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Abstract

One of the major challenges arising from dynamic response measurement of floating structures is to ef-

fectively track their 6DOF response in harsh environments. Although the combination of GPS and INS

techniques has the ability to estimate the positioning of floating structures, it is tedious that the corrections

of response measurements have to be carried out at regular intervals due to the low accuracy, instability and

various harsh environments. Aiming at achieving long-term stable and efficient measurements of floating

structural responses, an indirect contact motion tracking approach based on the combination of the accel-

erations and angular velocities has been proposed in this paper. First, a novel displacement reconstruction

model has been established to effectively determine the translational displacements of floating structures.

Following that, to correct the errors of tilt and coordinate data from the measured accelerometers, the quater-

nion method has been applied to update the dynamic Euler angle. The major contributions of this research

include: 1) the development of a non-integral drift-free method for displacement reconstructions without

GPS and 2) the realization of a synchronous tracking system considering dynamic tilt error of accelerom-

eters for floating structures with the motions in 6-DOF. To demonstrate the correctness of the proposed

approach, two numerical examples have been examined to track the motion of floating structures. Numer-

ical results have shown that the maximum error of the reconstructed displacement between the proposed

approach and Orcaflex is only 0.8096%, indicating their good agreement. Then, a physical experiment of

a semi-submersible platform under the action of regular and irregular waves has been conducted to verify

the feasibility of the developed tracking approach by comparison of the data from the traditional optical

device and camera. The results show that the proposed method has the ability to effectively predict the op-

eration conditions of floating structures and provides a valuable insight into the development of an efficient

synchronous tracking system for various engineering applications.
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1. Introduction

With the continuous depletion of land resources and the increasing energy demand of human activi-

ties, the development and utilization of marine resources have become an important way to moderate this

contradiction between supply and demand (Wu and Gao, 2021; Zhang et al., 2021). Due to the gradual

increase of the developed water depth, the requirement of marine engineering equipment was envisaged for

the expansion of offshore survey into deep sea exploration, and then various deep-sea floating structures

came into being (Fu and Moan, 2012; Wei et al., 2018). Besides facing more complex and diverse external

excitations, floating structures in the service process will also bear the action of new types of excitations

such as internal waves (Ai et al., 2021) and abnormal waves (Veltcheva and Soares, 2016), which will lead

to the large deformation and strong nonlinearity. Therefore, to ensure the safety of personnel and working

condition of structures, accurate testing and tracking of the operation state of structures have become the

primary consideration (Liu et al., 2020). However, the service environment of floating structures is usually

far from land, and the conventional methods at the laboratory-scale can not meet the measurement require-

ments of floating structures. For example, the optical three-dimensional tracking system needed a fixed

reference point in the test process, and could not be directly applied to the motion measurement of floating

structures (Kim et al., 2020).

Taking into account the special working environment of floating structures and the difficulty of using a

single measurement technology to predict structural responses, it is necessary to apply a variety of different

measurement technologies to jointly track the motions of the structure (Wu et al., 2016). At present, the

motion tracking of floating structures is mainly based on the angular velocity measured by gyroscope and

the linear displacement measured by GPS. The Oryx company (Prislin et al., 1999) installed the world’s

first Spar platform in the Gulf of Mexico, and tested the 6-DOF motion responses of the structure using

two GPS equipment and inclinometer, respectively. The BMT company (Edwards et al., 2005) developed

the earliest deepwater floating platform monitoring system - called CONOCO Joliet TLWP, to monitor the

hydrometeorology, current profile, platform position and 6-DOF structural motions, which were realized by

GPS and gyroscope, respectively. Du et al. (2013) also developed a motion monitoring system, which was

installed and tested on the LH11-1 semisubmersible platform in South China sea. As the motion tracking of

floating structures based on gyroscope and GPS has been widely investigated, theories including geometric

framework (Mitikiri and Mohseni, 2021), Kalman filter (Chen et al., 2019) and quaternion method (Chen et

∗Corresponding author: percyliu@ouc.edu.cn (Fushun Liu).
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al., 2021) for the calculation of structural dynamic Euler angles based on the angular velocity measured by

gyroscope have been widely used and lead to high-precision results for the dynamic Euler angle. However,

the measured values encountering the issue of data error or even complete loss, mainly include data jump,

drift and instability, which will cause the system to dislocate the structure, or drive the structure to the wrong

target position, and then result in accidents (Nezhadshahbodaghi and Mosavi, 2021).

Chen et al. (2009) summarized five DGPS failures of drilling platforms in Norway, and results showed

that the data mutation caused by DGPS failure might involve tens of meters of the position change, and the

maximum data jump reached 65m. In addition, there were many sudden changes of positions from 10m

to 20m in the process of dynamic positioning. Similarly, in the performance monitoring of marlin TLP

from 2003 to 2005, it could be seen that even under normal conditions, the sudden drift of more than 10m

was identified in the structural motion response (Liagre et al., 2008). The phenomenon of data drift was

more serious under the action of worse marine environments, such as hurricane. Teigen and Haver (1998)

compared the numerical response of Heidrun TLP structure of 10 motion responses including wave heights

between 4m and 10m with the measured results, and found that the deviation between the measurement error

and the model prediction was as high as 20%. To overcome the problems of the low accuracy, instability and

environment dependence of GPS, some scholars used the contact sensors (accelerometer and gyroscope)

to test the dynamic acceleration and angular velocity of the structure, and then the 6-DOF motion could

be tracked through the measured data. However, in the process of using acceleration to solve the dynamic

displacement of the structure, a new problem has arisen (Damaris and Jaime, 2018), that is, the displacement

calculated by the direct integration has a serious drift due to the influence of unknown initial conditions, the

sensor baseline drift and environmental noise.

