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Abstract
Conserving biogeographic regions with especially high biodiversity, known as  
biodiversity ‘hotspots’, is intuitive because finite resources can be focussed towards 
manageable units. Yet, biodiversity, environmental conditions and their relationship are 
more complex with multidimensional properties. Assessments which ignore this risk 
failing to detect change, identify its direction or gauge the scale of appropriate inter-
vention. Conflicting concepts which assume assemblages as either sharply delineated 
communities or loosely collected species have also hampered progress in the way we 
assess and conserve biodiversity. We focus on the marine benthos where delineating 
manageable areas for conservation is an attractive prospect because it holds most ma-
rine species and constitutes the largest single ecosystem on earth by area. Using two 
large UK marine benthic faunal datasets, we present a spatially gridded data sampling 
design to account for survey effects which would otherwise be the principal drivers of 
diversity estimates. We then assess γ-diversity (regional richness) with diversity par-
titioned between α (local richness) and β (dissimilarity), and their change in relation to 
covariates to test whether defining and conserving biodiversity hotspots is an effective 
conservation strategy in light of the prevailing forces structuring those assemblages. α-, 
β- and γ-diversity hotspots were largely inconsistent with each metric relating uniquely 
to the covariates, and loosely collected species generally prevailed with relatively few 
distinct assemblages. Hotspots could therefore be an unreliable means to direct con-
servation efforts if based on only a component part of diversity. When assessed along-
side environmental gradients, α-, β- and γ-diversity provide a multidimensional but still 
intuitive perspective of biodiversity change that can direct conservation towards key 
drivers and the appropriate scale for intervention. Our study also highlights possible 
temporal declines in species richness over 30 years and thus the need for future inte-
grated monitoring to reveal the causal drivers of biodiversity change.

K E Y W O R D S

biodiversity, biodiversity hotspot, conservation, diversity partitioning, marine benthic fauna, 
Random Forest analysis, rarefaction and extrapolation, species richness

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 Crown copyright. Global Change Biology © 2020 John Wiley & Sons Ltd

This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland. 

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-9567-175X
https://orcid.org/0000-0002-3945-462X
https://orcid.org/0000-0003-3183-8116
https://orcid.org/0000-0003-2787-6996
https://orcid.org/0000-0003-0625-6333
https://orcid.org/0000-0002-4973-6698
mailto:murray.thompson@cefas.co.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15443&domain=pdf&date_stamp=2020-11-26


522  |     THOMPSON eT al.

1  | INTRODUC TION

In light of the global biodiversity crisis (Butchart et al., 2010; Johnson 
et al., 2017; Loh et al., 2005; McRae et al., 2017), robust information 
on the spatial distribution of biodiversity and anthropogenic driv-
ers of change are critical to direct conservation efforts towards the 
most effective conservation interventions (Edgar et al., 2016; McGill 
et al., 2015; Pimm et al., 2014). Prioritizing ‘hotspots’ with high spe-
cies richness or distinct assemblages is one of the most common 
strategies for biodiversity conservation (Norman & White, 2019). 
Yet, there are many limitations in the way biodiversity estimates 
are generated because of how data are collected, collated and an-
alysed (Cardinale et al., 2018; Engemann et al., 2015; Guilhaumon 
et al., 2008; Kupschus et al., 2016), which hampers biodiversity con-
servation (McGill et al., 2015; Pimm et al., 2014).

Different views exist about how assemblages are structured. The 
‘superorganism’ view predicts that strong species interactions cause 
sharp boundaries between unique assemblages (Clements, 1916). This 
implies that monitoring and conservation can target distinct assem-
blages. The ‘individualistic’ view predicts species competitiveness is 
conserved irrespective of composition (Gleason, 1926; akin to neutral 
theory; Hubbell, 2001); hence, compositional changes can be largely ex-
plained by species dispersal and responses to environmental gradients 
which can be both gradual and discontinuous (Liautaud et  al., 2019). 
This view implies that, where there is little environmental change, sto-
chastic processes will largely determine local assemblage structure and 
conservation measures can be targeted at specific pressures affecting 
species across their distributional range. The superorganism view is im-
plicit in maps with hard edges between adjacent habitats and is widely 
applied to inform biodiversity conservation and monitoring strategies 
(e.g. EUNIS; Andersen et al., 2018; Coltman et al., 2008), although such 
classifications can perform poorly when related to changes in commu-
nity composition (Cooper et al., 2019). This highlights a current and 
critical disconnect between how assemblages are structured and how 
conservation is applied. There is also compelling evidence that neutral 
processes alone are not adequate to describe community structure 
(Connolly et al., 2014; McGill, 2003). These competing views likely rep-
resent continuum extremes which are also not mutually exclusive in 
that a strongly interacting community could coexist with more loosely 
assembled species (Liautaud et al., 2019). The often right-skewed dis-
tribution of interaction strengths in many food webs supports this (i.e. 
many weak and few strong, e.g. Bascompte et al., 2005; Emmerson 
& Raffaelli, 2004; Paine, 1992; Thorson & Barnett, 2017; Vázquez 
et al., 2007; Wootton, 1997), as does work by Vergnon et al. (2009) 
which showed niche and neutral processes were both important struc-
turing forces on a single assemblage. Are we therefore dealing with 
(a) definable communities each of which respond to environmental 
change as a unit, (b) assemblage continua where species respond in-
dependently from one another, or both and how best should these be 
assessed and conserved?

