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Abstract 

 

The hypothalamus regulates key endocrine, homeostatic and adaptive functions, 

ranging from energy uptake and expenditure to circadian rhythm and reproductive 

functions through the coordinated activity of neuronal and glial cells. There are complex 

but integrated interconnections between the hypothalamic nuclei that maintain energy 

homeostasis through regulation of food intake and energy expenditure. Critically, the 

Arcuate nucleus (Arc) and the circumventricular termed the median eminence (ME) lay 

at the core of the energy regulation. Assumedly, age-related changes in the 

hypothalamic circuitry could underlie the decline in metabolism and energy homeostasis 

observed during ageing. Therefore, the present study is focused on elucidating the 

effects of ageing in the Arc-ME. 

 

First, age-related changes in the hypothalamic neurons controlling energy balance, 

POMC and AgRP/NPY, were examined using immunohistochemistry and reporter mice. 

A reduction in the number of anorexigenic POMC neurons, but not orexigenic NPY, was 

associated with age. Cell death studies confirmed that programmed cell death events 

are not responsible for POMC decline. Second, RNA-seq analysis identified four 

biological processes affected in the ageing hypothalamus, including upregulation of 

neuroinflammation and myelin-related genes; and downregulation of genes involved in 

the neuronal cytoskeleton, intracellular transport and axonal growth. Third, age-related 

changes in the microglia (Iba1+) and astrocytes (GFAP+) suggested that reactive gliosis 

involving both populations develop gradually in the hypothalamus with age. Also, aged 

hypothalamic microglia adopt a neurotoxic/pro-inflammatory (M1) activated phenotype. 

Fourth, in vivo adult neurogenesis in the hypothalamus was assessed by cumulative 

BrdU labelling. The majority of proliferating cells in the ME belonged to the 

oligodendrocyte and microglia lineage, but a numeric decline is observed with age. Fifth, 

characterisation of the hypothalamic myelin pattern using immunohistochemistry 

revealed that myelin microstructure in the Arc-ME is impaired with age. The number and 

differentiation program of the oligodendrocytes was then investigated using lineage-

specific markers, and an increase in number but not differences in oligodendrocyte 

maturation was observed. However, western blot results supported that inhibition of the 

intracellular trafficking of myelin components, rather than oligodendrocyte dysfunction, 

could underlie the defective myelin pattern observed with age.
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1.1. The brain and ageing 

Ageing is defined as the progressive loss of physiological functions and 

deterioration in the maintenance of homeostatic processes over time, leading to the end 

of the life. Several brain functions, including cognition, circadian rhythm, regulation of 

energy expenditure and autonomic function, decline with age and cause significant 

impairment in quality of life. Ageing is also the major risk factor for most 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD) and Stroke (Hou et al. 2019; Reeve, Simcox, and Turnbull 2014). Interestingly, in 

mice, brain-specific genetic modifications produce a significant improvement in several 

physiological functions, increasing the lifespan (Kappeler et al. 2008; Satoh et al. 2013; 

Taguchi, Wartschow, and White 2007; Tang, Purkayastha, and Cai 2015; Zhang et al. 

2013). 

 

Different neuro-anatomical, cellular and molecular alterations in the central nervous 

system (CNS) are associated with ageing. Early weight studies reported an overall 

reduction in brain volume (Dekaban and Sadowsky 1978; Ho et al. 1980). Later studies 

using non-invasive imaging found that brain volume declines from about 0.1 – 0.2%/year 

between 30 – 50 years to 0.3 – 0.5%/year over the age of 70 years (Coffey et al. 1992; 

Jernigan, Press, and Hesselink 1990; Pfefferbaum et al. 1994). Moreover, the volume 

decline was homogeneous throughout the white matter, while the grey matter showed 

regional differences (Resnick et al. 2003; Scahill et al. 2003). As a consequence of brain 

shrinkage, the ventricular system expanded to fill the space vacated. In addition to 

anatomical changes, the brain also suffers changes at cellular and molecular levels that 

are described below. 

 

1.1.1. Age-related neuronal changes in the CNS 

At a cellular level, the main controversy has been over the presence and 

magnitude of the neuronal loss. Early studies in the 50s identified between 10 - 60% of 

neuronal loss, with some neuronal populations more affected than others (Esiri 2007). 

However, when the stereological-based sampling was developed in the 80s, new results 

concluded that age-related neuronal loss was practically undetectable (Burke and 

Barnes 2006; West 1993). The stereological principles allowed to get estimates from 

three-dimensional tissue, eliminating many of the confounding factors of the previous 
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studies. Findings were replicated in humans, non-human primates and rodents (Hof and 

Morrison 2004; Madeira et al. 1995; Merrill, Chiba, and Tuszynski 2001; West et al. 

1994) concluding that cell death is not characteristic of the normal ageing process. 

Interestingly, an exception has been reported in non-human primates, where the area 

8A of the prefrontal cortex (PFC) showed a decrease in the neuronal number of neurons, 

correlating with impaired performance in working memory tasks in aged monkeys (Smith 

et al. 2004).  

 

Similarly to early investigations in neuronal decline with ageing, early studies identified 

an age-related dramatic deterioration in neuronal dendritic branching (Scheibel et al. 

1975, 1976). Likewise, more recent studies using more accurate methodology reported 

that age-related alterations in dendritic extent are region-specific (Flood 1993). These 

regional differences are illustrated by studies performed in different brain areas, as an 

example, the dentate gyrus (a hippocampal region) showed an increased dendritic 

branching with age (Flood, Buell, et al. 1987). In a different subregion of the 

hippocampus, the areas CA1 and CA3 (Flood, Guarnaccia, and Coleman 1987; Hanks 

and Flood 1991) showed no changes with age. Contrarily, reduction in dendritic 

arborisation was observed in the PFC (Uylings 1998), suggesting the cortex is a more 

sensitive area to the effects of ageing. 

 

Additionally, studies of dendritic branching in animal models confirmed human studies, 

and no dendritic regression was observed with age. In rats, no deterioration in dendritic 

extent was found in different areas across the hippocampus with age (Pyapali and 

Turner 1996; Turner and Deupree 1991). Conversely, the pyramidal neurons in 

superficial cortical layers experience an age-associated decline in dendritic arborisation 

(Grill and Riddle 2002). The reduction in synapse number is also characteristic of aged 

brains, as an example, anatomical studies in rats found a decline in synapse number in 

the hippocampus with age (Curcio and Hinds 1983). Electrophysiological studies and 

spatial memory deficits in aged rats confirmed the anatomical results (Barnes 1979; 

Geinisman et al. 1992). 
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1.1.2. Age-related changes in glial populations in the CNS 

The major types of glial cells in the CNS are astrocytes, microglia, and 

oligodendrocytes. Traditionally, these non-neuronal cells have been considered ‘brain 

glue’; however, glial cells undertake multifaceted roles and are essential for the correct 

functioning of the brain. Interestingly, an increasing body of evidence suggests that glial 

function plays a critical role in brain ageing and neurodegeneration (Nagelhus et al. 

2013). Main age-related changes in astrocytes, microglia and oligodendrocytes are 

summarised in the following sections. 

 

1.1.2.1. Astrocytes 

The astrocytes are the most abundant cell population in the CNS, outnumbering 

neurons (Sofroniew and Vinters 2010). Astrocytes are morphologically diverse; these 

cells share a star-shaped morphology with radial processes (Oberheim et al., 2009). In 

line with their morphological complexity, astrocytes undertake a plethora of different 

functions to maintain CNS homeostasis. Some of the multifaceted roles of astrocytes 

include neuronal support, synapse regulation, neurotransmitter homeostasis, glycogen 

storage, ion homeostasis, cholesterol synthesis and the brain-blood barrier (BBB) 

maintenance (Lundgaard et al. 2014; Nedergaard, Ransom, and Goldman 2003). Also, 

astrocytes, together with microglia, provide a defence to the CNS through a process 

called reactive astrogliosis (Pekny and Pekna 2014; Sofroniew 2009).  

 

Astrocytes undertake a phenotypic switch with age: from slender and long processes 

in young, to thickened and short in aged animals (Castiglioni et al. 1991; Cerbai et al. 

2012; Jyothi et al. 2015). Age-related morphological changes have a been reported in 

aged rodents (Amenta et al. 1998; Castiglioni et al. 1991) and primates (Kanaan, 

Kordower, and Collier 2010; Robillard et al. 2016). Also, increase in astrocytes number 

has been described across multiple brain areas with age, including in the hippocampus, 

the cortex (Amenta et al. 1998; Sabbatini et al. 1999) and the hypothalamus (Wang et 

al. 2006).  

 

The glial fibrillary acidic protein (GFAP), a classic astrocytic marker, has been widely 

used to visualise astrocytes; however, GFAP expression is not detected in all astrocytes 

(Sofroniew and Vinters, 2010). Interestingly, ageing studies have reported upregulation 
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of GFAP expression (Clarke et al. 2018; Kohama et al. 1995; Rozovsky, Finch, and 

Morgan 1998; Wu, Zhang, and Yew 2005), a feature of activated/reactive astrocytes 

(Liddelow and Barres 2017; Sofroniew and Vinters 2010; Zamanian et al. 2012). 

Additional molecular markers identified include glutamine synthetase (Norenberg and 

Martinez-Hernandez, 1979), S100 calcium-binding protein β (S100β) (Hachem et al., 

2005; Gonçalves, Concli Leite and Nardin, 2008), 10-formyltetrahydrofolate 

dehydrogenase (Aldh1L1) (Barres, 2008), glutamate aspartate transporter 1 (GLAST) 

(Shibata et al., 1997) and glutamate transporter 1 (GLT-1) (Perego et al. 2000). Although 

these markers are enriched in astrocytes, some of them are not specific to this glial 

lineage and are found to be expressed in neurons and other glial types.  

 

Recently, transcriptomic studies provided a comprehensive database of aged astrocyte 

gene expression. Pathway analysis identified the upregulation of genes involved in 

immune pathways (Boisvert et al. 2018; Pekny and Pekna 2014). The study of individual 

markers in ageing astrocytes revealed upregulation of complement system genes, such 

as C1q, C3 and C4B; major histocompatibility complex I (MHC I) and inflammatory 

cytokines with chemotactic effects such as CXCL5 (Boisvert et al. 2018). The increased 

expression of pro-inflammatory genes pointed out that astrocytes could contribute to 

the low-level inflammatory state observed during ageing (Sanada et al. 2018). 

 

In addition to changes in the reactive state of astrocytes, dysregulation genes involved 

in vital functions such as cholesterol synthesis, ion homeostasis, trophic factor 

production and BBB structure occur with age (Boisvert et al. 2018). Since the CNS 

cannot uptake the molecule from the bloodstream due to the BBB, astrocytes hold a 

significant role in the local cholesterol production. Dysregulation of the normal 

functioning of astrocytes may cause metabolic defects in neuronal and glial cells that 

depend on astrocyte cholesterol production. Moreover, aged astrocytes show a decline 

in the production of metabolic and trophic factors, essential for neuronal function, 

survival and neurogenesis (Palmer and Ousman 2018). Lastly, astrocytes are integral 

parts of the BBB structure, and they participate in its development, maintenance and 

regulation (Abbott and Friedman 2012). Disturbances in astrocytes are associated with 

age-related neurodegenerative disorders (Kirk et al. 2003; Zlokovic 2008). Figure 1.1 

summarises the main differences observed in astrocytes function with age. 
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Figure 1.1. Ageing of astrocytes in the mammalian brain. (A) In the adult brain, astrocytes 
are part of the blood–brain barrier (BBB), maintain ion homeostasis, support and regulate 
neuronal transmission, are responsible of cholesterol synthesis and are involved in immune 
response of the brain. (B) Ageing induces molecular and functional changes in the astrocyte 
function. BBB permeability increases, there is a decline in the production of neurotrophic 
factor and cholesterol and neurotransmitter homeostasis is affected. Also, aged astrocytes 
display an inflammatory profile indicated by increased GFAP and complement levels. 

 
1.1.2.2. Microglia 

 Microglial cells share a myeloid origin with macrophages and constitute the 

resident immune population of the CNS. In their immune role, microglia are responsible 

for the inflammatory or immune-mediated responses in the brain and can influence 

astrocyte activation and recruitment through their secretory profile (Liddelow et al., 

2017). Microglia also hold multiple non-immune functions involved on the maintenance 

of the brain homeostasis, including synaptic organisation, control of neuronal excitability 

(Tay, Carrier, and Tremblay 2019), phagocytic debris removal (Janda, Boi, and Carta 

2018), and contribute to myelogenesis in adult life (Grabert et al. 2016; Hagemeyer et 

al. 2017).  

 

Microglial cells adopt different morphology depending on their activation state. In resting 

(or inactive) state, microglia exert a small cell soma and several fine, branched 

processes. However, during resting state, these cells are not static and continuously 

extend-retract their projections to explore the local parenchyma. Detection of 

abnormalities in the parenchyma triggers their activation, with cells adopting an 

amoeboid morphology with an enlarged cytoplasm and shortened processes (Davis, 

Foster, and Thomas 1994; Tay et al. 2019). Also, upregulation of inflammatory genes, 
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secretion of cytokines and expression of molecules for antigen presentation is 

characteristic of the activated state (Prinz and Priller, 2014).  

 

Immunochemistry against ionised calcium-binding adaptor protein-1 (Iba1), a protein 

surface microglial marker, has been widely used to visualise microglia. In humans and 

animal models, aged microglia stained for Iba1 showed shorter and less branched 

microglial processes similar to activated microglia (Norden and Godbout 2013). In 

addition, the microglia number and density are reported to increase in several CNS 

regions with age, including the hippocampus (Wong 2013), cortex (Tremblay et al. 2012) 

and the retina (Damani et al. 2011). Aged microglia also express a plethora of pro-

inflammatory markers, characteristic of the activated phenotype. These include 

enhanced expression of MHC II and complement receptor 3 (CR3) (Frank et al. 2006; 

VanGuilder et al. 2011a; Ziv et al. 2006), scavenger receptor CD68 (Godbout et al. 2005; 

Xie et al. 2003), and co-stimulatory molecule CD86, CD11b and CD11c integrins (Perry, 

Matyszak, and Fearn 1993), and Toll-like receptors (TLR) (Letiembre et al. 2007). Also, 

aged microglia presents an increased expression of pro-inflammatory cytokines TNFα, 

IL-1β and IL-6 (Campuzano et al. 2009), and anti-inflammatory IL-10 and transforming 

growth factor beta (TGFβ) effectors (Norden and Godbout 2013).  

 

However, the majority of the studies used microarray or bulk RNA sequencing (RNA-

seq), making it impossible to identify any regional microglial differences with age. 

Recently, this caveat was addressed in a transcriptomic study where microglia form 

different brain regions across the mouse lifespan were isolated for RNA-seq analysis. 

Results identified upregulation of pro-inflammatory genes in aged microglia across all 

regions studied. However, the magnitude and identity of inflammatory response varied 

according to the neuroaxis location, suggesting a differential regional response to ageing 

(Grabert et al. 2016).  

 

In addition to their enhanced inflammatory response, aged microglia exert deficits in 

phagocytosis, involved in clearance of cellular debris and protein aggregates. As an 

example, myelin fragments are engulfed and degraded by microglia during myelin 

remodelling (Traiffort et al. 2020). However, studies suggest that an increase in myelin 

fragments with age can overload microglial cells, altering their homeostasis and 

contributing to their age-related dysfunction (Safaiyan et al. 2016).  
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1.1.2.3. Oligodendrocytes and Myelin 

 The oligodendrocytes (OLs), are glial cells responsible for myelin sheath 

formation within the CNS, facilitating efficient axonal conduction and providing axons 

with metabolic and trophic support (Y. Lee et al. 2012; Nave and Trapp 2008; Waxman 

1977).  
 

Myelin degeneration and loss of myelinated nerve fibres have been extensively reported 

in multiple brain regions during normal ageing, including the cortex, corpus callosum, 

hippocampus and the auditory nerve (Bowley et al. 2010; Peters 2002; Peters, Moss, 

and Sethares 2000; Sandell and Peters 2001; Wang et al. 2020; Xing et al. 2012). 

Defective myelination has also been observed in pathological conditions such as multiple 

sclerosis (MS) but also in several age-related neurodegenerative disorders (Bartzokis 

2011; Braak and Del Tredici 2004; Romanelli et al. 2016). Furthermore, decreased 

expression of myelin-specific proteins, such as MBP and PLP, has also been reported 

in humans and animal models (Table 1.1). The age-related breakdown myelin sheaths, 

that provide electric insulation of axons and accelerate the transmission of electrical 

signals, may disrupt connectivity and reduced speed of information. 

 

Life-long production of OLs from oligodendrocyte progenitor cells (OPCs) is required for 

myelination of new neuronal circuits and repair of myelin lost through natural 'wear and 

tear'. In rodents, production of new OLs is observed throughout the CNS, even in 

adulthood (Young et al. 2013). In the rodent cortex, the OL population expands between 

young adult and middle-aged animals, and then declines in old age (Hill, Li, and 

Grutzendler 2018; Hughes et al. 2018) (Figure 1.2). In the corpus callosum, impairment 

of OPC proliferation, recruitment and differentiation into myelinating oligodendrocytes 

has been reported with age (Psachoulia et al. 2009; Sim et al. 2002; Spitzer et al. 2019). 

Therefore, it has been recently proposed that the age-induced decline in OPC function 

underlies the myelination defects observed in healthy ageing (Neumann et al. 2019).  
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Table 1.1. Age-related changes in myelin components expression across distinct CNS regions 
in adult mammals   

 

Abbreviations used: d - day. Gb - gerbil. Hu - human. IHC - immunohistochemistry. m - month. MBP - 
myelin basic protein. MOBP - myelin-associated oligodendrocyte basic protein. MOG - myelin 
oligodendrocyte glycoprotein. Ms - mouse. PLP - myelin proteolipid protein. RIA - radioimmunoassay. Rt - 
rat. WB - western blot. yr - year. 

 
 

 

Figure 1.2. Oligodendrocyte and myelin dynamics in the mammalian cortex throughout 
life. Oligodendrocyte precursor cells (OPCs) continuously generate new myelinating 
oligodendrocytes (OLs) in the somatosensory cortex from birth up to middle age. The OL 
population then declines in old age, accompanied by a reduction in myelin coverage. 
Adapted from Williamson and Lyons 2018.  
 

Myelin 
components CNS region/ Cell type Organism Age-related 

changes Method Age of study Phentoype Reference

MBP Hippocampus Gb Reduction IHC, WB 1 m, 6 m , 24 m Decrease in myelin 
fiber density

Ahn et 
al.,2017

MBP Frontal lobe white matter Hu Reduction RIA 45-60 yr and 78 yr Not stated Ansari et 
al.,1985

MBP Cortex, Cerebellum Rt No differences IHC 6, 12 and 24 m Not stated Ciftci et 
al.,2012

MBP, MOBP, 
PLP

OLs isolated from whole 
brain Rt Increase WB 3 m, 13 m and 18 m Not stated de la Fuente 

et al.,2020

MBP Cortex, Hippocampus Ms Reduction IHC 4, 13, 18 m Decrease in myelin 
fiber density

Wang et 
al.,2020

MBP, MOG
Whole brain (WB)                                     
Corpus callosum, Spinal 
cord, Cortex (IHC) 

Rt Reduction IHC, WB 5 m, 18 m, 26 m Myelin breakdown Xie et 
al.,2013

MBP, MOBP, 
MOG Optic nerve Rt Reduction Microarray 24 m Myelin breakdown Xie et 

al.,2014

Ms Reduction IHC 1-3  m, 23-28 m Myelin breakdown

Hu Reduction IHC 46-91 yr Decrease in myelin 
fiber density

MBP, Opalin
Cerebellum, Corpus 
Callosum, Hippocampus, 
Thalamus, Optic nerve

Ms
Opalin 
reduction in 
Cerebellum

IHC 21 d, 6 m Not stated Sato et 
al.,2014

MBP Auditory nerve Xing et 
al.,2012
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1.1.3. Possible molecular causes of brain ageing 

Many hypotheses have been proposed to explain the cause of ageing and 

biological bases for the decline in brain functions. Summarised below are presented 

the main findings in the aged CNS.  

 

1.1.3.1. Telomere shortening  

Changes in telomere length have been reported in mitotic cells during ageing; 

however, the relationship between telomere length in post-mitotic cells and ageing is 

unclear. Only a few studies have examined telomere length in cells from the mammalian 

CNS. Telomeres shorten with every cell division and is a hallmark of replicative 

senescence (Harley, Futcher, and Greider 1990; Hastie et al. 1990). Telomere length is 

generally greater in the brain from adult and old humans compared with other systemic 

organs, as can be expected due to the limited cell division taking place there (Butler et 

al. 1998; Takubo et al. 2002). The human brain retains long telomere length in the case 

of a 115-year old supercentenarian (Holstege et al. 2014). In line with this, analysis of 

the telomere dynamics in the human pituitary gland showed that it is highly conserved 

throughout adult life to centenarian age (Ishikawa et al. 2012). In agreement with human 

findings, telomeres shorten with increasing age in the liver, lung, kidney and pancreas, 

but not in the brain (Cherif et al. 2003).  

 

However, analyses of cultured rat microglia showed telomere shortening and reduced 

telomerase activity in ageing (Flanary and Streit 2004) and in AD (Flanary et al. 2007). 

Future analyses of discrete brain regions and individual neural cell types will allow the 

detailed characterisation of their telomere lengths during ageing.  

 

1.1.3.2. Oxidative stress and mitochondrial dysfunction 

 The oxidative stress or free radical theory (Harman 1988), and its later refined 

version, the mitochondrial free radical theory (Alexeyev 2009), are the major theories of 

ageing. Both theories postulate that cellular and tissue degeneration reported during 

ageing is a consequence of excessive production of reactive oxygen species (ROS) and 

free radicals, where the mitochondrial theory positions the mitochondria at the primary 

source of oxidative damage.  



General introduction | Chapter 1 
 

 30 

 

Increasing evidence indicates that accumulation of protein, lipid, and DNA damage by 

free radicals, is responsible for the decline in brain functions with age. In support of this, 

comparison between young and old animal brains showed higher levels of ROS, 

mitochondrial DNA (mtDNA) damage and oxidative stress markers (Chomyn and Attardi 

2003; Liu et al. 2003; Serrano and Klann 2004; Sohal et al. 1994). Also, the appearance 

of cognitive impairment and learning deficits strongly correlates with increasing brain 

oxidative damage in aged animal models (Carney and Floyd 1991; Floyd and Carney 

1991). Interestingly, an inverse correlation has been shown between oxidative damage 

to mtDNA and maximum lifespan in the brain of mammals (Barja and Herrero 2000). 

 

The brain is extremely vulnerable to oxidative stress due to its relatively low antioxidant 

defences (Ahlgren-Beckendorf et al. 1999; Baxter and Hardingham 2016; Dringen, 

Pawlowski, and Hirrlinger 2005). With age, there is a decline in the antioxidant activity in 

the brain, increasing its vulnerability dramatically to oxidative damage (Venkateshappa 

et al. 2012; Yehuda et al. 2002). Also, among the CNS cell types, neurons and OLs are 

more vulnerable to ROS mediated cellular damage due to the high demand for energy 

and mitochondrial activity (Fukui and Moraes 2009; McTigue and Tripathi 2008). 

 

In summary, brain ageing is marked by reduced antioxidant defences, enhanced ROS 

production and oxidative stress, and mitochondrial dysfunction. Interestingly, oxidative 

stress is involved in maintaining the chronic inflammation observed in ageing and age-

related disorders (Fuente and Miquel 2009).  

 

1.1.3.3. Chronic inflammation and brain ageing 

The term 'Inflammageing' describes the close relationship between low-grade 

chronic inflammation and ageing that has been linked to a broad spectrum of age-

related disorders in various organs, including the brain (Franceschi et al. 2007). Major 

neurodegenerative diseases, such as AD and PD, present chronic activation of innate 

immune responses, including those mediated by microglia as a common hallmark (Glass 

et al. 2010).  

 

Excessive and prolonged inflammation resulting from microglial and astrocyte activation 

has been reported during ageing and age-related disorders, causing neuroinflammation, 
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synaptic damage and, ultimately, neuronal loss (Chung et al. 2019). Also, the age-related 

accumulation of oxidative stress and free radical damage promotes microglia and 

astrocyte transition towards the activated phenotype (Norden and Godbout 2013). 

Moreover, recent findings showed that activation of NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells) increase in many regions of the aged mouse brain, 

but is most significant in the hypothalamus (Zhang et al. 2013). NF-κB is a central 

regulator of transcription that mediates inflammation, immune response and cell death, 

and has been implicated previously in the control of gene expression during ageing 

(Adler et al. 2007; Hayden and Ghosh 2008). 

 

Previous studies have shown that peripheral inflammation can alter the 

neuroinflammation in the brain. Reportedly, pro-inflammatory mediators, such as TNFα 

and IL-6, are generally increased in the sera of aged humans (Krabbe, Pedersen, and 

Bruunsgaard 2004) and rodents (Campuzano et al. 2009; Sparkman and Johnson 

2008). The circulating pro-inflammatory cytokines can reach the CNS through three 

routes: (1) Active transport across the BBB (Dantzer et al. 2008; Fung et al. 2012); (2) 

Via circumventricular organs, such as the median eminence (Roth et al. 2004); (3) 

Afferent nerve stimulation (e.g., the vagus nerve), which then transmit the currently 

heightened inflammatory status to lower brain stem regions including the hypothalamus, 

amygdala and bed nucleus of the stria terminals (McCusker and Kelley 2013). 

 

1.1.3.4. Defective autophagy 

Autophagy is a conserved cellular process that recycles unwanted cytoplasmic 

contents, including proteins and organelles, within lysosomes to maintain cellular 

homeostasis (He and Klionsky 2009). Few studies have covered the effects of ageing in 

the brain autophagy. In humans, the expression of genes related to autophagy, such as 

Beclin 1 (Shibata et al. 2006), Atg5 and Atg7 (Lipinski et al. 2010), is reduced in the 

ageing brain. Also, ageing-dependent impairment in brain autophagy has been reported 

in the rat (Yu et al. 2017) and the mouse models (Kaushik et al. 2011; Ott et al. 

2016). Reportedly, healthy aged mice exhibit defective autophagy in the hypothalamus 

(Kaushik et al., 2012). 

 

Interestingly, suppression of autophagy in the brain has been linked to 

neurodegeneration (Hara et al. 2006; Komatsu et al. 2006). In autophagy-deficient mice, 
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neurodegeneration is accompanied by toxic-protein aggregation of ubiquitinated 

proteins, similar to those observed in human neurodegenerative disorders such as 

Huntington’s disease (HD) and AD (Bishop, Lu, and Yankner 2010). Thus, reduced 

autophagy and accumulation of protein aggregates may contribute to severe neuronal 

dysfunction with increasing age. 

 

1.1.3.5. Evolutionarily conserved pathways involved in the determination of 

lifespan 

 Two signalling mechanisms contributing to brain ageing are the mammalian 

target of rapamycin (mTOR) and the insulin/insulin-like growth factor-1 (IGF-1) (IIS) 

pathways. mTOR and IIS pathways are very frequently altered on models of senescence 

and neurodegeneration, and recent studies have shown that modulating these 

pathways may increase lifespan. 

 

At the molecular level, mTOR is a crucial coordinator of metabolic regulation and is 

involved in the regulation of numerous neurological processes, including neural 

development, circuit formation, and the neural control of feeding (Mori et al. 2009). Also, 

the mTOR pathway is recognised as the most important negative regulator of autophagy 

(Ganley et al. 2009; Jung et al. 2009). Interestingly, inhibition mTOR signalling by genetic 

or pharmacological intervention has been reported to extend lifespan in mice (Harrison 

et al., 2009). However, the extent to which mTOR signalling modulates lifespan is not 

clear, but together with autophagy, has a key role in the development of age-dependent 

neurodegenerative diseases caused by protein aggregates (Mueed et al. 2019).  

 

Another vital signalling mechanism contributing to brain ageing is IIS pathway. Reduced 

IIS pathway has been shown to extend lifespan in worms, flies and mammals (Broughton 

and Partridge 2009; Kappeler et al. 2008). Although reduced IIS in the CNS can extend 

lifespan, insulin and IGF-1 are also neurotrophic and promote neuronal survival by 

inhibiting apoptosis (Duarte et al. 2005). Interestingly, IRS2 (Insulin receptor substrate 2) 

or IGF-1 receptor knockout mice showed reduced cognitive impairment and 

neurodegeneration in models of AD (Cohen et al. 2009; Freude et al. 2009). Also, in AD 

patients, reduced expression of IGF signalling is reported (Moloney et al. 2010). The role 

of the IIS pathway is, therefore, debatable about its response as an effective 

neuroprotector as well as an indicator of the neurodegenerative process. 
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1.2. The hypothalamus  

Over the last 20 years, there has been a growing interest in understanding the 

mechanisms and circuits involved in the regulation of energy and homeostasis and how 

these processes are cause or consequence of ageing. Energy homeostasis is defined 

as the balance between calorie intake and energy expenditure, which is critical for health 

and survival. Notably, the shift in the energy homeostasis is one of the hallmarks of the 

physiological changes during ageing, likely caused by the progressive impairment of 

mechanisms that control body homeostasis (Roberts 2000). Also, the prevalence of 

metabolic syndromes significantly increases with age (Hildrum et al. 2007; Saklayen 

2018). Even in healthy aged people, a variation in the metabolic activity and body 

composition often results in sarcopenic obesity, which is characterised by an increase 

in the fat mass due to loss of muscles in the body composition (Lim et al. 2010). 

Paradoxically, Poor appetite in the elderly is quite common, resulting in an imbalance 

between nutrition and energy metabolism (Morley 1997; Visvanathan 2015). The 

consequential reduction in daily calorie and nutrient intake exacerbates the effects of 

ageing on a host of physiological systems – from lowered lean mass and bone density 

to altered gut architecture and microbiota. 

 

The maintenance of body homeostasis is a tightly regulated and complex process 

facilitated by the cross-talk between the hypothalamus and peripheral organs such as 

the pancreas, the stomach and the gut (Brunetti et al. 2005). Peripheral signals from the 

bloodstream reach the brain, which interprets and integrates them to maintain the 

energy homeostasis. The hypothalamus, in the ventral diencephalon, is the organ 

responsible for integrating and responding to this variety of hormonal and metabolic 

signals. The hypothalamus contains highly conserved neuronal circuitries that control 

basic functions. thermoregulation, energy expenditure and nutrient intake, sexual and 

reproductive behaviour, nursing, growth and control of circadian and ultra-circadian 

cycles are some examples of functions under direct and indirect hypothalamic control 

(Chen, Maevsky, and Uchitel 2015; Melmed et al. 2016).  

 

Furthermore, the hypothalamus contains several different types of neurons and glial 

cells, distributed within different nuclei that regulate homeostatic functions and play an 

important role in the control of the body homeostasis. During ageing, the 

responsiveness of these neurons to peripheral stimuli declines, causing a disruption on 
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the energy homeostasis control (Dilman et al. 1979). This alteration of the energy 

homeostasis is accompanied by the development of different age-related conditions 

such as reduced reproductive functions, insulin resistance, osteoporosis, loss of 

muscular tone and abnormalities on fat accumulation (Rehman and Masson 2001). 

Taking all together, the critical role of the hypothalamus in energy control and body 

homeostasis targets this region as a key regulator of whole-body ageing and its study 

mandatory to understand the causes underlying the ageing process. 

 

1.2.1. The anatomy of the hypothalamus 

 The hypothalamus is a small, evolutionarily conserved brain region (Xie and 

Dorsky 2017) that is located below the thalamus and sits just above the pituitary and 

brainstem (Figure 1.3 and Figure 1.4). The hypothalamus is subdivided along the rostro-

caudal axis into three areas: anterior, tuberal and posterior (Schünke 2016). In the rostral 

part, nuclei of the anterior region regulate thermoregulation (Boulant 2000), sleep and 

circadian rhythms (Deurveilher and Semba 2003) and sexual behaviour (Paredes 2003). 

In the middle part, the tuberal hypothalamus regulates energy homeostasis (Dietrich and 

Horvath, 2013; Pearson and Placzek, 2013; Prevot et al., 2018). In the caudal aspect, 

the posterior hypothalamus contains the mammillary bodies, involved in recollective 

memory, as well as areas dorsal to them like the posterior hypothalamic nuclei (Peterson 

and Mayes 2019; Vann 2010). At the base of the hypothalamus is located the median 

eminence (ME), that connects the hypothalamus with the pituitary gland through the 

hypophysial portal system (Yin and Gore 2010) (Figure 1.3). 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.3. The relationship between the 
hypothalamus and the pituitary. The 
production of the pituitary hormones is 
under the control of hypothalamic neurons. 
ME – Median eminence. SON – Supraoptic 
nucleus. PVN – Paraventricular nucleus. 
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The hypothalamus links the nervous and endocrine systems via the pituitary gland. The 

hypothalamus controls the anterior (adenohypophysis) lobe of the pituitary through 

secretion of releasing hormones and inhibiting hormones that stimulate or inhibit the 

production of hormones in the anterior pituitary, including thyroid-stimulating hormone 

(TSH), adrenocorticotrophic hormone (ACTH) and follicle-stimulating hormone (FSH). 

Regulation of the posterior (neurohypophysis) lobe of the pituitary involves the projection 

of neurons from the PVN via the hypothalamohypophyseal tract to stimulate the release 

of oxytocin (OXT) and vasopressin (VSP) into the bloodstream (Xie and Dorsky 2017). 

 

 

Figure 1.4. Anatomy and organisation of the hypothalamic regions in the mouse brain. (A) 
Schematic coronal view of the adult mouse brain depicting the location of hypothalamic nuclei 
present at the approximated bregma position -1.7 mm. The median eminence (ME) region is 
highlighted in red, below the third ventricle (3V). (B) Schematic sagittal view of the adult mouse 
brain depicting the location of the different hypothalamic nuclei. Tuberal nuclei (blue) depicted 
are the ventromedial nucleus (VMN), dorsomedial nucleus (DMH), arcuate nucleus (ARC), 
paraventricular nucleus (PVN) and the lateral hypothalamus (LH, coronal only). The anterior 
nuclei in the sagittal section are the suprachiasmatic nucleus (SCN), supraoptic nucleus (SON) 
and the anterior hypothalamus (AH). Posterior nuclei are the posterior nucleus (PH), and the 
mammillary body (MB). Generated from (Nesan and Kurrasch 2016). 
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1.2.2. Hypothalamic regulation of energy homeostasis 

The tuberal hypothalamus contains a diverse collection of interconnected 

neurons and supporting glial cells organised in at least five different nuclei contained into 

the flanking parenchyma of the third ventricle (3V): The Arcuate (Arc), Dorsomedial 

(DMN), Lateral Hypothalamic (LH), Ventromedial (VMN) and Paraventricular (PVN) 

nucleus (Figure 1.5). There are complex but integrated interconnections between the 

hypothalamic nuclei that maintain energy homeostasis through regulation of food intake 

and energy expenditure. Critically, the Arc neurons lay at the core of the energy 

regulation (Dietrich and Horvath 2013). 

 

Figure 1.5. Schematic representation of the different hypothalamic nuclei related to the 
appetite regulation and energy homeostasis control. Pink cuboid cells represent the 
ependymal cells lining the third ventricle (3V). Arc – arcuate nucleus; DMN – dorsomedial 
nucleus; LH – lateral hypothalamus; ME – median eminence PVN - paraventricular nucleus; 
VMN – ventromedial nucleus.  

 
The central melanocortin system is the primary regulator of feeding behaviour and 

energy homeostasis via the opposing action of two main neuronal types in the Arc 

nucleus – the orexigenic (appetite-increasing) neurons expressing agouti-related peptide 

(AgRP) and neuropeptide Y (NPY) (Hahn et al. 1998); and the anorexigenic (appetite-

suppressing) neurons expressing proopiomelanocortin (POMC) (Cone et al. 2001). The 
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anorexigenic and orexigenic neurons (first-order neurons) exert their functions on 

downstream targets (second-order neurons) that express the of melanocortin 3 and 4 

receptors (MC3R and MC4R) and NPY receptors (Y1-Y5) located in the PVN, the DMN 

and the LH (Betley et al. 2013; Cone et al. 2001; Hahn et al. 1998).  

The energy homeostasis is primarily defined by the balance between the firing rate of 

POMC and NPY/AgRP neurons, and the firing rate of the neurons regulates feeding 

behaviour and body weight (Cone et al. 2001). Due to its proximity to the fenestrated 

capillaries present in the ME (Ciofi 2011), the Arc neurons may receive hormonal and 

metabolic cues from the bloodstream. Among these are the satiety signal leptin, which 

activates POMC and inhibits NPY/AgRP neurons (Cowley, Smart, and Diano 2001); and 

ghrelin, a gastric hormone which is produced during hunger and has the opposite effect 

(Cowley 2003). Also, Arc neurons are known to be responsive to insulin, glucose, 

gonadal steroids and interleukin-1β (Blum, Roberts, and Wardlaw 1989; Cone et al. 

