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ABSTRACT 
 

Background: Germline variants explain more than a third of prostate cancer (PrCa) 

risk, but very few associations have been identified between heritable factors and 

clinical progression. 

Objective: To find rare germline variants that predict time to biochemical recurrence 

(BCR) after radical treatment in men with PrCa, and understand the genetic factors 

associated with such progression. 

Design, Setting and Participants: Whole-genome sequencing data from blood DNA 

were analysed for 850 PrCa patients with radical treatment from the Pan Prostate 

Cancer Group (PPCG consortium) from UK, Canada, Germany, Australia and France. 

Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA). 

Outcome Measurements and Statistical analysis: 15,822 rare (MAF<1%) 

predicted-deleterious coding germline mutations were identified. Optimal multifactor 

and univariate Cox regression models were built to predict time to BCR after radical 

treatment, using germline variants grouped by functionally annotated gene-sets. 

Models were tested for robustness using bootstrap resampling. 

Results: Optimal Cox regression multifactor models showed that rare predicted-

deleterious germline variants in “Hallmark” gene-sets were consistently associated 

with altered time to BCR. Three gene-sets had a statistically significant association 

with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, 

Inflammatory response and KRAS signalling (up). PI3K/AKT/mTOR and KRAS 

signalling (up) were also associated among patients with higher grade cancer, as were 
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Pancreas-beta cells, TNFA signalling via NKFB and Hypoxia, the latter of which was 

validated in the independent TCGA dataset. 

Conclusions: We demonstrate for the first time that rare deleterious coding germline 

variants robustly associate with time to BCR after radical treatment, including cohort-

independent validation. Our findings suggest that germline testing at diagnosis could 

aid clinical decisions by stratifying patients for differential clinical management. 

Patient summary: PrCa patients with particular genetic mutations have a higher 

chance of relapsing after initial radical treatment, potentially providing opportunities to 

identify which patients might need additional treatments earlier.  
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Introduction 

Prostate cancer (PrCa) is the most common cancer in men in the developed world. 

Although the majority of PrCa cases are diagnosed with low or intermediate risk 

disease, approximately 10% of patients develop metastatic disease with poor survival 

rates [1, 2]. Genetic predisposition to the overall disease risk of PrCa of any severity is 

well researched; however, understanding of potential heritable genetic factors 

contributing to tumor progression is limited [3]. 

Biochemical recurrence (BCR) is often used as a prostate-specific antigen (PSA)-

based predictor of progression to poor prognosis phenotype, and is observed in 

approximately 25% of patients after radical prostatectomy (RP) [4]. Identification of 

men at high-risk for progression to lethal disease and who are likely to relapse after 

primary treatment would present the possibility to triage treatment intensification using 

current or novel systemic therapies. Most research into BCR to date has focused on 

gene expression or mutational signatures in prostate tumour tissue, or specific 

candidate genes only [5]. In this study, we investigate for the first time whether rare 

germline variants across the full exome are predictive of poor prognosis after radical 

treatment. This information could aid clinical management of the disease, particularly 

at diagnosis, pre- or post-treatment staging and prognostication. 
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Materials and Methods 

Sequencing of DNA from PrCa Patients 

Whole-genome sequencing (WGS) data derived from whole blood samples were 

collated for PrCa patients from member countries of the Pan Prostate Cancer Group 

(PPCG, http://panprostate.org; Australia n=133, Canada n=288, France n=15, 

Germany n=230, UK n=184; Table 1, further characteristics in Supplementary Table 

1). The study presented here combines data from patients following RP, and a small 

subset of samples with radical radiotherapy (RT; 8%) from the Canadian study group. 

We refer to the samples collectively as having radical treatment. 

Samples were collected according to criteria outlined in Supplementary Method 1. 

Collection was subject to the International Cancer Genome Consortium (ICGC) 

standards of ethical consent.  Collection and analysis of the Australian samples 

received institutional review board approval (Epworth Health 34506; Melbourne Health 

2019.058). WGS was performed using Illumina technology to ≥30x depth. Burrows-

Wheeler Aligner (BWA, [6]) was used to align sequencing data to the GRCh37 human 

genome (human_g1k_v37) with PCR duplicates removed [7]. Sequencing data have 

been deposited at the European Genome-phenome Archive (https://ega-archive.org, 

study IDs in Table 1) and is available upon request. 

