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Abstract: The present study concerns investigating the two-dimensional Magnetohydrodynamics
(MHD) boundary layer flow of Williamson nanofluid over a non-linear stretching sheet. The focus
of this study is based on the global influence of the non-Newtonian Williamson fluid parameter
(λ) rather than the local one that exists in the literature for linear and non-linear stretching cases.
The mathematical model of the problem is based on the law of conservation of mass, momentum,
and energy. The derived partial differential equations are transformed into ordinary differential
equations by applying an appropriate similarity transformation. The subsequent equations are
solved numerically by using the Shooting method. The physical quantities Skin friction coefficient,
as well as the Sherwood and Nusselt numbers are computed locally. To validate the implemented
shooting method, a comparison is made with the results obtained by Matlab function bvp4c, and
good agreement is found. The Prandtl number, Pr, has an increasing impact of 25.14% on the wall
temperature gradient. The impact of various physical parameters are presented through graphs
and tables.

Keywords: similarity transformation; non-linear stretching sheet; Williamson nanofluid; shooting
method; bvp4c

1. Introduction

The two main categories of fluid mechanics are Newtonian and non-Newtonian fluid.
The relationship among strain rate is described by deriving the constitutive equation,
especially for those fluids that do not maintain the Newtonian law of viscosity. Several
researchers have provided mathematical models to determine the rheological properties
of such fluids. The models include the power-law, Williamson fluid, Ellis, cross, and
Carreau models. Williamson [1] provided the Williamson model for pseudoplastic ma-
terials, which is an experimentally verified model. The characteristic of the Williamson
fluid model involves choosing minimum (µ0) and maximum (µ∞) viscosity at the same
time. In real fluid, minimum as well as maximum viscosity is needed for the mathe-
matical model. Pseudoplastic fluids are commonly used in industry as melts of high
molecular weight polymer solution, photographic film, and extrusion of polymer sheets [2].
Carmer et al. [3] investigated polymer solution using the Williamson fluid model. Lyubi-
mov and Perminov [4] deliberated the flow of Williamson fluid over an inclined wall, with
aspects of the gravitational field. Nadeem et al. [5] investigated the numerical solution of
the peristaltic flow of Williamson fluid by radially varying MHD in an endoscope. Noreen
Sher Akbar et al. [6] used the Carreau model and Ismail et al. [7] used the power-law
model to investigate flow of blood in arteries. Ahmed et al. [8] numerically scrutinized the
impact of Williamson fluid flow over an exponential stretching surface. Ramzan et al. [9]
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performed linear analysis of heat transfer in three-dimensional Williamson nanofluid with
a Cattaneo-Christov heat flux model.

In the industrial process, liquids’ thermal features play an essential role in require-
ments such as in heating and cooling [10–13]. The transfer of heat performance of a
liquid is regulated by its thermal conductivity. Furthermore, fluids’ thermal conduc-
tivity via water, engine oil, and ethylene glycol is inherently low compared to that of
solids [14,15]. Researchers have tried to escalate the thermal conductivity of such conven-
tional heat transfer fluids using tiny particles of solids with high thermal conductivity.
Many researchers have investigated the millimeter and micrometer dimensions of these
solid suspensions, and significant drawbacks such as low thermal conductivity, particle
sedimentation, excessive pressure drops, particle clogging, etc., were observed. By down-
sizing the particle size, the performance of heat transfer is improved in liquids [16–21].
With nanotechnology advancements, scientists on an atomic or molecular scale prepared a
nanometer-sized particle with enhanced thermo-physical properties [22–26]. In a base fluid,
the suspension of nanoparticles is known as nanofluid. It has been experimentally proven
the nanofluid’s thermal conductivity is higher than for base fluids. Inside the base fluid, the
nanoparticles easily fluidize, due to which sedimentation and clogging of channels are no
longer problems.