2001; Kohno and Yada 2012; Varela and Horvath 2012). Intracerebroventricular (ICV) 

injection of insulin into the 3V has been reported to inhibit Npy expression and 

decreasing energy intake (Obici et al., 2002). In turn, glucose modulates both POMC 

and NPY neurons, promoting POMC neuronal activation but inhibiting NPY/AgRP 

neuronal activity (Parton et al., 2007). Finally, interleukin-1β activates a subpopulation of 

POMC neurons in the Arc and promotes their release of the anorexigenic α-melanocyte-

stimulating hormone (α-MSH) (Scarlett et al., 2007). 

 

Together with first-order neurons in the Arc, neurons of the VMN, DMN, PVN and LH 

also regulate energy homeostasis. In the PVN, where MC3R and MC4R are densely 

expressed, the orexigenic and orexigenic peptides produced by Arc neurons regulate 

the release of thyrotropin-releasing hormone (TRH) (Fekete, Légrádi, Mihály, Huang, et 

al. 2000; Fekete and Lechan 2007; Lechan and Fekete 2006) and corticotropin-

releasing hormone (CRH) (Fekete, Légrádi, Mihály, Tatro, et al. 2000; Lu et al. 2003) 

from PVN neurons. The DMN hosts orexigenic neurons expressing NPY that regulate 

energy homeostasis but are not directly responsive to leptin (Bi, Robinson, and Moran 

2003; Chao et al. 2011). In the VMN, neurons express steroidogenic factor 1 (SF1) and 

the brain-derived neurotrophic factor (BDNF), which have anorexigenic effects (Dhillon 

et al. 2006; Rios 2013). In turn, neurons in the LH express the orexigenic neuropeptides 

orexin a and b that promote food intake; and the melanin-concentrating hormone 

(MCH), which enhances energy conservation and promotes food intake (Barson, 
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Morganstern, and Leibowitz 2013). The hypothalamic neurons in these nuclei form 

complex networks within and outside of the hypothalamus that regulates energy 

homeostasis (Timper and Brüning 2017). 

 

1.2.2.1. The Arcuate nucleus: the orexigenic and anorexigenic neurons 

The Arc nucleus contains two key neuronal populations involved in the control 

of food intake and energy balance, POMC and NPY. In addition to POMC and NPY, 

other neuronal types have been described in the Arc nucleus, such as dopaminergic 

(Zhang and Van Den Pol 2016), γ-aminobutyric acid release (GABA) (Kong et al. 2012), 

somatostatin (SST) (Campbell et al. 2017) and kisspeptin/neurokinin B/dynorphin 

(KNDy) neurons (Kumar et al. 2015; Sanz et al. 2015). 

 

POMC and NPY/AgRP neurons are present in the hypothalamus during embryonic 

development, with the expression of POMC earlier (E10.5) than NPY expression (E14.5). 

Padilla et al., showed that nearly one-quarter of the mature NPY neurons share a 

common progenitor with POMC. Even though the origin of these neurons is embryonic, 

it has been demonstrated that their production continues after birth (Chaker et al. 2016; 

Gouazé et al. 2013a; Niels Haan et al. 2013; Li, Tang, and Cai 2012; Pierce and Xu 

2010).  

 

The orexigenic neurons exert their effect through the release of the neurotransmitters 

AgRP and NPY (Hahn et al. 1998). AgRP is an endogenous inverse agonist of the 

melanocortin receptor, specifically MC3R and MC4R, expressed by neurons located in 

the PVN and LH (Betley et al. 2013; Hahn et al. 1998); while NPY is an agonist of the 

NPY receptors (Y1-Y5) (Fetissov, Kopp, and Hökfelt 2004). In addition to their direct 

effect to the PVN, the NPY/AgRP neurons innervate and inhibit the activity of POMC 

neurons via direct neuropeptide action through the Y2 receptor and γ-aminobutyric acid 

(GABA) (Garcia de Yebenes et al. 1995). During the fasting state, there is an increase in 

the expression of both of these mRNA, thus, suggesting that hypothalamic NPY/AgRP 

neurons are activated by fasting to stimulate food intake (Hahn et al. 1998).  

 

Germline knockout for AgRP, NPY, or double knockout NPY/AgRP mice are viable and 

exhibit normal feeding behaviour and energy homeostasis (Qian et al. 2002). Different 

reports that NPY Knock-out showed a reduced food intake and anxiogenic-like 
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phenotype (Bannon et al. 2000). In contrast, AgRP neurons ablation in adult mice 

produces extreme anorexia and ultimately starvation (Gropp et al. 2005; Luquet 2005). 

It has been suggested that these different results are the consequence of an adaptive 

mechanism that occurs only during the development or the neonatal period when the 

circuit is not fully formed and is more plastic, but not in adulthood (Bewick 2005; Luquet 

2005). 

 

The anorexigenic neurons express POMC precursor which undergoes post-translational 

processing giving rise to different active peptides: The melanocyte-stimulating 

hormones (MSHs: alpha, beta and gamma), adrenocorticotrophic hormone (ACTH) and 

β-endorphin (Millington 2007) (Figure 1.6). The α-MSH released by POMC neurons acts 

upon MC4R and MC3R in the hypothalamus as a melanocortin agonist, suppressing 

feeding, and PVN neurons are one of the main targets (Millington 2007). In addition, 

POMC neurons express other peptide and non-peptide transcripts such as cocaine-

amphetamine-regulated transcript (CART) (N. Vrang et al. 1999), nociceptin, 

acetylcholine (Meister et al. 2006), GABA and/or glutamate (Dennison et al. 2016; Jarvie 

and Hentges 2012; King and Hentges 2011). Recent studies described different 

subtypes within the POMC population, implying that POMC neurons are not a 

homogeneous population and have functional heterogeneity (Campbell et al. 2017).  

 

Figure 1.6. Melanocortin peptides ACTH and MSHs (alpha, beta and gamma) derive 
from post-translational processing of POMC precursor. POMC is also the precursor for 
opioid peptides β-endorphin and CLIP (corticotropin-like intermediate lobe peptide) 
Adapted from (Millington, 2007). 

  

γ-MSH ACTH β-lipotropin
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Transcriptomic studies have revealed that caloric restriction reduces hypothalamic 

Pomc mRNA expression (Mizuno et al. 1998), whereas expression is increased in 

overfed rats (Hagan et al. 1999). In a situation of negative energy balance, as in fasting, 

the expression of Pomc is decreased. However, during a state of energy surplus, AgRP 

levels are diminished, and Pomc levels are elevated. Interestingly, Pomc knockout mice 

exhibit hyperphagia and obesity (Yaswen et al. 1999) similarly to the phenotype reported 

in humans carrying mutations in the POMC gene (Krude et al. 1998). 

 

1.2.3. The Arc-ME system 

The Arc has a unique anatomical relationship with the BBB due to its proximity 

to the ME (Figure 1.7). The ME is one out of eight circumventricular organs in the brain 

(porous BBB) and plays an important role in the neuroendocrine regulation, facilitating 

the communication between the hypothalamus and the peripheral endocrine system 

(Fry and Ferguson 2009; Oldfield and McKinley 2015). In the ME, the signal interchange 

occurs in both directions. The axons of Arc neurons release hypothalamic hormones 

into the fenestrated capillaries that carry blood to the pituitary. Moreover, blood-borne 

signals can diffuse from the ME to the Arc, thereby providing the Arc access to 

fluctuations of different peripheral signals on the bloodstream (Ciofi 2011).  

 

 

 

Figure 1.7. Schematic coronal representation of the Arc-ME region. The position of the 
Arc is depicted. 3V – third ventricle. Arc – arcuate nucleus. 
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The cell bodies, dendrites and a long segment of the axons of Arc neurons are protected 

by the BBB. In contrast, the terminal part of these axons can contact the BBB-free 

regions of the ME (Rodríguez, Blázquez, and Guerra 2010). Interestingly, NPY/AgRP 

neurons are unique among hypothalamic neurons as their cell bodies are located 

outside the BBB, which makes them more sensitive to small changes in circulating leptin 

(Olofsson et al. 2013) and toxins (Yulyaningsih et al. 2017).  

 

The Arc-ME system is in close proximity to the 3V where a population of stem cells lining 

the floor of the 3V has been described – the tanycytes. Tanycytes contact Arc neurons 

and the ME trough their processes and it has been postulated that they function as 

neuromodulating cells since they can regulate the availability of hormones and 

metabolites from peripheral tissues to Arc neurons (Balland et al. 2014; Collden et al. 

2015) and the cerebrospinal fluid (CSF) contained in the 3V (Orellana et al. 2012). 

 

The ME has four distinctive regions (from dorsal to ventral): 3V zone, myelinated axon 

zone, neural profile zone, and capillary zone. The ME contains nerve terminals and glial 

cells but is mostly devoid of synapses, neuronal perikarya, and dendrites (Bitsch and 

Schiebler 1979; Fekete and Lechan 2007). Tanycytes processes can be observed 

across the 4 regions, with the end feet contacting the basal lamina (Collden et al. 2015; 

D. A. Lee et al. 2012; Rizzoti and Lovell-Badge 2017). The neuronal profile zone 

(unmyelinated neuron processes targeting portal vasculature) contains hypothalamic 

releasing and inhibiting hormone neural processes, such as CRH, somatostatin, TRH, 

growth hormone-releasing hormone (GHRH), gonadotropin-releasing hormone (GnRH) 

neurons (Ojeda, Lomniczi, and Sandau 2008; Yin and Gore 2010). The myelinated axon 

zone contains nerve terminals from VSP, OXT (Holmes et al. 1986; Yin and Gore 2010) 

and LepR-expressing neurons (Djogo et al., 2016).  

 

Different types of glial cells within the ME compartment have been identified: astrocytes, 

microglia, tanycytes (Yin and Gore 2010) and OPCs (Djogo et al. 2016; Kokoeva, Yin, 

and Flier 2007). The glial cells in the ME interact with neurons and the portal capillary 

system, being important for the correct function of the portal. Interestingly, during the 

ageing process, tanycytes suffer morphological changes in ME, the projections become 

thicker and disorganized and their cytoplasmatic content in lipid droplets (a unique 

feature of tanycytes) increase (Brawer and Walsh 1982; Zoli et al. 1995).  
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Interestingly, the communication within glial cells-nerve terminals has been implicated in 

the control of different neuronal functions, such as the hormone release and neuronal 

processes maintenance. The best-documented case is the GnRH hormone release, 

which is controlled by tanycytes and astrocytes interaction with the GnRH terminals in 

the ME (Parkash et al. 2015; Yin et al. 2009). In the case of LepR-expressing neurons, 

NG2-glia in the ME plays an important role in the maintenance of their processes (Djogo 

et al. 2016). 

 

1.2.4. The hypothalamic stem cell niche 

In the adult mammalian brain, it is now known that new neurons and glial cells 

continue to be generated after the embryogenesis period (Eriksson et al. 1998). Adult 

neurogenesis involves the proliferation of neural stem/progenitor cells (NSPCs), cell 

survival, cell death, migration, differentiation and, finally, their functional integration. 

Neural stem cells (NSC) are multipotent cells able to differentiate through different neural 

lineages with self-renewal ability; while progenitors are proliferating cells with committed 

differentiation potential (Pino et al. 2017).  

 

Adult neurogenesis does not occur throughout the whole brain and is limited to 

anatomically circumscribed zones, termed neurogenic niches. The universally accepted 

neural stem cell niches are located in the subventricular zone (SVZ), lining the walls of 

the lateral ventricles, and the subgranular zone (SGZ) of the hippocampus. Besides the 

canonical neurogenic niches, the hypothalamus has emerged as a novel region for 

postnatal and adult neurogenesis. Within the hypothalamus, two main potential 

neurogenic sites have been identified: the tanycytes lining the 3V and the parenchymal 

region. 

 

Hypothalamic tanycytes emerge during late embryonic development (E17 in mice) and 

occupy the floor and ventro-lateral walls of the 3V (Altman and Bayer 1978). Their apical 

poles contact the CSF, and their basal extensions extend to portal vessels or contact 

different hypothalamic nuclei, predominantly the Arc. Due to their anatomical position, it 

has been suggested that tanycytes may link the CSF to neuroendocrine events 

(Rodríguez et al. 2005). Tanycytes are subdivided into alpha (α) and beta (β) subtypes 

depending on their location along with the 3V and gene expression profile (Figure 1.8) 
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(Goodman and Hajihosseini 2015). The β-tanycytes (β1 and β2) domain occupies the 

most ventral floor of the 3V, extending their projections into the ME, while simultaneously 

forming a barrier between the CSF and parenchymal nuclei – the CSF-ME barrier. The 

α-tanycytes (α1 and α2) are situated more dorsally along the ventro-lateral walls of the 

3V, adjacent to the parenchymal DMN and VMN. Tanycytes express multipotent NSC 

markers such as Sox2 (SRY-Box Transcription Factor 2), Nestin, Bmi1 (B lymphoma 

Moloney murine leukaemia virus integration site 1 homologue) and Msh1 (Musashi RNA 

Binding Protein 1) (Goodman and Hajihosseini 2015; Niels Haan et al. 2013; Lee et al. 

2016; Li et al. 2012; Robins, Stewart, et al. 2013; Zhang et al. 2017). In addition to the 

tanycytes, another ependymal cell type, the ependymocytes, with a cuboidal 

morphology line the 3V. The Ependymocytes are situated more dorsal and form 

transition zones interdigitating with tanycytes (Hajihosseini et al. 2008). 

 

Even though both tanycytes subtypes share common features, such as the presence of 

long radial process projected into the parenchyma and the lack of beating cilia, they also 

display multiple differences. In addition to their different location along with the 3V, α-

tanycytes extend only a single villus into the 3V, whereas β-tanycytes extend multiple 

villi into the 3V space and show blood vessel contact. Furthermore, the majority of β-

tanycytes carry primary cilia (Miranda-Angulo et al. 2014), possibly related to cilia–

mediated signalling. The expression profile of the alpha-tanycytes is more similar to the 

ependymocytes, expressing markers such as S100β, GFAP (Niels Haan et al. 2013) and 

GLAST, and their progeny is mainly parenchymal astrocytes (Chaker et al. 2016; Robins, 

Trudel, et al. 2013).  In contrast, β-tanycytes express several growth factor genes such 

as Fgf10 (Fibroblast Growing factor 10), FGF-receptors 1 and 2 and CNTF (Ciliary 

neurotrophic factor) (Goodman and Hajihosseini 2015). In regards to cell progeny, β-

tanycytes generate mainly neuronal types that integrate into different hypothalamic 

nuclei involved in energy balance and appetite such as Arc and VMN (Lee et al., 2012; 

Haan et al., 2013; Chaker et al., 2016).  

 

Tanycytes occupy a privileged position in the hypothalamus by possessing contacts 

with both the CSF of the 3V and peripheral signals such as hormones and metabolites 

through fenestrated capillaries. Furthermore, β2-tanycytes contact the fenestrated 

capillaries of the ME and sense factors from the bloodstream. Subsequently, β2-

tanycytes can transport various factors or signals derived from the bloodstream to 
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specific regions within the hypothalamus (Balland et al. 2014; Rodríguez et al. 2005) 

CSF of the 3V. 

 

 

Figure 1.8. Schematic representation of the cell types of the hypothalamic neurogenic 
niche lining the 3V. Abbreviations: DMN – dorsomedial nucleus. VMN –ventromedial 
nucleus. Arc – arcuate nucleus. 3V – third ventricle. ME – median eminence (Goodman 
and Hajihosseini 2015). 

 
In addition to tanycytes, NG2 (Nerve-glia antigen 2) cells have been identified in the 

parenchymal region of the hypothalamus. NG2 cells have been demonstrated to 

proliferate in the adult CNS and are well known for their role as OL progenitors (Dimou 

and Gallo 2015). The hypothalamic NG2 cells are proliferative and express the stem cell 

marker Sox2 (Robins, Trudel, et al. 2013). 

 

Genetic fate mapping based on inducible Cre recombinase expression under the 

promoter of NG2 has demonstrated that a high proportion of hypothalamic NG2-glia 

differentiate into OLs whereas only a small proportion (8.6%) give rise to neuronal fate 

cells. The neuronal daughter cells derived from NG2-glia show an immature neuronal 

phenotype and seem to receive input, indicative of their electrical integration in local 

hypothalamic circuits. Thus, NG2-glia can take neuronal fates and mature into functional 
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neurons, indicating that NG2 glia contributes to the neurogenic capacity of the adult 

hypothalamus (Robins, Trudel, et al. 2013). Also, recent studies have shown that NG2 

cells function is connected with leptin signalling in the Arc neurons, suggesting that not 

only tanycytes but also NG2-glia could act as neuromodulating cells in the Arc-ME 

system. 

 

In summary, previous evidence suggests that tanycytes lining the 3V and NG2-glia 

constitute different stem cells populations in the adult hypothalamus. However, the fate 

of their progeny and their capacity to generate new-born cells across the lifespan is still 

under debate. 
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1.3. Hypothesis and objectives 

The ultimate control of the appetite and energy balance is located in the hypothalamus, 

with the Arc nucleus at the core of this regulation. In the Arc nucleus, different neuronal 

and glial cell populations coexist, and the balance between the activity of these 

populations is of major importance in regulating energy balance and metabolism. 

Notably, dysregulated energy metabolism is one of the hallmarks of ageing, likely caused 

by the progressive impairment of mechanisms that control body homeostasis (Roberts 

2000).  

 

Therefore, one may hypothesise that ageing is associated with a reduction in the 

number, relative ratios and/or connectivity of appetite-regulating neuronal subtypes and 

glial cells in the hypothalamus accompanied by alterations in hypothalamic 

transcriptome and a decreased neurogenesis in the hypothalamus. To address this 

hypothesis, the following objectives were set: 

 

1. To determine age-related neuronal numbers and distribution of the two main 

populations of neurons (anorexigenic and orexigenic) present in the Arc nucleus 

of the murine hypothalamus. 

2. To identify age-related transcriptional changes in the mouse hypothalamus 

through RNA-seq analysis. The genes with the highest age-related changes will 

be confirmed by imaging and/or molecular biology techniques and scrutinized 

against published literature. 

3. To determine age-related changes in astrocyte and microglial cells present in 

the Arc nucleus of the mouse hypothalamus using immunohistochemistry and 

western blot. 

4. Determine the level and magnitude of age-related decline in the hypothalamic 

neurogenesis using proliferation labelling methods and immunohistochemistry. 

5. To identify age-related changes in the oligodendrocyte population and the 

myelination pattern in the mouse hypothalamus using immunohistochemistry 

and western blot techniques.
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2. Material and methods 
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2.1. Transgenic animals 

Mice maintained on a mixed C57BL6/129Ola genetic background and were 

housed under standard conditions (12-hour light/dark cycle, temperature between 20 

and 24 ºC, chow and water ad libitum) unless stated otherwise. All animals were 

maintained, bred, treated and culled in compliance with terms of a Home Office Project 

Licence (P1980162E). Analyses were performed in males and female brain tissue. 

Experimental groups of each genotype were defined as young adult (3 – 7 months old), 

middle-aged (10 – 14 months old), and old animals (18 – 24 months old; Figure 2.1). 

Only healthy, disease free mice were used in this study. Figure S1 included weight data 

for animals used in this study with no weight loss observed with increasing age. 

 

  

Figure 2.1. Life stages in mice in comparison to humans. Experimental mouse age groups 
are indicated, together with their human age equivalences. Figure prepared with data from 
“The mouse in biomedical research” (Flurkey, Currer, and Harrison 2007). 

 
 

2.1.1. Npy-hrGFP 

Npy-hrGFP (also named Npy-GFP) transgenic reporter mice were obtained from 

the Jackson Laboratory (#006417), which exhibits humanised Renilla GFP (hrGFP) 

expression under the control of the Npy promoter (van den Pol et al., 2009) (Figure 2.2, 
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A). Expression of the reporter gene is observed in neurons from the Arc nucleus of the 

hypothalamus, the dentate gyrus of the hippocampus and the cerebral cortex.  

2.1.2. Pomc-EGFP 

Pomc-EGFP (also named Pomc-GFP) transgenic reporter mice were obtained 

from the Jackson Laboratory (#009593),  which exhibits enhanced green fluorescent 

protein (EGFP) expression under the control of the Pomc promoter region (Newell-Price, 

2003) (Figure 2.2, B). EGFP expression is observed in the Arc nucleus of the 

hypothalamus, melanotrophs/corticotrophs of the pituitary gland, and in a 

subpopulation of newly born granule neurons of the dentate gyrus of the hippocampus. 

EGFP expression is also observed in the nucleus of the solitary tract of the medulla. 

 

 

 

Figure 2.2. Schematic representations of transgenic mouse alleles utilised. (A) The 
Pomc-EGFP and (B) the Npy-hrGFP reporter line. Black boxes – exons. green boxes – 
reporter gene. The transcriptional start site (TSS) and the translation stop are indicated. 

 
 
2.1.3. Fgf10-LacZ 

The Fgf10LacZ transgenic mouse line has the nuclear-targeted lacZ (nLacZ) 

transgene inserted into Fgf10 regulatory regions 114 Kb upstream of the Fgf10 coding 

sequence (Fig 2.2 C; (Hajihosseini et al. 2008; Kelly, Brown, and Buckingham 2001). In 
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these mice, expression of LacZ closely matches expression patterns of Fgf10 and can 

be used for lineage tracing of Fgf10 expressing cells due to the bacterial origin of the 

protein product β-galactosidase (β-Gal). 

2.1.4. Breeding and genotyping 

Genomic DNA for genotyping was extracted from 2 mm ear biopsies and 

digested overnight at 55 °C in 50 μl of digest buffer (1 M Tris, 0.5 M EDTA, 5 M NaCl, 2 

mg/mL SDS) supplemented with 7 μg/mL Proteinase K (Sigma, Japan). Following 

extraction, genomic DNA was precipitated using 50 μl of isopropanol, spooled out using 

sterile pipette tips and resuspended in 30 μl of 30% TE buffer (3mM Tris, 0.3 mM EDTA) 

overnight at 37 °C in the water bath. 

 

The DNA was subjected to Polymerase Chain Reaction (PCR) using the Roche Expand-

PCR kit (Roche, Switzerland). Primers and PCR cycles and are described in Table 2.1 

and 2.2, respectively. The PCR product was run on ethidium bromide (EtBr)-stained 1% 

(w/v) agarose gel, and the amplified product was visualised using a UV transilluminator. 

 

 
Table 2.1. Primers for genotyping  

  

AAGTTCATCTGCACCACCG

TCCTTGAAGAAGATGGTGCG

CTAGGCCACAGAATTGAAAGATCT

GTAGGTGGAAATTCTAGCATCATCC

TATGTGGACGGGGCAGAAGATCCA

CCCAGCTCACATATTTATCTAGAG

GGTGCGGTTGCCGTACTGGA

GCATCGAGCTGGGTAATAAGCGTTGGCAAT 

GACACCGACACAACTGGTAATGGTAGCGAC 

CGAGTGGAGCATGTACTTCCGTGTCCTGAA 

TCCCTACCCAGTCACAGTCACAGCTGCATA 

Allele Primers (5'- 3') Product size (bp)

Pomc-EGFP

Npy-hrGFP
WT: 400                       

Npy-GFP: 300

WT: 324                     

Pomc-GFP: 173

WT: 600                     

LacZ: 800Fgf10nLacZ
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Table 2.2. PCR programmes for genotyping 

 

 
  

94 120 1

94 30

58 30 15

68 70

94 30

58 30 17

68 70 (+ 20s each cycle)

68 420 1

6 600 1

94 120 1

94 30

61 30 10

68 160

94 30

61 30 17

68 160 (+ 40s each cycle)

68 420 1

6 600 1

94 120 1

94 30

62 45 15

68 60

94 30

62 30 17

68 60 (+ 40s each cycle)

68 420 1

6 600 1

Fgf10nLacZ

Cycle repeats

Npy-GFP

Programme name Temperature (ºC) Time length (s)

Pomc-GFP
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2.2. Animal experiments in vivo – BrdU labelling 

To study proliferation, animals were treated for 15 days with 5-Bromo-2’-
deoxyuridine (BrdU, Sigma) in drinking water ad libitum (as 1 mg/ml solution containing 

0.25 mg/ml glucose) before sacrifice. BrdU is a synthetic thymidine analogue that is 

incorporated in DNA of cells entering in S-phase of the cell cycle and, is therefore often 

used to assess cell proliferation (Wojtowicz and Kee, 2006). Fresh BrdU-solution was 

supplied every 48 hours, and the drinking bottles were protected from light. Stability of 

BrdU in this paradigm was validated previously (N. Haan et al. 2013).  

 

2.3. Tissue Processing 

For vibratome sectioning, mice were sacrificed by CO2 asphyxiation, followed by 

transcardial perfusion with 4% (w/v) paraformaldehyde (PFA, pH 7.4, diluted in PBS 1X). 

Then, brains were dissected out and fixed by immersion in 4% PFA overnight at 4 °C. 

After overnight fixation, brains were dehydrated in a series of ethanol dilutions for 1 hour 

each: 30%, 50%, 70%, 90% up to absolute ethanol and stored at 4 °C until required. 

 

Alternatively, for protein or RNA extraction, animals were sacrificed by cervical 

dislocation. Them, the hypothalami were dissected out, flash-frozen in centrifuge tubes 

on liquid nitrogen and stored at -80 °C until use. 

 

2.4. Vibratome tissue sectioning  

Prior sectioning, brains were rehydrated through a series of ethanol dilutions 

consisting of 1 hour per dilution: 90%, 70%, 50%, 30%, and PBS. Then, brains were 

embedded in 3% (w/v) agar, incubated for 30 minutes at 80 °C and left to set in coronal 

orientation. Vibratome sections were generated on a Leika VT1200 (Leika, Germany) at 

60 μm thickness and stored serially in a 48-well plate containing PBS 1X until use. 
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2.5. Immunolabelling 

2.5.1. Antigen retrieval  

2.5.1.1. Citrate pre-treatment 

Where necessary and before the blocking step of the immunohistochemistry, 

sections were placed into 10 mM citrate buffer (10 mM tri-sodium citrate, 0.05% Tween-

20; pH 6.0); for 10 minutes at room temperature (RT). Subsequently, sections were 

placed in pre-warmed 10 mM citrate buffer and left for 15 minutes at 70 °C. The sections 

were left to cool down to RT and washed twice in PBS for 10 minutes each.  

 

2.5.1.2. HCl pre-treatment  

To enable the nuclear penetration of the BrdU antibody, before the blocking 

step, sections were incubated in a solution of HCl 2 M for 1 hour at 37 °C in the water 

bath and subsequently washed twice for 10 minutes in PBS 1X at RT.  

 

2.5.2. TUNEL assay 

To assess apoptosis via DNA fragmentation, the Apoptag TUNEL (terminal 

deoxynucleotidyl transferase dUTP nick end labelling) assay was performed (kit S7165; 

Merck Millipore, Massachusetts, USA), according to the manufacturer 

recommendations. The different reagents were applied directly on slide-mounted 

sections in a humidified chamber. Alongside hypothalamic sections and as a positive 

control, sections containing the SGZ of the LV were also assessed for TUNEL staining. 

To remove false positives, the nuclear morphology and chromatin condensation in 

TUNEL+ cells were also examined. When double-labelling with immunohistochemistry 

was required, the TUNEL protocol was performed prior to the blocking step in (1.5.3). 

 

2.5.3. Immunolabelling of vibratome sections  

Vibratome sections containing the whole extension of the Arc nucleus (from 

bregma -0.94 mm to -2.5 mm, approximated) and control regions (SGZ of the LV) were 
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selected for immunolabelling by comparison to the Allen Brain Atlas (Franklin and 

Paxinos 2007). To increase antibody binding and penetration in the tissue, the 

immunolabelling protocol was performed on free-floating sections contained in glass 

vials. Unless stated otherwise, the different steps were performed at RT and on a rocking 

platform. 

 

To block non-specific binding sites and permeabilise sections simultaneously, sections 

were incubated for 2 hours in a solution containing 20% (v/v) NGS, 1% (v/v) Triton X-

100 prepared in PBS 1X. Subsequently, sections were incubated with relevant primary 

antibodies (Table 2.3) made in 0.2% (v/v) NGS, 0.1% (v/v) Triton X-100 diluted in PBS 

1X overnight at 4 ºC. The following day, sections were washed five times, allowing 1 

hour per wash, in a solution containing 0.2% (v/v) NGS, 0.1% (v/v) Triton X-100 diluted 

in PBS 1X to remove the non-bound antibody and incubated overnight at 4 ºC with the 

appropriate secondary antibodies (Table 2.4) made diluted in 0.2% (v/v) NGS, 0.5% (v/v) 

NP-40 in PBS 1X. Where required, for biotin-conjugated secondary antibodies, sections 

were washed five times, allowing 1 hour per wash, in 0.2% (v/v) NGS, 0.1% (v/v) Triton 

X-100 prepared in PBS 1X, and incubated in streptavidin-conjugated antibodies made 

in 0.2% (v/v) NGS, 0.1% (v/v) Triton X-100 diluted in PBS 1X overnight at 4 ºC. 

 

The final day, sections were washed six times with PBS 1X, 30 min per wash, and 

stained with 5 μg/mL Hoechst 333452 in PBS 1X for 30 minutes. After counterstaining, 

sections were mounted in the slides with Vectashield (Vector Laboratories, California, 

USA) mounting medium, cover-slipped and sealed by nail varnish.  
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2.6. Western Blotting and Protein Analysis  

2.6.1. Protein extraction from hypothalamic tissue  

Hypothalamic tissue was homogenized with ice-cold RIPA lysis buffer (10 μl/mg 

of tissue; 150mM NaCl, 1% [v/v] NP-40, 0.5% [w/v] sodium deoxycholate, 0.1% [w/v] 

SDS, 50mM Tris pH 8.0), containing Halt protease and phosphatase inhibitors (1:100; 

ThermoFisher, Massachusetts, USA), using the bead-beating system TissueLyser LT 

(Qiagen, France) in series of 1-2-1 minutes. Homogenates were then incubated on an 

orbital shaker (Cole-Parmer, United Kingdom) for two hours at 4 °C, and cleared to 

remove debris by centrifugation at 12,000 rpm for 20 minutes at 4 °C. The resulting 

supernatant was collected, and the total protein concentration of each sample was 

determined using the colorimetric Pierce BCA protein assay (ThermoFisher), according 

to manufacturer’s instructions.		
 

Samples were prepared by mixing 100 μg of protein with 4X loading dye (62.5 mM Tris 

base pH 6.8, 2% [w/v] SDS, 10% [v/v] glycerol, 0.02% bromophenol blue and 12.5% 

[v/v] β-mercaptoethanol) in a final volume of 25 μl, boiled for 5 minutes at 95 °C, and 

kept at -20 °C until required. As an exemption, for PLP detection, samples were not 

boiled during the preparation. 

 

2.6.2. SDS polyacrylamide gel electrophoresis and transference  

The SDS polyacrylamide gel was composed of a 5% stacking gel (126 mM Tris 

pH 6.8, 5% [v/v] Acrylamide; 0.2% [w/v] SDS; 0.1% [v/v] Ammonium Persulphate; 0.3% 

[v/v] TEMED); and a resolving gel of 6, 7, 10 or 12% (375 mM Tris pH 8.8, 6-12 % [v/v] 

Acrylamide 29:1; 0.2% [v/v] SDS; 0.1% [v/v] Ammonium Persulphate; 0.25% [v/v] 

TEMED), depending on the target protein (Table 2.5). Samples were loaded alongside 

the PageRuler Plus protein ladder (ThermoFisher) and run in electrophoresis buffer (25 

mM Tris base, 192 mM Glycine, 1% [w/v] SDS) at 70 V until the dye front surpassed the 

bottom of the stacking gel, and then at 100 V until the dye front crossed the lower end 

of the gel. 
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After electrophoresis is completed, proteins were transferred to nitrocellulose 

membranes (0.45 µm pore size, Thermofisher) using the mini trans blot cell system (Bio-

Rad, California, USA) containing ice-cold transfer buffer (20 mM Tris base, 154 mM 

Glycine, 0.01% [w/v] SDS, 10% [v/v] methanol) for 90 minutes at 50 V at 4 °C. 

Alternatively, to transfer high molecular weight proteins (KIF1B and DYNC1H1), the 

transference was done at 20 V overnight at 4 °C. 

 

2.6.3. Membrane blocking, protein detection and visualisation  

Once the transference was complete, membranes were incubated with the 

blocking solution containing TBST (TBS 1X, 0.1% [v/v] Tween-20) and 5% (w/v) semi-

skimmed milk, for 2 hours at RT on a rocking platform. After blocking, membranes were 

directly incubated with the relevant primary antibodies prepared in TBST and 1% semi-

skimmed milk (w/v), overnight at 4 °C on a tube roller (Cole-Parmer).  

 

After that, membranes were washed with TBST four times, 10 minutes each wash, and 

incubated with relevant secondary antibodies conjugated with horseradish peroxidase 

(HRP) prepared in TBST and 1% semi-skimmed milk (w/v), for 2 hours at RT. After 

washing again with TBST twice for 10 minutes each wash, membranes were incubated 

in Pierce ECL plus western blotting solution (Thermofisher) for 2 minutes and developed 

using the ChemiDocTM Imaging System (Bio-Rad). The full list of primary and secondary 

antibodies can be found in Table 2.5 and 2.6, respectively.  

 

In order to re-probe the membranes for different proteins, membranes were incubated 

in stripping buffer (62.5 mM Tris base pH 6.7, 2% [w/v] SDS, 0.78% [v/v] β-

mercaptoethanol) for 30 min at 55 °C with gentle rocking, washed four times in TBST 

for 10 minutes each wash, and blocked again before applying the primary antibodies.   

 

2.7. Microscopy 

All fluorescent images were acquired with the Zeiss Apotome Imager M2 

microscope (Axiovert 200M) equipped with a Zeiss AxioCam HRm, using the Axiovision 

4.8 software. Pictures were captured in serial z-stacks (1 μm of thickness) under X10 

(air), X20 (air), X40 (oil) and X63 (oil) objectives. The approximated bregma positions of 
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each brain section where determined by consultation of the Allen Mouse Brain Atlas 

(Franklin and Paxinos 2007). 

 

2.8. Image analysis and quantifications 

2.8.1. Pomc and Npy quantifications 

The Volocity 6.3 software (Perkin Elmer, Massachusets, United States) was 

employed to generate three-dimensionally reconstructed images, create composites 

and to modify brightness and contrast to make visible low stained cells. Using the three-

dimensional images, the total number of hypothalamic GFP+ cells in each brain section 

was counted in approximated 24 serial sections per brain ranging from bregma -0.94 

mm to -2.5 mm. The Volocity automated cell counter was used for Npy-GFP+ cells, 

while manual counting was preferred for Pomc-GFP+ cells. Both hemispheres were 

used for the counting, and results are represented as the average cell number of both 

hemispheres. To avoid double-counting, only the middle 40 μM of each 60 μM-thick 

section was analysed. The Npy: Pomc ratio was calculated using the average number 

of Npy-GFP+ and Pomc-GFP+ per hemisphere obtained in Chapter 3. 

 

2.8.2. GFAP and Iba1 quantifications 

The GFAP+ and Iba1+ cell and size number were quantified within a specified 

ROI (region of interest; a rectangle of area 0.134 mm2) using the ImageJ software 

(https://imagej.nih.gov/ij/). The counting method consisted of positioning the ROI 

covering the whole Arc nucleus region and counting manually the positive cells 

contained within the ROI (represented as GFAP+ or Iba1+ cells/mm2). To quantify the 

cell size, the same ROI was used, and the total area covered by GFAP+ or Iba1+ signal 

was divided by the number of GFAP+ or Iba1+ cells contained within the same area 

(represented as GFAP+ or Iba1+ cell size). 
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2.8.3. BrdU quantifications 

The total number of BrdU+ cells was counted manually within the mediobasal 

hypothalamus using the ImageJ software, in approximated 24 serial sections per brain 

ranging from bregma -0.94 mm to -2.5 mm. To obtain the percentage of BrdU+/Olig2+ 

and BrdU+/Iba1+ cells in the Arc-ME, double-labelled (BrdU+/Olig2+ or BrdU+/Iba1+) 

and single-labelled cells (BrdU+) were counted manually within a specified ROI (a square 

of area 0.0016 mm2). To improve accuracy, the ROI was positioned in, at least, three 

different regions of the Arc-ME within the same section. 

 

2.8.4. Olig2 and CC1 quantifications 

The number of Olig2+ and CC1+ cells were counted manually within a specified 

ROI (a square of area 0.0016 mm2) using the ImageJ software, in approximated 12 

sections ranging from bregma -1.58 mm to -2.3 mm. The counting method consisted 

of positioning the ROI within the Arc-ME nucleus and counting manually the positive 

cells contained within the ROI (represented as Olig2+ or CC1+ cells/mm2). To improve 

accuracy, the ROI was positioned at least in three different regions of the Arc-ME within 

the same section. 

 

2.9. RNA-sequencing 

Hypothalami form young and old mice (n = 5 for each age group) were isolated 

and stored in RNA later at -80 °C. Then, the RNA from hypothalamic tissue was 

extracted by Dr Tarang Mehta, using the RNeasy Plus Mini Kit (Qiagen), achieving RNA 

integrity (RIN) in the range of 9 – 10 (Agilent Bioanalyzer Total RNA Pico Assay).  