Variant Calling 

Variant calling was performed with The Genome Analysis Toolkit pipeline (GATK v4.0) 

[8] following GATK best practice recommendations for germline SNV and indel calling 

[9, 10] (Supplementary Method 2), apart from for the German samples which were 

http://panprostate.org/
https://ega-archive.org/
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called using FreeBayes v1.1.0  [11] and processed as described by Gerhauser et al. 

[12], normalised with vt v0.5 [13] (Supplementary Method 3). This analysis was 

restricted to variants within protein-coding transcript sequences according to 

GENCODE v29 [14]. 

Quality Control, Variant Annotation and Prioritization 

Low-quality variants and samples were removed based on established QC protocols 

[15-17]. We excluded samples from related individuals (using R package SNPRelate 

method identity-by-descent [18]), or with non-European ancestry (using Principal 

Component Analysis relative to 2,504 samples from the 1000 Genomes Project [19]). 

We used Picard tools v2.23.8 [20] to remove samples with a mean insert size <250bp, 

AT or GC dropout >5%, <95% aligned reads, >5% mismatch rate, <80% with ≥20x 

coverage or >5% missing call rate. Using verifyBamID v1.1.2 [21] we removed samples 

with >3% sample contamination. We excluded variants with a missing call rate in >5% 

of the samples, monomorphic loci, those in repetitive regions (simple repeats, 

segmental duplications and centromeric regions) and where the ExAC major allele 

frequency in any population was >1%. 3% of the submitted samples were excluded 

based on ancestry, while 2% were removed because of sequencing quality. One 

sample was removed due to relatedness. 

Post-QC variants were annotated using the Variant Effect Predictor (VEP v101) and 

loss-of-function transcript effect estimator (LOFTEE) package [22]. For downstream 

analyses we retained only variants categorised as deleterious/loss-of-function, 

comprising those with protein-truncating mutations (nonsense, frameshift and splice 

site variants) occurring in the first 95% of the protein, as well as predicted-deleterious 

missense variants with a CADD PHRED score >30 [23] (Table 1). 



11 
 

 

Pathways and Gene-sets 

For pathway level analysis, all 50 “Hallmark” gene-sets from GSEA MsigDB were 

considered [24 (Downloaded April 2017)], along with the BROCA extended panel of 

66 genes and 175 curated DNA repair genes (DRG) [16, 17] (Supplementary Table 

2). 

 

Statistical analysis 

Software and libraries 

All statistical analyses were applied using Python v3.8 [25]. Data in VCF format was 

converted using PyVCF v0.6.7 [26] and processed using pandas v1.3.0 [27], SciPy 

v1.4.1 [28], NumPy v1.18.3 [29], IPython v7.14 [30] and Scikits.bootstrap v1.1 [31]. 

Survival analysis for Cox’s proportional hazard (PH) model and Kaplan-Meier 

estimates were performed using the Lifelines v0.25 package [32]. Tables and graphs 

were output using Matplolib v3.3.4 [33], to_precision [34] and Maftools v2.6.5 [35]. 

Multifactor Cox Regression 

Analyses were performed on the combined post-QC dataset (Table 1) and a subset of 

patients with high Gleason score tumours, with models stratified by study to 

compensate for differing baseline hazards. Gene-set predictors of the Cox 

Proportional Hazard (PH) model were generated by recording the presence of any 

gene with predicted-deleterious mutations in the selected gene-sets across all 

samples. Pathologic T-stage had a baseline of stage 1-2, and a second group for stage 
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3-4. Clinical T-stage was used for patients receiving radiotherapy (RT). Pre-operative 

PSA and age at time of surgery were continuous variables. Gleason score had a 

baseline of ≤3+4 (Gleason grade groups 1-2), and a group for ≥4+3 (Gleason grade 

group 3-5). Time was measured from radical treatment until BCR, which for samples 

with radical prostatectomy (RP) was defined as two consecutive post-RP PSA 

measurements of >0.2ng/ml on the last known follow-up date [36]. For the 72 

Canadian samples with RT, BCR was defined as a rise in PSA concentration of more 

than 2.0 ng/ml above the nadir, backdated to first PSA>0.2 ng/ml if PSA continues to 

rise [37]. We performed a sensitivity analysis on a subset that excluded RT samples, 

which did not affect the significant risk-elevating gene-sets observed (Supplementary 

Table 3). 

