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Abstract: 
 

Introduction: 

Sulforaphane (4-methyl sulfinylbutyl isothiocyanate), a phytochemical derived from 

broccoli, has been linked to many health benefits in model systems, primarily through 

the activation of NRF2 (Nuclear factor erythroid-2 related factor), which regulates 

cellular antioxidant response. Recent evidence suggests that SF may improve glucose 

regulation in diabetic patients, but the molecular pathways or the role of NRF2 are yet 

unclear. This work set out to assess the molecular mechanisms by which SF regulates 

energy metabolism in the liver under conditions that represent different cellular 

metabolic states.  

Methods: 

Established liver hepatocellular carcinoma cells (HepG2) were treated with 

physiological concentrations of SF (10 µM) under varying glucose concentrations; no (0 

mM), basal (5 mM), and high glucose (25 mM). Metabolic phenotyping was undertaken 

using the Seahorse Extracellular Flux Analyser, untargeted metabolomics, and 

subsequent experiments with stable isotope tracers of glucose and glutamine, coupled 

with Gas-Chromatography and Mass Spectrometry (GC-MS).  Whole transcriptome 

was obtained through Illumina RNA sequencing. Finally, the genome-editing technique 

CRISPR-Cas 9 was applied to assess whether NRF2 mediates the metabolic changes.  

Results:  

Real time energy production assessed using the Seahorse Extracellular Flux Analyser 

demonstrated that SF reduced both mitochondrial respiration and glycolysis in HepG2 

cells in a high glucose environment. At the same time, the expression of GSH 

biosynthetic genes and levels of reduced glutathione (GSH) were significantly 

increased. To support GSH synthesis, SF altered levels of the three amino acids that 

are the biosynthetic building blocks; namely, increased intracellular utilization of glycine 

and glutamate, by redirecting the latter away from the TCA cycle, as well as increased 

the import of cysteine from the media. To support the cellular antioxidant enzyme 

response, SF also altered pathways generating NADPH, the necessary cofactor for 

these oxidoreductase reactions, namely pentose phosphate pathway (PPP) and 1C-

metabolism. Firstly, SF increased genes in the PPP pathway, including glucose-6-

phosphate dehydrogenase, the rate limiting enzyme, and increased the PPP metabolite 

ribulose-5-phosphate, suggesting that excess glucose is likely redirected towards PPP, 

away from glycolysis. Secondly, SF upregulated genes in the folate cycle, namely 10-

formyltetrahydrofolate dehydrogenase (ALDH1L1) and monofunctional C1-
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tetrahydrofolate synthase (MTHFD1L) and utilized serine as a methyl donor for THF to 

support the 1C metabolism. Finally, SF downregulated the biosynthesis of the 

unsaturated fatty acids gene set, which is an NADPH consuming pathway. Finally, 

transcriptomic and targeted metabolomics LC-MS analysis of NRF2KD HepG2 cells 

generated using CRISPR-Cas 9 genome editing revealed that the above metabolic 

effects are mediated through NRF2.  

Conclusions:  

The results suggest that SF rewires central metabolism to suppress the metabolic 

dysregulation induced by excessive glucose and identify glucose biosynthesis and 1C-

metabolism as key mechanistic pathways. 
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Chapter 1 Tables 
 

Table 1.0: Detailed Classification of all the possible clinical symptoms resulting in 

Metabolic Syndrome. 

1.0 Chapter 1: General Introduction 
 

1.1 Summary of thesis: 

This thesis contains the results of a research project that focused on assessing how 

sulforaphane (SF) modulates hepatic metabolism using in vitro models. Initially, an in 

vitro model that mimics metabolic dysregulation was developed by challenging an 

immortalized liver cancer cell line, HepG2, with physiological concentrations of SF 

along with the presence of fatty acids and/or various concentrations of glucose. This 

was done to assess whether non-nutrient bioactives such as SF can mitigate the 

effects of a western diet. The subsequent investigation involved carrying out a 
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transcriptome and metabolomics analysis of HepG2 challenged with various glucose 

concentrations (none, basal, and high) in the presence of SF. The glucose 

environments were used to mimic different metabolic states. The investigation aimed to 

underpin the molecular mechanism on how SF may maintain healthy hepatic 

metabolism.                                                                                                                           

Finally, a novel liver cell line that lacks the transcription factor NRF2 was developed 

using the genome-editing technique, CRISPR/Cas 9. Promoted by the transcriptome 

and metabolomics analysis findings, a time-course transcriptome analysis was 

conducted between WT and NRF2KD cells with SF in the presence of high glucose. 

This was done to assess whether NRF2 or other proteins mediate the metabolic 

changes induced by SF.   

The general introduction introduces the liver as the central metabolic organ and how 

diet can impact hepatic metabolism. An emphasis has been placed on how the 

Western diet can result in dysregulation of hepatic metabolism, resulting in chronic 

diseases such as type 2 diabetes, cardiovascular diseases, non-alcoholic fatty liver 

diseases, and potentially even cancer. The following section covers the potential health 

benefits of cruciferous vegetables in reducing the development of such pathologies. It 

describes how glucosinolates (GSLs) are found in high levels in these vegetables and 

their breakdown to the active isothiocyanates (ITCs), emphasising how SF may be 

responsible for the observed health benefits. The final section is a detailed literature 

review on the transcription factors NRF2 and its dual role: the antioxidant response and 

the emerging evidence on how it regulates metabolism. The output of this thesis will 

hopefully continue to build on the scientific evidence that future treatment and 

prevention of many metabolic diseases may fall back on the ancient statement by 

Hippocrates, “Let food be thy medicine”.   

1.2 Obesity and its consequences: 

Cellular metabolism can be defined as a series of chemical reactions in living 

organisms to maintain life. These can be catabolic, such as the breakdown of glucose 

to pyruvate to ultimately produce ATP, or anabolic, such as the synthesis of proteins 

and nucleotides (DeBerardinis and Thompson, 2012). Through poor lifestyle choices 

such as:  

1. A diet refined in processed carbohydrates and sugars,  

2. Little exercises,  

3. Irregular sleep patterns, etc.,  
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What may occur over the long term is an imbalance in metabolic homeostasis. This can 

lead to increased weight gain, and over time, potentially developing metabolic 

disorders such as type 2 diabetes, cardiovascular diseases, and potentially even 

cancer (Bremer et al., 2012).  

One of the main features of current lifestyles is the frequent consumption of food; 

overeating highly caloric dense foods that are less satiating, which results in increased 

appetite, ensuing in a vicious cycle of snacking throughout the day, resulting in a large 

part of the day being spent in the postprandial state. In healthy individuals who are 

insulin sensitive, the glucose load is rapidly cleared from the blood and distributed to 

various cells and tissues. Insulin resistant individuals, however, manifest some degree 

of hyperinsulinemia to force glucose into peripheral tissue. Over the long term, the 

recurrent intake of high caloric dense food can result in the β-cells of the pancreas 

failing to produce sufficient insulin, resulting in increased circulation of blood glucose. 

The outcome can result in the formation of insulin resistance, diabetes, and metabolic 

syndrome (see section 1.2.1). Diabetes occurs when the β-cells can longer produce 

enough insulin to maintain euglycemia.  

Extensive research has shown that these diets high in glucose and high fats mediate 

inflammation, resulting in a build-up of oxidative stress that may alter cellular 

physiological processes (Herieka and Erridge, 2014, Emerson et al., 2018).  Oxidative 

stress is a phenomenon caused by an imbalance between the production and 

accumulation of reactive oxygen species (ROS) in cells and tissues and the ability of a 

biological system to detoxify these products (Pizzino et al., 2017). The increased build-

up of ROS will result in the activation of the transcription factor NF-ƙB, which induces 

the expression of the following cytokines: tumour necrosis factor-alpha (TNFα) and 

interleukin 6 (IL6), thereby promoting inflammation (Elmarakby and Sullivan, 2012, 

Rahman et al., 2002) (figure 1.1). Oxidative stress, moreover, may also promote cells 

into cellular senescence via cellular damage (MacKellar et al., 2010). In addition, 

excessive high caloric intake from either processed carbohydrates and/or high-fat diets 

will cause more substrates to enter the TCA cycle, resulting in more electrons being 

donated to the electron transport chain (Teodoro et al., 2013). What may occur is that 

the additional electrons might build at the complex III protein present in the respiratory 

chain, resulting in electrons being picked up by oxygen, further increasing the 

production of superoxide, creating a vicious cycle (Brownlee, 2001). 

High processed/refined carbohydrate diets also result in significant blood glucose 

peaks post meals, resulting in large amounts of insulin being secreted. Over time, less 

insulin will bind to its receptor on cells, resulting in insulin resistance. Constant insulin 

secretion essentially drives fatty acid biosynthesis, as insulin upregulates the activity of 
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transcription factors related to fatty acid biosynthesis  (Blaak et al., 2012, Wong and 

Sul, 2010).  

Due to these lifestyle changes, the prevalence of obesity has rapidly increased over the 

last 10-15 years. Obesity is a medical condition in which an individual has accumulated 

excessive body fat that may negatively affect their health. Being obese puts individuals 

at increased risk of developing metabolic syndrome, type 2 diabetes, non-alcoholic 

fatty liver disease (NAFLD), cardiovascular diseases, and cancer. The leading 

underlying cause of these conditions is dysregulation of liver metabolism and the 

development of insulin resistance. Insulin resistance is a medical condition in which 

cells fail to respond to insulin. Glucose produced from the liver contributes to 

hyperglycemia in type 2 diabetic patients (Magnusson et al., 1992, Meyer et al., 1998). 

In healthy livers, glucokinase (GCK) promotes glucose utilization; studies using Zucker 

diabetic obese rats have shown much lower GCK expression. Similarly, overexpression 

of GCK in these rats decreases hyperglycemia (Torres et al., 2009). This, in turn, can 

promote endoplasmic reticulum (ER) stress, thereby promoting insulin resistance in the 

liver and damaging β-cells of the pancreas (Back and Kaufman, 2012, Lozano et al., 

2016).    
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Figure 1.1 The interplay between a Western diet, resulting in increased oxidative stress 

leading to more ROS produced, which can result in the formation of human pathologies 

over the long term. RNS (Reactive Nitrogen Species), MDA (malondialdehyde), 4-HNE (4-

hydroxynonena), CRP (C-reactive protein), p53 (tumour protein p53).   

 

1.2.1 REDOX Balance and Metabolic Control  

In biological organisms, reactive oxygen species (ROS) are by-products of normal 

oxygen metabolism. The primary sources of ROS arise from the protein complexes I 

and III of the electron transport chain, in the form of free-radical intermediates such as 

a superoxide ion (O2-), resulting from the partial reduction of oxygen (Ray et al., 2012). 

Production of these ROS is an unavoidable and inherent consequence of healthy 

mitochondrial function. ROS have been shown to have a dual role; at low levels, these 

ROS are needed for cellular function, as they can act as important signalling molecules 

(Ray et al., 2012). A build-up of these ROS, if left untreated, can lead to impaired 

physiological function through: 

• Cellular damage of DNA results in the formation of DNA adducts, causing 

impaired DNA replication and leading to mutations (Juan et al., 2021) (figure 

1.1). 
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• Oxidation of amino acids damages proteins (resulting in altered protein 

structure) (Juan et al., 2021). 

• Oxidation of polyunsaturated fatty acids results in lipid peroxides (Juan et al., 

2021). 

 

When ROS overwhelm the cellular antioxidant defence mechanism, oxidative stress 

occurs. Formation of the following human pathologies, including cancers (Trachootham 

et al., 2009), neurodegenerative disorders (Shukla et al., 2011), cardiovascular 

diseases (Paravicini and Touyz, 2006) and ageing (Haigis and Yankner, 2010), has 

been linked with increased oxidative stress. These ROS can also arise from exposure 

to exogenous sources such as heavy metals (Muthukumar and Nachiappan, 2010), 

cigarette smoke, alcohol intake, or UV radiation. Under homeostasis, cellular ROS are 

balanced by the cell's antioxidant capacity, more commonly referred to as the cellular 

REDOX status. Two critical enzymes that help clear ROS are superoxide dismutase 

and catalase. Superoxide dismutase converts superoxide’s into hydrogen peroxide 

(H2O2), which is then neutralised by catalase into water. The primary REDOX sensor of 

the cell and, therefore, an essential part of the antioxidant response is the tripeptide 

glutathione (Pizzorno, 2014) (see chapter 5 for more detailed information about 

glutathione). The critical residue that allows glutathione to bind ROS and neutralise 

ROS is through cysteine, which can be reversibly oxidised in response to subtle 

changes in the cellular environment, acting as a biological ROS sensor (Pizzorno, 

2014). 

