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ABSTRACT: Understanding the role of the ocean in climate variability requires first understanding the role of ocean

dynamics in the ocean mixed layer and thus sea surface temperature variability. However, key aspects of the spatially and

temporally varying contributions of ocean dynamics to such variability remain unclear. Here, the authors quantify the

contributions of ocean dynamical processes to mixed layer temperature variability on monthly to multiannual time scales

across the globe. To do so, they use two complementary but distinct methods: 1) a method in which ocean heat transport is

estimated directly from a state-of-the-art ocean state estimate spanning 1992–2015 and 2) a method in which it is estimated

indirectly from observations between 1980–2017 and the energy budget of the mixed layer. The results extend previous

studies by providing quantitative estimates of the role of ocean dynamics in mixed layer temperature variability throughout

the globe, across a range of time scales, in a range of available measurements, and using two different methods. Consistent

with previous studies, both methods indicate that the ocean-dynamical contribution to mixed layer temperature variance is

largest over western boundary currents, their eastward extensions, and regions of equatorial upwelling. In contrast to

previous studies, the results suggest that ocean dynamics reduce the variance of Northern Hemisphere mixed layer tem-

peratures on time scales longer than a few years. Hence, in the global mean, the fractional contribution of ocean dynamics to

mixed layer temperature variability decreases at increasingly low frequencies. Differences in the magnitude of the ocean

dynamical contribution based on the two methods highlight the critical need for improved and continuous observations of

the ocean mixed layer.

KEYWORDS: North Atlantic Ocean; North Pacific Ocean; Atmosphere-ocean interaction; Climate variability;

Interannual variability; Interdecadal variability; Oceanic variability

1. Introduction

Ocean dynamics play an essential role in governing the long-

term mean climate. Wind-driven western boundary currents

and meridional overturning circulations transport heat pole-

ward to high latitudes where heat is released to the atmosphere

(e.g., Dijkstra 2008; Hartmann 2015). The surface cooling at

high latitudes promotes deep convection and mixing that links

the upper ocean to the deep ocean on time scales of years to

millennia (e.g., Dijkstra 2008; Pedlosky 2013). Overall, the

ocean circulation accounts for nearly a third of the long-term

mean meridional heat transport in the combined atmosphere–

ocean system (Trenberth and Caron 2001).

The role of ocean dynamics in climate variability is less well

understood. It is clear that they are fundamental to El Niño–
SouthernOscillation (e.g., Philander 1983; Jin 1997;McPhaden

et al. 2006). It is less clear whether they play a similarly im-

portant role in other aspects of climate variability, particularly

at extratropical latitudes. Part of the problem lies in the rela-

tively subtle response of the atmosphere to extratropical sea

surface temperature (SST) anomalies (e.g., Kushnir et al.

2002). Another part lies in our still-evolving understanding

ocean mixed layer dynamics, and thus the role of ocean dy-

namics in driving SST anomalies across the globe in the first

place. If the SST variability over a particular region is driven

predominantly by the surface heat fluxes associated with at-

mospheric processes, then the ocean plays a relatively passive

role in climate variability (Frankignoul and Hasselmann 1977;

Barsugli and Battisti 1998). But if the SST variability is also

driven by ocean dynamical processes, then the ocean can play a

much more active role in the climate system.

The role of ocean dynamics in mixed layer temperature

variability can be conceptualized from the pedagogical models

shown in Fig. 1. In all three models, we assume that variations

in SSTs are linearly proportional to variations in mixed layer

temperatures. In the simplest model (Fig. 1a), atmospheric

temperatures Ta are driven by weather ‘‘noise’’ ℱ , and ocean

mixed layer temperatures To are, in turn, driven by the re-

sulting turbulent and radiative fluxes of heat at the sea surface

Qs(ℱ ). Mixed layer temperatures are damped by the linear

term 2loTo, which parameterizes the damping due to the

surface heat fluxes. In this model, the mixed layer integrates

the input atmospheric noise ℱ yielding a reddened SST re-

sponse, where the reddening is a function of the heat capacity

Co and thus the depth of the mixed layer. This model is widely

used as a starting point for understanding atmosphere–ocean

interaction, especially in the midlatitudes (e.g., Hasselmann

1976; Frankignoul and Hasselmann 1977).

A more realistic model of the mixed layer can be formed by

allowing temperatures in the atmosphere and ocean to respond

to each other (Fig. 1b; Barsugli and Battisti 1998). In this case,

the surface fluxes between the atmosphere and ocean respond to

the temperature difference between both media [Qs(Ta 2 To)].

This thermodynamic coupling between atmosphere and ocean

surface temperatures results in ‘‘reduced thermal damping,’’

which acts to redden the variance of not only sea surface

temperatures but also atmospheric temperatures.
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The models shown in Figs. 1a and 1b are ‘‘passive ocean

models’’ in that there is no explicit ocean heat transport. The

models are often viewed as null hypotheses for SST variability;

that is, they reflect the SST variability that would arise in

the absence of ocean dynamics. Despite their simplicity, both

models are able to capture aspects of observed and simulated

midlatitude climate variability, such as the observed power

spectrum of midlatitude SSTs (e.g., Frankignoul and Hasselmann

1977; Frankignoul 1985; Barsugli and Battisti 1998) and the co-

variability between the surface heat fluxes and SSTs (e.g., Cayan

1992a,b).

The models in Figs. 1a and 1b can be extended to include

ocean dynamical processes by explicitly including an ocean

heat transport term (Qo in Fig. 1c). The ocean heat transport

term reflects a variety of processes, including the advection

of heat by the Ekman flow, large-scale geostrophic currents,

eddy-induced currents, and vertical mixing at the bottom of the

ocean mixed layer.

To what extent does ocean heat transport (i.e.,Qo in Fig. 1c)

contribute to observed SST variability?Numerous studies have

investigated this question using a variety of methods, including

use of both observations and climate models. The answer de-

pends on the location, and on the spatial and time scales of the

variability. For examples: Deser et al. (2003) and de Coëtlogon
and Frankignoul (2003) found that the warm-season shoaling

of the mixed layer and subsequent cold-season reemergence of

sequestered temperature anomalies contributes substantially

to the persistence of SSTs on interannual time scales. Roberts

et al. (2017) estimated the ocean heat transport as a residual in

the mixed layer energy budget, and argued that ocean dy-

namics play an important role in driving interannual variability

of upper-ocean temperatures in the equatorial oceans, the

western boundary currents, and the Antarctic circumpolar

current. Bishop et al. (2017) and O’Reilly and Zanna (2018)

estimated the role of ocean heat transport from the lead–lag

correlations between observed surface heat fluxes and SSTs

across the global oceans, and reached broadly similar conclu-

sions. Buckley et al. (2014, 2015) estimated ocean heat trans-

port directly from an observation-assimilating ocean model

and found that ocean dynamics play a dominant role in driving

interannual to interdecadal variability in upper-ocean tem-

peratures in theGulf Stream andNorthAtlantic subpolar gyre.

Finally, many studies have shown that mesoscale ocean dy-

namics play an important role in atmosphere–ocean interac-

tions in both observations (e.g., Small et al. 2008; Frenger et al.

2013; Ma et al. 2015) and climate models (e.g., Kirtman et al.

2012; Ma et al. 2016; Siqueira and Kirtman 2016; Putrasahan

et al. 2017; Saravanan and Chang 2019; Small et al. 2019, 2020).

Despite rapid improvements in our understanding of the

role of ocean dynamics in SST variability, key aspects remain

unclear. In large part, this is due to the difficulties inherent in

observing and simulating ocean variability. Consider, for ex-

ample, the cases of decadal SST variability in the North Pacific

and North Atlantic Oceans. The most important pattern of

decadal variability in the North Pacific sector is the so-called

Pacific decadal oscillation (PDO; Mantua et al. 1997). Both

atmospheric and ocean dynamical processes seemingly con-

tribute to variability in the PDO, but their relative roles remain

uncertain. Some studies have argued that the PDO is driven

primarily by internal atmospheric noise and the extratropical

atmospheric response to ENSO (e.g., Alexander et al. 2002;

Newman et al. 2003; Deser et al. 2004). But others have argued

that the PDO is also driven by ocean dynamical processes

such as dynamic adjustment of the North Pacific Gyre and

Kuroshio–Oyashio Extension (e.g., Latif and Barnett 1994;

Schneider et al. 2002; Qiu et al. 2007; Kwon and Deser 2007;

Alexander et al. 2010;Newman et al. 2016;Wills et al. 2019b) and

the seasonal reemergence of North Pacific SSTs (Alexander and

Deser 1995; Deser et al. 2003; Alexander et al. 2010; Newman

et al. 2016)

FIG. 1. Passive and dynamic ocean mixed layer models. (a) Atmospheric-noise forced ocean mixed layer (e.g., Frankignoul and

Hasselmann 1977), (b) thermally coupled oceanmixed layer (e.g., Barsugli and Battisti 1998), and (c) an extension of (b) to include ocean

dynamics. Here, ℱ is the atmospheric heat transport, Qs is the surface heat flux (latent, sensible and radiative), Qo is the ocean heat

transport, Ca and Co are the heat capacities of the mixed layer and ocean, respectively, Ta and To are mixed layer and atmospheric

temperatures, respectively, and lo is the mixed layer damping parameter. The models are discussed in more detail in the text.
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The picture is even less clear in the case of the Atlantic

multidecadal oscillation (AMO; Folland et al. 1986; Schlesinger

and Ramankutty 1994). Several studies have argued that the

spatial structure and time variability of the AMO are due pri-

marily to atmospheric processes. As evidence they note that 1) the

structure of the AMO can be recovered in numerical simulations

run on slab-ocean models (Clement et al. 2015), 2) the lag rela-

tionships between the surface heat fluxes and SSTs associated with

the AMO can be recovered in idealized models of the mixed layer

that are primarily forced by stochastic atmospheric dynamics as

shown in Fig. 1a (Cane et al. 2017), and 3) decadal variability in the

AMO is consistent with the surface temperature response to an-

thropogenic aerosol loading (Booth et al. 2012; Murphy et al. 2017;

Bellomo et al. 2018). However, other studies have argued that the

AMO is fundamentally dependent on ocean dynamical processes.

As evidence they argue that 1) in observations, the surface heat

fluxes act to damp rather than drive the SST anomalies associated

with the AMO (e.g., Gulev et al. 2013; O’Reilly et al. 2016; Zhang

et al. 2016; Zhang 2017) and 2) in numerical models, the ocean

meridional overturning circulation contributes to variations in the

simulated AMO (e.g., Zhang and Wang 2013; Buckley and

Marshall 2016; Delworth et al. 2017; Zhang 2017; Kim et al. 2018;

Yan et al. 2018; Wills et al. 2019a; Zhang et al. 2019). Whether

ocean dynamical processes contribute to SST anomalies associated

with the PDO and AMO has important implications for un-

derstanding and predicting the role of both phenomena in the

climate system.

The goal of this paper is to provide a comprehensive survey

of the role of ocean dynamics in driving ocean mixed layer

temperature variability across the globe and across a range of

time scales. To do so, we use two different but complementary

methods: 1) a method in which ocean heat transport is calcu-

lated directly from a state-of-the-art ocean state estimate, as in

Buckley et al. (2014, 2015) and 2) a method in which the ocean

heat transport is calculated indirectly from observations and

the energy equation for the ocean mixed layer, as in Roberts

et al. (2017). The work extends previous studies in several

important ways:

d Previous work based on ocean state estimates has generally

focused on select regions (e.g., Buckley et al. 2014, 2015).
d Previous work has not explicitly compared the role of ocean

dynamics as inferred from observations with that derived

from state estimates (e.g., Roberts et al. 2017; Small

et al. 2020).
d Previous studies have frequently relied on the use of lead–lag

correlations to infer causal relationships between the surface

heat fluxes and SSTs (e.g., Gulev et al. 2013; O’Reilly et al.