To reconstruct the displacement from the measured accelerations, many scholars have carried out rel-

evant research. Hong et al. (2010) applied the variational approach to the minimum problem to derive

the reconstructed governing equation for the determination of displacements. Thus, the displacement and

velocity of the structure were reconstructed by FIR filter using the finite element method. Based on Cheby-

shev polynomials, Gao et al. (2021) used the high pass filter to remove the drift components, and realized

the displacement reconstruction of offshore wind turbines using the measured accelerations. Zheng et al.

(2019) developed an online and real-time displacement reconstruction method using a baseline correction

technology. Employing recursive least squares, a recursive high-pass filter and a recursive integration, the

structural displacement was reconstructed. However, the aforementioned methods are categorized as a class
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of the filtering methods, in which the accuracy of results is poor as the drift term can not be removed duration

the displacement reconstruction process for floating structures dominated by low-frequency. To avoid the

drift problem caused by integration, Liu et al. (2021) developed a non-integral displacement reconstruction

method based on the complex exponential representation of accelerations and realized the high-precision

reconstruction of dynamic displacements.

To improve the long-term stable and high-precision measurements of floating structures, a novel motion

tracking method based on the measured acceleration and angular velocity has been developed in this paper.

Three contributions have been achieved as follows: 1) to correct the measured acceleration using the cal-

culated Euler angle by the quaternion method under the condition of the field test environment and sensor

tilt; 2) to reconstruct the displacement by modifying the accelerations in a non-integral drift-free way; 3)

to realize a 6-DOF high-precision motion tracking as well as avoid the serous environmental interference

and data loss of the GPS. The rest of this paper is structured in the following Sections. The quaternion and

coordinate transformation methods used in this paper have been introduced in Section 2. Then, the proposed

6-DOF motion tracking method for floating structures has been described in Section 3. Its correctness has

been verified by two numerical examples including a single-DOF system and a semi-submersible platform

in Section 4 and 5. Finally, the physical model of the semi-submersible platform under the action of regular

and irregular waves in Section 6 has been examined to demonstrate the potential application and feasibility

of the proposed method.

2. Preliminaries

2.1. Coordinate transformation

Due to the complex measurement environment and safety considerations, the location of the sensor

installation may not be the most suitable place, which may affect the measurement results. Therefore,

in order to obtain the dynamic response at the center of gravity (COG), it is necessary to perform the

coordinate transformation. To realize the transformation of motion response at different positions, two sets

of coordinate systems are needed: one is fixed at the center of the structure, expressed as the oxyz, and the

other is fixed at the test point denoted as the ôôŷẑ in Fig. 1.

Let α, β and θ represent the Euler angles of rotation of the structure about the x, y and z axes, respec-

tively (as shown in Fig. 1). The relationship between the coordinate systems ôx̂ŷẑ and oxyz can be obtained
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Fig. 1: The diagrams of six degrees of freedom movement and coordinate transformation of floating structures.

by the coordinate transformation (Makdah et al., 2019) as:
z

y

z

 =


1 0 0

0 cosα −sinα

0 sinα cosα



cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ



cosθ −sinθ 0

sinθ cosθ 0

0 0 1



x̂

ŷ

ẑ

 = [L][M ][N ]


x̂

ŷ

ẑ

 (1)

where [L], [M ] and [N ] represent the rotation matrix of the coordinate system ôx̂ŷẑ about the ôx̂, ôŷ and

ôẑ axes, respectively.

Let T = [L][M ][N ], one can obtain

T =


cosβcosθ −cosβsinθ sinθ

sinαsinβcosθ + cosαsinθ −sinαsinβsinθ + cosαcosθ −sinαcosβ

−cosαsinβcosθ + sinαsinθ cosαsinβsinθ + sinαcosθ cosαcosβ

 (2)

where T represents the transformation matrix of two coordinate system.

2.2. Quaternion definition

Quaternion method, invented by Hamiltion, is a generalization of complex numbers in the four-dimensional

real number space R4, which can be defined as q = [s,v], where s and v represent the scalar and vector

parts, respectively. Quaternion satisfies (Grigoryan and Agaian, 2022; Urynbassarova et al., 2022):q1 + q2 = [s1 + s2,v1 + v2]

λq = [λs, λv]
(3)
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where λ represents a scalar. And the multiplication rule for quaternion is defined as:

q1

⊗
q2 = [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2] (4)

According to Euler theorem, the motion of a rigid body at any fixed point can be equivalent to the

rotation about the axis passing through the fixed point. Thus, the rotation in a coordinate system with the

magnitude ϕ about the unit axis n can be described by the unit quaternion q = [cos(ϕ/2), sin(ϕ/2)n]. The

fixed vector r between the projection r0in the coordinate system O before rotation and the projection rN of

the coordinate system N after rotation can be expressed as:

rN = q∗
⊗

r0
⊗

q (5)

where r0 and rN are two quaternion whose scalar part is 0 and vector part is r0 and rN , respectively;

q∗ = [s,−v] represents the conjugate quaternion, and the norm of a quaternion is defined as ‖q‖ = q
⊗
q∗.