1.2.2 REDOX, Diet and Health 

Although certain foods such as berries and chocolate have antioxidant properties due 

to the polyphenols and turmeric (through curcumin) (Hewlings and Kalman, 2017, 

Carlsen et al., 2010), the scientific evidence remains unclear whether antioxidant-rich 

foods can reduce certain diseases. Chocolate, for example, is rich in flavonoids, and 

these compounds have been previously reported to have free radical scavenging 

properties and chelation of transition metals ions and can also modulate specific 

signalling pathways (Williams et al., 2004). It is thought that through these processes, 

antioxidants can slow or prevent DNA damage, ultimately leading to reduced disease 

risk and potentially increasing longevity.  

Whilst dietary antioxidants can be obtained from various fruits and vegetables, broccoli 

is perhaps one of the most studied sources of antioxidant non-nutrients (see section 

1.3). SF derived from the breakdown of the glucosinolate glucoraphanin has been 

shown to increase the cellular antioxidant capacity through upregulation of antioxidant 
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detoxification pathways through activation of the transcription factor NRF2 (Itoh et al., 

1999) (see NRF2 section 1.5).  

 

1.2.3 Metabolic syndrome (MetS) 

At the centre of insulin resistance is MetS. Although there is no current definition of 

MetS, it is commonly described by clustering of at least three out of the five medical 

conditions: abdominal obesity, high blood pressure, high blood sugar, high serum 

triglycerides, and low serum high-density lipoprotein (HDL), with the vital sign of 

metabolic syndrome being characterized by central obesity (Saklayen, 2018). Table 1.0 

represents a detailed summary of all the clinical symptoms. 

What is still not fully understood is the trigger of MetS; whether MetS is caused either 

by obesity or insulin resistance or due too much further metabolic damage. MetS is 

thought to result in a dysregulation of the body's ability to store and utilize energy.  

Chronic physical inactivity coupled with a persistent poor diet has been suggested as 

the leading hypothesis for driving the development of MetS (Bremer et al., 2012). MetS 

has become one of the most significant healthcare burdens in the developed world. In 

the US alone, 1 in 3 adults are estimated to live with the disease, and the problem is 

increasingly affecting the UK (Saklayen, 2018). 

Table 1.0: Detailed Classification of all the possible clinical symptoms that can result in 

Metabolic Syndrome 

Symptom Classification 

Fasting Blood Glucose Glucose ≥ 110 mg/dL  

Obesity WHR > 0.9 in men 

 WHR > 0.85 in women 

 BMI ≥ 30kg/m2 

Triglycerides ≥ 150 mg/dL  

Total Cholesterol > 200 mg/Dl 

HDL Cholesterol < 40 mg/dL in men 

 < 50 mg/dL in women 

Hypertension ≥ 140/90 mmHg  

Microalbuminuria Albumin/creatinine ratio > 30 mg/g 

 Albumin excretion rate > 20 mcg/min 

 

It is predicted that the National Health Services (NHS) will spend 17% of their entire 

budget (£16.9 billion) on diabetes management alone by the financial year of 2035/36, 

with further spending required to cover other MetS-related comorbidities 

(https://www.diabetes.org.uk/about_us/news_landing_page/nhs-spending-on-diabetes-

to-reach-169-billion-by-2035). Currently there is no specific treatment for MetS. 

Instead, general practitioners will often treat each patient separately by prescribing the 
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following drugs depending on the patient's symptoms:  angiotensin converting enzymes 

(ACE) inhibitors to treat hypertension, statins to treat hypercholesterolemia, and 

metformin to reduce fasting blood sugars. As these prescriptions are expensive, 

affordable alternative treatments are under investigation (Stedman et al., 2019).  

Dietary interventions represent a cost-effective and straightforward approach. Specific 

dietary interventions have already been put into practice. These include daily physical 

exercises (at least 30 minutes a day) along with other calorie restricted diets; by either 

reducing saturated fats or reducing the intake of dietary carbohydrates (de la Iglesia et 

al., 2016). Recent evidence suggests that modulating the gut microbiome may be a 

potential strategy. At the centre of diet and health, the gut microbiome has recently 

been shown to be crucial in maintaining human health.  

The gut microbiome is an ecosystem of bacteria, fungi, archaea, and viruses that 

inhabit the gastrointestinal tract (Thursby and Juge, 2017). A diverse microbiota has 

been associated with the production of a wide range of metabolites that may have anti-

inflammatory and anti-oxidant activity (Wang et al., 2020). Observational studies have 

shown that patients with MetS have decreased beneficial microbes coupled with 

increased proliferation of potentially harmful ones (Wang et al., 2020, Moran-Ramos et 

al., 2017). For example, one study identified that individuals who had MetS and were 

obese had a decrease in the following bacteria: Fecalibacterium, Oscillibacter, 

and Alistipes, as well as having reduced levels of serum metabolites related to gut 

microbial patterns, compared to lean individuals (Thingholm et al., 2019). These 

bacteria are commonly associated with the fermentation of dietary fiber.  Mechanistic 

studies using obese mice have instead shown that supplementing with the prebiotic 

oligofructose resulted in a 100-fold increase in the abundance of Akkermansia (Plovier 

et al., 2017). In addition, non-nutrient bioactive compounds, some of which the 

microbiome produce, are promising strategies to prevent or delay the onset of MetS 

through their effect on lipid and glucose homeostasis (NRF2 metabolism 1.9.5/1.9.6).   

1.2.4 Non-alcoholic fatty liver diseases 

Systemic insulin resistance and MetS are also underlying factors for developing non-

alcoholic fatty liver disease (NAFLD). NAFLD represents a spectrum of disorders, 

ranging from the accumulation of lipids in the liver (hepatic steatosis), where the levels 

of lipids present around the liver are more significant than 5% (Fabbrini et al., 2009). 

More severe steatosis results in liver scarring and inflammation (referred to as non-

alcoholic steatohepatitis, NASH). Patients who develop NASH have a 2.5% increased 

risk of dying per year (Chalasani et al., 2018). In the worst scenario, NAFLD can evolve 

into hepatocellular carcinoma or liver failure (Fabbrini et al., 2009). Lipid accumulation 
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in the liver further promotes hepatic insulin resistance, forming a vicious cycle. NAFLD 

is currently the most common liver disorder worldwide, estimated at 25% of the world’s 

population (Marjot et al., 2019). Over 90% of obese, 60% diabetic and up to 20% of 

normal-weight people would develop NAFLD at some point in their life (Younossi et al., 

2018). NAFLD is also the leading cause of chronic liver diseases. Like MetS, the 

current treatment for NAFLD is weight loss through lifestyle changes: mainly through 

dietary changes and increased exercise (Kenneally et al., 2017). Within the last couple 

of years, preliminary studies have shown that several different strategies are being 

investigated to potentially ameliorate the condition (Glen et al., 2016, Tilg et al., 2017).  

The primary feature of NAFLD is the accumulation of lipids in the form of triglycerides 

on the liver. To date, however, it is not fully understood how and why these 

triglycerides accumulate. It has been proposed that oxidative stress, through ROS 

production, hormonal imbalances, and mitochondrial abnormalities, all appear to play a 

role in the formation of the disease (Friedman et al., 2018). Ongoing research has also 

suggested the possibility that increased consumption of fructose is a driver of the 

disease. Consumption of high levels of fructose prompts de novo lipogenesis while at 

the same time inhibiting β-oxidation. The enzyme fructokinase can rapidly metabolize 

fructose, resulting in its depletion, thereby reducing the intracellular levels of ATP. This 

decrease in ATP results in increased oxidative stress, resulting in impaired liver 

function along with excessive lipids accumulating in the liver (Marjot et al., 2019). The 

cell's metabolic state drives hexokinase (also called glucokinase) activity. On the other 

hand, Fructokinase is not controlled by the cell metabolic state.  

1.2.5 MetS and cardiovascular diseases 

Being insulin resistant can also increase the risk of developing cardiovascular diseases 

(CVDs). CVDs are another cluster of diseases related to diet and lifestyle choices and 

are largely preventable. It is estimated that up to 90% of CVD may be prevented 

(O'Donnell et al., 2016). CVDs involve the heart or blood vessels. The most common 

CVDs include coronary heart diseases such as angina and myocardial infarction (the 

latter more commonly referred to as heart attack) (Flora and Nayak, 2019). Other 

common examples of CVDs include (Flora and Nayak, 2019):  

1. Stroke,  

2. Heart failure,  

3. Hypertensive heart disease,  

4. Cardiomyopathy,  

5. Arrhythmia (irregular heartbeat),  

6. Thrombosis and many others.  
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Common risk factors for the development of CVDs include hypertension, smoking, 

T2DM, lack of exercise, obesity, hypercholesterolemia, poor diet, and excessive 

alcohol consumption. 

Coronary heart diseases, heart attack, and stroke all result in the formation of 

atherosclerotic plaques, leading to the gradual build-up of fat (cholesterol) in the walls 

of the coronary arteries of the heart or other arteries (Alfarisi et al., 2020).  The 

outcome of atherosclerotic plaque is damage to the vascular endothelium. Low-density 

lipoprotein (LDL) cholesterol builds up and results in local inflammation, resulting in 

inflammatory cells such as macrophages being recruited to the site. Over time, these 

macrophages engulf the cholesterol and become foam cells. A cholesterol core (arterial 

plaque) is formed as these foam cells die. The formation of an arterial plaque reduces 

blood flow by impairing the elastic properties of the endothelium due to the build-up of 

calcium phosphate and lipids on the muscular layer of the blood vessels (Insull, 2009). 

However, this is rarely fatal, as people with coronary artery diseases might have one, 

two, or several plaques distributed throughout their coronary arteries and live for an 

extended period without any symptoms. Only when the plaque raptures can it result in 

complications to the individual. What may occur over time is that the plaque becomes 

unstable and ruptures, thereby promoting the formation of a blood clot that blocks the 

artery (Reed et al., 2017).  Blockage of the artery can result in blood no longer being 

supplied to specific tissues. This can result in muscle damage, potential tissue death, 

and eventually a myocardial infarction (Alfarisi et al., 2020).                                                                                                                                                               

For stroke, the underlying mechanism is similar, where the restriction of blood supply to 

the brain often leads to cell death (Lo et al., 2003).  

Apart from Africa, CVDs are the leading cause of death worldwide. In 2016, around 

17.9 million people died of CVDs: representing 31% of all global deaths. Out of these, 

85% were due to heart attacks and strokes (Wang et al., 2016). Currently, 7.6 million 

people in the UK live with CVDs (British Heart Foundation: 

https://www.bhf.org.uk/what-we-do/news-from-the-bhf/contact-the-press-office/facts-

and-figures). Even though CVDs are related to lifestyle choices, blood lipid modification 

remains the primary preventative measure against CVD, and lipid-lowering statins are 

now estimated to total 1 million prescriptions per week in the UK (Rabar et al., 2014, 

Trusler, 2011). It is estimated that 7 million people in the UK are on statin medication, 

raising financial and ethical concerns (Mann, 2019). Therefore, future therapies for the 

management of CVD should consider promoting dietary preventions, as these remain 

one of the most cost-effective and efficient methods of preventing CVD (Barton et al., 

2011, Funtikova et al., 2015). 
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1.2.6 Metabolic syndrome and cancer: 

Another disease driven mainly by lifestyle is cancer. Cancer refers to a group of 

diseases involving the abnormal growth of tissues. Epidemiological studies have also 

shown an association between obesity, diabetes, and certain cancer types. These 

include liver, breast, colorectal and endometrial cancers (Esposito et al., 2012, Li et al., 

2020a, Friberg et al., 2007). The molecular mechanism of how MetX can drive cancer 

is still not fully understood. Several hypotheses have been proposed, including 

inflammation, oxidative stress, and insulin resistance. In particular, insulin resistance 

and excessive production of insulin can promote increased cell proliferation and cell 

growth from hormones such as Insulin-like growth factor 1 (IGF1) while at the same 

time reducing cell apoptosis (Jee et al., 2005).   

1.2.7 The hallmarks of cancer and cancer vs normal metabolism 

While cancer consists of a large family of diseases and each cancer cell has its distinct 

metabolic capability, all tumour cells show several common features. Initially, a paper 

published by Hanahan and Weinberg summarized these common features as the six 

hallmarks of cancer (Hanahan and Weinberg, 2000). These include:  

1. Uncontrolled proliferation,  

2. Avoiding cell death,  

3. Resistance to growth suppressors,  

4. The induction of angiogenesis,  

5. Infinite replicability, and  

6. Invasion/ metastasis to adjacent tissue.  

In 2011 the publication was updated, and now it is widely accepted that there are ten 

hallmarks of cancer. The remaining four include:  

1. The deregulation of cellular energetics (notably the inhibition of aerobic glycolysis 

commonly referred to as the Warburg effect), 

2. The ability to evade the immune system,  

3. Genomic instability (chromosome abnormalities), and  

4. Inflammation (Hanahan and Weinberg, 2011).  

Regardless of being healthy or malignant, all cells produce energy from the catabolism 

of metabolic substrates, the most common being glucose. This energy comes in the 

form of ATP. ATP consists of a nitrogenous base—a ribose sugar with three phosphate 

groups attached to it. Hydrolysis of ATP to adenosine diphosphate or monophosphate 

(AMP) results in the release of energy that drives many processes in living cells. During 
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aerobic glycolysis, a normal cell will metabolize glucose through glycolysis, generating 

two ATP molecules.  The product of glycolysis is pyruvate, which enters the TCA cycle. 

