Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind

Zheng, Yixi, Stevens, David P. ORCID: https://orcid.org/0000-0002-7283-4405, Heywood, Karen J. ORCID: https://orcid.org/0000-0001-9859-0026, Webber, Benjamin G. M. ORCID: https://orcid.org/0000-0002-8812-5929 and Queste, Bastien Y. (2022) Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind.

[thumbnail of gyre_revised_final]
Preview
PDF (gyre_revised_final) - Draft Version
Available under License Creative Commons Attribution.

Download (23MB) | Preview

Abstract

Floating ice shelves buttress the Antarctic Ice Sheet, which is losing mass rapidly mainly due to ocean-driven melting and the associated disruption to glacial dynamics. The local ocean circulation near ice shelves is therefore important for the prediction of future ice mass loss and related sea-level rise as it determines the water mass exchange, heat transport under the ice shelf and the resultant melting. However, the dynamics controlling the near-coastal circulation are not fully understood. A cyclonic (i.e. clockwise) gyre circulation (27 km radius) in front of the Pine Island Ice Shelf has previously been identified in both numerical models and velocity observations. Here we present ship-based observations from 2019 to the west of Thwaites Ice Shelf, revealing another gyre (13 km radius) for the first time in this habitually ice-covered region, rotating in the opposite (anticyclonic, anticlockwise) direction to the gyre near Pine Island Ice Shelf, despite similar wind forcing. We use an idealised configuration of MITgcm, with idealised forcing based on ERA-5 climatological wind fields and simplified sea ice conditions from MODIS satellite images, to reproduce key features of the observed gyres near Pine Island Ice Shelf and Thwaites Ice Shelf. The model driven solely by wind forcing in the presence of ice can reproduce the horizontal structure and direction of both gyres. We show that the modelled gyre direction depends upon the spatial difference in the ocean surface stress, which can be affected by the applied wind stress curl filed, the percentage of wind stress transferred through the ice, and the angle between the wind direction and the sea ice edge. The presence of ice, either it is fast ice/ice shelves blocking the effect of wind, or the mobile sea ice enhancing the effect of wind, has the potential to reverse the gyre direction relative to ice-free conditions.

Item Type: Article
Additional Information: Article under review in The Cryosphere
Faculty \ School: Faculty of Science > School of Environmental Sciences
Faculty of Science > School of Mathematics (former - to 2024)
Faculty of Science
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Faculty of Science > Research Groups > Climatic Research Unit
Faculty of Science > Research Groups > Fluid and Solid Mechanics
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 08 Jun 2022 14:47
Last Modified: 05 Sep 2024 01:48
URI: https://ueaeprints.uea.ac.uk/id/eprint/85467
DOI: 10.5194/tc-2021-390

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item