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 21 

Abstract 22 

Recent advances in single-cell RNA sequencing (scRNA-seq) provide exciting 23 

opportunities for transcriptome analysis at the single-cell resolution. Clustering 24 

individual cells is a key step to reveal cell subtypes and infer cell lineage in 25 

scRNA-seq analysis. Although many dedicated algorithms have been proposed, 26 

clustering quality remains a computational challenge for scRNA-seq data, which 27 

becomes exacerbated due to excessive zero counts caused by various technical noise. 28 

To address this challenge, we assess the combinations of nine popular dropout 29 
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imputation methods and eight clustering methods using a collection of 10 30 

well-annotated scRNA-seq datasets with different sample sizes. Our results show that 31 

imputation algorithms do typically improve the performance of clustering methods, as 32 

well as the quality of data visualization using t-Distributed Stochastic Neighbor 33 

Embedding. However, the performance of a particular combination of imputation and 34 

clustering methods may vary among datasets with different sizes. For example, the 35 

combination of single-cell analysis via expression recovery and Sparse Subspace 36 

Clustering (SSC) methods usually works well on small datasets, while the 37 

combination of adaptively-thresholded low-rank approximation and single-cell 38 

interpretation via multikernel learning (SIMLR) usually achieves the best 39 

performance on large datasets. 40 

 41 

KEYWORDS: Single-cell RNA sequencing; Dropout imputation; Cell clustering; 42 

T-SNE; Adjusted Rand index 43 

 44 

Introduction 45 

Recent advances in single-cell sequencing provide a great opportunity for 46 

understanding cell-specific gene expressions, cell lineage relationships, and various 47 

important biological processes and functions at single-cell resolution [1-3]. Among 48 

them, single-cell RNA sequencing (scRNA-seq) is widely used to quantify mRNA 49 

expression in a single cell [4, 5]. However, effective analysis of scRNA-seq data 50 

remains a challenging task, as they are typically much more complicated than 51 

traditional sequencing data [6]. Indeed, because the amount of mRNA in a single cell 52 

is very small, a million-fold amplification is usually required, which leads to greater 53 

amplification noise [7]. Among these issues, the most common one includes dropout 54 

events, referring to the value of certain genes in certain cells being zero or close to 55 

zero. 56 

A key step in scRNA-seq transcriptome profiling is to cluster individual cells to 57 

reveal cell subtypes and/or subpopulations [8, 9]. To this end, a variety of 58 
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unsupervised clustering algorithms are proposed, ranging from simple k-means 59 

clustering, hierarchical clustering [10] and its variants (e.g., RaceID [7], SC3 [11], 60 

and CIDR [12]), to density-based spatial clustering [13], subspace clustering [14], 61 

neural network [15, 16], ensemble clustering, and kernel-based methods (such as 62 

SIMLR [17])). However, effective clustering remains a computational challenge due 63 

to the high proportion of “dropouts” featured in scRNA-seq datasets. To address this, 64 

several promising imputation methods specially designed for scRNA-seq data have 65 

been developed [6, 18-21]. These methods are roughly divided into two categories: 66 

similarity-based imputation methods, which use similarities between genes and 67 

between cells to restore expression levels, and matrix-based imputation methods, 68 

which are based on the postulate that the true expression matrix is a low-rank and 69 

leverages various advanced techniques in matrix analysis [22]. 70 

 71 

In this study, we present a critical review of nine promising imputation methods 72 

and seven clustering techniques better suited for scRNA-seq data. Using a set of ten 73 

well-annotated scRNA-seq datasets, we assessed the performance of various 74 

combinations of these imputation and clustering approaches. Our results show that 75 

imputation algorithms typically improve the performance of various clustering 76 

methods, as well as the quality of data visualization using t-Distributed Stochastic 77 

Neighbor Embedding (t-SNE). In addition, the performance of a particular 78 

combination of imputation and clustering methods may vary among datasets with 79 

different sizes. Therefore, it is critical to choose an appropriate combination of 80 

imputation and clustering algorithms for obtaining high-quality clustering from 81 

scRNA-seq data. Our results suggest that using single-cell analysis via expression 82 

recovery (SAVER) + sparse subspace clustering (SSC) usually provides better 83 

clustering results for small datasets with less than 100 cells. In contrast, 84 

adaptively-thresholded low-rank approximation (ALRA) + single-cell interpretation 85 

via multikernel learning (SIMLR) typically achieves the best performance for large 86 

datasets with more than 1000 cells. 87 
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 88 

Results 89 

The scRNA-seq data cluster evaluation framework 90 

The cluster assessment framework outlined in Figure 1 can be divided into the 91 

following four steps: (1) first, we preprocess the input gene expression matrix from a 92 

scRNA-seq dataset by removing rare genes and a logarithmic transformation (see 93 

Section 2); (2) next, we use the nine imputation algorithms reviewed in the last 94 

section to impute the processed expression matrix to obtain nine estimated expression 95 

matrices; (3) then, we use each of the seven clustering algorithms to cluster each of 10 96 

expression matrices (e.g., the original one and nine imputed ones); (4) finally, we 97 

compute the NMI, ARI, HOM, and COM scores to quantify the differences between 98 

the predefined annotations of cell types and the output cluster labels from each of the 99 

70 combinations of imputation and clustering algorithms. 100 

 101 

Fig. 1. Schematic workflow of the scRNA-seq dataset cluster evaluation framework. The framework is 102 

mainly divided into four parts: the collection of data sets, the direct analysis of the original data sets 103 

using different clustering algorithms, the clustering analysis of the data sets imputationed with various 104 

algorithms, and the evaluation of the clustering results.  105 

 106 

Imputation on scRNA-seq data can often improve visualization 107 

Finding an effective low-dimensional visualization of scRNA-seq data remains a key 108 
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computational challenge in single-cell data analysis. One popular dimensionality 109 

reduction visualization algorithm is t-SNE, which visualizes high-dimensional data by 110 

giving each data point a location in a two- or three-dimensional space. Since the 111 

t-SNE algorithm is not designed to handle the high rate of dropouts featured in 112 

scRNA-seq data, which may make this algorithm less suitable for some scRNA-seq 113 

datasets. 114 

 115 

Fig. 2. T-SNE visualization of cells from the Biase scRNA-seq dataset. Among them, the mcImpute 116 

algorithm improves the visualization of the Biase dataset. Note: Cells are color-coded by the cell type 117 

annotation of the original study.  118 

 119 

To assess the impact of imputation algorithms on visualization, we start with the 120 

smallest dataset in our collection, namely the Biase dataset [23]. As shown in Figure 121 