Variables included in the final models were selected by performing Cox regression 

with penalization based on the least absolute shrinkage and selection operator 

(LASSO) [38]. The optimal penalty factor (lambda) was determined as within 1 

standard error of the optimum from the mean of 100 ten-fold cross-validation models. 

Only features with a non-zero coefficient were retained. The final prediction models 

were then built using Cox regression without penalization. 

Univariate Cox regression 

Each gene-set was modelled individually along with clinical covariates (pre-op PSA, 

pathologic T-stage, Gleason score, age), and p-values were adjusted for multiple 

testing using False Discovery Rate (FDR). 
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Validation  

We performed harmonised variant filtering for predicted-deleterious mutations on  

germline PrCa samples from The Cancer Genome Atlas (TCGA) PRAD project. From 

the original 500 TCGA PRAD samples, any samples from contributing institutions with 

<15 samples were excluded, and models were stratified by institution, resulting in 383 

samples used in the analysis. Of those, 233 were included in the  high-Gleason subset 

analysis. We applied the variants to the predictors selected from the Cox model built 

using the combined PPCG samples, to compare the hazard ratios (HR) in both sets.  

Kaplan-Meier analysis  

A KM-plot measuring time to BCR in the event of relapse was used to visualise the 

impact of mutations within significant gene-sets on risk of BCR. This was applied 

separately to the whole dataset and high-Gleason subset, and reported alongside log-

rank test p-values. 

We performed a combined analysis, considering mutations in any of the gene-sets 

significant for the corresponding analyses, and subdivided to ascertain potential 

additive effects upon a patient’s time to relapse. 

Bootstrapping validation 

To test model robustness, we produced new datasets of the same sample size by 

randomly choosing samples with replacement, without stratification, and building a 

Cox regression model from the resulting dataset. This was repeated 1000 times to 

derive a distribution of coefficients. p-values were computed for each predictor as a 
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percentage of the iterations where the coefficient was in a different direction than 

expected.  
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Results 

We analysed germline WGS data from 850 patients across five studies in the PPCG 

consortium (Table 1; Supplementary Tables 1 and 2) for germline predictors of PrCa 

progression measured by BCR after radical treatment. This analysis was restricted to 

variants within protein-coding transcript sequences, resulting in 15,822 rare variants 

identified as deleterious or likely deleterious, jointly categorised as predicted-

deleterious (PD). No individual variants or genes demonstrated significant association 

with time to BCR (Cox regression analysis; p-values >0.05), although the available 

sample size of 850 cases is underpowered for such analysis. Therefore, we focused 

on finding gene-sets or pathways with significant associations, to identify potential 

biological mechanisms linked with progression. To this end, we determined whether 

there was at least one predicted-deleterious germline alteration in 52 gene-sets, 

including 50 “Hallmark” gene-sets from the MsigDB database [24], containing over 

4000 genes with sets varying in size from 30-200, the DRG panel containing 175 DNA 

repair genes [16], and the extended BROCA gene panel containing 65 genes [17] 

(Supplementary Table 4). 

After variable selection by LASSO, the optimal model for predicting time to BCR 

contained fourteen gene-sets, three of which were significantly associated with time 

to BCR (Cox PH model for all samples; p-value threshold <0.05; Table 2 and Figure 

1a). Clinical variables at the time of radical treatment (pre-op PSA, pathological T-

stage, age and Gleason score) were added to the model as covariates. The significant 

risk-elevating Hallmarks were PI3K/AKT/mTOR (HR=1.55; 1.06-2.25 95% CI; 

p=0.02326), Inflammatory response (HR=1.35; 1.00-1.82 95% CI; p=0.0483)  and 

KRAS signalling (up) (HR=1.35; 1.01-1.79 95% CI; p=0.0413). These gene-sets are 
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associated with shortened average time to BCR. The UV response (dn) (HR=0.71; 

0.51-0.99 95% CI; p=0.04218) and Cholesterol homestasis (HR=0.58; 0.34-1.00 95% 

CI; p=0.0483) gene-sets were borderline significantly protective. Applying this model 

to multiple bootstrap re-samplings showed that these results are robust, with all risk-

elevating gene-sets HR>1 in >97% of resamples and p-values indicating the same 

coefficient direction.  

The clinical covariates-only model built using all the samples determined that Gleason 

score, preop-PSA, age and pathological T-stage significantly associate with time to 

BCR (Cox PH; p-value threshold <0.05; Supplementary Table 5). This model is 

significantly improved by the addition of the selected gene-sets (likelihood ratio test 

p=0.04877; c-index 0.68 vs 0.66). 