3. Three-dimension dynamic response tracking method

Acceleration is a physical quantity that is easy to obtain and relatively stable in the actual motion mea-

surement of floating structures. Therefore, if a motion tracking model of floating structure can be con-

structed by combining acceleration and angular velocity, more stable and accurate results can be obtained

as compared with the data by GPS. However, two main problems arise in solving this problem. The first

is how to reconstruct the real dynamic response of the structure from the acceleration to mitigate the influ-

ence of the drift terms in the integration process caused by the unknown initial conditions, sensor baseline

derivation and environmental noise. The second problem is how to better consider the impact of field test

environment, equipment layout and tilt error of the used sensors on dynamic responses of floating structures.

3.1. Attitude calculation based on the quaternion

The basic idea of the quaternion method to determine the attitude of floating structures is to transform

the orientation relationship between coordinate systems into the description of fixed-point rotation of rigid

bodies, and the differential equation with respect to the quaternion is described as follows (Li et al., 2018):

Q̇(t) =
1

2
Q(t)

⊗
ωib (6)
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where Q = q0 + q1i + q2k + q3j, and ωib represents the angular velocity of the structure in the global

coordinate system. Then, one can obtain:
q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −ωibx −ωiby −ωibx
ωibx 0 ωibx −ωiby
ωiby −ωibx 0 ωibx

ωibx ωiby −ωibx 0




q0

q1

q2

q3

 (7)

Therefore, the transformation matrix Ce from global coordinate system to dynamic coordinate system

can be represented by quaternion as:

Ce =


q2

0 + q2
1 + q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (8)

And the relationship between quaternion and Euler angles can be obtained as:

α = −sin−1(2 ∗ (q1q3 − q0q2))

β = tan−1(
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

)

θ = tan−1(
2(q1q2 + q0q3)

q2
0 + q2

1 + q2
2 − q2

3

)

(9)

where α, β, and θ represent the dynamic Euler angles.

3.2. Tilt error correction of the measured acceleration

In the testing process, the measured data will contain a component of the gravitational acceleration as

the rotation or tilt of the accelerometer occurs (Weng et al., 2017). Therefore, the tilt error in the measured

acceleration is introduced as follows:

as(t) = a(t) + s(t) (10)

where the vector a(t) = [ax(t) ay(t) az(t)] represents the measured acceleration without the tilt error in

the x, y and z directions, respectively. The item s(t) denots the tilt error.

Suppose a three-axis accelerometer, its static tilt error can be expressed as:

s(t) = g for Φ(t) = 0 (11)

where Φ(t) = [α(t) β(t) θ(t)], and g = [0 0 − g] denotes the vector of gravitational accelerations of the

Earth.

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Then, the sensor is rotated with the angle of α(t), β(t) and θ(t) around the x, y and z axes respectively.

Based on the theory, the error of the accelerometer tilts can be expressed by the multiplication of the rotation

matrices as:

s(t) = R(Φ(t))g (12)

where R(Φ(t)) is composed of nine elements. Assume that angles are small, the equations cos(Φ) ≈ 1,

sin(Φ) ≈ Φ are satisfied. Therefore, R(Φ(t)) can be defined as:

R(Φ(t)) =


1 0 0

0 1 −α(t)

0 α(t) 1




1 0 β(t)

0 1 0

−β(t) 0 1




1 −θ(t) 0

θ(t) 1 0

0 0 1

 (13)

Then, the tilt error can be rewritten into a vector-matrix form:

s(t) = g[−β(t) α(t) − 1]T = g +


0 −1 0

1 0 0

0 0 0

 gΦ(t) = g + PΦ(t) (14)

And the acceleration without the tilt error can be written as:

a(t) = as(t)− g−PΦ(t) (15)

It is noted that the tilt error of the accelerometer show in Eq. 15 can be eliminated once the Euler angle

of the structure is determined. Moreover, the sensor should be installed away from the external interfer-

ences such as the high-frequency vibration equipment for the meaningful data, considering the environment

conditions and safety considerations at the floating structure test site.

3.3. Acceleration decomposition and drift-caused term removal

Although there is a strict integration principle to describe the relationship between the acceleration and

corresponding displacement of structures, the drift problem cannot be overcome by the direct integration

technique due to the initial conditions, environmental noise and baseline deviation of sensor. Therefore, it

is a challenging task to reconstruct the real displacement from the corrected acceleration without the effect

of drift. To address this issue, the tilt-corrected acceleration ax with the time interval ∆t can be formulated

as:

ax = ax(tk) =

Nx∑
i=1

Aie
jφne(−ξiωi+jωi

√
1−ξ2i )k∆t (16)
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where tk = k∆t, j =
√
−1, k = 0, 1, Nx − 1, and Nx is the number of components in the sampled signal

ax. A, ξ, ω and φ represent the amplitude, damping ratio, natural frequency and phase of each component,

respectively.

Then the Hankel matrix is introduced using equally-spaced discrete signals in the form of Eq. 17 (e.g.,

) (Hu, et al., 2013):

Hx(k) =


axk ax(k+1) · · · ax(k+Nc−1)

ax(k+1) ax(k+2) · · · ax(k+Nc)

...
...

. . .
...

ax(k+Nr−1) ax(k+Nr) · · · ax(k+Nr+Nc−2)

 (17)

where Nr and Nc are the selected number of rows and columns to satisfy the equation Nr +Nc + 1 = N ;

k = 0, 1, N − 1, and N is the number of sampled signals.

Let the initial model order denoted as od equate to 2, and the singular value decomposition is applied to

Hx(0) (Golub and Loan, 1996):

Hx(0) = [ Ux
od Ũx

od
]

 Sxod 0

0 0

 (Vx
od)

T

(Ṽx
od)

T

 = Ux
odS

x
od(V

x
od)

T (18)

where Ux
od, Sxod and Vx

od are singular vectors with a dimension ofNr×od, od×od andNr×od, respectively.