2, both MAGIC and scImpute did not improve the visualization of the Biase dataset. 122 

Indeed, cells of type “4-cell” and those of “blast” are often confused. We also perform 123 

k-means clustering on the resulting datasets transformed by t-SNE. The evaluation 124 

results summarized in Figure 3(A) indicate that CMF-Impute and McImpute 125 

algorithms improved the accuracy of clustering for the Biase dataset. 126 
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 127 

Fig. 3. Benchmark of imputation algorithms on the t-SNE+k-means clustering of scRNA-seq dataset. 128 

(A) The use of different imputation algorithms to compare the four evaluation indicators obtained on 129 

the Biase scRNA-seq dataset through t-SNE+K-means clustering. CMF-Impute and McImpute 130 

algorithms improved the accuracy of clustering. (B) The use of different imputation algorithms to 131 

compare the four evaluation indicators obtained on the Zeisel scRNA-seq dataset through 132 

t-SNE+K-means clustering. Except for MAGIC, most of the imputation algorithms can improve the 133 

accuracy of clustering. 134 

 135 

Next, we consider the largest dataset in our collection, namely the Zeisel dataset 136 

[24]. After applying various imputation algorithms to interpolate dropout events in 137 

this dataset, we use t-SNE to visualize the imputed dataset in Figure 4, where the 138 

cells are color-coded according to their types annotated in the original study. This 139 

demonstrates that t-SNE typically produces better decomposition or visualization 140 

results when imputation is applied. Furthermore, we perform K-means clustering on 141 

the datasets transformed by t-SNE. The evaluation results summarized in Figure 3(B) 142 

indicate that, except for MAGIC, all other imputation algorithms have a desirable 143 

effect on the visualization of the Zeisel dataset.  144 

To systematically evaluate the impact of imputation algorithms on the 145 

performance of data visualization, we apply the above evaluation framework to each 146 

of the scRNA-seq datasets in Table 1. As shown in the evaluation results presented in 147 

Supplementary Table S1, various imputation algorithms contribute to the visualization 148 

performance of t-SNE. Among them, SAVER, DrImpute, and CMF-Impute  149 
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 150 

Fig. 4. T-SNE visualization of cells from the Zeisel scRNA-seq dataset. Except for MAGIC, all 151 

algorithms improve the visualization of the Zesiel dataset. Note: Cells are color-coded by the cell type 152 

annotation of the original study. 153 

 154 

Table 1. scRNA-seq dataset for analysis and comparison. 155 

No. of datasets Names No. of cells No. of genes No. of cell types 

1 Biase 56 25,733 4 

2 Deng 268 22,431 6 

3 Goolam 124 41,427 5 

4 Grun 251 23,459 4 

5 Kolodziejczyk 704 38,615 9 

6 Patel 430 5,948 5 

7 Pollen 301 23,730 11 

8 Usoskin 622 25,334 4 

9 Yan 90 20,214 6 

10 Zeisel 3,005 32,738 9 

 156 

outperform other algorithms. Furthermore, the performance of some imputation 157 

algorithms may vary among the datasets, depending on the size of the datasets. For 158 
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example, ALRA performs significantly better compared to many other imputation 159 

algorithms in large datasets. However, ALRA does not work well on small datasets 160 

(such as the Deng and the Yan datasets), and all four evaluation indicators indicate 161 

poor performance. Therefore, it is important to choose an appropriate imputation 162 

algorithm for a given dataset, with the size of the dataset being a critical factor. 163 

 164 

Fig. 5. Comparison of the impact of different imputation algorithms on clustering performance on the 165 

Biase scRNA-seq dataset. Among the seven clustering algorithms, SSC, Corr, and SSSC have the best 166 

overall performance. 167 

 168 

Imputation for most scRNA-seq data can improve clustering 169 

To assess the impact of imputation algorithms on clustering methods, we apply the 170 

framework outlined in Figure 1 to three representative datasets in Table 1. The first 171 

one is the Biase dataset, which is a small dataset containing 56 cells of four types. 172 

Figure 5 shows the results for various combinations of imputation and clustering on 173 

the Biase dataset, which indicates that, in most cases, clustering after using various 174 

imputation algorithms can help improve performance. Among the seven clustering 175 

algorithms, SSC, Corr, and SSSC have the best overall performance. 176 

 177 



9 

 

 178 
Fig. 6. Comparison of the impact of imputation algorithms on clustering performance on the Pollen 179 

scRNA-seq dataset. Different imputation algorithms are selected for different sizes of data sets to 180 

improve the accuracy of clustering. 181 

The dataset reported by Pollen [25] and colleagues is a medium dataset with 301 182 

cells from 11 different cell types. Compared with other datasets, the dropout rate of 183 

this dataset is relatively low. Consequently, clustering algorithms without imputation 184 

already achieve good performance. As shown in Figure 6, imputation algorithms do 185 

not necessarily lead to improvements in the performance of various clustering 186 

algorithms. On the contrary, some imputation algorithms (for example, MAGIC) 187 

indeed have an undesirable impact on the performance of most clustering algorithms. 188 

The Zeisel dataset is a large dataset containing 3005 single cells from the mouse 189 

cortex and hippocampus, collected by the unique molecular identifier technology and 190 

divided into nine categories. Figure 7 shows the performance of various 191 

combinations of imputation and clustering algorithms. For this dataset, most 192 

imputation algorithms can improve the performance of various clustering algorithms. 193 

