 4.28.

Proposition 6.93. Let |⌣ be as in Theorem 6.79 then a |⌣
ld
M
b implies a |⌣M

b.

Proof. We want to apply Theorem 5.1. We have to be a little bit careful, because

we only have Chain Local Character instead of Club Local Character

and only when the left side of the independence relation, in this case a, is finite.
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However, the proof of Theorem 5.1 only uses Chain Local Character and

only applies it with an isomorphic copy of a on the left side. So we only need to

show that we can reduce to the case where a is finite.

Indeed, this is not hard to do. This is because |⌣
ld has Left-Monotonicity,

see Proposition 4.40. It is then enough to check only for finite a, by Finite

Character and Symmetry of |⌣.

We note that in the above proof (so actually, the proof of Theorem 5.1) it is

relevant that we work with long dividing instead of dividing. This is because the

application of Chain Local Character only really makes sense if the chain

consists of e.c. models, as we only allow e.c. models in the base. At the same

time we need those e.c. models to be witnesses of independence for the rest of the

proof to work. If we would try to follow the same proof just for dividing then we

would have to work with indiscernible sequences. Finding an indiscernible |⌣-

independent sequence is not an issue. This can be done as usual: we first build

a very long |⌣-independent sequence and then base an indiscernible sequence on

it. This preserves being |⌣-independent due to Finite Character, but it does

not carry over the chain of witnesses of independence. In long dividing this is not

an issue, because we work directly with the very long sequence we constructed.

So any ‘decorations’, such as the chain of witnesses of independence, are then at

our disposal.

The following lemma and its proof are a weaker version of the chain lemma

for |⌣
K-Morley sequences (Lemma 6.73) that works for long enough

|⌣
K-independent sequences.

Lemma 6.94. Let T be a thick NSOP1 theory. Suppose that a |⌣
K
M
b. Let (bi)i<κ

be an |⌣
K
M
-independent sequence, where κ is a regular cardinal larger than the

number of Lascar strong types over M (compatible with b) and where b ≡M bi

for all i < κ. Then there is I ⊆ κ with |I| = κ such that
⋃
i∈I p(x, bi) does not

Kim-divide (and is thus consistent), where p(x, y) = tp(ab/M).

Proof. By the choice of κ there is I ⊆ κ with |I| = κ such that bi ≡Ls
M bj for all

i, j ∈ I. We conclude by the generalised independence theorem

(Corollary 6.69(iii)).

Proof of Theorem 6.79. We already proved that |⌣
K has all the listed

properties if T is NSOP1. So now we assume that we have an abstract

independence relation |⌣ satisfying the listed properties and we prove that

|⌣ = |⌣
K and that T is NSOP1.

The direction a |⌣M
b =⇒ a |⌣

K
M
b. This proof is based on the proof of

the same direction in [KR20, Theorem 9.1]. Let p(x, b) = tp(a/Mb) and let q

be any global M -Ls-invariant extension of tp(b/M). Then a Morley sequence

(bi)i<ω in q is a |⌣M
-Morley sequence by Lemma 6.91 and Proposition 6.93. By
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the standard Independence Theorem argument we thus find that
⋃
i<ω p(x, bi)

is consistent, hence a |⌣
K
M
b.

The theory T is NSOP1. We prove weak symmetry as in Theorem 6.59. So

suppose that a |⌣
iLs
M

b. Then combining Lemma 6.91 and Proposition 6.93 again

we get a |⌣M
b. So by Symmetry we have b |⌣M

a and then b |⌣
K
M
a follows from

the above.

The direction a |⌣
K
M
b =⇒ a |⌣M

b. This proof is based on the proof

of the same direction in [CKR20, Theorem 5.1]. By Remark 6.92 we obtain a

long enough sequence (bi)i<κ with witnesses of |⌣M
-independence (Mi)i<κ and

bi ≡M b for all i < κ. By the above the (Mi)i<κ are also witnesses of |⌣
K
M
-

independence. So by Lemma 6.94 there is I ⊆ κ with order type κ such that⋃
i∈I p(x, bi) is consistent, where p(x, b) = tp(a/Mb). Let a′ be a realisation of this

set. By deleting an end-segment, Monotonicity and downward Löwenheim-

Skolem we may assume that (Mi)i∈I is a continuous chain with |Mi| ≤ |T |+ |M |
for all i ∈ I and I has order type (|T |+ |M |)+. By Chain Local Character

there is i0 ∈ I such that a′ |⌣Mi0

MI , whereMI =
⋃
i∈IMi, and thus a′ |⌣Mi0

bi0 .