Then, a relationship between Hx(0) and Hx(1) can be determined in Eq. 19:

Hx(1) = Ux
od

√
SxodA

√
Sxod(V

x
od)

T (19)

where A = eF∆t, and F is a similarity transformation of a coefficient matrix of a converted first-order

matrix differential equation.

In addition, a stopping criterion SCsw is defined to improve the accuracy of the decomposition as:

SCsw = | |S
od+2
x | − |Sodx |

Sodx
| (20)

where | | means the absolute value of a number. Sodx are values of the power spectral density function as:

Sodx = max[20 log10(Sodx (ω))] (21)

where max[·] means the maximum value. Using the above method to iteratively extract the maximum

energy component for the construction of the acceleration, one has:

ax(t) =

Nx∑
i=1

Aie
jφie(−ξiωi+jωi

√
1−ξ2i )t =

Nx∑
i=1

γie
λit (22)
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where γi = Aie
jφi and λi = −ξiωi + jωi

√
1− ξ2

i represent the decomposed complex exponential param-

eters.

Then, the tilt-corrected accelerations can be expressed in the form of complex exponential sequences

shown in Eq. 23:

a(t) = [ax(t) ay(t) az(t)] = [

Nx∑
i=1

γxe
λxt

Ny∑
i=1

γye
λyt

Nz∑
i=1

γze
λzt] (23)

where λ and γ represent the complex exponential parameters of the corrected acceleration in the corre-

sponding direction. Ny and Nz are the numbers of components in the sampled signal ay and az , respective-

ly. More detailed information about the complex exponential decomposition of accelerations can be found

in Liu et al. (2020) and Gao et al. (2021).

3.4. Displacement reconstruction and three-dimension motion tracking

Once the complex exponential sequence representing the acceleration has been obtained, the compo-

nents of structural accelerations can be screened and removed using Eq. 24:

fx =
imag(λx)

2π
(24)

where imag means the value’s imaginary part. After the frequency of each component is obtained, the

drift-caused term can be accurately eliminated by setting a screening criteria asfx > z, Reconstruction for displacement

fx < z, Needs to be eliminated
(25)

where z is set artificially, usually less than the structural frequency of motion, and slightly greater than 0.

After removing the drift-caused terms, the components corresponding to the remaining frequencies fx are

the real components of the structural motion which can be determined by λx and γx corresponding to the

fx.

Then, the remaining part of components of structural accelerations can be reconstructed by Eq. 26:

ã(t) = [ãx(t) ãy(t) ãz(t)] = [

Ñx∑
i=1

γ̃xe
λ̃xt

Ñy∑
i=1

γ̃ye
λ̃yt

Ñz∑
i=1

γ̃ze
λ̃zt] (26)

where Ñx, Ñy, and Ñz represent the number of remaining components in the signal ãx(t), ãy(t) and ãz(t)

after removing the drift-caused terms. γ̃ and λ̃ represent the remaining complex exponential sequences
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in corresponding directions. ãx(t), ãy(t) and ãz(t) represent the reconstructed acceleration without drift-

caused terms in three directions, respectively.

Taking the acceleration ãx(t) as an example, Eqs. 27 and 28 can be obtained by the integration on both

sides of Eq. 26 with respect to t: vx(t) =
∫ t

0 ãx(t)dt+ vx(0)

x(t) =
∫ t

0

∫ t
0 ãx(t)dtdt+ vx(0)t+ x(0)

(27)


∫ t

0 ãx(t)dt =
∑Ñx

i=1{
γ̃x
λ̄x
eλ̃xt − γ̃x

λ̃x
}∫ t

0

∫ t
0 ãx(t)dtdt =

∑Ñx
i=1{

γ̃x
λ̃2x
eλ̃xt − γ̃x

λ̃2x
}

(28)

By comparison of these two equations, the real dynamic displacement x(t) and initial displacement

x(0) can be estimated as: v(t) =
∑Ñx

i=1
γ̃z
λ̃z
eλ̃zt

v(0) = γ̃z
λ̃z

(29)

and 
x(t) =

∑Ñx
i=1

γ̃z
λ̃2z
eλ̃zt

x(0) = γ̃z
λ̃2z

(30)

Similarly, the other two displacement components can be reconstructed:

[x(t) y(t) z(t)] = [

Ñx∑
i=1

γ̃x

λ̃2
x

eλ̃xt
Ñy∑
i=1

γ̃y

λ̃2
y

eλ̃yt
Ñz∑
i=1

γ̃z

λ̃2
z

eλ̃zt] (31)

where x(t), y(t) and z(t) are the reconstructed dynamic displacement corresponding to the measured ac-

celeration. Furthermore, since the reconstructed displacement is the motion at the test point, it needs to be

transformed to the COG through coordinate transformation:
xG(t)

yG(t)

zG(t)

 = T


x̄

ȳ

z̄

 +


x(t)

y(t)

z(t)

 +


x0

y0

z0

 (32)

where [xG(t) yG(t) zG(t)]T represents the dynamic displacement at the COG, [x0 y0 z0]T includes

the coordinate of the measured point in the global coordinated system, [x̄ ȳ z̄]T is the position of the

measured point relative to the COG of the structure in the dynamic coordinate system, and T denotes the

transformation matrix shown in Eq. 2.
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With Euler angle defined by Eq. 9, the model with 6-DOF motions including the acceleration and

angular velocity information has been established, and the motion tracking system to effectively position

the floating structures has been realized.