For example, after using the ALRA algorithm to repair the missing values, the SIMLR 194 

algorithm has much better performance, achieving an ARI score of 0.827 and an NMI 195 

score of 0.774, which is much higher than that of other imputation algorithms. 196 
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 197 
Fig. 7. Comparison of the impact of imputation algorithms on clustering performance on the Zeisel 198 

scRNA-seq dataset 199 

Finally, we use the framework outlined in Figure 1 to assess the performance of 200 

various combinations of imputation and clustering methods for all other datasets in 201 

Table 1. As shown in Supplementary Table S2-S11, clustering methods generally have 202 

a better performance when an imputation algorithm is applied. Since the performance 203 

of each combination of imputation and clustering methods may vary among datasets 204 

with different sizes. Based on these results, we observe that a combination of SAVER 205 

and SSC usually performs well on small datasets (such as the Biase and the Yan 206 

datasets [26]). In contrast, combining adaptively-thresholded low-rank approximation 207 

ARLA and SIMLR typically achieves the best performance for large datasets (such as 208 

the Zeisel dataset). 209 

 210 

Discussion 211 

In this study, we use 10 well-annotated scRNA-seq datasets and an objective 212 

assessment framework to evaluate the performance of various combinations of 213 

imputation and clustering algorithms that are suitable for scRNA-seq datasets. Our 214 

empirical results show that imputation algorithms typically improve the performance 215 
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of various clustering methods, as well as the quality of data visualization using t-SNE. 216 

However, the performance of a particular combination of imputation and clustering 217 

methods may vary among datasets with different sizes. These results provide concrete 218 

choices for how to choose an appropriate combination of imputation and clustering 219 

algorithms for obtaining high-quality clustering from scRNA-seq data. Moreover, it 220 

remains interesting to see how to utilize the insights obtained from here to design 221 

better imputation and clustering algorithms. 222 

In addition to this clustering problem, many other computational problems in 223 

single-cell data analyses also face the same challenge derived from a high dropout 224 

rate, such as standardization, differential expression analysis, and cell cycle 225 

identification. Therefore, algorithms aiming to solve those problems could benefit 226 

from various imputation techniques reviewed here, and the assessment framework 227 

proposed here can be naturally extended to study their performance. 228 

 229 

Methods 230 

Data preparation and preprocessing 231 

To determine the impact of different imputation algorithms on the clustering of 232 

individual cells to their corresponding cell types, we collected 10 scRNA-seq datasets 233 

with cell type annotations, which come from the National Center for Biotechnology 234 

Information Gene Expression Omnibus (NCBI-GEO). Table 1 summarizes these 10 235 

scRNA-seq datasets. At the same time, to reduce the technical noise in the scRNA-seq 236 

datasets, genes expressed in less than or equal to two cells were filtered [27]. In order 237 

to prevent the effect of highlighting genes with higher expression and weakening the 238 

remaining genes, we used Equation 1 to perform a logarithmic transformation with 239 

pseudo count 1 on the original expression data of single cells before analysis. 240 

𝑋 = 𝑙𝑜𝑔2(𝑋 + 1) .    (1) 241 

 242 

Dropout imputation 243 
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An important technical flaw in scRNA-seq data is the introduction of “dropout” 244 

events [28, 29]. Deletion events usually refer to the incorrect quantification of genes 245 

that are not expressed due to transcripts that are introduced during the reverse 246 

transcription step or have low expression levels [30]. A large number of studies have 247 

shown that simply deleting the less expressed genes and then normalizing them 248 

cannot completely solve this issue in scRNA-seq data analysis. In order to better 249 

perform downstream analysis of scRNA-seq data, a large number of missing value 250 

repair algorithms have been proposed. Therefore, in this study, we analyzed in detail 251 

the impact of nine better imputation algorithms on the clustering analysis of 252 

scRNA-seq data. 253 

 254 

scImpute 255 

Li and Li proposed a three-step approach called scImpute to determine and impute 256 

values that are affected by dropout events in scRNA-seq data [31]. Since this method 257 

uses information of the same gene from similar cells to impute missing values, the 258 

first step is to construct a candidate pool of neighboring cells for each cell, which is 259 

achieved by principal component analysis (PCA) and spectral clustering. The second 260 

step computes the dropout probability of each gene in each cell. To this end, the 261 

expectation–maximization (EM) algorithm is utilized to estimate a gamma-normal 262 

mixture model. In the final step, a separate regression model for each cell is 263 

constructed to impute the expression of genes with high dropout probabilities, for 264 

which information about the same genes in its neighboring cells identified in the first 265 

step is used. 266 

It is demonstrated that scImpute can automatically identify zero values of high 267 

dropout probabilities and only perform imputation on these values without 268 

introducing new deviations to the remaining data [31]. Furthermore, the method can 269 

also detect outlier cells and exclude them from imputation. Evaluation based on 270 

simulated and real human and mouse scRNA-seq datasets indicates that scImpute is 271 

an effective tool for restoring transcriptome dynamics masked by dropouts. scImpute 272 
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can detect possible deletions, enhance the aggregation of cell subpopulations, improve 273 

the accuracy of differential expression analysis, and help the study of gene expression 274 

kinetics. Because scImpute requires the true number of cell subpopulations in the data 275 

a priori, this is not friendly to unknown structured data. 276 

 277 

DrImpute 278 

Gong et al. designed a simple and fast hot-platform imputation method called 279 

DrImpute to estimate missing events in scRNA-seq data [27]. Similar to scImpute, 280 

DrImpute performs cell clustering before imputation and also borrows information of 281 

the same gene from similar cells to impute missing values. DrImpute takes a 282 

consensus approach to obtain a more robust estimate. First, the clustering method 283 

used in DrImpute is single-cell consensus (SC3) clustering, which, as we review in 284 

the next subsection, is a consensus approach. Second, imputation is performed 285 

multiple times using different unit clustering results. Finally, the multiple estimates 286 

are averaged to get the final imputation. Specifically, let H be the number of cluster 287 

configurations (for example, the combination of distance metric and the number of 288 

clusters used in clustering), and C1, C1,..., CH be the clustering results, one for each 289 

configuration. Assuming that the clustering of Ch is a true hidden cell classification 290 

result, the expected value of the dropout event can be obtained by averaging the 291 

entries in a given cell cluster: 292 

𝐸(𝑋𝑖𝑗|𝐶ℎ) = 𝑚𝑒𝑎𝑛(𝑋𝑖𝑗|𝑊),  (2) 293 

where X is the input matrix, and 𝑊 represents 𝑋𝑖𝑗 in the same cell group in cluster 294 