Within the PPCG set, patients presenting with higher-grade localised PrCa (a subset 

of 336 patients where Gleason score was 4+3 or higher; Gleason grade group 3-5) 

had a higher proportion of BCR events (50.2% compared to 33.5% for all samples; 

Table 1). We developed an optimal multifactor Cox regression model (Cox PH; p-value 

threshold <0.05; Table 3 and Figure 1b) for this subset of high-Gleason samples with 

poorer prognosis disease. After feature selection by LASSO, we identified five 

significant risk-elevating gene-sets: Pancreas-beta cells (HR=2.52; 1.01-6.29 95% CI; 

p=0.0470),  PI3K/AKT/mTOR signalling (HR=1.95; 1.21-3.15 95% CI; 

p=0.0065.91x10-3), TNFA signalling via NFKB (HR=1.79; 1.19-2.68 95% CI; 

p=0.0054.85x10-3), Hypoxia (HR=1.73; 1.14-2.63 95% CI; p=0.0101) and KRAS 

signalling (up) (HR=1.58; 1.08-2.32 95% CI; p=0.01989). PI3K/AKT/mTOR has a 

higher HR and lower p-value than in the all samples model. The Glycolysis gene-set 

shows here as significantly protective (HR=0.60; 0.40-0.91 95% CI; p=0.01766). The 
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bootstrap re-samplings for the significant gene-sets have the same coefficient 

direction in >96% of resamples. 

Examining each gene-set in individual univariate models with all samples, none had a 

significant association with outcome after multiple testing correction (FDR; p-value 

threshold <0.1; Supplementary Table 6). PI3K/AKT/mTOR signalling (q=0.143), KRAS 

signalling (up) (q=0.203) and TNFA signalling via NKFB (q=0.1657) had p-values close 

to the significance threshold, and achieve the threshold of significance in the high-

Gleason subset (Table 3). In the high-Gleason subset, performing a log-rank test on 

each gene-set revealed four gene-sets that had a significant association with time to 

BCR: TNFA signalling via NFKB (p=0.0272), PI3K/AKT/mTOR signalling (p=0.02548), 

KRAS signalling (up) (p=0.0132) and Pancreas-beta cells (p=0.0233). In the 

multifactor high-Gleason Cox model these four gene-sets are also statistically 

significant (Table 3), alongside Hypoxia. 

Applying the all sample Cox multifactor model to the TCGA validation set results in 

two significant gene-set predictors that are not reflected in the PPCG data: Myc targets 

v2 (HR=4.46; 1.73-11.5 95% CI; p=0.0021.99x10-3) and Coagulation (HR=3.49; 1.47-

8.30 95% CI; p=0.0054.64x10-3) (Cox PH; p-value threshold <0.05; Supplementary 

Table 7). Performing the same high-Gleason filtering on TCGA samples and applying 

that set to the high-Gleason PPCG model identifies three significant risk-elevating 

predictors: Myc targets v2 (HR=2.90; 1.00-8.40 95% CI; p=0.0492) and Coagulation 

(HR=3.53; 1.30-9.59 95% CI; p=0.01435), and additionally Hypoxia (HR=3.18; 1.04-

9.74 95% CI; p=0.04325) (Cox PH; p-value threshold <0.05; Table 4 and Figure 1c). 

The consistent significance, and same direction of coefficient of Hypoxia in patients 
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with more advanced disease, is compelling evidence that germline variations in genes 

within this pathway contributes to clinical progression. 

We used Kaplan-Meier plots to visualise the additive effect of mutations in the 

corresponding risk-elevating gene-sets for the all samples and high-Gleason sets 

(Figure 2). In both plots we show a significant difference in survival when multiple 

gene-sets carry predicted-deleterious mutations. In the all samples analysis 285 of 

850 patients had a mutation in one significant gene-set and 58 patients had mutations 

in two or more gene-sets, whilst in the high-Gleason subset analysis, 129 of 336 

patients had a mutation in one significant gene-set, 36 patients had mutations in two 

gene-sets and 12 had mutations in three or more gene-sets, which was the clearest 

detrimental impact (Figure 2B).  