3.5. Establishment of 6-DOF motion tracking system

The procedure of the proposed approach to the positioning of ocean floating structures can be described

as follows. Firstly, the motion attitude is determined by the quaternion method, and subsequently the tilt

error and installation position of the sensor are corrected using the estimated Euler angle. Following that, the

displacement reconstruction model of the floating structure is established in the form of complex exponential

sequences. Based on the reconstructed displacement and estimated Euler angle, a 6-DOF motion tracking

system is finally developed.

The procedure of the proposed approach to the positioning of marine floating structures can be described

by five steps as follows:

• Step 1 - Euler angle estimation and tilt correction: The angular velocity measured by the gyroscope is

substituted into Eq. 6 to update the quaternion for the correction of the dynamic Euler angle using E-

q. 9; Due to the rotation of accelerometers, the tilt error is evaluated using Eq. 14, and the acceleration

is corrected by Eq. 15;

• Step 2 - Decomposition of corrected acceleration: The acceleration is represented in the form of

Eq. 16, and a relationship between the Hankel matrix H(0) and H(1) is established as Eqs. 17 and 19,

and the acceleration is finally expressed using complex exponential sequences defined by Eq. 23,

• Step 3 - Drift-caused removal and displacement reconstruction: A screening criteria is set using Eq. 25

for the elimination of the drift-caused term, and the remaining sequence is substituted into Eq. 27 for

displacement reconstruction.

• Step 4 - Realization of 6-DOF tracking system: The calculated Euler angle is substituted into Eq. 2 to

solve the transformation matrix T . Substituting the reconstructed displacement, the solved matrix T ,

and the relative coordinates of the measured point and the COG position into Eq. 32, the reconstructed

displacement is converted to the position in the COG system of the structure. By combining the Euler

Angle calculated by Eq. 9 with the dynamic displacement estimated by Eq. 31, a 6-DOF motion

tracking system is realized to position the marine floating structures.

The flowchart of this novel motion tracking system has been shown in Fig. 2.
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Fig. 2: The flowchart of the proposed method.

4. Numerical example: An SDOF floating system

To demonstrate the calculation process and verify the correctness of the proposed approach to the motion

tracking of floating structures, an SDOF model to simulate the floating system has been investigated in this

section. To realize the measured acceleration, the artificially baseline offset and signal truncation have been

applied to the acceleration obtained by the Newmark-β method for the displacement reconstruction. On this

basis, effects of the sensor tilt on the accuracy of the reconstructed displacement have been discussed.

4.1. Simulation and decomposition of measured acceleration

Based on the linear theory, the Cummins equation (Cummins, 1962) was introduced to simulate the

movement process of the SDOF floating structures as follows:

(m+ma)ẍ(t) +

∫ t

0
K(t− τ)ẋ(τ)dτ + cx(t) = F (t) (33)

where m, ma and c represent the structural mass, the additional mass and the restoring coefficient, re-

spectively. ẍ(t), ẋ(t) and x(t) denote the acceleration, velocity and displacement of the system under the

excitation force F (t); K(t − τ) depicts the influence of the momentum change of the fluid at a particular

moment on the motion at subsequent moment and is mathematically expressed as:

K(t) = (1 + ν)e−νt[cos(νt)− µ

ν
sin(νt)] (34)
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Fig. 3: The calculated acceleration and simulated acceleration.

As the motion response of the structure is mainly concerned in this section, only a simple model is

adopted here to study the correctness of the proposed method applicable to floating structures. Assume that

a representative model with the parameters including m = 1kg, c = 5.5N/m, µ = 0.2 and ν = 2 in Eq. 33

and 34 has been considered as a numerical SDOF example. The force F (t) has been defined by Eq. 35:

F (t) =

3∑
n=1

Ane
−ξntkcos(2πfntk + θn) (35)

where An = [1.2, 0.2, 0.8]m, fn = [0.3, 0.2, 0.8]Hz, θn = [−π/4, π/8, 0] and ξ = [0, 0, 0].

The acceleration of the SDOF model calculated by the Newmark-β method has been shown in Fig. 3,

where the initial velocity and initial displacement are set to 0.5m/s and 0.2m in the calculation with the

time step ∆t = 0.1s. As the acceleration acquired by sensors usually contains the baseline component

and the initial conditions of the structure during the measurement, which are usually unknown, will lead to

the drift of the displacement when the displacement is obtained using the direct integration of the acceler-

ation. Taking into account the aforementioned situations encountered by the structure in a more realistic

environment, the truncation (starting from 3s) and the baseline offset δ = 2 have been applied to the cal-

culated acceleration by the Newmark-β method, as the input signal, for displacement reconstruction in the

following section. The acceleration result by the Newmark-β method has been compared with the simulated

acceleration in Fig. 3.
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Fig. 4: The comparison of (a) the decomposed and simulated acceleration; (b) the reconstructed error.

To reconstruct the displacement of the system, the complex exponential sequence has been applied to

decompose the acceleration in the first instance. By setting the extraction value of 6 in the decomposition

process, six pairs of λ̃m and γ̃m have been obtained for the reconstruction of the acceleration shown in Fig. 4

(a) and the error between the reconstructed acceleration and the acceleration by the Newmark-β method has

been provided in Fig. 4 (b). It is noted that the reconstructed acceleration has been in good agreement with

the results by the Newmark-β method, which proves that the decomposed complex exponential sequences

can characterize the original acceleration with a high level of precision.

