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A B S T R A C T   

Wild pollinator numbers are known to be positively associated with amounts of flower-rich habitat at landscape 
level. Increasing floral resources can be particularly beneficial in relatively nectar-poor agricultural systems and 
having a baseline understanding of the temporal and spatial availability of resources can allow targeted habitat 
management. Very high-resolution remote sensing has potential to facilitate accurate mapping of fine-scale, 
within-habitat pollinator foraging resources, thereby allowing spatial and temporal gaps to be identified and 
addressed, improving predictions of pollinator numbers, and enabling remote monitoring of pollinator conser-
vation measures. 

Concentrating on hedgerow and flower-rich field margins in a UK agricultural landscape, we showed that 
multispectral airborne imagery with 3 cm and 7 cm spatial resolutions can be used to classify five nectar-rich 
flowering plant species (Prunus spinosa, Crataegus monogyna, Rubus fruticosus, Silene dioica and Centaurea nigra) 
using a maximum likelihood classification algorithm. In 2019, we separately acquired 3 cm and 7 cm imagery for 
the months of March, May and July, respectively. Overall accuracies were above 90% for each month at both 3 
cm and 7 cm resolutions (range 92.32%–98.72%), supporting previous research that suggests higher spatial 
resolutions do not necessarily lead to higher accuracies, as pixel variability is increased. 

Remaining challenges include determining which co-flowering species of similar colours in the visible range 
can be distinguished from one another within classifications and quantifying floral unit density from classifi-
cations so that the nectar sugar supply can be calculated. Nonetheless, we provided a prototype approach for 
mapping pollinator foraging resources in an agricultural context, which can be extended to other nectar-rich 
species. The foundation is set for developing a remote sensing pipeline that can provide valuable data on the 
availability of nectar-rich flowering plant species at different time-points throughout the year.   

1. Introduction 

1.1. Meeting pollinator resource requirements 

Land-use changes linked to the intensification of agricultural activ-
ities are key contributors to pollinator decline (Dicks et al., 2021; 
Goulson et al., 2015; Ollerton, 2017; Potts et al., 2010, 2016). In the UK 
for example, Ollerton et al. (2014) found that increased extinction rates 
for wasps and bees coincided with shifts in agricultural policy, such as 
agricultural intensification following the First World War. Baude et al. 
(2016) discovered that pollinator decline patterns in Britain mirrored 
reductions in nectar supply and diversity. This and other studies (e.g. 

Carvell et al., 2017; Pywell et al., 2005; Scheper et al., 2013) suggest that 
increasing the availability and variety of nectar-rich flowering plant 
species could go a long way in addressing pollinator losses. 

Arable habitat produces the least nectar out of all of Britain’s habitat 
types as well as the least variety (Baude et al., 2016). Increasing and 
better managing existing pollinator foraging resources alongside crops 
could therefore contribute greatly to conservation efforts. 

Positive relationships have long been established between broad 
landscape level vegetation categories and pollinator or crop-visitor 
metrics, such as species richness and abundance (Pywell et al., 2005; 
Scheper et al., 2013; Willcox et al., 2018; Kleijn et al., 2015; Ricketts 
et al., 2008). However, knowledge surrounding the specific 

* Corresponding author. 
E-mail address: sarah.barnsley@bluewin.ch (S.L. Barnsley).  

Contents lists available at ScienceDirect 

Journal of Environmental Management 

journal homepage: www.elsevier.com/locate/jenvman 

https://doi.org/10.1016/j.jenvman.2022.114942 
Received 8 October 2021; Received in revised form 28 February 2022; Accepted 18 March 2022   

mailto:sarah.barnsley@bluewin.ch
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2022.114942
https://doi.org/10.1016/j.jenvman.2022.114942
https://doi.org/10.1016/j.jenvman.2022.114942
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2022.114942&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Environmental Management 313 (2022) 114942

2

within-habitat variables contributing to these relationships, such as 
availability of nesting sites or nectar/pollen supply, remains limited 
(Willcox et al., 2018). Some studies do address these relationships, such 
as Holl (1995), who demonstrated that butterfly species richness and 
abundance both increased with greater nectar sugar supply (grams), at 
reclaimed sites previously surface-mined for coal. Timberlake et al. 
(2021) found that Bombus terrestris colony density increased as the 
farm-level nectar sugar supply (g/m2/day) in September increased. 

Precise estimates of how resources such as pollen and nectar vary 
temporally and at different spatial scales are essential for understanding 
the numbers of pollinators that can be supported at a habitat or land-
scape level, and for quantifying resource shortfalls (Carl et al., 2017; 
Jachuła et al., 2021; Langlois et al., 2020; Timberlake et al., 2019). 
Jachuła et al. (2021) for example, found that nectar sugar supply 
(kg/km2) did not meet honeybee sugar demand in March or June, or 
bumblebee sugar demand in June, in Polish upland landscapes. Simi-
larly in the UK, Timberlake et al. (2019) showed that farm-level nectar 
sugar supply (g/km2/day) did not meet bumblebee sugar demand in 
March, June or late summer. 

A baseline map detailing the spatial and temporal distribution of 
floral resources such as nectar and pollen, would allow any gaps to be 
identified and addressed through the selection of appropriate in-
terventions. For example, a greater nectar sugar supply in spring could 
be encouraged by increasing the floral abundance of nectar-rich 
hedgerow species such as Prunus spinosa or Crataegus monogyna, which 
flower at that time of year. Staley et al. (2012) demonstrated that Cra-
taegus monogyna flower abundance could be increased by more than 
two-fold by cutting hedgerows every 3 years as opposed to annually. 
Alternatively, flowering plant species that provide nectar/pollen re-
sources during temporal resource gaps could be included in sown 
wildflower strip/margin mixes (Nowakowski and Pywell, 2016) and 
additional wildflower strips could be created where spatial gaps be-
tween resources are greater than pollinator foraging distances (Green-
leaf et al., 2007). 

However, field surveying of floral resources to gather baseline dis-
tribution information at finer scales is usually time and space limited. 
Often, only a subset of floral resources can be mapped and subsequently 
used to estimate resources available at the wider habitat or landscape 
level (e.g. Baude et al., 2016; Pettorelli et al., 2018; Timberlake et al., 
2019). Remote sensing has enormous potential to facilitate the 
fine-detailed mapping of pollinator resources and fill in research gaps (e. 
g. see Galbraith et al., 2015; Willcox et al., 2018). 

1.2. Remote sensing for mapping pollinator resources 

Pollinator researchers have started taking advantage of remote 
sensing opportunities (Galbraith et al., 2015; Gardner et al., 2020; 
Willcox et al., 2018). Carrié et al. (2018) used multispectral satellite 
imagery with a 2 m pixel size to determine the relationship between 
nesting resource metrics in permanent grassland habitats and the bee 
communities in crop fields. Xavier et al. (2018) developed a technique 
using Unmanned Aerial Vehicle (UAV) imagery with a pixel resolution 
of 1 cm to capture the floral resource within experimental plots. They 
produced classification outputs with three categories: bare ground, 
flowers and other vegetation. Pollinator visits were found to positively 
correlate both with field survey flower counts and floral area as obtained 
from these classification outputs (p-values of <0.001 and 0.0007, 
respectively). 