The heat transfer and the boundary layer flow over a stretching sheet are essential
in engineering and industries due to their many applications [27–34]. At the final stage
of processing, the final products’ characteristics are highly dependent upon stretching
and heat transfer rate. Under several stretching velocities, different natural processes take
place. Such flow situations are encountered in numerous manufacturing processes, like
polymer sheet production, extrusion from dye metal spinning, rubber sheet production,
glass blowing, paper product manufacturing, annealing of copper wires and glass fiber,
etc. Sakiadis [35–37] discussed the impact of constant velocity on Newtonian fluid due
to a moving plate. The two-dimensional steady flow over a stretching linear surface was
established for the first time by Crane [38]. Numerous authors further extended Crane’s
work by considering several physical phenomena, like the influence of the magnetic field,
injection or suction, and heat transfer effects on such flow caused by a stretched surface.
Gupta [39] investigated the stretching flow along with suction/injection. The influence of
linear velocity on stretching/shrinking walls and consideration of hydromagnetic, chemical
reaction, and viscous dissipation have been studied by Kameswaran [40]. Khan et al. [41]
used an optimal homotopy analysis method to investigate heat transfer in a boundary
layer nanofluid equipped with a Cattaneo-Christov heat flux model over an exponentially
stretching surface.

MHD flows have fundamental importance from a scientific and applied point of
view. The study involves the consideration of an applied magnetic field on the flow of
electrically conducting fluid. The subject has developed to such an extent that it is not
possible to refer to even a fraction of the literature and its applications. However, recog-
nizing its importance, we will introduce MHD effects in the stretching phenomenon for
non-Newtonian Williamson fluid. Some relevant background literature of interest will help
to understand its significance for our purposes. The study of MHD flows induct theoret-
ical and experimental work, which Hartmann and Lazarus performed. MHD has many
applications in fields such as fusion reactors (blanket, diverter, limiter, F.W.), astrophysics
(planetary magnetic field), crystal growth, ship propulsion, dispersion (granulation) of
metals, jet printers, MHD pumps (1907), MHD flow meters (1935), MHD generators (1923),
metallurgy (induction furnace as well as the casting of Al and Fe), magnetic filtration and
separation, and MHD flow control (reducing turbulent drag) [42–46]. Hussain et al. [47]
used the Keller box method to investigate the MHD convective flow of Williamson fluid
with homogeneous-heterogeneous reactions.

The present paper aims to examine the influence of MHD Williamson nanofluid flow
over a non-linear stretching sheet. The focus of this study is based on the global influence
of the Non-Newtonian Williamson fluid parameter rather than the local one. To the best of
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the authors’ knowledge, the proposed model on similarity transformation has not yet been
considered. The governing non-linear PDEs are reduced into the system of non-linear ODEs
with the help of similarity transformation. The transformed equations are numerically
solved by applying the shooting method and bvp4c. The dimensionless skin friction,
wall temperature gradient, and Sherwood number are obtained and are displayed in
Tables 1–3. The influence of the magnetic parameter, Prandtl number, diffusivity parameter,
Williamson fluid parameter, Schmidt number, Lewis number, and heat capacity ratio on
velocity, temperature, and concentration profiles are shown through graphs.

Table 1. Effect of physical parameters on the skin friction coefficient.

λ↓ M↑ Pr Nbt Nc Le Sc
−(f”(0)+ λ

6 f”2
(0))

Shooting Method bvp4c

0.1 0.5 0.5 2.0 0.5 3.0 2.0 0.786446 0.786446
0.2 0.5 0.5 2.0 0.5 3.0 2.0 0.782473 0.782473
0.3 0.5 0.5 2.0 0.5 3.0 2.0 0.778424 0.778424
0.5 0.1 0.5 2.0 0.5 3.0 2.0 0.694890 0.694890
0.5 0.2 0.5 2.0 0.5 3.0 2.0 0.716547 0.716547
0.5 0.3 0.5 2.0 0.5 3.0 2.0 0.737670 0.737670

Table 2. Effect of physical parameters on Nusselt number −θ′ (0).

λ↓ M↓ Pr↑ Nbt↑ Nc↓ Le↑ Sc

−θ′ (0)