We also have bi0 |⌣M
Mi0 so by Symmetry and Transitivity we get a′ |⌣M

bi0 ,

hence a |⌣M
b.

6.10 Examples

In this section we present some examples of thick NSOP1 theories. First, we

recall Poizat’s example of a thick non-semi-Hausdorff theory (which is bounded

hence NSOP1). Next, we look at (the JEP refinements of) the positive theory of

existentially closed exponential fields, which was shown to be NSOP1 in [HK21]

by constructing a suitable independence relation. We deduce from the known

results that this theory is Hausdorff (hence thick), and then we show that

Kim-independence coincides in it with the independence relation studied in

[HK21]. Finally, we show that NSOP1 is preserved under taking

hyperimaginary extensions; in particular, the hyperimaginary extension of an

arbitrary NSOP1 theory in full first-order logic is a Hausdorff NSOP1 theory.

6.10.1 A thick, non-semi-Hausdorff theory

In Example 2.24 we discussed an example of a theory T that is thick, but not

semi-Hausdorff. The e.c. models of T are bounded, so T is NSOP1. In that

example we also show that there is a type over some e.c. model M that does not

extend to a global M -invariant type. This shows that, in the definition of Kim-

independence in thick theories, it is necessary to work with Ls-invariant types

rather than just invariant types.
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6.10.2 Existentially closed exponential fields

In [HK21] the class of existentially closed exponential fields is studied using

positive logic. They prove that this is NSOP1 by providing a nice enough

independence relation. We verify that this independence relation is indeed

Kim-independence.

Definition 6.95. An exponential field or E-field is a field of characteristic zero

with a group homomorphism E from the additive group to the multiplicative

group. We call such a field an EA-field if it is also an algebraically closed field.

We can axiomatise EA-fields by a positive theory and call this theory TEA-field.

The existentially closed exponential fields are then the e.c. models of TEA-field.

Our definition is slightly different from [HK21] where they consider the class

of e.c. models of just the theory of E-fields. However, these classes of e.c. models

coincide, see [HK21, Proposition 3.3] and the discussion after it.

There are also many different JEP-refinements, see [HK21, Corollary 4.6]. To

work in a monster model we need to fix one such JEP-refinement. This is not an

issue, since everything we discuss here works in any JEP-refinement.

Definition 6.96 ([HK21, Definition 5.1]). For any set A write ⟨A⟩EA for the

smallest EA-subfield containing A. We define an independence notion |⌣ as

follows

A |⌣
C

B ⇐⇒ ⟨AC⟩EA
ACF

|⌣
⟨C⟩EA

⟨BC⟩EA,

where |⌣
ACF is the usual independence relation in algebraically closed fields.

Note that the independence relation |⌣ actually makes sense over arbitrary

sets. It would be interesting to compare this once Kim-independence over

arbitrary sets has been developed in positive logic (see Question 6.105 below).

For now we will restrict ourselves to working over e.c. models.

Fact 6.97. We recall the following facts about TEA-field.

(i) The independence relation |⌣ satisfies Strong Finite Character,

Existence, Monotonicity, Symmetry, Independence Theorem.

(ii) Any span F1 ← F → F2 of embeddings of EA-fields can be amalgamated

in such a way that, after embedding the result into the monster model,

F1 |⌣F
F2.

(iii) For EA-fields F1 and F2, if qftp(F1) = qftp(F2) then tp(F1) = tp(F2).

Proof. (i) This is [HK21, Theorem 6.5]. They do not mention Lascar strong

types in their formulation of Independence Theorem. However, as we will see
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in Proposition 6.98, the theory is Hausdorff, so the types over e.c. models are

Lascar strong types.