To search for individual genes mutated more frequently in patients with BCR, we 

calculated the odds ratio (OR) between the BCR positive and negative groups 

(Supplementary Table 8). 12 genes within the significant gene-sets for all samples 

(PIKFYVE, MYD88, CAB39, RPS6KA1, IRAK2, IL2RB, MSR1, ITGB8, PIK3R5, 

MMP10, HKDC1, RBM4) and 17 genes within the significant gene-sets in the high-

Gleason subset (GAPDHS, GRHPR, PGM1, SELENBP1, NAGK, SLC6A6, PIKFYVE, 

MYD88, CAB39, RPS6KA1, DDX58, KYNU, NR4A1, DENND5A, MMP10, HKDC1, 

RBM4) had an OR at least 2-fold higher and a mutation count difference of 2 or more 

between samples with a mutation and BCR and those with a mutation and no BCR 

(Supplementary Table 9). The overwhelming majority (92.7%) of the PD mutations 

identified in these combined 22 risk-elevating genes are missense variants 

(Supplementary Figure 2), although patients with BCR exhibited more non-missense 
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variants (Supplementary Figure 3) compared with those without BCR (Supplementary 

Figure 4).  
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Discussion 

The primary aim of genetic profiling of germline or tumour DNA is to aid clinical 

decisions, such as targeted screening of asymptomatic individuals and treatment 

options for cancer patients. Germline signatures in particular would have the 

advantage of helping to stratify patients in both pre- and post-operative settings. 

Follow-up strategies and decisions on further treatments could be aided by predicting 

which individuals are likely to develop prostate tumours, progress to clinically 

significant disease or relapse. This study is the first to our knowledge to evaluate 

association of rare germline mutations across the full exome as opposed to specific 

plausible candidate genes, and provides evidence that germline mutation status is 

predictive for BCR after radical treatment for PrCa. Our multifactor Cox model 

identified that rare predicted-deleterious variants in three Hallmark gene-sets are 

associated with time to BCR after radical treatment (PI3K/AKT/mTOR, KRAS 

signalling (up) and Inflammatory response), and five gene-sets associated with BCR 

in a subset of cases with more aggressive phenotype at diagnosis (PI3K/AKT/mTOR, 

KRAS signalling (up), Hypoxia, TNFA signalling via NFKB and Pancreas-beta cells). 

Importantly, we also show that these gene-sets remained an independent predictive 

biomarker of time to BCR, over and above the inclusion of clinical variables. We further 

demonstrate that the Hypoxia gene-set replicated in an independent cohort of high-

Gleason tumour cases from TCGA. With additional confirmation and refinement, these 

signatures could inform prognosis and clinical decision making. 

Among the gene-sets associated with greater risk of BCR in PrCa patients, genes 

involved in PI3K/AKT/mTOR and KRAS signalling (up) remained significant across all 

PPCG samples as well as when restricted to patients with high-Gleason tumours. In 
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somatic analyses, AKT expression and phosphorylation have previously been linked 

to risk of BCR after radical prostatectomy [39, 40] and poorer survival in patients with 

metastatic castrate-resistant PrCa [41]. Somatic loss of PTEN, a tumour suppressor 

that downregulates the AKT signalling pathway, is also associated with poorer 

prognosis PrCa [5] and disease recurrence [42, 43]. The fact that the other gene-sets 

were not significant in the TCGA replication set could result from power limitations 

owing to the lower sample size (383 vs 850 samples), but these signatures will require 

validation in independent cohorts. 

In the analysis of patients with high-Gleason tumours, the Hypoxia gene-set was 

established at statistical significance in the PPCG cohort and also replicated in the 

independent TCGA validation cohort. This provides strong evidence that germline 

mutations within this gene-set contribute to recurrence in patients with more 

aggressive disease. Hypoxia has previously been reported to contribute to progression 

when analysing tumour samples [44, 45], with a 28 gene mRNA signature for hypoxia 

demonstrated to predict BCR and metastases after radical prostatectomy or 

radiotherapy and provide independent prognostic value after adjustment for clinical 

features [46]. Our results indicate for the first time that heritable mutations in genes 

upregulated in response to a low oxygen environment predispose PrCa patients 

towards greater likelihood of, and shorter time to, BCR.  

A small  number of additional gene-sets also achieved significance in a single analysis 

only (Inflammatory response in PPCG all samples, TNFA signalling via NFKB and 

Pancreas-beta cells in the PPCG high-Gleason subset, and Myc targets v2 and 

Coagulation in the TCGA validation cohort). Due to the less consistent selection of 

these gene-sets, the importance of these gene-sets in germline susceptibility towards 
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BCR is less compelling; however they would nonetheless represent potential gene-

sets of interest for examination in future larger replication studies. 