2016; Bishop et al. 2017; O’Reilly and Zanna 2018). Here we

use a diagnostic equation for the temperature variance to

infer causal relationships, and highlight shortcomings of

results based on lead/lag correlations.
d Previous studies have not explored the role of ocean dynam-

ics in SST variability as a function of time scale using both

observations and ocean state estimates across the global

ocean. Here we exploit such analyses to reveal novel and

important aspects of the role of ocean dynamics in SST

variability at increasingly low-frequency time scales.

The paper is divided into four subsequent sections. The data

andmethods are reviewed in section 2. Results are presented in

section 3. Key results and findings are discussed in section 4.

Section 5 provides concluding remarks.

2. Methods and data

This section includes two parts. In section 2a we derive the

equation that we use to diagnose the drivers of mixed layer tem-

perature varianceacross theglobe. In section2bwedescribehow the

equation is used to estimate ocean heat transport using two different

methods: a method where ocean heat transport is estimated directly

from an ocean state estimate, and a method where ocean heat

transport is estimated indirectly from observed sea surface

temperatures/surfaceheat fluxes and the energy budget of themixed

layer. Note that we do not use lead–lag correlations between the

surface heat fluxes and mixed layer temperature variability to infer

the role of ocean dynamics in temperature variability, as done by

Gulev et al. (2013), O’Reilly et al. (2016), Bishop et al. (2017), and

O’Reilly and Zanna (2018). As discussed in section 4, the use of

lead–lag correlations does not unambiguously identify the role of

ocean dynamics in mixed layer temperature variability.

a. The diagnostic equation for mixed layer temperature
variance

The details of the following are provided in appendix A.

Here we summarize the most salient aspects of the derivation.

The first law of thermodynamics for month-to-month tem-

perature variability in the ocean mixed layer can be ex-

pressed as

C
o

›T 0

›t
5Q0

s 1Q0
o , (1)

where primes denote monthly mean anomalies; the overbar de-

notes the climatologicalmean;Co is the heat capacity of themixed

layer; T is the monthly mean mixed layer temperature; Qs is the

net surface heat flux (i.e., the sum of the latent, sensible, and net

shortwave and longwave fluxes at the surface); andQo is the heat

flux convergence due to all ocean dynamics, including both ad-

vective processes (e.g., wind-driven Ekman flow and geostrophic

currents) and diffusive processes. The climatological mean heat

capacity of the mixed layer is estimated as Co 5 rcph, where h is

the climatological-mean mixed layer depth averaged over all

months. The mean mixed layer depth is estimated from the

ECCO ocean state estimate, as described in the next subsection,

and is shown in Fig. 2a. Note that in the above we have neglected

variations in the heat capacity. This is consistent with Roberts

et al. (2017) and Buckley et al. (2014), who both used a time-

invariant mixed layer depth, except that they use the max-

imum—rather than mean—mixed layer depth drawn from the

12-month climatology.We found that use of the maximummixed

layer depth leads to a systematic overestimate of ocean mixed

heat storage when estimating the heat storage tendency in ob-

servations. It would be interesting to investigate the role of the

seasonal cycle in mixed layer depths on the results in future work.

The diagnostic equation for the ocean mixed layer temper-

ature variance is formed by squaring both sides of (1), time
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averaging, and taking the centered finite difference of the

temperature tendency term so that

s2
T ’

2Dt2

[C
o

2
(12 r

2
)]
(Q02

s 1Q02
o 1 2Q0

sQ
0
o) , (2)

wheres2
T is themixed layer temperature variance, r2 is themixed

layer temperature lag-2 autocorrelation and Dt is the sampling

time period (onemonth). Using (1) to substitute the temperature

tendency for one Q0
s 1Q0

o term in (2) and defining

a5
2Dt2

[C
o
(12 r

2
)]

(3)

yields the simple diagnostic relationship

s2
T ’ ~Q

s
1 ~Q

o
, (4)

where

~Q
s
5a

›T 0

›t
Q0

s (4a)

is defined as the contribution of the surface heat fluxes to the

temperature variance and

~Q
o
5a

›T 0

›t
Q0

o (4b)

is defined as the contribution of the ocean heat transport to the

temperature variance.

Note using (2) the surface heat flux and ocean dynamical

contributions can also be expressed as

~Q
s
5

a

C
o

(Q02
s 1Q0

sQ
0
o) , (4c)

and

~Q
o
5

a

C
o

(Q02
s 1Q0

sQ
0
o) . (4d)

From (4a)–(4d), it is clear that the surface heat flux and ocean

heat transport contributions to temperature variance can be

found as either 1) the product of the temperature tendencies

and the surface heat fluxes/ocean heat transport (4a) and (4b)

or 2) the sum of the variances of the surface heat fluxes/ocean

heat transport and their covariance (4c) and (4d). Here, the

contribution of ocean dynamics (or surface heat fluxes) to the

monthly mean mixed layer temperature variance at any given

location is found using (4a) and (4b)—that is, by calculating the

covariance between the ocean heat transport (or surface heat

fluxes) and the time tendency of mixed layer temperatures, and

then scaling the results by a. These equations state that ocean

dynamics (or surface heat fluxes) contribute to mixed layer

temperature variance in regions where the temperature ten-

dency and ocean heat transport (or surface heat fluxes) are

positively correlated. For example, if the heat transport and

temperature tendency are both positive, then the diagnostic

equation indicates that ocean heat transport is contributing to

the temperature variance. The a coefficient, in turn, quantifies

the ability of the fluxes or transport to generate temperature

variance. As is evident from Figs. 2a and 2b, a is dominated by

the term C21
o and thus closely resembles the spatial pattern of

h21. Thus covariability between the surface heat fluxes or

ocean heat transport and the temperature tendency are most

effective in generating mixed layer temperature variability in

regions such as the subtropics and tropics where h and thus the

heat capacity is small.

As summarized in appendix A, similar approaches to that

outlined above were used by Yu and Boer (2006), Buckley

et al. (2014) and Roberts et al. (2017) to understand the drivers

of upper-ocean temperature variability.

b. ‘‘Direct’’ and ’’indirect’’ methods for estimating ocean

heat transport

The contributions of the surface heat fluxes and ocean heat

transport to mixed layer temperature variance (i.e., ~Qs and ~Qo,

respectively) are quantified from Eqs. (4a) and (4b) using two

methods: 1) a method in which the ocean heat transport Q0
o is

estimated directly from the ECCO ocean state estimate and

2) a method in which the ocean heat transport Q0
o is estimated

indirectly from observations and the energy budget of the

ocean mixed layer. In all analyses, the seasonal cycle is re-

moved from the data by subtracting the long-term climato-

logical means for each calendar month. All time series are

detrended to minimize the effects of climate change on the

results. A Butterworth filter is applied in cases where results

FIG. 2. (a) Climatological mean mixed layer depth h (m) from

ECCO. (b) The a coefficient (K s W21) from (4) computed from

ECCO mixed layer temperatures and mixed layer depths. As dis-

cussed in section 2a, a corresponds to the ability of surface heat

fluxes and ocean heat transport to generate mixed layer tempera-

ture variability.
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are calculated as a function of frequency band. In this case, the

temperature and flux data are filtered before calculating all

covariances.

In the case where the ocean heat transport is calculated directly,

the surfaceheatfluxesQ0
s, oceanheat transportQ

0
o, andmixed layer

temperaturesT0 are all derived from v4r3 of the ECCOocean state

estimate (Forget et al. 2015; Fukumori et al. 2017). ECCOprovides

estimates of ocean heat transport, temperature and the surface

fluxes for 1992–2015 at 18 horizontal resolution throughout the

global ocean. In brief, theECCOoutput is produced as follows [see

Forget et al. (2015) and Fukumori et al. (2017) for more details].

First, a vast quantity of ocean observations is fit in a least squares

sense to a state-of-the-art ocean GCM (the MITgcm). The best fit

to the observations is accomplished by iteratively adjusting the

model initial conditions, mixing coefficients, and surface forcings.

Note that the ECCO surface fluxes are included in the adjustment.

The adjusted input is then integrated forward in a free-running

configuration of the MITgcm to produce the ocean state estimate.

The key aspects of the ECCO output are that 1) the fitting proce-

dure ensures that the output is consistent with the observations

within their estimated uncertainties and 2) running the model in a

free-running configuration ensures that the output is consistentwith

the laws of physics and thermodynamics, as they are represented

in the numerical model. The temperature profiles used to constrain

the model are sourced from gridded products (e.g., Reynolds et al.

2007), as well as a variety of in situ measurements, including from

Argo floats (Argo 2000), expendable bathythermographs (XBT),

and conductivity–temperature–depth (CTD) sensors.

In the case where the ocean heat transport is estimated indi-

rectly, the surface heat fluxes and sea surface temperatures are

estimated from observations, and the ocean heat transport is

found as a residual in the energy budget of the oceanmixed layer

[i.e., Eq. (1)]. The primary data sources are the objectively an-

alyzed surface turbulent heat fluxes (i.e., the sum of the latent

and sensible heat fluxes) fromOAFlux (Yuet al. 2008), SST data

from the NOAA Optimum Interpolation (OI) SST analysis

produced by Reynolds et al. (2007), and surface radiative heat

fluxes and wind stress from MERRA-2 reanalysis (Gelaro et al.

2017). We use the OAFlux product since it provides global

coverage of the air–sea heat fluxes acrossmultiple decades and is

derived using state-of-the-art bulk flux parameterizations (Yu

et al. 2008). All data are applied over the period 1980–2017 and

at 18 resolution. For brevity we refer to the combined OAFlux/

NOAA OI SST/MERRA-2 data as the ‘‘OAFlux’’ dataset

throughout the rest of the paper, although it should be under-

stood that radiative fluxes are from MERRA-2. We also tested

the robustness of select OAFlux results to the use of different

atmospheric reanalyses, including MERRA-2, ERA5 (Hersbach

andDee 2016), and theNOAA–CIRES–DOETwentieth Century

Reanalysis, version 3 (Slivinski et al. 2019).

Note that indirect estimates of ocean heat transport are in-

evitably influenced by biases in the SST and surface heat flux

data (e.g., Hall and Bryden 1982; Talley 1984; Bryden and

Imawaki 2001). The uncertainties in the OAFlux air–sea heat

fluxes due to biases in the various input data are provided in the

OAFlux product. The contributions of observational error to

uncertainties in the mixed layer temperature variance [i.e.,

uncertainty in Eqs. (4c) and (4d)] is reviewed in appendix A.

The equations used to estimate ocean heat transport and

temperature variance [Eqs. (1)–(4)] are based on mixed layer

temperatures, but we use observations of sea surface tem-

peratures since mixed layer temperatures are not as widely

available. Sea surface and mixed layer temperatures are line-

arly related to each other but have different amplitudes. For

example, Fig. 3a shows the SST variancess2
SST from theNOAA

OI product and Fig. 3b the mixed layer temperature variances

s2
T from ECCO. The patterns of the variances are nearly

identical, with maxima in the western boundary currents and

the equatorial Pacific. However, as shown in Fig. 3d, the am-

plitudes are very different, with larger SST variances found at

subtropical and extratropical latitudes but larger mixed layer

temperature variances found in the deep tropics. Note that a

very similar pattern of variance ratios arises between mixed

layer and sea surface temperatures derived from ECCO (3e),

which reveals that the differences in Fig. 3d are not solely a

result of differences between the ECCO SST and NOAA SST.