Shooting
Method bvp4c

0.1 0.5 0.5 2.0 0.5 3.0 2.0 0.288735 0.288735
0.2 0.5 0.5 2.0 0.5 3.0 2.0 0.288369 0.288369
0.3 0.5 0.5 2.0 0.5 3.0 2.0 0.287995 0.287995
0.5 0.1 0.5 2.0 0.5 3.0 2.0 0.294560 0.294560
0.5 0.2 0.5 2.0 0.5 3.0 2.0 0.292823 0.292823
0.5 0.3 0.5 2.0 0.5 3.0 2.0 0.291151 0.291151
0.5 0.5 0.1 2.0 0.5 3.0 2.0 0.189510 0.189510
0.5 0.5 0.2 2.0 0.5 3.0 2.0 0.212828 0.212828
0.5 0.5 0.3 2.0 0.5 3.0 2.0 0.237148 0.237148
0.5 0.5 0.5 0.4 0.5 3.0 2.0 0.249286 0.249286
0.5 0.5 0.5 0.5 0.5 3.0 2.0 0.258448 0.258448
0.5 0.5 0.5 0.6 0.5 3.0 2.0 0.264741 0.264740
0.5 0.5 0.5 2.0 0.1 3.0 2.0 0.326417 0.326417
0.5 0.5 0.5 2.0 0.2 3.0 2.0 0.316415 0.316415
0.5 0.5 0.5 2.0 0.3 3.0 2.0 0.306681 0.306681
0.5 0.5 0.5 2.0 0.5 0.3 2.0 0.062628 0.062628
0.5 0.5 0.5 2.0 0.5 0.4 2.0 0.097528 0.097528
0.5 0.5 0.5 2.0 0.5 0.5 2.0 0.126389 0.126389
0.5 0.5 0.5 2.0 0.5 3.0 0.1 0.304255 0.304254
0.5 0.5 0.5 2.0 0.5 3.0 0.2 0.302944 0.302944
0.5 0.5 0.5 2.0 0.5 3.0 0.3 0.301662 0.301662
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Table 3. Effect of physical parameters on Sherwood number −g′ (0).

λ↓ M↓ Pr↓ Nbt↑ Nc↑ Le↓ Sc↑
−g

′
(0)

Shooting Method bvp4c

0.1 0.5 0.5 2.0 0.5 3.0 2.0 0.693244 0.693243
0.2 0.5 0.5 2.0 0.5 3.0 2.0 0.692233 0.692232
0.3 0.5 0.5 2.0 0.5 3.0 2.0 0.691192 0.691191
0.5 0.1 0.5 2.0 0.5 3.0 2.0 0.707605 0.707604
0.5 0.2 0.5 2.0 0.5 3.0 2.0 0.703351 0.703351
0.5 0.3 0.5 2.0 0.5 3.0 2.0 0.699200 0.69920
0.5 0.5 0.1 2.0 0.5 3.0 2.0 0.739933 0.739933
0.5 0.5 0.2 2.0 0.5 3.0 2.0 0.727616 0.727615
0.5 0.5 0.3 2.0 0.5 3.0 2.0 0.715347 0.715346
0.5 0.5 0.5 0.4 0.5 3.0 2.0 0.591692 0.591691
0.5 0.5 0.5 0.5 0.5 3.0 2.0 0.604384 0.604383
0.5 0.5 0.5 0.6 0.5 3.0 2.0 0.617227 0.617226
0.5 0.5 0.5 2.0 0.1 3.0 2.0 0.675000 0.675000
0.5 0.5 0.5 2.0 0.2 3.0 2.0 0.679217 0.679216
0.5 0.5 0.5 2.0 0.3 3.0 2.0 0.683319 0.683318
0.5 0.5 0.5 2.0 0.5 0.3 2.0 0.788938 0.788937
0.5 0.5 0.5 2.0 0.5 0.4 2.0 0.772636 0.772635
0.5 0.5 0.5 2.0 0.5 0.5 2.0 0.759863 0.759862
0.5 0.5 0.5 2.0 0.5 3.0 0.1 0.172203 0.172204
0.5 0.5 0.5 2.0 0.5 3.0 0.2 0.198512 0.198513
0.5 0.5 0.5 2.0 0.5 3.0 0.3 0.225899 0.225899

2. Problem Description

We considered the MHD two-dimensional steady boundary layer flow of an incom-
pressible Williamson nanofluid over a non-linear stretching plate. We assumed that the
plate is stretching along the x-axis, with the varying velocity u = Uw = Bx

1
3 , and the y

direction is taken perpendicular to the x direction, as shown in the Figure 1. The transverse
magnetic field B∗ = B0

x
1
3

is exposed in a direction vertical to the flow. It is also supposed that

Uw, Tw, and Cw are the velocity, temperature, and concentration profiles of the fluid at the
surface, respectively. Moreover, the ambient temperature and concentration are taken to be
T∞ and C∞, respectively. The continuity, momentum, energy, and concentration equations
are taken as specified by Nadeem and Hussain [48,49].
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Cauchy stress tensor is defined as 
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Figure 1. Flow geometry of the problem.