 

The samples were sent to Novogen (Cambridge, UK), where the RNA-Seq experiment 

was performed. Libraries were constructed and sequences using Illumina HiSeq2000. 

Each sample had: a sequencing depth of at least 20 million reads per sample. Differential 

gene expression analysis was carried out by Dr Simon Moxon who pseudoaligned reads 

to the Ensembl M. musculus cDNA release (version 97) (Yates et al. 2020) using Kallisto 

(Bray et al. 2016). Sleuth (Pimentel et al. 2017) was used to calculate gene-based 

differential expression from Kallisto count data.  
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2.10. Statistics 

Statistical analysis for multiple comparisons was performed with one-way or two-

way ANOVA followed by Tukey's post hoc test using GraphPad Prism (v. 6). Significance 

was only considered for p-values lower than 0.05 (*p<0.05, **p<0.01, ***p<0.001). Data 

is represented as mean ±SEM. 

 

For immunohistochemistry, western blot and RNA-seq studies, n numbers relate to the 

number of mouse brain/hypothalamus analysed within the experimental paradigm. 

Quantification of cell numbers was measured from approximately 12 – 24 sections per 

brain, depending on the experiment (see section 2.8). The specific number of mice 

analysed for each experiment is described in Chapters 3, 4, 5, 6 and 7, with a minimum 

of 3 mice brains per age group analysed in each experiment. 
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Table 2.3. Primary antibodies used for immunohistochemistry 

 

Table 2.4. Secondary antibodies used for immunohistochemistry 

 

Name Host Manufacturer Comercial 
reference Dilution Antigen 

retrieval

α-APC (CC-1) Ms Millipore MABC200 1/500 No

α-ASCL1 Ms Santa Cruz sc-374104 1/100 No

α-BrdU Rt Abcam ab6326 1/500 HCl

α-Cl Caspase 3 (CC3) Rb Cell signaling 9661 1/1000 No

α-DCX Ms Santa Cruz sc-271390 1/100 No

α-GFAP Ms Millipore MAB360 1/1000 No

α-GFP Rb Abcam ab290 1/1000 No

α-IBA1 Rb Wako 019-19741 1/1000 No

α-MBP Ms Abcam ab62631 1/500 No

α-MLKL Rt Millipore MABC604 1/100 No

α-NeuN Ms Millipore MAB377 1/500 Citrate

α-NF Ms Biolegend SMI 312 1/500 No

α-OLIG2 Rb Millipore AB9610 1/500 No

α-PLP Ms Bio-Rad MCA839G 1/250 No

α-S100β Ms Abcam ab4066 1/200 Citrate

Rb (rabbit), Ms (mouse), Rt (rat)

Host Taget Conjugated Manufacturer Comercial       
reference Dilution

Gt Ms Alexa Fluor 488 Invitrogen A-11001 1/1000

Gt Ms Alexa Fluor 568 Invitrogen A-11004 1/1000

Gt Rb Alexa Fluor 488 Invitrogen A-11008 1/1000

Gt Rb Alexa Fluor 568 Invitrogen A-11011 1/1000

Gt Ms IgG1 Biotin
Jackson 
ImmunoResearch 

115-065-205 1/500

Gt Rt Biotin Invitrogen 31830 1/500

- Streptavidin AMCA
Jackson 
ImmunoResearch 

016-150-084 1/250

- Streptavidin Texas Red Vector laboratories SA-5006-1 1/250

Rb (rabbit), Ms (mouse), Rt (rat), Gt (goat)
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Table 2.5. Primary antibodies used for western blot 

 

Table 2.6. Secondary antibodies used for western blot 

Name Host Manufacturer Comercial 
reference Dilution

Concentration 
resolving gel 

(%)

α-AIF Ms Santa Cruz sc-13116 1/200 10

α-ARGI Ms Ms Santa Cruz sc-271430 1/200 7

α-B7-2 (CD-86) Ms Santa Cruz sc-28347 1/500 7

α-CD206 Ms Ms Santa Cruz sc-58986 1/200 7

α-CNPase Ms Chemicon MAB326 1/250 10

α-DYNC1H1 Rb Proteintech 12345-1-AP 1/500 6

α-GADPH Rb Cell signaling 2118S 1/1000 12

α-GFAP Ms Millipore MAB360 1/1000 10

α-KIF1B Rb Proteintech 15263-1-AP 1/500 6

α-MBP Rb Abcam ab40390 1/500 12

α-MRF Rb Abcam  ab854464 1/250 7

α-NF Ms Biolegend SMI 312 1/500 7

α-NG2 Rb Millipore AB5320 1/500 7

α-OLIG2 Rb Millipore AB9610 1/2500 10

α-PLP Ms Bio-Rad MCA839G 1/1000 12

α-POMC Rb Abcam ab94446 1/500 12

α-TNFα Ms Santa Cruz sc-52746 1/100 12

α-Tuj1 Ms R&D systems MAB1195 1/500 7

α-βACTIN Ms Proteintech 66009-1-Ig 1/5000 7-12

Rb (rabbit), Ms (mouse)

Host Taget Conjugated Manufacturer Comercial       
reference Dilution

Gt Ms HRP Santa Cruz sc-516102 1/5000

Gt Rb HRP Vector Labs P1-1000 1/5000

Gt Ms HRP Sigma-Aldrich A4416 1/5000

Rb (rabbit), Ms (mouse), Rt (rat), Gt (goat)
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3. Characterisation of anorexigenic (POMC) and orexigenic 
(NPY) neuronal populations in the Arc nucleus and their 
dynamics during ageing  
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3.1. Introduction 

 Over the past two decades, a large body of evidence has accumulated to show 

that the hypothalamus plays a critical role in energy homeostasis by controlling the 

balance between calorie intake and energy expenditure (Dietrich and Horvath 2013; Kim 

and Choe 2018). The hypothalamus contains a diverse collection of interconnected 

neurons organised in different nuclei: the dorsomedial hypothalamus (DMN), 

ventromedial hypothalamus (VMN), lateral hypothalamus (LH), paraventricular 

hypothalamus (PVN) and Arcuate nucleus (Arc). Complex but integrated 

interconnections between the hypothalamic nuclei control the feeding behaviour and 

energy expenditure (Coupe and Bouret 2013). In the Arc nucleus, the antagonistic 

relationship between two neuronal populations control energy homeostasis: the 

orexigenic (appetite-promoting) neurons expressing agouti-related peptide (AgRP) and 

neuropeptide Y (NPY); and the anorexigenic (appetite-suppressing) neurons expressing 

proopiomelanocortin (POMC) (Cone et al. 2001).  

 

The AgRP/NPY neurons activate orexigenic behaviours through the release of 

neurotransmitters, AgRP and NPY, which bind to receptors in PVN and LH neurons 

(Betley et al. 2013; Hahn et al. 1998). In addition to their direct effect on the PVN and 

LH, the orexigenic neurons innervate and inhibit the activity of POMC neurons (Garcia 

de Yebenes et al. 1995). Studies in aged mice showed that NPY/AgRP innervation onto 

POMC undergoes a progressive and pronounced increase with age, associated with 

the age-related decrease of POMC firing (Newton et al. 2013). 

 

The POMC neurons exert its anorexigenic effect through its projections to the PVN, VMN 

and LH, and by releasing α-MSH, a post-translation product of POMC that activates 

MC4R in target cells (Millington 2007). These neurons can release a plethora of different 

neurotransmitters, including GABA, glutamate and acetylcholine (Dennison et al. 2016; 

Jarvie and Hentges 2012; King and Hentges 2011); and express a variety of receptors, 

such as the insulin receptor (InsR), LepR, and 5-HT2cR (Sohn et al. 2011; Williams et 

al. 2010). Recent studies have described different subtypes within the POMC 

population, defined by a set of enriched transcripts, suggesting the possible 

heterogeneity of these cells (Campbell et al. 2017; Chen et al. 2017). The different POMC 

subtypes show different rostro-caudal distribution and project to different targets based 

on their position. For example, POMC neurons in the rostral Arc project mostly to 
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autonomic areas, whereas caudal Arc POMC neurons mainly innervate hypothalamic 

areas (Dennison et al. 2016; Jarvie and Hentges 2012; King and Hentges 2011). 

 

Interestingly, in mammals, the shift in energy homeostasis is one of the hallmarks of the 

physiological changes during ageing (Hildrum et al. 2007). Ageing is associated with the 

development of metabolic syndrome components including obesity, hypertension and 

glucose intolerance (Purkayastha and Cai 2013; Purkayastha, Zhang, and Cai 2011; 

Tang et al. 2015; Zhang et al. 2008). Assumedly, age-related changes in the 

hypothalamic neurons controlling energy balance and metabolism, especially POMC 

and AgRP/NPY neurons, could underlie the decline in metabolism and energy 

homeostasis observed during ageing. Reportedly, the firing of the POMC neurons 

significantly decreases with age (Newton et al. 2013; Yang et al. 2012), and the induction 

of Pomc expression by exogenous leptin is impaired during ageing (Scarpace et al. 

2002). Furthermore, the hypothalamic Pomc mRNA levels decline in rodents with age 

(Lloyd et al. 1991; Nelson, Bender, and Schachter 1988). For NPY neurons, studies in 

aged rats reported a decrease in NPY protein levels with age (Kowalski et al. 1992), 

whereas mRNA of AgRP remains stable during ageing (Wolden-Hanson, Marck, and 

Matsumoto 2004). 

 

Thus, although the studies mentioned above provided useful insights about the age-

related changes in the anorexigenic and orexigenic populations, they might not be 

sufficient to illustrate the ageing-related shift in energy homeostasis. Hence, to better 

understand the dynamics of appetite-regulating circuits in the aged brain,  the number 

and distribution of POMC and NPY/AgRP neuronal populations in young, middle-aged 

aged and old mice was characterised in this chapter.   
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3.2. Aims 

 Characterisation of the number of anorexigenic and orexigenic neurons in the 

Arc nucleus of the murine hypothalamus. 

 Characterization of age-related differences in the number and/or anatomical 

distribution of the anorexigenic and orexigenic populations. 

 Study of the physiological consequences of the changes in the number of 

anorexigenic and orexigenic neurons with ageing. 
 

3.3. Results 

3.3.1. Anorexigenic and orexigenic neuronal dynamics with age 

Given the decline in energy metabolism reported during ageing in humans and 

rodents, the effects of ageing in the neuronal populations that control energy balance 

were investigated. However, neither the total number of those neuronal populations nor 

their dynamics during ageing have been defined. To quantify the total number of 

anorexigenic and orexigenic neurons, and any age-related differences, 

immunohistochemistry and specific reporter mice to each population were employed. 

 

3.3.2. The anorexigenic population (POMC) suffer a significant decline in 

number in the Arc nucleus with age 

To quantify the number of anorexigenic neurons in the hypothalamus, the 

transgenic model Pomc-GFP maintained on a C57BL/6J background was employed. 

Immunohistochemistry against GFP was performed in vibratome sections from young 

adult (2 – 6 months old), middle-aged (10 – 12 months old) and old (18 – 25 months) 

mice, with a minimum of 4 animals per age group. GFP expression in the mediobasal 

hypothalamus was detected between bregma positions -0.94 to -2.4 mm (Figure 3.1). 

GFP+ cells were mainly observed in the Arc nucleus, with minor contributions to the 

VMN, and cells with differential GFP signal were observed throughout the hypothalamus 

(Figure 3.1). The neuronal identity of the Pomc-expressing cells was then confirmed by 

co-localisation with the neuronal marker NeuN (Figure 3.2). 
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Next, the total number of Pomc-expressing cells per animal were quantified in 24 serial 

sections (60 μm thickness each), between bregma -0.94 to -2.4 mm (Figure 3.3 A – F, 

G). The young adults showed an average number of Pomc-expressing neurons of 

approximated 2132 ± 86 (n = 4) per hemisphere, 4264 ± 172 (n = 4) in total. In the 

middle-aged animals, the population number was reduced to 1463 ± 17 (n = 4) per 

hemisphere, 2926 ± 35 (n = 4) in total; a significant decline of 31.4% (p < 0.05). In old 

animals, the number of Pomc-expressing neurons was 1294 ± 69 (n = 6) per 

hemisphere, 2589 ± 137 (n = 6) in total. In summary, results showed attrition of the 

Pomc-expressing population with age. The decline is firstly observed in the middle-aged 

group, with further reduction in the old animals. 

 

Additionally, the analysis of Pomc-expressing cells distribution across the rostro-caudal 

extent of the Arc showed regional differences (Figure 3.4). In young animals, the rostral 

portion of the Arc (bregma -0.94 to -1.58 mm, approximated) presented higher cell 

density than the caudal part (bregma -1.7 to 2.4 mm). In middle-aged animals, a 

reduction in Pomc-expressing neurons is observed throughout the Arc, affecting more 

significantly the rostral-positioned neurons. The old group followed the same pattern as 

the middle-aged animals, with a shaper decline in the rostral region. As a result, Pomc-

expressing neurons are more uniformly distributed across the rostro-caudal Arc in 

middle-aged and old animals. Significant differences between age groups and rostro-

caudal position in the Arc are summarized in Table 3.1. 

 

In conclusion, results showed an age-related decline in total number of POMC neurons 

in the Arc nucleus, as well as changes in their distribution in the Arc nucleus. The 

changes are firstly observed during early ageing. 
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Figure 3.1. Representative distribution and density of Pomc+ cells in the hypothalamus. 
Approximated bregma positions are indicated. Green circles indicate the position of the 
groups of Pomc+ cells. Results obtained from young, middle-aged and old animals, with a 
minimum of 3 animals analysed per age group, were employed for the diagram design. 
Dashed lines outline the 3V and the limits of the different hypothalamic nuclei. 3V – third 
ventricle. VMN – ventromedial nucleus. AH – anterior hypothalamus. Arc – arcuate nucleus. 
ME – median eminence. 
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Figure 3.2. Pomc-GFP+ cells co-express the mature neuronal marker NeuN, confirming 
their neuronal identity. (A – A’’) Representative Pomc-GFP+ brain section immunolabelled 
for GFP (green) and NeuN (red). NeuN expression is lower in the Arc compared to the rest 
of hypothalamic nuclei, such as the VMN. (B – B'') Dashed box in (A) shows a higher power 
of Pomc-GFP+ and NeuN+ expression in the Arc nucleus. White arrows point co-
localisation of GFP+ and NeuN. (C – C'') Dashed box in (A) shows a higher power of Pomc-
GFP+ and NeuN+ expression in the Arc nucleus. White arrows point co-localisation of 
GFP+ and NeuN expression. Approximated bregma position -1.7 mm. Images are 
representative of results obtained in young, middle-aged and old animals with a minimum 
of 3 animals analysed per age group. Dashed line indicates the limit between Arc and VMN 
nucleus. Scale bar (A – A”) 25 µm. Scale bar (B – B” and C – C”) 12 µm. MBH – mediobasal 
hypothalamus. Arc – arcuate nucleus. VMN – ventromedial nucleus.  
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Figure 3.3. Pomc-expressing neurons show a differential distribution throughout the Arc 
nucleus and suffer a significative decline with age, that is more pronounced in the rostral 
region. (A – F) Representative images of Pomc-GFP+ brain sections stained for GFP (green) 
and Hoechst (blue). (A – C) Bregma -1.46 mm, from young-adult (A), middle-aged (B) and 
old (C) animals. (D-E) Bregma -1.7 mm, from young (D), middle-aged (E) and old (F) 
animals. Scale bar 50 µm. (G) Average total number of GFP+ cells per hemisphere, in 
young-adults (black column), middle-aged (dark grey) and old animals (light grey). Data 
show a significant age-related decrease in the number of GFP+ cells. Bregma positions 
are approximated. Data is represented as mean ±SEM, and a minimum of 4 animals per 
age group were analysed. Significance testing was performed using one-way ANOVA 
followed by Tukey post-hoc (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 3.4. Distribution of Pomc-expressing cells within the rostro-caudal extent of the 
Arc nucleus. Data is represented as the average (AVE) number of GFP+ (per hemisphere) 
in serial sections ranging from bregma -0.94 to -2.46 mm. Data is represented as mean 
±SEM, and a minimum of 4 animals per age group were quantified. Different colours 
represent the three age groups, young adult (blue), middle-aged (orange) and old (red). 
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Table 3.1. Significance testing for Figure 3.4, using two-way ANOVA followed by Tukey 
post-hoc test (*p<0.05, **p<0.01, ***p<0.001).  

 

 

  

Bregma (mm) Comparison Significance  p-value

-1.22 Middle-aged vs Old ** 0.0085

Young vs  Old *** < 0.0001

Middle-aged vs  Old ** 0.0099

Young vs  Middle-aged *** < 0.0001

Young vs  Old *** < 0.0001

Young vs  Old *** < 0.0001

Middle-aged vs Old ** 0.0012

Young vs  Middle-aged *** 0.0002

Young vs  Old *** < 0.0001

Young vs  Middle-aged *** < 0.0001

Young vs  Old *** < 0.0001

Young vs  Middle-aged *** < 0.0001

Young vs  Old *** < 0.0001

Young vs  Middle-aged *** 0.0003

Young vs  Old *** < 0.0001

Young vs  Middle-aged *** 0.0004

Young vs  Old *** < 0.0001

Young vs  Middle-aged ** 0.0026

Young vs  Old *** 0.0005

Young vs  Middle-aged ** 0.0099

Young vs  Old ** 0.0016

Young vs  Middle-aged *** 0.0005

Young vs  Old ** 0.0011

Young vs  Middle-aged ** 0.0029

Young vs  Old ** 0.0011

Young vs  Middle-aged ** 0.0018

Middle-aged vs  Old * 0.0301

Young vs  Middle-aged ** 0.0013

Young vs  Old ** 0.003
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3.3.3. Hypothalamic POMC protein levels remain stable during ageing 

Given that Pomc-expressing cells suffer an age-related decline, the next step 

was to investigate the change in POMC protein level during ageing. To do so, POMC 

levels were analysed in hypothalamic protein extracts from young, middle-aged and old 

wild-type animals (n = 6 per age group) via western blot. Anti-POMC antibody detected 

a single band of approximated 31 KDa (Figure 3.9, B). Densitometry analysis of the 31 

KDa band showed no significant differences with age (Figure 3.9, B).  

 

 

Figure 3.5. The protein levels of POMC in the hypothalamus remain constant during 
ageing. (A) Representative image of immunoblot for POMC protein and the loading control 
β-ACTIN. POMC protein runs at an approximated size of 31 KDa. Numbers indicate bands 
of the molecular weight marker used as a size standard (KDa) (B) Comparison of 
densitometric analysis of POMC levels relative to the loading control, in young adult (black), 
middle-aged (dark grey) and old (light grey) animals, show no age-related differences. The 
letters above the immunoblot lanes refer to the different age groups, young adult (Y), 
middle-aged (M) and old (O). Numbers indicate the bands of the molecular weight marker 
used as a size standard (KDa). Data is represented as mean ±SEM and a minimum of 6 
animals per age group were analysed. All significance testing was performed using one-
way ANOVA followed by Tukey post-hoc (*p<0.05).  

 

 
 
  

POMC

!ACTIN

Y M O

A. B.

35

0.0

0.5

1.0

1.5

PO
M

C
 le

ve
l (

au
)

0
1000
2000
3000
4000
5000

AV
E 

nu
m

be
r N

py
-G

FP
+ 

ce
lls

 (p
er

 h
em

is
ph

er
e)

Young adult
Middle-aged
Old

25



Characterisation of POMC and NPY neurons in the Arc during ageing | Chapter 3 

 75 

3.3.4. The orexigenic population (NPY) showed no significant age-related 

differences in the Arc nucleus 

For the quantification of Npy-expressing neurons in the hypothalamus, the 

transgenic mice employed was the Npy-GFP.  The total number of Npy-expressing cells 

per animal were quantified in 24 serial sections (60 m thickness each), between bregma 

-0.94 to -2.4 mm. GFP was visualised in vibratome sections from young adult (2 – 6 

months old), middle-aged (10 – 12 months old) and old (18 – 25 months) mice, with a 

minimum of 4 animals per age group. GFP+ cells were mainly observed in Arc nucleus, 

with minor contributions to the ME (Figure 3.6). Unlike the anorexigenic population, Npy-

expressing cells were mainly located in the basal part of the Arc, near the ME and the 

3V wall. Also, individual GFP+ cells showed similar fluorescent signal throughout the 

mediobasal hypothalamus. The neuronal identity of the Npy-expressing cells was then 

confirmed by co-localisation with the neuronal marker NeuN (Figure 3.7). 

 

Next, the total number of GFP+ cells per hemisphere were counted in serial sections 

between bregma -0.94 to -2.4 mm. Quantification results showed no significant age-

related differences in the Npy-expressing neuronal number (Figure 3.8, A – F and G). 

The young adult group presented an average number of Npy-expressing neurons of 

approximated 3001± 260 (n = 4) per hemisphere, 6001 ± 519 (n = 4) in total. In middle-

aged, the population number was 2801 ± 282 (n = 4) per hemisphere, 560 ± 566 (n = 

4) in total. In old animals, the number of Pomc-expressing neurons was 3492 ± 331 (n 

= 4) per hemisphere, 6983 ± 661 (n = 4) in total. 

 

Also, GFP+ cells were found throughout the Arc nucleus, with a higher density in the 

caudal part (between bregma -1.7 to -2.06 mm). The distribution pattern was 

maintained with age; however, statistical analysis revealed an increase in GFP+ number 

in caudal positions of the Arc nucleus, specifically bregma -2.06 and -2.18 mm; Figure 

3.9.  

 

In conclusion, results showed that NPY neurons in the Arc nucleus remain generally 

stable in number and distribution during ageing, although a small age-related increase 

in number is detected in caudal position of the Arc. 
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Figure 3.6. Representative distribution and density of Npy+ cells in the hypothalamus. 
Approximated bregma positions are indicated. Green circles indicate the position of the 
groups of Npy+ cells. Results obtained from young, middle-aged and old animals, with a 
minimum of 3 animals analysed per age group, were employed for the diagram design. 
Dashed lines outline the 3V and the limits of the different hypothalamic nuclei. 3V – third 
ventricle. VMN – ventromedial nucleus. AH – anterior hypothalamus. Arc – arcuate nucleus. 
ME – median eminence. 
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Figure 3.7. Npy-GFP+ cells co-express the neuronal marker NeuN, confirming their 
neuronal identity. (A – A’’) Representative Npy-GFP+ brain section immunolabelled for GFP 
(green) and NeuN (red). (B – B’’) Dashed box in (A) shows a high power of Npy-GFP+ and 
NeuN+ expression in the Arc nucleus. White arrows point co-localization of GFP+ and 
NeuN expression. Images are representative of results obtained in young, middle-aged and 
old animals with a minimum of 3 animals analysed per age group. Approximated bregma 
position -1.34 mm. Scale bar (A – A”) 50 µm. Scale bar (B – B”) 13 µm. 

  

A.

B.Ar
c Npy NeuN Npy NeuN

A. A’. A’’.

Pomc NeuN Pomc NeuN

B. B’. B’’.A. A’. A’’.

Npy NeuN Npy NeuN



Characterisation of POMC and NPY neurons in the Arc during ageing | Chapter 3 

 78 

 

   

Figure 3.8. Npy-expressing neuron number in the Arc nucleus remain stable during 
ageing. (A – F) Representative images of Npy-GFP+ brain sections stained for GFP (green) 
and Hoechst (blue). (A – C) Bregma -1.34 mm, from young-adult (A), middle-aged (B) and 
old (C) animals. (D – E) Bregma -1.7 mm, from young (D), middle-aged (E) and old (F) 
animals. Scale bar 25 µm. (G) Average total number of GFP+ cells per hemisphere, in 
young-adults (black column), middle-aged (dark grey) and old animals (light grey). Data 
show non-significant differences in GFP+ cell number, however a trend towards increase 
is observed. Bregma positions are approximated. Data is represented as mean ±SEM and 
a minimum of 4 animals per age group were quantified. Significance testing was performed 
using one-way ANOVA followed by Tukey post-hoc test (*p<0.05). 
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Figure 3.9. Distribution Npy-expressing cells in the Arc nucleus during ageing. 
Distribution of GFP+ (Npy-GFP) cells in the Arc. Data is represented as the average number 
of GFP+ (per hemisphere) in sections ranging from bregma -0.94 to -2.46 mm. Different 
colours represent the three age groups, young adult (blue), middle-aged (orange) and old 
(red). Data is represented as mean ±SEM, and a minimum of 4 animals per age group were 
quantified. Significance testing was performed using two-way ANOVA followed by Tukey 
post-hoc test (*p<0.05). Statistically significant differences for young vs old (bregma -2.06 
and -2.18 mm) are indicated. 
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3.3.5. The Npy: Pomc ratio is affected by age 

NPY and POMC neurons exert opposite roles, and the firing balance between 

both populations control feeding and metabolism in the body. Results showed that NPY 

outnumbered POMC population in the three age groups (Figure 3.10, A). The ratio 

between Npy- and Pomc-expressing neurons (Npy: Pomc) was calculated using the 

Pomc and Npy quantifications presented in the previous sections (see section 2.8.1 for 

more information). Results showed that Npy: Pomc ratio suffered changes with age, 

1.416 ± 0.157 in young adult mice, 1.916 ± 0.195 in middle-aged, and 3.013 ± 0.157 

in old mice (Figure 3.10, B).  

 

Next, Npy and Pomc distribution throughout the Arc was compared in the three age 

groups. In young animals, Npy- and Pomc-expressing neurons were evenly 

proportioned in the rostral Arc (bregma -0.94 to -1.58 mm); in the caudal Arc, Npy 

outnumbered Pomc (-1.7 to -2.06 mm; Figure 3.11, A). In the middle-age and old 

animals, Npy-expressing cells exceeded Pomc in rostral and caudal regions (Figure 

3.11, B – C). In conclusion, the results suggested that Npy to Pomc ratio in the Arc 

nucleus suffer an age-related change. 

 

  

Figure 3.10. The orexigenic (Npy+) and anorexigenic (Pomc) neuronal populations 
change in number with age affecting the Npy/Pomc ratio, important for the control of 
the energy balance. (A) Average Npy-GFP+ (dark grey) and Pomc-GFP+ (light grey) cells 
(per hemisphere) comparison per age group. Data is represented as mean ± SEM and 
minimum of 4 animals per transgenic and age group were quantified. (B) Ratio Npy:Pomc 
represented as average total number of Npy-GFP+ cells divided by the average total 
number of Pomc-GFP+ (obtained in previous sections of this chapter); for young adult 
(black), middle-aged (dark grey) and old (light grey) animals. 
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Figure 3.11. Pomc-and Npy-expressing cells show a differential distribution within the 
Arc and, as the age progresses, Npy-expressing cells outnumbers Pomc and become 
the majoritarian population thorough the Arc. (A - C) Graphs show the distribution of Npy-
GFP+ (solid line) and the Pomc-GFP+ (dashed line) cells in the Arc, represented as the 
average number of GFP+ (per hemisphere) in the bregma positions ranging from -0.94 to 
-2.46 mm, in young adult (A), middle-aged (B) and old (C) animals. In the young groups, 
Npy-GFP+ population show a more even distribution in the Arc than Pomc-GFP+ cells that 
are more predominant in the rostral positions of the Arc (bregma -1.22 to -1.58 mm). During 
ageing, the Npy population maintain their distribution; however, the Pomc-GFP+ population 
decline, mostly affecting the rostral positioned cells and appear uniformly distributed in the 
Arc of old animals. AVE – average. Data is represented as mean ± SEM and a minimum of 
4 animals per age group were quantified. 
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3.3.6. Programmed cell death is absent in the ageing hypothalamus 

3.3.6.1. The Decline of Pomc-expressing neurons is not due to apoptosis 

Given that the results indicated that Pomc-expressing neurons decline with age, 

I decided to investigate if (1) apoptosis occurs in the hypothalamus and/or increases 

with age; and (2) apoptotic events target the anorexigenic population. To do so, 

immunohistochemistry for the activated form of the caspase 3 (CC3) and TUNEL assay 

were employed. 

 

Firstly, to identify apoptotic events, the apoptosis marker cleaved caspase 3 (CC3), the 

activated form of the caspase 3 was used. The caspase 3 is the final effector of the 

apoptotic cascade, either receptor or mitochondrial-mediated, and has been widely 

used to detect apoptosis (Stadelmann et al. 1999). Immunohistochemistry for CC3 was 

performed in hypothalamic brain sections from young adult (n = 4), middle-aged (n = 6), 

and old mice (n = 3). In order to avoid false positives, the chromatin (Hoechst staining) 

and the nucleus morphology was analysed in the CC3+ cells, and only cells showing 

double staining (CC3/Hoechst) were considered real apoptotic events. Results failed to 

show CC3 staining the Arc; however, sporadic CC3+ cells were detected in other 

regions of the hypothalamus, including the VMN (Figure 3.12, A – A''' and B – B'''). 

Additionally, other regions known to suffer apoptotic events were studied, and positive 

cells were found in the lateral ventricles (LV), thus confirming the validity of the method 

(Figure S 2).  

 

Secondly, TUNEL assay was used to examine apoptosis via DNA fragmentation. The 

assay detects the DNA strands breaks and enzymatically labels the free 3'-OH termini 

with modified nucleotides (digoxigenin-dNTP), further detected by a digoxigenin/anti-

digoxigenin fluorescent system. Only TUNEL+ cells that showed co-staining with the 

nuclear marker Hoechst were considered. The TUNEL assay was performed in 

hypothalamic brain sections from young adult (n = 4), middle-aged (n = 4) and old mice, 

n = 2). Results showed very rare TUNEL+ cells in the Arc nucleus and in the 

periventricular region of the 3V (Figure 3.12, C – C''' and D – D'''). As a control region, 

TUNEL+ cells were observed surrounding the LV (Figure S 2).  
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In conclusion, very few cells were detected via CC3 immunohistochemistry and TUNEL 

assay in the hypothalamus of young, middle-aged and old animals; thus, suggesting 

that apoptosis may not play a significant role in Pomc cell number decline reported 

earlier in this chapter.  

 

3.3.6.2. The age-related decline in Pomc-expressing neurons is not due to 
necroptosis 

Following the apoptosis studies, the next step was to study if necroptosis 

activation mediates the decline in Pomc-expressing cells observed with age. To do so, 

the expression of the necroptosis marker MLKL (mixed lineage kinase domain-like) was 

investigated via immunohistochemistry in hypothalamic brains sections of young adult 

(n = 3), middle-aged (n = 2) and old animals (n = 3). 

 

Results showed sporadic MLKL+ cells in the mediobasal hypothalamus of the three 

groups of age. The identity of the sporadic MLKL+ cells was assessed via co-localisation 

with different markers, including the neuronal marker NeuN and the microglial marker 

Iba1. However, only the Iba1 marker showed co-localisation with MLKL+ cells (Figure 

3.13, A – A'''). Additionally, in some cases, MLKL staining resembled small vessels, 

based on the morphological characteristics of the brain vasculature (Figure 3.13, B – 

B’’’). As a control region, the corpus callosum was analysed, and MLKL+/Iba1+ cells 

were observed (Figure S 3).  

 

In conclusion, necroptotic events (MLKL+) in the Arc nucleus are sporadic in the three 

age groups studied and seem to target only microglial cells and microvascular cells. 
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Figure 3.12. Analysis of CC3 immunostaining and TUNEL assays revealed rare apoptotic 
events in the hypothalamus. (A – A’’’) CC3 immunostaining (green) and Hoechst (blue) in 
the VMN nucleus of the hypothalamus (bregma -1.43 mm). (A’, A’’, A’’) Dashed box in (A) 
shows a higher power and features two CC3+ cells and the apoptotic morphology of their 
nuclei (white arrows). (B – B’’’) CC3 (red), Pomc-GFP (green) and Hoechst (blue) detection 
in the periventricular region of the hypothalamus (bregma -1.06 mm). (B’, B’’, B’’) Dashed 
box in (B) features one CC3+ cell that failed to show co-localization with Pomc-GFP+ 
expression (white arrow). (C – C’’’) TUNEL+ cell (red) and Hoechst (blue) in the Arc nucleus 
of the hypothalamus (bregma -1.94 mm). (C’, C’’, C’’) Dashed box in (C) features a TUNEL+ 
cell and the apoptotic nucleus (white arrow). (D – D’’’) TUNEL+ cells (red) and Hoechst 
(blue) close to the 3V wall nucleus of the hypothalamus (bregma -1.82 mm). (D’, D’’, D’’) 
Dashed box in (D) features a TUNEL+ cell and the apoptotic nuclei (white arrow). Scale bar 
(A, B, C, D) 25 µm. Scale bar (A’ – A’’’, B’ – B’’’, C’ – C’’’, D’ – D’’’) 15 µm. 3V – third 
ventricle. 
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Figure 3.13. The necroptosis marker MLKL showed co-localization with microglia 
(Iba1+) and suggest association to blood vessels in the Arc nucleus. (A – B’’) MLKL (red), 
Iba1 (green) and Hoechst (blue) staining in the Arc nucleus of the hypothalamus (bregma -
1.7mm). White arrows indicate MLKL+/Iba1+ cells. (C – D’’) MLKL (red), Iba1 (green) and 
Hoechst (blue) staining in the Arc nucleus of the hypothalamus (bregma -1.94 mm). White 
arrows indicate MLKL+ cells that seem to be part of a blood vessel due to its morphology 
and proximity between each other. (D – D’’’) High power of (C – C”) shows MLKL+ cells 
associated to a blood vessel delineated by dashed lines. Scale bar (A – A’’, C – C’’) 50 µm. 
Scale bar (B – B’’, D – D’’) 12 µm. Bregma positions are approximated. Scale bar 25 µm. 
3V – third ventricle. Arc – arcuate nucleus.  
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3.4. Discussion 

As part of the ageing process, changes in the energy balance have been reported 

in mammals (Roberts 2000), likely caused by the progressive impairment of the 

hypothalamic circuits that control body homeostasis. Previous studies reported changes 

in the anorexigenic (POMC) and orexigenic (NPY/AgRP) populations with age, although 

they might not be sufficient to illustrate the age-related shift in energy homeostasis. The 

coordinated regulation of neuronal circuit involving POMC and NPY/AgRP is essential 

for maintaining energy balance; however, the number and distribution of both neuronal 

populations have not been explored, nor their dynamics, during ageing. 
 

In this study, using the transgenic models Pomc-GFP and Npy-GFP, the number and 

distribution of both neuronal populations was quantified in serial hypothalamic sections 

across the mouse lifespan. The detailed characterization of both appetite-regulating 

populations showed that the anorexigenic POMC, but not the orexigenic NPY, suffer a 

significant decline with age.  

 

Finally, cell death studies confirmed that the POMC neuronal decline is not due to 

apoptosis and/or necroptosis, suggesting that age-related inhibition of POMC 

expression in a subset of anorexigenic neurons may underlie the differences observed 

with age. 

 

3.4.1. Population dynamics: Pomc and Npy 

3.4.1.1. Technical considerations 

 In this study, POMC and NPY neurons counting was performed in 24 serial 

sections of 60 µm ranging from bregma -0.94 to -2.4 mm, to cover the entire Arc 

nucleus. This counting system method allowed to obtain an unbiased quantification 

of the entire neuronal population, taking into account any possible regional differences. 

Different transgenic animals were used specific to each population: Pomc-GFP and 

Npy-GFP. It should be noted that results are based on GFP transgene expression under 

the control of the POMC or NPY promoter, respectively. 
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To quantify the number and distribution of the anorexigenic neurons, the transgenic 

Pomc-GFP was employed. The validity of the model was confirmed by 

immunohistochemistry against POMC, with > 99% co-expression with EGFP+ neurons 

in the Arc. Co-localisation of EGFP with TH (tyrosine hydroxylase) or NPY was not 

observed (Cowley et al. 2001). Also, previous studies confirmed the validity of the 

transgenic model for studying rapid changes in Pomc expression (Niikura et al. 2013). 

 

To quantify the number and distribution of the orexigenic neurons, the transgenic Npy-

GFP was employed. The fidelity of GFP expression in orexigenic neurons was previously 

confirmed via single cell RT-PCR and immunohistochemistry against AgRP and NPY, 

taking into account that 95% of NPY neurons co-express AgRP (Broberger et al. 1998; 

van den Pol et al. 2009).  

 
 
3.4.1.2. Decline of a selected subpopulation of POMC neurons and may cause 

physiological changes associated with ageing 

In the current study, the number of POMC neurons was quantified in 

hypothalamic coronal sections of the Pomc-GFP reporter mice. Results revealed that 

the Arc nucleus of young mice hosts a total of 4262 (SEM ± 172) POMC neurons, which 

declined by more than 30% during ageing. However, the age-related neuronal decline 

is not accompanied by a decreased POMC expression at RNA (see Table 4.10 in 

Chapter 4) and protein levels, as western blot analysis revealed. These findings suggest 

a possible adaptive response to maintain POMC expression stable during ageing. 

However, it is also plausible that the results reflect the relativity insensitivity or the dilution 

effect of the western blot at detecting subtle protein expression changes. 