Challenges associated with large-scale biodiversity assessments 
have led to the proliferation of so-called ‘big data’ (Edgar et al., 2016), 
such as online databases documenting taxonomy (e.g. the World 

Register of Marine Species; WoRMS Editorial Board, 2017), species 
distributions (e.g. MacroBen; Vanden Berghe et al., 2009; Global 
Biodiversity Information Facility; http://www.gbif.org/; Ocean 
Biogeographic Information System; OBIS, 2020), time series (e.g. 
BioTIME; Dornelas et al., 2018), and their relation to large-scale en-
vironmental information (e.g. the Copernicus Marine Environment 
Monitoring Service; http://marine.coper nicus.eu). There is much 
less data at similar scales, however, on species interactions or dis-
persal, which play critical roles in structuring assemblages (Albouy 
et al., 2019; Bradbury et al., 2008). Furthermore, data relevant for 
estimating species distributions are often derived from museum col-
lections or from surveys conducted for other reasons, including estab-
lishing protected areas or environmental impact assessment (Cooper 
& Barry, 2017; Engemann et al., 2015; Norman & White, 2019). As 
such, they may not be best suited to providing evidence of the un-
derlying reasons for observed changes at large scales (Arkema 
et al., 2006; Dickey-Collas, 2014; Kupschus et al., 2016). Such data 
also contain many other potential issues that could compromise our 
ability to detect and understand changes in biodiversity, including 
spatiotemporal variation in abundance (sample size), sampling effort, 
a mixture of taxonomic resolutions, and the incorporation of both 
count and incidence (i.e. presence only) data (Cardinale et al., 2018; 
Engemann et al., 2015; Norman & White, 2019). Consequently, large-
scale biodiversity assessments have often relied on species distribu-
tions and species area relationships to define biodiversity hotspots 
(Elith & Leathwick, 2009; Norman & White, 2019), while lacking in-
formation on interactions, dispersal, temporal change, variation in the 
effect of area on biodiversity or sampling artefacts that could con-
found such predictions (Araújo & Guisan, 2006; Gilman et al., 2010; 
Guilhaumon et al., 2008; Liautaud et al., 2019).

Joint use of γ-diversity (regional richness) with diversity parti-
tioned between α (local richness) and β (dissimilarity) components of-
fers a potential means to navigate these issues. Diversity partitioning 
is well established in the wider ecological literature (Chao et al., 2012; 
Hautmann, 2014; Jost, 2007; Na & Kiessling, 2015; Olszewski, 2004; 
Whittaker, 1960, 1972) but has not yet been incorporated into con-
servation programmes to assess status or inform where pressures on 
biodiversity could be mitigated. Yet, their incorporation could reveal 
the relative importance of local to large-scale processes determin-
ing biodiversity patterns and thus whether it makes sense to clearly 
delineate a hotspot from other areas. Differences in response can 
also be indicative of how assemblage structure is changing, for ex-
ample, large decreases in β-diversity but not γ-diversity would indi-
cate species composition was homogenizing but that overall richness 
was unaffected (Dornelas et al., 2014; Magurran et al., 2018; McGill 
et al., 2015). Rarefaction and extrapolation with Hill numbers provide 
a unified framework within which to estimate these diversity metrics 
that can account for the sampling biases associated with variation in 
abundance and sampling effort, and can also be applied to many data 
types (Chao et al., 2014; Jost, 2007; Leinster & Cobbold, 2012).

Marine assemblages are unique in that they lack some of the dis-
persal constraints experienced by organisms in terrestrial ecosystems 
(Baselga et al., 2012; Jones, 2016; Kay & Palumbi, 1987; Kinlan & 

http://www.gbif.org/
http://marine.copernicus.eu
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Gaines, 2003). They are nevertheless experiencing comparable rapid 
and profound defaunation with widespread impacts on biodiversity 
(Blowes et al., 2019; Dornelas et al., 2014; McCauley et al., 2015; Pimm 
et al., 2014; Webb & Mindel, 2015). Much of the marine species biodi-
versity is found in the benthos which constitutes the largest single eco-
system on earth by area (Snelgrove, 1999; Snelgrove et al., 1997). The 
ability to clearly delineate marine benthic communities is an attractive 
prospect from an operational perspective since large areas could be 
categorized into manageable sampling units (e.g. Cooper et al., 2019). 
However, without evidence of sharp changes in assemblage structure, 
monitoring and conservation strategies which assume marine ecosys-
tems can be compartmentalized remain contentious.

Much work has been done to establish the drivers or at least en-
vironmental correlates of marine benthic faunal diversity patterns. 
Depth, sediment composition, various measures of water velocity or 
wave action and proximity to coast have all been shown to be useful 
descriptors (Barrio Froján et al., 2012; Duineveld et al., 1991; Rees 
et al., 1999; Renaud et al., 2009). Somerfield et al. (2009) showed 
that, rather than competition for resources which would be defined 
locally and favour assemblages composed of species less similar to 
one another, benthic assemblages tended to contain species more 
closely related to each other than would be expected by chance, 
and thus were likely organized primarily by large-scale environmen-
tal processes. However, it was not clear if the diversity of the most 
abundant taxa, polychaetes, was independent of, or driven by both, 
local and large-scale processes. Renaud et al. (2009) showed that 
local species richness was positively correlated with large-scale rich-
ness. From a conservation perspective, it would be useful therefore 
to know whether local-scale, large-scale processes or some combina-
tion of these drive high biodiversity, and whether high local diversity 
is a reliable measure of high diversity at larger geographical scales.

To address these evidence needs, we draw together data from 
across the UK Exclusive Economic Zone (UK EEZ), and across many 
different habitats (e.g. Andersen et al., 2018; Coltman et al., 2008; 
Cooper et al., 2019), where extensive spatial and temporal observa-
tions exist for benthic biota and prevailing environmental conditions. 
We focus on two large faunal datasets and observations between 
1985 and 2016 where complementary covariate data exist: the 
first was compiled for a UK benthic macrofaunal distribution study 
(henceforth 'BM data'; Cooper & Barry, 2017) containing count data 
for 1,964 species with 23,153 multi-species observations (i.e. those 
collected at the same time and at the same location); the second 
was downloaded from the largest publicly available online data-
base documenting the global distribution of marine species, Ocean 
Biogeographic Information System (OBIS, 2020), which contained 
3,187 benthic species with a mixture of count and incidence data 
with 23,646 multi-species observations (henceforth 'OBIS data’). To 
the authors’ knowledge, the combined dataset represents the larg-
est used to assess UK marine benthic diversity with a total of 3,626 
benthic species from 46,799 multi-species observations.