4.2. Displacement reconstruction based on simulated acceleration

Moreover, the frequency of each component fm = [0Hz 0.2Hz 0.2195Hz 0.3Hz 0.4403Hz 0.8Hz] has

been estimated based on λ̃m. It can be observed that the acceleration includes both the steady response

caused by the external force (0.2Hz, 0.3Hz and 0.8Hz) and the transient response due to the initial veloc-

ity and displacement (0.2195Hz and 0.4403Hz) as well as the base line offset of the sensor (0Hz). The

responses of the decomposed components in the time domain have been shown in Fig. 5.

On the completion of the acceleration decomposition, the component which causes the displacement

drift (fm = 0) can be accurately separated, and then the remaining data used to reconstruct the velocity

and displacement of the system will be obtained. The results by the Newmark-β method, the reconstructed

velocity and displacement have been presented in Fig. 6. It has been observed that the reconstructed velocity
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Fig. 5: The decomposed (a) steady components; (b) transient components and drift term.

and displacement have been accurately achieved as the results have been slightly affected by the baseline

offset and the initial conditions of the system due to the non-integral drift-free mechanism of the proposed

method.

5. Numerical example: A semi-submersible platform

To further verify the feasibility of the proposed approach to the response tracking of floating structures,

a numerical example of a semi-submersible platform modeled by the Orcaflex has been conducted to obtain

the 6-DOF motion responses under the consideration of regular and irregular waves. Following that, com-

parison results of the motion tracking between the proposed approach and Orcaflex have been discussed.

5.1. Model introduction and measuring point setting

The semi-submersible platform is composed of a buoy and columns shown in Fig. 7. It is dimensioned

with the length, width and height of 82m, 71.2m and 70m, respectively. The mooring system is divided

into four groups, each of which includes three cables. In Fig. 8, four groups of cables are symmetrically

distributed regarding the x and y axes. The coordinates for the fairleads and the fixed points at the seabed

are labeled. Detailed parameters of the platform and the properties of the mooring line have been provided

in Table 1.
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Fig. 6: The comparison of the calculated and reconstructed (a) velocity and (b) displacement.

Fig. 7: Drawings of the platform: (a) Hull surfaces, RAOs in the (b) Heave and (c) Surge direction, and (d) front, (e) side, (f) top

view.
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(a) (b)

Fig. 8: (a) The numerical model of the mooring layout; (b) The catenary curve for the mooring lines at the pretension condition.

Table 1: Parameters of the numerical platform and mooring system.

Platform Mooring system

Item Value Unit Item Value Unit

Draft 36 m Equivalent diameter 0.149 m

Displacement 65700 m3 Dry weight per unit length 7397.824 N/m

Radii of gyration 22.8/23.2/23.2 m Wet weight per unit length 6436.43 N/m

COG from keel 21.88 m Axial stiffness (Giovanni et al., 2022) 641000000 N·m2

Waterline area 955 m2 Bending stiffness 18 N·m2
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Fig. 9: The comparison of the calculated 6-DOF motion at the COG and point (41m, -35m, 35m) in the (a) surge, (b) sway, (c)

heave, (d) roll, (e) pitch and (f) yaw directions.

5.2. Influence of different test points on motion response

Due to the limitations of the site environment and equipment installation, it is challenging to directly

measure the acceleration at the COG of the structure, leading to the position error in the measuring process.

To overcome this issue, the measurement of the acceleration has to be transformed to the COG in the

analysis. It has been worth noting that the acceleration and angular velocity at the location (41m, -35m,

35m) of the deck edge have been referred in this example to track the 6-DOF motion of the structure. In

Fig. 9, the 6-DOF motion responses at the reference position and the COG have been presented considering

the action of regular wave with the wave height of 8m and the period of 12s.

It has been observed that the main difference of structural response at different positions lies in the

amplitude of dynamic displacement as shown in Figs. 9 (a) and (c). At the same time, the change of the

heave motion at different positions has occurred in both amplitude and phase shown in Fig. 9 (e) and the

rotational motion is consistent (as shown in Figs. 9 (b), (d) and (f)), indicating that the Euler angle at any

position can be used to correct the tilt error and transform the corrected acceleration to the COG of the

structure.
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Fig. 10: The comparison of the calculated, transformed, and reconstructed acceleration in the (a) surge and (b) heave direction.

5.3. Three-dimension dynamic response tracking under irregular waves

To examine the feasibility of the proposed method for tracking the 6-DOF motion of floating structures

subject to uncomplicated sea conditions, irregular waves with the wave height of 10m and the period of

12s (simulated by Jonswap spectrum) have been applied to excite the platform. Similarly, the motion

responses at the COG of the structure and the referred position (41m, -35m, 35m) at the deck have been

calculated. As there is no sensor tilt error in the calculation results by Orcaflex, the decomposition of

acceleration can be carried out directly. With the extracted number 450 and 200 in the surge and heave

direction, and SCsw = 1 × 10−3, the corrected acceleration in the proposed tracking approach has been

decomposed. Results in Figs. 10 and 11 have shown that the reconstructed accelerations are consistent with

the simulation results with a high level of precision, which proves the correctness of decompose sequences

for the displacement reconstruction.