𝐶ℎ. 295 

Therefore, the final calculation of the estimated drop events 𝑋𝑖𝑗 and 𝐸(𝑋𝑖𝑗) can 296 

be calculated by a simple average: 297 

𝐸(𝑋𝑖𝑗) = 𝑚𝑒𝑎𝑛 (𝐸(𝑋𝑖𝑗|𝐶)) =
1

𝐻
∑ 𝐸(𝑋𝑖𝑗|𝐶ℎ)𝐻

ℎ=1 .   (3) 298 

Experimental results show that DrImpute greatly improves several existing statistical 299 

tools including SC3, t-SNE, and Monocle, which cannot solve dropout events in the 300 

three most popular research areas in scRNA-seq analysis, namely cell clustering, 301 
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visualization, and lineage reestablishment. However, since the cluster number is 302 

usually unknown in DrImpute, the results are not as accurate as expected. 303 

 304 

 305 

VIPER 306 

Both scImpute and DrImpute perform cell clustering before imputation, using cells 307 

belonging to the same subgroup of cells for imputation. However, the cell 308 

subpopulations used in this type of imputation algorithm are often not true cell 309 

subpopulations, which cause serious deviations in the imputation results. To address 310 

this concern, Chen and Zhou proposed a simple, accurate, unadjusted, and 311 

computationally effective scRNA-seq imputation method called VIPER [32]. 312 

Compared to scImpute and DrImpute, VIPER mainly borrows information among 313 

cells with similar expression patterns to estimate the expression measurement value in 314 

a target cell. This is achieved by using a sparse non-generative regression model to 315 

actively select the sparse local set of local neighborhoods that best predicts the target 316 

cell. These sparse unit sets are selected in a progressive manner, and the attribution 317 

weights associated with them are estimated in the final estimation step to ensure 318 

robustness and computational scalability. In addition, VIPER uses cell type-specific 319 

and gene-specific methods to model the deletion probability, which clearly illustrates 320 

the uncertainty of the zero-value expression measurement in scRNA-seq. VIPER uses 321 

efficient auxiliary programming algorithms to infer all modeling parameters from 322 

existing data while maintaining low computational costs. The key feature of VIPER is 323 

that the imputed data can retain the gene expression variability of the whole cell. 324 

Compared to several existing imputation methods in several actual analysis 325 

experiments based on scRNA-seq data, VIPER can obtain higher imputation accuracy. 326 

 327 

MAGIC 328 

One key challenge in many imputation algorithms for scRNA-seq data (e.g., scImpute 329 

and DrImpute reviewed above) is to accurately find neighborhoods of similar cells. To 330 
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address this issue, van Dijk et al. developed a cell map imputation algorithm called 331 

Markov affinity-based graph imputation of cells (MAGIC) [33], which mainly uses 332 

data diffusion to share information among similar cells to denoise the cell count 333 

matrix and fill in missing transcripts. Central to this approach is a Markov matrix M, 334 

which is derived using a Gaussian kernel and a normalization process from an 335 

appropriate cell-by-cell distance matrix constructed from the input data. Once the 336 

Markov matrix, whose (i,j)-entry represents the probability of transitioning from cell i 337 

to cell j in a single diffusion step, is obtained, a data diffusion step is performed 338 

through exponentiation of M to identify neighborhoods of similar cells. Then the 339 

imputation step of MAGIC involves sharing information between cells in the resulting 340 

neighborhoods through matrix multiplication. 341 

Since MAGIC leverages the observation that cell phenotypes can often be roughly 342 

embedded in a low-dimensional structure corresponding to the low-frequency trend of 343 

the data containing the biological signal of interest, experiments have shown that it 344 

can effectively alleviate the sparsity and noise caused by random mRNA captures and 345 

reveal gene–gene relationships in scRNA-seq data. Moreover, unlike many other 346 

imputation algorithms that only fill in “missing values,” MAGIC uses the value 347 

diffusion between similar pixels along the affinity-based graph structure to correct the 348 

entire data matrix and connect it to the basic manifold structure. However, imputation 349 

on a low-dimensional space will likely eliminate gene expression variability across 350 

cells and thus abolish a key feature of single-cell sequencing data. 351 

 352 

SAVER 353 

Huang et al. developed an expression restoration method for scRNA-seq data called 354 

SAVER [34], which mainly uses information between genes and cells to estimate 355 

missing values and improve the expression estimation of all genes. SAVER aims to 356 

restore true gene expression patterns by eliminating technical differences and 357 

retaining biological differences. It uses observed gene counts to form a prediction 358 

model for each gene, and then uses the observed counts and the weighted average of 359 
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the prediction to estimate the true expression of the gene. Experimental results show 360 

that SAVER can reliably restore cell-specific gene expression concentration, 361 

cross-cell gene expression distribution, and gene-to-gene and cell-to-cell expression. 362 

SAVER’s powerful performance is attributed to its adaptive estimation of discrete 363 

parameters at the gene level and its cross-validation-based model selection, which can 364 

prevent unnecessary model complexity. But SAVER relies on a Markov chain Monte 365 