 

The results in this study contrast with previous studies in rodents, that observed a 

decline in the expression of POMC and POMC-derived peptides with age (Barnea, Cho, 

and Porter 1982; Lloyd et al. 1991; Nelson et al. 1988). The disparity in results across 

studies could be due to: (1) the sex of the animals used, as previous studies were done 

only in females, and the present study is done in both females and males; (2) The 

methods of quantification used, in situ hybridisation/immunohistochemistry vs western 

blot, that differ in sensitivity to quantify total expression levels (Dittadi et al. 1993).  
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In terms of function, POMC neurons are critical regulators of metabolism by controlling 

food intake and energy expenditure. Experimental ablation of these cells is sufficient to 

cause excess weight gain and glucose intolerance in adult mice (Gropp et al. 2005; 

Zhan et al. 2013). However, the physiological consequences of their age-related decline 

are still unclear. Some insights can be inferred from studies in diet-induced obese mice, 

where weight gain is associated with a reduction of POMC neurons in the Arc by ~12% 

(Li et al. 2012) or ~25% (Thaler et al. 2012). In this context, it is noteworthy that POMC 

cells play an essential role to protect against obesity; thus, is it possible that loss of 

POMC neurons promotes the weight gain and increased adiposity observed in aged 

rodents and humans (Pappas and Nagy 2019).  

 

Following the neuronal decline, the distribution of Pomc-expressing cells also showed 

age-related anatomical differences. Several reports suggested that POMC neurons in 

different regions of the Arc nucleus have distinct functions. POMC neurons can co-

express a plethora of different transmitters including nociceptin (Maolood and Meister 

2010), CART (N Vrang et al. 1999), acetylcholine (Meister et al. 2006), GABA and 

glutamate (Dicken, Tooker, and Hentges 2012; Jarvie and Hentges 2012; Wittmann, 

Hrabovszky, and Lechan 2013), adding to the ability of these neurons to regulate a wide 

range of physiological processes. Heterogeneity in transmitter phenotype often 

correlates well with the cell’s location within the rostro-caudal extent of the Arc nucleus 

(Jarvie and Hentges, 2012; Wittmann, Hrabovszky and Lechan, 2013). In addition to co-

transmitters release, receptor expression and responsiveness to leptin, insulin and 

serotonin seem to be dependent on their anatomical location within the Arc nucleus 

(Sohn et al. 2011; Williams et al. 2010). For example, rostral, but not caudal, POMC-

positioned cells are activated by leptin administration (Williams et al. 2010).  
 

In line with their functional heterogeneity, Arc POMC neurons send projections 

throughout the brain to affect a wide array of functions. POMC projections are found in 

brain areas involved in general homeostasis, including hypothalamic nuclei (PVN, SON 

and LH) and the brainstem (BST), as well as areas that mediate reward, such as the 

ventral tegmental area (VTA). Innervation by POMC has also been reported the 

amygdala, zona incerta, the periaqueductal gray (PAG) and dorsal vagal complex (DVC) 

(King and Hentges 2011; Lima et al. 2016; Wang et al. 2015; Wei et al. 2018; Zheng et 

al. 2005, 2010). Interestingly, only a small portion of POMC neurons project to any 

individual target site, suggesting that relatively few POMC neurons may mediate potent 
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and specific physiological responses (King and Hentges 2011). Also, neurons in the 

rostral or caudal regions of the Arc seem to innervate different target regions. For 

example, POMC neurons innervating the DVC and PAG are mostly located in the rostral 

Arc (King and Hentges 2011; Zheng et al. 2005).   

 

Taking all together, expression of select receptors, co-expression of specific 

transmitters and projection to target sites seems to be dependent on the rostro-caudal 

position of the POMC neurons in the Arc. At the same time, relatively few POMC neurons 

seem to have potent effects on their target regions. The current study reported an age-

related decline in POMC neurons, affecting mostly to neurons located in rostral positions 

of the Arc. Therefore, loss of a selected subpopulation of POMC may cause significant 

consequences and underlie some of the physiological changes associated with ageing.  

 

3.4.1.3. Npy neuronal population in the Arc showed subtle changes with ageing 

In the current study, the number of NPY neurons was quantified in hypothalamic 

coronal sections of the Npy-GFP mouse. Results revealed that the Arc nucleus of young 

mice hosts a total of 6001 ± 519 neurons in young adult, 5601 ± 566 in middle-aged, 

and 6983 ± 661 in old mice. In relative similarity, previous reports estimated the ARC 

contained 7000-8000 NPY neurons (Lemus et al. 2015). In terms of distribution, NPY 

neuronal number varies along the rostro-caudal extent of the Arc with higher cell counts 

in the caudal region, in line with previous findings (Lemus et al. 2015). Analysis failed to 

show age-related differences in the total NPY count; however, a small increase in NPY 

neurons with age was observed in caudal positions of the Arc. 

 

NPY neurons in the Arc control energy balance by sensing and integrating metabolic 

signals to induce food intake. As reported for POMC neurons, different NPY 

subpopulations have been identified based on their responsiveness to peripheral 

signals, such as ghrelin, leptin, insulin and glucose (Kohno and Yada 2012), suggesting 

functional heterogeneity. In regard to their projection patterns, studies showed that small 

subsets of NPY neurons project to specific brain regions (Atasoy et al. 2012; Betley et 

al. 2013; Wu, Boyle, and Palmiter 2009), where they directly inhibit downstream targets 

including POMC neurons (Garcia de Yebenes et al. 1995). Interestingly, NPY innervation 

onto POMC undergoes a progressive and pronounced increase with age, associated 

with the decrease in POMC activity (Newton et al. 2013).  
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Therefore, although the changes observed in the orexigenic population are very subtle, 

variation of a small portion or a specific subtype of NPY neurons could underlie some of 

physiological responses associated to ageing. However, it is more plausible that 

changes in NPY neuronal morphology, connectivity or transcriptome, rather than 

number, are responsible for the decline in metabolism and energy homeostasis 

observed during ageing. 

 

3.4.1.4. Npy to Pomc ratio change with age may produce an uneven power 
balance affecting the control of energy balance 

 The anorexigenic neurons that express POMC and the orexigenic neurons co- 

expressing NPY/AgRP in the Arc nucleus of the hypothalamus are known to exert 

opposing actions on feeding; thus, the regulation of energy homeostasis involves a 

dynamic balance between the two neuronal populations (Cone et al. 2001). One finding 

of this study is that NPY neurons outnumbered POMC neurons in the three age groups, 

and the ratio of NPY to POMC neurons increased from 1.4:1 in young adults to 3:1 in 

old animals. The coordinated regulation of neuronal circuit involving these neurons is 

essential in properly maintaining energy balance, and any disturbance therein may result 

in metabolic disbalance. Thus, the age-related changes in the ratio of Npy and Pomc 

neurons may produce and uneven balance power affecting the control of energy 

balance. 

 

3.4.2. The decline of POMC population is not due specific apoptosis or 

necroptosis of the anorexigenic population 

The present study identified a decline in the anorexigenic population with age, 

although the mechanism underlying the neuronal loss is still unclear. Potential causes 

may involve the selective cell death of POMC neurons, as a result of activation of 

apoptotic and necroptotic mechanisms with age.  

 

Apoptosis can be triggered through several signalling pathways and involves a family of 

cysteine-dependent aspartate-directed proteases, known as caspases (Degterev, 

Boyce, and Yuan 2003). The caspase-3 is the final effector of the apoptotic cascade, 
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and the detection of its activated form CC3 is a reliable marker for apoptosis activation 

(Stadelmann et al. 1999). However, in the CNS, caspase-3 can also play non-apoptotic 

roles, including differentiation of glial cells (Oomman et al. 2006) and cytoskeletal 

remodelling in neurons and astrocytes (Acarin et al. 2005; Guyenet et al. 2013). 

Therefore, along with the CC3, the TUNEL assay was chosen as an alternative method 

to confirm apoptosis. The TUNEL assay detects apoptosis via DNA fragmentation, even 

where chromatin condensation has begun and there are only a few DNA strand breaks 

(Kuan et al. 2004; Kyrylkova et al. 2012). Experiments in this chapter found little evidence 

of CC3 and TUNEL staining within the Arc nucleus across the mouse lifespan; however, 

CC3+ and TUNEL+ cells were observed in other brain regions confirming the validity of 

the results. Caspase-independent cell death was also investigated in the ageing 

hypothalamus via immunohistochemistry for MLKL, the terminal effector of the 

necroptosis pathway (Czabotar and Murphy 2015). Few cells undergoing necroptosis 

(MLKL+) were observed in the ageing hypothalamus and co-localisation studies 

indicated that MLKL+ cells belong to the microglial lineage. 

 

Taking all together, the scarce amount of apoptotic and necroptotic events observed in 

the ageing hypothalamus suggested that programmed cell death events may not be 

responsible for the full magnitude of the POMC decline. In line with this, previous studies 

also failed to establish cell death as the mechanism underlying the POMC neuron loss 

in diet-induced obese mice (Guyenet et al. 2013; McNay et al. 2012). It is also possible 

that because cell death is a dynamic process, cells can be found in different stages, 

making them difficult to detect using the available techniques.  

 

One potential mechanism underlying the POMC neuronal decline could be that ageing 

is influencing changes in Pomc expression. The promoter of the Pomc gene contains 

multiple CpG islands that can be either methylated or unmethylated under different 

nutritional and environmental factors (Marco et al. 2013; Plagemann et al. 2009; Stevens 

et al. 2010). Also, studies in animal models showed that the pattern of epigenetic 

markers changes over lifespan (Roth, 2012). Therefore, it is possible that age-related 

epigenetic modifications, but not cell death, underlie the decline in POMC neurons 

reported in this study.
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4. RNA-seq analysis of the young and aged hypothalamus  
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4.1. Introduction 

 The hypothalamus plays a key role in homeostatic and metabolism regulation 

(Dietrich and Horvath 2013; Kim and Choe 2018) and, as part of the ageing process, 

changes in the energy balance have been reported in mammals (Roberts 2000). 

Consequently, an understanding of the impact of ageing on the hypothalamus may 

provide important insights into the systemic ageing. Traditional histological studies using 

immunohistochemistry or in situ hybridisation have been widely used to study different 

processes and cell types in the hypothalamus; however, they are limited by the number 

of proteins or transcripts that can be simultaneously analysed and by a strong bias 

towards known markers. Consequently, the development of large-scale studies of gene 

expression has led to significant advances in understanding the hypothalamic 

functions, including the effects of ageing. 

A classical approach to study the changes in gene expression has been the DNA 

microarrays. In 2001, Jiang and colleagues employed a high-density oligonucleotide 

array to examine gene expression changes in the hypothalamus with age. The main 

results of the study showed downregulation of genes related to neuronal signalling, 

plasticity and structure with age. Moreover, they found proteases upregulated during in 

the aged hypothalamus, several of which were involved in the processing and 

degradation of neuropeptides that could affect the neuroendocrine system (Jiang et al. 

2001). However, the limitations of the method, with only 13000 genes analysed, made 

the study incomplete. 

Recently, the emergence of RNA sequencing (RNA-seq) provided an alternative 

approach for high throughput gene expression studies. Through RNA-seq, gene 

expression, and gene interactions at any time point or in a particular tissue can be 

investigated (Ozsolak and Milos 2011). This method offered higher specificity and 

sensitivity compared to microarrays, facilitating the detection of a broader range of 

differentially expressed genes, especially genes with low expression (Bottomly et al. 

2011; Zhao et al. 2014). Moreover, advances in the RNA-seq technology enabled the 

profiling of individual cells via single-cell RNA-seq, facilitating the transcriptional 

cataloguing of cell types in many tissues (Han et al. 2018; Regev et al. 2017; Schaum 

et al. 2018) 
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Interestingly, two different studies using the single-cell RNA-seq approach have 

systematically catalogued the cell types from the adult murine hypothalamus, identifying 

34 neuronal and up to 36 different non-neuronal populations (Campbell et al. 2017; 

Chen et al. 2017). These studies have provided a comprehensive RNA-seq database of 

the different cell types in the adult hypothalamus; however, the effect of ageing on these 

cells remained largely unexplored. 

In 2019, Boisvert and colleagues investigated the effect of ageing in the astrocyte 

population of the hypothalamus and other brain regions. They employed the Astrocyte-

Ribotag mouse model for purification of astrocyte-enriched mRNA from the adult and 

aged brain to provide an RNA-seq database of gene expression (Boisvert et al. 2018; 

Sanz et al. 2015). The study confirmed previous histological data, with aged astrocytes 

exhibiting gene expression changes consistent with the reactive phenotype, such as 

upregulation of GFAP (Ike et al. 2004; Sofroniew and Vinters 2010), but also provided 

new information regarding the biological processes affected in the aged hypothalamic 

astrocytes. Results confirmed altered expression of synapse-regulating 

genes, supporting an active role for astrocytes in eliminating synapses in the ageing 

brain; increased expression of immune pathways, including the complement system, 

cytokines, and MHC; and decreased expression of genes involved in cholesterol 

synthesis (Boisvert et al. 2018). 

In conclusion, the results mentioned above provided useful insights into the processes 

affected in the hypothalamus with ageing, however, the full picture remains unknown. 

Consequently, to investigate the biological processes affected in the hypothalamus with 

age, the analysis of the hypothalamic transcriptome of young and aged animals was 

performed in this chapter using RNA-seq.   
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4.2. Aims 

To identify and gain insights into the effect of ageing in the hypothalamic 

transcriptome, RNA-seq was performed on mRNA extracted from the hypothalamus of 

young and old mice. The results of RNA-seq were then analysed, and gene ontology 

(GO) analysis was performed to reduce complexity and highlight biological processes 

affected in the aged hypothalamus. 

 

4.3. Results 

 To better understand the processes involved in ageing, changes in gene 

expression were examined in the aged hypothalamus. To do so, hypothalami from 

young and old male mice were collected (n = 5 per age group), and mRNA was isolated. 

The samples were sent to Novogen (Cambridge, UK), where the RNA-seq differential 

gene expression experiment was performed. Each sample had: a sequencing depth of 

at least 20 million reads which is sufficient to accurately call differentially expressed 

genes (Liu, Zhou, and White 2014). The mapping rate is consistently high in all samples 

and the read numbers per sample were very similar (Table 4.1). Therefore, we can be 

confident in the outcome of the analysis. Differential gene expression analysis was 

carried out by Dr Simon Moxon using through Kallisto (Bray et al. 2016) and Sleuth 

(Pimentel et al. 2017).  

 
Table 4.1. Information samples used for RNA-seq analysis 

 

 

s1500 3 Young 18213349 20268284 0.8986

s2175 3 Young 23055413 25340676 0.9098

s2323 3 Young 21098009 23417224 0.901

s2399 3 Young 20870255 23233870 0.8983

s8278 4 Young 24859990 27550149 0.9024

s8282 24 Old 18124777 20056008 0.9037

s9001 25 Old 25177861 27739333 0.9077

s9002 26 Old 22615759 25199938 0.8975

s9003 26 Old 19618635 21778336 0.9008

s9004 25 Old 23073158 25647448 0.8996

Sample name Mapped reads Proccessed reads Mapped fractionAge (months) Age group
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Results revealed 2467 genes with differential expression (q-value < 0.05) in the aged 

group relative to the young animals, with 1131 of them downregulated and 1334 

upregulated. 

 

To classify the upregulated and downregulated genes identified by RNA-seq, gene 

ontology (GO) analysis was performed to reduce complexity and highlight biological 

processes enriched in the transcriptomic data. To do so, the online tool g:profiler 

(Raudvere et al. 2019) was used to analyse the list of upregulated and downregulated 

genes. 

 

4.3.1. Upregulated genes in the aged hypothalamus 

First, the upregulated gene list was analysed using g:profiler. The GO results 

highlighted multiple biological processes involved in the immune response. In fact, from 

the 172 GO modules enriched in the analysis, at least 108 of them were involved in 

immune response and neuroinflammation (Figure 4.1 – A, B). Additionally, GO 

enrichment analysis highlighted modules that appeared to represent the 

oligodendrocytes (OL), and included genes involved in myelination and OL differentiation 

(Figure 4.1 – C, D).   

 

4.3.1.1. Upregulated expression of immune response genes in the aged 
hypothalamus 

The immune genes and pathways upregulated in aged hypothalamus included 

the complement system, the major histocompatibility complex (MHC) and cytokine 

production (Table 1-3). The complement upregulated genes included C1qa, C1qb, 

C1qc, C1qbp, C1ra, C3, C3ar1 and C4b (Table 4.2). The MHC upregulated genes 

included B2m, H2-D1, H2-K1, H2-K2, H2-Q4, H2-Q6, H2-Q7, H2-M3, H2-T22, H2-

T23 and Tap1 (Table 4.3). Production of cytokines was also increased in the aged 

hypothalamus, including the pro-inflammatory cytokines Tnf and Ccl3 (Table 4.4). 

 

Given that microglia and astrocytes are key mediators of CNS immune response, genes 

considered markers of astrocytes and microglia were investigated. Transcriptomic 

results showed increased in RNA levels of Iba1, Trem2, Tmem119, Cx3cr1 and P2ry12, 
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expressed by microglial cells; and Gfap, S100β and Serpina3n, expressed by astrocytes 

(Table 4.5). 

 

4.3.1.2. Upregulated expression of myelin-related genes in the aged 
hypothalamus 

In addition to immune response, GO analysis also showed an enrichment of genes 

involved in myelination and terminal OL differentiation (Table 4.6). Genes essential for 

myelin production were upregulated in the aged hypothalamus, including Mbp and Plp1, 

Mog, Mag and Cnp (Aggarwal, Yurlova and Simons, 2011), as well as the transcriptional 

factor MYRF that directly promotes the expression of these genes (Bujalka et al. 2013). 

The RNA levels of Cd82, Trf and Opalin, expressed in mature-myelinating OL, were also 

increased in the hypothalamus with age (Goldman and Kuypers 2015).  
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Figure 4.1. GO term enrichment for upregulated genes in the aged hypothalamus. (A 
and C) Manhattan plots illustrating GO term enrichment for upregulated genes in the aged 
hypothalamus. The x-axis represents functional terms that are grouped by biological 
process (BP), represented by orange circles. The y-axis shows the adjusted enrichment p-
values in negative log10 scale. (A) Selected GO terms involved to immune response and 
inflammation (dark orange circles). (B) Highlighted enriched GO terms for plot A involved in 
immune response and their corresponding GO identification (ID) numbers. (C) Selected GO 
terms involved in myelination (dark orange circles). (D) Top enriched GO terms for plot C 
involved in myelin production and their corresponding GO identification (ID) numbers. 

 

A.

C.

B.

D.
Enriched GO terms GO ID

Myelination GO:0042552
Ensheathment of neurons GO:0007272
Axon ensheathment GO:0008366
Oligodendrocyte development GO:0014003

Enriched GO terms GO ID

Immune system process GO:0002376
Defense response GO:0006952
Antigen processing and presentation GO:0019882
Cytokine production GO:0001816
Microglial activation involved in immune response GO:0002282
Inflammatory response GO:0006954
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Table 4.2. Complement system genes upregulated in the aged hypothalamus 

 

 
 
Table 4.3. MHC genes upregulated in the aged hypothalamus  

 

 
 
Table 4.4. Cytokines upregulated in the aged hypothalamus 

  

 
 

Log2 Fold-change

C4b Complement component 4B ENSMUSG00000073418 2.007546385 1.93E-36

C3ar1 Complement component 3a receptor 1 ENSMUSG00000040552 1.503129013 5.40E-13

C1qa
Complement component 1, q subcomponent, ⍺ 

polypeptide
ENSMUSG00000036887 1.162447146 3.00E-93

C1qb
Complement component 1, q subcomponent, β 

polypeptide
ENSMUSG00000036905 1.064616806 1.16E-28

C1qc
Complement component 1, q subcomponent, C 

chain
ENSMUSG00000036896 1.063741745 2.03E-28

C3ar1 Complement component 3a receptor 1 ENSMUSG00000040552 1.063741745 1.02E-10

C1ra Complement component 1, r subcomponent A ENSMUSG00000055172 1.046848276 0.008219

C3 Complement component 3 ENSMUSG00000024164 0.948507801 0.026414

C1qbp
Complement component 1, q subcomponent 

binding protein
ENSMUSG00000018446 0.239056656 0.001580

q-value Gene Description Ensembl Gene ID

Log2 Fold-change

H2-Q7 Histocompatibility 2, Q region locus 7 ENSMUSG00000060550 2.143994466 3.77E-12

H2-Q6 Histocompatibility 2, Q region locus 6 ENSMUSG00000073409 2.059270566 5.11E-18

H2-K2 Histocompatibility 2, K2, K region ENSMUSG00000067203 1.654193747 3.86E-05

H2-Q4 Histocompatibility 2, Q region locus 4 ENSMUSG00000035929 1.516117277 3.52E-19

Tap1 Transporter 1, ATP-binding cassette, B ENSMUSG00000037321 1.360246828 3.64E-09

H2-K1 Histocompatibility 2, K1, K region ENSMUSG00000061232 1.316655004 9.17E-31

H2-D1 Histocompatibility 2, D region locus 1 ENSMUSG00000073411 1.155707001 2.86E-27

H2-T23 Histocompatibility 2, T region locus 23 ENSMUSG00000067212 1.103738226 2.32E-24

B2m Beta-2 microglobulin ENSMUSG00000060802 1.042919809 1.11E-100

H2-M3 Histocompatibility 2, M region locus 3 ENSMUSG00000016206 0.693164289 1.45E-05

H2-T22 Histocompatibility 2, T region locus 22 ENSMUSG00000056116 0.479036072 3.15E-09

q-value Gene Description Ensembl Gene ID

Log2 Fold-change

Ccl3 Chemokine (C-C motif) ligand 3 ENSMUSG00000000982 2.172975208 0.000810

Ccl12 Chemokine (C-C motif) ligand 12 ENSMUSG00000035352 1.983459241 0.007173

Ccl6 Chemokine (C-C motif) ligand 6 ENSMUSG00000018927 1.500654046 4.42E-06

Tnf Tumor necrosis factor ENSMUSG00000024401 1.110886950 0.000158

Cxcl13 Chemokine (C-X-C motif) ligand 13 ENSMUSG00000023078 0.974190564 2.97E-09

Cxcl16 Chemokine (C-X-C motif) ligand 16 ENSMUSG00000018920 0.974190564 0.001018

Il16 Interleukin 16 ENSMUSG00000001741 0.806657184 0.022400

Il33 Interleukin 33 ENSMUSG00000024810 0.691608164 1.21E-23

Cxcl14 Chemokine (C-X-C motif) ligand 14 ENSMUSG00000021508 0.144924121 0.044403

q-value Gene Description Ensembl Gene ID

2.50

2.50

2.50
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Table 4.5. Upregulated microglial and astrocytes markers in the aged hypothalamus  

 

 
 
Table 4.6. Upregulated myelin-related genes in the aged hypothalamus  

 

 
 
  

Log2 Fold-change

Trem2 Triggering receptor expressed on myeloid cells 2 ENSMUSG00000023992 1.316341702 6.55E-25

Aif1 Allograft inflammatory factor 1 (Iba1) ENSMUSG00000024397 1.145589307 2.09E-07

Serpina3n Serine protease inhibitor A3N ENSMUSG00000021091 0.969527618 2.51E-33

Gfap Glial fibrillary acidic protein ENSMUSG00000020932 0.622147905 3.94E-17

Tmem119 Transmembrane protein 119 ENSMUSG00000054675 0.485306598 4.08E-05

Cx3cr1 Chemokine (C-X3-C motif) receptor 1 ENSMUSG00000052336 0.447714041 5.06E-05

S100b S100 protein, beta polypeptide, neural ENSMUSG00000033208 0.343824528 0.000449

P2ry12 Purinergic receptor P2Y, G-protein coupled 12 ENSMUSG00000036353 0.280659196 0.007173

q-value Gene Description Ensembl Gene ID

Log2 Fold-change

Pmp22 Peripheral myelin protein 22 ENSMUSG00000018217 0.607378173 2.18E-10

Mbp Myelin basic protein ENSMUSG00000041607 0.490941737 8.03E-15

Trf Transferrin ENSMUSG00000032554 0.490207863 3.57E-17

Opalin Oligodendrocytic myelin paranodal and inner loop 
protein

ENSMUSG00000050121 0.488732173 0.036709

Nkx6-2 NK6 homeobox 2 ENSMUSG00000041309 0.458867079 4.30E-06

Mobp Myelin-associated oligodendrocytic basic protein ENSMUSG00000032517 0.458818701 6.60E-20

Cd82 CD82 antigen ENSMUSG00000027215 0.327519208 0.000952

Cd9 CD9 antigen ENSMUSG00000030342 0.317156812 2.98E-06

Sox10 SRY (sex determining region Y)- box 10 ENSMUSG00000033006 0.279819959 3.26E-05

Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase ENSMUSG00000006782 0.244301843 1.15E-06

Mag Myelin-associated glycoprotein ENSMUSG00000036634 0.236672146 0.006112

Myrf Myelin regulatory factor ENSMUSG00000036098 0.214081203 0.000628

Plp1 Proteolipid protein 1 ENSMUSG00000031425 0.21005480 0.002356

Mog Myelin-associated glycoprotein ENSMUSG00000076439 0.194190652 0.015457

Gene Description Ensembl Gene ID q-value 

2.50

2.50



RNA-seq analysis of the young and aged hypothalamus | Chapter 4 
 

 102 

4.3.2. Downregulated genes in the aged hypothalamus 

Second, the downregulated genes were analysed following the same approach 

(g:profiler). GO results highlighted the biological processes involved in neuronal 

morphogenesis and intracellular transport. From the 295 biological processes enriched 

in the GO analysis, we identified at least 26 involved in neuronal cytoskeleton 

organisation (Figure 4.2 – A, B) and six associated with intracellular transport (Figure 4.2 

– C, D). 

 

4.3.2.1. Neuronal structural genes are downregulated in the aged 
hypothalamus 

The GO analysis revealed an enrichment in genes involved in the architecture of 

the neurons and the regulation of neuronal projection development. Results showed 

downregulation of neuronal cytoskeleton elements including the Tuba1a and Tubb2b, 

part of the tubulin family of proteins that form and organise cell structures called 

microtubules; the intermediate filament Nfm, found in the neuronal cytoplasm; and the 

structural microtubule-associated proteins Map1a, Map1b, Map2, Mapt, Map6 and 

Map10, critical for the organisation and stabilisation of neuronal microtubules (Kapitein 

and Hoogenraad, 2015; Table 4.7). 

 

Besides, genes involved in axonal guidance were also downregulated in the aged 

hypothalamus (Table 4.8). Results showed downregulation of Sema3d, Sema5a and 

Sema6b, members of the semaphorin family involved in axon growth and guidance, and 

the semaphorin receptors, neuropilins Nrp1 and Nrp2 and plexins Plxna1, Plexa2 and 

Pxna4 (Mann, Chauvet, and Rougon 2007; Russell and Bashaw 2018). Additionally, the 

axon guidance cues Slit2 and Efnb1, and the netrin receptor Unc5c (Russell and 

Bashaw 2018) showed decreased RNA levels in the aged hypothalamus. Finally, the 

neurotrophin Bdnf, that regulates neuronal growth and plasticity in adulthood (Tapia-

Arancibia et al. 2004), was also downregulated in the aged hypothalamus. 
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4.3.2.2. Intracellular transport genes are downregulated in the aged 
hypothalamus 

The GO results showed enrichment in genes involved in the intracellular and 

microtubule-based transport. Results showed an age-related downregulation of 

microtubule motor kinesin and dynein proteins, that drive the movement of organelles, 

vesicles, RNA granules, and proteins along the axon in neurons. Downregulated genes 

included members of the kinesin family, that drive anterograde transport outward from 

the soma: Kif2a, Kif26b, Kif3c, Kif3a, Kif3b and Kif21a and Kif1b; and Dync1H1, 

Dync1LI and Dync2H1, encoding different subunits of the cytosolic dynein that drives 

retrograde transport back from the distal axon (Maday et al., 2014; Table 4.9). 

Importantly, these proteins are not only essential for neuronal transport but are also 

involved in myelination by transporting the different myelin components to developing 

the myelin sheath (Herbert et al. 2017). 
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Figure 4.2. GO term enrichment for downregulated genes in the aged hypothalamus. (A 
and C) Manhattan plots illustrating GO term enrichment for downregulated genes in the 
aged hypothalamus. The x-axis represents functional terms that are grouped by biological 
process (BP), represented by orange circles. The y-axis shows the adjusted enrichment p-
values in negative log10 scale. (A) Selected GO terms involved to neuronal cytoskeleton 
organization (dark orange circles). (B) Top enriched GO terms for plot (A) involved in 
neuronal cytoskeleton organization and their corresponding GO identification (ID) numbers. 
(C) Selected GO terms involved in transport (dark orange circles). (B) Top enriched GO 
terms for plot (A) involved in transport and their corresponding GO identification (ID) 
numbers. 

  

A.

C.

Enriched GO terms GO ID

Transport GO:0006810
Regulation of the transport GO:0051049
Cytoskeleton-dependent intracellular transport GO:0030705
Axo-dendritic transport GO:0008088
Microtubule-based transport GO:0099111
Intracellular transport GO:0046907

B.

D.

Enriched GO terms GO ID

Neuron projection development GO:0031175
Neuron projection morphogenesis GO:0048812
Dendrite development GO:0016358
Axon development GO:0061564
Axonogenesis GO:0007409
Cytoskeleton organization GO:0007010
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Table 4.7. Neuronal cytoskeleton genes downregulated in the aged hypothalamus 

 

 
Table 4.8. Axon guidance-related genes downregulated in the aged hypothalamus  

 
 
Table 4.9. Intracellular transport genes downregulated in the aged hypothalamus 

  

  

Log2 Fold-change

Map1b Microtubule-associated protein 1B ENSMUSG00000052727 -0.41906055 6.11E-09

Map10 Microtubule-associated protein 10 ENSMUSG00000050930 -0.345951694 0.012863

Map1a Microtubule-associated protein 1 A ENSMUSG00000027254 -0.316210624 4.48E-07

Map2 Microtubule-associated protein 2 ENSMUSG00000015222 -0.308426493 7.49E-07

Map6 Microtubule-associated protein 6 ENSMUSG00000055407 -0.245507946 8.22E-05

Tubb2b Tubulin, beta 2B class IIB ENSMUSG00000045136 -0.241513988 5.20E-06

Nefm Neurofilament, medium polypeptide ENSMUSG00000022054 -0.189661278 0.000216

Mapt Microtubule-associated protein tau ENSMUSG00000018411 -0.151364805 0.017104

Tuba1a Tubulin, alpha 1A ENSMUSG00000072235 -0.130554880 0.020644

q-value Gene Description Ensembl Gene ID

Log2 Fold-change

Slit2 Slit homolog 2 (Drosophila) ENSMUSG00000031558 -0.441176060 0.000176

Bdnf Brain derived neurotrophic factor ENSMUSG00000048482 -0.435612844 1.59E-07

Plxna4 Plexin A2 ENSMUSG00000029765 -0.395778259 4.41E-08

Sema3d Semaphorin 3D ENSMUSG00000040254 -0.368477194 0.037944

Plxna2 Plexin A2 ENSMUSG00000026640 -0.325646994 4.88E-05

Unc5c Unc-5 netrin receptor C ENSMUSG00000059921 -0.322489367 1.07E-05

Sema5a Semaphorin 5A ENSMUSG00000022231 -0.317199224 4.55E-07

Slit1 Slit homolog 1 (Drosophila) ENSMUSG00000025020 -0.316489949 0.002399

Nrp2 Neuropilin 2 ENSMUSG00000025969 -0.2719596 8.63E-05

Nrp1 Neuropilin 1 ENSMUSG00000025810 -0.254873551 0.000584

Plxna1 Plexin A1 ENSMUSG00000030084 -0.243546084 0.032184

Efnb1 Ephrin B1 ENSMUSG00000031217 -0.224865588 0.034956

Sema6d Semaphorin 6D ENSMUSG00000027200 -0.148115723 0.015836

q-value Gene Description Ensembl Gene ID

Log2 Fold-change

Dync1H1 Dynein cytoplasmic 1 heavy chain 1 ENSMUSG00000018707 -0.382704803 0.000565

Dync2H1 Dynein cytoplasmic 2 heavy chain 1 ENSMUSG00000047193 -0.334862001 0.004433

Kif3c Kinesin familty member 3C ENSMUSG00000020668 -0.226288838 5.09E-05

Kif3a Kinesin familty member 3A ENSMUSG00000018395 -0.214550537 0.000124

Kif3b Kinesin family member 3B ENSMUSG00000027475 -0.203014437 0.000914

Kif26b Kinesin family member 26B ENSMUSG00000026494 -0.185460094 0.027210

Kif1a Kinesin family member 1A ENSMUSG00000014602 -0.184961501 0.021969

Kif21a Kinesin family member 21A ENSMUSG00000022629 -0.177645354 0.001007

Kif2a Kinesin family member 2A ENSMUSG00000021693 -0.169410524 0.014201

Kifap3 Kinesin-associated protein 3 ENSMUSG00000026585 -0.165267676 0.000907

Dync1Li1 Dynein cytoplasmic 1 light intermediate chain 1 ENSMUSG00000032435 -0.162547379 0.007173

Kif1b Kinesin family member 1B ENSMUSG00000063077 -0.124519737 0.045217

Gene Description Ensembl Gene ID q-value 

0-0.5

0-0.5

0-0.5
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4.3.3. Genes with no differential expression 

In addition to the upregulated and downregulated genes, the RNA-seq analysis 

revealed no age-related changes in the expression of the major hypothalamic 

neuropeptides (Table 4.10). These include the orexigenic neuropeptides AgRP and Npy; 

and anorexigenic peptide Pomc and Cartp. In addition, no changes were observed for 

Hcrt (also known as orexin) and Pmch, expressed by neurons located in the LH. 

Moreover, the enkephalin Penk and the Substance P (also known as Tac1), both 

synthesized in the VMN, also showed no differences with age. Finally, other 

hypothalamic neuropeptides with no age-related differences included Avp, Crh, Gad1, 

Nts, Oxt, Sst, and Trh. 

 
Table 4.10. Hypothalamic neuropeptide genes with no differential expression with age 

 
 

4.3.4. Transcriptomic conclusions 

 Upregulation of immune and inflammatory response molecules, as well as 

myelin-related genes, in the aged hypothalamus. 

 Downregulation of genes involved in neuronal cytoskeleton organisation, 

microtubule-based transport and axonal growth in the aged hypothalamus. 

 No differential expression of the major hypothalamic neuropeptides with age. 

Pomc Pro-opiomelanocortin-alpha ENSMUSG00000020660
Cartp CART prepropeptide ENSMUSG00000021647
Npy Neuropeptide Y ENSMUSG00000029819
Agrp Agouti related neuropeptide ENSMUSG00000005705
Gad1 Glutamate decarboxylase 1 ENSMUSG00000070880
Sst Somatostatin ENSMUSG00000004366
Nts Neurotensin ENSMUSG00000019890
Trh Thyrotropin releasing hormone ENSMUSG00000005892
Oxt Oxytocin ENSMUSG00000027301
Avp Arginine vasopressin ENSMUSG00000037727
Penk Preproenkephalin ENSMUSG00000045573
Crh Corticotropin releasing hormone ENSMUSG00000049796
Pmch Pro-melanin-concentrating hormone ENSMUSG00000035383
Tac1 Tachykinin 1 ENSMUSG00000061762
Hcrt Hypocretin ENSMUSG00000045471

Gene Description Ensembl Gene ID q-value 

0.386745

0.783506
0.886421
0.815756
0.645035
0.963289
0.892759
0.189772
0.333884
0.784253
0.083454
0.094938
0.837774
0.063059
0.419022
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4.4. Discussion 

A better understanding of the molecular effects of ageing in the hypothalamus 

may help to reveal mechanisms underlying the age-related decline in body homeostasis. 

Therefore, in this study, bulk RNA-seq analysis of the hypothalamus from young and old 

mice revealed four biological processes significantly altered with age: immune response, 

myelination, neuronal structure and intracellular transport. In contrast, no differences in 

gene expression between the adult and aged brain was found for the major 

hypothalamic neuropeptides. 

 

4.4.1. Upregulated genes are associated with immune response and myelin 

formation 

Inflammation in the hypothalamus has been reported during ageing, however, 

most of the studies are restricted to the astrocyte population (Boisvert et al. 2018; 

Santos, Bobermin, et al. 2018; Santos, Roppa, et al. 2018; Wang et al. 2006). Results 

in this chapter represent a more comprehensive investigation of the age-related immune 

response in the aged hypothalamus. Major changes detected included the upregulation 

of the complement pathway, MHC genes and inflammatory cytokines. The complement 

pathway and MHC genes play important roles in neuroinflammation, but growing 

evidence also suggested their involvement in key homeostatic functions, including the 

maintenance of synaptic plasticity, neurogenesis and clearance of cellular debris 

(Alawieh, Elvington, and Tomlinson 2015). Recently, the complement pathway has been 

implicated in synaptic pruning in neurological disorders; for example, C4 is upregulated 

in schizophrenia, and complement is involved in eliminating synapses in AD (Hong et al. 