Cauchy stress tensor is defined as

S = −pI + τ, (1)
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τ =

[
µ∞ +

µo − µ∞

1− Γ
.
γ

]
A1, (2)

where τ represents the extra stress tensor, µ∞ and µ0 and are limiting viscosities at infinite
and zero shear stress rates, respectively, A1 is the first Rivlin Erickson tensor, Γ > 0 is the
time constant, and

.
γ is denoted as

.
γ =

√
1
2

π, (3)

π = trace(A1)
2,

We choose the case in which µ∞ = 0 and Γ
.
γ < 1. Thus, Equation (2) takes the form

τ =

[
µo

1− Γ
.
γ

]
A1, (4)

Applying Binomial expansion, we obtain

τ = µo
[
1 + Γ

.
γ
]

A1. (5)

Under given conditions, the boundary layer momentum, energy, and concentration
equation with the magnetic field are

∂u
∂x

+
∂v
∂y

= 0, (6)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 +

√
2 Γν

∂u
∂y

∂2u
∂y2 − σ

B∗2

ρ
u, (7)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

ρpcp

ρc

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]

, (8)

u
∂C
∂x

+ v
∂C
∂y

=
DT
T∞

∂2T
∂y2 + DB

∂2C
∂y2 , (9)

The accompanying boundary conditions are

u = Uw = Bx
1
3 , v = 0, T = Tw,

C = Cw, at y = 0,

u→ 0, T → 0, C → 0, as y→ ∞.

(10)

The following transformations are introduced:

η =
1

x
1
3

√
B
ν

y, u = Bx
1
3 f ′(η),

v = −
√

νB

3x
1
3

(
2 f (η)− η f ′(η)

)
,

g =
C− C∞

Cw − C∞
, θ =

T − T∞

Tw − T∞
.

(11)

Using Equation (11) in Equations (6)–(10), Equation (6) is identically satisfied and
Equations (7)–(10) take the following form:

3 f ′′′ + 2 f f ′′ + λ f ′′ f ′′′ −M f ′ − f ′2 = 0,

θ′′ +
2
3

Pr f θ′ +
Nc
Le

g′θ′ +
Nc

Le× Nbt
θ′

2
= 0,

g′′ +
2
3

Sc f g′ +
1

Nbt
θ′′ = 0,

(12)
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f = 0, f ′ = 1, θ = 1, g = 1, at η = 0,

f ′ → 0, θ → 0, g→ 0, as η → ∞.
(13)

where M = 3σB0
2

Bρ represents a magnetic parameter, λ = 3Γ
√

2B3

v represents the Williamson

parameter, Nbt = DBT∞(Cw−C∞)
DT(Tw−T∞)

is the diffusivity parameter, Sc = v
DB

is the Schmidt
number, Pr = ν

α represents the Prandtl number, Le = α
DB

represents the Lewis number, and

the heat capacity ratio is represented by Nc = ρpcp
ρc (Cw − C∞).

The classical boundary layer equation for the viscous flow can be obtained from
Equation (12) for λ = M = 0. That is, the fluid behaves as a Newtonian one.

2.1. Friction and Heat Transport Quantities

Some other physical quantities of concern in the current investigation are defined as

C f =
τw

ρU2
w

, Nux =
xqn

Tw − T∞
, Shx =

xqs

Cw − C∞
. (14)

where C f represents the local skin friction, Nux represents the local Nusselt number, and
Shx represents the local Sherwood number. Shear stress at the wall τw, wall heat flux qn,
and wall mass flux qs are defined as

τw =

(
µo

(
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2
))

y=0

,

qn = −
(

∂T
∂y

)
y=0

, qs = −
(

∂C
∂y

)
y=0

.

(15)

By using Equation (11) in Equation (15) and Equation (14), we obtain the dimensionless
form

Rexc f =

(
f ′′ +

λ

6
f ′′ 2
)

η=0
,

Nux

Rex
= −θ′(0),

Shx

Rex
= −g′(0).

(16)

where Rex =

√
x

2
3

Bν Uw represents the local Reynolds number.