After accounting for survey effects, we estimate biodiversity 
across a range of scales to test the following hypotheses: (a) ben-
thic biodiversity hotspots are inconsistent across metrics; (b) α-, 

β- and γ-diversity relate uniquely to covariates; and (c) both sharply 
defined ‘superorganism’ and loosely collected ‘individualistic’ com-
munities exist along a β-diversity continuum. We aimed to explore 
whether robust biodiversity hotspots can be clearly delineated and 
reveal which environmental drivers explain the most variation in α-, 
β- and γ-diversity. At the same time, this approach allowed us to test 
the limitations of using aggregated biodiversity data in this context. 
Taken together, this information will be valuable in highlighting cur-
rent knowledge gaps, chief drivers of biodiversity change and the 
appropriate scales for assessment and conservation to operate.

2  | MATERIAL S AND METHODS

2.1 | Benthic data collation

We used benthic macrofaunal (BM) abundance data collated by Cooper 
and Barry (2017; https://doi.org/10.14466/ Cefas DataH ub.34), consist-
ing of 33,198 grab samples from 777 surveys collected between 1969 
and 2016 from UK waters, sourced from both government and industry, 
including contributions from the aggregate dredging and energy sectors. 
Samples taken from known impacted sites, for example, within actively 
dredged locations, and species known to be reported inconsistently, for 
example, colonists or fish, were excluded. The data were collected with a 
variety of grab-types, with 93% coming from either a 0.1 m2 Hamon grab 
or a 0.1 m2 Day grab, with the majority of surveys conducted post 2000 
and between June and September. See Cooper and Barry (2017) for a 
detailed description of the complete dataset.

Benthic survey data were also obtained from the Ocean 
Biogeographic Information System (Grassle, 2000; OBIS, 2020), the 
largest online free-access global marine database of species records. 
The data used in this study were downloaded on 19/07/2017 and 
can be accessed at: https://doi.org/10.25607/ obis.export.dda4657a. 
These data include incidence and, in some cases, abundance infor-
mation for marine taxa within the UK EEZ between 1750 and 2014, 
with the majority of observations between 1980 and 2012. There 
were insufficient reported observations to assess biodiversity across 
spatial scales post-2012, so these entries were removed. Taxonomic 
information was standardized and identified as benthic or otherwise 
using the World Register of Marine Species online Taxon Match Tool 
and Functional Group classifications, respectively (WoRMS; www.
marin espec ies.org). WoRMS has aggregated data on species attri-
butes including broad ‘functional groups’, which we use to identify 
benthic faunal taxa. We do this using a dedicated R function (https://
github.com/tomjw ebb/WoRMS -funct ional -groups) which accesses 
the WoRMS API using the worrms R package (Chamberlain, 2019). 
Our ‘benthos’ group includes all species categorized in WoRMS as 
endobenthos, epibenthos, hyperbenthos, macrobenthos, meioben-
thos and microbenthos, as well as those originally classified simply 
as benthos. When separate functional groups are recorded for dif-
ferent life stages, we always use the group for the adult stage. The 
resulting set of benthic taxa were broadly comparable across OBIS 
and BM data based on phylum occurrences (Table S1). We retained 

https://doi.org/10.14466/CefasDataHub.34
https://doi.org/10.25607/obis.export.dda4657a
http://www.marinespecies.org
http://www.marinespecies.org
https://github.com/tomjwebb/WoRMS-functional-groups
https://github.com/tomjwebb/WoRMS-functional-groups
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benthic occurrences contained in OBIS data regardless of survey 
methodology, meaning that our final dataset included records from 
a range of methods including benthic grabs, trawls and dredges. 
Therefore, OBIS data were standardized to incidence for meaningful 
comparison. Multi-species observations with low numbers of obser-
vations and/or species could be indicative of a survey targeting spe-
cific species, while not recording others. Those with fewer than 30 
observations and/or 10 species were therefore not considered. OBIS 
data included in this study consisted of 3,187 benthic species from 
23,646 multi-species observations.

Drawing on diverse data sources is typical to biodiversity hotspot 
assessment (Norman & White, 2019). This is because it is essential 
to aggregate observations from across habitats or species that may 
require different survey methodology. For instance, sampling a reef 
with a benthic grab would be destructive and thus not appropriate, 
but assessing biodiversity across reefs and sedimentary habitats is. 
This also applies to different species found in the same space, but 
which may be surveyed better using different gears, such as those 
larger dwelling on the seabed or smaller living within the sediment. 
The only way this can be done currently, and at large scale to de-
termine marine benthic biodiversity hotspots for conservation is by 
drawing on diverse data sources which may include a combination of 
survey gears. However, we appreciate that such differences in sur-
vey methodology could confound diversity patterns. We therefore 
provide supplementary results to test our hypotheses when using 
only the BM data which were all collected with benthic grabs in soft 
sediments. BM and OBIS data were combined and all transformed 
to incidence data to produce the largest UK marine benthic dataset 
the authors are aware of, consisting of 3,626 benthic species from 
46,799 multi-species observations. The OBIS data we used did not 
share any duplicate observations with the BM data. Where we inte-
grated data, we used species incidence information which is not sus-
ceptible to issues associated with duplicate observations (duplicated 
species incidence records still give a value of 1; see Figure S1 for 
spatial and temporal distributions across datasets). We focussed on 
the period 1985–2016, where complementary covariate data exist 
(see below), and considered only records identified to species.