(ii) This is [HK21, Theorem 4.3]. The fact that F1 |⌣F
F2 is not mentioned

in [HK21, Theorem 4.3], but it is direct from their proof.

(iii) This follows directly from (ii).

To apply our theorem, Theorem 6.79, we need to verify a few more things.

Proposition 6.98. The theory TEA-field is Hausdorff.

Proof. By Fact 6.97(ii) the models of TEA-field are already amalgamation bases,

so the models of T ec
EA-field are in particular also amalgamation bases. We can thus

apply Fact 2.21 to conclude that TEA-field is Hausdorff.

Note that Hausdorff is the best we can get, because [HK21, Corollary 3.8]

tells us that TEA-field cannot be Boolean. They prove this by showing that in

every e.c. model F of TEA-field we have for all a ∈ F that

a ∈ Z ⇐⇒ F |= ∀x(E(x) = 1→ E(ax) = 1),

so if the theory were Boolean this would contradict compactness.

Proposition 6.99. The independence relation |⌣ in TEA-field satisfies

Extension and Transitivity.

Proof. We first proveTransitivity. Let A |⌣B
C and A |⌣C

D withB ⊆ C. So
we have ⟨AB⟩EA |⌣

ACF
⟨B⟩EA⟨BC⟩EA, which is just ⟨AB⟩EA |⌣

ACF
⟨B⟩EA⟨C⟩EA. We also

have ⟨AC⟩EA |⌣
ACF
⟨C⟩EA⟨CD⟩EA and thus by monotonicity of ACF-independence

⟨AB⟩EA |⌣
ACF
⟨C⟩EA⟨CD⟩EA. Then by transitivity of ACF-independence the result

follows.

Now we prove Extension. Let a |⌣C
b and let d be arbitrary, so from the

definition we directly get a |⌣C
Cb. We apply Fact 6.97(ii) to

⟨Cab⟩EA ⊇ ⟨Cb⟩EA ⊆ ⟨Cbd⟩EA, and we can embed the amalgamation in the

monster in such a way that ⟨Cbd⟩EA remains the same. So we get some EA-field

F with qftp(F/⟨Cb⟩EA) = qftp(⟨Cab⟩EA/⟨Cb⟩EA) and F |⌣⟨Cb⟩EA⟨Cbd⟩EA,
which simplifies to F |⌣Cb

Cbd. By Fact 6.97(iii) and restricting ourselves to the

copy a′ ∈ F of a we thus have tp(a′/Cb) = tp(a/Cb). So we get a′ |⌣C
Cb and

a′ |⌣Cb
Cbd, and a′ |⌣C

bd follows from Transitivity and Monotonicity.

Corollary 6.100. The independence relation |⌣ in TEA-field is the same as Kim-

independence over e.c. models.

Proof. This is a direct application of Theorem 6.79, using Remark 6.80 to replace

Local Character by Strong Finite Character.
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In [HK21] it is shown that TEA-field cannot be simple. They do this by

showing that it has a certain combinatorial property, called TP2, which implies

that the theory cannot be simple (see [HK21, Propositions 6.2 and A.5]). Here

we present another way to conclude that the theory cannot be simple, using

independence relations. Much like the reasoning after Theorem 5.7, we will aim

to show that Base-Monotonicity fails for |⌣ in TEA-field, see Example 6.101

below. Then if TEA-field were simple, we would have that dividing yields a

simple independence relation by work of Ben-Yaacov [BY03b, BY03c]. By

canonicity—here we can either use the AECat version, Theorem 5.7, or the

positive logic version, Theorem 6.79—we would then have that this simple

independence relation coincides with |⌣. That would mean that |⌣ satisfies

Base-Monotonicity, a contradiction.

Example 6.101. This example is due to Jonathan Kirby. We construct a

counterexample to Base-Monotonicity in TEA-field.