2016; Sekar et al. 2016). Interestingly, the complement-dependent synapse pruning 

involves synapses tagging by astrocytes followed by microglia phagocytosis, showing 

crosstalk between the two glial cell types (Liddelow et al. 2017).  

 

Moreover, the present study identified upregulation of cytokines with different roles in 

regulating the pathophysiology and the inflammatory responses in the CNS. These 

included the pro-inflammatory mediator Tnfα, previously associated with hypothalamic 

inflammation and systemic ageing (Zhang et al. 2013). However, changes in cytokine 

expression are not restricted to Tnfα, and results also showed upregulation of Ccl3 and 
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Il16, involved in the disease progression and axonal degeneration reported in MS 

(Skundric 2015; Sørensen et al. 2004). Another inflammatory mediator upregulated is Il-

33, that enhance chemokines and nitric oxide production, as well as phagocytosis by 

microglia; and its involvement in the pathophysiology of different neurological disorders 

has been reported (Abd Rachman Isnadi et al. 2018; Hudson et al. 2008). In the 

hypothalamus, increased Il-33 levels are detected in diet-induced inflammation (Huang 

et al. 2019). 

 

In the CNS, most of the immune-related genes are expressed by astrocytes and 

microglia (Gasque, Fontaine, and Morgan 1995; Morgan and Gasque 1997), although 

some neuronal contribution cannot be ruled out (Freidin, Bennett, and Kessler 1992). 

Accordingly, analysis of the microglial and astrocyte transcriptome from discrete brain 

regions indicated that immune-related genes are particularly sensitive to ageing (Boisvert 

et al. 2018; Grabert et al. 2016). In the present study, age-related upregulation of 

astrocytes reactive markers, including Gfap, S100β and Serpina3n were observed 

confirming previous reports (Boisvert et al. 2018; Santos, Bobermin, et al. 2018; Santos, 

Roppa, et al. 2018; Wang et al. 2006). Besides astrocyte makers, increased expression 

of microglial homeostatic genes, such as Iba1, Trem2, Tmem119, Cx3cr1 and P2ry12 

was also detected. Upregulated of homeostatic genes in microglia has been reported 

upon activation (von Bernhardi, Eugenín-von Bernhardi, and Eugenín 2015; Tang and 

Le 2016); thus, suggesting that hypothalamic microglia may acquire an activated 

phenotype with age. The detailed investigation of hypothalamic microglia and astrocytes 

dynamics with age is presented in Chapter 5. 

 

In summary, the upregulated genes reflect a neuroinflammatory response in the ageing 

hypothalamus, possibly due to astrocyte and microglia activation. Interestingly, low 

doses of the anti-inflammatory drug ibuprofen have been shown to reduce astrocyte 

and microglial reactivity, leading to a protective effect against age-related cognitive 

decline in rodents (Rogers et al. 2017). Moreover, ageing delay and lifespan extension 

have been achieved in mice through preventing against hypothalamic NF-κB activation 

(Zhang et al. 2013); thus, providing evidence of a link between the hypothalamus and 

ageing development (Tang and Cai 2013; Tang et al. 2015; Zhang et al. 2013). 

 

Following the neuroinflammatory response, a novel finding of this study was the 

upregulation of genes involved in myelination and neuronal ensheathment. In mammals, 
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myelin degeneration is a hallmark of the ageing brain and is highly correlated by a decline 

in the levels of myelin components (Peters, Moss and Sethares, 2000; Sandell and 

Peters, 2001; Peters, 2002; Bowley et al., 2010; Xing et al., 2012; Wang et al., 2020).  

 

To date, however, the myelination pattern and the precise myelin dynamics in the 

hypothalamus throughout life are not well characterised. Therefore, the present chapter 

provides the first detailed investigation of the expression of myelin-related genes in the 

adult and aged hypothalamus. Results showed an increase in the expression of the 

major abundant myelin proteins Mbp and Plp1, that hold structural function by stabilising 

and compacting myelin membranes (Baron and Hoekstra 2010). Additional myelin 

proteins upregulated included Mog, Mag, Mobp and Cnp, Pmp22 and Cd9, although 

these lack a primarily structural role and their function is relatively unknown (Morell and 

Quarles 1999; Nakamura, Iwamoto, and Mekada 1996; Ohsawa et al. 2006).  

 
Unsurprisingly, the transcriptional factor Myrf, that specifically activates the expression 

of myelin-related genes such as Mbp, Plp, Mog and Mag were also upregulated in the 

aged group (Bujalka et al. 2013). In spite its role in activating myelin gene expression, 

MYRF is necessary to promote and maintain terminal OL differentiation, and genetic 

ablation resulted in a delayed but severe CNS demyelination (Emery et al. 2009; 

Koenning et al. 2012). In addition, other transcriptional factors upregulated were Sox10 

and Nkx6.2, that appear to have similar functions in the control of OL differentiation, and 

targeted mutations of these two genes caused retarded OL maturation and myelin gene 

expression (Claus Stolt et al. 2002; Qi et al. 2001). Moreover, upregulation of Cd82, Trf 

and Opalin, expressed in the terminal stages of the OL differentiation, was also detected 

(Goldman and Kuypers 2015; Tripathi et al. 2017). From the markers mentioned above, 

Opalin is considered the most terminal marker of OL differentiation, given that its 

expression starts at the onset of myelination, after the appearance of other myelin genes 

(Golan et al. 2008). 

 

The relative amounts and timely expression of the different myelin components are key 

for the normal myelination and myelin remodelling throughout various stages of life (Zeller 

et al. 1985). Impaired axonal transport and accumulated organelles including 

mitochondria are observed in myelinated axons of PLP-overexpressing mice (Edgar et 

al. 2010; Ip et al. 2012). Moreover, myelin-related gene expression and myelin structure 

are altered in neurodegenerative disorders, such as MS and AD, where age is a major 
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risk factor (Allen et al. 2018; Gendelman et al. 1985). Therefore, in line with the results 

presented in this chapter, the myelin sheath formation and the terminal OL differentiation 

seem to be altered in the aged hypothalamus. To validate these results and to fully 

understand the precise dynamics of myelination throughout life, a detailed 

characterization of the hypothalamic myelination pattern across the mouse lifespan is 

presented in Chapter 7.  
 
4.4.2. Downregulated genes are associated with the neuronal cytoskeleton, 

intracellular transport and axonal growth 

The neuronal cytoskeleton has been proposed as a modulator of ageing in 

processes, and their dysfunction has been associated to multiple neurogenerative 

disorders, such as AD, Amyotrophic lateral sclerosis (ALS) and PD (Iqbal, Grundke-Iqbal, 

and Wisniewski 1986; Salvadores et al. 2017). The neuronal cytoskeleton is mainly 

composed of three elements: the actin microfilaments, the intermediate filaments, and 

the microtubules (Mclean and Robertson 2011). Considering the important functionality 

of cytoskeletal proteins in neurons, changes in the expression of some of the 

components could lead to important functional consequences in the normal functioning 

of the hypothalamic circuitry. 

 

In neurons, neurofilaments (NF) represent the most abundant intermediate filaments are 

composed by NFL, NFM, and NFH subunits (for light, medium, and heavy, respectively) 

(Cooper and Hausman 2007); and the ratio of NF subunits is critical for proper filament 

formation (Mclean and Robertson 2011). However, the results presented in this chapter 

identified downregulation of Nfm, but not Nfl and Nfh, suggesting that the ratio of 

subunits changes with age. Alterations in the NF subunits ratio include the formation of 

neuronal cytoplasmic inclusions, disruption of intracellular transport and axonal 

degeneration (Szaro and Strong 2010; Xiao, McLean, and Robertson 2006).  

 

In regard to other cytoskeleton components, this study reported an age-related decline 

in Tuba1a and Tubb2b. Tuba1a and Tubb2b encode α- and β- tubulin isoforms that, in 

turn, compose microtubules (Aiken et al. 2017; Gloster et al. 1994). Microtubules are 

required for the maintenance of neuronal shape and stability, axonal and neurite growth, 

and also form the cytoskeletal "highways" upon which trafficking proteins move (Conde 

and Cáceres 2009; Kapitein and Hoogenraad 2015). Thus, the reduced tubulin levels 
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during ageing would be detrimental to these processes and the normal functioning of 

the hypothalamic neuronal cell types. In fact, previous studies identified trafficking 

defects and synaptic impairment in mice lacking TUBA1A (Buscaglia et al. 2020), and 

mutations in TUBB2B have been shown to cause errors in axon guidance and axonal 

damage in humans (Jaglin et al. 2009). In addition, microtubules interact with a group 

of proteins known as microtubule-associated proteins (MAPs), that influence their 

stability and interactions with other cellular components (Kapitein and Hoogenraad, 

2015). Downregulation of several MAP family members were detected in the aged 

hypothalamus, including Mapt (also known as tau). Tau is the major MAP in mature 

neurons and, its abnormal accumulation underlies the physiopathology of AD and other 

related tauopathies (Iqbal et al. 2010). Also, in vitro studies indicated that tau modulates 

the interaction of motor proteins with microtubules (Dixit et al. 2008) 

 

Following the reduction in the expression of neuronal cytoskeleton components, 

downregulation of axon growth and guidance molecules was also observed. The CNS 

axons have a minimal natural ability to regenerate after injury (Huebner and Strittmatter 

2009), and an age-dependent decline in axon growth potential has been recently 

reported across different brain regions of the adult mouse (Geoffroy et al. 2016). Thus, 

axonal growth and the regenerative capacity of hypothalamic neurons seem to decrease 

substantially with age, making them more vulnerable to negative environmental 

influences such as increased inflammation. 

 

Since trafficking defects are associated with microtubule and MAP dysfunction, it is not 

surprising that the transcriptomic data also revealed downregulation of microtubule-

associated motor proteins. These included several members of the kinesin and dynein 

families, essential for anterograde and retrograde axonal transport, respectively. 

(Howard 1996; Ligon et al. 2004). Previous observations also suggested that the axonal 

transport is reduced with age in rodent neurons (Brunetti et al. 1987; Geinisman, 

Bondareff, and Telser 1977; Li et al. 2003; Stromska and Ochs 1982; Takihara et al. 

2015; Uchida et al. 2001). The neuronal function relies heavily on the intracellular 

transport of essential cargos within axons and dendrites; for example, mobilisation of 

mitochondria to regions of high energy demand, trafficking of mRNA and ribosomal 

subunits for local translation and delivery of signalling endosome-mediated delivery of 

survival factors (Mattedi and Vagnoni 2019). Thus, an interruption in the bi-directional 
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axonal transport could have detrimental consequences for a wide array of neuronal 

functions. 
 

Besides their role in neuronal intracellular transport, dynein and kinesin proteins are also 

involved in the myelination process. Previous studies in zebrafish identified the kinesin 

Kif1b is essential for the anterograde transport of Mbp, and Kif1b mutants showed 

myelin defects (Lyons et al. 2009). Similar to Kif1b, the retrograde motor complex 

dynein/dynactin is also necessary for normal myelination in zebrafish and mammals 

(Herbert et al. 2017). 

 

In summary, an increased the axonal atrophy with age could be expected in the neuronal 

tracts present in the hypothalamus due to the reduced expression of cytoskeletal 

proteins and axonal transport, as well as the decreased expression of genes involved in 

axonal growth and guidance.  

 

4.4.3. General conclusions 

Overall, the ageing hypothalamus alters its gene expression to generate a 

detrimental environment for neuronal and glial function, due to exacerbated 

inflammatory and neurotoxic responses. This inflammatory response may be mediated 

by microglia and astrocyte activation, although it is still unclear how their activation is 

initially triggered. It has been proposed that age-related changes in the hypothalamic 

circuitry, including inflammation, could underlie the decline in metabolism and energy 

homeostasis observed during ageing. However, it is possible that changes in neuronal 

connectivity, rather than altered expression of the hypothalamic neurotransmitters, are 

behind the energy shift reported in aged individuals. To sum up, the data presented here 

support previous studies and provides new clues about the functional changes in the 

hypothalamus with age.  
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5. Age-related inflammation in the hypothalamus  



Age-related inflammation in the hypothalamus | Chapter 5 
 

 115 

5.1. Introduction  

Chronic inflammation is a hallmark of many age-related neurodegenerative 

diseases as well as metabolic syndrome disorders (López-Otín et al. 2013). Recent 

research indicates that hypothalamic inflammation participates in the development of 

metabolic syndrome components including obesity, hypertension and glucose 

intolerance, all these often associated to ageing (Purkayastha and Cai 2013; 

Purkayastha et al. 2011; Tang et al. 2015; Zhang et al. 2008). Consequently, in the last 

years, it has been proposed the role of hypothalamic inflammation in the ageing 

development and lifespan control (Tang and Cai 2013; Tang et al. 2015; Zhang et al. 

2013). Within the hypothalamus, microglia and astrocytes mediate immunity and 

inflammation by producing and releasing a range of inflammatory mediators (Clarke et 

al. 2018; Colombo and Farina 2016; Valdearcos et al. 2017). 

 

In their immune role, microglia respond to abnormalities in the parenchyma by triggering 

their activation which, in turn, can influence astrocyte activation and recruitment through 

their secretory profile (Liddelow and Barres 2017). Microglial activation can be broadly 

categorised in two main types: M1 and M2, with different roles in neuroinflammation. 

The M1 phenotype exerts neurotoxic proprieties, and M2 has a phagocytic/ 

neuroprotective role in the inflammatory response (von Bernhardi et al. 2015; Gordon 

2003; Tang and Le 2016). Some specific markers have been described for both 

subtypes: The M1 phenotype expresses markers such as CD86 (cluster of differentiation 

86), and also produce inflammatory cytokines such as TNFα, IL-1β, and IL-6; the M2 

phenotype typical markers are Arg1 (Arginase I), CD206 (cluster of differentiation 206), 

and Chi3l3 (chitinase-like 3) (Tang and Le 2016).  

 

Immunohistochemistry studies for pro-inflammatory factors revealed that microglial cells 

in the mediobasal hypothalamus (MBH) increase with age, concomitantly with TNFα 

expression and activation of NF-κB. TNFα is a pro-inflammatory cytokine that leads to 

the activation of transcription factor NF-κB. NF-κB is the master switch and central 

regulator of inflammation, immune response and cell death (Hayden and Ghosh 2008). 

In the MBH, TNFα upregulation and NF-κB activation were mostly limited to microglia in 

middle-aged animals but became prevalent across the MBH in aged animals, producing 

a neurotoxic effect to neighbouring cells, including neurons. Interestingly, suppression 
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of MBH microglial NF-κB activation prevented the microglia increase, exerting an anti-

ageing effect (Zhang et al. 2013).  

 
Together with microglia, astrocytes provide immune defence to the CNS by producing 

and releasing a range of inflammatory mediators (Pekny and Pekna 2014; Sofroniew 

2009). In addition to immune defence, growing evidence has highlighted a critical role 

of astrocytes in orchestrating hypothalamic functions by participating in synaptic 

plasticity, metabolic and trophic support to neurons, and nutrient sensing (Fuente- 

Martín et al., 2012; Fuente-Martín et al., 2016). Interestingly,  hypothalamic astrocytes 

increase in number and can acquire a pro-inflammatory phenotype with age (Santos, 

Bobermin, et al. 2018; Santos, Roppa, et al. 2018; Wang et al. 2006).  Also, TGFβ 

(transforming growth factor beta) production and release by astrocytes are increased in 

the hypothalamus of aged mice, and TGFβ excess was further shown to induce 

hypothalamic RNA stress response and activation of NF-κB in MBH neurons (Yan et al. 

2014). Besides their pro-inflammatory phenotype, aged astrocytes also exhibit changes 

in their neurochemical properties, including changes in the regulation of glutamatergic 

homeostasis, glutathione biosynthesis, glucose metabolism and amino acid profile 
 

Activation of inflammatory pathways in hypothalamic cells seems to be restricted to 

astrocytes and microglia cells during early ageing but becomes prevalent in neurons 

with age. Thus, inhibition of NF-κB activation in hypothalamic neurons increased mice 

lifespan while decreasing ageing-related changes in histological markers such as muscle 

size and skin thickness. In contrast, the over-activation of NF-κB by the constitutive 

activation of IKKβ (inhibitor of nuclear factor kappa-B kinase subunit beta) showed the 

opposite effects (Zhang et al. 2013). 

 

The results mentioned above provide information on hypothalamic glia-neuron crosstalk 

by which microglia and astrocyte inflammatory activation leads to cytokine release and 

neuronal inflammation in the aged hypothalamus. However, the effects of ageing in the 

microglial and astrocytic populations are still in the early stages of characterisation. 

Consequently, in this chapter, to further understand ageing-related changes in 

hypothalamic microglia and astrocyte populations were characterised across the murine 

lifespan. 
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5.2. Aims 

Given that age-related neuroinflammation is mediated by microglia and astrocytes, 

both populations were investigated in the ageing hypothalamus. To do so, 

immunohistochemistry for Iba1 or GFAP was employed to visualise microglia or 

astrocytes in the hypothalamus, respectively. Additionally, expression of specific glial 

markers was detected via western blot. The aims included: 

 

 Determine age-related changes in distribution, number and/or morphology in 

hypothalamic microglia and astrocytes. 

 Evaluate the activation state of microglial cells in the hypothalamus during the 

ageing process. 

 

5.3. Results 

5.3.1. Hypothalamic microglia 

5.3.1.1. Microglia morphology, but not distribution, is altered in the 
mediobasal hypothalamus during ageing 

 Given that microglia mediate immunity and inflammation in the hypothalamus, 

the distribution and morphology of microglial cells were investigated in the ageing 

hypothalamus. To do so, Immunohistochemistry for Iba1 was performed on brain 

sections from young adult (n = 4), middle-aged (n = 4) and old mice (n = 3); between 

bregma positions -1.22 to -2.3 mm. The Iba1+ cells were uniformly scattered in the 

hypothalamic parenchyma, and no-regional enrichment was observed across the three 

age groups (Figure 5.1, A – F).  

 

In the Arc nucleus, young animals presented Iba1+ cells with ramified morphology, 

small, rounded cell body and slender, elongated processes (Figure 5.1, A’, A’’, D, D’’). 

In the middle-aged, the ramified phenotype was also predominant, although some cells 

appeared to possess slightly shorter process compared to their young counterparts 

(Figure 5.1, B’, B’’, E’, E’’). Contrarily, old animals presented Iba1+ cells with dystrophic 

morphology, enlarged cell bodies and shorter and thickened processes (Figure 5.1, C’, 
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C’’, F’, F’’). In addition to the Arc, microglial cells present in the ME suffered the same 

phenotypical changes with age (Figure 5.2). Microglia morphology has been widely used 

to identify activation state, with ramified morphology typically observed in the resting 

state and ameboid morphology present in the activated form. Therefore, results suggest 

that hypothalamic microglia undergo progressive morphological changes from resting 

to activated phenotype with age.  

 

5.3.1.2. Microglia number and size is not affected by ageing in the 
mediobasal hypothalamus 

Since microglial morphology adopted an activated phenotype with age, the 

quantity and size of microglia were measured to see the effects on inflammation with 

age. Immunohistochemistry for Iba1 was performed in brain sections from young adult 

(n = 4), middle-aged (n = 4) and old mice (n = 3). Quantifications were performed in a 

minimum of 12 sections per animal, ranging from bregma -1.22 to -2.06 mm (see 

section 2.8.3 for more details). Results showed no statistical differences in the microglial 

number (Figure 5.3, A) and size (Figure 5.3, B) in the hypothalamus with age. 
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Figure 5.1. Iba1+ cells show an age-related switch from resting to activated phenotype 
in the MBH, featuring ameboid morphology and short and thickened processes. (A – C) 
Representative images of the Arc, bregma -1.46 mm, stained for Iba1, from young-adult 
(A), middle-aged (B) and old (C) animals. High power magnification of microglial cells for 
young (A', A''), middle-aged (B', B'') and old (C', C') showed age-related morphological 
features of microglial activation, such as ameboid cell body and short and thickened 
processes. (D, E, F) Representative images of the Arc, bregma -1.7 mm stained for Iba1, 
from young-adult (D), middle-aged (E) and old (F) animals. High power magnification of 
astrocytes for young (D', D''), middle-aged (E', E'') and old (F', F) showed an age-related 
change in microglial morphology. Bregma positions are approximated and indicated. Scale 
bar (A, B, C, D, E, F) 50 µm, (A’-A’’, B’-B’’, C’-C’’, D’, D’’, E’, E’’, F’ F’’) 25 µm. 
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Figure 5.2. Iba1+ cells show an age-related switch from resting to reactive microglia 
morphology in the ME. (A, B, C) Representative images of the Arc, bregma -1.46 mm, 
stained for Iba1, from young adult (A), middle-aged (B) and old (C) animals. Dashed box 
shows a higher power of microglial cells for young (A’, A’’), middle-aged (B’, B’’) and old 
(C’, C’). Bregma position is approximated. Dashed lines outline the 3V. Scale bar 50 µm. 
3V – third ventricle. ME – median eminence. Scale bar 50 µm 

 

 

 

Figure 5.3. The number of Iba1+ microglia and size remain stable during ageing in the 
MBH. (A) Number of Iba1+ cells within the rectangle defined as Iba1+ per area in young 
adult (black column), middle-aged (dark grey) and old animals (light grey). (B) Iba1+ cell size 
in young adult (black column), middle-aged (dark grey) and old animals (light grey). Results 
show no changes in Iba1+ cell number and size with age. Data is represented as mean 
±SEM, and a minimum of 4 animals per age group was quantified. All significance testing 
was performed using one-way ANOVA followed by Tukey post-hoc test (*p<0.05). 

  

Young adult Middle-aged Old

M
E,

 -1
.8

2

Iba1 Iba1

A. B. C.

A’. B’. C’.
Iba1

3V
3V 3V

A. B.

0

20

40

60

80

AV
E 

GF
AP

+ 
ce

ll 
nu

m
be

r **

Young adult Middle-aged Old

0

20

40

60

80

Ib
a1

+ 
ce

lls
/ a

re
a



Age-related inflammation in the hypothalamus | Chapter 5 
 

 121 

5.3.1.3. Expression of pro-inflammatory cytokine TNFα and the M1 microglia 
marker CD86 is increased with age in the hypothalamus 

To further investigate and confirm the activation state in aged microglia, different 

markers of microglia activation were assessed. Microglial activation in the CNS is 

heterogeneous, which can broadly categorise in two main types: M1 and M2, with 

different roles in neuroinflammation. Some specific markers have been described for 

both subtypes: The M1 neurotoxic phenotype expresses specific markers such as 

CD86, and also produce inflammatory cytokines such as TNFα; the M2 neuroprotective 

phenotype typical markers include Arg1 and CD206. In this study, the protein levels of 

TNFα, CD86, CD206 and Arg1 were assessed via western blot in hypothalamic protein 

extracts from young adult, middle-aged and old mice (CD86, CD206, Arg1 n = 3 for 

each age group, n = 6 for TNFα).  

 

Expression of TNFα and CD86 expression was detected in the hypothalamus. Anti-

TNFα antibody detected two strong bands of 17 KDa and 27 KDa (Figure 5.4, A), which 

both increased with age as highlighted by densitometry analysis (Figure 5.4, B). In turn, 

anti-CD86 antibody detected multiple isoforms with a molecular weight between 52 KDa 

to 70 KDa (Figure 5.4, C). Densitometry analysis of the 70 KDa showed no differences 

with age (Figure 5.4, D). However, the 52 KDa isoform was highly expressed in aged 

animals, with the middle-aged group showing a bigger increased compared to young 

animals (Figure 5.4, E). Contrarily, expression of CD206 and Arg1 was not detected in 

the hypothalamus in any age group (results not shown). The data suggests that 

microglial cells in the hypothalamus may adopt a neurotoxic, pro-inflammatory (M1) 

activated phenotype with age, although M2 activation cannot be ruled out completely. 
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Figure 5.4. The protein levels of TNFα, CD86 and GFAP in the hypothalamus. (A) Representative 
image of immunoblot for TNFα and the loading control β-ACTIN. TNFα runs at an approximated MW 
of 27 KDa (transmembrane domain). Additional bands corresponding to the soluble form of 17 KDa 
can only be observed in the old animal lane. (B) Comparison of densitometric analysis of TNFα 27 
KDa level relative to the loading control, in young adult (black), middle-aged (dark grey) and old (light 
grey) animals, show a significant increase with age. (C) Representative image of immunoblot for 
CD86 and the loading control β-ACTIN. CD86 antibody detects multiple bands with MW between 
52 to 70 KDa, approximated. (D) Comparison of densitometric analysis of TNFα 70 KDa level relative 
to the loading control, in young adult (black), middle-aged (dark grey) and old (light grey) animals, 
show no age-related differences. (E) Comparison of densitometric analysis of TNFα 52 KDa level 
relative to the loading control, show a significant increase with age. (F) Representative image of 
immunoblot for GFAP and the loading control β-ACTIN. GFAP antibody detects a double band 
running at an approximated MW of 51 KDa. (G) Comparison of densitometric analysis of GFAP level 
relative to the loading control, in young adult (black), middle-aged (dark grey) and old (light grey) 
animals, show no age-related differences. Y – young. M – middle-aged. O – old. Numbers indicate 
bands of the molecular weight marker used as a size standard (KDa). Data is represented as mean 
±SEM. A total of 6 animals per age group were quantified and for GFAP and TNFα and 3 animals 
per age group for CD86. All significance testing was performed using one-way ANOVA followed by 
Tukey post-hoc test (*p<0.05). 
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5.3.2. Hypothalamic astrocytes 

5.3.2.1. Age-related effect on astrocytes distribution and morphology in the 
mediobasal hypothalamus 

Given that astrocytes release pro-inflammatory cytokines in the hypothalamus 

with age, the effects of ageing in the hypothalamic astrocytes were investigated. The 

distribution and morphology of the cells were investigated in the hypothalamus using 

immunohistochemistry for GFAP on brain sections from young adult (n = 4), middle-

aged (n = 4) and old mice (n = 3); between bregma positions -1.22 to -2.3 mm.  

 

Results show GFAP+ cells in the parenchymal region flanking the 3V. Also, some GFAP+ 

cells were observed in the ependymal layer of the 3V but were not taking into 

consideration due to their tanycytic identity (Figure 5.5, A – F) (Goodman and 

Hajihosseini 2015). Therefore, the parenchymal GFAP+ astrocytes distribution was 

analysed in the three groups of age. Results showed that GFAP+ astrocytes were not 

homogeneously distributed in the hypothalamus, and an age-dependent regional 

enrichment was observed. In young animals, the Arc nucleus shows higher GFAP 

expression, compared to the rest of the hypothalamic nuclei (Figure 5.5, A, D). In 

addition to the Arc nucleus, high GFAP signal was also observed in the VMN of middle-

aged animals (Figure 5.5, B, E). Finally, in old animals, high GFAP levels were additionally 

detected in the DMN (Figure 5.5, C, F). These results suggest that GFAP signal increase 

initially in the Arc-ME in middle-aged, which becomes more prevalent in the rest of nuclei 

of old animals. 

 

Concomitantly to their distribution, astrocyte morphology also presented age-related 

changes. Results showed that GFAP+ astrocytes from young animals presented short 

and thin processes, representative of the resting morphology (Figure 5.5, A’, A’’, D’, 

D’’). The astrocytes in the middle-aged group presented longer processes than young 

animals. However, variability was observed between animals (Figure 5.5, B’, B’’, E’, E’’). 

Finally, in old mice, astrocytes appeared bigger with longer and thicker processes – 

features of the reactive phenotype (Figure 5.5, C’, C’’, F’, F’’). Moreover, in the aged 

hypothalamus, astrocytes seem to form an interconnected network thought their 

projections, termed syncytium (Scemes and Spray 2003). Both, the reactive morphology 

present in aged astrocytes and the syncytium formation, are signs of age-related 
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astrogliosis. In conclusion, hypothalamic astrocytes seem to undergo morphological 

changes towards a reactive phenotype with age, suggesting that the remodelling of the 

GFAP astrocytes is a dynamic process that develops gradually with age. 

 

5.3.2.2. Astrocytes number and size is increased during ageing in the 
mediobasal hypothalamus but GFAP total hypothalamic levels 
remain stable 

After exploring the astrocytes distribution and morphology, the next step was to 

investigate if the astrocyte number and/or size was also affected with age. To do so, 

immunohistochemistry for GFAP was performed in brain sections from young adult (n = 

4), middle-aged (n = 4) and old mice (n = 3). Quantifications were performed in a 

minimum of 12 sections per animal, ranging from bregma -1.22 mm to -2.06 mm. 

Results showed that GFAP+ astrocytes show a significant increase in number (Figure 

5.6, A) and size (Figure 5.6, B) in the hypothalamus with age. 

 

The total levels of GFAP in the hypothalamus were assessed via western blot in protein 

extracts from young adult, middle-aged and old mice (n = 6 for each age group). Anti-

GFAP antibody detected a strong band of 51 KDa, the predicted molecular weight of 

the full-length protein. Additionally, the antibody detected a weaker band of 45 KDa 

(Figure 5.4, A). Densitometry analysis of the full-length protein showed no significant 

differences in GFAP expression with age, although a trend towards increase can be 

observed (Figure 5.4, B). 
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Figure 5.5. GFAP expression in the MBH increases with age and GFAP+ astrocytes display 
reactive morphology features. (A, B, C) Representative images of the MBH stained for 
GFAP (White), from young-adult (A), middle-aged (B) and old (C) animals. GFAP expression 
increase can be first observed in the Arc nucleus of middle-aged animals and later expands 
to the VMN and DMN in old animals. (D-F) Representative images of the Arc at bregma -
1.58 mm stained for GFAP (White), from young-adult (D), middle-aged (E) and old (F) 
animals. High power magnification of astrocytes for young (D', D''), middle-aged (E', E'') and 
old (F', F’') show an age-related change in astrocyte morphology. (G-I) Representative 
images of the Arc at bregma -2.06 mm stained for GFAP (White), from young-adult (G), 
middle-aged (H) and old (I) animals. High power magnification of astrocytes for young (G', 
G''), middle-aged (H', H'') and old (I', I’') show an age-related change in astrocyte 
morphology. Bregma positions are approximated and indicated. Dashed lines outline 
different hypothalamic nuclei. DMN – dorsomedial nucleus. VMN – ventromedial nucleus. 
Arc – arcuate nucleus. Scale bar (A, B, C, D, E, F, G, H, I) 50 µm. Scale bar (D’, D’’, E’, E’’, 
F’ F’’, G’, G’’, H’, H’’, I, I’’) 25 µm. 
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Figure 5.6. The number and size of hypothalamic GFAP+ astrocytes increase with age. 
(A) Number of GAFP+ cells in the Arc nucleus of young adult (black column), middle-aged 
(dark grey) and old animals (light grey). Data show a significant age-related increase in 
GFAP+ cells density. (B) GFAP+ cell size in young adult (black column), middle-aged (dark 
grey) and old animals (light grey). Data show a significant age-related increase in GFAP+ 
cell size. Data is represented as mean ±SEM, and a minimum of 3 animals per age group 
were quantified. All significance testing was performed using one-way ANOVA followed by 
Tukey post-hoc test (*p<0.05, **p<0.01). 

  

A. B. 

0

20

40

60

80

AV
E 

GF
AP

+ 
ce

ll 
nu

m
be

r **

Young adult Middle-aged Old

0

20

40

60

80

GF
AP

+ 
ce

lls
/ a

re
a 

**



Age-related inflammation in the hypothalamus | Chapter 5 
 

 127 

5.4. Discussion 

Growing evidence indicate that hypothalamic inflammation participates in the 

development of systemic ageing. Inflammation in the CNS is linked to glial remodelling 

and activation; however, the effects of ageing in the hypothalamic microglial and 

astrocytic populations are still in the early stages of characterisation. In this study, 

immunohistochemistry for the microglial marker Iba1 and astrocytic marker GFAP was 

employed. In aged microglia, Iba1+ cells acquired an enlarged cell body with ameboid 

morphology, typical of the activated phenotype. In turn, aged GFAP+ astrocytes 

increased in number and presented bigger and thicker ramifications, forming a 

syncytium of interconnected cells. The changes observed suggest that reactive gliosis 

involving both microglial and astrocyte populations develop gradually in the 

hypothalamus with age. In addition, western blot analysis suggest that aged 

hypothalamic microglia adopt a neurotoxic/pro-inflammatory (M1) activated phenotype 

accompanied by the release of the pro-inflammatory cytokine TNFα.  

 

In summary, results in this chapter suggest that inflammation, mediated by activation of 

microglia and astrocytes, and release of pro-inflammatory factors is a feature of the aged 

hypothalamus. This detrimental environment may affect various neural cell types and 

disrupt key hypothalamic signalling pathways essential for energy balance, glucose 

homeostasis and blood pressure. 

 

5.4.1. Age-related changes in microglia and astrocytes morphology, number 

and distribution in the hypothalamus 

5.4.1.1. Age-related changes in hypothalamic microglia  

To characterise the hypothalamic microglia and any age-related changes, 

immunohistochemistry for Iba1 was performed in brain sections of young, middle-aged 

and old animals. Iba1 is a calcium-binding protein expressed in the cytoplasm of 

microglia, but not present in other neural cell types (Ahmed et al. 2007).  Microglial cells 

(Iba1+) were observed uniformly distributed in the hypothalamic parenchyma in non-

overlapping territories, and their density was stable across the three age groups. The 

results presented in this chapter contradict with previous reports that observed 
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hypothalamic microglia increase during ageing (Yin et al. 2018; Zhang et al. 2013) and 

in diet-induced inflammation (Baufeld et al. 2016; Valdearcos et al. 2017). The 

differences observed between the present study and Zhang et al. could be due to the 

different counting methods employed, and the bregma positions analysed. Interestingly, 

in other regions of the brain, including the hippocampus, the total number of microglia 

in the brain is not increased during healthy ageing (Long et al. 1998; VanGuilder et al. 

2011b).  
 

In contrast, an age-related microglial phenotypic change towards the activated state is 

observed. Furthermore, the microglia activation seems to occur gradually as the animal 

ages, and the first signs of microglial activation are observed in middle-aged animals. 

Consistent with the data present here, studies in mammals observed microglia with 

activated morphology in different areas across the healthy aged CNS (von Bernhardi et 

al. 2015; Cerbai et al. 2012; Conde and Streit 2006; Lee et al. 2017). In the 

hypothalamus, size change in conjunction with altered morphology in microglia was 

observed after HFD feeding (Berkseth et al. 2014; Thaler et al. 2012); however, this is 

the first study providing evidence of morphological changes in hypothalamic microglia 

during ageing.   

 

5.4.1.2. Age-related changes in hypothalamic astrocytes 

To characterise age-related changes in hypothalamic astrocytes, 

immunohistochemistry for GFAP was performed in brain sections of young, middle-aged 

and old animals.  

 

In agreement with previous reports, an age-related increase in hypothalamic astrocytes 

(GFAP+) density was detected (Santos, Bobermin, et al. 2018; Wang et al. 2006). The 

increase in GFAP+ number could be originated from different sources: (1) mature 

astrocytes that reactivate the cell cycle and proliferate (Bardehle et al. 2013; Gadea, 

Schinelli, and Gallo 2008); (2) parenchymal progenitors (Li et al. 2012); (3) 

ependymal/tanycytes cell progenitors (Chaker et al. 2016; Robins, Stewart, et al. 2013). 

Importantly, although GFAP is a widely used marker for astrocytes, presents some 

caveats: (1) is not expressed by all astrocytes (Sofroniew and Vinters 2010); (2) as an 

intermediate filament protein of the cytoskeleton, immunolabelling for GFAP only 

represents about 15% of the total astrocyte volume (Bushong et al. 2002). 
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The results presented in this chapter indicate that aged astrocytes acquire a reactive 

phenotype, with general hypertrophy of the cell body that increase in size with age. 

Reactive astrocytes lose the ability to carry out their normal functions and could induce 

the death of neurons and OLs (Clarke et al. 2018; Liddelow et al. 2017). In the 

hypothalamus, and consistent with their reactive phenotype, aged astrocytes exhibit 

functional changes (Santos, Roppa, et al. 2018) and up-regulate the expression of 

neuroinflammatory genes (Boisvert et al. 2018). Following the reactive phenotype, in the 

hypothalamus, aged GFAP+ astrocytes seem to overlap neighbouring astrocyte 

processes, ultimately forming a network or syncytium (Scemes and Spray 2003). These 

phenotypical changes are first observed in middle-aged animals and become more 

prevalent in the old group, suggesting that the activation and remodelling of the 

hypothalamic astrocytes is a dynamic process that develops with age.  

 

Taken together, cellular hypertrophy, loss of individual astrocyte domains and increase 

in astrocyte number suggests that reactive astrogliosis occurs in the ageing 

hypothalamus (Sofroniew 2009; Sofroniew and Vinters 2010). Chronic astrogliosis can 

also impair the neuronal functions, limit axonal regeneration, and decrease neurogenesis 

in aged mice (Menet et al. 2003; Pekny and Nilsson 2005). In the rodent hypothalamus, 

reactive astrogliosis has been associated with a reduction in POMC neurons (Thaler et 

al. 2012), essential for energy balance and metabolism regulation. Therefore, the gradual 

and chronic inflammatory response observed in the hypothalamus during ageing may 

be detrimental for the correct functioning of neuronal and glial populations present in the 

area and may underlie some of the metabolic defects observed during ageing. 