While not focusing specifically on pollinator ecology, Bradter et al. 
(2020) used airborne hyperspectral imagery and simulated multispec-
tral data with a 1 m pixel resolution, to classify farmland grassland 
habitats into distinct vegetation categories. Vegetation categories were 
grouped according to dominant plant species or British National Vege-
tation classification categories. There remain very few studies globally 
that focus specifically on mapping floral resources (Landmann et al., 
2018). However, a few studies have demonstrated that flowers of 

individual plant species growing in stands with relatively little diversity 
can be detected using remote sensing, for example when monitoring 
invasive species (e.g. Carl et al., 2017) or fruit crops (e.g. Horton et al., 
2017). Carl et al. (2017) achieved an overall accuracy of 99.5% when 
using ImageJ to distinguish between invasive Robinia pseudoacacia L. 
flower and vegetation biomass pixels in red-green-blue UAV imagery. 
Horton et al. (2017) created a peach blossom detection algorithm in 
MATLAB which they used to detect peach blossom pixels with an 84.3% 
success rate using multispectral UAV imagery. Chen et al. (2009) 
demonstrated that hyperspectral data acquired with a spectroradi-
ometer could be used to estimate the floral cover of Halerpestes tricuspis 
in a Tibetan grassland context in July, when this species was the 
dominant flowering species. Dixon et al. (2021) demonstrated that a 
maximum likelihood classifier could be used to classify Corymbia calo-
phylla flower pixels with a 2 cm spatial resolution with user’s and pro-
ducer’s accuracies ranging between 89.9%-92.9% and 89.8%–96.4%, 
respectively. 

These studies demonstrate potential for high-resolution remote- 
sensing technology to create baseline maps of key pollinator foraging 
resources across entire farmed landscapes, including small-scale flow-
ering plants in field margins, such as Centaurea nigra and Leucanthemum 
vulgare (Baude et al., 2016). Quantifying the floral cover of individual 
flowering plant species is important because they differ widely in their 
provision of nectar and pollen (Baude et al., 2016). For example, for 
those UK species with empirical nectar data available, flow rates per 
flower vary by three orders of magnitude, ranging from 0 to 7667.84 μg 
sucrose/flower/day (Baude et al., 2015a). Flowering plant species also 
differ in their ability to provide floral resources to different pollinator 
species or functional groups (e.g. Dicks et al., 2015, Table S1). None of 
the aforementioned studies determined whether the floral unit cover of 
individual flowering plant species within arable field margins can be 
accurately classified and mapped using very high spatial resolution 
remotely sensed data. Throughout this study we have used the definition 
of Carvell et al. (2007) for floral units: either individual flowers or stems 
with multiple flowers that a bee can walk rather than fly between, e.g. 
one Centaurea nigra capitulum. 

Flowering hedgerow species also provide an important food resource 
to pollinators in farmed landscapes (Baude et al., 2016; Garratt et al., 
2017; Häussler et al., 2017; Timberlake et al., 2019). While hedgerow 
locations in a landscape have been successfully mapped (Betbeder et al., 
2015; Tansey et al., 2009; Vannier and Hubert-Moy, 2008; Vannier 
et al., 2011), to our knowledge, flowering plant species and the extent of 
their floral cover in a northern European hedgerow context have not. 

In this study we focus on mapping nectar-rich flowering plant species 
found within UK agricultural field margins and hedgerows, because of 
the high potential value of these habitat types for pollinators (Baude 
et al., 2016; Timberlake et al., 2019; Häussler et al., 2017). We focus on 
nectar-rich species as a starting point, as nectar sugar constitutes a key 
energy source for pollinators (Willmer, 2011). We determine whether 
the floral unit cover of three nectar-rich hedgerow species (Prunus spi-
nosa, Crataegus monogyna and Rubus fruticosus) and two arable margin 
species (Silene dioica and Centaurea nigra) can be classified and mapped 
using multispectral airborne imagery and a maximum likelihood (ML) 
classifier. 

In addition to identifying spatial and temporal gaps in nectar-rich 
floral resources to inform on-farm conservation, remotely-sensed maps 
of nectar resources could feed into spatially explicit models. Such 
models have been developed to predict pollinator abundance or provi-
sion of pollination services, according to landscape structure (e.g. 
Lonsdorf et al., 2009; Gardner et al., 2020). Most such models rely on 
estimates of floral and nesting resources for a particular land cover 
category/habitat type, derived from expert opinion, evidence in the 
scientific literature or scaled up from field data acquired from a subset of 
a study area. Remotely-sensed maps that precisely outline the fine-scale 
floral cover distribution of flowering plant species across an entire study 
area could potentially increase the accuracy of spatially-explicit models, 
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although this will need to be tested empirically. 

1.3. Choice of classifier and spatial resolution 

In this study, we chose to use an ML classifier because we were 
working in collaboration with an industry partner H L Hutchinsons Ltd. 
(Hutchinsons, 2021), who was interested in developing a remote sensing 
method that could be used relatively cheaply and easily on the ground. 
The ML classifier meets these requirements and is readily available 
through multiple software packages (Lu and Weng, 2007). This para-
metric classification approach relies on the distribution of pixel values 
within data bands. Based on this distribution, the ML classifier then 
allocates each pixel to the classification category that it is most likely to 
belong to (Lillesand et al., 2015). More recently, much remote sensing 
research has turned to machine-learning classifiers such as random 
forest. However, at the time of our research most software packages that 
offered random forest either had a substantial cost involved (e.g. 
eCognition) or required a detailed knowledge of coding (e.g. the ‘ran-
domForest’ package in R) rather than an easy to use 
graphical-user-interface (Belgiu and Drăguţ, 2016). The latter would 
make random forest an impractical classifier for use within routine 
agricultural operations. ML classification algorithms have been suc-
cessfully used for many ecological remote sensing applications, such as 
mapping wetlands (Guo et al., 2017) or producing maps of land use/land 
cover change (Islam et al., 2018). 

Choice of imagery spatial resolution was another important consid-
eration for this study. Too high a spatial resolution can lead to greater 
within-class spectral variability and a greater chance of spectral signa-
ture overlap between differing features (Pu et al., 2011; Gong and 
Howarth, 1990; Latty et al., 1985; Toll, 1985). On the other hand, too 
low a spatial resolution in the context of individual floral units could 
lead to a greater chance of mixed pixels which could result in reduced 
classification accuracies for individual flowering plant species (Foody 
and Arora, 1996; Shanmugam et al., 2006). As the floral unit width of 
our flowering plant species of interest ranged between 1 and 3cm 
(NatureGate, 2020), we chose a pixel width of 3 cm as a starting point. 
However, the standard pixel size used by many farmers for crop moni-
toring in the UK is 7 cm. As a 7 cm spatial resolution is widely used and 
considerably cheaper than a 3 cm resolution, we also investigated 
whether a 7 cm pixel size could classify our flowering plant species of 
interest. 

Specifically, we addressed the following research question: 
Can multispectral airborne imagery with spatial resolutions of 3 cm 

and 7 cm be used to accurately classify the floral unit cover (m2) of 
nectar-rich flowering plant species in hedgerow and wildflower margins, 
as determined through overall, user’s and producer’s accuracy metrics 
and F-scores? 