Let C be any EA-field. Let F be the field F = C(a, d, b1, b2)
alg, where

a, d, b1, b2 are algebraically independent over C. We consider various

algebraically closed subfields of F , and will make them into EA-fields. Let

A = C(a)alg and D = C(d)alg, and choose any exponential maps on them

extending that on C to make them EA-field extensions of C. Let

B = D(b1, b2)
alg, and choose any exponential map making it an EA-field

extension of D.

Let t = ab1+b2 ∈ F . Then t is transcendental over A∪D, and transcendental

over B. Let E = A(d, t)alg. The point ad ∈ E is not in the Q-linear span A+B.

Indeed, as a Q-vector subspace of F , E is of the form A+D+V where V ∩B = D.

We have ad ∈ V . So we can extend the exponential map from A + B to an

exponential map on E such that exp(ad) = t. Then we choose any exponential

map on F extending that on E +B. The EA-closure of A ∪D in F is then E.

We have the following diagram of EA-fields, with transcendence degrees of

each extension as given.

F

E B

A D

C

1 1

2

22

1 1

Now we have C ⊆ D ⊆ B and by considering transcendence degrees, we see

that A |⌣
ACF
C

B and thus A |⌣C
B but E ̸ |⌣

ACF
D

B, that is, A ̸ |⌣D
B becase E =

⟨AD⟩EA. So Base-Monotonicity fails.
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6.10.3 Hyperimaginaries

We continue the study of hyperimaginaries from section 2.2. We stress once more

that in what follows T is just any positive theory. However, the particular case

where T is a theory in full first-order logic is worth discussing. From section

2.2 we already know that if we start with a theory T in full first-order logic and

add hyperimaginaries to obtain T E we do remain in the framework of positive

logic and obtain a Hausdorff theory (Theorem 2.46). So in particular T E is thick

and our work in this chapter applies. We can say even more, namely that being

NSOP1 is preserved by adding hyperimaginaries, see Theorem 6.102 below. So

if we start with a first-order NSOP1 theory T then T E is a Hausdorff NSOP1

theory and all the work on Kim-dividing in this chapter applies.

Theorem 6.102. The theory T is NSOP1 if and only if T E is NSOP1.

The technique in the proof of Theorem 6.102 can also be applied to other

combinatorial properties, such as the order property, TP, TP2, IP, etc. Of course,

to do this, one first needs to write down a proper definition of these properties

for positive logic, such as Definition 6.6 for SOP1 or [HK21, Definition 6.1] for

TP2.

Proof. One direction is trivial: if T has a formula with SOP1, then so has T E .

We prove the other direction: suppose that T E has a formula with SOP1, we

will show that T already has a formula with SOP1. So let φ(x, y;w, z) be an

LE -formula with SOP1. Here x and w are tuples of real variables, and y and z

are tuples of hyperimaginary variables. Let (aη[bη] : η ∈ 2<ω) and

ψ(w1, z1;w2, z2) be witnesses of SOP1. Let Σφ(x, yr;w, zr) and

Σψ(w1, z1,r;w2, z2,r) be as in Lemma 2.49. Then

Σψ(w1, z1,r;w2, z2,r) ∪ Σφ(x, yr, w1; z1,r) ∪ Σφ(x, yr, w2; z2,r)

is inconsistent. Hence there are finite φ′ ∈ Σφ and ψ′ ∈ Σψ that are inconsistent

with each other. That is, the following is a consequence of T :

¬∃xyrw1z1,rw2z2,r(ψ
′(w1, z1,r, w2, z2,r) ∧ φ′(x, yr, w1, z1,r) ∧ φ′(x, yr, w2, z2,r)).

(6.10.1)

As usual, any variables not actually appearing in the formulas should be ignored

in the existential quantifier. We claim that φ′ has SOP1, which is witnessed by

(aηbη : η ∈ 2<ω) and ψ′. We check the items in Definition 6.6.

(i) Let σ ∈ 2ω, then {φ(x, y, aσ|n , [bσ|n ]) : n < ω} is consistent. So there are

c and [d] such that |= φ(c, [d], aσ|n , [bσ|n ]) for all n < ω. That is, we have

Σφ(c, d, aσ|n , bσ|n) for all n < ω. In particular {φ′(x, yr, aσ|n , bσ|n) : n < ω}
is consistent.
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(ii) By construction, see (6.10.1).