This generates nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2) required to produce ATP through oxidative phosphorylation. 

The product of this process will ultimately produce thirty-four molecules of ATP. Most 

cancer cells instead produce their energy from glycolysis followed by lactic acid 

fermentation even in the presence of abundant levels of oxygen (figure 1.2). This 

metabolic process, also called anaerobic glycolysis, is commonly known as the 

Warburg effect after its discovery by Otto Warburg in the late 1920s (Vander Heiden et 

al., 2009). While anaerobic glycolysis is less efficient than oxidative phosphorylation 

(as only 4 ATP molecules compared to 34 per molecule of glucose are produced), it 

allows increased production of metabolites that form the building blocks of cellular 

growth. This allows rapid and uncontrolled division. To compensate for this energetic 

inefficiency, cancerous cells often display an increased capacity for glucose (or 

glutamine) uptake, alongside increased glycolytic rate (Vander Heiden et al., 2009). In 

a few cases, cancer cells prefer the amino acid glutamine as an energy source, as it 

provides nitrogen bases for the synthesis of nucleotides (DNA and or RNA) (Pavlova 

and Thompson, 2016, Zheng, 2012). In addition, the primary energy source of cancer 

stem cells is oxidative phosphorylation by metabolizing the amino acid glutamine 

(Yadav et al., 2020). It has been shown that mutations in tumour suppressor genes and 

oncogenes are responsible for turning a healthy cell into a malignant one. The Warburg 

effect is considered to be a result of these mutations rather than a cause (Grandér, 

1998).  
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Figure 1.2. Schematic showing the difference between aerobic and anaerobic respiration.  

1.2.8 The liver 

Central to maintaining a healthy metabolism is the liver. The liver is the central 

metabolic organ of the body, whose main function is to govern energy metabolism. In 

humans, it is found in the right upper quadrant of the abdomen, directly below 

the diaphragm. Four lobes of different sizes form it: left and right lobes and the caudate 

and quadrate lobes. It is connected to two large blood vessels: the hepatic artery that 

carries blood rich in oxygen and the portal vein. A human adult liver weighs 

approximately 1.5 kg (Abdel-Misih and Bloomston, 2010). The unique feature of this 

organ is the ability to regenerate itself. 

The liver is composed of four distinct cell types: hepatocytes, hepatic stellate cells, 

Kupfer cells, and sinusoidal epithelial cells, each of which are highly specialized for 

specific functions. The predominant parenchymal cell type within the liver are 

hepatocytes, which account for approximately 80% of the liver’s mass (Ding et al., 

2016). A liver cell is defined as a hepatocyte. It is involved in a wide range of cellular 

and metabolic functions such as protein synthesis and storage, along with the 

catabolism of amino acids, carbohydrate metabolism, synthesis of cholesterol, bile 

acids/salts and phospholipids, as well as the detoxification of xenobiotic substrates 

(Ding et al., 2016). As a result, hepatocytes play a fundamental role in metabolic 

homeostasis and xenobiotic detoxification; thus, these cell lines have become an 

important model for assessing cellular and systemic metabolic homeostasis and testing 

34 
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new pharmacological drugs. Red blood cells and clotting factors such as fibrinogen and 

various prothrombin proteins are synthesized in the liver (Jelkmann, 2001). 

1.2.9 Glucose homeostasis 

Once food has been digested in the gastrointestinal (GI) tract, glucose, amino acids, 

and lipids are absorbed into the bloodstream and transported to the liver through the 

portal vein. One of the many functions of the liver is to act as a carbohydrate buffer, 

ensuring glucose levels in the blood remain constant. In the postprandial state, the β-

cells of the pancreas will secrete insulin. Insulin reaches the liver through systemic 

circulation and will bind to insulin hepatic receptors (Edgerton et al., 2006). Insulin 

stimulation will inhibit gluconeogenesis and allow the liver to convert glucose into 

glycogen. The glucose is then transported to various organs through hexose 

transporters and stored for further use. The liver is capable of synthesizing and storing 

100g of glycogen.  If glycogen reservoirs are fully occupied, the glucose is converted to 

fatty acids (Rui, 2014).  

During intense exercise, the muscles break down the stored glycogen and small 

amounts of protein. During this process, alanine and lactate are produced. These 

molecules are transported to the liver and are used as a precursor for the synthesis of 

glucose (gluconeogenesis). 

1.2.10  Fatty acid and cholesterol homeostasis 

Fatty acids in the liver can be esterified with G3P to form triacylglycerol (TAG), which 

can then be stored as lipid droplets in the liver (figure 1.3). Alternatively, glucose and 

TAG can be released into the bloodstream in the fasted state—the latter circulates as 

very-low density lipoprotein (VLDL) to provide energy. Under prolonged fasting or 

during times of starvations, adipose tissues undergo lipolysis and release non-

esterified fatty acids (NFEAs). These are transported to the liver and oxidized in the 

mitochondria of hepatocytes (liver cells) by β-oxidation, generating ketone bodies 

(ketogenesis). Ketone bodies provide an alternative energy source (Rui, 2014).   
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Figure 1.3. Summary schematic on fatty acid metabolism. The starting molecule is citrate 

generated from the TCA cycle. Citrate is then transported to the cytoplasm and generated 

Acetyl CoA. acetyl-CoA is the building block for either fatty acid or cholesterol biosynthesis. 

Fatty acids can then undergo condensation with G3P to generate TAG.  

 

Cholesterol, a sterol essential for forming animal cell membranes, is also synthesized 

in the liver. Approximately two-thirds of cholesterol (66%) is synthesized in the liver, 

with the remaining third obtained through diet. The biosynthesis of cholesterol is a 

complex multi-step process. It begins with two molecules of acetyl-CoA condensing to 

form acetoacetyl-CoA. Acetoacetyl CoA then condenses with an additional molecule of 

acetyl CoA through the action of the enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG 

CoA) reductase (figure 1.3). This enzyme is the pharmacological target of statins, as 

statins work by lowering cholesterol levels by inhibiting the activity of HMG CoA 

reductase. 

As cholesterol is insoluble in the blood, it is transported throughout the body by 

lipoproteins. Several lipoproteins have been identified, but the most common ones are 

the high-density lipoprotein (HDL), whose primary function is to carry cholesterol from 

the peripheral tissue back to the liver, and LDL, which carries cholesterol from the liver 

to the peripheral tissue. The LDL can then bind to the LDL receptor of cells, allowing 

the absorption of cholesterol in the cells for the synthesis of membranes. The activity of 

the LDL receptor present on the surface of cells is tightly regulated by the sterol 

regulatory element-binding protein (SREBP). Cells with abundant cholesterol levels will 

have the synthesis of LDL receptors blocked to prevent additional cholesterol from 
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being taken up. Likewise, when a cell is deficient in cholesterol, SREBP induces 

transcription of the LDL receptor. When this process becomes dysregulated, many LDL 

molecules appear in the blood. These LDL molecules become oxidized. To prevent 

further damage, macrophages are recruited to engulf the oxidized LDL, resulting in 

foam cells building up. These macrophages often become trapped on the walls of 

blood vessels, resulting in the formation of atherosclerotic plaque (Weingärtner et al., 

2010).  

Cholesterol also serves as a precursor for bile acids. Primary bile acids are 

synthesized within the liver and conjugated with glycine or taurine to form a 

combination of eight possible bile acids through other receptors. These are then 

secreted into the lumen of the intestine. The primary function of bile acids is to help the 

digestion of fats and oils. They do this through the formation of micelles which can be 

absorbed into the enterohepatic circulation (Chiang and Ferrell, 2018).  

1.3 Cruciferous vegetables: 

Epidemiological evidence from both prospective cohort and retrospective case-control 

studies have shown an inverse association between consumption of cruciferous 

vegetables and the risk of developing a wide range of cancers including lung, stomach, 

colorectal, breast, bladder, and prostate, along with a reduction in developing 

myocardial infarction (Traka and Mithen, 2008). Broccoli belongs to the family of 

cruciferous or Brassicaceae (Cruciferae). This family encompasses a wide range of 

vegetables, including brussels sprouts, cauliflower, cabbage, kale kohlrabi (all Brassica 

oleracea cultivars), along with radish (Raphanus sativus), mustard (Sinapis alba), and 

rapeseed (B. napus) (Mandrich and Caputo, 2020). Along with many other vegetables, 

these are high in vitamins, minerals, and soluble fiber. The unique feature of these 

vegetables is the production of glucosinolates (GSLs); secondary metabolites that 

these plants produce as a defence mechanism against pests and insects, 

characterized by sulfur atoms which are responsible for their pungent smell and taste 

Therefore, due to the evidence of the health benefits that cruciferous vegetables 

provide, it would make sense to study how the benefits come about. While vegetables 

are loaded with vitamins and fiber, they also contain substances known as 

phytochemicals. Phytochemicals are non-nutrient molecules that interact with DNA to 

modulate multiple signalling pathways within cells. To date, more than 5,000 different 

phytochemicals have been discovered, our knowledge of their mechanism of action is 

limited to a few (Liu, 2013). There is increasing evidence of the abundance of these 

substances in broccoli, hence its beneficial effects on human health (Yagishita et al., 

2019, Quirante-Moya et al., 2020, Juge et al., 2007). (Fahey et al., 2001) (figure 1.4).  
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Figure 1.4: Glucosinolate structure. 

 

The unique characteristic of each glucosinolate is the presence of both the sulfur-linked 

β-D glucopyranose and a sulphonate oxime group. In figure 1.4, the R refers to the side 

chain, which is variable and that determines its aliphatic, aryl, and indole characteristics 

(figure 1.4). 

 

To date, more than 130 different GSLs have been identified from different plants. The 

profiles of these compounds vary depending on the species of the plant and the growth 

conditions, being aliphatic, aromatic v-methylthioalkyl, or heterocyclic depending on its 

structure (Agerbirk and Olsen, 2012, Holst and Williamson, 2004). As GSLs are very 

stable within the plant, the hydrolysis process is controlled enzymatically by the only 

thioglucosidase enzyme identified, namely myrosinase. In the plant Arabidopsis 

thaliana, which also belongs to the family of Cruciferae, it has been shown that GSLs 

were present in the phloem and endoderm, whereas the myrosinase is present in a 

different tissue, the phloem parenchyma (Blažević et al., 2016). When the plant cells 

are damaged either through chewing or mild cooking, the GSLs and enzymes come 

into contact to allow the hydrolysis reaction to occur (Herr and Buchler, 2010).  As 

excessive cooking has been shown to denature the activity of myrosinase, this 

conversion can still happen through particular microbes within the GI tract that possess 

the myrosinase enzyme. Initially, the breakdown of GSLs results in the formation of an 

unstable aglucone. Under neutral pH, the aglucone rearranges to form isothiocyanates 

and thiocyanates, while under acidic conditions, small amounts of nitriles are produced 

(figure 1.5) (Rungapamestry et al., 2006, Wittstock and Burow, 2010).  
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Figure 1.5. Breakdown of glucoraphanin to sulforaphane through myrosinase in different pH 
conditions. 

 

1.4 ITCs and sulforaphane: 

Evidence from both in vitro and in vivo studies has shown that the chemopreventive 

activity of cruciferous vegetables comes down to the isothiocyanates (ITCs). The most 

widely studied ITCs include SF and erucin (alkyl isothiocyanates), although within the 

last couple of years, in vitro studies on indole-3-carbinol (indolyl glucosinolates) has 

also been assessed to explore its role in cancer prevention (Katz et al., 2018, Lee et 

al., 2019).  

SF is the best understood and studied ITC through both in vitro and in vivo studies. It is 

derived from the GSL glucoraphanin, which is the predominant GSL found in broccoli 

(figure 1.6). SF, compared to other phytochemicals such as quercetin (found in soy), 

curcumin (found in turmeric), beta-carotene (present in carrots), and resveratrol (found 

in red wine), is the most potent activator of the nuclear factor erythroid 2-related factor,   

transcription factor (NRF2) (see Section 1.5) (Houghton et al., 2016).  