In this study, we observed significantly shorter time to BCR among the individuals 

carrying mutations in >1 of the risk-increasing gene-sets. 58 out of the 850 total 

patients having mutations in multiple of the three all samples gene-sets, and 48 out of 

the 336 patients having mutations in multiple of the five high-Gleason gene-sets 

identified through our multifactor analysis, compared to both non-carriers and 

individuals carrying mutations in a single gene-set only. This provides further support 

that mutations affecting multiple regulatory networks may co-operatively serve to 

negatively influence PrCa prognosis; and that for some men, intraprostatic features 

that determine an aggressive tumour environment may be predetermined in the 

germline. This has been suggested before, based on hypoxia associating with genetic 

instability and aggressive sub-pathologies as field defects in PrCa, and warrants 

further investigation [47].  

The limitations of this study include multi-cohort biases, relatively small, European 

ancestry-only sample size and in turn limited statistical power to detect associations 

at the individual gene or variant levels, and the imperfect status of BCR as a definitive 

surrogate for clinical recurrence and survival. In addition, this analysis included only 

coding variants with strong evidence for deleterious effect, excluding variants of 

uncertain significance, copy number alterations and structural variants. It may be 

necessary to integrate different data types, including expression and methylation data, 

to fully understand the mechanisms behind our findings. Although it is very 

encouraging that genes curated within PI3K/AKT/mTOR signalling and KRAS 

signalling (up) remained significant across both the PPCG all samples and high 
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Gleason subset analyses, and the independent validation cohort confirmed evidence 

for genes curated as involved in Hypoxia, additional larger studies remain necessary 

to confirm these findings and disentangle which specific genes contribute towards 

increased risk of PrCa progression and invasiveness. 
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Conclusion 

Our findings have potentially important clinical implications. Germline DNA can be 

sequenced at an early stage of disease or even for healthy individuals which could 

enable prediction of PrCa progression close to, or even in advance of, the point of 

diagnosis. This would allow clinicians to stratify and differentiate patients that are more 

likely to relapse, putting them on a different clinical treatment pathway comprising 

more radical intervention or more frequent follow-up. 

Take home message 

Prostate cancer patients with inherited mutations in specific genes demonstrate a 

greater likelihood of relapsing after initial radical treatment. In the future, we may be 

able to use genetic information to identify sooner which patients may require additional 

treatments, and in turn improve prognoses for these individuals. 
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Tables 

Table 1: Number of samples, genes and variants contributed, by study, also showing the number of samples with high-Gleason 

score (>3+4; Gleason grade group 3-5), the numbers of samples in each set with biochemical recurrence (BCR), numbers 

associated with mutations that are predicted-deleterious, and how many of those are known deleterious/loss-of-function (LoF) 

mutations.

Study 
European Genome-

phenome Archive ID 

Samples used 

in study after 

QC (with BCR) 

Samples with 

high-Gleason    

score (with BCR) 

Number of genes with 
predicted-deleterious 
mutations (LoF) 

Number of predicted-
deleterious mutations 
included in analysis (LoF) 

Melbourne, Australian 

research group 
EGAD00001004182 133 (79) 110 (70) 2,917 (1,884) 3,728 (2,473) 

Canadian Prostate Cancer 

Genome Network 
EGAD00001004170 288 (92) 63 (22) 4,579 (2,637) 5,900 (3,154)  

French ICGC Prostate 

Cancer Group 
EGAD00001003835 15 (10) 15 (10) 409 (255) 393 (243)  

Germany ICGC Prostate 

Cancer Group – Early Onset 
EGAD00001005997 230 (68) 85 (45) 3,787 (2,160) 4,761 (2,404)  

CRUK-ICGC Prostate Group, 

UK 
EGAC00001000852 184 (36) 63 (22) 3,365 (2,073) 4,071 (2,401)  

Total  850 (285) 336 (169) 8,455 (5,792) 15,822 (9,006) 
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Table 2: Multifactor Cox model results for predicted-deleterious mutations in 850 

germline samples, grouped into 52 gene-sets. Shown are p-values and hazard ratios 

of LASSO-selected gene-sets as well as clinical variables reported at time of 

biochemical recurrence (BCR) or last check-up, impacting the predicted time until 

BCR. 