Carlo algorithm to tune all parameters, which is computationally costly and might not 366 

be scalable to large datasets 367 

 368 

ALRA 369 

Linderman et al. proposed a highly scalable method called ALRA to recover the true 370 

expression level of scRNA-seq data [22]. It is a singular value decomposition (SVD) 371 

followed by a thresholding scheme that takes advantage of the non-negativity of the 372 

true expression matrix. A key assumption used in this approach is that the underlying 373 

true matrix is non-negative and low-rank and contains many zeros, but none of these 374 

zeros are associated with dropouts. The observed matrix from a scRNA-seq 375 

experiment is then sparser as many values are incorrectly measured as zero due to the 376 

dropout effect. Consequently, ALRA uses SVD to find the best k approximation of 377 

this matrix, then transforms it into an imputed matrix where each element 378 

corresponding to a dropout is not zero. Experimental results show that ALRA 379 

improves the separation between cell types in the high-dimensional space of original 380 

cells and restores the true expression of marker genes while retaining the biological 381 

zero position. As ALRA has only one parameter, the approximate rank k of the matrix, 382 

which is automatically selected based on the statistical information of the interval 383 

between consecutive singular values, the method is widely applicable to various 384 

scRNA-seq datasets. 385 

 386 

scRMD 387 

Chen et al. developed a single-cell RNA sequence imputation method based on robust 388 
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matrix decomposition (RMD) called scRMD [20]. A key postulate in this approach is 389 

that a gene expression matrix 𝑌 has the following decomposition: 390 

𝑌 = 𝐿 − 𝑆 + 𝐸,  (4) 391 

where L is a low-rank matrix, 𝑆 is a sparse matrix, and 𝐸 represents the combined 392 

effect of measurement errors and random fluctuations. 393 

Moreover, this method also leverages the observation that the expression of gene 394 

𝑖 observed in cell 𝑗 is less likely to be affected by the dropout if the value 𝑌𝑖𝑗 is 395 

large enough. Formally, the index set of candidate dropouts can be represented by 396 

Ω = {(𝑖, 𝑗): 𝑦𝑖𝑗 ≤ 𝑐} for a threshold constant 𝑐. Then we have 𝒫Ω(𝑆) ≥ 0, where 397 

the mask operator 𝒫Ω is defined as 𝒫Ω(𝑠𝑖𝑗) = 𝑠𝑖𝑗 if index (𝑖, 𝑗) 𝐼s contains in Ω 398 

and 𝒫Ω(𝑠𝑖𝑗) = 0 otherwise. Then the scRMD model can be formulated as the 399 

following optimization problem: 400 

min
𝐿,𝑆

 
1

2
‖𝑌 − 𝐿 + 𝑆‖𝐹

2 + 𝜆1‖𝐿‖∗ + 𝜆2‖𝑆‖1  s.t. 𝒫Ω(𝑆) ≥ 0, 𝒫Ω𝑐(𝑆) = 0 𝑎𝑛𝑑 𝐿 ≥401 

0  (5). 402 

Here, 𝜆1 and 𝜆2 are regularization parameters, Ω𝑐 = {(𝑖, 𝑗): 𝑦𝑖𝑗 > 𝑐}. Moreover, 403 

‖∙‖∗, ‖∙‖𝐹 , and  ‖∙‖1 represent the nuclear norm, Frobenious norm, and elementwise 404 

𝑙1 norm of a matrix, respectively. This optimization problem can be effectively 405 

solved by an alternating direction multiplier method (ADMM). Extensive data 406 

analysis shows that scRMD can accurately restore missing values and help improve 407 

downstream analyses, such as differential expression analysis and cluster analysis. 408 

 409 

mcImpute 410 

Mongia et al. presented an imputation algorithm based on matrix completion. The 411 

postulate used in this algorithm is similar to that in scRMD [18]; that is, the gene 412 

expression matrix Y is a low-rank matrix. Let 𝒫Y be the mask operator associated 413 

with Y, which is defined as 𝒫Y(𝑋𝑖𝑗) = 𝑋𝑖𝑗 if 𝑌𝑖𝑗 > 0 and 𝒫Y(𝑋𝑖𝑗) = 0 otherwise. 414 

Then the optimization problem can be formulated as: 415 
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min‖𝑋‖∗ 𝑠. 𝑡. ‖𝑌 − 𝒫Y(𝑋)‖𝐹
2 < 𝑒𝑟𝑟𝑜𝑟.   (6) 416 

This problem is solved in mcImpute by iteratively limiting the singular values of 417 

the expression matrix. Compared with many other imputation algorithms, one 418 

distinguishing feature of mcImpute is that it does not assume any distribution of genes 419 

and maintains a complete biological silent expression value. Experiments using 420 

several real datasets show that mcImpute is competitive with other algorithms in 421 

improving the accuracy of cell clustering, identifying differentially expressed genes, 422 

enhancing the separability of cell types, and improving dimensionality reduction. But 423 

the complexity of mcImpute algorithm is very high and the running time is very long 424 

 425 

CMF-Impute 426 

Xu et al. proposed a novel method based on collaborative matrix decomposition to 427 

estimate missing items in a given scRNA-seq expression matrix [21]. A key step in 428 

the CMF-Impute algorithm is to find two characteristic matrices so that their product 429 

provides the best approximation to the original matrix. Specifically, for a gene 430 

expression matrix 𝑌 with 𝑔 rows and n columns, the CMF-Impute algorithm seeks 431 

to find a k-dimensional cell feature matrix 𝑊 and a k-dimensional gene feature 432 

matrix 𝐻 such that 𝑌 = 𝑊𝐻𝑇 and 𝑘 ≪ min (𝑔, 𝑛). Noting that similar cells tend to 433 

have similar gene expression patterns, CMF-Impute explicitly incorporates a 434 

cell-to-cell similarity matrix 𝑆𝑐  and a gene-to-gene similarity matrix 𝑆𝑔  into its 435 

optimization formulation: 436 

min
𝑊,𝐻

‖𝑌 − 𝑊𝐻𝑇‖𝐹
2 + 𝜆1‖𝑊‖𝐹

2 + 𝜆2‖𝐻‖𝐹
2 + 𝜆c‖𝑆𝑐 − 𝑊𝑊𝑇‖𝐹

2 + 𝜆g‖𝑆𝑔 − 𝐻𝐻𝑇‖
𝐹

2
,   437 

(7)   438 

where 𝜆1, 𝜆2, 𝜆c, 𝜆g  are regularization parameters. 439 

Experiments on several simulated and real scRNA-seq datasets show that 440 

CMF-Impute improves the performance of existing cell clustering algorithms and 441 

methods for reconstructing cell-to-cell, gene-to-gene correlations, and inferring cell 442 

lineage trajectories. 443 

 444 
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Clustering techniques 445 