2.2 | Biodiversity estimation

We recognize that because the datasets have unique properties 
(e.g. different spatial and temporal distribution of observations; 
Figure S1), we cannot make meaningful comparisons between 
hotspot locations. However, we look for similarities in β-diversity 
patterns across data to reveal whether evidence for distinct com-
munities is common to both while also using the combined dataset 
to provide the most spatially and temporally comprehensive assess-
ment possible across all of the diversity metrics. Specifically, BM 
count data enable estimates to be based on rarefaction from local 
to regional scales, whereas incidence data (i.e. OBIS and BM com-
bined) have higher spatial and temporal coverage than the BM data 
alone, but only γ-diversity estimates are based on rarefaction (i.e. 

where multiple cells enable sample-based rarefaction, whereas α- or 
β-diversity use observed values).

We anticipated that variation in sample size (e.g. individuals en-
countered), in the number of observations per site (primarily affect-
ing α-diversity), in the number of areas surveyed (primarily affecting 
γ-diversity), and in the sum of the distances between surveyed areas 
(i.e. larger areas compared to smaller areas) could affect diversity esti-
mates. And because β-diversity here is estimated using α- and γ-diver-
sity (see below), it is likely susceptible to variation in all these potential 
survey effects. We therefore devised a spatially gridded sampling 
structure to perform random sub-sampling, thereby enabling us to 
control the number of multi-species observations assessed within a 
given area. Data were nested in 5 km grid cells (henceforth, ‘sample 
cells’) using latitude and longitude, together with month and year infor-
mation, which identified whether multiple unique local multi-species 
observations existed per sample cell for any given time. Furthermore, 
we include the number of cells and the sum of the distances between 
them as covariates in a Random Forest analysis (see below) to reveal 
whether survey effort was affecting diversity estimates irrespective 
of whether they were based on rarefaction.

Estimates of α-diversity were always made at the level of unique 
multi-species observations and based on either observed species or 
rarefaction where we use incidence or count data, respectively. Unique 
multi-species observations based on species incidence were used to 
estimate γ-diversity within a 25 km radius of each sample cell using 
rarefaction for all datasets (analogous to regional richness). We only 
considered areas where there were at least three sample cells within 
a radius of 25 km required to estimate β- and γ-diversity so that the 
distribution of our diversity estimates correspond exactly. Estimates 
based on rarefaction were made using the R package iNEXT (Hsieh 
et al., 2014) and were considered independently to those based on ob-
served values in our analyses. β-diversity was calculated as:

where α represents mean α-diversity (Jost, 2007; Tuomisto, 2010). 
β-diversity is thus an estimate of the effective number of communities 
in a given area and can be expressed on a relative scale as:

where N represents the number of sample cells (henceforth referred 
to as turnover). We also looked at pairwise turnover (Simpson dis-
similarity, after Baselga, 2010) between cells within a 25 km radius 
to reveal whether there were sharp changes in assemblage struc-
ture between nearby cells that may be missed using 25 km turnover 
which uses mean α-diversity. Whether 25 km or pairwise, we should 
expect turnover to have a bimodal distribution with peaks close to 
either extreme if superorganism structure is prevalent (i.e. showing 
very similar and/ or very dissimilar local site differences), but more 
intermediate values would suggest that individualistic processes 
prevail. Pairwise dissimilarity was estimated in R using the betapart 
package (Baselga & Orme, 2012).

(1)β=γ∕α,

(2)β=γ−α∕ (N−1) α,
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While the scales of assessment are somewhat arbitrary, our 
aim was to assess whether decomposing diversity into its compo-
nent parts could tell us more than the individual metrics on their 
own while controlling for variation in survey effort. To do this, we 
needed to look across spatial scales and across datasets in a system-
atic way. These scales could be readily adjusted for specific manage-
ment purposes. This proved essential as, even after rarefaction and 
extrapolation, diversity estimates were primarily driven by survey 
effects (Figures S2 and S3). Hence, we standardized effort using 
random sub-sampling across all analyses presented in the results 
such that γ- and β-diversity estimates were based on only ten unique 
multi-species observations and α-diversity on a single multi-species 
observation (see Figure S4 for a schematic of this design). We retain 
the sum of the distances in our models using the sub-sampled data to 
show whether sample clustering was still an important factor affect-
ing our diversity estimates.

2.3 | Covariate data collation

Using the same spatial grid as for diversity estimation, we collated 
environmental variables considered important determinants of 

benthic assemblage structure (e.g. Barrio Froján et al., 2012; Cooper 
& Barry, 2017; Couce, Engelhard, et al., 2020; Davies et al., 2004; 
Renaud et al., 2009), including depth, sediment composition, bed 
shear stress, temperature, salinity, nitrate, phosphate, dissolved 
oxygen, chlorophyll, bottom current speed and particulate organic 
carbon. We also included data on fishing pressure (hours fishing 
per year) derived from an analysis of Vessel Monitoring System 
(VMS) data for UK vessels larger than 15 m and segregated by gear 
type. This was only available for the period 2009–2016, since VMS 
usage was not widespread before that; we approximated the aver-
age of those 7 years to the entire study period. We acknowledge 
that fishing effort changes over time, however such changes tend 
to be slow and gradual due to fishing vessels being based at particu-
lar ports, having traditional fishing grounds and fishing preferences, 
and having quotas associated with particular areas (e.g. see Couce, 
Schratzberger, et al., 2020). For the 7 years with data, we found a 
strong correlation between the annual values and the average of the 
7 years (see Figure S5). For the full list of spatial gridded environ-
mental and anthropogenic pressure covariates and their sources, see 
Table 1. For each of these gridded covariates, we also looked at the 
mean of pairwise differences between surveyed sample cells, which 
provides a measure of their heterogeneity (e.g. depth difference 