(iii) Let η, ν ∈ ω<ω such that η⌢0 ⪯ ν. Then |= ψ(aη⌢1, [bη⌢1], aν , [bν ]), so

|= Σψ(aη⌢1, bη⌢1, aν , bν) and in particular |= ψ′(aη⌢1, bη⌢1, aν , bν).

To develop Kim-dividing over arbitrary sets one needs to assume the existence

axiom for forking, see Definition 6.103 below. In full first-order logic this has

been successfully done in for example [DKR19, CKR20]. For theories in full first-

order logic this is a natural assumption, because it has been verified for many

NSOP1 theories, see [DKR19, Fact 2.14]. Below we show that this assumption is

preserved when adding hyperimaginaries. We also note that it is closely related

to the B-existence axiom for AECats, see Example 4.50(iii).

Definition 6.103. We say that a theory satisfies the existence axiom for forking

if tp(a/B) does not fork over B for any a and B.

Theorem 6.104. The theory T satisfies the existence axiom for forking if and

only if T E satisfies the existence axiom for forking.

Proof. One direction is immediate: anything witnessing forking in T will also

be in T E . We prove the other direction. So assume that there is tp(a[b]/C[D])

that forks over C[D]. That is, it implies a (possibly infinite) disjunction∨
i∈I φi(xy, e

i[f i]) with φi(xy, e
i[f i]) dividing over C[D] for each i ∈ I. For each

i ∈ I we let (eij [f
i
j ])j∈J be a long enough C[D]-indiscernible sequence with

ei0[f
i
0] = ei[f i] such that {φi(xy, eij [f ij ]) : j ∈ J} is inconsistent. By Lemma 2.50

we may assume that eijf
i
j ≡ eif i for every j ∈ J . We claim that Σφi(x, yr, e

i, f i)

(see Lemma 2.49) divides over CD for all i ∈ I. Note that Σφi possibly contains

parameters from CD.

To prove the claim let k be such that {φi(xy, eij [f ij ]) : j ∈ J0} is inconsistent
for all J0 ⊆ J with |J0| = k. So

⋃
j∈J0 Σφi(x, yr, e

i
j , f

i
j) is inconsistent for all such

J0. Let (enfn)n<ω be a CD-indiscernible sequence based on (eijf
i
j)j∈J over CD.

Then there are j1 < . . . < jk ∈ J such that e1f1 . . . ekfk ≡CD eij1f
i
j1
. . . eijkf

i
jk
, so⋃

n<ω Σφi(x, yr, en, fn) is inconsistent. We conclude that Σφi(x, yr, e
i, f i) divides

over CD, as claimed.

By the claim there is ψi(x, yr, e
i, f i) that is implied by Σφi(x, yr, e

i, f i) such

that ψi(x, yr, e
i, f i) divides over CD, for all i ∈ I. Let p = tp(a[b]C[D]), then

Σp(x, yr, C,D) implies
∨
i∈I Σφi(x, yr, e

i, f i). We thus have that Σp(x, yr, C,D)

implies
∨
i∈I ψi(x, yr, e

i, f i). So Σp(x, yr, C,D) forks over CD.

In the discussion following Definition 4.1 in [Kim21] it is stated that one may

produce results for Kim-independence for the hyperimaginary extension Mheq of

a first-order structure M parallel with those for first-order structures, provided
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thatMheq satisfies the existence axiom for forking (which, by the above theorem,

is equivalent to the assumption that T satisfies this axiom). More generally, one

can ask if our results on Kim-independence over models in thick NSOP1 theories

can be extended to arbitrary base sets assuming the existence axiom for forking:

Question 6.105. Suppose T is a thick positive NSOP1 theory satisfying the

existence axiom for forking. Can |⌣
K be extended to an automorphism-invariant

ternary relation between arbitrary small sets which satisfies the properties listed

in Theorem 6.79?