Myrosinase 
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In the gut, formation of SF leads to it being readily conjugated to glutathione (GSH), 

forming dithiocarbamates. This reaction is catalysed by glutathione-S-transferase 

enzymes (GSTs). This process increases its stability and allows it to be distributed 

around the body. ITCs have been shown to accumulate intracellularly by reaching 

concentrations in the mM range (Zhang and Talalay, 1998).  Following consumption of 

standard broccoli, 2 µM of ITCs in plasma was identified while high-GSL broccoli 

consumption and resulted in 7.4 µM of ITCs in plasma (Gasper et al., 2005).  The 

conjugates are then transported to the kidney subsequently metabolized via the 

mercapturic acid pathway. This comprises a series of reactions. Firstly, glutamine and 

glycine residues of the ITC-GSH conjugate are removed. In the final step, the cystine 

residue undergoes N-acetylation to ultimately form N-acetylcysteine (NAC) conjugate 

(Zhang, 2000, Shapiro et al., 2006) (figure 1.6). Up to 60% of the NAC conjugate can 

be identified in urine samples.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Glucoraphanin metabolism in humans. Abbreviations GST= Glutathione-S-

transferase; γGT= γ-glutamyltranspeptidase; CG= cysteinylglycinase; NAT= N-acetyltransferase  

 

After ingestion, glucoraphanin is broken down to sulforaphane through the action of the 

myrosinase enzyme, present either within the plant tissue or through specific gut 

microbes found in the colon that contain this enzyme. Sulforaphane is then absorbed 

and transported to the liver through the hepatic portal vein where it conjugates with 

glutathione and is metabolized through the mercapturic acid pathway or dissociate to 

induce the transcription factor NRF2. The conjugation between sulforaphane and 

GST 

GST 

γGT 

CG 
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glutathione can occur enzymatically, more specifically it has been suggested it is likely 

to occur via the activity of the GSTs family (Zhang et al., 1995).  

In humans, 3 mammalian GST gene families exist and are categorized in the following 

families: cytosolic, mitochondrial, and microsomal. From the GSTs identified, only a 

small subgroup has been studied in terms of their effects on the conjugation of ITCs. 

These are GSTA1, M1, M4, and P1 (Kolm et al., 1995). The GSTM1 enzyme is the 

most efficient at catalyzing the conjugation reaction, followed by GSTP1 (Kolm et al., 

1995). It has been identified that many genes in this family harbor polymorphism; for 

example, both GSTM1 and GSTT1 have been reported to have a null mutation, 

resulting in loss of function of the gene (Hayes et al., 2005, Hayes and Strange, 2000). 

The frequency of homozygous null GSTM1 genotype varies between 39% up to 63%, 

whilst for the GSTT1, this frequency varies between 10% to 21% for whites, but in 

asian individuals can be as high as 64% (Cotton et al., 2000). Whether GSTM1 

polymorphism is either beneficial or detrimental remains to be answered, as 

epidemiological studies have provided conflicting results. For example, a study 

assessing GSTM1-positive individuals from the United States has shown that those 

who frequently consumed broccoli or cruciferous vegetables have increased protection 

from cancer development compared to GSTM1-null individuals (Joseph et al., 2004, 

Spitz et al., 2000). In contrast, studies conducted in Asia concluded that GSTM1 and 

GSTT1 null individuals who regularly consume cruciferous vegetables may gain greater 

protection than GSTM1 and GSTT1 positive individuals (Seow et al., 1998, Chung et 

al., 1998).  

1.5 NRF2 

Research on broccoli and its importance for human health dates back to the early 90s. 

Zhang and colleagues were the first to show that SF is a potent activator of phase II 

enzymes. Elimination of toxic xenobiotics from cells is split into three different stages: 

phase I, II, and III. The first phase, which is mainly carried out by cytochrome P450 

enzymes, involves transferring a hydroxyl, carboxyl, or an amino group to the toxic 

compound (Lin et al., 2016). Phase II enzymes are also referred to as transferases as 

they can transfer the modified metabolite to hydrophilic molecules through the addition 

of these molecules: glucuronyl transferases, glutathione transferases, 

sulfotransferases, amino acid transferases, and N/O methyltransferases (Shen and 

Kong, 2009), making the toxic xenobiotic more hydrophilic. This facilitates the excretion 

of the toxic compound by phase III enzymes, a series of drug transporter proteins such 

as multidrug resistance (MDR) pump, which are a type of efflux pump, allowing cells to 

secrete the toxic substrate. These hydrophilic molecules include glucuronic acid,  
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The family of phase II enzymes includes NAD(P)H: quinone reductase (NQO1) along 

with the glutathione-S-transferases. Both are involved in the detoxification of steroids 

and the environmental toxin benzo(a)pyrene (Zhang et al., 1992, Prochaska et al., 

1992, Singletary and MacDonald, 2000). At that time, Zhang concluded that the 

anticarcinogenic properties of broccoli were due to SF. The problem remained that the 

exact mechanism through which this occurred was still not fully understood. Only two 

years later, the transcription factor NRF2 was discovered (Moi et al., 1994).  

NRF2 belongs to the family of cap’n collar (CNC) proteins. The human NRF2 protein 

consists of 605 amino acids, while that found in rats and mice contains 597 amino 

acids. Emerging evidence has shown that NRF2 plays a dual role; besides its 

involvement in controlling pathways involved in fighting oxidative stress, it has also 

been identified to contribute to metabolism by regulating pathways involved in 

nicotinamide adenine dinucleotide phosphate (NADPH) and ATP production 

(Thimmulappa et al., 2002, Holmström et al., 2013).  

NFR2 is formed by seven highly conserved domains, referred to as the NRF2-ECH 

homology domains. Each domain conducts a specific function (Itoh et al., 1995).                                                                                                                                              

Present within the Neh1 domain is the (CNC) leucine-rich region. This region is where 

NRF2 can dimerize with Maf proteins, allowing it to bind onto the DNA (Hirotsu et al., 

2012). The Neh2 domain is where the Kelch-like ECH-associated protein 1 (KEAP1) 

binds, thereby controlling the activity of NRF2 (Itoh et al., 1999). The C-terminal region 

of the Neh3 domain contains a sequence of 16 amino acids that are involved in the 

transcription activation of NRF2. Studies have shown that the deletion of this region 

results in the CNC leucine rich region becoming inactive. In addition, this region can 

also interact with the chromodomain of the helicase DNA-binding protein 6 (Nioi et al., 

2005).                                                                          

The Neh4 and Neh5 regions are domains that recruit either the cAMP response 

element-binding protein (CREB)-binding protein (CBP) or receptor-associated 

coactivator (RAC)3 (Katoh et al., 2001). The Neh6 domain also negatively regulates 

NRF2, through the interaction with the β-transducin repeat-containing protein (β-TrCP) 

(McMahon et al., 2004). 

The most recent domain that was identified is Neh7. This domain contains a specific 

region that allows it to interact, through protein-protein interaction with the DNA binding 

domain of the retinoid X receptor α (RXRα). This inhibits the activity of NRF2 by 

preventing coactivators' binding to the Neh4 and the Neh5 domains (Wang et al., 2013) 

(figure 1.7).  
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The Kelch domains of KEAP1 bind onto the DLG and ETGE motifs of the Neh2 domain 

of NRF2, and these sites are then ubiquitinated. Similarly, the WD-40 domain of β-TrCp 

bind onto the DSGIS and DSAPGS motifs, resulting in a series of reaction that leads to 

the ubiquitination of the Neh6 domain. 

 

 

 

Figure 1.7: Inhibition of NRF2 through the interaction of the Kelch domains of KEAP1, 

represented by the green circles, and the WD40 domains from β-TrCp, shown by the yellow 

circles. 

1.6 Regulation of NRF2 

1.6.1 Transcriptional and post-translational regulation of NRF2 

The two major pathways through which xenobiotics induce gene expression include: 

• Regulation through the aryl hydrocarbon receptor (AhR)  

• Activation of NRF2  

The binding of polycyclic aromatic carbons (PAHs) to the AhR results in AhR binding to 

the xenobiotic response element (XRE) in the promoter regions of specific inducible 

genes, for example, CYP1A1 and CY1B1 (Denison et al., 1989, Denison et al., 1988).  

Transcriptional activation of the NFE2L2 gene also occurs through the AhR, as present 

on the promoter of the NFE2L2 gene; there are both an XRE site and two XRE-like 

sequences. The induction of NRF2 results in it regulating the AhR, indicating that a 

feedback loop exists between the two transcription factors (Miao et al., 2005). 

Furthermore, metabolites produced by the human Aldo-Keto reductase gene (AKR1C), 

also controlled by NRF2, has been shown to bind to the AhR, leading to its activation, 

thereby demonstrating a further complex cross-talk (Burczynski et al., 1999, Burczynski 
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and Penning, 2000). Upstream the transcription start site, present on the promoter of 

the NFE2L2 gene, there is also two antioxidant response element (ARE)-like 

sequences. As a result, NRF2 can bind and increase its expression (Kwak et al., 2002). 

At the same time, downstream from the transcription start site, the NFE2L2 gene also 

contains an NF-ƙB binding site, allowing it to be induced in the presence of 

inflammatory stimuli (Rushworth et al., 2012).   

With regards to post-translation regulation, most of the NRF2 activity is regulated at the 

protein level. NRF2 is constantly targeted to be degraded by the 26S proteasome 

through the action of several E3 ubiquitin ligases such as cullin-RING ubiquitin ligase, 

more commonly referred to as CRL, the S-phase kinase-associated protein 1 (SKP1), 

cullin-1 (CUL1), F-box protein E3 ubiquitin ligase, called SCF (Tebay et al., 2015). The 

rapid turnover of NRF2 allows the cells to accumulate newly translated protein so that 

in the case of redox stressors and metabolic stimuli, NRF2 is no longer ubiquitinated 

and sent for proteasomal degradation.   

1.6.2 Regulation by KEAP1 

As NRF2 is activated under stress, and as it controls a wide range of biological 

functions, biological processes that NRF2 regulates will feedback and inhibit its 

function. This will avoid it becoming overexpressed, both at the transcriptional and 

translational levels. The first protein identified to inhibit the function of NRF2 was 

KEAP1. Initially, it was thought that KEAP1 inhibited NRF2 by preventing newly 

synthesised NRF2 from translocating to the nucleus (Kang et al., 2004). Studies later 

confirmed that KEAP1’s actual role is to ubiquitinate NRF2. KEAP1 is formed by four 

domains which are the following:  

1. N-terminal region (NTR) also referred to as the conserved N-terminal broad 

complex,  

2. Tram-track and Bric- à-Brac (BTB) domains. This domain contains the cysteine 151 

residue, one of the important cysteine residues for stress sensing.  

3. The intervening region (IVR) domain also contains two important cysteine residues 

(Cys273 and Cys288) for stress sensing.  

4. The double glycine repeat (DGR) and the C-terminal region (CTR) domain fold to 

form a β-propeller structure, where Keap1 interacts with the Neh2 domain of NRF2 

(Canning et al., 2013, Ogura et al., 2010, Padmanabhan et al., 2006).  

The special feature of this protein is its relative richness in cysteine residues. Most 

proteins have on average a total of 2% cysteine residues. By contrast, KEAP1 contains 

4% (Hansen et al., 2009). In addition, some of these thiol groups are highly reactive, 
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having a pKa value lower than that of a free thiol and therefore existing as a thiolate 

anion (S-). The thiolate anion is surrounded by polar and basic amino acids which 

function to stabilize it (McMahon et al., 2010, Paulsen and Carroll, 2010). The following 

model has been proposed to depict KEAP1’s ubiquitination of NRF2. Initially, KEAP1 

binds on the high affinity ETGE motif, followed by the low affinity DLG motif present on 

the Neh2 domain, through a “hinge and latch” mechanism. 