Cell type identification based on single-cell sequencing data is one of the key 446 

computational challenges in single-cell biology and has thus received widespread 447 

attention [35, 36]. In this section, we review the application of eight clustering 448 

methods to scRNA-seq data. 449 

 450 

t-SNE + K-means 451 

K-means clustering is one of the most frequently used cluster analysis methods. It 452 

iteratively computes the mean of all data points of each class as the center point of the 453 

class and assigns each data point into one of the k clusters whose mean is closest to 454 

the given data point. As a consequence, two data points that are closer to each other 455 

are more likely to be classified into the same category. The K-means algorithm and its 456 

variants have been applied in a number of fields. Within the area of single-cell 457 

technologies, many single-cell clustering algorithms use K-means, such as the SC3 458 

[11] and pcaReduce [37]. However, one may argue that the most popular method is a 459 

two-step combination of the t-SNE method and K-means clustering: First, t-SNE is 460 

used to reduce the dimensionality of the data from a high-dimensional space to a 3d- 461 

or 2d-plot. Next, the K-means method is used for clustering the processed dataset 462 

whose dimension is reduced. 463 

 464 

SC3 465 

Kiselev et al. developed a method called SC3 for determining cell types based on 466 

transcriptome profiles alone, achieving high accuracy and robustness by combining 467 

multiple clustering solutions through a consensus approach [11]. The workflow of 468 

SC3 can be grouped into the following five steps: (1) filter out rare genes and 469 

common genes to reduce the dimensionality of the data; (2) construct three distance 470 

matrices between cells using the Euclidean, Pearson, and Spearman metrics; (3) 471 

transform all distance matrices using either PCA or by calculating the eigenvectors of 472 

the associated Laplacian; the columns of the resulting matrices are then sorted in 473 
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ascending order by their corresponding eigenvalues; (4) perform K-means clustering 474 

on the first d eigenvectors of the transformed distance matrices; (5) obtain a 475 

hierarchical clustering from the consensus matrix, which is constructed using the 476 

cluster-based similarity partitioning algorithm (CSPA). Each clustering result is 477 

represented by a binary similarity matrix, and the consensus matrix is calculated by 478 

averaging all similarity matrices. 479 

A major bottleneck of SC3 is its longer running time compared to other models. 480 

Furthermore, for dealing with even larger datasets, SC3 implements a hybrid 481 

approach that combines unsupervised and supervised methodologies, which have a 482 

possible limitation of rare cell types not being identified. 483 

 484 

SSC 485 

The SSC algorithm is a novel approach to the subspace clustering problem using 486 

sparse representation. It is particularly useful for clustering data drawn from multiple 487 

low-dimensional subspace embedded in a high-dimensional space, a feature common 488 

to many scRNA-seq datasets. The SSC algorithm solves the subspace clustering 489 

problem in two steps. The first one is to solve the following global sparse 490 

optimization problem: 491 

𝑚𝑖𝑛 ‖𝐶‖1  𝑠. 𝑡.  𝑋 = 𝑋𝐶 𝑎𝑛𝑑  𝑑𝑖𝑎𝑔(𝐶) = 0,   (8) 492 

where 𝑋 ∈ 𝑅𝐷×𝑁 represents the input matrix. 493 

The output matrix 𝐶 ∈ 𝑅𝑁×𝑁 is a block diagonal matrix in which the nonzero 494 

block corresponding to data points in the same subspace. In the second step, this 495 

information about the membership of data points is utilized in the spectral clustering 496 

framework to obtain predicted labels. 497 

Although SSC performs well in many applications, it ignores the constraint 498 

relationship between the coefficient matrix and the clustering result, which is a major 499 

shortcoming of the algorithm. To alleviate this problem, several improved SSC 500 

variants have been proposed, including the SSSC described below. 501 

 502 
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SSSC 503 

As an improvement to SSC [38], the structural sparse subspace clustering (SSSC) 504 

algorithm proposes a unified joint optimization framework, which not only obtains 505 

the spectral clustering result through the sparse optimization step but also constrains 506 

the coefficient matrix by the clustering result in turn. To this end, an incidence matrix 507 

𝑄 = [𝑞1 … 𝑞𝑛] ∈ 𝑅𝑁×𝑛 is constructed to associate each data point with the subspace 508 

that contains it using the clustering result from a previous iteration. Since each data 509 

point belongs to one subspace, we have 𝑄𝟏=1 and 𝑟𝑎𝑛𝑘(𝑄) = 𝑛, where 1 is the 510 

vector of all ones of appropriate dimension. Consequently, the set of all feasible 511 

incidence matrices is: 512 

ℚ = {𝑄 ∈ {0,1}𝑁×𝑛: 𝑄𝟏 = 𝟏, 𝑟𝑎𝑛𝑘(𝑄) = 𝑛}.   (9) 513 

Using a subspace structure norm defined as: 514 

‖𝐶‖𝑄 = ∑ |𝐶𝑖𝑗| (
1

2
‖𝑞𝑖 − 𝑞𝑗‖

2
)𝑖,𝑗 ,    (10) 515 

where 𝑞𝑖  and 𝑞𝑗 are the i-th and j-th rows of the matrix 𝑄.  516 

The subspace clustering problem is reformulated in SSSC into solving the 517 

following optimization problem: 518 

min
𝐶,𝑄

‖𝐶‖𝑄 + ‖𝐶‖1   𝑠. 𝑡.  𝑋 = 𝑋𝐶, 𝑑𝑖𝑎𝑔(𝐶) = 0, and 𝑄 ∈ ℚ.    (11) 519 

This optimization problem can be solved efficiently via a combination of an 520 

alternating direction method of multipliers (ADMM) with spectral clustering. 521 

 522 

Seurat 523 

Butler et al. developed a comprehensive R package, which is an indispensable tool in 524 

the field of single cell RNA-seq analysis. [39]. This toolkit provides a number of 525 

functions including t-SNE dimensionality reduction analysis, cluster analysis, 526 

differential expression, construction of developmental trajectories, mark gene 527 

recognition and so on. For this work, we are mainly interested in the cluster analysis 528 

module, which is used to identify cell subtypes. Instead of a direct cluster analysis 529 

applied to all cells, Seurat first performs a PCA to select the principal components 530 

with the largest contribution, and then uses the selected principal components to 531 
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perform cluster analysis. The clustering algorithm includes original Louvain 532 

algorithm (The default), Louvain algorithm with multilevel refinement, SLM, and 533 