2. Methods 

2.1. Study site and target nectar-rich flowering plant species 

Our study site was located within a conventional arable farm in 
Northamptonshire, approximately 76 miles to the north-west of London, 
UK (52◦17′57′′N, 0◦45′49′′W). The farm was 809ha in size and the 
predominant crops were wheat, barley and oilseed rape. One field was 
used as our study site (Fig. 1). Two sides of the field were sown with 
margins that had been planted with a pollinator wildflower mix from a 
UK-based wildflower seed provider: Emorsgate seeds (Emorsgate Seeds, 
2021; see Supporting Table 1). The full list of species included as part of 
the mix can be found in Supplementary Data 1. Some species not 
included in the mix were also growing in the margins, such as Trifolium 
repens. The field was surrounded on two sides by hedgerow containing 
Prunus spinosa and Crataegus monogyna and on a third side by thick Rubus 
fruticosus scrub. 

When deciding on our target margin flowering plant species, these 

had to be distributed across several margin subsections and flowering 
abundantly enough within our margins to provide adequate ground- 
truth data for the classification stage. Following Fisher et al. (2018), 
we considered a minimum of 100 pixels adequate for training and 
verifying a classification (see Section 2.3 for further detail). Of the 
flowering plant species that met this criterion, for each image acquisi-
tion date (28th March, 14th/15th May and 4th July) we selected the 
species within the wildflower mix that produced the greatest quantity of 
nectar per floral unit (floral units defined in Section 1.2) according to 
data from Baude et al. (2015a) and Baude et al. (2015b). We selected 
Silene dioica as our target margin flowering plant species for May and 
Centaurea nigra as our target flowering plant species for July (See 
Table 1). No margin species were flowering in March. 

There were fewer nectar-rich flowering plant species within hedge-
rows. Subsequently, hedgerow species were included as target species in 
our study if they were flowering abundantly enough to generate 
adequate ground-truth data for the classification stage (i.e. at least 100 
pixels of data covering several hedgerow subsections or a hedgerow 
section of greater than 3 m). Our target species were Prunus spinosa 
flowering in March, Crataegus monogyna flowering in May and Rubus 
fruticosus flowering in July (Table 1). 

2.2. Acquisition and processing of aerial imagery 

Remotely sensed aerial imagery was acquired from March–July 2019 
by Spectrum Aviation, using two Hasselblad A6D-100c (50 mm) cam-
eras attached with bayer filters. Two sets of data with spatial resolutions 
of approximately 3 cm and 7 cm were obtained for each month. Imagery 
was acquired on 28th March (3 cm and 7 cm data – acquired consecu-
tively), 14th May (7 cm data), 15th May (3 cm data) and 4th July (3 cm 
and 7 cm data – acquired consecutively). The sensors were mounted on a 
Sky Arrow 650 manned aircraft. Data acquisition flights were only 
launched on days that were forecast to be cloud-free (no more than 1/8 
cloud coverage, with visibility greater than 10 km) and with low wind 
(<20 kts). 

Spectrum Aviation carried out the initial pre-processing. Agisoft 
Metashape (Agisoft, 2019) was used to tie the images together. Data 
were processed under a WGS 84 (EPSG: 4326) coordinate reference 
system (CRS). However, the final 6-band orthomosaics for each month 
and resolution were exported for use within classifications under an 

Fig. 1. The study field with the areas used for selecting training and verifica-
tion pixels for each flowering plant species highlighted. 
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OSGB 1936/British National Grid (EPSG: 27700) CRS. 
We imported the final 6-band 16 bit orthomosaic images for each 

month into QGIS version 3.4.15 (QGIS, 2020) and split the stacked 
images into their component bands. Three of the six bands were ac-
quired using a dual filter. They each contained a combination of red and 
near-infrared (NIR) wavelengths and only the one which had the highest 
proportion of NIR was kept, along with the red-green-blue (RGB) bands. 
Each band was 15 nm wide. 

The RGB and NIR bands were stacked back together into a 4-band 
image for each month which was used in the classification process. As 
we were interested in whether aerial imagery could accurately map high 
nectar-producing floral resources at a single point in time, we did not 
convert from digital number values to reflectance, following Xavier et al. 
(2018). 

2.3. Gathering ground-truth data for margin species 

We collected ground-truth data within eight days of each image 
acquisition date (Table 1). For our margin species, ground-truth data 
were gathered for individual remote sensing (RS) units. For Centaurea 
nigra, RS units were defined in the same way as floral units following 
Carvell et al. (2007), i.e. one capitulum constituted an RS unit (Fig. 2a). 
Such an approach was not possible for Silene dioica because for this 
species floral units as defined by Carvell et al. (2007) are individual 
flowers. For remote sensing purposes, any S. dioica flowers on the same 
main stalk were counted as a single RS unit, because they would be likely 
to occur within the same pixel space in the aerial images (Fig. 2b and c). 

Location data were gathered for 85 S. dioica RS units and 100 C. nigra 
RS units. RS units for each species were purposively selected based on 
how they were spread across the margins (See Supporting Methods 1). 

Two techniques were used to accurately measure the location of 
individual RS units. Distances to at least two ground-control points 

(GCPs) were measured on the ground using a DeWALT laser beam 
measure (±1.5 mm) (see Xavier et al., 2018; see Supporting Methods 2). 
In addition, for a subset of RS units we gathered waypoint locations 
using a Topcon Real-time Kinetic (RTK) HiPer V receiver (Topcon, 
2020). 

2.4. Locating flowering plant species within the imagery 

We tested the accuracy of the RTK receiver by recording waypoints at 
the corners of a ground-control point board. As the waypoints were not 
located in the correct position in the imagery, we found the RTK receiver 
to be an inaccurate means of locating Silene dioica and Centaurea nigra RS 
units in May and July imagery, respectively. This could have been due to 
error e.g. multipath error which is caused when the path of a signal 
between RTK receiver and satellite is altered due to reflection off a 
nearby feature (Kos et al., 2010; Mekik and Can, 2010). We subsequently 
only used RS unit location data obtained via our method of measuring 
the distance of RS units to known ground-control points (GCPs). 

Even when measuring the distance of RS units to known GCPs, there 
was no way of determining exactly what error was involved in the 
ground location measurements relative to the imagery. For example, 
gusts of wind could change RS unit locations at the exact moment that an 
image was acquired. We were consequently unable to precisely locate 
individual RS units within the imagery. However, we had gathered data 
for multiple RS units within clusters of floral units of S. dioica and 
C. nigra (Supporting Methods 1). We also knew that non-target flowering 
plant species with potentially similar spectral signatures in the visible 
range were either not flowering synchronously with S. dioica or C. nigra, 
or were located in different parts of the margin. For example, Cirsium 
arvense was flowering synchronously to C. nigra, but C. arvense floral 
units were at the very least several metres away from the C. nigra RS 
units that were used in the ground-truth process. We therefore combined 

Table 1 
Target nectar-rich flowering plant species for which field data were gathered, their nectar production values and approximate floral unit size.  