This results in ubiquitin tags being added onto the CNC-bZIP region of NRF2 (Tong et 

al., 2006, Fukutomi et al., 2014). Once ubiquitin tags have been added, NRF2 is sent 

for proteasome degradation. The importance of KEAP1 in regulating the activity of 

NRF2 has been shown in both murine (Wakabayashi et al., 2003) (where it was 

knocked out) and human cell lines (through knockdown) (Devling et al., 2005). Mutation 

of either the DLG or ETGE motif leads to KEAP1 no longer being able to degrade 

NRF2 (figure 1.8). Similarly, KEAP1 activity can also be inhibited by a wide range of 

chemicals that act as electrophiles such as tert-Butylhydroquinone (tBHQ), SF, 

curcumin, 2-cyano-3,12-dioxoolea- na-1,9(11)-dien-28-oicacid-imidazoline(CDDO-Im), 

tricyclic bis-(cyanoenone)-31(TBE-31), and diethyl maleate (McMahon et al., 2010, 

Yamamoto et al., 2008, Fourquet et al., 2010, Kobayashi et al., 2009).  The residue 

Cys-273 recognizes and reacts with cyclopentanone prostaglandins such as 15-deoxy-

Δ12,14-prostaglandin, while alkenes such as acrolein and 4-hydroxynonenol react with 

Cys-288 (Kobayashi et al., 2009, McMahon et al., 2010). The Cys-151 residue found 

within the BTB domain is where SF and other electrophiles such as tBHQ and nitric 

oxide (NO) bind, resulting in NRF2 activation (figure 1.8). Site-directed mutagenesis 

studies have instead revealed that mutation of Cys-151 to alanine results in NRF2 no 

longer being induced (Zhang and Hannink, 2003). Instead, the replacement of Lys-131, 

Arg-135, and Lys-150 which surround Cys-151 to methionine results in a weaker 

binding affinity of SF, tBHQ, and NO, resulting in reduced expression of NRF2 target 

genes (McMahon et al., 2010). A further electrophilic cysteine-434 is found in the DGR 

domain of KEAP1. This cysteine reacts with 8-nitroguanosine-3’,5’-cyclic 

monophosphate (8-nitro-cGMP), a by-product of NO, and results in S-guanylation of 

KEAP1, resulting in induction of NRF2 target genes (Fujii et al., 2010) (figure 1.8).  
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Figure 1.8:  Schematic of the active NRF2 protein that allows induction of its target 

genes.  Activation of NRF2 through the binding of the SF onto the Cys151 residue of KEAP1, 

shown by the yellow boxes. NRF2 accumulates and translocates to the nucleus, where it binds 

to an additional protein known as sMaf. The protein-protein interaction enables NRF2 to bind 

onto the ARE response and induces the expression of antioxidant and phase II detoxification 

genes. 

1.7 The antioxidant response system 

Disruption of KEAP1 allows NRF2 to translocate from the cytoplasm and accumulate in 

the nucleus (see figure 1.8 for the functional structure of NRF2). There, it 

heterodimerizes with the small musculoaponeurotic fibrosarcoma (sMaf) protein (Itoh et 

al., 1997). To date, it is known that NRF2 can interact with three Maf proteins: MafF, 

MafG, and MafK (Hirotsu et al., 2012). The binding of NRF2 to Maf was identified by 

knocking out all three Maf proteins in fibroblasts (Hirotsu et al., 2012). The results 

revealed reduced antioxidant response, indicating that these sMaf proteins are crucial 

for recruiting NRF2 to the promoter site of the DNA (Katsuoka et al., 2005, Blank, 

2008).  

The region where the NRF2-sMaf heterodimers bind is referred to as the antioxidant 

response element (ARE) (figure 1.8). This site was first identified in the promoter 

region of genes that were induced by synthetic phenolic antioxidants such as the 

metabolite ter-butyl hydroquinone (tBHQ) being one of the strongest inducing agents 

(Hayes et al., 2000). Rushmore and colleagues first reported the ARE in the early 90s 

(Rushmore and Pickett, 1993). Rushmore identified that the promoter region of the 
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gene glutathione S-transferase A2 (GSTA2) found in rats had a sequence that was 

responsive to tBHQ and β-naphthoflavone (β-NF); but not to the classic ligand dioxin 

which binds to the aryl hydrocarbon receptor (AhR) (Rushmore and Pickett, 1990). 

Rushmore went on to demonstrate that this region was required for induction of genes 

by aromatic compounds such as 3-methylcholanthrene and diphenols such as catechol 

and hydroquinone (Rushmore et al., 1991). At the same time, Daniel and colleagues 

found that the promoter region of the gene GSTA1 in mice also contained an identical 

region. Friling and her colleagues went on to name that region the electrophile 

response element (EpRE), as they showed that it responded to electrophiles such as 

trans-4-phenyl-3-buten-2-one and dimethyl fumarate, as well as to tBHQ and β-NF 

(Friling et al., 1990). This region is now commonly referred to as ARE. Prestera and 

colleagues were the first to show that the phytochemical, SF, can induce gene 

expression through ARE (Prestera et al., 1993).  Shortly after identifying the ARE 

sequence in rodent GST genes, it was discovered that that the regulatory region of 

both rat and human NQO1 gene also had an ARE sequence, also induced by tBHQ 

and β-NF (Favreau and Pickett, 1991, Jaiswal, 1991). Since its discovery, this region 

has been identified to contain the following motif: 5’- A/G TGAC/GNNNGCA/G-3’, where N 

represents redundant residues. In some circumstances, both the N nucleotides and the 

flanking sequences of the ARE may influence the function of a gene (Nioi et al., 2003, 

Hayes et al., 2010, Wasserman and Fahl, 1997). 

1.7.1 Identification of NRF2 target genes 

The discovery that both GST and NQO1 had a specific motif recognized by NRF2 led 

scientists to explore further and identify whether additional genes have similar 

functions. One group that played a prominent role was that of Masayuki Yamamoto. 

This group was the first to show that in mice that had NRF2 knocked out and 

administered with butylated hydroxyanisole (BHA) in the liver, both the various GST 

genes and NQO1 were not induced (Itoh et al., 1997).  

Thimmulappa and colleagues carried out a transcriptional profile of small intestines 

from wild type (NRF2+/+), and knockout mice (NRF2-/-) treated with vehicle or 

sulforaphane for a week (Thimmulappa et al., 2002). The group also showed for the 

first time that NRF2 played a crucial role in the cellular detoxification pathways of 

glutathione conjugation and glucuronidation. The glucuronidation pathway eliminates 

many lipophilic xenobiotics by converting them to water-soluble compounds. This 

occurs through the presence of UDP-glucuronic acid (Thimmulappa et al., 2002). 

Furthermore, Thimmulappa and colleagues were the first to demonstrate the 

importance of NRF2 in regulating several genes involved in different aspects of 
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metabolism—not only in NADPH production, such as glucose-6-phosphate 

dehydrogenase (G6PD), but also the dependence of malic enzymes and 6-

phosphogluconate dehydrogenase (6PGD) on NRF2. Soon after the study was 

published, a subsequent study identified an ARE sequence in the promoter region of 

the malic enzymes (Li et al., 2002). However, Yamamoto and the group identified an 

ARE sequence in G6PD and 6PGD several years later (Mitsuishi et al., 2012).  

Due to its vital role in redox homeostasis and metabolism, either excessive or very little 

NRF2 activation can lead to physiological consequences. Perturbation of the 

transcription factor via knockout or knockdown leads to:  

• Reduced cell proliferation (Reddy et al., 2008),  

• Alteration in cell differentiation (Hochmuth et al., 2011, Tsai et al., 2013, Paul et al., 

2014),  

• An alteration in the unfolded protein response (Cullinan and Diehl, 2004),  

• The increased build-up of toxic xenobiotics (Higgins et al., 2009, Niso-Santano et 

al., 2010, Kensler et al., 2007),  

• Increased hepatic steatosis (Chowdhry et al., 2010, Meakin et al., 2014),  

• Increased sensitivity to inflammation (Meakin et al., 2014, Chowdhry et al., 2010, 

Rangasamy et al., 2005, Thimmulappa et al., 2006, Cho et al., 2010), and  

• A reduced ability of the liver to regenerate (Wakabayashi et al., 2010).  

Similarly, overexpression of NRF2, which can occur through inhibition of KEAP1 

activity or mutation in NRF2 found in the lung carcinoma cell line A549, results in the 

overproduction of GSH and NADPH. This leads to reductive stress and can result in 

the aggregation of misfolded proteins and cardiac hypertrophy (Brewer et al., 2013, 

Whitehead et al., 2013, Rajasekaran et al., 2007). Studies have also shown that 

overexpression of NRF2 may also increase the expression of the oxidized-LDL 

scavenger receptor cluster differentiation 36 (CD36), which can lead to the formation of 

foam cells and therefore increase the risk of atherosclerosis (Ishii et al., 2004, Sussan 

et al., 2008).  

Studies on phase I-III enzymes began during the 1990s and early 2000s. For example, 

sulforaphane treatment to both human retinal pigment epithelial cells (ARPE-19) and 

HaCaT keratinocytes resulted in a twofold increase in the levels of GSH, and this was 

sustained for several days. The treatment was found to protect against the following 

oxidants and electrophiles:  

• Menadione,  

• Tert-butyl hydroperoxide,  
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• 4-hydroxynonenal and  

• Peroxynitrite (Gao et al., 2001). 

Studies using wild type mouse embryonic fibroblasts (MEF) treated with SF, and 

HaCaT cells with KEAP1 knockdown showed increased levels of the glutathione 

biosynthetic genes subunits: the modifier (GCLM) and the catalytic subunit (GCLC). It 

has also been shown that NRF2 regulates the expression of some glutathione-S-

transferase (GST) and glutathione peroxidases 2 (GPX2)—both phase II enzymes 

responsible for detoxifying epoxide and hydrogen peroxide  (Higgins et al., 2009).  

Furthermore, human cell culture studies have shown that treating human K562 

erythroleukemia cells with tBHQ and human K-1034 RPE cells with SF resulted in 

increased expression of thioredoxin 1 (TXN1) (Kim et al., 2003, Hawkes et al., 2014, 

Malhotra et al., 2010). Murine studies have shown that TXN1 plays an important role in 

protecting them against retinal light damage (Tanito et al., 2005). Upregulation of both 

GSH and TXN1 also leads to upregulation of reductases such as glutathione reductase 

(GSR), thioredoxin reductase 1 (TXNRD1), and sulfiredoxin (SRXN1). TXN1 contains 

two redox sensitive cysteine residues. These two residues are reduced by TXNRD1 

through NADPH. TXN1 helps control the activity of many transcription factors (p53 and 

HIF-1α through oxidoreductive modification of the protein.  

Another well-established phase II enzyme is NQO1, which catalyzes the reduction of 

quinones to hydroquinones. P450 reductases can oxidize Quinones to semiquinone. 

These molecules are highly unstable (due to the presence of a free radical) and tend to 

react with oxygen to generate ROS, leading to oxidative damage in cells. NQO1 

prevents this process by utilizing NADPH to generate hydroquinones that can then be 

either glucuronidated by UDP-glucuronosyltransferase (UGT) or sulfonated by 

sulfotransferases (Dinkova-Kostova and Talalay, 2000, Miura et al., 2011).  

Studies on the following human cell lines: HaCaT keratinocytes, MCF10A mammary 

cells, IMR-32 neuroblastoma, and U937 lymphoma cells treated with sulforaphane or 

tbHQ or knockdown of KEAP1, showed strong induction of another group of phase I 

enzymes AKR1B10, AKR1C1, AKR1C2, and AKR1C3. These enzymes belong to the 

family of Aldo-Keto reductase (Jung et al., 2013). These oxidoreductases also utilize 

NADPH to catalyze the conversion of a wide range of xenobiotics. For example, 

AKR1A1 is involved in reducing the chemotherapy drug doxorubicin to doxorubiciniol 

(Bains et al., 2008). Instead, AKR1C1 and ARK1C2 are involved in metabolizing 

tibolone (treatment for postmenopausal conditions) and the oral contraceptive 

northeynodrel (Steckelbroeck et al., 2006, Jin et al., 2012). In humans, several of these 

enzymes, such as AKR1B10, AKR1C1, AKR1C2, and AKR1C3 also play an important 
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role in clearing the build-up of lipid peroxidation by products such as 4-hydroxy-2-

nonenal and 4-oxo-2-nonenal (Martin and Maser, 2009, Burczynski et al., 2001).   

1.8  NRF2 and glucuronidation 

Another mechanism through which NRF2 is involved in xenobiotic metabolism is 

through glucuronidation. This process involves the transfer of glucuronic acid, derived 

from UDP-glucuronic acid to a xenobiotic substrate by the enzyme UGT. For example, 

the product of heme metabolism, bilirubin, is eliminated by this pathway through the 

enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is also an NRF2 target 

(Thimmulappa et al., 2002). UDP-glucuronic acid is generated from G6P through a 

series of reactions. The first step involves the conversion of G6P to glucose-1-

phosphate (G1P) by phosphoglucomutase. Then UDP is attached to the glucose 

molecules by UDP-glucose pyrophosphorylase to generate UDP-glucose. In the final 

step, UDP-glucose is converted to UDP-glucuronate by UDP-glucose dehydrogenase 

another enzyme whose activity is also regulated by NRF2 (Wu et al., 2012, 

Thimmulappa et al., 2002).  

1.9  Part 2:  NRF2 and its role in metabolism 

The final section of the general introduction covers literature on NRF2 within the last 10 

years. More specifically, it focuses especially on the recent discovery that NRF2 can 

also act as a central metabolic regulator by regulating a wide range of different 

metabolic pathways. Selected metabolic pathways which are of particular interest for 

this thesis are discussed. 