TA B L E  1   Gridded environmental and anthropogenic pressure datasets used in the study, their characteristics (units, time period covered 
and spatial resolution) and sources. The label assigned to the variable in our study is indicated in the first column in parentheses, or when not 
provided it matches the variable name. Variables in our results referring to pairwise differences have the suffix ‘df’ added to the variable name

Covariate and variable name Unit
Time 
coverage Resolution Data source

• Depth m 30 s General Bathymetric Chart of the Oceans 
(GEBCO; www.gebco.net)

• Temperature K 1985–2013 ⅟₉° longitude by 
⅟₁₅° latitude

Modelled with version 3.4 of the Nucleus for 
European Modelling of the Ocean (NEMO) 
ocean model (Madec, 2008) coupled to the 
European Regional Seas Ecosystem Model 
(ERSEM; Butenschön et al., 2016). Datasets 
available from http://marine.coper nicus.eu/; 
datasets ‘NORTHWESTSHELF_ REANALYSIS_
PHYS_004_009’ and ‘NORTHWESTSHELF_
REANALYSIS_BIO_004_011’.

• Salinity e−3 (N/A)

• Nitrate concentration (‘Nitrate mean’  
or ‘log10(nitrate)’)

mmol/m3

• Phosphate concentration (‘Phosphate 
mean’ or ‘log10(phosphate)’)

mmol/m3

• Dissolved oxygen (‘Dissolved oxygen 
mean’ or ‘log10(DO)’)

mmol/m3

• Current speed (‘Bottom current’) m/s

• Chlorophyll-a concentration 
(‘Chlorophyll’)

mg/m3 1998–2016 4 km Ocean Colour Climate Change Initiative dataset, 
Version 3.1, European Space Agency, available 
online at http://www.esa-ocean colou r-cci.org.

Sediment fraction of:
• Sand
• Mud
• Gravel

Proportion 
(0–1)

N/A 7.5 arc seconds Dataset described by Mitchell et al. (2019).

• Particulate organic carbon (POC) % N/A 500 m Dataset described by Diesing et al. (2017).

• Shear stress (‘Shear stress’ for mean 
of the 7 years, ‘Shear stress SD’ for 
standard deviation)

m/s 1975–1981 0.125° Modelled by GETM (Burchard & Bolding, 2002), 
hindcast model run described in Bricheno 
et al. (2015).

Fishing pressure for:
• Beam trawls
• Otter trawls
• Pelagic trawls

Hours per 
year

2009–2016 0.05° Analysis of Fisheries Administrations’ VMS data 
provided by the MMO, for UK vessels larger 
than 15 m.

http://www.gebco.net
http://marine.copernicus.eu/
http://www.esa-oceancolour-cci.org
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between cells). The labels referring to these pairwise differences 
have the suffix ‘df’ added to the variable name (variable names are 
listed in Table 1).

In addition to the gridded covariate data, we included the mean 
annual index values for the Atlantic Multidecadal Oscillation (AMO) 
and the North Atlantic Oscillation (NAO). These two indices track 
large-scale environmental change associated with contrasting 
precipitation and warm and cool climate phases, the AMO being 
of lower frequency (60–80 years) relative to the NAO (<30 years; 
Enfield et al., 2001; Hurrell, 1995; Jones et al., 1997). Both indexes 
have been linked with changes in marine plankton, benthic inver-
tebrates and fish assemblages, through to marine ecosystem-level 
change (e.g. Edwards et al., 2013; Nye et al., 2014; Ottersen 
et al., 2001). We estimate the colonization potential of the wider 
species pool for each sample cell and each year via sample-based 
rarefaction by randomly selecting 50 cells (or at least 30 cells where 
data from <50 cells was available) from the wider regions beyond 
25 km (wider regions are defined in Figure S1 as northwest, north-
east, southeast and southwest UK waters). Year, longitude, latitude, 
distance to the nearest coast and the influence of survey effects 
that could confound our diversity assessment, namely the number 
of unique multi-species observations per cell, the number of cells 
surveyed within 25 km and the sum of the pairwise distances be-
tween cells (i.e. sample clustering), were included in our full list of 
covariates.

Pairwise Pearson correlation coefficients for all covariates 
considered were computed to assess multicollinearity between 
them using data from where we had multi-species observations in 
the R package stats (R Core Team, 2017). A variable was removed 
if it correlated with another >0.7, retaining those which represent 
a direct measure of environmental conditions (e.g. temperature 
instead of latitude) and those more readily collected (e.g. salinity 
instead of the difference between salinity across sites; Figures S5 
and S6). Where there were few temporal observations and the 
mean correlated with its temporal counterpart, for example, fish-
ing effort datasets, we used the mean. Any further missing covari-
ate data were imputed using the R package missForest (Stekhoven 
& Bühlmann, 2012).

2.4 | Biodiversity assessment

For the purpose of our analyses, hotspots are defined here as the 
10 most diverse areas ranked using either γ-, β- or α-diversity. We 
tested whether hotspot locations were conserved across diversity 
metrics and spatial scales. Variation in survey distribution over time 
meant we could not demonstrate if hotspots were temporally con-
served (Figure S1). Instead, we tested for the crossing of rarefac-
tion curves over time to reveal the consistency of scale dependence 
(Chase et al., 2018). Consistently, crossing rarefaction curves indi-
cate that the ranking of sites by richness re-orders as the spatial 
scale considered increases. This would undermine the concept of 
defining hotspots using one metric and/ or one spatial scale.