Date of image 
acquisition 

Dates gathered ground- 
truth data 

Location (margin/ 
hedgerow) 

Flowering plant species 
(common name) 

Nectar sucrose secretion rate per floral 
unit per day (μg)a 

Approximate floral unitb 

width (cm) 

28 March NA Hedgerow Prunus spinosa (blackthorn) 266.23 1.0–1.8c 

14/15 May NA Hedgerow Crataegus monogyna 
(hawthorn) 

102.47 1.0c 

14/15 May 15–18 May Margin Silene dioica (red campion) 450.65 2.0–3.0c 

4 July 04–11 July Margin Centaurea nigra (common 
knapweed) 

10,705.66 2.4 (0.9)d 

4 July NA Hedgerow Rubus fruticosus (bramble) 1892.83 1.9 (0.1)d  

a Mean nectar sucrose per flower from Baude et al. (2015a) multiplied by mean no. flowers per floral unit from Baude et al. (2015b). 
b Note that the term floral ‘unit’ in the table uses the definition of Carvell et al. (2007) whereby any flower or stem with multiple flowers that a bee can walk rather 

than fly between constitutes one unit. 
c Values from NatureGate (2020) and only an approximate value. 
d The values for Centaurea nigra (n = 11) and Rubus fruticosus (n = 10) are means from our own measurements obtained in 2020 (see Supporting Data 1). Variance is 

reported in the brackets. 

Fig. 2. a. One Centaurea nigra capitulum constitutes a remote sensing unit. b. One Silene dioica remote sensing unit with multiple flowers. c. A second S. dioica remote 
sensing unit with only one flower. 
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the ground-truth data (RS unit locations - 85 for S. dioica and 100 for 
C. nigra) and knowledge of the surrounding area with the fact that 
S. dioica and C. nigra are both distinct pink/purple in colour. We made 
the assumption that purple pixels in close proximity (up to 0.60 m away) 
to the predicted RS unit locations belonged to clusters of floral units of 
S. dioica or C. nigra in May and July imagery, respectively. Classification 
training and verification pixels were purposively selected from within 
these floral clusters (Fig. 3). For some predicted RS unit locations, no 
pink/purple pixels were found in the vicinity. 3 S. dioica and 2 C. nigra 
RS unit clusters were consequently used for identifying the location of 
training pixels for each species, respectively and 3 S. dioica and 2 C. nigra 
RS unit clusters were used for identifying verification pixels for each 
species, respectively. See Supporting Methods 1 for a description of how 
S. dioica and C. nigra clusters were designated. 

For hedgerows, none of the target flowering hedgerow species 
flowered synchronously. Prunus spinosa flowering at the time of acqui-
sition of our March image had finished flowering by May when the 
second image was acquired and during which time Crataegus monogyna 
was flowering. Similarly, C. monogyna had finished flowering by the 
time of the July image acquisition, during which time Rubus fruticosus 
was flowering. As the floral units of each of these species are white or 
almost white and flower in dense clusters often several metres long or 
more, any white floral unit pixels within hedgerow sections in imagery 
from each acquisition date could safely be allocated to the appropriate 
species (see Fig. 4). 

2.5. Image training and classification 

We used the semi-automatic classification (SCP) plugin (Congedo, 
2016) in QGIS version 3.4.15 (QGIS, 2020) for training an ML classifier 
and running the classification. We chose this platform as it is open 

source and has all classification and accuracy assessment tools within 
one easy-to-use graphical user interface. 

We started by training and classifying the 3 cm images for each 
month. Each target flowering plant species formed a classification 
category within the classifications for their respective months. For each 
month we also created an ‘other’ classification category which con-
tained all features within the imagery that we were not interested in 
classifying individually, such as green vegetation, soil or branches. 

Training data were gathered for each flowering plant species clas-
sification category by selecting pixels within the imagery that we knew 
belonged to the floral component of each species based on our ground- 
truth data (see Section 2.4 and the flow chart in Fig. 5). We initially 
purposively selected ‘seed’ pixels (up to 64 seed pixels for each species) 
which were distributed as widely as possible across the study area for 
each respective species. For example, there were four large patches of 
Prunus spinosa in the hedgerow that were used for gathering training 
pixels. 16 seed pixels were purposively selected from each of these four 
patches leading to a total of 64 P. spinosa seed pixels. On the other hand, 
there was only one large patch of Rubus fruticosus used for gathering 
training data. All 64 R. fruticosus seed pixels were therefore purposively 
selected within this one patch. 

We then used a region growing tool to select other pixels within a 
threshold distance (within 2000 digital numbers) of the seed pixel so 
that we ended up with groups of pixels at different training locations for 
each species, each with a spectral signature showing the mean digital 
number values in each band for that pixel group. We repeated the pro-
cess for the ‘other’ classification category, making sure to select seed 
pixels across a range of different features so that we ended up with many 
sub-categories all contained under the main ‘other’ classification cate-
gory. The classifications were later run at the level of this main ‘other’ 
category, e.g. if the algorithm allocated a pixel to a ‘green vegetation’ 

Fig. 3. a. Measured locations of individual 
Centaurea nigra remote sensing (RS) units within 3 
cm imagery (pale blue points). These multiple RS 
unit locations outline an area of flowering C. nigra 
which given our knowledge of the surrounding 
margin area, meant we assumed purple pixels within 
close proximity (within 0.60 m) to the predicted RS 
unit locations belonged to C. nigra. There is no cer-
tainty that each point falls exactly on top of an RS 
unit in the image. b. The same image with C. nigra 
training pixels outlined. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the Web version of this article.)   

Fig. 4. a. An image of a patch of Crataegus monogyna taken from the ground. b. A sub-section of the multispectral image for May (3 cm resolution) showing a patch of 
flowering Crataegus monogyna. 
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sub-category, this would appear as belonging to the ‘other’ classification 
category in the classification output raster. 

Pixels on the edge of clusters of floral units may contain other fea-
tures as well, e.g. another flowering plant species or grass, which could 
affect the spectral signature within those edge pixels. We therefore chose 
both ‘pure’ and ‘edge’ seed pixels to cover spectral variability when 
gathering training data (up to 32 ‘pure’ seed pixels and 32 ‘edge’ seed 
pixels for each species). The former were the whitest/pinkest pixels 
(depending on flowering plant species) in the centre of patches. The 
latter were those pixels that were either on the edge of patches or, were 
in the centre of a very small patch and appeared to be mixed with other 
features. Supporting Table 2 provides the total number of training pixels 
for each classification category for each month (this total number in-
cludes the seed pixels and their nearby pixels selected using the region 

growing tool). 
ML classification algorithms were applied to the 3 cm imagery for 

each month using the training sets for each month, respectively. Several 
training set variants were applied to determine the influence upon 
classification accuracy, e.g. by including or excluding edge region 
training data. The aim of adjusting the training sets was to, where 
possible, obtain a minimum 85% for the user’s and producer’s accu-
racies for each nectar-rich flowering plant species classification category 
in the accuracy assessment process (see Supporting Table 2 and Section 
2.6). 

Spectral signatures for pixel groups created by the region growing 
tool within a particular classification category could be merged together 
to provide a mean spectral signature for the whole classification cate-
gory, e.g. a merged signature for Silene dioica. If spectral signatures 
between different classification categories overlapped slightly, pixel 
groups could be removed from a classification category to change its 
mean spectral signature. This was a way of manually changing thresh-
olds within a classification training set so that an image pixel would be 
allocated to one classification category over another. 

Atmospheric conditions could potentially vary between the acquisi-
tion of 3 cm and 7 cm data for each month. This was unlikely however, 
as 3 cm and 7 cm data were acquired consecutively where possible 
(March and July 3 cm and 7 cm data were acquired consecutively on the 
same day, while May 3 cm and 7 cm data were acquired on consecutive 
days) and images were acquired under similar weather conditions (see 
Methods Section 2.2). As our target flowering plant species are very 
distinct colours, we hypothesised that 3 cm training data could also be 
used to classify 7 cm imagery (Dash et al., 2019). We therefore used 
training data collated for each month using 3 cm imagery to classify the 
7 cm imagery for each month, respectively. Only the training set vari-
ants that resulted in the best classification accuracies for each month for 
3 cm imagery were applied to the 7 cm imagery for each month. 