7

Final remarks

We make some final remarks and summarise the questions that have been left

unanswered. In section 7.1 we discuss the connection between long dividing,

isi-dividing and dividing, and the notions that are based on that. In section

7.2 we ask if we can link the existence of certain nice independence relations

in AECats to combinatorial properties. Finally, section 7.3 is about developing

Kim-independence in positive logic over arbitrary (small) sets.

7.1 Long dividing, isi-dividing and dividing

In section 4.4 we introduced the notions of long dividing, isi-dividing, isi-forking

and long Kim-dividing. These are based on the classical notions of dividing,

dividing (again), forking and Kim-dividing respectively. These classical notions

are defined using indiscernible sequences, and indiscernible sequences make sense

in the context of a finitely short AECats (see section 4.5). So we will state the

questions in that context, but they would already be interesting in the more

concrete settings of positive logic or even full first-order logic.

Due to Proposition 4.34 we have that dividing implies both long dividing and

isi-dividing. The main question is then the converse.

Question 4.37, repeated. Do long dividing and isi-dividing imply dividing in

finitely short AECats?

If the answer to the above question is “yes” then dividing, long dividing

and isi-dividing all coincide (in finitely short AECats). This would then directly

imply that forking and isi-forking coincide (see Remark 4.42). Long Kim-dividing

is defined with respect to non-isi-forking sequences, while Kim-dividing is defined

with respect to indiscernible non-forking sequences (i.e. Morley sequences). So if

isi-forking and forking coincide we only need to take care of the indiscernibility to

prove that Kim-dividing and long Kim-dividing coincide. This is exactly the same

difficulty as we have in showing that dividing and long dividing (or isi-dividing)

coincide. So it is highly likely, although not automatic, that the same technique

applies and that we also get that Kim-dividing and long Kim-dividing coincide.

We note once more that in the presence of a proper class of Ramsey cardinals

all these notions coincide. That is, Proposition 4.35 tells us that in that case
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dividing, long dividing and isi-dividing all coincide. So forking and isi-forking

also coincide. Then following Remark 4.51 we also get that Kim-dividing and

long Kim-dividing coincide.

We also note that in specific AECats we can use the canonicity theorems to

prove that various notions of forking and dividing coincide, without assuming

the existence of large cardinals. For example, by the results in chapter 6 we

know that in a thick NSOP1 theory Kim-dividing gives an NSOP1-like

independence relation, which must thus coincide with long Kim-dividing by

canonicity, Theorem 5.6.

Outside the finitely short setting there seems to be very little hope. One

problem is that generally indiscernible sequences can no longer be stretched to

arbitrary lengths.

Question 7.1. Is there an AECat, possibly one that is not finitely short, where

dividing does not coincide with long dividing and/or isi-dividing.

7.2 AECats and combinatorial properties

The main results for AECats in this thesis are about the canonicity of certain

independence relations. That is, they state there can be only one nice enough

independence relation and they tell us what it must be (e.g. it must be given by

isi-dividing). In a full Kim-Pillay style theorem the existence of such an

independence relation is linked to a combinatorial property, which often asserts

the absence of a certain configuration. For example, stability is the same as not

having the order property, which roughly states that there can be no infinite

linear order. Simplicity means not having the tree property. For NSOP1 we

actually gave a precise definition in this thesis: Definition 6.6. These

combinatorial properties are more natural to formulate when there are

underlying sets, and formulating them in the generality of AECats is

non-trivial. So we have not defined any of these combinatorial properties for

AECats, let alone studied possible links with independence relations. This

brings us to the following very broad question.

Question 7.2. Can we link stable, simple or NSOP1-like independence relations

to combinatorial properties in AECats? This can go in two directions:

1. assuming a combinatorial property, can we find a nice independence

relation?

2. assuming that we have a nice independence relation, can we prove that the

AECat satisfies a good combinatorial property?

This question may sound a bit vague, so we give an example of what an answer

may look like. One could try to define a notion of being NSOP1 for AECats,
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for example one that states that certain tree configurations do not exist in the

AECat. Then an answer to the first part of the question could be of the form

“in an NSOP1 AECat long Kim-dividing induces an NSOP1-like independence

relation”. An answer to the second part could be “an AECat with an NSOP1-like

independence relation is NSOP1”.