From Fig. 3d, it is clear that using SSTs rather than mixed

layer temperatures in Eq. (1) would systematically overesti-

mate the importance of ocean heat transport in the extratropics

but underestimate it in the tropics. To avoid this bias, we lin-

early scale the observed SST tendencies by the square root of

the ratio of the 1) ECCO mixed layer temperature variance to

2) the ECCO SST variance. That is, we estimate the observed

mixed layer temperature tendencies for Eq. (1) as

›T

›t
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
T, ECCO

s2
SST,ECCO

s
›SST

›t
, (5)

where T denotes mixed layer temperatures. The above scaling

provides an estimate of the ‘‘observed’’ mixed layer tempera-

ture tendencies that 1) are perfectly correlated with the ob-

served SST tendencies and 2) preserve the ratio of SST

variances to mixed layer temperature variances found in

ECCO. Figure 3c shows the resulting ‘‘observed’’ mixed layer

temperature variances and Fig. 3f shows the corresponding

(log) ratio of the observed to ECCO mixed layer temperature

variances. The differences between the OAFlux estimate of s2
T

and the ECCO s2
T are generally small.

Select results are reproduced using mixed layer tempera-

tures derived from version 4.1.1 of the Met Office Hadley

Centre gridded analyses of in situ ocean temperature profiles

(EN4; Good et al. 2013). The main sources for EN4 analyzed

temperature profiles are theWorld Ocean Database (WOD09;

Boyer et al. 2009), theGlobal Temperature and Salinity Profile

Program (GTSPP) (U.S. National Oceanographic Data Center

2006), and Argo floats. The EN4 temperature profiles provide

an additional residual estimate of ocean heat transport based

on observed mixed layer rather than sea surface temperatures.

3. Results

a. Diagnosis of monthly mean mixed layer temperature

variability

Figures 4a and 4b show the variances of ocean mixed layer

temperatures from the observations (left) and ECCO output
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(right). Recall that the observed mixed layer temperature

variances are derived from observed SSTs using Eq. (5).

Figures 4c–f show the associated contributions of ocean dy-

namics and the surface heat fluxes to the temperature variances

( ~Qo and ~Qs). As a check on the analyses, we confirmed that the

sums of ~Qs and ~Qo are equal to the total variances in the top

row (not shown). Figures 5a–d show the same results as

Figs. 4c–f, but here the ocean dynamical and surface heat flux

contributions are shown as a fraction of the total temperature

variances. Recall that 1) the ocean dynamical contributions

include heat transport by both advection and diffusion and 2)

the surface fluxes are a combination of the radiative fluxes and

the turbulent fluxes of latent and sensible heat. The decom-

position of the ocean dynamical contributions into its various

components is discussed further below.

The ocean dynamical contributions to mixed layer tem-

perature variance provided by the observations and ECCO

exhibit similar patterns but different amplitudes (Figs. 4c,d).

Both methods indicate that ocean dynamics contribute most

to mixed layer temperature variance in the vicinity of the

Kuroshio–Oyashio and its downstream extension; the Gulf

Stream and its downstream extension; the Agulhas Current;

the Malvinas Current; and in various regions throughout the

tropics, including the eastern tropical Pacific cold tongue and

the equatorial Atlantic. The most pronounced differences

between the methods are found in the extratropics, where the

observational estimates of the ocean dynamical contributions

are nearly twice as large as the ECCO-based estimates. The

differences are even more clear when the ocean dynamical

contributions are shown as a fraction of the total variances in

mixed layer temperatures (Figs. 5a,b).

The surface heat flux contributions provided by the obser-

vations and ECCO likewise exhibit similar spatial patterns but

different amplitudes (Figs. 4e,f). Both methods indicate that

the surface fluxes act to drive SST variability (i.e., they are

positive) everywhere except in the equatorial cold tongue re-

gions, where they act to damp SST variability. Both observa-

tions and ECCO also indicate maxima in ~Qs in the subtropics,

which aremost clear when ~Qs is scaled by the total temperature

variances (Figs. 5c,d). The subtropical maxima are consistent

with large variability in the latent heat fluxes at subtropical

latitudes (e.g., Chiang and Vimont 2004; Xie and Carton 2004;

Amaya et al. 2017). As anticipated, the most pronounced dif-

ferences between the observational and ECCO-based results

are again found in the extratropics, where the ECCO-based

estimates of ~Qs are roughly twice as large as the observational-

based estimates (Figs. 5c,d). Note that in general the surface

flux results in Fig. 5 are dominated by the turbulent fluxes of

latent and sensible heat, and that the radiative fluxes play a

relatively small role (not shown).

FIG. 3. (a) Monthly SST variance (K2) from OAFlux. (b) Monthly mixed layer temperature variance (K2) from

ECCO. (c) OAFlux estimate of monthly mixed layer temperature variance (K2) from Eq. (5). (d) Log ratio of the

OAFluxmonthly SST variance to theECCOmonthlymixed layer temperature variance. (e) Log ratio of theECCO

monthly SST variance to the ECCO monthly mixed layer temperature variance (K2). (f) Log ratio of the OAFlux

estimate of monthly mixed layer temperature variance to the ECCO monthly mixed layer temperature vari-

ance (K2).
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The relative importance of the surface heat fluxes and ocean

heat transport for mixed layer temperature variability is sum-

marized in Figs. 5e and 5f, which show the differences in the

fractional contributions from the top panels. Warm colors indi-

cate regions where the surface heat fluxes account for a larger

fraction of the mixed layer temperature variance than ocean

dynamics, and vice versa. Both the observational and ECCO-

based results indicate that ocean heat transport dominates

mixed layer temperature variability in the tropical oceans (blue

shading in Figs. 5e and 5f). But as noted above, the two methods

differ widely in the extratropics. The observations suggest that

ocean dynamics account for a slightly larger fraction of the

temperature variance than the surface heat fluxes over most of

the extratropics (Fig. 5e). In contrast, the ECCO-based results

suggest that the surface heat fluxes account for the predomi-

nance of the temperature variance at extratropical latitudes

(Fig. 5f), with notable exceptions found in major current regions

such as the Kuroshio, Gulf Stream, Agulhas Current, Malvinas

Current, and Antarctic Circumpolar Current.

Figures 6 and 7 explore the decomposition of the total ocean

heat transport contributions into various physical processes.

The top row in Fig. 6 shows the total ocean dynamical con-

tributions reproduced from Figs. 4c and 4d. Subsequent

rows show the contributions from the horizontal Ekman heat

transport computed using the surface wind stresses from

MERRA-2 (Fig. 6c) andECCO (Fig. 6d), and the residuals due

to all other ocean dynamical processes, found as the differences

between the top and middle panels (Figs. 6e,f). Figure 7

shows a different decomposition of the ocean dynamical con-

tributions based on the ECCO estimates of diffusive and ad-

vective heat transport. Here the top panel shows the total ocean

dynamical contributions fromECCO (reproduced fromFig. 4d).

But now the middle panel shows the components due to diffu-

sive mixing (Fig. 7b) and the bottom panel the components due

to advective heat transport (Fig. 7c). Note that Fig. 7b includes

mixing due to convective processes and parameterized isopycnal

diffusion (Redi 1982; Gaspar et al. 1990), whereas Fig. 7c in-

cludes advective heat transport due to explicitly resolved large-

scale currents and eddy-induced transport as parameterized by

the Gent and McWilliams (1990) scheme.

The observational and ECCO-based estimates of horizontal

Ekman heat transport are nearly identical (Figs. 6c,d). Hence,

FIG. 4. (a),(b) Monthly mixed layer temperature variance s2
T (K2) from OAFlux and ECCO, respectively. As

discussed in section 2b, theOAFluxmixed layer temperature variance is estimated fromEq. (5). (c),(d) Ocean heat

transport contribution to mixed layer temperature variance ~Qo (K2) derived from the indirect method using

OAFlux and the direct method using ECCO. (e),(f) Surface heat flux contribution to mixed layer temperature

variance ~Qs (K
2) for OAFlux and ECCO.
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the resulting residual contributions from all other ocean dy-

namical processes differ greatly between the two methods

(Figs. 6e,f). As such, the horizontal Ekman heat transport ac-

counts for roughly half of the total ocean dynamical contri-

butions to mixed layer temperature variability in the ECCO

product, but a much smaller fraction of the total ocean dy-

namical contributions in the observations. Additionally, the

differences in the total ocean dynamical contributions to SST

variability shown in Figs. 6a and 6b arise almost entirely from

non-Ekman processes. As evidenced in Fig. 7, diffusive pro-

cesses account for a very small fraction of the temperature

variance on monthly mean time scales. However, as shown in

the next section, diffusive processes play amore important role

on lower-frequency time scales.

The results in Figs. 4–7 provide novel and comprehensive

estimates of the ocean dynamical contributions to mixed layer

temperature variability. They are broadly consistent with re-

sults shown in recent studies (e.g., Bishop et al. 2017; Roberts

et al. 2017; Small et al. 2020), and indicate that ocean dynamics

play an important role in monthly mean mixed layer temper-

ature variability in equatorial regions and in the vicinity of the

major extratropical boundary currents. However, the results

also reveal important inconsistencies in the ocean dynamical

contributions estimated from observations and the ECCO

product. In general, the observations suggest a much larger

role for ocean dynamical processes in SST variability than the

ECCO output does. The inconsistencies have potentially im-

portant implications for our understanding of the role of the

ocean in extratropical climate variability.

It is unclear why the observations suggest a larger role for

ocean dynamical processes. One possible explanation is that

the 18 ECCO product used here underestimates the role of

mesoscale ocean dynamics in driving mixed layer temperature

variability. Mesoscale ocean processes play an important role

in facilitating atmosphere–ocean interactions (Ma et al. 2016;

Siqueira and Kirtman 2016; Saravanan and Chang 2019; Small

et al. 2019, 2020) and substantial differences in vertical and

horizontal ocean heat transports arise in simulations with fine

(;0.18) ocean resolution relative to more coarse (;18) reso-
lution (Griffies et al. 2015). It would be interesting to assess

higher-resolution ocean state estimates using the methods

described in this paper in future work.

b. Time scale dependence

Here we explore the contributions of ocean dynamics to

mixed layer temperature variance in data that have been

FIG. 5. (a)–(d)As in Figs. 4c–e, except results are divided by themixed layer temperature variances2
T . (e),(f) The

difference between the surface heat flux contribution and the ocean heat transport contribution ~Qs 2 ~Qo divided by

the mixed layer temperature variance using the indirect method (OAFlux) and the direct method (ECCO). Warm

colors: surface heat flux contribution is dominant; cool colors: ocean heat transport contribution is dominant.
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low-pass filtered with a Butterworth recursive filter. Note that

the temperature and flux data are filtered before calculating

the covariances in Eq. (4). We first explore the spatial patterns

of 4-yr low-pass filtered variability. We then explore the sen-

sitivity of the results to different filter cutoffs. As done above

for unfiltered data, we confirmed that the sums of ~Qs and ~Qo

are equal to the total variances in all low-pass filtered results

(not shown).