Leiden. The t-SNE dimensionality reduction technique is also employed to display 534 

expression distributions of cells in a 2d-plot, where cells in the same cluster are coded 535 

by the same color. 536 

 537 

SIMLR 538 

Wang et al. developed a novel similarity-learning framework called SIMLR [17], 539 

which learns an appropriate distance metric from combining multiple types of 540 

distances between cells. SIMLR assumes that cells in the same subpopulation are 541 

more similar, and the similarity matrix should have an approximate block diagonal 542 

structure in which the number of blocks is determined by the number of separable 543 

subpopulations of the input cells. In the default implementation of SIMLR, Gaussian 544 

kernels, which generate the best empirical performance among a number of candidate 545 

kernels, take the form: 546 

K(𝑐𝑖, 𝑐𝑗) =
1

𝜖𝑖𝑗√2𝜋
exp (−

∥𝑐𝑖−𝑐𝑗∥2
2

2𝜖𝑖𝑗
2 ).   (12) 547 

Here ∥ 𝑐𝑖 − 𝑐𝑗 ∥2 is the Euclidean distance between cell 𝑖 and cell 𝑗, and the 548 

variance 𝜖𝑖𝑗 can be calculated with different scales: 549 

μ𝑖 =
∑ ‖𝑐𝑖−𝑐𝑗‖

2𝑙∈𝐾𝑁𝑁(𝑐𝑖)

𝑘
, ϵ𝑖𝑗 =

𝜎(μ𝑖+μ𝑗)

2
,   (13) 550 

where 𝐾𝑁𝑁(𝑐𝑖) represents cells that are top k neighbors of cell 𝑖. 551 

SIMLR uses learned similarities to visualize cells, reduce the dimensionality of 552 

the input data, and cluster cells into subgroups, giving priority to genes with the 553 

highest variability that can explain differences in the entire population. Since the 554 

implementation of SIMLR needs the number of clusters as an input, it is not suitable 555 

for analyzing data with unknown structure. 556 

 557 

SinNLRR 558 

Based on similarity learning, Zheng et al. proposed a scRNA-seq cell-type detection 559 

method called SinNLRR [40], where non-negative and low-rank structures on the 560 
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similarity matrix are imposed. This leads to an optimization problem with the form: 561 

𝑚𝑖𝑛
1

2
‖𝑋 − 𝑋𝐶‖𝐹 + 𝜆‖𝐶‖∗   𝑠. 𝑡.  𝐶 ≥ 0,   (14) 562 

where 𝑋 is the input matrix, and 𝐶 is a coefficient matrix in which the entry 𝐶𝑖,𝑗 563 

denotes the confidence of cells 𝑖 and 𝑗 in the same subpopulation. 564 

SinNLRR applies the alternating direction method of the multiplier (ADMM) to 565 

solve the optimization problem and proposes an adaptive penalty selection method to 566 

avoid sensitivity to parameters. The learned similarity matrix can be visualized, and 567 

Laplace scores can be used to prioritize gene markers. SinNLRR is benchmarked with 568 

ten human and mouse scRNA-seq datasets, whose sizes range from dozens to 569 

thousands of cells. SinNLRR obtained stronger robustness and more accurate results 570 

using different datasets. At present, the main goal of SinNLRR is to reduce the 571 

running time on large-scale scRNA-seq data. 572 

 573 

Corr 574 

By introducing a new similarity measure named differentiability correlation, Jiang et 575 

al. proposed a hierarchical clustering-based algorithm called Corr to predict cell types 576 

[32]. Differentiability correlation evaluates the similarity between any two cells by 577 

using the correlation between the gene expression profiles of two cells and 578 

incorporating information from all other cells. Since the relationship of cell-specific 579 

gene expression patterns over the whole cell population is considered, this novel 580 

measure turns out to be more robust against cell heterogeneity and data noise. Using 581 

the framework of hierarchical clustering, Corr incorporates factorial ANOVA in 582 

optimal cluster number determination, which allows the number of clusters to be 583 

automatically determined. Corr is benchmarked with several real scRNA-seq datasets, 584 

with outstanding performance and a correct cluster number obtained for each dataset. 585 

 586 

Evaluations of clustering 587 

To benchmark the performance of various clusters through the imputation algorithm 588 

used, four clustering evaluation indicators are chosen to quantify the clustering 589 
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performance on each scRNA-seq dataset. Formally, let 𝑃 = { 𝑝1, 𝑝2, … , 𝑝𝑚} and 590 

𝑇 ={𝑡1, 𝑡2, … , 𝑡𝑛} represent the real cell type from the dataset and the cell type 591 

generated by clustering algorithm, respectively. The dissimilarity between 𝑃 and 𝑇 592 

can then be measured by one of the following four indicators: normalized mutual 593 

information (NMI) [41], adjusted Rand index (ARI) [42], homogeneity (HOM) [43], 594 

and completeness (COM) [43]. 595 

 596 

NMI 597 

The NMI score between 𝑃 and 𝑇 is defined as: 598 

𝑁𝑀𝐼(𝑃, 𝑇) =
𝑀𝐼(𝑃,𝑇)

√𝐻(𝑃)𝐻(𝑇)
,   (15) 599 

where 𝐻(𝑃) and 𝐻(𝑇) denote the entropy of 𝑃 and 𝑇, respectively, and 𝑀𝐼(𝑃, 𝑇) 600 

represents the mutual information between them. It is well known that NMI has an 601 

upper bound of 1 and lower bound of 0. 602 

 603 

ARI 604 

To define the ARI score, cell pairs in the dataset are classified into one of the 605 

following four types: the number of cell pairs that are in the same cluster in both 𝑃 606 

and 𝑇 denoted by 𝑁11; the number of cell pairs that are in different clusters in both 607 