Random Forest analysis (Breiman, 2001) was used to understand 
the relationships between diversity metrics and covariates because 
of their ability to detect nonlinear responses and interaction effects 
between variables (e.g. Lawler et al., 2006). Regression trees recur-
sively split the dataset into the most homogeneous groups possible 
in relation to the response variable. Random Forests are a collection 
of regression trees trained on bootstrap samples of the training set, 
with the model selecting a randomly chosen subset of the covariates 
to determine each split of a tree. Due to spatial and temporal clus-
tering of observations inherent in collated survey data (Figure S1) 
and potential for autocorrelation between proximal observations 
in space and time to affect our results, we followed the approach 
described by Hengl et al. (2018) to explicitly add spatiotemporal 
predictive variables to the Random Forest analysis. Specifically, we 
include the sampling year (to account for temporal autocorrelation) 
and the distance from the sample cell to the centre of every other 
sample cell in the grid up to a maximum of 100 km (to account for 
spatial autocorrelation at local to mid-scales). The models were built 
in R using the ranger package (Wright & Ziegler, 2017).

The relative importance of the covariates in each Random Forest 
model was based on node impurity, a standard approach based on 
the reductions of the variance of the response variable each time that 
a covariate is used for a split. Partial dependence plots were used 
to show the relationship between the response and a single covari-
ate while keeping the other covariates fixed at their average values 
(this may not be realistic and lead to misleading results in the case 
of strongly correlated variables, so these plots should be interpreted 
with care). We compared our full model results, which included envi-
ronmental covariates, to those with only survey effects as covariates 
(i.e. year, latitude, longitude, distance to coast and sum of the dis-
tances between surveys) and observed diversity estimates to disen-
tangle the effects of environmental change and survey distribution 
(i.e. temporal changes in the spatial distribution of observations in-
herent in collated survey data) on our results. Change in relation to 
‘Year’ in our survey effects models represents the diversity we might 
expect to observe in the absence of survey effects; whereas change 
in relation to ‘Year’ in our full model reveals any outstanding temporal 
variation in diversity not captured by our covariates.

3  | RESULTS

Hotspots were largely inconsistent across metrics (Figure 1; 
Figure S7; Table S2) and richness was scale-dependent over time 
(Figure 2), in support of our first hypothesis. Using the combined 
dataset alongside covariates, our random forest models captured 
65.6%, 72.2% and 36.8% of the variation (based on out of bag R-
squared) in γ-, β- and α-diversity, respectively. Each diversity met-
ric related uniquely to the covariates, in support of our second 
hypothesis (Figures 3–5; Figure S8). Regional factors relating to 
habitat heterogeneity, including variation in shear stress, depth 
and substrate, as well as larger-scale factors such as proximity 
to coast and longitude (the latter capturing a decreasing species 
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F I G U R E  1   The top 10 marine benthic 
‘hotspots’ (large points) plotted over 
spatial estimates of γ-, β- and α-diversity 
across the UK EEZ using the combined 
dataset. Values are based on means 
where multiple temporal observations 
exist
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F I G U R E  2   Top panels: rarefaction 
of marine benthic assemblages used to 
estimate γ-diversity for years 1990, 2000 
and 2010. Crossing curves demonstrate 
that the sites rank-order based on richness 
is not conserved as the number of sample 
cells (i.e. spatial units) increases, and this 
feature is consistent over time (n = 50 
cells were randomly selected in 2000 and 
2010 where there were data for >50). We 
highlight areas which may have relatively 
low to intermediate species richness based 
on a low number of sample cells (black 
lines) compared with other areas (e.g. 
blue dotted and green dashed lines) but, 
because of higher dissimilarity between 
local assemblages, tend to have some 
of the highest species richness values at 
larger scales. Based on these results, we 
would draw contrasting conclusions about 
which area was most diverse depending 
on whether we looked at 1, 20 and 60 
sites within a region. Bottom panels: maps 
show differences in spatial data distribution 
between respective years (red = data  
collected in that year, blue = all data)
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F I G U R E  3   Variable importance based 
on node impurity ordered along the 
y-axis from most important (top) to least 
important (bottom) following Random 
Forest analysis on the combined data. 
The suffix ‘df’ represents a variable's 
heterogeneity based on mean pairwise 
differences across selected sample cells 
within a 25 km radius
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richness gradient moving from the Atlantic to the North Sea spe-
cies pools), and local factors including substrate, phosphate and 
chlorophyll concentrations were important predictors of diversity 

across our models (Figures 3–5; Figures S9 and S10). This sug-
gests that regional- to ecosystem-scale processes chiefly deter-
mined assemblage structure and the distribution of biodiversity 

F I G U R E  4   Partial dependence plots 
showing model predictions (red line) of 
γ-, β- and α-diversity (y-axis) using the 
combined dataset in response to the six 
most important covariates (x-axis) as 
determined by node impurity (Figure 3) 
while keeping other variables fixed at their 
average values. The suffix ‘df’ represents 
a variable's heterogeneity based on mean 
pairwise differences across selected 
sample cells within a 25 km radius
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F I G U R E  5   Observed versus partial 
dependence plots for full model and 
survey effects model estimates of 
temporal diversity. Change was partly 
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covariates, revealed by the more limited 
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hotspots, even at local scales, with small-scale habitat charac-
teristics, such as substrate playing an important but subordinate 
role. Chlorophyll, phosphate and differences in dissolved oxygen 
concentrations ranked the most important gradients associated 
with anthropogenic pressure (i.e. a potential coastal eutrophica-
tion gradient; Figure 4; Figures S9 and S10), the former two relat-
ing negatively to α- and γ-diversity, the latter relating positively 
to β-diversity. Various trawling pressures were consistently poor 
predictors in our models.