Figures 8a and 8b show the 4-yr low-pass filtered mixed

layer temperature variances from the observations and

ECCO products. In general, the low-pass filtered variances

are very similar to their unfiltered counterparts, albeit with

small amplitudes (cf. Figs. 4a,b and 8a,b). Both exhibit cen-

ters of action in the eastern tropical Pacific, the extratropical

North Pacific, and the vicinity of the Gulf Stream and its

extension. In contrast, the contributions of ocean dynamics to

the temperature variances (Figs. 8c,d) are dramatically dif-

ferent between the low-pass filtered and unfiltered data,

particularly in the Northern Hemisphere. Ocean dynamics

act to enhance mixed layer temperature variability through-

out the NH when all time scales are included in the analysis

(Figs. 4c,d). In contrast, the ocean dynamics appear to oppose

mixed layer temperature variance in regions throughout the

North Pacific and in the Gulf Stream Extension region of the

North Atlantic on time scales longer than 4 years (Figs. 8c,d).

The result is reproducible in both the observations and

ECCO output. Thus the discrepancies between the observed

and ECCO-derived estimates of ~Qo highlighted in Fig. 4 are

primarily due to ocean dynamics on time scales between one

month and four years.

The apparent suppression of multiannual mixed layer

temperature variance by ocean dynamics in the North

Pacific and North Atlantic is surprising. Ocean dynamics

are generally believed to play an increasingly important

role in SST variability on low-frequency time scales (e.g.,

Bjerknes 1964; Gulev et al. 2013; Buckley et al. 2014;

O’Reilly et al. 2016). Decadal SST variability in the North

Pacific has been frequently linked to dynamic adjustments

of the North Pacific Gyre and Kuroshio–Oyashio Extension

that occur via oceanic Rossby wave propagation (e.g., Latif

and Barnett 1994; Kwon and Deser 2007; Wills et al.

2019b). Also, previous studies have linked multidecadal

SST variability in the North Atlantic to variations in the

Atlantic meridional overturning circulation (e.g., Buckley and

FIG. 6. (a),(b) Ocean heat transport contribution to mixed layer temperature variance ~Qo (K
2) derived from the

indirect method using OAFlux and the direct method using ECCO, respectively. (c),(d) Horizontal Ekman

transport contribution to mixed layer temperature variance ~Qek (K2), calculated using surface wind stress from

MERRA-2 reanalysis in (c) and surfacewind stress fromECCO in (d). (e),(f) Non-Ekman transport contribution to

mixed layer temperature variance ~Qo 2 ~Qek (K
2), calculated as the difference between the top and middle panels

for OAFlux and ECCO, respectively.
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Marshall 2016; Kim et al. 2018; Yan et al. 2018; Zhang et al.

2019). It is possible that ocean dynamics play an important role

on time scales longer than those that can be resolved in the

relatively short records afforded by the ECCO and OAFlux

products (1992–2015 and 1980–2017, respectively). However,

the results in Fig. 8 suggest that—on the time scales resolvable

in the analysis—multiannual mixed layer temperature vari-

ability in both the North Pacific andNorth Atlantic is generally

damped by ocean dynamics.

Why do ocean dynamics suppress mixed layer tempera-

ture variance on multiannual time scales? As discussed

above, the ocean dynamical contributions to mixed layer

temperature variability arise from advective heat transport

and diffusion by convective and parameterized isopycnal

mixing at the base of the mixed layer. Figure 9 shows the

advective and diffusive contributions for 4-yr low-pass fil-

tered data. The key result in Fig. 9 is that while convective

and parameterized isopycnal mixing play a very small role in

the unfiltered data (Fig. 7b), they play a prominent role on

low-frequency time scales (Fig. 9b). Hence the results sug-

gest that the role of diffusive mixing overwhelms the role of

advection in mixed layer temperature variability on time

scales longer than a few years in the extratropical northern

oceans.

To more clearly illustrate the time scale dependency of the

results, Fig. 10 explores the contributions of the surface heat

fluxes and ocean heat transport to SST variability as a function

of low-pass filter length. Results are shown for variances av-

eraged over the globe, the extratropical NH and SH, and the

tropics (note that the results show the spatial averages of the

variances, not the variances of the spatial averages). The top

half of the plot (marked OAFlux) indicates results derived

from the observations over the period 1980–2017: the first row

shows the total area-averaged mixed layer temperature vari-

ance (black), the contributions to temperature variance due to

ocean dynamics (blue), and the contributions to temperature

variance due to surface fluxes (green); the second row shows

the fractional rather than total contributions due to ocean

dynamics (blue shading) and surface fluxes (green shading).

The uncertainties in the variance estimates due to uncertainties

in the observations are indicated by the transparent colored

shadings in the top row (see appendix A for details of the un-

certainty analysis). The bottom half of the plot (marked

ECCO) shows the same results, but calculated for ECCO over

the ECCO period of record 1992–2015. The figure highlights

three key results:

1) As expected, temperature variances—and thus the ocean

dynamical and heat flux contributions to temperature

variances—decrease as the filter length is increased.

2) The contributions of ocean dynamics to the mixed layer

temperature variances are roughly twice as large in obser-

vations as they are in ECCO output at all time scales. In the

case of unfiltered data (i.e., filter length 0), the observations

suggest that ocean dynamics account for ;55% of unfil-

tered mixed layer temperature variability averaged over

the extratropical Northern Hemisphere, ;65% averaged

over the extratropical Southern Hemisphere, and ;65%

averaged over the globe. In contrast, in the ECCO output,

ocean dynamics account for only;30%,;35%, and;45%

averaged over the same respective domains. The differences

between the unfiltered OAFlux and ECCO results are not

explained by uncertainties in the OAFlux estimates (trans-

parent shading in the top row). They are also reproducible

when theOAFlux results are computed for theECCOperiod

of record (not shown).

3) Both the observations and ECCO indicate that the frac-

tional contribution of ocean dynamics to NH mixed layer

temperature variability decreases at increasingly low fre-

quencies (blue shading in Figs. 10b and 10f). In fact, the

contribution of ocean dynamics to NH temperature vari-

ance is negative at filter lengths longer than ;3 years (blue

lines in Figs. 10b and 10f). The striking differences between

the contributions of the surface fluxes and ocean dynamics

far exceed the uncertainties in theOAFlux estimates (green

and blue transparent shading in Fig. 10b, top). We repeated

the analysis shown in Fig. 10 for the extratropical North

Pacific andNorth Atlantic basins separately (see Figs. B1a,f

and B2a,f in appendix B). Both datasets indicate that ocean

dynamics play a vanishingly small role in driving SST

FIG. 7. (a) Ocean heat transport contribution to mixed layer

temperature variance from ECCO (repeated from Fig. 6b). (b),(c)

The components of the contribution due to diffusive heat transport
~Qo,dif (K

2) and advective heat transport Qo,adv (K
2).
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variability in both basins on time scales longer than ;4

years (Figs. B1a,f and B2a,f) and that the results are robust

to the uncertainty estimates provided in the OAFlux

product (transparent shading in Figs. B1a and B2a). Both

datasets also indicate that the ocean dynamical contribu-

tions are weakly negative (i.e., that they suppress SST

variance–at frequencies longer than a few years in the

North Pacific; Figs. B1a,f). Only ECCO indicates that the

ocean dynamical contributions are negative in the North

Atlantic (Figs. B2a,f). The signature of increasingly small

fractional contributions of ocean dynamics at increasingly

low frequencies is less pronounced in the tropics or

Southern Hemisphere (Figs. 10c,d,g,h) but is apparent in

the global mean (Figs. 10a,e).

Clearly, the vanishingly small contribution of ocean dynamics

to multiannual mixed layer temperature variability in the

Northern Hemisphere has important implications for under-

standing the drivers of North Pacific and North Atlantic climate

variability. Figure 11 tests the reproducibility of this key result in

four other data sources: output from the MERRA-2 and ERA5

reanalysis products (Figs. 11a,b), output from the NOAA–

CIRES–DOE Twentieth Century Reanalysis (20CR; Fig. 11c),

and a combination of the OAFlux fluxes with mixed layer tem-

perature tendencies fromEN4 (Fig. 11d). All results are based on

the 1980–2017 period to facilitate comparison with the observa-

tional (OAFlux) results shown in Fig. 10. Figure 11 shows results

integrated over the Northern Hemisphere; Figs. B1b–d and

B2b–d show results integrated over theNorthAtlantic and Pacific

basins, separately. Note that the analysis of the combined EN4–

OAFlux data allows us to better understand how the observa-

tional results depend on the scaling used to convert SST to mixed

layer temperature variances [Eq. (5)].

As evidenced in Fig. 11, the increasingly small fractional

contributions of ocean dynamics to low-frequency Northern

Hemisphere mixed layer temperature variability is reproducible

in all datasets considered in the figure. The contributions are

negative, indicating that ocean dynamics are suppressing low-

frequency temperature variance, in all data sources except for

mixed layer temperatures derived from EN4. But even in this

case, the fractional contribution of ocean dynamics to the tem-

perature variance is considerably less than that associated with

the surface heat fluxes, albeit the uncertainties in the EN4 esti-

mates calculated using the formulation in appendix A are large

on time scales longer than a few years. Note that output from all

the observational data sources indicates a larger role for ocean

dynamics in unfiltered data than output from ECCO (roughly

60% for observations versus 30% for ECCO). Thus, the differ-

ences in ~Qo between the indirect method and direct method are

not due to the SST-tendency scaling given in Eq. (5).

FIG. 8. As in Fig. 4, but for 4-yr low-pass (LP) filtered data.
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The observational results in Figs. 10 and 11 are based on the

period of record following 1980. That is because remotely

sensed data are widely available from the late 1970s, and thus

major reanalyses such as ERA5 and MERRA2 are only

available after 1979. However, the 20CR product is available

extending back to 1836. We reproduced the results in Fig. 11c

using the 20CR product over periods of record extending from

1950–2017 and 1900–2017 (not shown). As in Fig. 11c, the

ocean dynamical contributions to mixed layer temperature

variability decrease more rapidly than the surface heat flux

contributions at increasingly low frequencies. Unlike Fig. 11c,

the ocean dynamical contributions do not become negative at

low frequencies. However, the SST and flux measurement data

are relatively sparse and exhibit more notable biases during the

early and middle twentieth century (e.g., Kent et al. 2017;

Davis et al. 2019, and references therein). Thus we view esti-

mates of ocean dynamics for the early and middle twentieth

century as much more uncertain than estimates for the last few

decades.

4. Discussion

The results in the previous section highlight two surprising

results: 1) The fractional contribution of ocean dynamics to

NH-mean and global-mean mixed layer temperature vari-

ability deceases as the time scale increases, and 2) over certain

areas of the extratropical North Atlantic and North Pacific,

ocean dynamics act to reduce rather than increase the tem-

perature variance on multiannual time scales. The results

emerge from analyses of the temperature variance budget, as

summarized in section 2. And they are reproducible in esti-

mates of ocean heat transport derived both indirectly from

observations of surface heat fluxes and SSTs, and directly using

the ECCO ocean state estimate. However, they also contradict

previous findings in which the role of ocean dynamics in SST

variability is inferred from lag correlations between the surface

heat fluxes and SSTs. Here we comment on the differences and

similarities between the methods used here and in previous

analyses.