 HR (95% CI) p-value 
Bootstrap HR (95% 
CI) 

Bootstrap p-
value 

Gleason (≥4+3 : <4+3) 1.98 (1.47 – 2.67) 
<0.0017.03x10-

6 
2.01 (1.99 – 2.04) 0.00<0.001 

Stage (T3-T4 : T1-T2) 1.69 (1.29 – 2.21) 
<0.0011.32x10-

4 
1.75 (1.74 – 1.77) 0.00<0.001 

PI3K/AKT/mTOR signalling 1.55 (1.06 – 2.25) 0.02326 1.58 (1.56 – 1.60) 0.0120 

Age 1.53 (1.20 – 1.96) 
<0.0017.16x10-

4 
1.03 (1.03 – 1.03) 

0.0011.00x10-

3 

Inflammatory response 1.35 (1.00 – 1.82) 0.0483 1.37 (1.35 – 1.38) 0.0280 

KRAS signalling (up) 1.35 (1.01 – 1.79) 0.0413 1.37 (1.36 – 1.38) 0.0200 

Fatty acid metabolism 1.29 (0.96 – 1.71) 0.08768 1.32 (1.30 – 1.33) 0.0400 

G2-M checkpoint 1.25 (0.94 – 1.66) 0.130 1.27 (1.26 – 1.28) 0.0740 

Myc targets v2 1.23 (0.84 – 1.81) 0.30 1.26 (1.24 – 1.27) 0.1655 

Mitotic spindle 1.21 (0.94 – 1.56) 0.142 1.22 (1.21 – 1.23) 0.100 

DRG 1.16 (0.90 – 1.51) 0.326 1.18 (1.17 – 1.19) 0.151 

p53 pathway 1.16 (0.85 – 1.60) 0.435 1.18 (1.16 – 1.19) 0.21 

IL-2/STAT5 signalling 1.06 (0.77 – 1.46) 0.72 1.07 (1.06 – 1.09) 0.438 

Preop_PSA 1.04 (1.01 – 1.06) 0.0065.91x10-3 1.01 (1.01 – 1.01) 
0.0044.00x10-

3 

Coagulation 1.01 (0.76 – 1.36) 0.928 1.01 (1.00 – 1.02) 0.51 

Glycolysis 0.81 (0.61 – 1.08) 0.1655 0.82 (0.81 – 0.82) 0.0800 
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UV response (dn) 0.71 (0.51 – 0.99) 0.04218 0.72 (0.71 – 0.73) 0.0380 

Cholesterol homeostasis 0.58 (0.34 – 1.00) 0.0483 0.59 (0.58 – 0.60) 0.0130 

 

 

Table 3: Multifactor Cox model results for predicted-deleterious mutations in 336 

high-Gleason germline samples, grouped into 52 gene-sets. Shown are p-values and 

hazard ratios of LASSO-selected gene-sets impacting the predicted time until 

biochemical recurrence.  

 HR (95% CI) p-value 
Bootstrap HR (95% 
CI) 

Bootstrap p-
value 

Pancreas-beta cells 2.52 (1.01 – 6.29) 0.0470 3.58 (3.43 – 3.73) 0.0340 

PI3K/AKT/mTOR signalling 1.95 (1.21 – 3.15) 
0.0065.91x10-

3 
2.13 (2.09 – 2.17) 

0.0077.00x10-

3 

TNFA signalling via NFKB 1.79 (1.19 – 2.68) 
0.0054.85x10-

3 
1.86 (1.83 – 1.89) 

0.0055.00x10-

3 

Hypoxia 1.73 (1.14 – 2.63) 0.0101 1.82 (1.79 – 1.85) 0.0110 

Stage (T3-T4 : T1-T2) 1.70 (1.13 – 2.56) 0.01215 1.86 (1.84 – 1.89) 
0.0033.00x10-