 

5.4.2. Pro-inflammatory markers 

 Increasing evidence indicates that microglial activation is heterogeneous, which 

can be categorised into two main opposite types: M1 and M2. The M1 phenotype exerts 

neurotoxic proprieties, and M2 has a phagocytic/neuroprotective role in the 

inflammatory response. (von Bernhardi et al. 2015; Gordon 2003; Tang and Le 2016). 

In addition to neurotoxicity, the M1 microglia is required for the activation of adjacent 

astrocytes by releasing factors such as TNFα and interleukins (Liddelow et al. 2017). 
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Protein levels of M1- and M2-type microglial markers were assessed via western blot in 

total hypothalamic extracts. Increased expression of the M1 marker CD86 and the pro-

inflammatory cytokine TNFα in the hypothalamus was detected with age (Figure 5.4). 

Interestingly, in the hypothalamus, previous studies showed that upregulation of TNFα 

is restricted to the microglial cells during early ageing, but became prevalent across the 

neighbouring cells in 22-months-old mice (Zhang et al. 2013) 

 

Contrarily, expression of the M2 markers CD206 and Arg1 was not detected in the 

hypothalamus. The failure to detect both M2 phenotype markers could be due to 

multiple reasons: (1) the antibodies employed are not suitable for western blot analysis; 

(2) CD206 and Arg1 are not expressed in the hypothalamus, or their expression falls 

below the detection threshold of the method. In support of (2), the transcriptomic 

experiment in Chapter 3 failed to detect age-related changes in the classical M2 markers 

Cd206, FIZZ1 and Chil3l3 (results not shown). 

 

In conclusion, results suggest that hypothalamic microglia acquire a neurotoxic 

phenotype (M1) during ageing, accompanied by the expression of pro-inflammatory 

cytokines such as TNFα, that may contribute to the age-related astrocyte activation in 

the hypothalamus. 

 

5.4.3. Activators of hypothalamic age-related inflammation  

 This chapter showed that hypothalamic microglia and astrocytes undergo 

gradual changes towards a pro-inflammatory phenotype with age. The gradual changes 

observed in both populations indicate an escalation of inflammation during age 

progression, although it is still unclear how microglial and astrocyte activation is initially 

triggered. Different mechanisms could contribute, including mitochondrial dysfunction 

(Drougard et al. 2015; Tang et al. 2015), loss of autophagy (Kaushik et al. 2011, 2012) 

and intracellular RNA stress response (Yan et al. 2014). It is also possible that tissue 

changes during ageing development, such as adiposity and immune system 

dysfunction, secondarily contribute to hypothalamic inflammation (Deleidi, Jäggle, and 

Rubino 2015; Kuk et al. 2009).    
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Regardless of insufficient understanding as to its primary causes, age-related 

hypothalamic inflammation mediated by astrocytes and microglia disrupts key 

hypothalamic signalling pathways and mediate the development of the metabolic 

syndrome (Purkayastha and Cai 2013; Purkayastha et al. 2011; Tang et al. 2015; Zhang 

et al. 2008). Therefore, strategies that target age-related inflammation in the 

hypothalamus, like suppression of NF-κB reported by Zhang et al., may delay the 

development of age-related conditions and increase the lifespan. 
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6. Proliferation studies in the ageing hypothalamus 
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6.1. Introduction 

 Adult neural stem cell niches harbouring neural stem and progenitor cells able 

to differentiate through different glial and/or neuronal lineages have been identified in 

several species. Specifically, the canonical NSC niches include the SVZ, lining the walls 

of the lateral ventricles, and the SGZ of the hippocampus (Barnea and Nottebohm 1994; 

Eriksson et al. 1998; E. Gould et al. 1999; Gould et al. 1998; Kempermann, Kuhn, and 

Gage 1997). Besides the well-known neurogenic niches, the hypothalamus has 

emerged as a novel niche for postnatal and adult neurogenesis and gliogenesis. 

 

In the hypothalamus, two main potential neurogenic sites have been identified, the 

ependymal cells lining the 3V and the parenchyma; although, the exact location and 

identity of the proliferative niche is object of strong controversy. The studies reporting 

neurogenesis in the postnatal and adult rodent hypothalamus, using both BrdU 

incorporation studies and cell lineage analysis using inducible Cre lines, are summarized 

in Table 6.1 and 6.2, respectively.  

 

On the one hand, previous studies in rodents indicated that tanycytes lining the 

ependymal layer of the 3V harbours NSC that can give rise to both neurons (NeuN+, 

HuC/D+) and glial cells (GFAP+) and may self-renew by generating other tanycytes (Niels 

Haan et al. 2013; D. A. Lee et al. 2012; Robins, Stewart, et al. 2013). The new-born 

neurons originated from tanycytes integrate into the appetite and energy balance 

regulating nuclei, as lineage tracing studies revealed (Lee and Blackshaw 2012; Xu et 

al. 2005). Proliferation of tanycytes lining the 3V is frequently observed in postnatal ages, 

but it seems to decrease in adults (Niels Haan et al. 2013; D. A. Lee et al. 2012). In fact, 

young mice (2 – 3 months old) treated with the thymidine analogue BrdU, which 

effectively labels new-born cells in the hypothalamus, showed BrdU+ throughout the 

hypothalamic parenchyma but very few BrdU+ cells lining the 3V, (Djogo et al. 2016; 

Kokoeva et al. 2007; Robins, Trudel, et al. 2013; Zhang et al. 2017). In addition to 

decreased BrdU labelling, a recent study reported loss of NSC in the 3V with age, by 

visualizing proteins strongly expressed in NCS, such as Sox2, Nestin, Bmi1, and Msh1 

(Goodman and Hajihosseini 2015; Zhang et al. 2017). Interestingly, one study using 

lineage tracing of Nestin expressing tanycytes showed that neurogenesis occurs even 

in mice as old as 9 months, and that deletion of IGF-1 receptors in Nestin expressing 

cells and their progeny enhances neurogenesis (Chaker et al. 2016). 
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Several studies have suggested that the neural stem/progenitor cells reside within the 

hypothalamic parenchyma. Parenchymal new-born cells have been identified 

throughout many hypothalamic regions, including the Arc, VMN, DMN nuclei and the 

ME (Niels Haan et al. 2013; Kokoeva et al. 2007; D. A. Lee et al. 2012; Matsuzaki et al. 

2009; Robins, Trudel, et al. 2013). Besides, some studies identified a regional 

enrichment, with the ME containing 15-fold more BrdU+ cells than the rest of the 

hypothalamus (Djogo et al. 2016; Kokoeva et al. 2007; D. A. Lee et al. 2012). Analysis 

of the adult hypothalamus seven weeks post BrdU treatment revealed that parenchymal 

BrdU+ cells give rise to OLs (oligodendrocytes, CC1+) and, to a lesser extent, neurons 

(DCX+, HuC/D+, Tuj1+) (Kokoeva et al. 2007). Moreover, recent studies identified the 

majority of parenchymal dividing cells as NG2-glia in the adult mice (Robins, Villemain, 

et al. 2013). Hypothalamic NG2-glia is highly regenerative and can undergo multiple self-

renewing divisions (Robins, Trudel, et al. 2013). Independent studies using the mitotic 

blocker  arabinofuranosyl cytosine (AraC) reached the same conclusion and identified 

the majority of cycling cells in the adult hypothalamus as NG2-glia, being the microglia 

the second proliferative population in this region (Djogo et al. 2016). 

 

The NG2-glia comprise an OL progenitor population that has an important role in 

myelination post-development (McTigue and Tripathi 2008), with a dense distribution 

throughout the CNS and a high potency to regenerate. In the hypothalamus, NG2-glia 

has been found enwrapping LepR processes from arcuate neurons, with the AraC NG2-

glia induced ablation causing degeneration of LepR processes in the ME. Thus, 

proliferative NG2-glia has a critical role in the normal functioning of the hypothalamic 

neuronal circuits, and a short-term NG2 elimination can cause permanent neuronal 

processes impairment (Djogo et al. 2016). 

 

In conclusion, many studies have reported cell proliferation and generation of new cells 

of neuronal and glial lineage in the postnatal and adult hypothalamus, with the majority 

of proliferative cells identified as NG2-glia; however, the characterisation of this niche is 

still in its early stages compared to the canonical SGZ and SVZ niches. Consequently, 

in this chapter, I decided to characterise the proliferating niche within the hypothalamus 

and define any changes during normal ageing. A decline in hypothalamic neurogenesis 

could disrupt key signalling pathways, contributing to functional changes in the 

hypothalamus with age.   
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6.2. Aims 

Given that cycling cells with neuro- and gliogenic properties have been identified in 

the postnatal and adult hypothalamus, the next step was to investigate and characterise 

the dynamics of the hypothalamic stem cell niche during normal ageing: 

 

 Defining the identity and spatial location of the proliferative cells in the adult 

hypothalamus. 

 Characterisation of the number and distribution of the proliferative cells within 

the adult hypothalamus.  

 Defining the changes in the number and distribution of the different proliferative 

subpopulations during ageing. 
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Table 6.1. Studies reporting neurogenesis in postnatal and adult hypothalamus of rodents using the mitotic marker BrdU 

 

Location 
proliferative cells

Identity cycling cells 
and progeny Species Age BrdU 

treatment BrdU labelling paradigm Treatment Treatment effect 
on proliferation Reference

Periventricular zone  
Parenchyma                                                                    GFAP+, NeuN+ Rt P20-40 IP 1x daily for 3 d (chased for 17 d) Gonadal 

hormones Up Ahmed et 
al., 2008

Parenchyma (Arc) HuC/D+ Ms P70-84 ICV osmotic pump for 9 d (acute 
harverst or chased for 34 d) - - Bless et al., 2014, 

2016

Parenchyma (Arc-ME) Iba1+, NG2+ Ms 2-3 m
ICV osmotic pump for 7 d  (acute 
harvest)                                                  
IP 6x within 30 h (acute harvest)

AraC ICV 6 d
First down, Up 
within following      

14 d
Djogo et al., 2016

Parencyma                                                                NeuN+, POMC+ Ms P50 ICV for 3 days (chased for 3 d, 7 d,    
17 d or 21 d) HFD 3-7 d Up for 3 d, down 

after
Gouaze et 
al., 2013

Ependymal layer                                  
Parenchyma (Most)

BGal+ (Fgf10nLacZ), 
NeuN+ Ms P28-32                           

P60-70 DW for 15 d (acute harvest)                     - - Haan et al., 2013

Ependymal layer                    
Parenchyma

Prss56+ (Prss56-Cre), 
Sox2+, Vim+ Ms 3 m ICV osmotic pump for 7d (chased for 

42 d) FGF ICV  7 d Up Jourdon et 
al., 2016

Parenchyma (Arc-ME)
APC (CC1)+, 
DCX+,HuC/D+, NPY+, 
POMC+, Tuj1+

Ms P60 ICV osmotic pump 7d (chased for       
3 d, 7 d, 21 d, 35 d or 49 d) CNTF ICV 7 d Up Kokoeva, Yin and 

Flier, 2005

Parenchyma APC (CC1)+, DCX+, 
HuC/D+, Tuj1+ Ms P60 ICV osmotic pump for 7 d (chased 

for 2 d, 9 d, 22 d or 42 d) CNTF ICV 7 d Up Kokoeva, Yin and 
Flier, 2007

Ependymal layer (ME)                                                 
Parenchyma HuC/D+, Nestin+ Ms P10 IP 2x daily for 9 d (chased for 26 d)                                              HFD 30 d Up Lee et al., 2012

Parenchymal (Arc-ME) HuC/D+, Nestin+ Ms P42 IP 2x daily for 9 d (chased for 26 d)  
HFD, High 
protein diet    
30 d

Up (ME)                         
Down (Arc) Lee et al., 2014

Parenchyma (Arc-ME) NeuN+, NPY+, POMC+, 
RIP+ (OL), S100β+ Ms 4-8 m ICV for 7 days (chased 10 d or 30 d) Chronic HFD Down Li, Tang and Cai, 

2013

Periventricular zone  
Parenchyma                                                                    

APC+, DCX+, NeuN+, 
SYN+ Rt P50 IP 1x daily for 5 d (chased for 6 d,          

13 d,  23 d, 33 d, 43 d or 53 d) Heat exposure Up Matsuzaki et 
al., 2009
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Table 6.1(cont). Studies reporting neurogenesis in postnatal and adult hypothalamus of rodents using the mitotic marker BrdU  

 

Location 
proliferative cells

Identity cycling cells 
and progeny Species Age BrdU 

treatment BrdU labelling paradigm Treatment Treatment effect 
on proliferation Reference

Ependymal layer (P50)                            
Parenchyma

APC+, DCX+, GFAP+, 
NeuN+ Rt

P50                 
10–11 m          
22–25 m

IP 1x daily for 5 d (chased 40-50 d) Heat exposure Up Matsuzaki et 
al., 2015

Ependymal layer            
Parenchyma GAD67+, Glut+, NeuN+ Rt P45 IP 1x daily for 5 d (chased for 6 d or 

40 d) Heat exposure Up Matsuzaki et 
al., 2017

Parenchyma HuC/D+, NeuN+ Ms P60 ICV osmotic pump for 7 d (chased 
for 28 d) HFD 28 d Down McNay et 

al., 2012

Ependymal layer                                                           
Parenchyma                                      GFAP+, NeuN+ Rt P28 ICV osmotic pump for 28 d (chased 

for 10 d) - - Mohr, Don Carlos 
and Sisk, 2017

Ependymal layer             
Parenchyma

HuC/D+, GFAP+, 
Nestin+, NeuN+, Vim+ Rt 2.5-3 m IP 1x daily for 5 d (chased for 2 d or 

21 d)
Voluntary 
exercise Up Niwa et al., 2016

Parenchyma MAP2+, Tuj1+ Rt Adult (not 
specified)

ICV osmotic pump for 7 d (chased 
for 28 d)

BDNF ICV        
12 d Up Pencea et 

al., 2001

Periventricular zone  
Parenchyma                                                                    

GFAP+, Iba1+, NeuN+, 
S100β+ Rt P60 IP 2x daily for 3 d (chased for 18 d) IGF ICV 7 d Up Perez-Martin et 

al., 2010

Parenchyma (Arc) ACTH (POMC)+, AgRP+ Ms 3 m ICV osmotic pump for 42 d (acute 
harvest)

Degeneration 
Agrp-neurons Up Pierce and Xu, 

2010

Ependymal layer                                                           
Parenchyma                                      

GFAP+ (⍺-tanycytes), 
Vim+ Ms P45-60 ICV osmotic pump for 7 d (acute 

harverst or chased for 42 d) FGF2 ICV 7 d Up Robins, Stewart, 
et al., 2013

Parenchyma (Arc-ME) HuC/D+, NG2+, Sox2+ Ms P60
ICV osmotic pump for 7 d (acute 
harverst or chased for 30 d)                                      
DW 28 d (acute harvest)

- - Robins, Trudel, 
et al., 2013

Periventricular zone  
Parenchyma                                                                    

GFAP+, HuC/D+, 
Orexin A+ Rt P60 IP every 2 h for 48 h (chased for       

3 d, 7 d, 28 d or 56 d)
bFGF ICV 
single dose Up Xu et al., 2005

Ependymal layer               
(only 2-4 m)                                                                  - Ms

2-4 m                
11-16 m                         
>22 m

IP 2x daily for 7 days (acute harvest) - - Zhang et 
al., 2017



Proliferation studies in the hypothalamus | Chapter 6 
 
 

 139 

Table 6.2. Studies reporting neurogenesis in postnatal and adult hypothalamus using lineage tracing mouse models 

  

Abbreviations used: AraC - arabinofuranosyl cytosine. Arc - Arcuate nucleus. d - day. DMN - dorsomedial nucleus. DW - drinking water. 
HFD - high fat diet. ICV - intracerebroventricular. IGF - insulin-like growth factor. IP - intraperitoneal. FGF - fibroblast growth factor. LH - 
lateral hypothalamus. m - month. ME - median eminence. PH - posterior hypothalamus. VMN - ventromedial hypothalamus. 

Identity and location 
progenitor cells Identity progeny Progeny 

location  Transgenic line Reporter Age of 
induction Tamoxifen induction paradigm Reference

Ependymal layer 
(ependymocytes                   
and ⍺/β-tanycytes)

GFAP+, GLAST+, Glut-R+, 
GABA-R+, NeuN+, NPY+, 
GHRH

Arc, VMN, DMN, 
LH, PH Nestin-CreERT2 R26tdTom 3 m IP 2x daily for 5 d (chased for 1 m,       

6 m or 13 m)
Chaker et 
al., 2016

Parenchymal OPC BrdU+, Sox2+ Arc, ME,VMN NG2-CreERT2 R26tdTom 2-3 m IP 2x daily for 5 d (chased for 18 d) Djogo et 
al., 2016

Ependymal layer                   
(β-tanycytes) NeuN+ Arc, VMN Fgf10-CreERT2 R26LacZ P60 IP 1x daily for 7 d, then in diet for     

10 d (chased for up to 84 d) Haan et al., 2013

Ependymal layer               
(⍺2-tanycytes) BrdU+, Huc/D+, Sox2+ Arc, VMN, DMN Prss56-Cre R26tdTom 3 m - Jourdon et 

al., 2016

Ependymal layer            
(β2-tanycytes) DCX+, HuC/D+ Arc, ME Nestin-CreERT2 R26YFP P4.5 IP single dose (chased for 30 d) Lee et al., 2012

Parenchymal 
progenitor cell

NeuN+, NPY+, POMC+, 
S100β+, RIP+ Arc, VMN Sox2 promoter- 

Cre lentivirus R26YFP 3 m Delivery not stated (chased for        
80 d)

Li, Tang and 
Cai, 2013

Ependymal layer                 
(⍺-tanycytes) DCX+, GFAP+, NeuN+ Arc, VMN, DMN Glast-CreERT2 R26LacZ P56–P84 IP 1x daily for 10 d (chased for 42 d 

and 270 d)
Robins, Stewart, 
et al., 2013

Parenchymal OPC 
APC (CC1)+, BrdU+, 
CD13+ (pericytes), 
HuC/D+, NeuN+,  Sox2+ 

Arc, ME, VMN NG2-CreERT2 R26tdTom P56–P84 IP 2x daily for 5 days (chased for      
2 d, 14 d, 20 d and 60 d)

Robins, Trudel, 
et al., 2013
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6.3. Results  

6.3.1. Characterisation of proliferating cells in the hypothalamus 

Given that previous research suggested that the adult hypothalamus contains a 

proliferative stem cell/progenitor niche, the next step was to characterise the 

hypothalamic proliferative niche during ageing. To do so, immunohistochemical 

detection of BrdU was performed in hypothalamic brain sections from young adult (3 – 

7 months old), middle-aged (10 – 14) and old mice (18 – 24; n = 4 animals per age 

group). As a result, BrdU+ cells were detected in the hypothalamic parenchyma 

between bregma positions -1.22 mm to -2.46 mm (Figure 6.1). The dividing cells were 

observed in the Arc-ME, with minor contributions to the VMN. The BrdU+ cells were 

present in the same hypothalamic regions across the three age groups (Figure 6.2). As 

a general observation, the BrdU+ cells were found in close proximity to each other, in 

some cases resembling to cell pairs, suggesting that they recently underwent cell 

division. As a control, the corpus callosum was immunolabelled for BrdU, and positive 

cells were observed in the region (Figure S 4). 

 

Additionally, very few BrdU+ were observed in the ependymal layer of the 3V, where the 

neurogenic tanycytes are located. The low number of proliferating cells lining the 3V 

suggested that ependymal cells, including tanycytes, are a non-dividing or a very slow 

dividing population in the adult brain. 

 

In summary, the BrdU+ cells spatial distribution is maintained during ageing, being 

specially concentrated in the Arc-ME region. 
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Figure 6.1. Representative distribution and density of BrdU+ cells in the hypothalamus. 
Approximated bregma positions are indicated. Red circles indicate position of the groups 
of BrdU+ cells. Results obtained from young, middle-aged and old animals, with a minimum 
of 3 animals analysed per age group, were employed for the diagram design. Dashed lines 
outline the 3V and the limits of the different hypothalamic nuclei. 3V – third ventricle. VMN 
– Ventromedial nucleus. AH – Anterior hypothalamus. Arc – Arcuate nucleus. ME – Median 
eminence.  
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Figure 6.2. Proliferative cells within the hypothalamus were mainly observed in the Arc-
ME in young, middle-aged and old animals. Mice were treated for 15 d with BrdU in 
drinking water to mark proliferative cells. (A, B, C) Representative images of the MBH at 
bregma -1.46 mm stained for BrdU (white), from young-adult (A), middle-aged (B) and old 
(C) animals. (D, E, F) Representative images of the MBH at bregma -1.7 mm stained for 
BrdU (white), from young-adult (D), middle-aged (E) and old (F) animals. (G, H, I) 
Representative images of the MBH at bregma -2.06 mm stained for BrdU (white), from 
young-adult (G), middle-aged (H) and old (I) animals. (J, K, L) Representative images of the 
ME at bregma -1.7 mm stained for BrdU (white), from young-adult (J), middle-aged (K) and 
old (L) animals. Bregma positions are approximated and indicated. Experiments performed 
in young, middle-aged and old animals with 4 animals analysed per age group. Dashed 
lines outline the 3V and the limits of the hypothalamus. Scale bar 50 µm. 3V – third ventricle. 
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6.3.2. Characterisation of the hypothalamic proliferative cells 

Next, the identity of the proliferating cells identified in the Arc-ME regions was 

confirmed. To do so, BrdU co-localisation with different cell type makers was assessed 

in the hypothalamus via immunohistochemistry in young, middle-aged and old mice 

(minimum of n = 3 animals per age group). The specific cell type markers included Olig2 

(OL lineage), Iba1 (microglia), GFAP (astrocytes, α-tanycytes), NeuN (neurons) and 

S100β (astrocytes, OLs and α-tanycytes). In addition, transgenic mice selectively 

expressing GFP in the Pomc and Npy neuronal populations (Pomc-GFP and Npy-GFP, 

respectively) were used to determine BrdU+ cells identity.  

 

Results showed that BrdU+ cells co-localised with Olig2 and Iba1, specific makers of 

OLs and microglia respectively (Figure 6.3 and 6.4). Co-localisation of BrdU with S100β 

was also observed, but the BrdU+/S100β+ cells were always Olig2+, confirming that 

they belong to the OL lineage (Figure 6.5).  

 

Moreover, in old animals but not in young adults, a very small number of GFAP+ 

astrocytes co-localised with BrdU staining (Figure 6.6). However, BrdU co-localisation 

with NeuN, Pomc and Npy (Figure S 5) was not observed, suggesting the neurogenic 

capacity of the proliferative cells is very low or totally absent in the adult hypothalamus. 

Also, co-localisation of BrdU with LacZ (Fgf10nLacZ), that labels Fgf10-expressing 

tanycytes and derived cells, was not detected in any age group (Figure S 6). 

 

In addition to co-localisation studies, immunohistochemistry for the neuronal new-born 

marker doublecortin (DCX), a transient marker for early postmitotic neurons, was 

assessed in the hypothalamus of young, middle-aged and old animals. This antibody 

was previously validated by former members of the group in postnatal tissue with 

positive staining. In the adult hypothalamus, however, staining for DCX was not 

detected. 

 

In conclusion, results confirmed that the hypothalamic parenchymal stem cells are 

capable of gliogenesis and give rise to new-born microglial cells and OLs throughout 

the lifespan.  
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Figure 6.3. BrdU+ cells co-localise with the oligodendrocyte marker Olig2 in the Arc-
ME. (A – A’’) Orthogonal view z-stack images of BrdU (blue) and Olig2 (red) immunostaining 
show co-localisation (white arrow). Immunostaining for Olig2 (red) and BrdU (blue) show 
co-localisation in the ME (B – B’’) and the Arc nucleus (C’ – C’’). The pictures shown were 
obtained from young animal tissue (n = 3). Dashed lines outline the borders of the 3V. 
Experiments performed in young, middle-aged and old animals with a minimum of 3 animals 
analysed per age group. Scale bar 25 µm. 3V – third ventricle. 
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Figure 6.4. BrdU+ cells co-localise with the microglia marker Iba1 in the Arc-ME. (A – 
A’’) Orthogonal view z-stack images of BrdU (blue) and Iba1 (red) immunostaining show co-
localisation (white arrow) in the hypothalamus. Immunostaining for Iba1 (red) and BrdU (blue) 
show co-localisation in the ME (B – B’’’) and the Arc nucleus (C – C’’). Experiments 
performed in young, middle-aged and old animals with a minimum of 3 animals analysed 
per age group. The pictures shown were obtained from young animal tissue. Dashed lines 
outline the borders of the 3V. Scale bar 25 µm.  
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Figure 6.5. BrdU+ cells co-localise with S100β+/Olig2+ cells but not S100β+/Olig2- 
cells. (A – A’’’) Immunostaining for S100β (green), Olig2 (red) and BrdU (blue) in bregma -
1.7 mm, approximated. Dashed lines outline the borders of the 3V. White arrows signal 
S100β, Olig2 and BrdU co-localisation. No S100β+/Olig2- cells were found to co-localise 
with BrdU staining. The pictures shown were obtained from young animal tissue. 
Experiments performed in young, middle-aged and old animals with a minimum of 3 animals 
analysed per age group. Scale bar 25µm. 3V – third ventricle. 
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Figure 6.6. GFAP+ astrocytes that co-localise with BrdU+ cells are rare and only 
detected in aged animals. (A – A’’) Orthogonal view z-stack images of GFAP (Red) and 
BrdU+ (Blue) immunostaining show co-localisation (white arrow) in the hypothalamus of old 
mice. (B – B’’’). Immunostaining for GFAP (Red) and BrdU (Blue) show a BrdU+/GFAP+ cell 
in the Arc (white arrow) and BrdU+/GFAP- cells (asterisks) in the Arc nucleus. Experiments 
performed in young, middle-aged and old animals with a minimum of 3 animals analysed 
per age group. Dashed lines outline the borders of the 3V. Pictures were obtained from old 
animal tissue. Scale bar 25 µm.  
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6.3.3. Age-related effects in number and rostro-caudal distribution of 

hypothalamic proliferative cells  

After confirming the identity of the new-born cells, I wished to investigate 

whether the proliferation rate of these parenchymal proliferative cells suffered any age-

related changes. To do so, the total number BrdU+ cells in the Arc-ME were quantified 

in young adult, middle-aged, and old mice (n = 4 for each age group); between bregma 

positions -1.22 to -2.46 mm. Statistical analysis of young adult 151 ± 26.2 (n = 4), 

middle-aged 116 ± 25.2 (n = 4), and old mice 107 ± 30.4 (n = 3) results showed a 

significant age-related decrease in the total number of BrdU+ cells (Figure 6.7 – A).  

 

The rostro-caudal distribution of BrdU+ cells was also investigated and BrdU+ cells were 

mainly observed between bregma -1.58 mm and -2.06 mm (Figure 6.1 and Figure 6.7 

– F). BrdU+ distribution showed that the age-related decline in proliferation was 

homogenous throughout the Arc-ME region (Figure 6.7 – F). 

 

6.3.4. Age-related effects in the identity of the new-born cells derived from 

hypothalamic proliferative cells 

Given that the results showed an age-related decline in the number of dividing 

cells, I wanted to investigate the effect on the production of new-born OLs (Olig2+) and 

microglia (Iba1+). To do so, the number (Figure 6.7 – B and C ) and percentage (Figure 

6.7 D and E) of BrdU cells that co-localised with Olig2 or Iba1 was obtained for each 

age group (n = 4). Results showed that 45 – 50% BrdU+ co-localised with Olig2+ and 

30 – 35% with Iba1+, making the Olig2+ population the most proliferating in the 

hypothalamus. Importantly, these percentages were not affected with age, indicating 

that the age-related decline in proliferation affects both populations equally. Additionally, 

rostro-caudal distribution of BrdU+/Olig2+ and BrdU+/Iba1+ cells was also investigated, 

with no changes observed with age (Figure 6.7 – G and – H).  

 

In conclusion, proliferation in the hypothalamus suffers an age-related decline, affecting 

both the microglia and OLs. However, Olig2+ and Iba1+ are not the only proliferating 

populations, as they together accounted only for the 80% of the proliferating cells. Thus, 

the identity of the remaining proliferating cells remains unidentified, although their identity 
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could be inferred due to their localisation. As an example, some BrdU+ could be 

pericytes and/or endothelial cells as they are found in close contact with blood vessels, 

requiring confirmation by the use of specific markers for both populations. 
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Figure 6.7. BrdU+ cells decline in the hypothalamus with age, affecting the two main 
proliferative populations (Olig2+ and Iba1+) equally. (A) Number of BrdU+ cells in young adult 
(black), middle-aged (dark grey) and old animals (light grey). Data show a significant age-related 
decline in the BrdU+ cell number. (B) Number of Olig2+/BrdU+ cells in young adult, middle-
aged, and old animals. Data show a significant age-related decline. (C) Number of 
Olig2+/BrdU+ cells in young adult, middle-aged and old animals. (D) Percentage of 
Olig2+/BrdU+ show no age-related differences. (E) Percentage of Iba1+/BrdU+ show no age-
related differences. (F) Distribution of BrdU+ cells in the hypothalamus, represented as the 
average number of BrdU+ cells in sections ranging from bregma -1.34 mm to -2.3 mm. Different 
colours represent the three age groups, young adult (blue), middle-aged (orange) and Old (red) 
(G) Distribution of proliferative Olig2+ cells in the MBH, represented as the percentage 
Olig2+/BrdU+ cells respect to the total BrdU+ cell count, between bregma -1.34 mm to -2.3 
mm. (H) Distribution of proliferative Iba1+ cells in the MBH, represented as the percentage 
Iba1+/BrdU+ cells respect to the total BrdU+ cell count. Data is represented as mean ±SEM 
and a minimum of 4 animals per age group were quantified. The significance testing for A, B 
and C was performed using one-way ANOVA followed by Tukey post-hoc test (*p<0.05). 
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6.4. Discussion 

Previous studies have suggested that a population of neural stem/progenitor cells 

reside within the adult hypothalamus, although the anatomic location of the proliferative 

niche is the object of strong controversy. In this study, using the mitotic marker BrdU, 

cycling cells have been identified in the hypothalamic parenchyma of the Arc nucleus 

and the ME; thus, suggesting that the putative progenitor population is located in the 

parenchyma. The proliferative cells were identified as Olig2+ (oligodendrocyte) and 

Iba1+ (microglia), accounting for 80% of the BrdU+ cells. However, co-localisation with 

mature neuronal markers failed to give positive results, thus suggesting that the 

parenchymal progenitor cells predominantly give rise to glial fate cells. 

 

Characterisation of the parenchymal progenitor population in three age groups (young 

adult, middle-aged and old) indicated that the number of BrdU+ cells in the Arc-ME 

decline gradually with age, affecting both Olig2+ and Iba1+ populations. These results 

suggest that either the progenitor cells lose self-renewing capacity with age, or they 

became senescent as the animals age.  

 

6.4.1. BrdU incorporation assays label new-born cells in the hypothalamus 

Over the past two decades, the hypothalamus has emerged as a putative novel 

region for adult neurogenesis and gliogenesis, in addition to the well-documented SGZ 

and SVZ neurogenic niches. The development of new techniques to track cycling cells 

facilitated the detection of additional proliferative regions outside the canonical stem 

cells niches. BrdU is the most common method for directly tracking DNA replication 

(Cavanagh et al. 2011; Zeng et al. 2010), and is especially useful for labelling slowly 

dividing cells as incorporation can be tracked in vivo over the course of several days.  

 

Therefore, BrdU was applied for 15 days via drinking water (1 mg/ml solution containing 

0.25 mg/ml glucose), in preference to other labelling routes (intraperitoneal and 

intracerebroventricular injections) that require surgery and/or can be stressful for the 

animals (Kokoeva et al. 2007; Pérez-Martín et al. 2010). The BrdU concentration within 

this paradigm was sufficient to be detectably incorporated into the DNA of dividing cells 

in the hypothalamus, the SVZ and the SGZ (Niels Haan et al. 2013). Also, given that 
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prolonged BrdU treatment can induce toxicity, the analysis was limited to 15 days and 

animals showed no overt phenotype at this time point (Niels Haan et al. 2013). 

 

Alternative methods based upon detecting endogenously expressed markers 

associated with cell proliferation, such as Ki67 or PCNA, were not considered in this 

study given that they provide a snapshot of a cell population at the time of assay (Kee 

et al. 2002; Miller et al. 2018), and label too few cells to allow a satisfactory evaluation 

of cell proliferation in regions with lower mitotic activity than the SVZ or SGZ.  

 

Caveats of the BrdU assays include that the thymidine analogue can be incorporated 

into DNA repair or during cell death (Kuan et al. 2004; Yang et al. 2012). Consequently, 

alternative methods were assessed to confirm cell proliferation via BrdU incorporation. 

First, in this study, BrdU+ cells are often observed in pairs, in close proximity, indicative 

of recently divided cells (Rakic 2002). Also, cell death studies in Chapter 1 reported that 

apoptotic and necroptotic events are rarely observed in the hypothalamus of adult mice, 

suggesting that cell death cannot explain the full magnitude of the hypothalamic 

proliferation and supporting the proliferative identity of the hypothalamic BrdU+ cells. In 

agreement with these results, very few cells were detected by CC3 

immunohistochemistry and TUNEL assay in the hypothalamus of young rats (Guyenet 

et al. 2013). 
 

6.4.2. The spatial distribution of the proliferative cells suggested that the adult 

neural stem cell/progenitor niche resides within the hypothalamic 

parenchyma 

The existence of a neuronal stem cell/progenitor niche within the adult 

hypothalamus has been the object of strong controversy and the precise identity of the 

neurogenic cells, and their dynamics with age remained elusive, particularly during 

adulthood. Several studies have suggested that proliferative cells with neurogenic 

capacity reside in the adult hypothalamic parenchyma (Djogo et al. 2016; Kokoeva et 

al. 2007; Pencea et al. 2001; Pierce and Xu 2010). Contrarily, additional studies have 

speculated that tanycytes located in the ependymal layer lining of the 3V are the 

neurogenic cells (Lee et al., 2012; Haan et al., 2013; Robins et al., 2013).  
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The lack of agreement in the identification and location of the hypothalamic 

progenitor/NSC niche could be caused by a combination of multiple factors. First, the 

different methodology employed, including the BrdU labelling routes (IP, ICV or DW), the 

length of treatments and the different transgenic models used. Second, the fact that 

there is no specific marker for neural stem cells could underlie the discrepancy 

concerning the precise anatomic origin of the adult hypothalamic new-born cells 

(Doetsch et al. 1999; Johansson et al. 1999). Third, the majority of the studies used 

animals of postnatal stages (Table 6.1 and 6.2), thus encompassing significant 

developmental effects. To date, only a handful of studies included rodents older than 3 

months (Pierce and Xu, 2010; Matsuzaki et al., 2015; Djogo et al., 2016; Jourdon et al., 

2016; Niwa et al., 2016; Zhang et al., 2017). Rodents are considered fully mature adults 

when they reach 3 months of age (Flurkey et al. 2007), and in the hypothalamus, the 

organisation and final maturation of the glia and neuronal circuits continue for, at least, 

1 month after birth (Bitsch and Schiebler 1979; Padilla, Carmody, and Zeltser 2010).  

 

Therefore, in order to identify the location and of the hypothalamic adult neural stem 

cell/progenitor niche, the present study focuses on fully adult animals, older than 3 

months of age. This study demonstrates that the parenchymal region surrounding the 

3V wall harbours adult proliferative cells, and their proliferative capacity continues in the 

adult and ageing brain (Figure 6.3). These proliferative cells appear restricted to the Arc 

nucleus and the ME, with scarce BrdU+ staining lining the 3V. The relative and spatial 

distribution of BrdU+ cells in the hypothalamic compartments was comparable to 

previous reports despite the different labelling routes and length of treatments employed 

(Bless et al. 2014; Djogo et al. 2016; Kokoeva, Yin, and Flier 2005; Lee et al. 2014; Li 

et al. 2012; Robins, Trudel, et al. 2013; Robins, Villemain, et al. 2013). 

 

Besides, the results showed rare proliferating cells in the ependymal layer of the 3V of 

young, middle-aged and old animals, similarly to results obtained in rodents older than 

2 months (Niels Haan et al. 2013; Kokoeva et al. 2007; Matsuzaki et al. 2015; Pierce 

and Xu 2010; Robins, Villemain, et al. 2013). The scarce amount of cycling cells 

observed lining 3V wall suggests that the ependymal layer contains non-proliferative 

and/or slow-cycling cells, in agreement with previous reports that classified tanycytes 

as a slow-cycling cell population, containing non-dividing as well as proliferative 

subtypes with long cell cycles ranging 9 to 15 days (Haan et al., 2013; Robins et al., 

2013).  