Numerous studies have used lag correlations between SSTs

and the surface heat fluxes to infer the role of ocean dynamics

in SST variability (e.g., Gulev et al. 2013; O’Reilly et al. 2016;

Bishop et al. 2017; Zhang 2017; O’Reilly and Zanna 2018). The

reasoning is as follows: If the surface heat fluxes Qs (defined

positive down) are positively correlated with SSTs when

leading the SST field, then the surface heat fluxes enhance

temperature anomalies. Conversely, if the fluxes Qs are nega-

tively correlated with SSTs when leading the SST field, then the

surface heat fluxes damp SST anomalies and thus the tem-

perature anomalies must be driven by ocean heat transport. On

the basis of this logic, previous studies have interpreted posi-

tive correlations between Qs and increasing SSTs on monthly

and annual time scales as evidence that the surface heat fluxes

are driving high-frequency SST variability. Likewise, they have

interpreted negative correlations between Qs and increasing

SSTs on multiannual to multidecadal time scales as evidence

that ocean dynamics are driving low-frequency SST variability

(e.g., Gulev et al. 2013; O’Reilly et al. 2016; Bishop et al. 2017;

Zhang 2017; O’Reilly and Zanna 2018).

However, as also emphasized in Cane et al. (2017), the sign

of the lag correlation between SSTs and the surface heat fluxes

does not unequivocally identify the role of ocean dynamics.

Consider theNorthAtlantic as an example. Our results suggest

that ocean dynamics play a fractionally smaller role in driving

SST variability as the time scale of the variability increases,

with ocean dynamics suppressing SST variability over the Gulf

Stream region on time scales longer than;4 years (Figs. 8c,d).

In contrast, Gulev et al. (2013), O’Reilly et al. (2016) and

others have used lead–lag correlations between SSTs and the

surface heat fluxes to argue that ocean dynamics must play a

key role in driving North Atlantic SST variability at low

frequencies.

Figures 12 and 13 make clear how our results relate to those

in previous studies, and highlight the shortcomings of using lag

correlations between the surface heat fluxes and the SSTs to

infer the role of ocean dynamics. The left column in Fig. 12 is

derived from the left column of Fig. 4 but is focused on the

North Atlantic. The top panel shows the total variance in

mixed layer temperatures, the middle the contributions of

ocean dynamics, and the bottom the contributions of the sur-

face heat fluxes. All results are derived from the indirect

method with OAFlux data. The right column is similar to the

FIG. 9. (a)–(c) As in Figs. 7a–c, but for 4-yr low-pass (LP)

filtered data.
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left column of Fig. 8, and shows the respective results for 5-yr

low-pass filtered data. As discussed earlier in the text, ocean

heat transport contributes substantially to temperature vari-

ance in the Gulf Stream Extension region in the unfiltered data

(Fig. 12b) but acts to decrease temperature variance in theGulf

Stream region at lower frequencies (Fig. 12e).

Figure 13 shows the lead/lag correlations between SSTs and

the surface heat fluxes (top) and ocean heat transport (bottom)

averaged over the Gulf Stream Extension region (as indicated

by the dashed boxes in Fig. 12). Negative lags denote that the

fluxes or transport lead the SST field. The sign of the heat fluxes

and ocean heat transport is positive into the local ocean mixed

layer. To facilitate comparison between the lag-correlation

method and the method outlined in section 2, the contributions

of the surface heat fluxes and ocean dynamics to the temper-

ature variance (i.e., ~Qs and ~Qo, respectively) averaged over this

region are indicated in the bottom left of each panel. Note that

the results in the bottom panels (Figs. 13b,d) are comparable to

Figs. 2a and 2b from O’Reilly et al. (2016).

Starting with the unfiltered results (left column): The cor-

relations betweenQs and the SSTs are positive when the fluxes

lead SSTs and negative when the fluxes lag SSTs (Fig. 13a;

recall that Qs is positive down). According to the logic dis-

cussed previously, this suggests that Qs enhances SST anoma-

lies and hence contributes to SST variability. In this case,

inferences based on lag correlations are consistent with the

results derived from our Eq. (4). In particular, Eq. (4a) states

that the contribution of Qs to temperature variability is given

by the covariance between Qs and the SST tendency, which

relates to the change in the correlation across lag zero. This can

be clearly seen by expanding the temperature tendency in the

following:

fQ
s
5Q0

s

›T 0

›t
’Q0

s(t)T
0(t1Dt)2Q0

s(t)
0T 0(t2Dt) . (6)

The first term on the RHS of (6) relates to the correlation at

negative lags (i.e.,Qs leads SST), and the second term relates to

FIG. 10. Spatially averaged contributions of ocean dynamics (blue) and surface heat fluxes (green) to mixed layer temperature variance

(black). Results are shown as a function of low-pass filter length, as indicated on the horizontal axis. (a)–(d) Results for the observations

based on OAFlux. (e)–(h) Results based on ECCO. The domains are the global oceans (608S–608N), the extratropical Northern

Hemisphere (NH; 308–608N), the extratropical SouthernHemisphere (SH; 308–608S), and the tropics (308S–308N)The line plots on the top

panels indicate the total contributions (K2), and OAFlux uncertainty is shown as transparent shading. The solid shading on the bottom

panels indicates the fractional contributions.
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the correlation at positive lags (i.e.,Qs lags SST). In the case of

Fig. 13a, the correlation at negative lags exceeds the correla-

tion at positive lags and hence fQs 5Q0
s(›T

0/›t). 0. That is, Qs

contributes to SST variability because Qs is positively corre-

lated with the temperature tendencies ›T/›t.

Importantly, the correlations between ocean heat transport

and the SSTs are also positive when the transport leads SSTs

(Fig. 13b), which suggests that ocean dynamics enhances

temperature anomalies and hence drive SST variability in the

unfiltered data. As is the case with the surface heat fluxes, the

results inferred from lag correlations are consistent with the re-

sults derived from our Eq. (4); that is, ~Qo is positive since the

transport Qo is positively correlated with the temperature ten-

dencies (i.e., the change in the correlation across lag zero has the

same sign as the case for Qs). Importantly, the positive contri-

butions of ocean dynamics to SST variance could not have been

unequivocally inferred from the lag correlations between surface

heat fluxes and SSTs alone.

The results for low-pass filtered data (right column) are

more nuanced. In this case, the correlations between Qs and

the SSTs are negative when the fluxes lead the SST field

(Fig. 13c); that is, the surface heat fluxes are out of the ocean

prior to the peak in the SST field. The sign of the correlations

suggests that Qs damps SST anomalies, and thus that ocean

heat transport must play an essential role in driving the

anomalies. The positive correlations betweenQo and the SSTs

at negative lags appear to support this conclusion (Fig. 13d).

At first glance, the signs of the correlations at negative lags

in Figs. 13c and 13d appear inconsistent with the results

derived from Eq. (4). As noted above, previous research

has interpreted the signs of the correlations to indicate that

1) the surface heat fluxes damp the positive SST anomalies at

negative lags while 2) ocean heat transport enhances the SST

anomalies. In contrast, our results suggest that on time scales

longer than 5 years 1) the surface heat fluxes drive SST vari-

ability and 2) ocean heat transport suppresses SST variability.

This apparent contradiction stems from the fact that the sur-

face heat flux contribution to the SST variance ~Qs is a function

not of the lag relationships between Qs and the temperature,

but of the covariance between Qs and the temperature ten-

dency, as shown by (6). Thus, as previously discussed, it is the

change in the correlation between Qs and SST across lag zero

that determines the contribution of the surface heat fluxes to

the temperature variance. In the case of Fig. 13c, the surface

heat fluxes are negative (out of the ocean mixed layer) during

periods preceding the SST anomaly, but they are even more

negative after the peak in the SST anomaly. In this case, the

sign of the change in the correlation across lag zero is the same

as for the unfiltered case (Fig. 13a) and henceQs increases the

low-frequency temperature variance.

Likewise, the ocean heat transport anomalies are positive

(into the ocean mixed layer) during periods preceding the SST

anomaly, but are even more positive after the peak in the SST

anomaly. The change in the correlation across lag zero forQo is

therefore opposite of that for Qs (Fig. 13c) and hence Qo re-

duces the low-frequency temperature variance.

Why do ocean dynamics suppress SST variance on multi-

annual time scales? To answer this, we revisit Fig. 9, which

shows the decomposition of ocean heat transport contribution

into its diffusive (Fig. 9b) and advective (Fig. 9c) components.

Importantly, Fig. 9 reveals that 1) advective ocean processes

contribute to multiannual SST variance [Q0
o,adv(›T

0/›t). 0]

but that 2) diffusive ocean processes suppress multiannual

SST variance [Q0
o,dif(›T

0/›t), 0]. Thus, as the time scale of

the mixed layer variability increases, it appears that the nega-

tive contribution from diffusion becomes increasingly large

and—over certain regions of the ocean—overwhelms the

positive contribution from advection. For example, in the

boxed midlatitude region shown in Fig. 12, the contribution to

5-yr low-pass filtered temperature variance from advection
~Qo,adv is ;0.07K2, while the contribution from diffusion ~Qo,dif

is ;20.18K2.

Overall, the interpretations provided here are consistent

with those in Cane et al. (2017). Cane et al. (2017) use a series

of idealized models to demonstrate that the signs of the lag

correlations between Qs and SST do not unambiguously

identify the relative importance of ocean dynamics. For ex-

ample, it is possible for the atmosphere to dominate the forcing

FIG. 11. As in Figs. 10b and 10f, but for output from

(a) MERRA-2, (b) ERA5, (c) the NOAA–CIRES–DOE

Twentieth Century Reanalysis (20CR), and (d) the combined

EN4–OAFlux dataset. The transparent shading in the top panels of

(d) indicates the combined EN4-OAFlux uncertainty. All results

are based on the 1980–2017 period.
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of SSTs but for the correlations between Qs and SST to be

negative at low frequencies, which suggests that the surface

fluxes are damping low-frequency SST variability. This occurs

in simple models as long as there is at least some amount of

stochastic forcing from ocean dynamics, and is a consequence

of quasi-equilibrium in the surface heat balance at low-

frequency time scales.

Finally, we note that a key advantage of our approach is that

it directly relates the variance in SSTs to the variances of the

fluxes [Eqs. (4c) and (4d)]. As such, the increasingly small

contributions of ocean dynamics to SST variance at lower

frequencies indicates that—as the time scale increases—the

variance of the ocean heat transport is decreasing more rapidly

than the variance of the surface fluxes. This is depicted in

Fig. 14, which shows the log ratios of the variances inQs to the

variances in Qo for both unfiltered and 5-yr low-pass filtered

data. Clearly, the variability of the surface heat fluxes exceeds

the variability of ocean heat transport in the boxed midlatitude

region on longer time scales. We view Fig. 14 as compelling

evidence that ocean heat transport plays a decreasingly im-

portant role in driving SST variance at multiannual time scales.

In summary, the diagnostic equation for temperature vari-

ance used here provides important insights into the relative

roles of the surface heat fluxes and ocean dynamics in driving

FIG. 12. As in the left column of Fig. 4, but focused on the North Atlantic sector. (a) Monthly

mixed layer temperature variance from OAFlux. (b) Ocean heat transport contribution to

mixed layer temperature variance derived from the indirect method using OAFlux. (c) Surface

heat flux contribution to mixed layer temperature variance for OAFlux. (d)–(f) As in the left

column of Fig. 8, but for 5-yr low-pass filtered data.
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mixed layer temperature variance that cannot be readily de-

duced from the sign of the lag correlation between Qs and the

SSTs. We have shown that the sign of the correlations between

Qs and the SSTs when the fluxes lead the SSTs does not de-

termine the role of ocean dynamics in mixed layer temperature

variance (Fig. 13). In particular, we argue that it is the change

in the lag correlations about lag zero that indicates the con-

tributions of different processes to the temperature variance,

not the absolute sign of the correlations. This is most relevant

on longer time scales, where the change in the correlation

across lag zero is small and hence may be easily overlooked.