There are already (partial) answers to Question 7.2. These are in different,

but very similar, frameworks. In [LRV19] the existence of a stable independence

relation in an accessible category is linked (in both directions) to a certain order

property. In [GMA21] simple-like independence relations are studied in AECs,

and they prove that having a simple-like independence relation implies the failure

a certain tree property.

7.3 Kim-independence over arbitrary sets in positive

logic

In chapter 6 we only developed Kim-independence over e.c. models. That is, the

base in the relation |⌣
K always has to be an e.c. model. This is because, assuming

thickness, Morley sequences always exist in types over e.c. models. These Morley

sequences are then necessary to even define Kim-dividing (see also the discussion

at the start of section 6.4). In full first-order logic Kim-independence has also

been developed over arbitrary (small) sets (see e.g. [DKR19]), by simply assuming

that these Morley sequences exist in any type. This assumption is called the

existence axiom (for forking), see Definition 6.103. In full first-order logic this is

a reasonable assumption for NSOP1 theories, because this axiom has been verified

for all known NSOP1 theories. Theorem 6.104 tells us that a theory T has the

existence axiom for forking if and only if its hyperimaginary extension T heq has

it. So this already gives us many positive theories with the existence axiom for

forking. The following question is then natural.

Question 6.105, repeated. Suppose T is a thick positive NSOP1 theory

satisfying the existence axiom for forking. Can |⌣
K be extended to an

automorphism-invariant ternary relation between arbitrary small sets which

satisfies the properties listed in Theorem 6.79?

So far we do not have an example of a thick non-simple positive theory that

satisfies the existence axiom for forking, but is not a hyperimaginary extension of

some theory in full first-order logic. This is simply because we have not verified

it yet. The theory of existentially closed exponential fields—studied in [HK21],

see subsection 6.10.2—seems like a good candidate.

Question 7.3. Does the theory of existentially closed exponential fields (i.e.

TEA-field from Definition 6.95) satisfy the existence axiom for forking?
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independence from the categorical point of view. Advances in

Mathematics, 346:719–772, April 2019.

[LRV20] Michael Lieberman, Jǐŕı Rosický, and Sebastien Vasey. Cellular

categories and stable independence. arXiv:1904.05691 [math],

March 2020.

[Men20] Rosario Mennuni. Product of invariant types modulo

domination–equivalence. Archive for Mathematical Logic, 59(1):1–

29, February 2020.

[MM94] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and

Logic: A First Introduction to Topos Theory. Universitext. Springer-

Verlag, New York, 1994.

[Pil00] Anand Pillay. Forking in the category of existentially closed

structures. 2000.

[Poi10] Bruno Poizat. Quelques effets pervers de la positivité. Annals of
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LS(K) Löwenheim-Skolem number of the AEC K, 36

Lstp(a/B) Lascar strong type of a over B, 25

M Monster model, 23

MetMod(T ) Category of metric models of the continuous theory T , 35

Mod(T ) Category of models of T , 35

p|A Restriction of the type p to A, 102

q⊗δ Ordinal tensoring of global Ls-invariant type q, 108

q⊗I |A Shorthand for type over A based on tensoring q, 108

q ⊗ r Tensor of global Ls-invariant types q and r, 107

Sgtp((Ai)i∈I) Galois type set of arrows with domains (Ai)i∈I , 44

SubκM(M) Poset of κ-presentable subobjects of M inM, 59

SubMetMod(T ) Category of subsets of metric models of the continuous

theory T , 39

SubMod(T ) Category of subsets of models of T , 38

Sub(X) Subobjects of X, 48

tp(a/B) Type of a over B, 18

T ec Theory of h-inductive consequences of e.c. models of T , 19



Index of terms

2-Morley sequence, 97

2-indiscernible sequence, 97

abstract elementary category, 38

abstract elementary class, 35

λ-accessible category, 34

AEC, 35

AECat, 38

κ-AECat, 39

amalgam, 35

amalgamation base, 35

amalgamation property, 35

AP, 35

APh, 21
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