1.9.1 NRF2 and glycolysis: 

One of the most recent studies showing a link between NRF2 and glycolysis was 

conducted by Bollong and colleagues. This study identified novel crosstalk between 

glucose metabolism and the NRF2 antioxidant pathway (Bollong et al 2018). The 

administration of a small synthetic molecule, CBR-470-1, to IMR32 cells directly 

inhibited the glycolytic enzyme phosphoglycerate kinase 1 (PGK1). Inhibition of PGK1 

led to the accumulation of a metabolite, methylglyoxal. This compound directly inhibits 

KEAP1 through post-translational modification by forming a methylimidazole cross link 

between cysteine151 and arginine135 residues of KEAP1. NRF2 activation was 

confirmed through western blotting and RNA-sequencing followed by Gene Set 

Enrichment Analysis (GSEA), showing enrichment of NRF2 target genes. The 

compound also induced transcript levels of NQO1 and HMOX1 in other cell lines such 

as HEK293T, SH-SY5Y, and primary lung fibroblasts.  Depleting NRF2 through short 
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hairpin showed that CBR-470-1 activity depends on NRF2. The findings were then 

assessed in vivo, by administrating mice with 20 or 100 mgkg-1 of analog of CBR-470-

1. The results showed a dose-dependent increase in the transcript levels of NQO1 and 

HMOX1 in several organs (Bollong et al., 2018).    

1.9.2 NRF2 and its role in the pentose phosphate pathway 

Following the entry of glucose into the cells, glucose gets phosphorylated by 

hexokinase to glucose-6-phosphate (G6P). At this stage, G6P can continue through 

glycolysis to generate two molecules of pyruvate, which are then directed into the 

tricarboxylic acid (TCA) cycle to produce ATP through oxidative phosphorylation, or it 

can enter the pentose phosphate pathway (PPP) (figure 1.9). The quantity of glucose 

present in the cells will dictate how glucose will be metabolized. Under high glucose 

availability, via the activation of PI3K-Akt, the glucose is redirected to anabolic 

reactions such as the PPP. Yamamoto and colleagues were the first to show that the 

enzymes G6PD, PGD, transaldolase (TALDO), and transketolase (TKT) have an ARE 

sequence and are thus NRF2 targets (Mitsuishi et al., 2012). Further, Furthermore, 

Yamamoto and colleagues showed that siRNA knockdown of NRF2 leads to increased 

glycolytic intermediates (G6P, fructose-6-phosphate, dihydroxyacetone phosphate, 

pyruvate, and lactate) in the cells (Mitsuishi et al., 2012). In cancer cells where NRF2 is 

constitutively active, knockdown of NRF2 results in the downregulation of these 

enzymes involved in the PPP. Similarly, in human breast epithelial cells (MCF10A) that 

are treated with SF or KEAP1 knockdown, an increase in the PPP enzymes is 

observed (Agyeman et al., 2012). It has been shown that by controlling the activity of 

G6PD and PGD, the NADPH that is generated is utilized to maintain glutathione in its 

reduced state (figure 1.9) (Singh et al., 2013, Mitsuishi et al., 2012).   
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Figure 1.9: NRF2 and its contribution in crucial metabolic pathways such as the Pentose 

Phosphate Pathway and Lipid Metabolism. Green denotes the genes induced by NFR2, while 

black shows genes that NRF2 represses. NRF2 increases the expression of critical enzymes 

involved in PPP, leading to NADPH production required for cellular growth and antioxidant 

response. NRF2 also suppresses lipid biosynthesis. Lipid biosynthesis consumes a large 

amount of NADPH. Therefore, by suppressing lipid synthesis, the NADPH can be redirected for 

the antioxidant response. 
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1.9.3 The TCA cycle 

The first step in the TCA cycle is the formation of acetyl-CoA by pyruvate 

dehydrogenase (PDH). Acetyl-CoA can then condense with oxaloacetate to generate 

citrate, which is transferred to the cytoplasm to synthesise lipids or converted to 

isocitrate by aconitase. Isocitrate is converted to α-ketoglutarate (α-KG) by isocitrate 

dehydrogenase (IDH). α-KG is further converted to succinyl-CoA by α-KG 

dehydrogenase. Succinyl-CoA is oxidized to fumarate by the succinate dehydrogenase 

(SHD) complex and then hydrated to malate by fumarate hydratase (FH). In the final 

step, malate is oxidized to regenerate oxaloacetate by malate dehydrogenase, 

continuing the cycle (figure 1.10).  

Evidence that NRF2 regulates the TCA activity has been recently discovered. Firstly, 

NRF2 can increase the levels of PDH, leading to increased substrates entering the 

TCA cycle and, therefore, increasing the cycle's activity (Singh et al., 2013). PDH has 

not yet been identified to have an ARE sequence. NRF2 also directly regulates the 

activity of malic enzyme 1 (ME1) and Isocitrate dehydrogenase (IDH1), both of which 

generate NADPH. ME1 is a mitochondrial enzyme that metabolizes malate to pyruvate, 

while IDH1 converts isocitrate to α-ketoglutarate. Both enzymes have been shown to 

have ARE sequences (Mitsuishi et al., 2012). It has also been recently identified that 

pyruvate carboxylase is a potential NRF2-MafG target gene (Hirotsu et al., 2012). 

Pyruvate carboxylase catalyzes the carboxylation of pyruvate to oxaloacetate (figure 

1.10). Emerging evidence has shown that NRF2 also appears to regulate mitochondrial 

biogenesis and physiology. It was identified that NFR2 knockdown in colon cancer cells 

results in reduced oxygen consumption and ATP production (Kim et al., 2011). In 

contrast, when NRF2 is overexpressed, these cell lines have higher basal 

mitochondrial membrane potential and higher oxygen consumption rates, resulting in 

higher basal ATP levels, suggesting that NRF2 is involved in oxidative phosphorylation 

(Holmstrom et al., 2013). 
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NRF2 also regulates the expression of various subunits of the cytochrome C oxidase 

protein (Agyeman et al., 2012, Holmstrom et al., 2013, Carrasco-Pozo et al., 2017), in 

addition to regulating mitochondrial respiration by providing electron carries such as 

NADH / FADH2 for complex I and II. Other studies have shown that NRF2 can both 

positively (Hota et al., 2012, Piantadosi et al., 2011, Athale et al., 2012) and negatively 

regulate (Uruno et al., 2013, Zhang et al., 2013b) the mRNA levels of the nuclear 

respiratory factor 1 (NRF1). This protein regulates the activity of the five protein 

complexes of the respiratory chain, along with PGC-1α. 

Under oxidative stress, uncoupling protein 3 (UCP3) is upregulated by NRF2 to reduce 

the build-up of superoxides (Anedda et al., 2013). Finally, it has been recently stated 

that NRF2 can regulate mitochondrial bioenergetics through PPARү and PPARү 

coactivator 1 beta (PGC-1β) (Chorley et al., 2012, Dinkova-Kostova and Abramov, 

2015, Itoh et al., 2015), although future studies are required to gain a mechanistic 

understanding of how this process occurs.   

 

 

Figure 1.10: Summary of the TCA cycle on the left and lipid homeostasis on the right. Enzyme 

highlighted in orange represent NRF2 targets. 
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1.9.4 Glutamine metabolism 

The most abundant amino acid in human serum is glutamine, with concentrations of 

around 500 µM (Lin et al., 2016). Proliferating cells are highly dependent on glutamine, 

as it is both a nitrogen and carbon source for the TCA cycle. NRF2 controls both the 

uptake and metabolism of glutamine in cells. For example, NRF2 can control the 

expression of the glutamine transporter SLC1A5 and asparagine synthetase (ASNS), 

whose function is to produce asparagine and glutamate from aspartate and glutamine 

(Averous et al., 2004). In addition, the first step of glutaminolysis, which comprises the 

conversion of glutamine to glutamate by glutaminase, is also an NRF2 target 

(Agyeman et al., 2012). Glutamate can then be either converted to α-ketoglutarate 

through the action of glutamate dehydrogenase or redirected for glutathione 

biosynthesis. The conversion of glutamate to glutathione occurs through the glutamate-

cystine ligase GCLC/GCLM genes, key NRF2 targets along with the amino acids 

cysteine and glycine. Knockdown of NRF2 results in the glutamine pool being reduced, 

resulting in a reduction in the biosynthesis of glutathione (Mitsuishi et al., 2012). A 

recent study showed that KRAS, driven lung cancers with a mutation in KEAP1, 

resulting in constitutive NRF2 activation, rely heavily on glutaminolysis and the addition 

of a glutaminase inhibitor CB-839 disrupts their proliferation (Romero et al., 2017).  

1.9.5 NRF2 and lipid metabolism 

Biosynthesis of lipids begins with citrate an intermediate of the TCA cycle being 

transported to the cytosol, where it is converted to acetyl-CoA by ATP-citrate lyase 

(ACL). Acetyl-CoA is then converted to a three-carbon intermediate known as malonyl-

CoA by acetyl-CoA carboxylase (ACC). The two-carbon chain, acetyl-CoA, dimerizes 

with the three-carbon chain malonyl-CoA to produce a four-carbon intermediate (Figure 

1.6). Elongation of the carbon chain occurs by fatty acid synthase (FASN) to produce 

saturated fatty acids. Insertion of a double bond occurs through fatty acid desaturase 

(FADS), leading to the synthesis of unsaturated fatty acids such as palmitoleic and 

oleic acid (Rui, 2014) (figures 1.9 and 1.10).   

Evidence of a role of NRF2 in lipid metabolism was first identified by Tanaka et al., 

(Tanaka et al., 2008). The study showed that NRF2 knock out mice that were placed 

on a high-fat diet (65% of the total calories came from lard) or control (7% calories 

came from fat) for four weeks had an increased expression of the following genes: 

ACC1, FASN, fatty acid elongase and the sterol regulatory element-binding protein-1c 

(SREBF1) a key transcription factor in lipid regulation. Treatment of the NRF2 activator 
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SF in the human liver cell line HHL5 inhibited both the protein and mRNA levels of 

SREBF1 by blocking the expression of PERK (Tian et al., 2018).  

A second study assessed, through a ‘gene-dose response model’, the levels of 52 

genes involved in lipid biosynthesis and 21 fatty acid synthesis genes from livers of wild 

type, NRF2 knockout, KEAP1 knockdown (KEAP1-KD), and KEAP1 knockout (KEAP1-

KO) mice. The study results showed that out of these 52 genes, 36 were highly 

expressed in the NRF2 knockout mice. The study also showed that NRF2 could inhibit 

the expression of specific genes involved in fatty acid desaturation, such as FADS1 

and FADS2. NRF2-null mice had a 56% and 52% increase in mRNA levels of FADS1 

and FADS2, respectively. On the other hand, the KEAP1-KO had a 46% and 32 % 

decrease in the mRNA of FADS1 and FADS2, respectively (Wu et al., 2011).  

Other studies have shown that NRF2 is involved in downregulating the function of both 

stearoyl CoA desaturase (SCD1) and ACC (Kitteringham et al., 2010, Tanaka et al., 

2012). Downregulation of ACC also leads to an increase in β-oxidation, as levels of 

malonyl-CoA are reduced. Malonyl-CoA inhibits the function of carnitine 

palmitoyltransferase (CPT1a), a protein that is involved in transporting long-chain fatty 

acids from the cytosol to the mitochondria for β-oxidation (Hayes and Dinkova-Kostova, 

2014). Additional studies also support the evidence that knockdown of NRF2 inhibits 

the expression of genes involved in β-oxidation such as acyl-CoA oxidase 1 and 2 

(ACOX1), (ACOX2), CPT1a, and CPT2. Similarly, the activation of NRF2 in the lungs 

of mice leads to the expression of genes involved in fatty acid oxidation and lipases 

(Pang et al., 2014). 

Nagata and colleagues (Nagata et al., 2017) were the first to assess how 

glucoraphanin (GR), the precursor of sulforaphane, impacts fatty acid metabolism. In 

their study, C57BL/6GJSlc mice were placed into four groups:  

1. Normal chow diet (NC),  

2. NC-GR,  

3. High Fat Diet (HFD) and  

4. HFD-GR.  

Firstly, the study showed that GR supplementation could reduce steatosis through two 

different methods: the downregulation of lipid biosynthesis genes such as FASN, 

SREBF1 and the peroxisome proliferator-activated receptor (PPARү) and increasing 

the expression of brown-fat genes (increased caloric expenditure) such as UCP1, cell 

death activator (CIDEA), and elongation of very long chain fatty acids protein 

(ELOVL3). Specific genes related to the NAPDH oxidase subunits, such as gp91phox, 

p22phox, p47phox, and p67phox, along with proteins involved in the production of reactive 
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oxygen species were also downregulated. Finally, supplementation also decreased 

inflammation by reducing the number of M1- macrophages accumulating in the liver 

and increasing anti-inflammatory M2-like macrophages. This resulted in reduced 

mRNA levels of TNF-α and the NADPH oxidase (Nagata et al., 2017).  