5. Concluding remarks

The results in this study add to an increasing body of liter-

ature that explores the role of ocean heat transport in driving

SST variability. The primary novel aspects of the analyses are

that 1) we provide a global survey of ocean heat transport using

two distinct but complementary methodological approaches,

one in which ocean heat transport is calculated directly from a

state-of-the-art ocean state estimate (ECCO) and another in

which it is calculated indirectly from observations; 2) we ex-

plore the resulting contributions of ocean heat transport to

SST variability using a diagnostic rather than prognostic

equation for the temperature variance; and 3) we probe the

roles of ocean heat transport as a function of time scale across

the globe in both the observations and the ECCO ocean state

estimate.

The results provide novel quantitative estimates of the role

of ocean dynamics in driving SST variance across the globe.

Consistent with previous studies, they indicate that the largest

contributions of ocean dynamics to mixed layer—and thus sea

surface—temperature variability are found in the western

boundary currents and their eastward extensions, theAntarctic

Circumpolar Current, and the equatorial regions (e.g., Bishop

et al. 2017; Roberts et al. 2017; Small et al. 2020). To leading

order, the results based on the observations and the ECCO

ocean state estimate yield similar spatial patterns throughout

the global oceans. However, they also indicate important dis-

crepancies in amplitude: In general, the contributions of ocean

heat transport to temperature variance estimated indirectly

from observations are twice as large as those estimated directly

FIG. 13. (a) Lag correlations between the surface heat fluxes Qs and SSTs for unfiltered

monthly data averaged over the boxed midlatitude region (388–508N, 158–558W) shown in

Fig. 12. (b) As in (a), but for lag correlations between the ocean heat transport Qo and SSTs.

(c),(d) As (a) and (b), but for 5-yr low-pass (LP) filtered data. Negative lags correspond to

periods when the surface fluxes and ocean heat transport lead SSTs. The signs ofQs andQo are

such that positive values are into the local mixed layer. The contributions from the surface heat

fluxes and ocean heat transport to the mixed layer temperature variance (i.e., ~Qs and ~Qo)

averaged over the boxed midlatitude region are shown in the bottom left of each panel.
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using the ocean state estimate. The reasons for the differences

in amplitude may arise from the representation of mesoscale

ocean processes in the 18 ECCO product but this remains to be

explored in future work.

A key result of the current study is that ocean dynamics

generally play an increasingly small role in mixed layer tem-

perature variability at the low-frequency time scales that are

resolvable in the ECCO and OAFlux products (the records

span 1992–2015 and 1980–2017, respectively). The signature of

decreasing fractional contributions from ocean dynamics to

mixed layer temperature variance is most clear in the Northern

Hemisphere oceans, and is reproducible in a number of at-

mospheric reanalyses spanning 1980–2017. The decreases in

the ocean dynamical contributions to mixed layer temperature

variability on multiannual time scales are sufficiently large that

they extend to the global average: In the case of the observa-

tions, ocean heat transport accounts for ;65% of the globally

integrated variance in mixed layer temperatures on time scales

of a month and longer, but only ;30% of the globally inte-

grated variance on time scales longer than about four years.

The results challenge the notion that ocean dynamics are in-

creasingly important for SST variability at increasingly low

frequencies (e.g., Bjerknes 1964; Gulev et al. 2013; Buckley

et al. 2014; O’Reilly et al. 2016) and they support the hypoth-

esis that observed low-frequency variability in the North

Atlantic can be explained on the basis of stochastic processes

with only a weak contribution from ocean dynamics (e.g.,

Clement et al. 2015; Cane et al. 2017). As discussed in section 4,

the time scale–dependent contributions of ocean heat trans-

port to mixed layer temperature variability revealed here

cannot be readily inferred from the sign of the lag correlation

between the surface heat fluxes and the SSTs.

Another key result is that over large regions of the Northern

Hemisphere oceans, ocean dynamics act to reduce the variance

of the SST field on time scales longer than a few years. Analyses

of the ECCO product suggest that the suppression of SST

variance arises from ocean diffusive processes: Advective ocean

process contribute to SST variability across a range of time

scales, but their contributions are overwhelmed by diffusion as

the time scale of the SST variability increases. These results are

consistent with a recent study byMurphy et al. (2020,manuscript

submitted to J. Climate), who found weaker Atlantic multi-

decadal SST variability in a fully coupledGCM (CESM) relative

to a slab-ocean configuration of the model. It would be inter-

esting to explore the dependence of the results shown here on

the amplitude of the convective processes and parameterized

isopycnal mixing that comprise the diffusive term, as well as the

spatial resolution of the ocean model.

The results shown here are derived from analyses of data

extending back to 1980 (OAFlux) and 1992 (ECCO). We are

hesitant to make inferences on the role of the ocean in climate

variability over a longer period of record by applying a similar

analysis procedure to sea surface temperatures and surface

fluxes derived from, say, the 20CR product. The sea surface

temperature and surface flux observations required to make

such inferences are increasingly sparse and exhibit notable

biases prior to;1970 (e.g., Kent et al. 2017; Davis et al. 2019).

The findings revealed here thus highlight the critical impor-

tance of continued high-quality observations of the upper

ocean for understanding the role of the ocean in multidecadal

climate variability.
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OAFlux (http://oaflux.whoi.edu/), ECCO (https://ecco.jpl.nasa.gov/),

FIG. 14. (a) Log ratio of the variances of the surface heat fluxesQs to the variances of ocean heat transportQo in the North

Atlantic derived from the indirect method using monthly OAFlux data. (b) As in (a), but for 5-yr low-pass filtered data.
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MERRA-2 reanalysis (https://gmao.gsfc.nasa.gov/reanalysis/

MERRA-2/), ERA5 reanalysis (https://www.ecmwf.int/en/

forecasts/datasets/reanalysis-datasets/era5), NOAA-CIRES-

DOE Twentieth Century Reanalysis (https://psl.noaa.gov/

data/gridded/data.20thC_ReanV3.html), and gridded analyses

of ocean temperatures from the EN4 database (https://www.

metoffice.gov.uk/hadobs/en4/).

APPENDIX A

Derivation of the Diagnostic Equation for Mixed Layer
Temperature Variance and Uncertainty Contributions

To derive the diagnostic equation for monthly mixed layer

temperature variance, i.e., Eq. (4), we start with the monthly

mixed layer energy budget:

C
o

›T

›t
5Q

s
1Q

o
. (A1)

Here, Co is the heat capacity of the ocean mixed layer (i.e.,

Co 5 cprh, where h is the ocean mixed layer depth), T is the

monthly mean mixed layer temperature, Qs is the net surface

heat flux (sum of latent, sensible, and radiative heat fluxes),

and Qo is the heat convergence due to ocean dynamics, in-

cluding wind-driven Ekman currents and vertical mixing. Since

we are interested in understanding the processes that drive

temperature anomalies, we expand each of Co, T, Qs, and Qo

into the sum of a climatological mean (denoted by overbars)

and the departure from the mean (denoted by primes). As

discussed in section 2, we also remove both the linear trend and

seasonal cycle from the anomalies in Co, T, Qs, and Qo.

Inserting the above yields the following equation for the tem-

perature anomalies:

C
o

›T 0

›t
5Q0

s 1Q0
o . (A2)

To form an equation involving the mixed layer temperature

variance [i.e., T 0(t)2] we take the finite centered difference of

the temperature tendency term in (A2), square both sides, and

then average over time:

C2
o

2Dt2
[T 0(t)2 2T 0(t1Dt)T 0(t2Dt)]’ (Q0

s 1Q0
o)

2 , (A3)

where Dt is the sampling period (i.e., one month). Denoting

T 0(t)2 as s2
T and using T 0(t1Dt)T 0(t2Dt)5T 0(t)T 0(t2 2Dt)5

r2T 0(t)2, where r2 is the lag-2 autocorrelation of the mixed layer

temperature, we can rewrite (A3) as

s2
T ’

2Dt2

C2
o(12 r

2
)
(Q0

s 1Q0
o)(Q

0
s 1Q0

o) . (A4)

Note that (A4) is analogous to Eq. (6) from Yu and

Boer (2006).

Equation (4) that is derived in the main text is formed by

using the mixed layer energy budget, (A2), to substitute the

temperature tendency for one of the Q0
o 1Q0

o terms in (A4),

and defining a5 2Dt2/[Co(12 r2)]:

s2
T ’a

 
›T 0

›t
Q0

s 1
›T 0

›t
Q0

o

!
. (A5)

The above is analogous to the ‘‘fraction of variance’’ (FOV)

metric used by Buckley et al. (2014) andRoberts et al. (2017) to

understand the drivers of upper-ocean heat content variability,

H5 rcphT. Buckley et al. (2014) express the fraction of vari-

ance ›H/›t that is explained by Qo, which we denote as FOV

[(›H/›t), Qo], as the following:

FOV

�
›H

›t
,Q

o

�
5

Q02
o 1 2Q0

oQ
0
s�

›H0

›t

�
2

. (A6)

Here, we define the ocean contribution to the temperature

variance as follows:

~Q
o
5a

›T 0

›t
Q0

o 5
a

C
o

(Q02
o 1Q0

sQ
0
o) . (A7)

Thus, both (A6) and (A7) relate to the sum of the variance of

Qo and the covariance between Qo and Qs. The main justifi-

cation for using a single covariance term in our definition of the

Qo contribution (i.e., we have Q0
sQ

0
o instead of 2Q0

sQ
0
o) is to

enable the contributions to sum to the total temperature var-

iance (i.e., s2
T 5 ~Qo 1 ~Qs). However, note that the covariance

terms contribute equally to the surface heat flux and ocean

dynamical contributions, and thus are not essential to under-

standing the relative contributions of Qs and Qo to tempera-

ture variance.

To quantify the contributions of observational error to the

mixed layer temperature variance (as shown in Figs. 10a–c,

B1a, and B2a), we start with

~Q
s
5a

›T 0

›t
Q0

s 5a

0B@›T 0

›t
6 «›T

›t

1CA(Q0
s 6 «

Qs
) , (A8)

where «(›T/›t) and «Qs
are the observational estimates of un-

certainty in the temperature tendency and surface heat fluxes,

respectively. Using «(›T/›t) ’ «T/Dt where «T is the uncertainty

in the mixed layer temperature and expanding the RHS of

(A8) yields

~Q
s
5a

›T 0

›t
Q0

s 6
›T 0

›t
«
Qs
6Q0

s

«
T

Dt
6 «

Qs

«
T

Dt
. (A9)

The error in the surface heat flux contribution is then defined as

« ~Qs
5
›T 0

›t
«
Qs
1Q0

s

«
T

Dt
1 «

Qs

«
T

Dt
. (A10)

The uncertainty in the ocean heat transport contribution is

estimated from the error in the temperature variance «s2
T
and

the error in the surface heat flux contribution using the fol-

lowing relation:
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« ~Qo
5 « ~Qs

1 «
s2
T

. (A11)

This is consistent with the fact that the indirect estimate of

Qo is calculated from the observed SSTs and surface heat

fluxes as a residual in the mixed layer energy budget. Note

that the error in the mixed layer temperature variance is

found from

s2
T 5 (T 0 6 «

T
)
2 5T 02 6 2T 0«

T
1 «2T (A12)

so that

«
s2
T

5 2T 0«
T
1 «2T . (A13)

APPENDIX B

Time Scale Dependency of the Contributions to Mixed
Layer Temperature Variance for the North Atlantic

and North Pacific

Figures B1 and B2 show the spatially averaged contributions

from the surface heat fluxes and the ocean heat transport as a

function of low-pass filter length as in Figs. 10 and 11, except

FIG. B1. (a)–(f) As in Figs. 10b, 10f, and 11a–d, but for results averaged over the North Pacific sector (defined as 208–608N, 1208–2708E).
Results in (a)–(e) are based on the period of record 1980–2017. Results in (f) are based on the ECCO period of record 1992–2015.
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for the North Atlantic and North Pacific basins. Figure B1

shows results for the North Pacific, and Fig. B2 shows results

for the North Atlantic.