3 

KRAS signalling (up) 1.58 (1.08 – 2.32) 0.0189 1.65 (1.63 – 1.67) 0.0160 

Myc targets v2 1.54 (0.92 – 2.60) 0.104 1.60 (1.57 – 1.63) 0.0810 

DRG 1.33 (0.92 – 1.91) 0.1328 1.38 (1.36 – 1.39) 0.0710 

G2-M checkpoint 1.31 (0.89 – 1.93) 0.167 1.41 (1.39 – 1.43) 0.0920 

Age 1.17 (0.90 – 1.52) 0.24 1.01 (1.01 – 1.01) 0.170 

IL-6/JAK/STAT3 signalling 1.17 (0.69 – 1.98) 0.56 1.22 (1.19 – 1.24) 0.31 

Preop_PSA 1.06 (1.00 – 1.11) 0.0391 1.00 (1.00 – 1.00) 0.0280 

Coagulation 1.05 (0.71 – 1.55) 0.80 1.08 (1.06 – 1.09) 0.41 
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mTORC1 signalling 0.79 (0.50 – 1.25) 0.32 0.80 (0.79 – 0.82) 0.172 

Androgen response 0.71 (0.41 – 1.22) 0.22 0.73 (0.72 – 0.74) 0.121 

Glycolysis 0.60 (0.40 – 0.91) 0.01766 0.61 (0.60 – 0.62) 0.0120 

Cholesterol homeostasis 
0.564 (0.270 – 
1.18) 

0.1328 
0.586 (0.571 – 
0.602) 

0.0630 

 

 

 

Table 4: Multifactor Cox model results for predicted-deleterious mutations in 233 

high-Gleason The Cancer Genome Atlas (TCGA) germline samples, stratified by 

location and grouped into 52 gene-sets. Shown are p-values and hazard ratios of the 

same predictors identified by the Pan Prostate Cancer Group (PPCG) Cox model 

(pancreas-beta cells and cholesterol homeostasis were removed as most samples 

had a mutation or had no mutation in the gene-set respectively, which caused 

convergence errors).  

 HR (95% CI) p-value Bootstrap HR (95% CI) 
Bootstrap p-
value 

Stage (T3-T4 : T1-T2) 7.85 (1.65 – 37.3) 0.019.55x10
-

3

 
6.24x10

12
 (1.73x10

8
 – 

3.73x10
13

) 
0.0011.00x10

-

3

 

Coagulation 3.53 (1.30 – 9.59) 0.01435 11.3 (7.47 – 28.5) 0.0220 

Hypoxia 3.18 (1.04 – 9.74) 0.04325 
7.88x10

6
 (1.14x10

6
 – 

3.40x10
7
) 

0.0970 

Myc targets v2 2.90 (1.00 – 8.40) 0.0492 5.63 (5.29 – 6.07) 0.0440 

TNFA signalling via NFKB 2.12 (0.78 – 5.79) 0.143 3.95 (3.51 – 4.97) 0.110 

G2-M checkpoint 2.00 (0.79 – 5.05) 0.144 2.89 (2.75 – 3.11) 0.102 
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Androgen response 1.43 (0.52 – 3.97) 0.549 1.81 (1.70 – 2.00) 0.32 

IL-6/JAK/STAT3 signalling 1.32 (0.36 – 4.77) 0.768 2.86x10
8
 (5.67 – 1.71x10

9
) 0.33 

KRAS signalling (up) 0.97 (0.39 – 2.43) >0.95 1.36 (1.29 – 1.46) 0.51 

PI3K/AKT/mTOR signalling 0.70 (0.08 – 5.77) 0.74 1.52x10
6
 (0.972 – 7.60x10

6
) 0.31 

DRG 0.68 (0.31 – 1.49) 0.34 0.72 (0.70 – 0.75) 0.181 

mTORC1 signalling 0.46 (0.14 – 1.50) 0.2199 0.46 (0.43 – 0.49) 0.0750 

Glycolysis 0.27 (0.07 – 1.09) 0.06767 0.34 (0.31 – 0.36) 0.0470 

 

  



 

 

Figure Legends 

 

Figure 1:  Horizontal box plot of the coefficient / log hazard ratios with lower and 

upper 95% confidence intervals for A) Table 2, B) Table 3 and C) Table 4. 

Figure 2: Kaplan-Meier plot showing survival probability against time in months until 

biochemical recurrence (BCR) for A) all samples, and B) the 336 samples in the 

high-Gleason subset (Gleason score >3+4; Gleason grade group 3-5). The impact of 

mutations in significant sets are subdivided by samples with mutations in multiple 

gene-sets. Log-rank tests for each category: A) =1 (p=0.63); ≥2 (p=2.88x10-3). B) =1 

(p=0.27); =2 (p=8.55x10-3); ≥3 (p=3.29x10-3). 