A follow-up study to (Nagata et al. 2017) also reported similar results. In that study, 

mice on a high-fat diet were supplemented with either broccoli or GR from broccoli 

seeds. Both broccoli and GR supplementation led to a significant reduction in serum 

levels of the lipids, triglycerides, total cholesterol, and LDL cholesterol. Glucose 

tolerance tests also showed that both broccoli and the GR group had improved glucose 

tolerance. Similarly, a homeostatic model assessment of insulin resistance (HOMA-IR) 

revealed an increase in insulin sensitivity. Both groups showed a reduction in mRNA of 

FASN, ACC, and SREBP, although only FASN reached statistically significant. The 

mice supplemented with GR had a statistically significant increase in mRNA of both 

CPT1 and ACOX1, whereas, those with the broccoli supplementation, only ACOX 

significantly increased. Compared to previous mice studies, the detailed assessment of 

how GR affected the gut microbiota composition was novel about the study. GR 

decreased the Firmicutes to Bacteroidetes ratio; by increasing the number of 

Bacteroidetes, and significantly decreasing Lachnospiraceae. A high ratio of Firmicutes 

to Bacteroidetes is commonly observed in obese individuals. Redundancy analysis 

plots (RDA) revealed that Bacteroidaceae, positively correlated with antioxidant genes 

SOD and CAT, while Lachnospiraceae, Ruminococcaceae, and Desulfovibrionaceae 

significantly enriched in HFD, positively correlated with serum TG, TC, and HDL-C (Xu 

et al., 2020).  

Lipid metabolism in the liver is controlled by the nuclear receptor PPARα. This 

transcription factor controls the expression of several genes involved in lipid transport, 

β-oxidation, ketogenesis, lipogenesis, and cholesterol metabolism. During fasting 

conditions or low energy availability, PPARα is activated. Studies have shown that 

upon NRF2 activation, levels of PPARα decrease (Yates et al., 2009). Data from 

microarray studies on mice fasted for 24h and PPARα knocked out showed significant 

downregulation in mRNA levels of NRF2 compared to wild-type mice. No change was 

however observed in the PPARα knockout mice that were fed. These results suggest a 

potential feedback loop between NRF2 and PPARα during fasting conditions, although 

the exact mechanism is still not fully understood (Sanderson et al., 2009). During 

fasted state, activation of NRF2 could be through several mechanisms. One could be 

through transcriptional activation by PPARα. A second may be through the increased 

production of ROS resulting from oxidation of fatty acids, leading to increased protein 

stability of NRF2, or it may be a combination of both.  
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Zhang and colleagues investigated the effects of NRF2 deletion on mice placed on a 

24h fast. The results showed that hepatic glycogen, gluconeogenesis, was not affected 

by the absence of NRF2 (Zhang et al., 2013b). An additional finding was that fasted 

wild type mice failed to induce NRF2 target genes. The study also showed that ROS 

levels were higher in the NRF2 deficient mice due to the inability to induce the 

antioxidant genes. A second study reported a similar finding. Here, mice that had NRF2 

upregulated through KEAP1 knockdown and were placed on a 24h fast also failed to 

induce its target genes. The results, however, showed a small and significant induction 

of NQO1 (Xu et al., 2013).  

In summary, while the role of NRF2 in lipid metabolism is still not fully understood, as 

lipid biosynthesis consumes large amounts of NADPH in the cells, a possible 

explanation may be that NRF2 is involved in blocking this process so that the NADPH 

can be utilized for the antioxidant response instead. 

1.9.6 NRF2 and glucose homeostasis 

Impaired glucose homeostasis leads to a phenomenon known as IR. IR is 

characterized by the failure of cells to respond to insulin leading to high blood glucose. 

Over the long term, this can result in type 2 diabetes mellitus (T2DM). Long-term 

complications of T2DM include damage to small blood vessels (microvasculature) 

found on the retina, kidney, and peripheral nerves (Papatheodorou et al., 2018). 

Insulin is produced in the β-cells of the pancreas. Diabetes mellitus can occur by either 

the destruction of the β-cells, resulting in type 1 diabetes, or by insufficient insulin 

production leading to type 2 (Cnop et al., 2005). Oxidative stress has been suggested 

as a possible mechanism that may result in damage to the β-cells (Fujimoto et al., 

2011). Patients with T2DM have increased DNA damage of the pancreatic islets in 

addition to a reduced β-cell mass (Sakuraba et al., 2002).   

Studies using animal models have shown that NRF2 plays a crucial role in the 

protection of β-cells. For example, β-cells obtained from mice with NRF2 deleted have 

increased ROS production, resulting in increased DNA adducts and ultimately 

apoptosis of β-cells within the islets. The induction of NRF2 blocks this process 

(Yagishita et al., 2014). NRF2 can preserve the destruction of β-cells; by mopping up 

free radicals and reducing inflammation derived from the nuclear factor-kappa βeta 

pathway. It can also enhance the activity of cellular degradation systems such as 

apoptosis, autophagy, and proteasomal degradation (Li et al., 2014, Lee et al., 2012). 

Damage to β-cells through oxidative stress may also affect insulin secretion, although 

this relationship is not fully understood. While some studies show that ROS blocks 
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insulin secretion by reducing the production of ATP and increasing the activity of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (McEvoy et al., 2015), the 

general evidence seems to suggest that oxidative stress is necessary for insulin to be 

released (Saadeh et al., 2012, Leloup et al., 2009). In addition, what is still not fully 

understood is whether NRF2 affects insulin secretion. Data from NRF2 knockout mice 

have revealed that they have decreased insulin secretion. NRF2 deficiency has also 

been reported with reduced blood glucose, enhanced insulin signalling, and decreased 

fat and body weight (Saha et al., 2010, Yu et al., 2011b, Zhang et al., 2012b, Meakin et 

al., 2014, Meher et al., 2012).  

One of the pioneering studies to assess the role of NRF2 in glucose homeostasis was 

through a mice model of type 1 diabetes by administration of the drug streptozotocin 

(STZ). This compound destroys β-cells of the pancreas. The study showed that NRF2 

knockout mice administered with STZ followed by intraperitoneal glucose injection had 

worsened blood glucose and higher levels of serum β-hydroxybutyrate, triglycerides, 

and fatty acids compared to wild type mice. STZ treatment to the NRF2-null mice also 

resulted in reduced hepatic glycogen, enhanced expression in the gluconeogenesis 

genes glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxylase (PCK), 

and reduced glycolysis. Administration of the NRF2 activator, oltipraz, lowered blood 

glucose in the WT mice but did not affect the NRF2 null mice administered with STZ 

(Aleksunes et al., 2010).  

A second study that assessed the role of NRF2 in glucose homeostasis was in db/db 

mice (a model for type 2 diabetes). Db/db mice are characterized by a mutation in the 

diabetes gene db gene encoding for the ObR (leptin receptor), whereas ob/ob mice 

(see next page) are characterized by a mutation in the ob gene, which encodes leptin 

(Coleman, 1978).  One of the study findings was db/db mice placed on a high-fat diet 

(HFD) with KEAP1 knockdown had genes involved in energy utilization such as CPT1b 

and the mitochondrial uncoupling protein 3 (UCP3) in skeletal muscles upregulated. 

Knockout of NRF2 instead resulted in diminished expression of UCP3 and CPT1b. The 

study also showed mRNA levels of several gluconeogenesis genes such as G6PC, 

fructose-1,6-biphosphatase (FBP1), and peroxisome proliferator-activated receptor-

gamma coactivator 1-alpha (PGC1α) in the db/db KEAP1 KD mice were reduced. The 

study concluded that NRF2 might reduce T2DM through a combination of factors:  

• Promoting antioxidant enzymes in the pancreas, thereby inhibiting ROS,  

• Increasing the expression of genes related to energy consumption in skeletal 

muscle, and finally, 

• Downregulating gluconeogenesis related genes (Uruno et al., 2013).  
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In vitro studies using murine hepatocytes have shown that NRF2 can inhibit the 

expression of G6P and other genes involved in gluconeogenesis, despite induction of 

gluconeogenesis using a cAMP analogue (David et al., 2017).  Further, a more recent 

study using mouse models showed that NRF2 might improve insulin resistance 

suppressing oxidative stress in the hypothalamus, which may affect metabolic 

regulation (Yagishita et al., 2017).  

Excessive body fat accumulation results in obesity. Obesity increases the risk of 

developing insulin resistance and T2D. Studies using ob/ob mice have shown that 

induction of NRF2 suppresses weight gain and increases the consumption of oxygen in 

the skeletal muscle, leading to an increased ATP production as well as improved 

cellular uptake of glucose (Uruno et al., 2013, Holmstrom et al., 2013, Kahn et al., 

2006).  

One of the most recent studies that assessed SF regulation in glucose homeostasis 

was conducted through both in vitro and in vivo studies. The in vitro work consisted of 

administering rat hepatoma (H4IIE) cells with a high concentration of saturated fat 

palmitic acid (250 µM) to induce diabetogenic conditions. A 16 h pre-treatment of PA 

led to a 34% increase in glucose production, while 24 h SF treatment (at 3 µM)  led to a 

45% reduction in glucose. This study also showed that SF treatment significantly 

downregulated several genes in gluconeogenesis, such as G6PC, PCK1, FBP1, and 

the glucose-6-phosphatase catalytic subunit. Conversely, the knockdown of NRF2 

revealed no effect on insulin signalling, as the phosphorylation status of the insulin 

receptor substrate 1 (IRS1) and the protein AKT were not changed (Axelsson et al., 

2017). The in vivo study consisted of a randomized, double-blind controlled study for 

12 weeks, where 102 type 2 diabetes patients of Scandinavian origin had either mild or 

severe T2D (severe diabetes was defined as having an HbA1c over 50 mmol/mol) took 

part. The participants were placed into either a placebo or a capsule containing broccoli 

sprout extract (BSE) with a high concentration of glucoraphanin (the equivalent of 150 

µM SF). The severe T2D was further split into two groups: non-obese and obese to 

reduce any possible confounders. Fasting blood glucose and Hb1Ac measurements 

were taken before and at the end of the study. Firstly, the results revealed a significant 

change in fasting blood glucose between the intervention (8.3 ± 0.3 mM) compared to 

the placebo group (9 ± 0.4 mM) (Axelsson et al., 2017). Hb1Ac levels also changed; 

the placebo group had 57 mmol/mol while the BSE treated was 53 mmol/mol. 

Regression analysis revealed a clear correlation between the reduction of fasting blood 

glucose and a decrease in HbA1c. However, it is worth mentioning that BSE treatment 

was only effective in obese patients with dysregulated T2D (Axelsson et al., 2017).   
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A potential newly identified mechanism through which SF can reduce/prevent 

cardiomyopathy complications caused by T2D is through the AMP-activated protein 

kinase (AMPK). In this study, WT and (AMPKα2) KO mice were firstly placed on an 

HFD for 3 months to induce insulin resistance. To cause hyperglycemia, both WT and 

KO mice were then intraperitoneally injected with streptozocin (STZ).  Upon treatment, 

mice were then gavaged with or without SF for 3 months while still being fed a high-fat 

diet or chow for the control group. Mice were then sacrificed at 3- and 6-months post 

SF treatment. The study showed that in the WT mice placed on an HFD followed by 

STZ administration, SF could inhibit cardiomyopathy through two different pathways: 

inhibiting lipid metabolism through AMPK activation and the NRF2 antioxidant 

response. pAMPK upregulation by SF enhanced oxidation of fatty acids in the 

mitochondria by upregulating the CPT1b and PGC1-α pathways. pAMPK was also able 

to inhibit the SCD-1 gene involved in synthesising unsaturated fatty acids. Finally, the 

study discovered a novel mechanism through which NRF2 could induce the antioxidant 

response. Phosphorylation of AKT by pAMPK, which led to increased GSK3β, could 

induce NRF2. NRF2 upregulated genes in the antioxidant response, such as HMOX1 

and catalase (CAT), thereby reducing oxidative stress and fibrosis of cardiac tissue 

(Sun et al., 2020).    

1.9.7 NRF2 and cardiovascular diseases  

As mentioned in section 1.2.3, CVDs are the world’s leading causes of death, and 

lifestyle choices can largely prevent these. Within the last couple of years, research on 

NRF2 has suggested that its activation may also play a role as a potential target for 

cardiovascular diseases (da Costa et al., 2019, Satta et al., 2017). A summary of the 

latest research on NRF2 and its role in the management of CVDs has also been 

presented.  