Fig. 5. Flow chart outlining the classification process for 3 cm imagery, from selecting nectar-rich flowering plant species to assessing the classification accuracy.  

Table 2 
Number of verification pixels for each classification category included in the 
accuracy assessments for each month.  

Month of data 
acquisition 

Classification 
category 

Number of verification pixels included 
in accuracy assessment 

3 cm 
classifications 

7 cm 
classifications 

March Othera 640 640 
Prunus spinosa 64 64 

May Othera 640 640 
Silene dioica 64 25 
Crataegus 
monogyna 

64 64 

July Othera 640 640 
Centaurea nigra 64 25 
Rubus fruticosus 64 64  

a Note that the ‘other’ category is a different set of pixels for each month. 
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We also verified whether 7 cm data were a high enough resolution to 
train a classification and achieve high classification accuracies. We 
subsequently created a training set using May 7 cm imagery, keeping the 
training pixel locations as similar as possible to those within the 3 cm 
imagery training set. We classified the May 7 cm image using this new 
training set. 

2.6. Accuracy assessment 

We carried out an independent accuracy assessment for each classi-
fication using error matrices, through which overall accuracy, user’s 
accuracy and producer’s accuracy metrics were calculated (as in Sankey 
et al., 2018; Schmidt et al., 2018), as well as an F-score (Inglada et al., 
2015). The overall accuracy indicates the percentage of correctly clas-
sified pixels across the entire image (Strahler et al., 2006), using a subset 
of pixels for which ground-truth data are available (verification pixels). 
User’s and producer’s accuracies are a better indicator of how well an 
individual classification category has been classified. For X verification 
pixels classified as classification category a, user’s accuracy tells us the 
percentage of those pixels that are actually classification category a on 
the ground (Strahler et al., 2006). For Y verification pixels that we know 
belong to a particular classification category b on the ground, producer’s 
accuracy tells us the percentage of those pixels that have been correctly 
classified as category b (Strahler et al., 2006). The F-score combines both 
user’s and producer’s accuracies into a single metric (Inglada et al., 
2015) using the following equation (Maxwell and Warner, 2020): 
F-score = (2 x user’s accuracy x producer’s accuracy)/(user’s accuracy 
+ producer’s accuracy). 

We also calculated a kappa statistic, which is an overall accuracy 
metric that accounts for pixels that may have been allocated to the 
correct classification category by chance (Congalton et al., 1983; Foody, 
2020; Lillesand et al., 2015). The number of verification pixels used for 
each classification category can be found in Table 2. We aimed to select a 
minimum of 64 verification pixels for each flowering plant species as 
this was the maximum number of verification pixels we could obtain for 
Silene dioica when using 3 cm imagery and we kept the figure constant 
between species for 3 cm imagery. As we were unable to locate some of 
the floral unit clusters, we included 25 rather than the target 64 verifi-
cation pixels for S. dioica and C. nigra in the May and July 7 cm classi-
fication accuracy assessments, respectively (Table 2). Full accuracy 
assessment methods and error matrices are provided in Supporting 
Methods 3 and Supporting Data 2, respectively. 

Verification pixels included in the accuracy assessments were all at 
least 0.2 m away from pixels included within the training set or were 

very obviously in a different land-cover category, e.g. a training pixel 
clearly located in a section of gravel and the verification pixel clearly 
located in a section of grass. Given that imagery had only a 3 cm or 7 cm 
spatial resolution, 0.2 m was considered a sufficient distance to provide 
independence between training and accuracy data sets. 

3. Results 

3.1. Overall accuracy and kappa statistics 

Error matrices constructed for each 3 cm resolution classification can 
be found in Supporting Data 2. Error matrices constructed for classifi-
cations carried out on 7 cm imagery can be found in Supporting Data 3. 
Note that only the classification training set variant for each month that 
achieved the greatest overall accuracy for 3 cm data was used for clas-
sifying the respective 7 cm imagery. The classification variants for each 
month and at each resolution that achieved the best overall classifica-
tion accuracy using 3 cm data, are outlined in Table 3 along with their 
respective kappa statistic values. 

In March, the training set for the initial 3 cm classification contained 
both pure and edge Prunus spinosa pixels. This resulted in an overall 
classification accuracy of 97.44%. The training set for a second 3 cm 
classification variant contained only pure P. spinosa pixels, resulting in 
the classification with the best overall accuracy (Table 3). The difference 
between the two was only 1.28%. 

The May classification variant that resulted in the best overall ac-
curacy also only used the pinkest Silene dioica pixels within the training 
set and excluded edge pixels. One variant was very poor (when using the 
pinkest S. dioica pixels only and, non-merged pixel group signatures for 
S. dioica and Crataegus monogyna), classifying all pixels as C. monogyna, 
resulting in a difference in overall accuracy of 83.98% between the most 
and least accurate classification variants. The July classification variant 
with the highest overall accuracy used the pure pixels for Centaurea nigra 
and Rubus fruticosus within the training set and not the edge pixels. 
Among the July classification variants, the lowest overall accuracy was 
60.03%, a difference of 37.11% from the highest (See Supporting Data 
2). 

There was less than a 1% difference between overall accuracies for 3 
cm and 7 cm classifications for each month, respectively, for all final 
classifications that used 3 cm training data. March 3 cm data resulted in 
higher overall accuracies than 7 cm data, but the reverse was true for 
May and July data. The difference between kappa statistics for March, 
May and July were 2%, 10% and 1%, respectively. The kappa statistic 
was higher for 3 cm resolution imagery for each month. 

3.2. User’s and producer’s accuracies and F-scores 

The user’s and producer’s accuracies and F-scores for each flowering 
plant species in their respective 3 cm and 7 cm classifications can be seen 
in Table 4. These were calculated from the classification variants that 
gave the best overall accuracy (Table 3). It should be noted that these 
classifications did not necessarily have the best user’s and producer’s 
accuracies for individual species. For example, one 3 cm classification 
variant resulted in a user’s accuracy of 100.00% for Centaurea nigra as 
opposed to the 91.80% shown in Table 4. The producer’s accuracy for 

Table 3 
Highest overall classification accuracies and kappa statistics achieved in each 
month for 3 cm and 7 cm resolution imagery.  

Classification Overall Accuracy (%) Kappa statistic 

3 cm 7 cm 3 cm 7 cm 

March 98.72 98.44 0.92 0.90 
May 92.32 92.73 0.71 0.61 
July 97.14 97.53 0.90 0.89  

Table 4 
Producer’s accuracies, user’s accuracies and F-scores from the 3 cm and 7 cm classifications with best overall accuracy for each month.  

Classification Month Species User’s Accuracy (%) Producer’s Accuracy (%) F-score 

3 cm 7 cm 3 cm 7 cm 3 cm 7 cm 

March Prunus spinosa 98.25 98.18 87.5 84.38 0.93 0.91 
May Silene dioica 95.35 92.86 64.06 52.00 0.77 0.67 
May Crataegus monogyna 77.78 76.09 65.63 54.69 0.71 0.64 
July Centaurea nigra 91.80 86.96 87.50 80.00 0.90 0.83 
July Rubus fruticosus 91.04 92.06 95.31 90.63 0.93 0.91  
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C. nigra in that 3 cm classification variant was only 26.56% (Supporting 
Data 2). 