Proliferation studies in the hypothalamus | Chapter 6 
 

 154 

 

Interestingly, lineage tracing studies in adult mice using Prss56Cre/+ Rosa26tdTom/+ found 

that α2 tanycytes can migrate into the parenchyma in physiological conditions and upon 

mitogenic stimulation (Jourdon et al. 2016). Also, it has been suggested that tanycytes 

proliferation is not restricted to the ependymal compartment, and upon departure of the 

ependymal layer, they can remain undifferentiated and continue to divide within the 

neighbouring parenchyma. In support of this notion, Haan et al., found pairs of 

BrdU+/βGal+ cells in close contact within the hypothalamic parenchyma of Fgf10nLacZ 

brains of postnatal mice, suggesting that a subset of parenchymal cycling cells might 

be tanycytes in origin. In the hypothalamus, Fgf10 expression is restricted to β1 and β2 

tanycytes (Hajihosseini et al. 2008), and the use of Fgf10nLacZ transgenic mice enables 

their transient lineage tracing (Niels Haan et al. 2013). However, experiments presented 

in this chapter using the Fgf10nLacZ animal model and the same BrdU labelling paradigm 

than Haan et al. failed to show BrdU/βGal co-localisation, either lining the 3V or in the 

parenchymal region, with the only difference that this study was performed in adult 

animals. Therefore, the results suggested that the adult parenchymal cycling cells are 

not derived from tanycytes, at least not Fgf10+, supporting the notion that adult 

tanycytes are either non-dividing or slow-dividing cells. The use of additional lineage 

tracing transgenic mice for other tanycytes subtypes would help to assess this 

possibility. 

 

The regional enrichment of the BrdU+ cells is particularly important given the unique 

anatomical relationship of the hypothalamus with the BBB, where the ME and the 

mediobasal region of the Arc nucleus are located outside the BBB (Yulyaningsih et al. 

2017), allowing the cells contained in these regions to sense and respond to a variety 

to blood-borne molecules. Remarkably, in the hypothalamus, BrdU incorporation can 

be modulated by dietary changes (Gouazé et al. 2013b; D. A. Lee et al. 2012; Lee et al. 

2014; Li et al. 2012; McNay et al. 2012), hormonal levels (Ahmed et al. 2008), and 

voluntary exercise (Niwa et al. 2016). Finally, a similar connection between the NSC and 

the vasculature has been observed in the hippocampal niche, where studies highlighted 

a role of the vascular context in the regulation of adult neurogenesis (Kokovay et al. 

2010; Palmer, Willhoite, and Gage 2000; Shen et al. 2004). Thus, the anatomical 

location of the proliferative niche in the hypothalamus suggested that these cells are 

able to sense and respond to different environmental and peripheral cues. 
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Environmental conditions may therefore have a crucial role in the modulation of 

hypothalamic proliferation, neurogenesis and gliogenesis. 

 

6.4.3. The co-localisation studies suggested that the identity and fate of the 

parenchymal proliferating is predominantly glia (oligodendrocytes and 

microglia) 

BrdU incorporation assays can be used in combination with 

immunohistochemistry (Houck and Loken 1985), making it feasible to determine the 

identity of the proliferative cells. Co-localisation studies with different neuronal and glial 

cells markers, including Olig2 (OL lineage marker), Iba1 (microglia), S100β (astrocytes), 

GFAP (astrocytes) and NeuN (mature neurons) were performed. Also, different 

transgenic models were employed to assess BrdU co-localisation with Fgf10+ tanycytes 

and derived cells (Fgf10-nLacZ), and Npy- and Pomc-expressing neurons (Npy-GFP 

and Pomc-GFP, respectively). 

 

According to the results presented in this chapter, the majority of the parenchymal 

proliferative cells have glial Identity: 45 – 50% BrdU+ cells expressed the transcriptional 

factor Olig2, and 30 – 35% expressed the microglial marker Iba1. However, Olig2+ and 

Iba1+ are not the only proliferating populations, as they together accounted only for the 

80% of the proliferating cells. Thus, the identity of the remaining proliferating cells 

remains unidentified, although their identity could be inferred due to their location. As an 

example, some BrdU+ could be pericytes and/or endothelial cells from blood vessels, 

as previous reports indicated (Robins, Trudel, et al. 2013; Robins, Villemain, et al. 2013). 

Confirmation by the use of specific markers such as CD13 for pericytes, or CD31 for 

endothelial cells, may help to answer this question. 

 

Olig2 is a universal oligodendrocyte lineage marker (Valério-Gomes et al. 2018), 

expressed by progenitors (OPC) and maturing OLs. In line with the findings presented 

in this chapter, previous BrdU labelling studies identified that more than two-thirds of 

the BrdU+ cells in the adult hypothalamus co-express NG2, a specific OPC marker 

(Robins, Trudel, et al. 2013). More than 90% of NG2 cells co-express Olig2 in the brain, 

in contrast, only 18% of the Olig2+ cell population expressed NG2 (Ligon et al. 2006); 

however, when Olig2 expression is examined in proliferating cells, the ratio of Olig2+ 
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proliferating cells was almost the same as the ratio of NG2+ proliferating cells (Mori et 

al. 2009). Thus, the different proportion of cycling OPCs observed in this study and 

Robins et al. could be due that NG2 expression, but not Olig2, is detected in pericytes 

associated with blood vessels (Ligon et al. 2006). 

 

In addition, NG2-glia is highly regenerative and can undergo multiple self-renewal 

divisions and, in the hypothalamus is able to differentiate into mature OL (CC1+, RIP1+), 

pericytes (CD13+) and a small subset of neurons (DCX+, HuC/D+, NeuN+, NPY+, 

POMC+, Tuj1+; Kokoeva, Yin and Flier, 2007; Li, Tang and Cai, 2012; Robins, Trudel, 

et al., 2013).  

 

The present study also identified the Iba1+ microglia, as the second proliferative 

population in the adult hypothalamus. In addition to this study, another two reports 

identified proliferating microglia in the hypothalamus (Djogo et al. 2016; Pérez-Martín et 

al. 2010). Interestingly, microglia proliferation has been reported in different regions of 

the mammalian CNS following its experimental depletion (Bruttger, Karram, Wörtge, et 

al. 2015; Lloyd et al. 2019; Renee et al. 2015). Genetic ablation of microglia in adult 

mice revealed that these cells are able to self-renew, proliferate and rapidly repopulate 

the region of the CNS inspected (Bruttger, Karram, Prinz, et al. 2015). Thus, the results 

suggest that the hypothalamic parenchyma hosts a microglial progenitor pool, capable 

of self-renewal and, possibly, able to generate new microglia across the mouse lifespan. 

 

Regarding the neuronal identity of the proliferating cells, this study failed to identify co-

localisation of BrdU+ cells with the neuronal markers NeuN, Npy and Pomc; however, 

the possibility that new neurons are generated in the adult hypothalamus cannot be 

rejected. First, although NeuN is a widely employed marker to identify mature neurons, 

not all differentiated neurons express NeuN (Mullen, Buck, and Smith 1992; Weyer and 

Schilling 2003). Also, the hypothalamus contains multiple neuronal types that are distinct 

from NPY neurons and POMC neurons (Campbell et al. 2017). Thus, the absence of 

NeuN, Npy and Pomc expression in new-born hypothalamic cells does not preclude 

that these cycling cells lack neurogenic potential, as they may generate a different cohort 

of neurons. The use of additional neuronal markers should help resolve this question. 

Second, the length of the BrdU treatment (15 days) may not be long enough for 

progenitors to differentiate into neurons, given that evidence following experimental 

ablation suggested that the time needed to terminal neuronal differentiation in the 
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hypothalamus seems to be longer than 10 days (Yulyaningsih et al. 2017). Indeed, adult-

born cells in the hypothalamus failed to express the mature neuronal markers Tuj1, 

NeuN and HuC/D two weeks after BrdU ICV infusion; however, BrdU+ co-localisation 

with Tuj1+ and HuC/D+, but not NeuN, was observed 7 weeks post-ICV BrdU infusion 

(Kokoeva et al. 2007). Earlier studies from the same group also identified several BrdU+ 

cells expressing HuC/D+, Tuj1+ and the neuropeptides NPY or POMC characteristic of 

hypothalamic neurons in CNTF-treated animals 42 days after BrdU ICV infusion 

(Kokoeva et al. 2005). In agreement with this findings, the number of adult-born cells 

with neuronal fate in the hypothalamus (NeuN, POMC, NPY) increased when the BrdU-

labelled cells were chased for longer periods (greater than 20 days after treatment; 

(Gouazé et al. 2013b; Li et al. 2012; Matsuzaki et al. 2009; Xu et al. 2005). Therefore, 

longer treatments and/or longer tracing time should help resolved if progenitor cells 

residing within the hypothalamic parenchyma could differentiate into neurons that 

integrate the hypothalamic circuitry. Third, some of the previous evidence indicates that 

the neurogenic potential of the hypothalamic progenitors may be lower in adult rodents, 

given that new-born cells with neuronal fate were hardly observed in rats older than 3 

months (Matsuzaki et al. 2015). Also, lineage-tracing studies with NG2-CreERT2:R26tdTom 

found that over 60 days following induction, a minority (0.54%) of NeuN+ neurons in the 

adult hypothalamus have been derived from NG2-glia (Robins, Trudel, et al. 2013). 

Together, this evidence suggested that new-born neurons may represent a very small 

fraction of the hypothalamic adult-born cells, making them mostly undetectable with the 

methods used in this study. 

 

As an alternative indicator for adult neurogenesis to BrdU incorporation, the expression 

of the immature neuronal marker DCX in the adult hypothalamus was assessed. In 

contrast to NeuN, DCX is transiently expressed in early postmitotic neurons, but not in 

mature neurons (Brown et al. 2003). Indeed, some BrdU+/DCX+ cells in the adult 

hypothalamus can be observed around 11 – 15 days post-BrdU infusion; early before 

than co-localisation with NeuN is detected (Kokoeva et al. 2007; Matsuzaki et al. 2009). 

However, the results present in this chapter failed to detect convincing DCX expression 

in the adult hypothalamus, suggesting that either very little new-born neurons are being 

produced or that new-born hypothalamic neurons express DCX at relatively low levels 

and therefore might have escaped detection.  
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Finally, the results suggested that adult hypothalamic astrocytes are either quiescent or 

have very long cycles, as adult born GFAP+ astrocytes were scarce and only observed 

in the aged group. Also, co-localisation of S100β with BrdU was observed in the three 

age groups; however, BrdU+/S100β+ cells also expressed Olig2+, thus suggesting they 

belong to the OL linage. Although S100β is an alleged astrocytic marker, its expression 

is upregulated in OPC, as well as immature and mature OLs (Hachem et al. 2005).  

 

6.4.4. The proliferation in the hypothalamus declines with increasing age  

 Although new-born cells are continuously produced throughout life in discrete 

regions of the CNS, a significant decline in neurogenesis been reported with advancing 

age (Kuhn, Dickinson-Anson, and Gage 1996; Lazarov and Marr 2013; Tang et al. 

2009). In the hypothalamus, a decline in parenchymal progenitor proliferation has been 

reported in aged rats. The same study also found that not only progenitor cell 

proliferation was decreased, but survival and maturation of the new-born cells were also 

impaired in the aged hypothalamus (Matsuzaki et al., 2015).  

 

The hypothalamic proliferation, measured by the number of BrdU+ cells, declines 

significantly and gradually with increasing age (Figure 6.7 – A). Also, the decline affected 

both progenitor populations, Olig2+ and Iba1+ Figure 6.7 – B, C). The decreased 

proliferation rate observed leaded to speculate that (1) hypothalamic parenchymal 

progenitors may be lost gradually during ageing; (2) progenitor cell cycle times increase 

significantly with advancing age or a subpopulation of the parenchymal progenitors 

became senescent; (3) hypothalamic progenitor responsiveness to stimulating 

environmental factors decreases with age and/or (4) these environmental factors 

decrease or disappear with age and/or inhibitory factors appear or accumulate with age. 

In support of (1, 2), previous reports associated the age-related accumulation of 

damaged proteins resulting in a reduction in the NSC proliferation rate (Vilchez, Saez, 

and Dillin 2014). Also, studies in the mouse demonstrate that OPC cycle times increase 

significantly in cortex and corpus callosum with age (Psachoulia et al. 2009). Finally, 

DNA damage, oxidative stress and telomerase shortening have been proposed as a 

mechanism for the ageing-induced deterioration of stem cell functions, including mitotic 

potential (Back et al. 2001; Balaban et al. 2005; Schultz and Sinclair 2016; Sharpless 

and DePinho 2007). 
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In support of (3, 4), previous studies have shown that hypothalamic proliferation can be 

modulated by a range of trophic factors, such as BDNF, IGF, CNTF, and FGFs (Jourdon 

et al. 2016; Kokoeva et al. 2005; Pencea et al. 2001; Pérez-Martín et al. 2010; Robins, 

Stewart, et al. 2013; Xu et al. 2005). Consistent with these observations, inhibition of 

the IGF-1 pathway significantly delayed the age-related decline of hypothalamic 

neurogenesis (Chaker et al. 2016). Also, hypothalamic neurogenesis is known to be 

highly sensitive to nutrition and metabolic status of the animal nutrition (Gouazé et al. 

2013b; D. A. Lee et al. 2012; Lee et al. 2014; Li et al. 2012; McNay et al. 2006; Niwa et 

al. 2016). Therefore, it can be speculated that age-related environmental and nutrient 

factors can influence and/or underlie the decline in proliferation observed with aged 

hypothalamus. 

 

6.4.5. The age-related decline in the number of proliferative cells affects the 

Olig2+ and Iba1+ populations equally 

This study reported an age-related decrease in hypothalamic proliferation, that 

could be associated with reductions in the number of new-born OLs (Olig2+) and 

microglia (Iba1+) cells, and possibly, other neural cell types.  

 

OPC proliferation and differentiation is essential for maintaining CNS myelination 

throughout life (Franklin and Ffrench-Constant 2008). However, studies in aged mice 

have observed that the OPC have a diminished ability to self-renew and to differentiate, 

causing a reduction in oligodendrogenesis (Neumann et al. 2019; Psachoulia et al. 

2009). In the hypothalamus, OPCs seem to hold a critical role in preserving the axonal 

tracts, as permanent neuronal processes impairment has been observed after short-

term OPC elimination (Djogo et al. 2016). However, only one study reported this, and 

further investigation will be required to confirm the NG2-glia role in neuronal processes 

maintenance. Taking all together, the decline in OPC proliferation could lead to a 

reduced number of new-born OLs, myelin defects and axonal damage in the 

hypothalamus with age. 

 

Together with OPC decline, microglia proliferation was also reduced in the aged 

hypothalamus. As mentioned in the introduction, microglia are the resident 

macrophages in the CNS and mediate immunity and inflammation by producing and 
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releasing a range of inflammatory mediators (Clarke et al. 2018; Colombo and Farina 

2016; Valdearcos et al. 2017). In humans and mice, the microglia population 

homeostasis is maintained during the lifetime by the spatial and temporal coupling of 

proliferation and cell death (Askew et al. 2017; Renee et al. 2015). Therefore, according 

to the results presented here, turnover dynamics and homeostasis of the microglia 

population could be affected in the aged hypothalamus. 

 



 
 

 

 

  



 
 

 

7. Myelin dynamics in the ageing hypothalamus 
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7.1. Introduction 

Myelin is a special type of membrane composed mainly of lipids and a few protein 

components. Myelin primarily function consists in enwrapping axons, insulating them 

and allowing an energy-efficient saltatory transmission of the action potentials. In 

addition, myelin is involved in axonal maintenance by covering and protecting target 

axons from any damage and degeneration (Aggarwal et al. 2011).  

 

Biochemical analysis of myelin composition identified a high lipidic content (73 – 83%), 

with enrichment of glycosphingolipids (galactosylceramide and sulfatide) and 

plasmalogens. The major protein constituents are the myelin basic protein (MBP; 30% 

total protein fraction), and the proteolipid protein (PLP; 50%), that hold structural 

function by stabilising and compacting myelin membranes (Baron and Hoekstra 2010). 

Additional myelin proteins include the myelin oligodendrocyte glycoprotein 

(MOG), myelin-associated glycoprotein (MAG), myelin-associated oligodendrocyte 

basic protein (MOBP), and 2′,3′-cyclic nucleotide phosphodiesterase (CNP). Although 

MOG, MAG, MOBP and CNP are associated with myelin, they lack a primarily structural 

function (Morell and Quarles 1999; Nakamura et al. 1996).  

 

The MBP gene encodes different isoforms, with molecular weights ranging from 14 to 

21.5 KDa in rodents (Akiyama et al. 2002), which appear to localise to different 

microdomains in the myelin membrane (Boggs 2006; DeBruin et al. 2006). Likewise, the 

PLP gene also encodes different isoforms, PLP with structural function, and DM20, that 

seems to assist the trafficking of PLP (Sinoway et al. 1994). Strikingly,  although both 

MBP and PLP are structural proteins, MBP is the only protein essential for myelin 

formation, with myelination still occurring in the PLP-null mice, although the myelin 

stability decreases over time (Boggs 2006; Klugmann et al. 1997). 
  

In the CNS, the different myelin proteins are produced by the OLs, a specialised type of 

glial cells. These glial cells suffer a terminal differentiation staged process, from 

progenitors (OPC) to post-mitotic pre-myelinating OLs (pre-OL), and then into 

myelinating OLs (Emery 2010). The terminal differentiation of OPCs is essential for the 

synthesis of the different myelin components and, the different stages are controlled by 

the expression of certain proteins that can be used as markers to study the process. 

However, in the CNS the master regulator of OPC differentiation has not been yet 
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identified and, the axonal signals identified are primarily inhibitory of OPC differentiation 

(Piaton, Gould, and Lubetzki 2010; Taveggia, Feltri, and Wrabetz 2010).   

 

With the onset of myelin synthesis, terminally differentiated OLs must organise the 

delivery of different components to the growing myelin sheath. The myelin components 

are transported to the OL projections terminals where they assemble and organise the 

myelin sheath surrounding target axons. The myelin components are expressed in a 

timely fashion and transported to the growing myelin sheath by different mechanisms. 

After its biosynthesis, the myelin protein PLP is sorted and transported in vesicles to the 

OL projections, before reaching the myelin sheath (Sinoway et al. 1994). In marked 

contrast, the Mbp mRNA is trafficked away from the cell body to the oligodendrocyte 

projections, where it is translated 'on-site' and inserted within the myelin membrane 

(Barbarese et al. 1999).  

 

The Mbp mRNA transport relies on microtubules, and different RNA-binding motor 

proteins are involved: the vast kinesin family and single cytosolic dynein that binds the 

dynactin activator (Barbarese et al. 1999; Baron and Hoekstra 2010). Previous studies 

in zebrafish identified the kinesin Kif1b as an essential member for the anterograde Mbp 

transport. Kif1b mutants showed a disrupted Mbp transport, causing Mbp to 

accumulate in the OL perikaryon, where it is locally translated (Lyons et al. 2009). At the 

same time, the Kif1B mutant presented ectopic myelin-like membranes in processes 

that did not ensheath axonal processes (Lyons et al. 2009). Similar to Kif1b  mutants, 

mutations in the retrograde motor complex dynein/dynactin resulted in arrested Mbp 

transport and defective myelination in zebrafish and mammalian OL primary cultures 

(Herbert et al. 2017). In humans, mutations in the kinesin Kif1b and dynein genes have 

been linked with susceptibility to MS (Aulchenko et al. 2008), and are known to cause 

Charcot-Marie-Tooth (CMT), both demyelinating diseases (Gentil and Cooper 2012). 

 

Importantly, loss of myelin is a hallmark of the ageing brain, although differences in the 

magnitude of decline have been observed across different brain regions (Bowley et al. 

2010; Peters 2002; Peters et al. 2000; Sandell and Peters 2001; Wang et al. 2020; Xing 

et al. 2012). Also, impairment of OPC proliferation, recruitment and differentiation into 

myelinating OLs have been reported with age (Psachoulia et al. 2009; Sim et al. 2002). 

Consequently, given that myelin enwraps axons to facilitate neuronal transmission and 

protect them from damage, the loss of myelin could lead to defective neuronal 
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communication and, ultimately, axonal degeneration with increasing age. Therefore, 

following the changes in myelin gene expression in the ageing hypothalamus reported 

in Chapter 4, the next step was to investigate if myelination defects occur in the 

hypothalamus with age.  
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7.2. Aims 

 Characterise the myelination pattern in the hypothalamus during ageing and 

identify any age-related changes with age. 

 Investigate the myelin-axon relationship in the ageing hypothalamus and 

identify any age-related changes in axonal integrity. 

 Study the expression levels of the proteins involved in the transport of myelin 

components to target axons in the ageing hypothalamus. 

 Study the OL number and the process of terminal differentiation from OPC to 

mature-myelinating OLs in the ageing hypothalamus.  

7.3. Results 

7.3.1. The myelination pattern in the hypothalamus is maintained with age, 

although differences in the myelin microstructure are observed with 

advancing age 

Given that transcriptomic data presented in Chapter 4 showed an age-related 

upregulation of myelin-related genes in the hypothalamus, the next step was to 

investigate the effects on the myelination in the hypothalamus. To do so, the myelination 

pattern in the hypothalamus was characterised using immunohistochemistry for MBP in 

brain sections of young adult (2 – 6 months old), middle-aged (10 – 12 months old) and 

old (18 – 25 months) mice, with a minimum of 5 animals per age group; between bregma 

positions -1.22 to -2.46 mm. 

 

Results showed a region-specific myelination pattern in the hypothalamus, as evidenced 

by detection of dense MBP+ fibers in the ME and the ventral region of the Arc nucleus. 

In contrast, the dorsal part of the Arc nucleus and the periventricular regions were 

practically devoid of myelinated fibres (Figure 7.1, A – C and D – F). This region-specific 

pattern is maintained during ageing, with high MBP density observed in the Arc-ME of 

young, middle-aged and old mice.  
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Then, given that our results indicated that the Arc-ME are highly myelinated areas, the 

next step was to investigate the microstructure of the myelin in those areas. To do so, 

high power magnifications of MBP immunostaining in the MBH were obtained. Results 

for young animals showed a continuous MBP staining resembling to fibres with 

multidirectional orientation. In contrast with the continuous meshwork of the MBP+ 

fibres observed in the young animals, MBP staining showed a disrupted appearance in 

middle-aged and old animals (Figure 7.2). In addition to the disrupted pattern, myelin 

circumferences were observed in the Arc-ME of old mice. 

 

To assess if the aberrant pattern also was observed in extra-hypothalamic regions, the 

corpus callous was analysed for MBP expression. Results failed to show the abnormal 

MBP labelling observed in the MBH, thus suggesting that the age-related aberrant 

pattern is specific to the MBH (Figure S 7).  

 

In conclusion, although the localisation of the myelinated areas in the hypothalamus is 

maintained during ageing, defects in the myelin microstructure are associated with age 

progression.   
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Figure 7.1. MBP expression pattern in the hypothalamus during ageing. (A, B, C) 
Representative images of MBH brain sections immunolabelled for MBP (white) at bregma -
1.7 mm, from young-adult (D), middle-aged (E) and old (F) animals. Images show a high 
expression of MBP in the ME and the ventral part of the Arc nucleus. (A’, B’, C’) High power 
images of ME show age-related changes in MBP staining observed as circumferences 
(yellow arrows). The circular staining is only present in middle-aged and old animals, the 
later showing a higher number. (D, E, F) Representative images of MBH brain sections 
stained for MBP (White) at bregma -1.94 mm, from young-adult (D), middle-aged (E) and 
old (F) mice. Images show a high expression of MBP in the ME and the ventral part of the 
Arc nucleus. (D’, E’, F’) High power images of ME show age-related changes in MBP 
staining (white) observed as circumferences (yellow arrows). Bregma positions are 
approximated. Scale bar (A – C, D – F) 50 µm. Scale bar (A’ – C’, D’ – F’) 25 µm. 
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Figure 7.2. Age-related morphological changes in MBP expression in the ME and the 
ventral part of the Arc. (A) Representative image of MBH section with nuclear staining 
Hoechst (white). Dashed boxes outline the location ME, Arc and VMN regions at bregma -
1.82 mm referred in the following images. (B, C, D) Representative images of ME stained 
for MBP (white) in young (B), middle-aged (C) and old (D) animals showed an age-related 
MBP+ circumferences. (B’, C’, D’) Representative images of Arc stained for MBP (white) in 
young (B’), middle-aged (C’) and old (D’) animals showed an age-related MBP disrupted 
and circular staining. (D’’, C’’, D’’) Representative images of VMN stained for MBP (white) in 
young (B’’), middle-aged (C’’) and old (D’’) animals showed no age-related MBP differential 
staining and the aberrant myelin figures in the Arc-ME are not detected. Bregma position is 
approximated. Dashed lines outline 3V. Representative images of a minimum of 4 animals 
analysed per age-group. Scale bar 25 µm. 3V – third ventricle. Arc – Arcuate nucleus. ME 
– median eminence. VMN – Ventromedial nucleus. 
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7.3.2. MBP and Olig2 co-labelling indicates ectopic expression in the 

oligodendrocytes perikaryon of aged animals 

Following the striking observations with MBP labelling, the next step was to 

investigate the relationship of MBP fibres with OLs in the Arc-ME. To do so, 

immunostaining for Olig2 and MBP was performed in was performed in 6 – 8 brain 

sections of young (n = 4), middle-aged (n = 3) and old (n = 3) animals, between bregma 

-1.58 mm to -2.3 mm. Results for young animals showed Olig2+ nuclei close to MBP+ 

fibres; however, co-localisation of both markers was hardly detected (Figure 7.3, A, A’). 

The same pattern was observed in middle-aged animals (Figure 7.3, B, B’). However, in 

the aged group, Olig2+ nuclei are often surrounded by MBP+ circumferences structures 

(Figure 7.3, C, C’), suggesting that MBP accumulates in the perikaryon of OL of aged 

animals.  

 

In conclusion, the MBP staining observed in the perinuclear region could be a signal of 

ectopic deposition and aberrant myelination process that occurs in the MBH with age.  
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Figure 7.3. MBP expression is detected in the perinuclear region of Olig2+ cells in old 
animals. (A, B, C) Representative images of ME stained for MBP (red) and the nuclear 
marker Olig2 (green) in young (A), middle-aged (B) and old (C) animals. (B’, C’, D’) 
Representative images of Arc nucleus stained for MBP (red) and Olig2 (green) in young (A), 
middle-aged (B) and old (C) animals. In the ME and Arc of old animals, some MBP staining 
enwrap Olig2+ nucleus (white arrows) while others do not (asterisks). Representative 
images of a minimum of 3 animals analysed per age group. Scale bar 12 µm. 
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7.3.3. Myelin-axon relationship in the Arc-ME is affected with age 

Given that myelin is involved in axonal maintenance by covering and protecting 

axons from damage and degeneration, the next step was to investigate the relationship 

between myelin and axonal tracts in the MBH. To do so, co-immunostaining for MBP 

and the axonal neurofilaments (NFs) was performed in 6 – 8 brain sections of young, 

middle-aged and old animals (n = 3 per age group), between bregma -1.58 mm to -2.3 

mm. Results showed NF+ axons orientated in different directions and co-localisation 

with MBP was observed in the Arc-ME (Figure 7.4).  

 

Then, to investigate microstructural changes in the myelin-axon relationship with age, 

high power magnifications of MBP and NF immunostaining in the Arc-ME were obtained. 

Results for young adults showed NF+ axonal tracts in cross-section surrounded by MBP 

staining (Figure 7.5, A – A’’). The middle-aged group showed the same pattern observed 

in young animals; however, MBP+ circumferences filled or partially filled by NF signal 

were observed in the ME (Figure 7.5, B – B’’). In old animals, the MBP+ structures were 

detected widespread in the Arc and ME and were mainly devoid of NF labelling (Figure 

5.12, C – C’’), thus suggesting that ectopic myelin-like membranes are not enwrapping 

axonal tracts. 
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Figure 7.4. Co-immunostaining for MBP and NF in the Arc nucleus and the ME. (A – A”, 
C – C”, E – E”) Representative images of ME stained for MBP (red) and the NF (green) in 
young, middle-aged and old animals. (B – B”, D – D”, F – F”) Representative images of Arc 
nucleus stained for MBP (red) and NF (green) in young, middle-aged and old animals. 
Representative images of 3 animals analysed per age-group. Scale bar 25 µm. 
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Figure 7.5. Axonal tracts immunolabeled for MBP and NF in the ME revealed age-related 
defects. (A, B, C) Representative images of ME stained for MBP (red) and the NF (green) 
in young (A – A”), middle-aged (B – B”) and old (C – C”) animals. In old animals, some 
MBP+ circumferences are filled by NF signal (white arrows) while others are devoid of NF 
staining (asterisks). Representative images of a minimum of 3 animals analysed per age 
group. Scale bar 12 µm 
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7.3.4. Expression of proteins involved in axonal stability in the aged 

hypothalamus 

Lastly, given that myelination pattern changes with age in the hypothalamus, the 

axonal integrity was investigated in this region. Since visualisation of full-length axonal 

tracts was unachievable with the available methods, the expression of proteins involved 

in axonal stability and maintenance was investigated instead. To do so, the protein levels 

of βIII-tubulin (TUBB3) and NFM were assessed via western blot in hypothalamic 

extracts of young, middle-aged and old animals (n = 6 per age group). 

 

Results for TUBB3 showed that the antibody detected a band of 55 KDa (Figure 7.6, 

A), and densitometric analysis of the 55 KDa showed no differences with age. (Figure 

7.6, B). For NF, the antibody detected a multi banded pattern corresponding to the 

neurofilament medium isoform (NFM, 145 – 160 KDa) and additional lower and higher 

molecular weight weaker bands (Figure 7.6, C). Densitometric analysis of the NFM band 

revealed a significant decrease in the expression in old animals (Figure 7.6, D). In 

summary, the NFM protein levels showed decreased expression with age, while TUBB3 

expression is maintained during ageing. 
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Figure 7.6. Expression of the neuronal cytoskeleton markers TUBB3 and NF in the 
ageing hypothalamus. (A) Representative image of immunoblot for TUBB3 and the loading 
control β-ACTIN. TUBB3 runs at an approximated MW of 55 KDa. (B) Comparison of 
densitometric analysis of TUBB3 relative to the loading control showed no significant 
changes with age. (C) Representative image of immunoblot for NF and the loading control 
β-ACTIN. NFM runs at MW of 145 – 160 KDa, approximated. (C) Comparison of 
densitometric analysis of NFM relative to the loading control showed a significant decline in 
the old group compared to the young animals. The letters above the immunoblot lanes refer 
to the different age groups, young adult as Y, middle-aged as M and old as O. Numbers 
indicate bands of the molecular weight marker used as a size standard (KDa). Data is 
represented as mean ±SEM and a minimum of 6 animals per age group were analysed. All 
significance testing was performed using one-way ANOVA followed by Tukey post-hoc test 
(*p<0.05). 
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7.3.5. The expression of motor proteins involved in the transport of Mbp is 

decreased in the aged hypothalamus 

As described in Chapter 4, transcriptomic analysis showed an age-related 

decrease in RNA levels of the kinesin Kif1b and dynein Dync1h1, involved in Mbp 

transport from OL cell body to target axons. However, since mRNA levels do not always 

correlate with functional protein level, an alternative approach was used to confirm the 

transcriptomic results. To do so, the protein levels of KIF1B and DYNC1H1 were 

analysed via western blot in hypothalamic extracts of young, middle-aged and old 

animals (n = 6 per age group). 

 

Results for KIF1B showed that the antibody detected a band of 204 KDa corresponding 

to the predicted size of the protein and, an additional band with lower molecular weight 

(Figure 7.7, A). Densitometric analysis of the 204 KDa showed lower KIF1B expression 

in the old group, compared to young and middle-aged animals (Figure 7.7, B). For 

DYNC1H1, the antibody detected a high molecular weight band of 520 KDa, 

approximated (Figure 7.7, C). Densitometric analysis of showed lower DYNC1H1 

expression in the old group, compared to middle-aged (Figure 7.7, D). 

 

In summary, the expression of RNA-binding motor proteins KIF1B and DYNC1H1 is 

decreased in aged animals. 
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Figure 7.7. Age-related changes in the levels of KIF1B and DYNC1H1 in the 
hypothalamus. (A) Representative image of immunoblot for KIF1B and the loading control 
β-ACTIN. KIF1B runs at an approximated MW of 204 KDa. (B) Comparison of densitometric 
analysis of KIF1B relative to the loading control showed a significant age-related decline 
with age. (C) Representative image of immunoblot for DYNC1H1 and the loading control β-
ACTIN. DYNC1H1 runs at an approximated MW of 530 KDa. (C) Comparison of 
densitometric analysis of DYNC1H1 relative to the loading control showed a significant 
decline in the old group compared to the middle-aged animals. The letters above the 
immunoblot lanes refer to the different age groups, young adult (Y), middle-aged (M) and 
old (O). Numbers indicate bands of the molecular weight marker used as standard (KDa). 
The column colours in the graph represent the three age groups: young adult (black), 
middle-age (dark grey) and old (light grey). Data is represented as mean ±SEM and a 
minimum of 6 animals per age group were analysed. All significance testing was performed 
using one-way ANOVA followed by Tukey post-hoc test (*p<0.05). 
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7.3.6. Oligodendrocyte number increases with age in the ME region 

Next, given that the myelination pattern is affected in the hypothalamus with age, 

the next step was to investigate differences in the OL population during ageing. To do 

so, the distribution and density of OL was mapped in the MBH, using 

immunohistochemistry for Olig2 or APC (clone CC1) in 10 – 12 brain sections from 

young adult, middle-aged and old mice (n = 4 animals per age group). The analysis was 

performed between bregma -1.58 mm to -2.3 mm. The nuclear marker Olig2 is 

expressed at all stages of OL differentiation. To better characterise the myelinating OL 

subtype, CC1 was used as an additional marker to label specifically mature OL cell 

bodies. Thus, the use of the two markers allowed the characterisation OL at different 

differentiation stages (Figure 7.8). 

 

Immunostaining for Olig2 revealed positive nuclei evenly distributed throughout the 

hypothalamic parenchyma, with greater concentration in the basal region of the Arc and 

the ME (Figure 7.9). The distribution was maintained during ageing, as observed in 

young, middle-aged and old animals. Coinciding with Olig2, CC1+ cells were also 

scattered in the hypothalamus with a higher concentration observed in the basal region 

of the Arc and the ME. Likewise, CC1 distribution was maintained with age (Figure 7.10). 

As a control, the CC was immunolabelled for CC1, and positive cells were observed in 

the region (Figure S 8).  

 

In addition to defining the OL distribution, Olig2+ and CC1+ cell number was also 

quantified in the ME. Figure 7.11 shows that both Olig2+ and CC1+ cells increase in 

number with age. Also, given that Olig2 is a universal OL marker while CC1 is specific 

to the mature OL subtype, Olig2+ cells outnumbered CC1+ cells in the hypothalamus 

of young adults (17 ± 0.86 Olig2+ cells vs 8.33 ± 1.20 CC1+ cells), middle-aged (23.98 

± 0.60 Olig2+ cells vs 12.00 ± 1.73 CC1+ cells) and old mice (26.07 ± 0.68 Olig2+ cells 

vs 16.00 ± 0.58 CC1+ cells) (Figure 7.11, C). 

 

In conclusion, OLs (Olig2+ and CC1+) are evenly distributed throughout the 

hypothalamus with a higher density in the ME, where OL accumulate with age.  
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Figure 7.8. Immunostaining for the oligodendrocyte markers Olig2 and CC1 in the 
hypothalamus. (A-A’’, B-B’’). Representative images of the ME immunolabelled for Olig2 
(green) and CC1 (red). The nuclear expression of Olig2 can be detected in all stages of OL 
differentiation, while CC1 labels specifically mature OL cell bodies. Images are 
representative of the results obtained for 4 animals analysed per age group. Scale bar 25 
µm.  
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Figure 7.9. Oligodendrocytes showed a scattered pattern in the hypothalamus 
parenchyma with a higher density in the ME. (A-C) Representative images of the MBH for 
Olig2 (green) and Hoechst (blue) immunochemistry of young adult (A) middle-aged (B) and 
old (C) mice at bregma -1.7 mm. High power of the Arc nucleus (A’, B’, C’) and ME (A”, B”, 
C”) in young (A’, A’’), middle-aged (B’, B’’) and old animals (C’, C’’). (D-F) Representative 
images of the MBH for Olig2 (white) staining of young adult (D) middle-aged (E) and old 
mice (F) at bregma -2.06 mm. Dashed lines outline the borders of the hypothalamus and 
the 3V. Scale bar 50 μm. 
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Figure 7.10. Mature oligodendrocytes showed higher density in the ME. (A-C) 
Representative images of the MBH for CC1 (white) immunochemistry of young adult (A) 
middle-aged (B) and old (C) mice at bregma -1.7 mm. High power of the Arc nucleus (A’, 
B’, C’) and ME (A”, B”, C”) in young (A’, A’’), middle-aged (B’, B’’) and old animals (C’, C’’), 
showed an age-related increase of CC1+ cells in the ME. (D-F) Representative images of 
the ME for CC1 (white) staining of young adult (D) middle-aged (E) and old (F) mice at 
bregma -1.82 mm. Dashed lines outline the borders of the hypothalamus and the 3V. Scale 
bar (A – A”, B – B”, C – C’’) 50 µm. Scale bar (D’ – F’), 25 µm. 
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Figure 7.11. Age-related increase of Olig2+ and CC1+ cells in the ME. (A) Number of 
Olig2+ cells in the ME per square of area defined as Olig2+ cells per mm2 in young-adults 
(black column), middle-aged (dark grey) and old animals (light grey). (B) Number of CC1+ 
cells in the ME per square of area defined as CC1+ cells per mm2 in young-adults (black 
column), middle-aged (dark grey) and old animals (light grey). Data is represented as mean 
±SEM and 4 animals per age group were quantified for both markers. All significance testing 
was performed using one-way ANOVA followed by Tukey post-hoc (*p<0.05, **p<0.01, 
***p<0.001). 
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7.3.7. Mature oligodendrocyte markers are normally expressed in the 

hypothalamus during ageing, suggesting the oligodendrocyte 

differentiation process is not impaired 

Given that the terminal OPC differentiation to mature myelinating OLs is essential 

for myelin production, the OL differentiation process was investigated in the ageing 

hypothalamus. The OL differentiation is a multi-step process divided into three main 

stages: the OPC, the pre-myelinating and the mature myelinating OLs, which is defined 

by the expression of different markers. To gain a better understanding of the OL 

differentiation process, Olig2 was used as a pan-marker for OLs (Figure 7.8), while NG2 

for OPC and CNP for pre-myelinating OL stages. To cover the final stage of the 

differentiation process, the transcriptional factor MYRF and the myelin proteins PLP and 

MBP as mature markers were chosen (Figure 7.12). The level of all markers was 

analysed via western blot in hypothalamic extracts of young, middle-aged and old 

animals (n = 6 per age group). 