REFERENCES

Alexander, M. A., and C. Deser, 1995: A mechanism for the recur-

rence of wintertime midlatitude SST anomalies. J. Phys.

Oceanogr., 25, 122–137, https://doi.org/10.1175/1520-0485(1995)

025,0122:AMFTRO.2.0.CO;2.

——, I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D.

Scott, 2002: The atmospheric bridge: The influence of ENSO

teleconnections on air–sea interaction over the global oceans.

J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)

015,2205:TABTIO.2.0.CO;2.

——, and Coauthors, 2010: Extratropical air–sea interaction, sea

surface temperature variability, and the Pacific decadal oscil-

lation. Climate Dynamics: Why Does Climate Vary?Geophys.

Monogr., Vol. 189, Amer. Geophys. Union, 123–148.

Amaya, D. J., M. J. DeFlorio, A. J. Miller, and S.-P. Xie, 2017: WES

feedback and the Atlantic meridional mode: Observations and

CMIP5 comparisons. Climate Dyn., 49, 1665–1679, https://

doi.org/10.1007/s00382-016-3411-1.

Argo, 2000: Argo float data and metadata from Global Data

Assembly Centre (Argo GDAC). SEANOE, http://doi.org/

10.17882/42182.

Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of

atmosphere–ocean thermal coupling on midlatitude variabil-

ity. J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/1520-

0469(1998)055,0477:TBEOAO.2.0.CO;2.

FIG. B2. As in Figs. 10b, 10f, and 11a–d, but for results averaged over the North Atlantic sector (defined as 208–608N, 08–908W). Results in

(a)–(e) are based on the period of record 1980–2017. Results in (f) are based on the ECCO period of record 1992–2015.

2586 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 06/10/22 01:18 PM UTC

https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1007/s00382-016-3411-1
https://doi.org/10.1007/s00382-016-3411-1
http://doi.org/10.17882/42182
http://doi.org/10.17882/42182
https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2


Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement, and L. M.

Polvani, 2018: Historical forcings as main drivers of the Atlantic

multidecadal variability in the CESM large ensemble. Climate

Dyn., 50, 3687–3698, https://doi.org/10.1007/s00382-017-3834-3.

Bishop, S. P., R. J. Small, F. O. Bryan, andR.A. Tomas, 2017: Scale

dependence of midlatitude air–sea interaction. J. Climate, 30,

8207–8221, https://doi.org/10.1175/JCLI-D-17-0159.1.

Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in

Geophysics, Vol. 10, Academic Press, 1–82.

Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and

N. Bellouin, 2012: Aerosols implicated as a prime driver of

twentieth-century North Atlantic climate variability. Nature,

484, 228–232, https://doi.org/10.1038/nature10946.

Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009.

NOAA Atlas NESDIS 66, 216 pp.

Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport.

International Geophysics, Vol. 77, Elsevier, 455–474.

Buckley, M. W., and J. Marshall, 2016: Observations, inferences,

and mechanisms of the Atlantic meridional overturning cir-

culation: A review. Rev. Geophys., 54, 5–63, https://doi.org/

10.1002/2015RG000493.

——, R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-fre-

quency SST and upper-ocean heat content variability in the

North Atlantic. J. Climate, 27, 4996–5018, https://doi.org/

10.1175/JCLI-D-13-00316.1.

——, ——, ——, and ——, 2015: Determining the origins of ad-

vective heat transport convergence variability in the North

Atlantic. J. Climate, 28, 3943–3956, https://doi.org/10.1175/

JCLI-D-14-00579.1.

Cane, M. A., A. C. Clement, L. N. Murphy, and K. Bellomo, 2017:

Low-pass filtering, heat flux, and Atlantic multidecadal vari-

ability. J. Climate, 30, 7529–7553, https://doi.org/10.1175/

JCLI-D-16-0810.1.

Cayan, D. R., 1992a: Latent and sensible heat flux anomalies over

the northern oceans: Driving the sea surface temperature.

J. Phys. Oceanogr., 22, 859–881, https://doi.org/10.1175/1520-

0485(1992)022,0859:LASHFA.2.0.CO;2.

——, 1992b: Latent and sensible heat flux anomalies over the

northern oceans: The connection to monthly atmospheric

circulation. J. Climate, 5, 354–369, https://doi.org/10.1175/

1520-0442(1992)005,0354:LASHFA.2.0.CO;2.

Chiang, J. C., andD. J.Vimont, 2004:Analogous Pacific andAtlantic

meridional modes of tropical atmosphere–ocean variability.

J. Climate, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.

Clement, A., K. Bellomo, L. N.Murphy,M. A. Cane, T.Mauritsen,

G. Rädel, and B. Stevens, 2015: The Atlantic multidecadal

oscillation without a role for ocean circulation. Science, 350,

320–324, https://doi.org/10.1126/science.aab3980.

Davis, L. L., D.W. Thompson, J. J. Kennedy, and E. C. Kent, 2019:

The importance of unresolved biases in twentieth-century sea

surface temperature observations. Bull. Amer. Meteor. Soc.,

100, 621–629, https://doi.org/10.1175/BAMS-D-18-0104.1.

de Coëtlogon, G., and C. Frankignoul, 2003: The persistence of

winter sea surface temperature in the North Atlantic.

J. Climate, 16, 1364–1377, https://doi.org/10.1175/1520-0442-

16.9.1364.

Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and

X. Yang, 2017: The central role of ocean dynamics in con-

necting the North Atlantic Oscillation to the extratropical

component of theAtlanticmultidecadal oscillation. J. Climate,

30, 3789–3805, https://doi.org/10.1175/JCLI-D-16-0358.1.

Deser, C., M.A.Alexander, andM. S. Timlin, 2003: Understanding

the persistence of sea surface temperature anomalies in

midlatitudes. J. Climate, 16, 57–72, https://doi.org/10.1175/

1520-0442(2003)016,0057:UTPOSS.2.0.CO;2.

——, A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal

climate variability: Linkages between the tropics and the

North Pacific during boreal winter since 1900. J. Climate, 17,

3109–3124, https://doi.org/10.1175/1520-0442(2004)017,3109:

PICVLB.2.0.CO;2.

Dijkstra, H. A., 2008:Dynamical Oceanography. Springer, 407 pp.

Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall

and worldwide sea temperatures, 1901–85. Nature, 320, 602–

607, https://doi.org/10.1038/320602a0.

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte,

and C. Wunsch, 2015: ECCO version 4: An integrated

framework for non-linear inverse modeling and global ocean

state estimation. Geosci. Model Dev., 8, 3071–3104, https://

doi.org/10.5194/gmd-8-3071-2015.

Frankignoul, C., 1985: Sea surface temperature anomalies, planetary

waves, and air–sea feedback in themiddle latitudes.Rev.Geophys.,

23, 357–390, https://doi.org/10.1029/RG023i004p00357.

——, and K. Hasselmann, 1977: Stochastic climate models, Part II:

Application to sea-surface temperature anomalies and ther-

mocline variability. Tellus, 29, 289–305, https://doi.org/

10.3402/tellusa.v29i4.11362.

Frenger, I., N. Gruber, R.Knutti, andM.Münnich, 2013: Imprint of

Southern Ocean eddies on winds, clouds and rainfall. Nat.

Geosci., 6, 608–612, https://doi.org/10.1038/ngeo1863.
Fukumori, I., O.Wang, I. Fenty,G. Forget, P. Heimbach, andR.M.

Ponte, 2017: ECCO version 4 release 3. MIT DSpace Tech.

Rep., 10 pp., http://hdl.handle.net/1721.1/110380.

Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy

kinetic energy model for simulations of the oceanic vertical

mixing: Tests at station Papa and Long-Term Upper Ocean

Study site. J. Geophys. Res., 95, 16 179–16 193, https://doi.org/

10.1029/JC095iC09p16179.

Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective

Analysis for Research and Applications, version 2 (MERRA-

2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-

16-0758.1.

Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean

circulation models. J. Phys. Oceanogr., 20, 150–155, https://

doi.org/10.1175/1520-0485(1990)020,0150:IMIOCM.2.0.CO;2.

Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality

controlled ocean temperature and salinity profiles and

monthly objective analyses with uncertainty estimates.

J. Geophys. Res. Oceans, 118, 6704–6716, https://doi.org/

10.1002/2013JC009067.

Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from

transient mesoscale eddies in a hierarchy of climate models.

J. Climate, 28, 952–977, https://doi.org/10.1175/JCLI-D-14-

00353.1.

Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P.

Koltermann, 2013: North Atlantic Ocean control on surface

heat flux on multidecadal timescales. Nature, 499, 464–467,

https://doi.org/10.1038/nature12268.

Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mech-

anisms of ocean heat transport. Deep-Sea Res., 29, 339–359,

https://doi.org/10.1016/0198-0149(82)90099-1.

Hartmann, D. L., 2015: Global Physical Climatology. Vol. 103,

Newnes, 498 pp.

Hasselmann, K., 1976: Stochastic climate models part I. Theory. Tellus,

28, 473–485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.

Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production.

ECMWF Newsletter, No. 147, ECMWF, Reading, United

1 APRIL 2021 PATR I Z IO AND THOMP SON 2587

Unauthenticated | Downloaded 06/10/22 01:18 PM UTC

https://doi.org/10.1007/s00382-017-3834-3
https://doi.org/10.1175/JCLI-D-17-0159.1
https://doi.org/10.1038/nature10946
https://doi.org/10.1002/2015RG000493
https://doi.org/10.1002/2015RG000493
https://doi.org/10.1175/JCLI-D-13-00316.1
https://doi.org/10.1175/JCLI-D-13-00316.1
https://doi.org/10.1175/JCLI-D-14-00579.1
https://doi.org/10.1175/JCLI-D-14-00579.1
https://doi.org/10.1175/JCLI-D-16-0810.1
https://doi.org/10.1175/JCLI-D-16-0810.1
https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
https://doi.org/10.1175/JCLI4953.1
https://doi.org/10.1126/science.aab3980
https://doi.org/10.1175/BAMS-D-18-0104.1
https://doi.org/10.1175/1520-0442-16.9.1364
https://doi.org/10.1175/1520-0442-16.9.1364
https://doi.org/10.1175/JCLI-D-16-0358.1
https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
https://doi.org/10.1038/320602a0
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.5194/gmd-8-3071-2015
https://doi.org/10.1029/RG023i004p00357
https://doi.org/10.3402/tellusa.v29i4.11362
https://doi.org/10.3402/tellusa.v29i4.11362
https://doi.org/10.1038/ngeo1863
http://hdl.handle.net/1721.1/110380
https://doi.org/10.1029/JC095iC09p16179
https://doi.org/10.1029/JC095iC09p16179
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1002/2013JC009067
https://doi.org/10.1002/2013JC009067
https://doi.org/10.1175/JCLI-D-14-00353.1
https://doi.org/10.1175/JCLI-D-14-00353.1
https://doi.org/10.1038/nature12268
https://doi.org/10.1016/0198-0149(82)90099-1
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x


Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/

2016/16299-newsletter-no147-spring-2016.pdf.