The difference between 3 cm and 7 cm classification user’s accu-
racies for each species varied between 0.07% and 4.84%. User’s accu-
racy was higher with 3 cm imagery for all species except Rubus fruticosus, 
where it was higher with 7 cm imagery. The difference between pro-
ducer’s accuracies for 3 cm and 7 cm imagery ranged between 3.12% 
and 12.06%. 3 cm data resulted in higher producer’s accuracies in all 
cases. 3 cm data also resulted in higher F-scores for each species. 

3.3. 7 cm training data 

The results of the accuracy assessment for May when using training 
data collated from 7 cm imagery can be seen in Table 5 and, the error 

matrix can be found in Supporting Data 4. The overall accuracy obtained 
for the 7 cm classification when training the classifier with 7 cm data 
was higher than both 3 cm and 7 cm classifications when trained with 3 
cm data. The user’s accuracy for Silene dioica was lower, but producer’s 
accuracy was higher, for the 7 cm classification trained with 7 cm data 
than for both 3 cm and 7 cm classifications trained with 3 cm data. For 
Crataegus monogyna, user’s accuracy for the 7 cm classification trained 
with 7 cm data was higher than both 3 cm and 7 cm classifications 
trained with 3 cm data. C. monogyna producer’s accuracy was higher for 
the 7 cm classification trained with 7 cm data than that trained with 3 
cm data, but the same as the 3 cm classification trained with 3 cm data. 
For both S. dioica and C. monogyna, the F-scores were higher for the 
classifications trained with 7 cm data than either the 3 cm and 7 cm 
classifications trained with 3 cm data. 

Table 5 
Overall, producer’s and user’s accuracies and F-scores for nectar-rich flowering plant species in May 7 cm imagery when classified using the 7 cm training set.  

Overall Accuracy (%) Kappa statistic User’s Accuracy (%) Producer’s Accuracy (%) F-score 

Silene dioica Crataegus monogyna Silene dioica Crataegus monogyna Silene dioica Crataegus monogyna 

94.65 0.73 85.71 85.71 72.00 65.63 0.78 0.74  

Fig. 6. a. The 3 cm image acquired of the study field in March. b. The 3 cm classification output for March with the best overall accuracy. c. The March 7 cm image 
acquired of the study field. d. The March 7 cm classification output. 
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4. Discussion 

4.1. Suitability of 3 cm and 7 cm imagery for mapping nectar-rich 
flowering plant species 

Our results indicate that multispectral aerial imagery can be used to 
classify individual flowering plant species with high nectar-value to 
pollinators (see Fig. 6 for an example classification of the whole area for 
March). For those classification variants that achieved the highest 
overall accuracies, these were well above the suggested target of 
80–85% (e.g. see Foody, 2008 and Xavier et al., 2018). This is no sur-
prise as the species under consideration had floral units with colours 
visibly distinct from the background vegetation (Dash et al., 2019). 
Kappa statistics were more variable, ranging between 0.61 for May 7 cm 
imagery and 0.92 for March 3 cm imagery. There is debate however, as 
to whether the kappa statistic is a useful metric for accuracy assessments 
(Bradter et al., 2020; Foody, 2020). 

It was clear that 3 cm classification variants that excluded edge pixels 
within the training data for each month resulted in higher classification 
accuracies. This is likely because this reduces the spectral signature 
variability of pixels belonging to a particular flowering plant species 
category (Woodcock and Strahler, 1987). An alternative for dealing with 
mixed pixels in future studies could be to use a ‘fuzzy’ or ‘soft’ classifi-
cation approach (e.g. see Foody and Arora, 1996; Shanmugam et al., 
2006). 

User’s and producer’s accuracies can be seen as more important for 
determining whether a particular flowering plant species has been 
correctly classified (Story and Congalton, 1986). For classifications with 
the best overall accuracy for each month and at each resolution, user’s 
and producer’s accuracies for Prunus spinosa and Rubus fruticosus were 
80% or above. This is likely because although the floral units themselves 
are relatively small (Table 1), they flower in dense clusters within the 
hedgerow. Subsequently, there are likely to be fewer mixed pixels, 
which can reduce classification accuracies (Foody and Arora, 1996; 

Shanmugam et al., 2006). Crataegus monogyna also consisted of small 
floral units forming dense clusters. User’s and producer’s accuracies of 
less than 80% for C. monogyna within classifications trained with 3 cm 
data were likely caused by spectral signature overlap with the syn-
chronously flowering Anthriscus sylvestris, which can also flower in dense 
clusters (Fig. 7). 

User’s and producer’s accuracies obtained for Centaurea nigra in July 
were also 80% or above at each resolution. Despite similar floral unit 
sizes to C. nigra (Table 1), Silene dioica had producer’s accuracies lower 
than 80% at each resolution, although the user’s accuracies were higher. 
A possible explanation for differences between the two species is that the 
leafy vegetation in May was not as long as in July. It is therefore possible 
that other features with similar spectral characteristics to S. dioica, such 
as branches in the hedgerow, were more exposed in May than in July 
(Fig. 8). Alternatively, many of the S. dioica floral units were positioned 
sideways rather than upright like the C. nigra units. This potentially 
meant that a smaller area of floral unit was seen from above, leading to 
pixels containing a greater proportion of other features. Although 
S. dioica floral units are bright pink, their sepals are dark purple, almost 
brown in colour. With the sideways positioning of S. dioica floral units 
and greater visibility of the sepals, it is possible that they were less 
spectrally distinguishable from other features such as branches when 
compared to C. nigra’s bright purple, upwardly-oriented floral units. 

One way to address the misclassifications for both C. monogyna and 
S. dioica could be to combine spectral data with additional data such as 
vegetation height, for example through use of a decision tree (Sankey 
et al., 2018). 

In each month the difference in overall accuracy between 3 cm and 7 
cm imagery, when classified with 3 cm training data, was less than 1%. 
In May and July, the 7 cm classifications resulted in the higher accuracy. 
This suggests that the training data set prepared for the 3 cm imagery 
was suitable for applying to the 7 cm imagery. The 7 cm classification for 
May trained with 7 cm data resulted in an overall accuracy higher than 
both May classifications (3 cm and 7 cm) trained with 3 cm data. In line 

Fig. 7. a. Subsection of the original May 3 cm image with Crataegus monogyna and Anthriscus sylvestris circled. b. The 3 cm classification output with best overall 
accuracy showing pixels of C. monogyna correctly and incorrectly classified. c. Subsection of the original May 7 cm image. d. The 7 cm classification output showing 
pixels of C. monogyna correctly and incorrectly classified. 
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with other studies (Latty et al., 1985; Toll, 1985), this suggests that 
higher spatial resolution is not always necessary to achieve good clas-
sification accuracies. This is not surprising because, spectral variability 
within classification categories can increase with a spatial resolution 
that is too high and which therefore picks up greater detail. There is 
subsequently a higher likelihood of different features having over-
lapping spectral signatures (Pu et al., 2011; Gong and Howarth, 1990; 
Latty et al., 1985; Toll, 1985). 