 

 

Figure 7.12. Markers of oligodendrocyte lineage differentiation and maturation. The 
schematic shows progression from OPC to pre-OL and, then to myelinating OL. The 
expression of different OLs markers is indicated by coloured gradients. The marker Olig2 
is expressed in all the stages. The expression of the chondroitin sulphate proteoglycan 
NG2 is detected in the OPC and the intermediate pre-OL stages. CNP (2′,3′-cyclic 
nucleotide phosphodiesterase) is expressed in the intermediate pre-OL and in myelinating 
OL. Finally, CC1 (anti‐adenomatous polyposis coli clone CC1), MYRF (myelin regulatory 
factor), PLP (myelin proteolipid protein) and MBP (myelin basic protein) expression is 
restricted to the mature myelinating type. OPC – oligodendrocyte progenitor cells. Pre-OL 
– pre-myelinating oligodendrocyte. OL – oligodendrocyte.  
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Western blot results for Olig2 showed that the antibody detected a distinct band of 32 

KDa (Figure 7.13, A), and densitometric quantification showed no significant differences 

with age (Figure 7.13, B). As an early-stage marker, NG2 antibody recognised a high 

molecular weight band of 300 KDa, approximated (Figure 7.13, C). Densitometric 

analysis of the 300 KDa band revealed a significant decrease with age (Figure 7.13, D). 

For the pre-OL stage, CNP antibody detected a double band of 46 and 48 KDa (Figure 

7.13, E) which expression remained unaffected with age (Figure 7.13, F). 

 

For the mature stage, three makers were analysed, including the transcriptional factor 

MYRF and the structural myelin proteins PLP and MBP. For MYRF, densitometric 

quantification of the 123 KDa band (Figure 7.13, G) revealed a trend toward increase 

with age; however, the statistical analysis failed to show significant differences (Figure 

7.13, H). Next, immunoblot for the PLP antibody detected two bands of 26 and 30 KDa, 

likely corresponding the DM20 and PLP isoforms (Figure 7.13, I), whose expression was 

not affected with age (Figure 7.13, J). Finally, the MBP antibody detected five bands 

with approximated molecular weights of 13, 14, 17, 18.5 and 21.5 KDa (Figure 7.13, K). 

Densitometric analysis revealed differential expression of some of the MBP isoforms with 

age. Results showed a decrease expression of the 21 KDa isoform (Figure 7.13, L), and 

an increase in the 13/14 KDa isoforms with age (Figure 7.13, N). However, the 

expression of the 17/18.5 KDa isoforms remained unaffected (Figure 7.13, M). 

 

In summary, the expression of all the markers, including terminal differentiation markers, 

was observed in the hypothalamus, suggesting that OPC progression to mature OL is 

not disrupted in the hypothalamus with age. However, significant differences were 

observed for the OPC marker NG2 and, the terminal markers MYRF and MBP. Results 

showed that NG2 is decreased with age, MYRF expression is increased in aged animals 

and, the expression of the different MBP isoforms changes across the murine lifespan. 



 Myelin dynamics in the ageing hypothalamus | Chapter 7 
 

 186 

   



 Myelin dynamics in the ageing hypothalamus | Chapter 7 
 

 187 

Figure 7.13. Age-related changes in the levels of different oligodendrocyte differentiation 
markers. (A) Representative image of immunoblot for Olig2 and the loading control β-
ACTIN. OlgG2 runs at an approximated MW of 32 KDa. (B) Comparison of densitometric 
analysis of Olig2 relative to the loading control showed no age-related differences. (C) 
Representative image of immunoblot for NG2 and the loading control β-ACTIN. NG2 runs 
at an approximated MW of 300 KDa. (D) Comparison of densitometric analysis of NG2 
relative to the loading control showed an age-related decrease in the protein level. (E) 
Representative image of immunoblot for CNP and the loading control GADPH. CNP is 
detected as a double band at 46 and 48 KDa. (F) Comparison of densitometric analysis of 
CNP relative to the loading control showed no age-related differences. (G) Representative 
image of immunoblot for MYRF and the loading control β-ACTIN. MYRF runs at an 
approximated MW of 123 KDa. (H) Comparison of densitometric analysis of MYRF relative 
to the loading control showed tendency to increase with age. (I) Representative image of 
immunoblot for PLP and the loading control β-ACTIN. PLP and its spliced isoform DM20 
can be detected at 30 KDa and 26 KDa, respectively. (J) Comparison of densitometric 
analysis of PLP/DM20 relative to the loading control showed a tendency to increase with 
age. (K) Representative image of immunoblot for MBP and the loading control β-ACTIN. A 
total of five MBP spliced isoforms are detected with different MW: 13, 14, 17, 18.5 and 
21.5 KDa. (L) Comparison of densitometric analysis of 21 KDa MBP isoform relative to the 
loading control showed a significant decline with age. (L) Comparison of densitometric 
analysis of 17/18.5 KDa MBP isoforms relative to the loading control showed no age-
related differences. (L) Comparison of densitometric analysis of 17/18.5 KDa MBP isoforms 
relative to the loading control showed a significant age-related increase. The letters above 
the immunoblot lanes refer to the different age groups, young adult (Y), middle-aged (M) 
and old (O). Numbers indicate bands of the molecular weight marker used as a size 
standard (KDa). The column colours in the graph represent the three age groups: young 
adult (black), middle-age (dark grey) and old (light grey). Data is represented as mean ±SEM 
and a minimum of 6 animals per age group were analysed. All significance testing was 
performed using one-way ANOVA followed by Tukey post-hoc test (*p<0.05).  
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7.4. Discussion 

In healthy ageing, decline in neuronal functions has been linked to myelination 

defects, including myelin disruption, decreased expression in myelin proteins and 

changes in oligodendrocyte number (Psachoulia et al. 2009; Sim et al. 2002). However, 

the myelination pattern and the myelin dynamics in the hypothalamus throughout life 

remain unexplored. In this study, characterisation of the myelin pattern in young adult, 

middle-aged and old animals revealed that myelin microstructure in the MBH is impaired 

with age. Investigation of the myelin-producing cells showed an age-related increase in 

total and mature OL numbers. In addition to increase, hypothalamic OLs seem to retain 

their capacity to differentiate and are able to produce the major myelin components PLP 

and MBP throughout life. In contrast, the expression of the motor proteins KIF1B kinesin 

and DYNC1H1 dynein, involved in Mbp trafficking, are reduced in the aged 

hypothalamus. The loss of myelin could lead to defective neuronal connectivity and, 

ultimately, axonal degeneration with increasing age. 

7.4.1. Age-related defects in the myelin microstructure in the mediobasal 

hypothalamus are associated to ectopic expression of MBP and inhibition 

of intracellular transport in oligodendrocytes 

To characterise the myelin pattern in the hypothalamus and any age-related 

changes, in this study immunohistochemistry for MBP was performed in brain sections 

of young, middle-aged and old mice. MBP immunostaining allows for the rapid and 

efficient evaluation of age-related changes in myelin structure and is an excellent 

alternative approach to electron microscopy (Xing et al. 2012).  
 

In the hypothalamus, MBP immunohistochemistry revealed relatively high densities of 

myelinated fibres in the basal Arc nucleus and the ME. The localisation of the myelinated 

axons in the hypothalamus was maintained across the lifespan, however, the integrity 

of myelin microstructure in the Arc-ME was affected with age. Myelin sheath 

disorganisation is first observed in middle-aged animals, although their frequency of 

occurrence increased with age. In line with these findings, the progressive loss of myelin 

and degeneration of myelinated nerve fibres has been extensively described in healthy 

ageing and in neurodegenerative diseases (Bartzokis 2011; Bowley et al. 2010; Braak 
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and Del Tredici 2004; Peters 2002; Peters et al. 2000; Sandell and Peters 2001; Wang 

et al. 2020; Xing et al. 2012). Also, the capacity to replace lost or damaged myelin 

progressively declines as animals grow older (Ibanez et al. 2003). 

 

In the current study, myelin microstructure defects included myelin circumferences in 

the Arc-ME of aged animals that were never present in the young group. The aberrant 

myelin pattern could be a consequence of ectopic expression of myelin proteins and/or 

redundant myelin production, that lead to the formation of myelin-like membranes that 

do not ensheath axons. In support of this hypothesis, MBP expression was observed 

surrounding Olig2+ nuclei, in contrast to previous reports where this protein is restricted 

to myelinating processes (R. M. Gould, Freund, and Barbarese 1999; Lyons et al. 2009; 

O’Connor et al. 2000). Ectopic accumulation of MBP may exert deleterious effects for 

the OL function and affect the formation and maintenance of the myelin sheath. Indeed, 

altered intracellular localisation of myelin proteins has been reported in the taeip rat, a 

myelin mutant that presents characteristics of hypomyelination (O’Connor et al. 2000). 

Also, the results support the production of redundant myelin in the aged hypothalamus, 

a common age-related myelin defect (Peters 2002; Sandell and Peters 2001). Co-

localisation studies of MBP with the axonal marker NF identified MBP+ circumferences 

with different diameter, among normal myelinated structures filled by NF labelling. In 

other cases, the myelin sheath in cross-sections appeared too large for the size of the 

enclosed axon. It is, therefore, possible that the presence of redundant myelin may be 

the result of continued formation of myelin. However, failure to assemble and elaborate 

the correct amount of myelin around axons may underlie the aberrant pattern observed 

in aged animals. 

 

The process of myelin sheath formation requires a timely and spatially controlled 

transport of the different myelin components from the OLs to the expanding myelin 

sheath. The Mbp mRNA trafficking occurs through a multi-step pathway, including 

assembly into granules, transport along the processes, and localization within the myelin 

compartment (Ainger et al. 1993). The Mbp mRNA transport relies on microtubules, and 

the RNA-binding motor proteins KIF1B and dynein are required (Barbarese et al. 1999; 

Herbert et al. 2017; Lyons et al. 2009). The RNA-seq results in Chapter 4 showed 

downregulation of Kif1b and the three subunits of the dynein Dync1H1, Dync1LI and 

Dync2H1, in the aged hypothalamus. Further validation via western blot analysis 

confirmed the decreased expression of KIF1B and DYNC1H1 at protein level. Hence, it 
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is possible that altered expression of molecules that regulate and coordinate the 

intracellular trafficking of Mbp could affect the myelin biogenesis. Indeed, studies in 

zebrafish identified that KIF1B and Dynein mutants showed a arrested Mbp transport 

OL perikaryon that resulted in myelination defects (Herbert et al. 2017; Lyons et al. 

2009).  
 
Myelin wraps around axons, thereby facilitating rapid saltatory conduction while 

protecting axons form degeneration. In the MBH, terminals from VSP and OXT neurons  

are myelinated (Yin and Gore 2010). The age-related aberrant myelination could reduce 

the conduction velocity, affect axonal connectivity, and ultimately, result in degeneration 

of myelinated nerves crossing the hypothalamus. Indeed, attenuation of POMC electrical 

responses has been reported in aged rats (Newton et al. 2013). Importantly, NFs are 

major determinants of axonal calibre, and decreased NFs expression has been 

associated with axonal atrophy (Parhad et al. 1995; Uchida et al. 2001). In line with this, 

results presented in this study showed that NFM protein levels in the hypothalamus are 

reduced with age.  

 

7.4.2. Oligodendrocyte number, but not the differentiation along the 

oligodendrocyte lineage, seems to be altered in the aged hypothalamus 

To address if the aberrant myelin pattern observed in the aged hypothalamus 

involved the dysfunction or loss of the myelin-producing cells of the CNS, the OL number 

and differentiation along the OL lineage was investigated across the mouse lifespan. In 

addition, the proliferative capacity of hypothalamic OPC was investigated in the Chapter 

6, identifying an age-related decrease. In the hypothalamus, OPCs hold a critical role in 

preserving neuronal processes, and short-term OPC elimination leaded to permanent 

neuronal damage in the ME (Djogo et al. 2016). However, how the decreasing rate of 

OPC cell division affects directly the myelin production in the hypothalamus is still 

unknown. Life-long generation of OLs is required for myelination of new neuronal 

connections and repair of myelin lost through normal 'wear and tear’ (Peters et al. 2000; 

Rivers et al. 2008). It is, therefore, possible that decline in the OPC proliferation 

contributes to reduced generation of new OLs, in turn promoting deficient myelination 

in the aged hypothalamus. 
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First, to address if the aberrant myelin pattern observed in aged animals was due to 

changes in OL number, immunohistochemistry for Olig2 (pan OL marker) and CC1 

(mature-myelinating OL marker) was performed in brain sections of young, middle-aged 

and old animals. Coincidentally with the myelin distribution, Olig2+ and CC1+ showed 

a higher density in the Arc-ME region, and quantification of Olig2+ and CC1+ cells in the 

ME showed an increase in the number with both markers. This observation indicates 

that hypothalamic OLs are probably long-lived cells, as previously reported in the corpus 

callosum from mouse and humans (Tripathi et al. 2017; Young et al. 2013). Thus, the 

increase in number could be due to accumulation of adult-born OLs, that may augment 

the pre-existing population rather than replacing lost cells (Tripathi et al. 2017). Also, the 

increase in OL number has been linked to myelination defects. Previous reports 

demonstrated that dysregulation of OL number relative to target axons can lead to 

aberrant myelination patterns and ectopic myelin deposition (Almeida et al. 2018), similar 

to the defects reported in the present study. 

 

Second, to address if myelin defects could be attributed to the inefficient or interrupted 

differentiation of OPCs, the expression of multiple stage-specific markers was 

investigated. Arrest in a pre-myelinogenic stage will translate in altered levels of OL 

lineage markers. In regard to this possibility, the RNA-seq data in Chapter 4 showed an 

upregulated expression of the mRNA encoding myelin-related proteins expressed by 

OLs, including Cnp, Myrf, Plp1 and Mbp (Aggarwal et al. 2011; Bujalka et al. 2013). 

However, although transcriptomic studies provide valuable insights, most transcripts 

require translation to protein to deliver biological function of the expressed gene (Liu, 

Beyer, and Aebersold 2016). Thus, in the present chapter, the expression of OL stage-

specific proteins was inspected via western blot in hypothalamic extracts of young, 

middle aged and old animals. Given that the whole hypothalamus was dissected out for 

protein extraction, western blot results will represent the total hypothalamic levels of the 

proteins analysed, and regional differences in the Arc-ME may be diluted or not 

represented. 

 

Western blot results for the OPC maker NG2 showed lower protein levels with age 

concurring with to the decline in the number of actively proliferating OPCs described 

earlier in Chapter 6. However, no differences were detected for the pan OL marker Olig2, 

and the myelin-associated enzyme CNP expressed by both, pre- and myelinating OL 

(Goldman and Kuypers 2015). Interestingly, the mature myelinating protein MYRF 
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showed an increase in expression with age. MYRF is essential for the myelination 

process and, evidence suggest that is an important factor in the terminal OL 

differentiation (Emery et al. 2009; Koenning et al. 2012). Also, as a transcriptional factor 

MYRF regulates the expression of myelin genes such as, Plp1 and Mbp (Bujalka et al. 

2013; Koenning et al. 2012). In turn, the Plp1 gene encodes the two isoforms PLP and 

DM20, which represent the predominant protein portion of myelin in the CNS 

(McLaughlin et al. 2002) and showed no age-related differences.  

 

In regard to MBP, the relative amounts of MBP isoforms are affected with age. In 

rodents, MBP protein has 5 different isoforms consequence of alternative splicing of the 

same mRNA that translate in proteins with different molecular weights: 21.5, 18.5, 17, 

14 and 13 KDa (Akiyama et al. 2002). Reduction in MBP expression has been reported 

across multiple brain regions with age, in both rodents and humans (Ansari et al., 1985; 

Xing et al., 2012; Xie et al., 2013, 2014; Ahn et al., 2017; Wang et al., 2020); however, 

most of these studies have not examined the expression of the different MBP isoforms 

individually. In contrast, the present study identified age-related changes in the 

expression in the MBP isoforms, with decreased expression of the 21 KDa isoform and 

increase of the 13/14 KDa isoforms, that become the most abundant in the ageing 

hypothalamus. MBP acts as an important spatial and temporal regulator of myelination, 

by triggering disassembly of the actin cytoskeleton to promote initiation of myelin 

membrane wrapping (Zuchero et al. 2015). The exact role of each isoform during the 

formation and compaction of the myelin sheath is still unknown, although it has been 

reported that the 18.5 KDa and 14.0 KDa are predominant during active myelination in 

the rat brain (Akiyama et al. 2002). Interestingly, differences in both size and relative 

amounts of MBP isoforms have been reported between normal and myelin-deficient 

jimpy mouse (Fannon and Moscarello 1990). Thus, the age-related increased expression 

of the 14 KDa isoform may play a role in the aberrant myelination observed.  

 

In summary, the number of OL, but not the differentiation along the OL lineage, seems 

to be altered in the aged hypothalamus. Potentially, an increase in OL number may lead 

to mistargeting of myelin to cell bodies, including those of neurons (Almeida et al. 2018). 

In addition, the relative amounts of MBP isoforms suffer an age-related change, although 

the functional consequences of this switch will require further investigation.
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8. General discussion  

 
 

Ageing is characterised by a progressive loss of physiological functions and 

constitutes the leading risk factor for the development of neurodegenerative 

diseases (López-Otín et al., 2013). Ageing represents a major health issue worldwide 

that is only expected to escalate due to the remarkable increase in life expectancy of 

the population. According to the World Health Organisation (WHO), the world's 

population over 60 years will nearly double from 12% to 22% between 2015 and 2050.  

 

Even healthy people experience a decline in several physiological functions with age, 

including energy homeostasis, hormonal regulation, circadian rhythm, reproduction, and 

cognition. Interestingly, the majority of the physiological functions that deteriorate with 

age are controlled by the hypothalamus (Kim and Choe 2018). Therefore, in the recent 

years, the role of the hypothalamus as a central orchestrator of the systemic ageing has 

gained interest (Chen et al. 2015; Zhang et al. 2013, 2017).  

 

The present study aimed to uncover the underlying cellular and molecular mechanisms 

involved in the age-related (Tang et al. 2015; Zhang et al. 2013, 2017)(Tang et al. 2015; 

Zhang et al. 2013, 2017)(Tang et al. 2015; Zhang et al. 2013, 2017)(Tang et al. 2015; 

Zhang et al. 2013, 2017)alterations occurring in the hypothalamic circuits that control 

energy balance. Main findings included age-related changes in appetite-regulating 

neuron number, inflammation, loss of stem cells and myelin defects in the 

hypothalamus. 

 

8.1. Age-mediated inflammation mediated by astrocyte and microglia 

activation may damage the brain circuits that regulate energy balance 

The hypothalamus plays a critical role in the control of energy homeostasis via the 

opposing action of two defined neuronal types, POMC and NPY/AgRP,  that can directly 

respond to peripheral hormonal and nutritional status (Blouet and Schwartz 2010; 

Dietrich and Horvath 2013). Studies in rodents have shown that dietary excess and 

central administration of glucose or lipids lead to the activation of the NF-κB pathway 
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and the expression of pro-inflammatory genes (Berkseth et al. 2014; Posey et al. 2009; 

Valdearcos et al. 2017; Zhang et al. 2008). Hypothalamic inflammation disrupts key 

signalling pathways involved in the regulation of energy balance, glucose homeostasis 

and blood pressure, and participates in the development of metabolic syndrome 

components such as obesity, glucose intolerance, and hypertension (Cai and Khor 

2019; Calegari et al. 2011; Cazettes et al. 2011; Purkayastha and Cai 2013).  

 

Recent evidence indicates that hypothalamic inflammation is also crucial for the 

development of whole-body ageing (Tang et al. 2015; Zhang et al. 2013, 2017). In mice, 

systemic inflammation associated with age leads to NF-κB activation in microglia of 

different brain areas, including the hypothalamus (Korhonen, Helenius, and Salminen 

1997; Zhang et al. 2013). Notably, ageing delay and lifespan extension have been 

achieved in mice through prevention of hypothalamic NF-κB activation (Zhang et al. 

2013). Also, ageing correlates with a decline in the hypothalamic GnRH expression in 

mice, given that activated NF-κB inhibits the expression of GnRH. In turn, GnRH therapy 

promotes adult neurogenesis and deaccelerates age-related phenotypes  (Zhang et al. 

2013). However, future studies will be required to uncover the effect of NF-κB 

activation/inhibition on other neurotransmitters and in the neuronal populations present 

in the hypothalamus. 

 

In the present study, results indicated that reactive gliosis, involving both microglia and 

astrocytes, develop gradually in the hypothalamus with age. Also, a neuroinflammatory 

response represented by the upregulation of inflammatory genes is observed in the aged 

hypothalamus, including upregulation of the complement pathway, MHC genes and 

inflammatory cytokines (see Chapter 4). In general, the inflammatory response is a result 

of NF-κB activation, given that the majority of the immune signalling and inflammatory 

responses genes are under NF-κB transcriptional control (Tilstra et al. 2011). In the 

hypothalamus, the age-related NF-κB activation is initially restricted to astrocytes and 

microglia cells (Zhang et al. 2013), known to be the primary source of a wide range of 

inflammatory mediators (Clarke et al. 2018; Colombo and Farina 2016; Pekny and 

Nilsson 2005). It is possible, therefore, that microglia and astrocyte activation is 

underlying the exacerbated neuroinflammatory response observed with age. 

 

Inflammatory responses mediated by microglia and astrocytes can impair neuronal 

functions, limit axonal regeneration, decrease neurogenesis, and induce myelin defects 
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(Menet et al. 2003; Pekny and Nilsson 2005). Interestingly, within the hypothalamus, the 

physiological effects of neuronal NF-κB activation appear to be cell-type dependent 

(Purkayastha et al. 2011). TNFα has two known receptors: TNFα receptor 1 (TNFR1) 

and TNFα receptor 2 (TNFR2) (Wajant, Pfizenmaier, and Scheurich 2003). TNFR1 is 

barely detected in hypothalamic neurons; in turn, TNFR2 expression is detected in 

POMC neurons but hardly observed in NPY/AgRP neurons (Purkayastha et al. 2011). 

The differential expression pattern may suggest that POMC neurons are more sensitive 

to neuroinflammation mediated by NF-κB activation. In line with this, previous studies in 

rodents linked diet-induced inflammation with a reduction of hypothalamic POMC 

neurons but not NPY/AgRP (Li et al. 2012; Thaler et al. 2012), mimicking the results 

presented in Chapter 3. Diet-induced hypothalamic inflammation negatively impacts 

neurogenesis (Li et al. 2012), and recently, it has also been associated with myelin 

disruption (Huang et al. 2019). In turn, the age-related myelin breakdown contributes 

significantly to the wear and tear of microglia, which may exacerbate microglia 

senescence and immune dysfunction in the ageing brain (Safaiyan et al. 2016). Similarly, 

the present study showed that age-related inflammation in the hypothalamus is 

accompanied by a decreased proliferation capacity of stem/progenitor cell niche 

(Chapter 6) and myelination defects (Chapter 7).  

 

Age-related activation of inflammatory responses can damage cellular functions and be 

detrimental for the correct functioning of the hypothalamic circuits; however, it is still 

unclear how microglial and astrocyte activation is initially triggered in the ageing 

hypothalamus. Different mechanisms are reported to contribute to hypothalamic 

inflammation, including mitochondrial dysfunction (Drougard et al. 2015; Tang et al. 

2015), defective autophagy (Kaushik et al. 2012; Meng and Cai 2011) and intracellular 

RNA stress response (Yan et al. 2014). It is also possible that dietary stressors and 

tissue changes during ageing, such as adiposity and immune system dysfunction, also 

contribute to hypothalamic inflammation (Burfeind, Michaelis, and Marks 2016; Deleidi 

et al. 2015; Kuk et al. 2009). One of the most popular hypothesis suggests that 

accumulation of oxidative damage over time mediates microglia and astrocyte activation 

(Norden and Godbout 2013). In support of this, the hypothalamus from aged mice 

showed increased expression of enzymes involved in mitochondria respiratory chain 

compared to young animals (Jiang et al. 2001), suggesting an increased hypothalamic 

ROS production with age. Also, elevated oxidative stress (increased generation of free 
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radicals and lipid peroxidation levels), along with impaired antioxidant defences has been 

reported in the hypothalamus of aged rats (Rodrigues Siqueira et al. 2005).  
 

Regardless of insufficient understanding as to its primary causes, age-related 

hypothalamic inflammation mediated by astrocytes and microglia may contribute to the 

decline in energy homeostasis with age and mediate the development of the metabolic 

syndrome (Purkayastha and Cai 2013; Purkayastha et al. 2011; Tang et al. 2015; Zhang 

et al. 2008). Therefore, strategies that target hypothalamic microglia/astrocyte activation 

may delay the development of age-related conditions and increase the lifespan. 

 

8.2. Age-dependent changes in hypothalamic POMC neurons may contribute 

to the altered energy balance observed with age 

In this study, an age-dependent remodelling of the hypothalamic neuronal circuits 

reported, accounting for one potential mechanism to explain the age-dependent decline 

in energy homeostasis. Main findings include: (1) The number of POMC neurons, but 

not NPY, decline with age; (2) POMC neuronal decline is not associated to cell death, 

however, ageing could be influencing silencing of Pomc expression in a specific subset 

of anorexigenic neurons.  

 

The specific reasons underlying POMC neuronal decline are uncertain, although age-

associated inflammation mediated via NF-κB may play a role (Zhang et al. 2013). In fact, 

in vitro studies revealed that Pomc gene is a downstream target of NF-κB (Shi et al. 

2013). In addition to inflammation, the elevation of mTOR activity has also been 

associated with the deterioration of POMC neurons during ageing (Yang et al. 

2012). Elevation of mTOR signalling by targeted deletion of the negative regulator Tsc1 

in POMC neurons caused cell hypertrophy, silenced neuronal activity and reduced 

neurite projection to the PVN, contributing to age-dependent obesity (Mori et al. 2009; 

Yang et al. 2012). However, targeted Tsc1 deletion in NPY/AgRP neurons did not affect 

their size or firing rate (Yang et al. 2012). In old mice, the central administration of 

rapamycin, an inhibitor of mTOR pathway, enhanced the firing and neurite projections 

of POMC neurons, causing a reduction of food intake and body weight (Yang et al. 

2012). Reportedly, rapamycin significantly extends the median and maximal lifespan in 

mice when fed at 20 months of age (Harrison et al., 2009).  



General discussion | Chapter 8 
 

 198 

 

Recent studies also revealed that POMC neurons exhibit increased sensitivity to age-

associated reduced autophagy, leading to decreased lipolysis and α-MSH levels 

(Kaushik et al. 2012). In mice, selective deletion of essential autophagy genes in POMC 

neurons affected axonal growth and caused metabolic defects often associated with 

ageing, including obesity, adiposity, and glucose intolerance (Coupé et al. 2012; Kaushik 

et al. 2012; Quan et al. 2012). Interestingly, hypothalamic inflammation has been linked 

to autophagic dysfunction, at least partly, due to the effect of deficient hypothalamic 

autophagy in promoting obesity (Meng and Cai 2011). 

 

In summary, given that POMC neurons are critical regulators of energy homeostasis, 

dysfunction of these cells likely represents the cause of the metabolic deregulation 

observed with age. Thus, it is possible that the decline in POMC neuronal number 

reported in this study, coupled with decreased autophagy, increased mTOR signalling 

and higher sensitivity of these cells to neuroinflammation (described in the previous 

section) underlies the ageing-related shift in energy homeostasis. 

 

8.3. Ageing exacerbates myelin disruption and axon injury in the mediobasal 

hypothalamus 

Although the loss of myelinated nerve fibres has been reported in multiple brain 

regions during normal ageing and in neurodegenerative diseases (Bartzokis 2011; Braak 

and Del Tredici 2004; Peters 2002; Peters et al. 2000; Sandell and Peters 2001; Xing et 

al. 2012), this study represents the first attempt to characterise the myelin dynamics in 

the ageing hypothalamus. 

 

The present study identified an aberrant myelination pattern in the hypothalamus with 

age together with an age-related increase in the number of total and mature myelinating 

OLs in the MBH. Moreover, hypothalamic OLs seem to retain their capacity to 

differentiate and are able to produce the major myelin proteins PLP and MBP throughout 

life. Interestingly, the expression of the motor proteins KIF1B kinesin and Dynein, 

essential for Mbp trafficking and myelination in vivo (Herbert et al. 2017; Lyons et al. 

2009), are reduced in the aged hypothalamus (see Chapter 7). These results suggest 

that inhibition of the transport, rather than the reduced expression of myelin proteins, 
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may contribute to the aberrant myelination reported with age. Defects in the transport 

of myelin membrane components have been linked to myelin dysfunction in 

demyelinating diseases, including MS (Aulchenko et al. 2008).  

 

The remyelination capacity has been shown progressively decline as animals grow older 

(Ibanez et al. 2003) and is associated with changes in the inflammatory response (Graf 

et al. 2016; Hinks and Franklin 2000). The proliferative capacity of hypothalamic OPC 

was also investigated in Chapter 6, identifying an age-related decrease. In the 

hypothalamus, OPCs also hold a critical role in preserving neuronal processes, and 

short-term OPC elimination led to permanent neuronal damage in the ME (Djogo et al. 

2016). Interestingly, in diet-induced mouse models, hypothalamic NF-κB activation led 

to reduced OPC proliferation and reduced production of new OLs in the hypothalamus 

(Li et al. 2012). Also, impaired myelin microstructure in the hypothalamus has been 

reported in diet-induced obesity models, due to pro-inflammatory cytokine expression 

and microglia activation (Huang et al. 2019).  

 

Regardless of its causes, defective myelination may lead to interrupted neuronal 

communication and, ultimately, cause axonal degeneration (Stassart et al. 2018). In line 

with this, results in Chapter 4 revealed reduced expression of genes involved in neuronal 

cytoskeleton organisation, axonal guidance and transport in the aged hypothalamus. It 

is possible, therefore, that the loss of myelin and the neuronal processes in the 

hypothalamus could underlie the decline in metabolism and energy homeostasis 

observed during ageing. Thus, strategies that preserve OPC proliferation and reduce 

gliosis may help maintain the normal hypothalamic functioning during ageing. 

 

8.4. Concluding remarks 

The present project provides novel information on the age-related alterations which 

occur in the hypothalamic circuits that control energy homeostasis. The detailed 

characterisation of both appetite-regulating populations showed that the anorexigenic 

POMC, but not the orexigenic NPY, suffers a significant decline with age. Also, increased 

inflammation, mediated by activation of microglia and astrocytes, and release of pro-

inflammatory factors was reported. Finally, defective myelin in the aged hypothalamus, 
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possibly due to the decline in OPC proliferation and oligodendrogenesis, may lead to 

interrupted neuronal communication and axonal degeneration. 

Combined, the findings presented here may help improve the understanding of the 

different roles that hypothalamic neurons and glial cells may play during the ageing 

development. These results open the possibility that potential anti-ageing and ageing-

control technologies to target the cellular and molecular mechanisms affected in the 

ageing hypothalamus.
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Figure S 1. Changes in mice weight with age. Graph (A) and Scatter dot plot (B) display 
body weight in young adult (black), middle-aged (dark grey) and old animals (light grey). 
Data in (A) is represented as mean ±SEM and a minimum of 35 animals per age group 
were analysed. Data in (B) is represented as the median and the range of mice body weight. 
All significance testing was performed using one-way ANOVA followed by Tukey post-hoc 
test (*p<0.05, **p<0.005, *p<0.0005). g – grams.
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Figure S 2. Cleaved Caspase 3 (CC3) and TUNEL assay staining in the SVZ of lateral 
ventricles, a neural stem cell niche of the brain known to undergo cell division and 
apoptosis in adult mice. (A – A’’) CC3 immunostaining (green) and Hoechst (blue) in the 
LV and surrounding parenchyma. White arrow signals a CC3+ cell and its apoptotic 
nucleus. (A – A’’) CC3 immunostaining (green) and Hoechst (Blue) in the LV surrounding 
parenchyma. White arrow signals a CC3+ cell and its apoptotic nucleus. (B – B’’) TUNEL 
staining (red) and Hoechst (blue) in the LV and surrounding parenchyma. TUNEL+ cells can 
be detected in the LV wall. (B – B’’) CC3 immunostaining (green), TUNEL (red) and Hoechst 
(blue) in the LV and surrounding parenchyma. White arrows signal TUNEL+/CC3- cells and 
asterisks indicate TUNEL+ cells/CC3+. Scale bar 25 µm. LV – lateral ventricle. SVZ – 
subventricular zone 
  

* * * * * *

SV
Z 

of
 L

V

B. B’. B’’.

A. A’. A’’.

C. C’. C’’.
TUNEL Hoechst TUNEL Hoechst

CC3 Hoechst CC3 Hoechst

TUNEL
CC3
Hoechst TUNEL CC3

LV LVLV

LV LV

LV



| Annex 
 

 237 

 

Figure S 3. Co-localization of the necrosis marker MLKL and the microglia marker Iba1 
in the corpus callosum. (A – A’’) MLKL immunostaining (red), Iba1 and Hoechst (blue) in 
the Corpus callosum area. White arrows signal MLKL+/Iba1+ cells. Experiments were 
performed in young (n = 3), middle-aged (n = 3) and old animals (n = 3). Scale bar 25 µm. 
CC – corpus callosum.  
 

 

Figure S 4. Proliferative cells were observed in the hippocampus and corpus callosum 
of young, middle-aged and old animals. As a general observation, fewer BrdU+ cells were 
detected in the old animals. (A, B, C) v images of the from young-adult (A), middle-aged 
(B) and old (C) animals, a minimum of 3 animals were analysed per age group. Scale bar 
50 µm. CC – Corpus callosum.  
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Figure S 5. BrdU+ cells do not co-localise with Npy-GFP+ cells. (A – A’’) Npy-GFP+ 
(green) and BrdU+ (blue) cells do not show co-localization in Arc-ME in bregma -1.7 mm, 
approximated. (B – B’’’) High power of (A-A’’) confirm the lack of co-localization in the Arc 
nucleus. (C – C’’) Npy-GFP+ (green) and BrdU+ (blue) do not show co-localization in 
hypothalamus in bregma -1.46 mm, approximated. Dashed lines outline the borders of the 
3V. The pictures shown were obtained from young animal tissue. Experiments performed 
in young, middle-aged and old animals with a minimum of 3 animals analysed per age 
group. Scale bar 50 µm. 3V – third ventricle. 
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Figure S 6. BrdU+ cells do not co-localise with βGal cells. (A – A’’) βGal (red) and BrdU+ 
(blue) cells do not show co-localisation in Arc in bregma -1.58 mm, approximated. (B – B’’’) 
Experiments performed in young, middle-aged and old animals with a minimum of 3 animals 
analysed per age group. Scale bar 50 µm.  
 

 

Figure S 7. CC1+ cells were observed in the h corpus callosum of young, middle-aged 
and old animals. Representative images of the from young-adult (A), middle-aged (B) and 
old (C) animals. CC1 immunostaining (red) and Hoechst (blue) in the Corpus callosum area. 
Experiments performed in young, middle-aged and old animals with a minimum of 3 animals 
analysed per age group. Scale bar 50 µm. CC - corpus callosum.  

 

 

Figure S 8. CC1+ cells were observed in the corpus callosum of young, middle-aged 
and old animals. Representative images of the from young-adult (A), middle-aged (B) and 
old (C) animals for CC1 immunostaining (red) and Hoechst (blue) in the Corpus callosum 
area. Experiments performed in young, middle-aged and old animals with a minimum of 3 
animals analysed per age group. Scale bar 50 µm. CC – Corpus callosum.  
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