𝑃 and 𝑇 by 𝑁00; the number of cell pairs that are in the same cluster in 𝑃 but in 608 

different clusters in 𝑇 by 𝑁10; the number of cell pairs that are in different clusters 609 

in 𝑃 but in the same cluster in 𝑇 by 𝑁01. The ARI score between 𝑃 and 𝑇 is then 610 

defined as: 611 

𝐴𝑅𝐼(𝑃, 𝑇) =
2(𝑁00𝑁11−𝑁01𝑁10)

(𝑁00+𝑁01)(𝑁01+𝑁11)+(𝑁00+𝑁10)(𝑁10+𝑁11)
.     (16) 612 

The ARI score is bounded above by 1 and equals 0 when the Rand index is the 613 

same as its expected value (under the generalized hypergeometric distribution for 614 

randomness). 615 

 616 

HOM 617 

One desired property for the output clustering 𝑇 is that it satisfies the homogeneity 618 
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criteria; that is, each cluster in 𝑇 contains only cells from a single cluster in 𝑃. To 619 

measure how close the clustering 𝑇 to this ideal situation, the homogeneity score 620 

(HOM) is defined as: 621 

𝐻𝑂𝑀𝑃(𝑇) = 1 −
𝐻(𝑃|𝑇)

𝐻(𝑃)
.    (17) 622 

Here 𝐻(𝑃|𝑇) is the entropy of 𝑃 conditioned on 𝑇. Note that for a perfectly 623 

homogeneous clustering 𝑇, we have 𝐻(𝑃|𝑇) = 0, and hence its homogeneity score is 624 

1. We also use the convention that when 𝑃 contains only one cluster, that is, 𝐻(𝑃) =625 

0, the homogeneity score is always 1. Then the HOM score is between 0 and 1, with 626 

close to 1 being desirable. However, being homogeneous alone is not sufficient for 627 

good clustering. For instance, the trivial clustering 𝑇 in which each cluster contains 628 

only one cell always has a homogeneity score of 1. To deal with such cases, we will 629 

consider one additional score based on completeness. 630 

 631 

COM 632 

To some extent, completeness is a property that is symmetrical to homogeneity. That 633 

is, if each cluster in 𝑃 contains only units from a single cluster in 𝑇, then cluster 𝑇 634 

is complete. To measure how close the clustering 𝑇 to this ideal situation, the 635 

completeness score (COM) is defined as: 636 

𝐶𝑂𝑀𝑃(𝑇) = 1 −
𝐻(𝑇|𝑃)

𝐻(𝑇)
.    (18) 637 

Similar to the homogeneity score, here we also use the convention that the 638 

completeness score is 1 when 𝑇  contains only one cluster. Furthermore, the 639 

completeness score is between 0 and 1, with 1 being desirable. Note that the 640 

homogeneity score and the completeness score run roughly in opposition: a high 641 

homogeneity score often means a low completeness score. Hence, a clustering that is 642 

high on both the homogeneity and the completeness scores is truly desirable because 643 

it indicates that the clustering is indeed rather consistent with the golden standard. 644 
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Figure legends 759 

Figure 1. Schematic workflow of the scRNA-seq dataset cluster evaluation 760 

framework 761 

 762 
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Figure 2. T-SNE visualization of cells from the Biase scRNA-seq dataset 763 

Note: Cells are color-coded by the cell type annotation of the original study. 764 

 765 

Figure 3. Benchmark of imputation algorithms on the t-SNE+k-means clustering 766 

of scRNA-seq dataset 767 

(A) The use of different imputation algorithms to compare the four evaluation 768 

indicators obtained on the Biase scRNA-seq dataset through t-SNE+K-means 769 

clustering. (B) The use of different imputation algorithms to compare the four 770 

evaluation indicators obtained on the Zeisel scRNA-seq dataset through 771 

t-SNE+K-means clustering. 772 

 773 

Figure 4. T-SNE visualization of cells from the Zeisel scRNA-seq dataset  774 

Note: Cells are color-coded by the cell type annotation of the original study. 775 

 776 

Figure 5. Comparison of the impact of different imputation algorithms on 777 

clustering performance on the Biase scRNA-seq dataset 778 

 779 

Figure 6. Comparison of the impact of imputation algorithms on clustering 780 

performance on the Pollen scRNA-seq dataset 781 
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Figure 7. Comparison of the impact of imputation algorithms on clustering 783 

performance on the Zeisel scRNA-seq dataset 784 
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Supplementary Table S1. Evaluate T-SNE visualization performance of different 787 

impute algorithms on 10 scRNA-seq datasets 788 
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Supplementary Table S2. Compare the performance of clustering algorithms on 790 

10 scRNA-seq datasets 791 
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Supplementary Table S3. Compare the effects of ARLA on various clustering 793 

performances on 10 scRNA-seq datasets 794 
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Supplementary Table S4. Compare the effects of CMF-Impute on various 796 

clustering performances on 10 scRNA-seq datasets 797 
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Supplementary Table S5. Compare the effects of DrImpute on various clustering 799 

performances on 10 scRNA-seq datasets 800 
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Supplementary Table S6. Compare the effects of MAGIC on various clustering 802 

performances on 10 scRNA-seq datasets 803 
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Supplementary Table S7. Compare the effects of mcImpute on various clustering 805 

performances on 10 scRNA-seq datasets 806 
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Supplementary Table S8. Compare the effects of SAVER on various clustering 808 

performances on 10 scRNA-seq datasets 809 
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Supplementary Table S9. Compare the effects of scImpute on various clustering 811 

performances on 10 scRNA-seq datasets 812 
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Supplementary Table S10. Compare the effects of scRMD on various clustering 814 

performances on 10 scRNA-seq datasets 815 
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Supplementary Table S11. Compare the effects of VIPER on various clustering 817 

performances on 10 scRNA-seq datasets 818 
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