2.2. Solution Procedure

Non-linear ordinary differential Equation (12) is solved by applying the boundary
conditions of Equation (13), in which the velocity profile involves third order, and tempera-
ture and concentration profiles are of second order. To solve non-linear ODEs, we use the
Shooting method and bvp4c code. Equation (12) is transformed into the system of seven
first-order ordinary differential equations. We use the following substitution:

f = ζ1, f ′ = ζ2, f ′′ = ζ3, θ = ζ4, θ′ = ζ5, g = ζ6 , g′ = ζ7.

The derived system of simultaneous first-order differential equations is

ζ ′1 = ζ2, ζ ′2 = ζ3, ζ ′3 =
1

3 + λζ3

(
ζ2

2 − 2ζ1ζ3 + Mζ2

)
ζ ′4 = ζ5, ζ ′5 = −2

3
Pr ζ1ζ5 −

Nc
Le

ζ7ζ5 −
Nc

Le× Nbt
ζ5

2,

ζ ′6 = ζ7, ζ7
′ = −2

3
Sc ζ1ζ7 −

1
Nbt

ζ ′5.

(17)
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The converted boundary conditions are

ζ1(0) = 0, ζ2(0) = 1,

ζ3(0) = a, ζ4(0) = 1,

ζ6(0) = 1, ζ5(0) = b, ζ7(0) = c.

(18)

To solve the above BVP (Equation (17)) subject to the boundary conditions (Equation (18)),
we utilize the shooting technique together with the RK-Fehlberg method. To this end,
we guess the three anonymous conditions are ζ3(0) = a, ζ5(0) = b, and ζ7(0) = c. The
reasonable guesses for a, b, and c are chosen such that the corresponding known boundary
conditions are almost satisfied for η → ∞ . Newton’s iterative structure is applied to refine
the initial guesses for a, b, and c until the preferred approximation is met. The stopping
criteria for the iterative process are

max(|ζ2(ηmax)− 0|, |ζ4(ηmax)− 0|, |ζ6(ηmax)− 0|) < ε

where ε is a small positive real number. The computations in the rest of this article are
performed with ε = 10−6. The effect of various emerging parameters was investigated
over an applicable bounded domain [0, ηmax] as a replacement for [0, ∞). It is observed
that for growing values of ηmax, no substantial variations are detected in the results. In
order to test the reliability of the implemented shooting method, the in-house built code
was validated with MATLAB built-in bvp4c function.

3. Results and Discussion

The governing non-linear PDE Equations (6)–(9), along with boundary conditions (Equation
(10)) of magnetohydrodynamic Williamson nanofluid over a non-linear stretching surface is
converted into ODEs by applying the appropriate similarity transformation given by Equation
(11). The resulting ODEs are numerically solved by applying the Shooting method and Matlab
function bvp4c. The impact of involving parameters such as Magnetic parameter M, Williamson
fluid parameter λ, Diffusivity parameter Nbt, Schmidt number Sc, Prandtl number Pr, Lewis
number Le, heat capacity ratio Nc on velocity, and temperature and concentration profiles is
depicted through graphs and tables. Table 1 illustrates the impact of λ and M on the skin friction
coefficient. It shows that as we increase the Williamson fluid parameter λ, the value of the skin
friction decreases. This is because the higher the Williamson parameter, the smaller the viscosity,
which results in a skin friction coefficient reduction. By raising the value of the magnetic field
parameter M, the value of the skin friction increases. The reason is that the magnetic field reduces
fluid velocity, and as a consequence, the value of the skin friction increases.

Table 2 presents the effects of λ, M, Pr, Nbt, Nc, Le, and Sc on −θ′(0). By increasing
the value of λ, the value for −θ′(0) declines, because the collision of the fluid particle
slows down. Moreover, the higher the values of the magnetic field parameter M, the
lesser is the wall temperature gradient. When we increase Pr, which describes correlation
between kinematic viscosity and thermal diffusivity, the Nusselt number −θ′(0) increases;
that is, the temperature gradient at the surface is increased. By increasing the value of
the diffusivity ratio (Nbt), the value of the −θ′(0) increases because Nbt is the ratio of
Brownian diffusivity to thermophoretic diffusivity, and Nbt increases because Brownian
diffusivity increases, while it drops down on raising the heat capacities ratio, Nc. The Lewis
number Le has an increasing effect on −θ′(0). By augmenting the value of Le, the thermal
diffusivity is increased, resulting in growth in −θ′(0).