Jin, F.-F., 1997: An equatorial ocean recharge paradigm for

ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–

829, https://doi.org/10.1175/1520-0469(1997)054,0811:

AEORPF.2.0.CO;2.

Kent, E. C., and Coauthors, 2017: A call for new approaches to

quantifying biases in observations of sea surface temperature.

Bull. Amer. Meteor. Soc., 98, 1601–1616, https://doi.org/

10.1175/BAMS-D-15-00251.1.

Kim,W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-

frequency North Atlantic climate variability in the

Community Earth System Model large ensemble. J. Climate,

31, 787–813, https://doi.org/10.1175/JCLI-D-17-0193.1.

Kirtman, B. P., and Coauthors, 2012: Impact of ocean model res-

olution on CCSM climate simulations.Climate Dyn., 39, 1303–

1328, https://doi.org/10.1007/s00382-012-1500-3.

Kushnir, Y., W. Robinson, I. Bladé, N. Hall, S. Peng, and

R. Sutton, 2002: Atmospheric GCM response to extra-

tropical SST anomalies: Synthesis and evaluation. J. Climate,

15, 2233–2256, https://doi.org/10.1175/1520-0442(2002)015,2233:

AGRTES.2.0.CO;2.

Kwon, Y.-O., and C. Deser, 2007: North Pacific decadal variability

in the Community Climate System Model version 2.

J. Climate, 20, 2416–2433, https://doi.org/10.1175/JCLI4103.1.

Latif, M., and T. P. Barnett, 1994: Causes of decadal climate vari-

ability over theNorth Pacific andNorthAmerica. Science, 266,

634–637, https://doi.org/10.1126/science.266.5185.634.

Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies

on North Pacific weather patterns? Sci. Rep., 5, 17785, https://

doi.org/10.1038/srep17785.

——, and Coauthors, 2016: Western boundary currents regulated

by interaction between ocean eddies and the atmosphere.

Nature, 535, 533–537, https://doi.org/10.1038/nature18640.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C.

Francis, 1997: A Pacific interdecadal climate oscillation with

impacts on salmon production. Bull. Amer. Meteor. Soc., 78,

1069–1080, https://doi.org/10.1175/1520-0477(1997)078,1069:

APICOW.2.0.CO;2.

McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as

an integrating concept in Earth science. Science, 314, 1740–

1745, https://doi.org/10.1126/science.1132588.

Murphy, L. N., K. Bellomo, M. A. Cane, and A. C. Clement, 2017:

The role of historical forcings in simulating the observed

Atlantic multidecadal oscillation. Geophys. Res. Lett., 44,

2472–2480, https://doi.org/10.1002/2016GL071337.

Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-

forced variability of the Pacific decadal oscillation. J. Climate,

16, 3853–3857, https://doi.org/10.1175/1520-0442(2003)016,3853:

EVOTPD.2.0.CO;2.

——, and Coauthors, 2016: The Pacific decadal oscillation, re-

visited. J. Climate, 29, 4399–4427, https://doi.org/10.1175/

JCLI-D-15-0508.1.

O’Reilly, C. H., and L. Zanna, 2018: The signature of oceanic pro-

cesses in decadal extratropical SST anomalies. Geophys. Res.

Lett., 45, 7719–7730, https://doi.org/10.1029/2018GL079077.

——,M.Huber, T.Woollings, and L. Zanna, 2016: The signature of

low-frequency oceanic forcing in the Atlantic Multidecadal

Oscillation.Geophys. Res. Lett., 43, 2810–2818, https://doi.org/

10.1002/2016GL067925.

Pedlosky, J., 2013: Ocean Circulation Theory. Springer, 456 pp.

Philander, S. G. H., 1983: El Niño Southern Oscillation phenom-

ena. Nature, 302, 295–301, https://doi.org/10.1038/302295a0.

Putrasahan, D., I. Kamenkovich, M. Le Hénaff, and B. Kirtman,

2017: Importance of ocean mesoscale variability for air–sea

interactions in the Gulf of Mexico. Geophys. Res. Lett., 44,

6352–6362, https://doi.org/10.1002/2017GL072884.

Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal vari-

ability in the North Pacific: An observationally constrained

idealized model. J. Climate, 20, 3602–3620, https://doi.org/

10.1175/JCLI4190.1.

Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rota-

tion. J. Phys. Oceanogr., 12, 1154–1158, https://doi.org/

10.1175/1520-0485(1982)012,1154:OIMBCR.2.0.CO;2.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey,

and M. G. Schlax, 2007: Daily high-resolution-blended ana-

lyses for sea surface temperature. J. Climate, 20, 5473–5496,

https://doi.org/10.1175/2007JCLI1824.1.

Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres,

P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean

heat transport convergence contributions to seasonal and in-

terannual variations of ocean heat content. J. Geophys. Res.

Oceans, 122, 726–744, https://doi.org/10.1002/2016JC012278.

Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean–

atmosphere interaction and its relevance to S2S prediction.

Sub-Seasonal to Seasonal Prediction, Elsevier, 183–200.

Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the

global climate system of period 65–70 years.Nature, 367, 723–

726, https://doi.org/10.1038/367723a0.

Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North

Pacific decadal variability. J. Climate, 15, 586–605, https://doi.org/

10.1175/1520-0442(2002)015,0586:AONPDV.2.0.CO;2.

Siqueira, L., and B. P. Kirtman, 2016: Atlantic near-term climate

variability and the role of a resolvedGulf Stream.Geophys. Res.

Lett., 43, 3964–3972, https://doi.org/10.1002/2016GL068694.

Slivinski, L. C., andCoauthors, 2019: Towards a more reliable his-

torical reanalysis: Improvements for version 3 of the

Twentieth Century Reanalysis system. Quart. J. Roy. Meteor.

Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598.
Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean

fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319, https://

doi.org/10.1016/j.dynatmoce.2008.01.001.

——, F. O. Bryan, S. P. Bishop, and R. A. Tomas, 2019: Air–sea

turbulent heat fluxes in climate models and observational

analyses: What drives their variability? J. Climate, 32, 2397–

2421, https://doi.org/10.1175/JCLI-D-18-0576.1.

——, ——, ——, S. Larson, and R. A. Tomas, 2020: What drives

upper-ocean temperature variability in coupled climate

models and observations? J. Climate, 33, 577–596, https://

doi.org/10.1175/JCLI-D-19-0295.1.

Talley, L., 1984: Meridional heat transport in the Pacific Ocean.

J. Phys. Oceanogr., 14, 231–241, https://doi.org/10.1175/1520-

0485(1984)014,0231:MHTITP.2.0.CO;2.

Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmo-

sphere and ocean heat transports. J. Climate, 14, 3433–3443, https://

doi.org/10.1175/1520-0442(2001)014,3433:EOMAAO.2.0.CO;2.

U.S. National Oceanographic Data Center, 2006: Global

Temperature-Salinity Profile Programme, NOAA, National

Oceanographic Data Center, accessed September 2012, http://

www.nodc.noaa.gov/GTSPP/.

Wills, R. C., K. C. Armour, D. S. Battisti, and D. L. Hartmann,

2019a: Ocean–atmosphere dynamical coupling fundamental

to the Atlantic multidecadal oscillation. J. Climate, 32, 251–

272, https://doi.org/10.1175/JCLI-D-18-0269.1.

——,D. S. Battisti, C. Proistosescu, L. Thompson,D. L. Hartmann,

and K. C. Armour, 2019b: Ocean circulation signatures of

2588 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 06/10/22 01:18 PM UTC

http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf
http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
https://doi.org/10.1175/BAMS-D-15-00251.1
https://doi.org/10.1175/BAMS-D-15-00251.1
https://doi.org/10.1175/JCLI-D-17-0193.1
https://doi.org/10.1007/s00382-012-1500-3
https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2
https://doi.org/10.1175/JCLI4103.1
https://doi.org/10.1126/science.266.5185.634
https://doi.org/10.1038/srep17785
https://doi.org/10.1038/srep17785
https://doi.org/10.1038/nature18640
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1126/science.1132588
https://doi.org/10.1002/2016GL071337
https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1029/2018GL079077
https://doi.org/10.1002/2016GL067925
https://doi.org/10.1002/2016GL067925
https://doi.org/10.1038/302295a0
https://doi.org/10.1002/2017GL072884
https://doi.org/10.1175/JCLI4190.1
https://doi.org/10.1175/JCLI4190.1
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1002/2016JC012278
https://doi.org/10.1038/367723a0
https://doi.org/10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2
https://doi.org/10.1002/2016GL068694
https://doi.org/10.1002/qj.3598
https://doi.org/10.1016/j.dynatmoce.2008.01.001
https://doi.org/10.1016/j.dynatmoce.2008.01.001
https://doi.org/10.1175/JCLI-D-18-0576.1
https://doi.org/10.1175/JCLI-D-19-0295.1
https://doi.org/10.1175/JCLI-D-19-0295.1
https://doi.org/10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2
https://doi.org/10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
http://www.nodc.noaa.gov/GTSPP/
http://www.nodc.noaa.gov/GTSPP/
https://doi.org/10.1175/JCLI-D-18-0269.1


North Pacific decadal variability. Geophys. Res. Lett., 46,

1690–1701, https://doi.org/10.1029/2018GL080716.

Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability:

Patterns, mechanisms, and impacts. Earth Climate: The

Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147,

Amer. Geophys. Union, 121–142.

Yan, X., R. Zhang, and T. R. Knutson, 2018: Underestimated

AMOC variability and implications for AMV and predict-

ability in CMIP models. Geophys. Res. Lett., 45, 4319–4328,

https://doi.org/10.1029/2018GL077378.

Yu, B., and G. Boer, 2006: The variance of sea surface temperature

and projected changes with global warming. Climate Dyn., 26,
801–821, https://doi.org/10.1007/s00382-006-0117-9.

Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux

datasets from the Objectively Analyzed Air–Sea Fluxes

(OAFlux) project: Latent and sensible heat fluxes, ocean

evaporation, and related surface meteorological variables.

OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea

surface temperature and Atlantic meridional overturning

circulation variability in CMIP5 historical simulations.

J. Geophys. Res. Oceans, 118, 5772–5791, https://doi.org/10.1002/
jgrc.20390.

Zhang, R., 2017: On the persistence and coherence of subpolar sea

surface temperature and salinity anomalies associated with the

Atlantic multidecadal variability. Geophys. Res. Lett., 44,
7865–7875, https://doi.org/10.1002/2017GL074342.

——, R. Sutton, G. Danabasoglu, T. L. Delworth, W. M. Kim,

J. Robson, and S.G.Yeager, 2016: Comment on ‘‘TheAtlantic

multidecadal oscillation without a role for ocean circulation.’’

Science, 352, 1527, https://doi.org/10.1126/science.aaf1660.

——, ——, ——, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E.

Amrhein, and C. M. Little, 2019: A review of the role of the

Atlantic Meridional Overturning Circulation in Atlantic mul-

tidecadal variability and associated climate impacts. Rev.

Geophys., 57, 316–375, https://doi.org/10.1029/2019RG000644.

1 APRIL 2021 PATR I Z IO AND THOMP SON 2589

Unauthenticated | Downloaded 06/10/22 01:18 PM UTC

https://doi.org/10.1029/2018GL080716
https://doi.org/10.1029/2018GL077378
https://doi.org/10.1007/s00382-006-0117-9
https://doi.org/10.1002/jgrc.20390
https://doi.org/10.1002/jgrc.20390
https://doi.org/10.1002/2017GL074342
https://doi.org/10.1126/science.aaf1660
https://doi.org/10.1029/2019RG000644