Comparing output from our full models to our survey effects 
models and observed values reveals that temporal change in diver-
sity was partly captured by environmental covariates and partly 
by survey covariates with some remaining unexplained variation 
(Figure 5). There was more limited change related to ‘Year’ in the 
full models, followed by the survey effects models, with most 
variation in our observed values. Estimates based on our survey 

effects models (i.e. what we might expect to observe in the ab-
sence of survey effects) showed declines in γ- and α-diversity of 
14.9% and 19.7%, respectively, over the study period, and variation 
in β-diversity of 26.5% with little overall difference between 1985 
and 2016 estimates.

We found evidence of both individualistic and organismic as-
semblage structure with considerable variation in species turnover 
that was largely consistent across regions and data (i.e. where es-
timates were based on observed values in the combined incidence 
data or via rarefaction using BM count data), in support of our third 
hypothesis (Figure 6). The majority of pairwise and 25 km turn-
over values were intermediate rather than distributed bimodally 
between the extremes. Bimodal peaks were evident in pairwise 
turnover between intermediate and high values demonstrating 
that almost completely unique assemblages were observed in some 
nearby cells. However, such a peak was not evident in 25 km 

F I G U R E  6   Density plots showing 
the distribution of pairwise and 25 km 
turnover estimates (i.e. β-diversity) 
between cells sampled within the 
same year using the combined and BM 
datasets, respectively. Values were mostly 
intermediate, rather than bimodally 
distributed between extremes, indicating 
that many species were shared between 
unique multi-species observations and 
thus individualistic processes were more 
prominent in general. Data have been split 
across UK regions (Figure S1) to show 
that this pattern was largely conserved 
through space
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turnover suggesting that sharp dissimilarities were outweighed by 
those more intermediate, and thus individualistic processes were 
more prominent in general.

4  | DISCUSSION

The hotspot concept is intuitive, so it is understandable why it has 
such resonance in biodiversity conservation (Marchese, 2015; Myers 
et al., 2000). Here, we offer new insights into how such hotspots are 
generated and how they behave in space and time. The novelty in 
our study does not lie with the distribution of marine benthic biodi-
versity hotspots nor the influence of specific covariates per se, but 
rather the multi-dimensional perspective afforded using α-, β- and 
γ-diversity together, in the scale dependence of the responses to 
covariates and the ubiquity of gradual change in assemblage struc-
ture. These findings are key to informing marine management and 
conservation because strategies that act only locally, assume clearly 
delineated assemblages or focus on a single component of diver-
sity risk failing to detect change, identify its direction or disentan-
gle the influence of local from larger-scale processes, which could 
undermine effective intervention (Chase et al., 2018, 2019; McGill 
et al., 2015). Meaningfully incorporating a multi-dimensional per-
spective of biodiversity into national and international conservation 
programmes, monitoring or regulatory frameworks, such as via the 
joint use of α-, β- and γ-diversity, is thus timely (Isbell et al., 2017; 
Purvis et al., 2018).

Differences between the North Sea and Atlantic species pools 
captured by the longitudinal gradient was an important predictor of  
α- and γ-diversity (Figures 1 and 4; Figures S7 and S8) which suggests 
the success of local measures will be contingent on conserving spe-
cies and their ability to disperse at large scales (Witman et al., 2004), 
beyond the wider regions we used to assess colonization potential 
(Figure S1). Using species relatedness rather than patterns in α-, β- 
and γ-diversity, Somerfield et al. (2009) showed that marine benthic 
assemblages were primarily organized by regional to ecosystem-scale 
environmental gradients, adding support to our findings. Also, con-
trasting patterns of change in α- and β-diversity have been found in 
other benthic marine assemblages to the extent that a ‘hotspot’ can 
also be a ‘coldspot’ for biodiversity (Price, 2002). Dornelas et al. (2014) 
and Blowes et al. (2019) found that change in temporal turnover, rather 
than richness, was the principal driver of biodiversity change in global 
studies across many taxa and biomes, and this was strongest but most 
variable in marine ecosystems. We find comparable declines in rich-
ness to some marine assemblages contained within those global stud-
ies, plus we assess assemblage turnover in space as opposed to time, 
to test for sharp spatial change between assemblages, so our results 
are not necessarily inconsistent. The novelty here is that we relate spa-
tial and temporal change in diversity to potentially confounding survey 
effects and environmental gradients, and explicitly address scale-de-
pendent relationships to direct future assessments, policymakers and 
managers to where along these gradients change in assemblage struc-
ture can be anticipated.

Temporal declines in α-diversity can partly be explained by its 
negative relationship with the AMO (Figure S9). Altered thermal and 
hydrological regimes between AMO cold-negative (up until ~1997) 
and warm-positive (~1997 until present) phases may be responsible 
for this relationship affecting, for example, the supply of nutrients, 
thermal conditions, dispersal and higher-level food web effects 
(Edwards et al., 2013; Nye et al., 2014). However, the exact mech-
anisms are not clear and warrant future investigation, and the AMO 
had relatively little effect on γ- and β-diversity. Considering the re-
maining temporal changes in diversity, these were decoupled across 
metrics with declines in α-diversity evident first, followed by de-
clines in γ-diversity, while β-diversity was increasing between ~1990 
and 2010, before sharply decreasing after 2012 with no single clear 
driver. This suggests that many different pressures may be acting 
locally such that their heterogeneous but cumulative effects have 
led to widespread biodiversity change, and/or that other environ-
mental drivers not captured in our covariates were important (e.g. 
novel pesticides; Van Der Sluijs et al., 2015). Warming from climate 
change is another such possibility which we cannot rule out because 
our data do not track its effect on assemblages through time, among 
other candidate covariates which we discuss below.