Table 3 presents the effects of λ, M, Pr, Nbt, Nc, Le, and Sc on −g′(0). By enhancing
the value of the Williamson fluid parameter λ, −g′(0) decreases because of a decrease in
resistance at the wall. Similar behavior of −g′(0) is noted upon augmenting the values of
magnetic parameter M and the Prandtl number Pr. With the increase in diffusivity ratio
Nbt, the Sherwood number, −g′(0), increases. This is because of the greater Brownian
motion of fluid particles. When increasing the heat capacities ratio Nc, an increasing trend
is seen for −g′(0). Since Nc is the ratio of the heat capacities of nanoparticles to nanofluid,
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enhancing Nc values mean an increase in nanoparticle heat capacity. It is discerned that
the greater the Lewis number Le, the smaller the −g′(0). When increasing the value of
the Schmidt number Sc, the value of the −g′(0) also increases. A comparison of Nusselt
numbers from the present study and those from Nadeem et al. [48] for different values of
Prandtl and Williamson fluid parameters between nonlinear and linear stretching is given
in Table 4. It is readily seen that for both the parameters, the Nusselt number behavior is
similar for both linear and nonlinear stretching cases, but its value is higher in the case of
nonlinear stretching.

Table 4. Comparison between linear and nonlinear stretching for −θ′(0) by fixing Le = 4, M = 0,
Nbt = 2, Nc = 0.5, Pr = 0.5, and Sc = 0.5.

λ Pr Linear Stretching—Nadeem et al. [48] Nonlinear Stretching—Present Study

0.0 0.314 0.319
0.2 0.309 0.318
0.4 0.302 0.317

0.2 0.144 0.231
0.6 0.355 0.347
1.2 0.588 0.521

Figure 2 illustrates the impact of λ on f ′ (η), θ(η), and g(η). We observe that f ′ (η)
decreases as we increase λ. Physically, we can conclude that λ offers more resistance
to velocity (see Figure 2a). Increasing of λ implies Γ retardation time is higher, which
is responsible for the fluid particles regaining their actual position. As a result, the vis-
cosity becomes higher, and the values of temperature and concentration profiles go up.
Figure 2b,c describe the influence of the Williamson fluid parameter λ on θ(η) and g(η).
By increasing the value of λ, both the temperature and concentration profiles increase
because of an increase in the fluid’s resistivity. Figure 3 displays the effect of magnetic
parameter M on f ′ (η), θ(η), and g(η). As we increase M, the velocity of the fluid de-
creases, and both temperature and concentration profiles increase. The Lorentz force,
which is an opposing force, slows down the motion of fluid, and the velocity boundary
layer thickness diminishes. The outcomes of Prandtl Pr on temperature distribution and
concentration profile are presented in Figure 4. As we increase the Prandtl number Pr, the
temperature profile decreases, and a reduction in the thermal boundary layer is noticed.
The increasing of the Prandtl number Pr means making the kinematic viscosity stronger
than thermal diffusivity and, as a result, more resistant to fluid flow. The Prandtl number
shows the dual behavior on the concentration profile; as we increase the Prandtl number Pr,
initially the concentration increases, and at η = 2 it changes its behavior from increasing
to decreasing. This is because, far from the surface, viscous forces have negligible effects.
Figure 5a,b depicts the effect of the Lewis Number Le on θ(η) and g(η). As Le is increased,
the temperature profile θ(η) decreases and the thickness of the thermal boundary layer
also decreases, and the opposite behavior of the concentration profile g(η) is seen.
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Figure 5. Profiles of θ(η) and g(η) versus η for various values of Le by fixing λ = 0.3, M = 0.5,
Pr = 0.5, Nbt = 2.0, Nc = 0.5, and Sc = 2.0.