4.2. Adapting the accuracy assessment process 

In this study, verification pixels for use within the accuracy assess-
ment process were selected in areas where we knew a particular species 
would not be growing. This is a similar approach to Holland and Aplin 
(2013), who only used accuracy assessment reference layer points that 
were linked to suitable ground-truth data. For example, we assumed that 
pixels in areas of hedgerow not belonging to focal flowering plant spe-
cies, patches of shadow, short grass paths, the crop edge, etc. would 
constitute ‘other’ category pixels. Pixels classified as flowering plant 
species of interest, e.g. Centaurea nigra, in these areas were regarded as 
incorrect results. 

These areas contained types of features that could potentially be 
confused with flowering plant species of interest, e.g. leafy vegetation, 
dry vegetation, patches of soil. We therefore believe that our study is a 
good initial test of whether our selected species’ floral units can be 
detected using multispectral imagery. 

However, for margin species, we did not establish control sections in 
the long-grass margins where we knew our focal species were absent. 
Other features in the margins that we had not accounted for could also 
be classified as our species of interest but would not be picked up within 
the accuracy assessment. Control areas containing species with poten-
tially overlapping spectral signatures would be valuable in future 
studies, e.g. Cirsium arvense which in our study area was flowering 
synchronously to C. nigra albeit at a low abundance. 

4.3. Mapping floral resources and the implications for pollinator 
management 

Many studies have differentiated between broad floral/vegetation 
categories or gradients of floral composition, with good degrees of 
success (e.g. see Xavier et al., 2018; Bradter et al., 2020, Feilhauer et al., 
2013). Other studies have achieved high classification accuracies for 
individual plant species or species groups. When distinguishing between 
invasive Pinus species and native grassland vegetation for example, Dash 
et al. (2019) achieved kappa statistics higher than 0.996 when using 
cross-validation to verify different classification models. 

Carl et al. (2017) used UAV imagery to estimate the number of 
Robinia pseudoacacia L. flowers per hectare in their study area: 5.3 
million. Horton et al. (2017) successfully detected 84.3% of peach 
blossom pixels. With user’s and producer’s accuracies for Rubus fruti-
cosus, Centaurea nigra and Prunus spinosa all above 80%, we achieved 
similar levels of accuracy for some species. To our knowledge, no others 
have attempted to use very high resolution remotely sensed imagery to 
map the floral cover of individual nectar-rich flowering plant species 
within arable field margins and hedgerows. 

This is highly relevant for targeted pollinator management, as 
mapping the floral cover of nectar-rich flowering plant species would 
help identify gaps in the nectar-sugar supply. Resource gaps could 
subsequently be filled, helping to avoid the disconnect between nectar 
supply and pollinator demand at certain times of year, as identified by 
Jachuła et al. (2021) and Timberlake et al. (2019). Timberlake et al. 
(2021) also demonstrated the importance of maintaining a continuous 
supply of nectar-rich flowering plant species across the pollinator 
foraging season. Bombus terrestris colony density was found to correlate 
with nectar provision in the late summer, highlighting the important 
role of nectar-rich flowering plant species such as Hedera helix at this 
time (Timberlake et al., 2021). H. helix is one of the 22 flowering plant 
species that together provide just over 90% of the British nectar sugar 
supply (Baude et al., 2016). In this study, we mapped the flowering plant 

Fig. 8. a. Subsection of the original May 3 cm resolution image with Silene dioica and hedgerow branches circled. b. Subsection of the 3 cm classification output with 
the best overall accuracy showing pixels of S. dioica correctly and incorrectly classified. c. Subsection of the original May 7 cm image. d. The 7 cm classification 
output showing pixels of S. dioica correctly and incorrectly classified. 
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species that produced the greatest nectar sugar per floral unit in our 
study area during each image acquisition month. We included early and 
middle sections of the pollinator foraging season (see Sections 1.2 and 
2.1). Extending our remote sensing methods to the top nectar producers 
that flower in the late summer/autumn, would be hugely beneficial for 
locating spatial gaps in the nectar supply at that time of year. 

Remotely sensed data could be used when planning where to locate 
new nectar and pollen resources, taking into consideration different 
pollinator foraging ranges (Greenleaf et al., 2007; Knight et al., 2005). 
For example, data on the spatial availability of pollinator foraging re-
sources could be combined with crop and yield information from pre-
cision agriculture tools, such as the Omnia™ tool provided by our 
industry partner Hutchinsons (2022). Farmers creating new 
pollinator-friendly habitats could locate it to fill spatial and temporal 
resource gaps for pollinators, while avoiding high-yielding areas of 
fields and within foraging range of specific pollinator-dependent crops, 
maximising benefits for both pollinators and farmers. 

High resolution floral data could be used to improve our under-
standing of pollinator-habitat relationships. Remotely sensed imagery 
has already been used to determine the links between habitat structure 
and avian species (Fritz et al., 2018). High-resolution floral imagery 
could be fed into spatially-explicit models that estimate pollinator 
abundance or pollination service provision across a farmed landscape 
(Lonsdorf et al., 2009; Gardner et al., 2020 and others). 

Tansey et al. (2009) suggest that fine scale remotely sensed data 
could be valuable to government bodies such as the UK Department for 
Environment, Food and Rural Affairs, for measuring and monitoring 
biodiversity within farmed landscapes. The implementation of 
agri-environment measures could be evaluated, in terms of their value to 
flower-visiting insects or their delivery of stated objectives related to 
floral resources (Tansey et al., 2009). Assessing the implementation of 
agri-environment measures is particularly relevant, given the current 
shift away from process-based to results-based agri-environment pay-
ments (Chaplin et al., 2021). This would be subject to the transferability 
of ground-truth data into an accurate map of resources for a wider range 
of nectar-rich flowering species, as discussed in Section 4.4. These data 
could also be useful for farmers/land-managers, to determine whether 
they are meeting agri-environment requirements. As many systems 
already employ remote sensing for monitoring crops (Daponte et al., 
2019; Norasma et al., 2019; Tenkorang and Lowenberg-DoBoer, 2008), 
these practices could be extended to cover hedgerows and field margins 
and assess the resources available to pollinators. 

4.4. Future research requirements 

In this study, we have established the potential for five key nectar- 
rich flowering plant species to be mapped at a single farm location, 
with varying accuracies. Determining whether additional flowering 
plant species can be reliably and accurately mapped is an important area 
of future research. Baude et al. (2016) list 22 flowering plant species as 
the top nectar-producers in Great Britain, contributing more than 90% of 
the annual nectar sugar supply. The prototype approach we present here 
could be extended to these 22 species, as a starting point for determining 
the viability of using high-resolution remote sensing for assessing the 
spatial and temporal distribution of the overall nectar sugar supply in 
British agricultural landscapes. However, we recommend for future 
studies using 7 cm imagery, that the number of floral units mapped on 
the ground be doubled to a minimum of approximately 200 floral units 
for species such as Silene dioica and Centaurea nigra, which have floral 
units of only several cm in width. This would provide a buffer should it 
not be possible to locate some of the floral units within the imagery, as 
was the case with our data. 