The main anthropogenic gradients we considered were nutrient 
concentrations and fishing effort. Sites with altered substrate char-
acteristics, for example, following dredging, were not considered but 
such activities need careful management given that the proportion 
of gravel in sediments and its heterogeneity were important deter-
minants of diversity (see also Cooper & Barry, 2017). Species rich-
ness tended to be negatively related to gradients associated with 
eutrophication which were higher in coastal waters (Figure 4; Figure 
S9). α- and γ-diversity increased above phosphate concentrations 
of ~0.61 μM which broadly supports the lower threshold mean 
(0.45 μM) used by OSPAR to assess eutrophication in UK marine wa-
ters (Foden et al., 2011). Considering that riverine nutrient inputs 
have been in decline following policy changes since the late 1980s 
(Capuzzo et al., 2017; Foden et al., 2011; Lenhart et al., 2010; Tett 
et al., 2007), other contaminants, such as pesticides, not included 
in our covariates, could also be responsible for declines in species 
richness and warrant future investigation.

Like our study, Couce, Engelhard, et al. (2020) found shear stress 
to be the primary driver of change across North Sea marine benthic 
assemblages. However, they showed that beam and otter trawling 
had pronounced effects with clear thresholds of change on spe-
cific benthic genera that were not evident at the assemblage level 
in our assessment. It has also been shown that species richness can 
be negatively related to trawling in a meta-analysis of mostly west-
ern Europe and north eastern USA control-impact studies (Hiddink 
et al., 2020). There are a few possible and not mutually exclusive rea-
sons for these contrasting results: our data are not directly compa-
rable as they cover different areas; although many taxa may respond 
to trawling, UK marine benthic diversity may be largely insensitive 
to recent pressure following centuries of extensive fishing (Barrett 
et al., 2004; Thurstan et al., 2010); and our trawl data, which are 
highly spatially resolved but averaged over time, may not be a good 
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indicator of trawling pressure when our observations were made. It 
would be useful in future therefore to specifically select sites where 
temporal trawl and survey data correspond and apply the threshold 
approach after Couce, Engelhard, et al. (2020) to the more extensive 
dataset presented here. Such an approach could reveal where along 
anthropogenic gradients such biotic thresholds exist and thus gauge 
where pressures become unsustainable.

Even after rarefaction, diversity estimates were largely 
driven by effort before we applied random sub-sampling. This 
is because the effective number of assemblages sampled (i.e. β- 
diversity) increased with survey effort, affecting the shape of the 
accumulation curve which systematically increased the asymptote 
(Figures S2 and S3; see also Whittaker, 1960). Studies which do not 
explicitly address survey effects through both time and space be-
fore applying rarefaction, therefore risk reporting change associ-
ated with effort, which can vary dramatically (Figure 2; Figure S1), 
rather than biodiversity change per se. Spatial and temporal change 
in species richness could therefore be missed or misinterpreted if 
survey effects are not addressed prior to estimating diversity. We 
strongly advocate presenting diversity estimates alongside poten-
tial survey effects to make this transparent in future assessments, 
for example, using a spatially structured approach such as the one 
we present.

Future biodiversity assessments must therefore carefully control 
the number and distribution of samples, including measures for sam-
ple clustering, in both time and space to detect change and reveal 
its causes. Large-scale spatial and temporal change in diversity can-
not be disentangled if data only exist for a unique area or a unique 
combination of areas over time, constraining subsequent analyses. 
We only assess trends at local to regional scales because the sub-
stantial annual variation in the spatial distribution of survey effort 
presents a major challenge to estimating temporal change in marine 
benthic diversity at the UK scale which we do not attempt to address. 
However, simply increasing the number of annual observations alone 
may not improve our understanding of the causes of change. A truly 
integrated ecosystem monitoring programme that explicitly con-
siders how processes link sampled components would provide im-
portant insights into causal drivers of biodiversity change that are 
not possible using such data collated without an overarching design 
(Arkema et al., 2006; Kupschus et al., 2016). For this reason, we must 
stress that our environmental-diversity modelling results are explor-
atory and do not conclusively show significant declines in UK marine 
benthic species richness. Rather, they show noteworthy trends rele-
vant to biodiversity conservation and future monitoring and assess-
ment practices which could, for example, be applied to predict where 
we might find new areas of high biodiversity by filling in the gaps in 
Figure 1 where there is currently little or no biological data.

By combining the structured and targeted BM dataset with the 
unstructured, opportunistic data from OBIS, we aimed to benefit 
from the strengths inherent in each to derive a more comprehen-
sive picture of benthic biodiversity in space and time than either re-
sources would enable alone. The importance of drawing on multiple 
sources of data in such biogeographic studies has been emphasized 

elsewhere (Chollett & Robertson, 2020). We show how some of 
the limitations in such data collations can be addressed and were 
able to reveal that the prevailing structuring force of the UK marine 
benthos was individualistic. Dispersal and variation in interaction 
strength also play significant roles in reducing β-diversity (Liautaud 
et al., 2019). It is therefore rarely clear if nearby observations come 
from one or multiple assemblages, assemblage continua or some 
combination of these, and this has profound implications for how an 
area is assessed and conserved. Our findings do not preclude the use 
of strata as a pragmatic approach to surveying large areas with finite 
resources, and in also highlighting areas with unique assemblages 
whose loss would represent wider regional species loss. Rather, 
we highlight the importance of retaining information and a degree 
of flexibility in future monitoring designs useful for biodiversity 
assessments that are not beholden to strict delineations between 
areas that may not exist (Dickey-Collas, 2014; Kupschus et al., 2016; 
Murdoch et al., 2014). Without assuming clear delineations between 
areas, joint use of α-, β- and γ-diversity provides a multidimensional 
perspective of biodiversity which is key to its assessment (Chase 
et al., 2019; Isbell et al., 2017), revealing how a given area will re-
spond to environmental change and the appropriate scale for man-
agement to be effective, for example. We hope insights from this 
study inform both the design of future monitoring programmes and 
conservation policy so that anthropogenic pressures on biodiversity 
are better assessed, understood and mitigated.
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