For enormous values of t, the contribution of last terms of the second and third
equations of Equation (12) is negligible; therefore, the concentration profile turns out
to be free of temperature. The effect of diffusivity ratio Nbt on both θ(η) and g(η) is
manifested in Figure 6a,b. By increasing Nbt, both θ(η) and g(η) decrease. The decrease
in g(η) is more rapid than θ(η), and a decrease in thermal boundary layer thickness is
also witnessed. The influence of heat capacity ratio Nc on temperature and concentration
profiles is shown in Figure 7a,b. The temperature profile θ(η) increases with an increase in
Nc, while a depreciation in the concentration profile g(η) is spotted. The effect of Sc on
the concentration is shown in Figure 8. By raising the Schmidt number, the concentration
profile is decreased. Since Sc is the ratio of momentum diffusivity and Brownian diffusivity,
an increase in Sc results in a decreased Brownian diffusivity, which causes a weaker
concentration profile.
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4. Conclusions

In this article, we modeled the MHD flow of Williamson nanofluid over a non-linear
stretching surface. Similarity transformations were applied, and we obtained a system of
non-linear ordinary differential equations. The shooting method was applied to solve them
numerically. The combined effects of Williamson parameter λ, magnetic parameter M,
diffusivity ratio Nbt, Prandtl number Pr, Lewis number Le, Schmidt number Sc, and heat
capacities ratio Nc on heat and mass transfer of MHD boundary layer flow of Williamson
nanofluid were examined. The salient features of this study are mentioned below:

• The Williamson parameter λ and magnetic parameter M have opposite impacts on
skin friction coefficient.

• The wall temperature gradient decreases when increasing the value of Williamson
parameter λ, magnetic parameter M, and heat capacities ratio Nc, whereas it increases
for Prandtl number Pr, diffusivity ratio Nbt, and Lewis number Le. Moreover, the
Lewis number Le reveals a strong effect on wall temperature gradient −θ′(0).

• The diffusivity ratio Nbt, heat capacities ratio Nc, and the Schmidt number Sc show
direct relation with the Sherwood number −g′(0). An opposite relation is seen with
Williamson parameter λ, magnetic parameter M, Prandtl number Pr, and Lewis num-
ber Le. It is worth mentioning that the most substantial outcome is seen for the Schmidt
number Sc, where there is a 31% increment in the Sherwood number.

• When raising the values of Williamson parameter λ and magnetic parameter M, the
velocity profile settles at lower values, whereas the temperature and concentration
profile settles at higher values. Moreover, the velocity boundary layer contracts, and
the thermal boundary layer enlarges.

• The temperature profile settles at lower values when raising the Prandtl number
Pr, Lewis number Le, and diffusivity ratio Nbt.

• The concentration profile shows direct relation to the Lewis number Le and an inverse
relation to diffusivity Nbt, heat capacities ratio Nc, and Schmidt number Sc, whereas
Prandtl number Pr shows dual behavior.
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Nomenclature

B Rate of stretching surface A1, First Rivilin-Erickson tensor
B? Magnetic field strength

[
NmA−1

]
Nux local Nusselt number

C f Skin friction coefficient Shx local Sherwood number
Pr Prandtl number τw Shear stress at the wall
M Magnetic parameter qn heat flux at the wall

[
Wm−2

]
T Fluid temperature [K] qs wall mass flux
Nbt Diffusivity parameter Tw Surface temperature [K]
Le Lewis number T∞ Ambient temperature [K]
Nc Heat capacity ratio Uw Wall velocity
Sc Schmidt number f Dimensionless stream function
u, v Velocity components

[
ms−1

]
x, y Cartesian coordinates

Rex local Reynolds number g Nanoparticle volume fraction
C Concentration of nanoparticle Cw Concentration of nanoparticle at the surface
C∞ Ambient concentration of nanoparticle DB Coefficient of Brownian diffusion

[
m−2s−1

]
DT Coefficient of thermophoresis diffusion

[
m−2s−1

]
Greek Letters
η Dimensionless similarity variable ν Kinematic viscosity

[
m2s−1

]
σ Electrical conductivity

[
Sm−1

]
ρ Density

[
kgm−3

]
Γ Positive time constant λ Williamson fluid parameter
α Thermal diffusivity

[
m2s−1

]
µ Dynamic viscosity

[
kgm−1s−1

]
θ Dimensionless temperature ρc Heat capacity of the fluid

[
Jm−3 K−1

]
ρpcp Heat capacity of nanoparticles

[
Jm−3 K−1

]
τ Extra stress tensor

[
Nm−2

]
Subscripts
w Condition at the wall ∞ Condition at the free stream
Superscripts
‘ Derivative w.r.t η

Abbreviations
ODEs ordinary differential equations PDEs partial differential equations
MHD Magnetohydrodynamics
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