Scaling up this research to test the classification accuracy of nectar- 
rich flowering plant species at multiple locations across different agri-
cultural landscapes could potentially lead to the development of a 
spectral library of nectar-rich floral resources (Zhang et al., 2020). This 

could be used by land managers and other stakeholders to map resources 
for pollinators across farming systems, without needing to re-train a 
classification. Constructing such a spectral library would require con-
verting digital number values to reflectance values, as well as a detailed 
understanding of how the classification accuracy of nectar-rich floral 
resources is influenced by site conditions such as soil type (Gholizadeh 
et al., 2018; Pottier et al., 2014) and differing non-target background 
vegetation (Gebhardt et al., 2006). The vegetation composition in an 
agricultural system is itself connected to a number of factors such as 
management (Pywell et al., 2011) or environmental conditions such as 
soil water content (Critchley et al., 2006). An integral next step for this 
research is therefore to determine whether a key set of nectar-rich plant 
species of importance to pollinators, can be classified with similar ac-
curacies to those obtained through this study across a range of farm 
systems with different environmental conditions and employing various 
management practices. 

We have demonstrated the accuracy with which floral unit pixels of 
different nectar-rich plant species can be classified. We do not yet know 
the number of individual floral units each pixel represents on the 
ground. Estimates of floral unit density would be required for remotely 
sensed maps of floral resources to be translated directly into nectar sugar 
supply rates and this is an important area for future work. The work of 
Xavier et al. (2018) gives us confidence that this will be possible, at least 
for plant species with high enough user’s/producer’s accuracies. While 
not distinguishing between flower species, Xavier et al. (2018) found 
that the total floral cover as measured through drone surveys (m2) was 
positively correlated with the number of flowers on the ground. Polli-
nator visits were also positively correlated with both UAV-calculated 
floral cover and ground-based floral abundance data (Xavier et al., 
2018). 

If certain flowering plant species remain spectrally inseparable at the 
species level, they may still be separable into functional groups. Groups 
would have to be constructed based both on properties that make them 
spectrally distinguishable from another group, as well as those that 
make them attractive/accessible to pollinators, e.g. nectar sugar content 
(Kattenborn et al., 2019; Fornoff et al., 2017; Van Rijn and Wäckers, 
2016). 

Alternatively, for those species not separable with multispectral 
imagery, it could be worthwhile investigating the use of hyperspectral 
imagery (e.g. see Underwood et al., 2007; Kattenborn et al., 2019). 
Feilhauer et al. (2016) did not look at individual species, but demon-
strated that plant pollination types (wind, insect or self-pollinating) 
could be distinguished and mapped using hyperspectral remote 
sensing. This was linked to the fact that they vary in canopy structure 
and leaf traits. For example, plants typically pollinated by insects tended 
to have a greater leaf area index compared to wind-pollinated species 
(Feilhauer et al., 2016). Using hyperspectral data does not always 
guarantee overall, user’s and producer’s accuracies higher than the 
80–85% accuracy threshold widely accepted in the remote sensing 
literature (Foody, 2008; Xavier et al., 2018). When producing maps of 
white flowering and yellow flowering trees in Kenya, among other land 
use/land cover (LULC) classification categories, Abdel-Rahman et al. 
(2015) obtained overall accuracies of 88.15% and 83.67% when using 
hyperspectral data for February 2013 and January 2014, respectively. 
On the other hand, user’s and producer’s accuracies were below the 
80–85% accuracy threshold for some of their LULC categories (Abdel--
Rahman et al., 2015). With higher costs involved with hyperspectral 
data, it would be important to determine whether the additional cost is 
worth any increases in accuracy metrics obtained (Galbraith et al., 
2015). 

As noted in the introduction, we chose to use an ML classifier due to 
its ready availability (Lu and Weng, 2007) and its ease of use for ap-
plications on the ground, i.e. it is available through platforms such as the 
QGIS Semi-automatic Classification Plugin (SCP) (Congedo, 2016; QGIS, 
2020). Nonetheless, with future studies it would be interesting to 
compare the performance of an ML classifier to a machine-learning 
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approach. This would be particularly valuable as freely available soft-
ware with easy-to-use graphical user interfaces, such as the SCP QGIS 
plugin, have started to include machine-learning tools since the 
completion of this study (Congedo, 2021). Machine-learning approaches 
are non-parametric and therefore do not rely on normal distributions 
within data (Belgiu and Drăguţ, 2016; Lu and Weng, 2007), nor do they 
require any prior understanding of how data relate to one another (Lary 
et al., 2016). They are also better able to deal with heterogeneity within 
classification categories (Grinand et al., 2013). 

5. Conclusions 

We demonstrate that five nectar-rich pollinator foraging resources 
can be mapped using multispectral data with very high spatial resolu-
tions of 3–7 cm. Regardless of month of data acquisition and spatial 
resolution, overall accuracies are all high, ranging from 92.32% to 
98.72%. Producer’s and user’s accuracies and F-scores for individual 
species are more variable. High classification accuracies are achieved for 
some species such as Prunus spinosa (98.25% user’s accuracy and 
87.50% producer’s accuracy for 3 cm classifications). Lower accuracies 
are associated with species flowering concurrently to other flowering 
species with similar spectral properties or, at times of year when non- 
vegetation features with similar spectral properties such as branches 
are more exposed. Questions remain in terms of improving these lower 
user’s and producer’s accuracies. Nonetheless, we have provided a 
foundation upon which to build this work. Remotely sensing floral and 
other habitat resources will be increasingly valuable into the future as 
one of many management tools that can help prevent further pollinator 
declines. 
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Häussler, J., Sahlin, U., Baey, C., Smith, H.G., Clough, Y., 2017. Pollinator population 
size and pollination ecosystem service responses to enhancing floral and nesting 
resources. Ecol. Evol. 7 (6), 1898–1908. https://doi.org/10.1002/ece3.2765. 

Holl, K., 1995. Nectar resources and their influence on butterfly communities on 
reclaimed coal surface mines. Restor. Ecol. 3 (2), 76–85. https://doi.org/10.1111/ 
j.1526-100X.1995.tb00080.x. 

Holland, J., Aplin, P., 2013. Super-resolution image analysis as a means of monitoring 
bracken (Pteridium aquilinum) distributions. ISPRS J. Photogrammetry Remote Sens. 
75, 48–63. https://doi.org/10.1016/j.isprsjprs.2012.10.002. 

Horton, R., Cano, E., Bulanon, D., Fallahi, E., 2017. Peach flower monitoring using aerial 
multispectral imaging. J. Imag. 3 (1), 1–10. https://doi.org/10.3390/ 
jimaging3010002. 

Hutchinsons, 2021. Hutchinsons crop production specialists. https://www.hlhltd.co.uk. 
(Accessed 23 July 2021). 

Hutchinsons, 2022. Omnia precision agronomy. https://www.hlhltd.co.uk/wp-content/ 
uploads/2021/06/3397-Omnia-Brochure-Hutchinsons.pdf. (Accessed 28 February 
2022). 

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., 
Sepulcre, G., Bontemps, S., Defourny, P., Koetz, B., 2015. Assessment of an 
operational system for crop type map production using high temporal and spatial 
resolution satellite optical imagery. Rem. Sens. 7 (9), 12356–12379. https://doi.org/ 
10.3390/rs70912356. 

Islam, K., Jashimuddin, M., Nath, B., Nath, T.K., 2018. Land use classification and change 
detection by using multi-temporal remotely sensed imagery: the case of Chunati 
wildlife sanctuary, Bangladesh. Egypt. J. Rem. Sens. Space Sci. 21 (1), 37–47. 
https://doi.org/10.1016/j.ejrs.2016.12.005. 
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