Then, the drift-caused components with frequencies approaching 0Hz can be removed, where the first

33 components in the surge direction and the first 11 components in heave direction. And the remaining

sequences used to reconstruct corresponding displacements have been shown in Fig. 12. In addition, Fig. 13

compares the two displacement results in the frequency domain, and it can be seen that the reconstructed

displacements has well agreed with the results by Orcaflex both in the time and frequency domains. Once

the Euler angle and linear displacement of the structure are achieved, the coordinate transformation of
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Fig. 11: The comparison of the calculated, transformed, and reconstructed acceleration in the frequency domain in the (a) surge

and (b) heave direction.

acceleration can be carried out. And in the analysis, the Euler angle has been solved by the quaternion

method using the calculated angular velocity and the reconstructed displacement has been transformed to

the COG system of the structure.

Once the dynamic displacement and Euler angle of the structure is obtained, the 6-DOF motion response

of the structure will be determined. Considering the wave action, the tracking motion of the platform at

209.40s and 254.30s have been shown in Fig. 14 (a) and (b), respectively. It has been observed that the

reconstruction results have well agreed with the simulations by Orcaflex. The correctness of the proposed

method to track the 6-DOF motion of floating structures has been demonstrated by the maximum reconstruct

error of 0.8096%. It is worth noting that the error of the motion posture in the roll direction of 293.5s reaches

16.6667%, this is because that the motion amplitude of the structure at this moment in the roll direction is

small (only 0.0006 rad), and in this case, even small differences can cause large errors.

6. Experimental example: A semi-submersible platform

To validate the correctness of the developed approach from the experimental point of view, a laboratory

test of the semi-submersible platform in Fig. 7 has been carried out to track the 6-DOF motion with the

comparison of the measured results by the optical tracking system.
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Fig. 12: The comparison of the reconstructed and calculated displacement in the (a) surge and (b) heave direction.
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Fig. 13: The comparison of the reconstructed and calculated displacement in the frequency domain in the (a) surge and (b) heave

direction.
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(a)

(b)

Fig. 14: 6-DOF motion tracking results at (a) 209.40s, and (b) 254.30s of the platform under irregular waves.
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Fig. 15: The physical model of the platform and sensor arrangement.

6.1. Brief Introduction to the experimental setup

A 1:100 model has been established to represent the semi-submersible platform using the parameters

shown in Fig. 15. The mooring cable which the properties including a pretension of 100g (which is a certain

amount of stress applied to the mooring structure in advance, so that the structure has an ability to resist the

normal deformation), a dry weight of 332.28g/m, an equivalent diameter of 0.00149m, and an elongation of

3.5cm/kg in the experiment has composed of pure steel wires and springs. Model experiments are conducted

in the wave flume (60m × 3m) of the Ocean University of China and the water depth is kept at 1m. The

piston type generator is fixed at the end of the wave flume.

In the experiment, the accelerometer and gyroscope are installed on the platform. The accelerome-

ter used is a three-axis accelerometer produced by SILICON DESIGNS, Inc., model MEAS 4803A002-

000488. Its ranges for the frequency response and voltage are denoted as 0-800Hz and 0.5-4.5V, respec-

tively. Also, the voltage sensitivity is 200mV/g. The gyroscope used is HT-IMU-500, which incorporates

a three-axis high-precision MEMS gyroscope with zero offset stability of 0.1 to 3o/h. In addition, a 16-

channels IMC acquisition instrument has been used to collect the acceleration and angular velocity of the

structure. To obtain the true motion of the structure, a camera and a non-contact optical tracking system

have been mounted on one side of the pool. The optical system contains three positioning sensors, with a

maximum sampling frequency of 4600Hz and a test resolution of 0.01mm. The equipment and layout in

the test have been shown in Fig. 15. More detailed information about the experiment can be found in Yu et

al. (2022).
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6.2. Three-dimension dynamic response tracking under regular waves

Considering regular waves with the wave height of 0.06m and the period of 2.8s, Fig. 16 has shown

the measured Euler angle in three rotational directions and the linear acceleration in three translational

directions of the structure. It has been noted that the structure starts to move at 17s under the action of

waves and tends to be stable after 30s. The reason for this phenomenon owes to the fact that the initial stage

of the structure motion is a typical unsteady response, which does not conform to the rule of the motion

of structures subject to the action of regular waves. With the increase of time, the motion of the platform

gradually stabilizes and stops after 150s. Therefore, in the following analysis, the response in the relative

stable stage of the structural motion (between 60s to 120s) has been selected for data analysis. Due to the

baseline deviation of the sensor, the average values of the measured acceleration in the three directions are

different.
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Fig. 16: The (a) estimated Euler angle and (b) measured acceleration of the platform under regular waves.

To track the structural motion, the tilt errors should be corrected initially. Figure 17 has shown the

corrected acceleration in the directions of surge and heave of the structure. In the decomposition of the

corrected acceleration, SCsw is set to 1 × 10−3 and the extracted number are set as 1200 and 1800 as the

response in surge direction is often more complex than that in heave direction. Results have shown that the

accelerations in both the surge and heave directions have been well reconstructed to represent the original

measured accelerations.

On the completion of the decomposition process, the components whose frequencies close to 0Hz have

been removed in order to reconstruct the corresponding displacement. In this case study, the first 23 com-

ponents and 62 components in the heave and surge directions have been removed. Then, the reconstructed
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Fig. 17: The comparison of the measured and reconstructed acceleration in the (a) surge and (b) heave direction.

displacements are transformed to the COG of the structure, and results in Fig. 18 have shown that the re-

constructed displacement has well agreed with the measured results by the optical tracking device, which

has indicated that the proposed approach has the ability to reconstruct the dynamic displacement of floating

structures under regular waves. With the combination of rotational Euler angle obtained by the quaternion

method, the structural motion has been successfully tracked in Fig. 19. The tracking motions including

the positions at the moment when the structure begins to move (0.00s) and two moments of 97.4870s and

104.8870s have been given. It has been noted that the results have been consistent with the images taken

by the camera, which has recorded the operation state of the structure. Also, the comparison of results by

the proposed approach with the data by the optical tracking device have been provided in Table 2. Since

the optical system adopts non-contact measurement method and usually has high accuracy which can up to

0.0001mm, the measured results are taken as the standard results, and expressed as ”Measured results”, and

”Estimated results” in the table represents the results estimated by the proposed method. The comparison

has indicated that the proposed approach has the ability to track the motions of structures with a high level

of accuracy. Furthermore, the estimated errors of the tracking system in the sway and pitch directions are

slightly large as the structural movements in the two directions theoretically approach to zeros due to the

incident wave with 180 degrees and even a tiny movement can lead to a noticeable error.
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Fig. 18: The comparison of the measured and reconstructed displacement in the (a) surge and (b) heave direction.

(a) (b)

(c) (d)

Fig. 19: The comparison results of the platform under regular waves between (Left) camera and (Right) the proposed method: (a)

and (b) t=97.4870s; (c) and (d) t=104.8870s.
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Table 2: 6-DOF motion tracking values of the platform under regular waves.

Time 97.4870s 104.8870s

Measured results Estimated results Error Measured results Estimated results Error

Surge (mm) 49.3447 49.3378 -0.0140% -36.6124 -36.6135 0.0030%

Sway (mm) 0.0080 0.0073 -8.7500% 4.9936 4.9910 0.0521%

Heave (mm) 63.6563 63.6563 0.0000% -24.9672 -24.9673 0.0004%

Roll (rad) -0.0149 -0.0153 2.6846% 0.0236 0.0238 0.8475%

Pitch (rad) 0.0009 0.0011 22.2222% 0.0025 0.0028 12.0000%

Yaw (rad) 0.0016 0.0015 -6.2500% -0.0018 -0.0017 -5.5556%

6.3. Three-dimension dynamic response tracking under irregular waves

Meanwhile, the developed motion tracking method has been examined for floating structures under

the consideration of irregular waves. In the experiment, the Jonswap spectrum has been used to simulate

irregular waves with a period of 2s and a wave height of 0.12m. The Euler angle and acceleration of the

structure measured by the gyroscope and accelerometer have been shown in Fig. 20. The response between

100s and 200s has been selected for data analysis. Finally, Fig. 21 and Table 3 have shown the results by

the 6-DOF motion tracking system and the optical tracking device. It has been concluded that results of

the proposed tracking system have maintained a good consistency with the measured data by the optical

tracking device and proved the feasibility of the developed 6-DOF motion tracking system for tracking the

marine floating structures in service.
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Fig. 20: The (a) estimated Euler angle and (b) measured acceleration of the platform under irregular waves.
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(a) (b)

(c) (d)

Fig. 21: The comparison results of the platform under regular waves between (Left) camera and (Right) the proposed method: (a)

and (b) t=124.7260s; (c) and (d) t=151.8460s.

Table 3: 6-DOF motion tracking values of the platform under irregular waves.

Time 124.7260s 151.8460s

Measured results Estimated results Error Measured results Estimated results Error

Surge (mm) 99.7803 99.7692 0.0111% -77.2091 -78.0103 1.0377%

Sway (mm) 1.3652 1.3655 0.0220% -0.5527 -0.5523 0.0724%

Heave (mm) 52.4229 52.4229 0.0000% -23.4660 -23.4662 0.0009%

Roll (rad) 0.0994 0.0990 0.4024% -0.0897 -0.0891 0.6689%

Pitch (rad) -0.0210 -0.0213 1.4286% -0.0205 -0.0200 2.4390%

Yaw (rad) 0.0524 0.0521 0.5725% -0.0415 -0.0411 0.9639%
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7. Summary and conclusions

This paper has proposed a 6-DOF motion tracking approach based on accelerations and angular ve-

locities to accurately position the floating structures. In this method, the integral process of measured

accelerations has been replaced by the calculation of complex exponential parameters to avoid the drift

problem, and thus the 6-DOF motion tracking system of floating structures has been realized by the re-

construction of the relationship between accelerations and displacements. As compared with the optical

non-contact measurement system, the proposed approach has demonstrated the excellent performance and

higher measurement accuracy, owing to the effective prevention from environmental interference and data

loss. The analysis results of an SDOF system show that the proposed displacement reconstruction method

can be applied to the dynamic displacement reconstruction of floating structures. And simulation results

of a semi-submersible platform by the Orcaflex under the considerations of the testing environment and

equipment have shown that the maximum reconstruction error between the proposed approach and Orcaflex

is around 1%, indicating the correctness of the developed tracking method.

To further verify the feasibility of the proposed approach applicable to complex marine structures, the

semi-submersible platform has been carried out on a 1:100 model in a wave tank. It has been noted that

the maximum absolute error between the proposed approach and the measured displacement by the optical

device is only in the millimeter range. Considering the action of irregular waves, the maximum reconstruct

error of 1% has been observed and the discrepancy of the displacement in the heave direction has been

minimized by less than 0.5%. The meaningful results have demonstrated the superiority of the proposed

approach over the optical devices for the motion tracking of floating structures and the great potential for a

wider range of applications such as the heave response estimation in ocean engineering.
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