Increased ROS results in the oxidation of LDL cholesterol. This contributes to the 

formation of foam cells, eventually resulting in arterial plaque. Several different 

mechanisms have been proposed to explain how NRF2 may attenuate the progression 

of atherosclerosis. One proposed mechanism is through the induction of the antioxidant 

response. For example, mice that lack GPx-1, a direct NRF2 target gene, have 

increased oxidation of LDL-cholesterol, resulting in a greater number of foam cells 

developing (Cheng et al., 2013). Similarly, mice that are both HMOX1 and 

apolipoprotein E deficient have increased oxidative stress and develop atherosclerotic 

lesions at a faster rate (Yet et al., 2003). Deletion of HMOX1 in macrophages has also 

been shown to increase a build-up of lipids, resulting in a greater number of foam cells 

formed and an increase in the number of pro-inflammatory cytokines (Orozco et al., 
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2007). What was also identified in a human study is that participants with carotid artery 

disease had increased expression of HMOX1, and this correlated with an unstable 

plaque phenotype. The study concluded that it was not fully understood whether the 

upregulation of HMOX1 in these patients was an atheroprotective response to reducing 

the plaque's ROS levels or if HMOX1 contributes to increased plaque vulnerability 

(Cheng et al., 2009).  

A second mechanism via which NRF2 may delay the progression of CVDs is by 

modulating the migration and proliferation of vascular smooth muscle cells (VSMCs) 

(Ashino et al., 2013). Studies have shown that NRF2 deletion increases PDGF-induced 

migration of VSMCs, and these mice also have higher neointima hyperplasia. It has 

been hypothesized that NRF2 induction can suppress neointima hyperplasia by 

inducing apoptosis of VSMCs and reducing the proliferation of VSMCs (Ashino et al., 

2016, Kim et al., 2009). In addition, it has also been shown that NRF2 induction 

attenuates the circulation of calciprotein particles (CPP), thereby reducing the 

calcification of VSMCs (Aghagolzadeh et al., 2017). Figure 1.11 represents a summary 

figure of the various pathways NRF2 regulates.  
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Figure 1.11. Regulation of metabolic pathways involved in central metabolism by the 

transcription factor NRF2. NRF2 positively regulates G6PD and PGD of the oxidative arm of 

PPP and TALDO1 and TK of the nonoxidative arm of the PPP. Regulation of these two genes 

and ME1 allows NADPH production, which is then redirected for Glutathione function. NRF2 

regulates the rate limiting enzymes GCLM and GCLC involved in glutathione biosynthesis.  At 

the same time, NRF2 inhibits the function of ACC, FASN and SCD1 involved in the biosynthesis 

of saturated and unsaturated fatty acids, which is an NADPH consuming process. The 

expression of genes for phosphoribosyl pyrophosphate amidotransferase (PPAT) and involved 

in de novo purine biosynthesis, also regulated by NRF2. The lower levels of SCD1 may 

influence positively AMP-activated protein kinase (AMPK), thus further suppressing ACC1 

activity.  
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1.10 Aims: 

Due to the emerging role of NRF2 in regulating metabolism, there is an unresolved 

question of whether some of the mechanistic basis of the beneficial effects of SF intake 

involves regulation of key metabolic pathways and whether this is mediated primarily 

through NRF2. In addition, understanding the role of NRF2 as a metabolic regulator 

and the process through which this occurs is still unclear. Despite the liver being the 

central metabolic organ, very few studies have assessed NRF2 metabolic activity in 

vitro using liver cell lines.  

 

This thesis aims to test the hypothesis that NRF2 is the key mediator of broccoli 

bioactivity in modulating key metabolic pathways in the liver. This was investigated 

through: 

 

1. Using an in vitro model of liver metabolic imbalance and understanding how 

physiological levels of SF impacts hepatic metabolism challenged with a range of 

fatty acids and glucose concentrations. 

2. Assessing the effect of physiological concentrations of SF in inducing different 

transcriptional changes in hepatocytes challenged with different concentrations of 

glucose. 

3. Assessing how physiological concentrations of SF redirects glucose and glutamine 

to metabolic pathways in hepatocytes challenged with different concentrations of 

glucose. 

4. Applying the genome editing technique (CRISPR/Cas 9) to develop a novel liver 

cell line that lacks NRF2, to assess the extent to which the metabolic changes are 

mediated primarily by NRF2.  
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Chapter 2 Figures 
 

Figure 2.1: Summary of how the drug compounds affect the mitochondrial electron 

transport chain.  

Figure 2.2: Summary of how the drug compounds affect glycolysis. 

Figure 2.3: Summary of RNAseq data analysis pipeline 

Figure 2.4: Schematic summary of how the CRISPR system is carried out in vitro 

Chapter 2 Tables: 
 

Table 2.0: List of primer sequences used in qRT-PCR. 

Table 2.1: Summary of the compounds added to the Seahorse cartridge to the stress 

the mitochondrial for the Seahorse Mito stress kit.  

Table 2.2: Summary of the compounds added to the Seahorse cartridge to assess 
glycolytic function through the glycolysis stress test. 

Table 2.3: Deconvolution and parameter settings on the metabolite detector used to 
obtain the MID.  

Table 2.4: Summary of LC-MS/MS parameters. 

Table 2.5: guide RNA sequences used to target the NRF2 gene, including the positive 
control HPRT1. 

Table 2.6: Primer sequences used for the PCR reaction for Genomic Cleavage 
Detection Assay. 

Table 2.7: List of primary antibodies used for Western Blotting. 

2.0 Chapter 2: Materials and Methods 

2.1  Preparation of sulforaphane 

R, S-sulforaphane (Catalog: S8044, LKT Laboratories) was dissolved in 100% dimethyl 

sulfoxide (DMSO, Sigma catalog: D2650) to achieve a 5.5 M concentration and a 100 

mM master stock solution stored at -20°C. 10 µL of the 100 mM stock solution was 

diluted to a 1 mM working solution. From the 1 mM solution, sulforaphane was diluted 

to final concentrations in the culture medium just before the addition to the cultures. 

The final concentration of DMSO in the culture was < 0.01%.  

2.2  Cell Culture 

HepG2 cells a human hepatocarcinoma cell line (isolated from an American 15-year-

old male) were obtained from the American Type Culture Collection (ATCC, HB-8605). 

HepG2 was cultured in EMEM (Eagle's Minimum Essential Medium ATCC 30-2003) 
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containing 10% fetal bovine serum (FBS) (Gibco catalogue:10082147), 100 µml-1 

penicillin, and 100 µml-1 streptomycin (Catalogue:15140122 Gibco). Cells were 

maintained at 37 °C in a 5% CO2 environment. The cells were cultured in a T75 flask or 

grown on 6-well plates from passage 7 to 18. 

2.3 WST-1 Assay 

The WST-1 assay works by the conversion of the tetrazolium salt WST-1 (4-[3-(4-

iodophenyl)-2-(nitrophenyl)2H-5-tetrazolio]-1,3-benzene disulfonate) into formazan by 

mitochondrial dehydrogenase enzymes. This assay indirectly measures the viable 

cells. By progressively increasing the concentrations of the treatment, a reduction in 

viability results in fewer metabolically active cells. As a result, a reduction in 

mitochondrial dehydrogenase activity results in a more significant number of cells being 

unable to carry out the conversion of the dye. The product of the enzymatic reaction, 

formazan, is a deep red colour that enables a spectrophotometric assay to allow 

quantitative determination of the number of viable cells. 

The WST-1 (Sigma, catalog: 000000005015944001) assay was performed according 

to the manufacturer's instructions. For this assay, HepG2 were seeded at 2×104 cells 

per well in a 96-well plate with EMEM containing 10% FBS. 72 h after seeding, the 

wells were washed with 1XDPBS and treated with varying SF concentration (10-700 

µM) for 2 h or 2-200 µM for 24 h in EMEM serum-free media. Briefly, after 2 or 24 

hours of cell treatments, 10 µL (per 100 µL media) of WST-1 reagent was added to 

each well. The cells were incubated in a humidified atmosphere containing 5% CO2 at 

37°C for up to 3 h. The metabolic conversion of the WST-1 reagent to formazan was 

quantified by measuring the absorbance using a spectrophotometer at 450 nm with a 

reference wavelength of 610nm. Medium-only was used for the blank correction to 

compensate for any absorbance contribution of the basal colour from the phenol red 

present within the medium. The percentage of viable cells was calculated using the 

following formula:  

Cell viability (%) = optical density (OD) of the treatment group/OD of the control group 

x100 

2.4 RNA extraction 

HepG2 cells were seeded on a 6-well plate (2×105 cells/well). On the day of the 

treatment, the media was removed and the wells washed twice with 1X DPBS 

(14190144 Gibco) and 10 µM of SF or control (DMSO) in serum-free DMEM without 

glucose (Catalogue: 11966025 Gibco) supplemented with 1 mM sodium pyruvate 
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(11360070 Gibco), and 5.5 mM or 25 mM glucose (A2494001 Gibco) or 10 mM 

galactose (G5388 Sigma). For the continuous SF treatment RNA was extracted at 2, 4, 

6, and 24 h. For the transient expression, 2, 10, and 25 µM of SF were added for 2 h. 

After 2 h, the media was removed, washed once with 1XDPBS, and serum-free media 

was added. RNA was then extracted following 2, 4, 6, and 22 h post media change. For 

all experimental procedures, following the desired time point: 

1. Media was removed from six well plate 

2. Cells were washed twice with 1XDPBS,  

3. Buffer RLT with β-ME (444203 Sigma), to control and sulforaphane treated 

cells, were lysed directly on the 6-well plate.  

RNA was then extracted using the RNeasy Qiagen kit (Ref:74004) according to the 

manufacturer's instructions. RNA abundance and integrity were assessed using the 

Nanodrop ND-1000 spectrophotometer. Briefly, triplicate readings for RNA 

quantification were performed per sample, and the average was calculated. The purity 

of the RNA was deduced from the ND plot and the 260/280 ratios. A 260/280 nm ratio 

greater than 2 was taken to indicate a pure sample, while 260/230 ratios less than 2 

were taken as indicative of contaminants such as salts that absorb at 230 nm. 

2.5 Quantitative real time-PCR analysis 

For the quantification of gene expression, the Taqman® RNA to CT 1-step kit was used 

(Primer Design, catalog: OSPLUS). RNA extracted from the cells was used as the 

starting material to produce the complementary DNA strand based on the RNA 

sequence. The DNA was then amplified for the detection of target genes. Identification 

of target genes occurred through the fluorescent signal generated using dual-labeled 

probes. The 5' end of the probes was labeled with reporter dye such as FAM (6-

carboxyfluorescein) and a quencher dye at the 3' end, e.g., TAMRA (6-

carboxytetramethylrhodamine). When the two dyes are near each other, no fluorescent 

signal is generated. However, when the Taq polymerase amplifies the complementary 

DNA strand where the probe is bound, the 5' nuclease activity of the polymerase 

cleaves the probe, resulting in the reporter and quencher dyes being decoupled and a 

fluorescent signal is released.  With each progressive cycle that occurs, the fluorescent 

signal increases, which can be used to determine the relative expression level of the 

target gene. 

The expression of the genes HMOX1, NQO1, CPT1a, FAS, G6PD, PG6D, TKT, GCLC, 

TXRND1, and ACTB were measured by real-time PCR using an Applied Biosystems 

7500 Step One Plus detector instrument. RNA from these genes was monitored using 

commercial probe sets, all of which were purchased from Integrated DNA technologies 
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Table 2.1. Quantitative real-time-PCR reactions were performed by adding 5 µl of the 

RNA (4 µgµL-1) to 15 µL of Mastermix (probe, and water). To normalize the expression 

of the target genes, an endogenous control, also known as a housekeeping gene, was 

used to account for potential differences in the total RNA in each sample. For 

normalization of the target genes used in the present study, the housekeeping gene 

chosen was beta-actin, ACTB (Hs.PT.39a.22214847).  

The samples were loaded onto a 96-well semi-skirted fast plate (Alpha Laboratories, 

catalog: LW2214) using the CAS-1200 robot. A no-template control (NTC) was loaded 

(RNase-free water provided by Qiagen kit) to ensure no RNA contamination, followed 

by each of the samples—including three biological and three technical replicates. The 

PCR program on the Step One Plus software was set at 48 °C for 30 min to allow 

reverse transcription, 95 °C for 10 min to activate the Taq polymerase, followed by 40 

cycles of 95 °C for 15 seconds for denaturation and 60 °C for 1 min to anneal and 

extend the target gene DNA.  

At the end of the run, the threshold cycle (CT) values for each reaction were calculated, 

and a standard curve of known total RNA quantities was used to calculate the amount 

of the target RNA. The standard curve for each gene was also used to calculate the 

amplification efficiency. The output from the Step One Plus software comprised a linear 

plot with the equation of the line, amplification efficiency, and the R2 value. The 

amplification efficiency usually varies between >96% and less than 115%, where a 

reaction that has been 100% efficient will result in the gradient of the standard curve 

being -3.32. This means that the CT difference between two sequential 2-fold dilutions 

will equal 1. The R2 value of the standard curve line represents how well the CT values 

for each sample lie on the best fit. Values >0.99 are highly accurate. 
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Table 2.0: List of primer sequences used in qRT-PCR 

All primers were purchased as pre-designed qPCR probe assays from Integrated DNA 

Technologies (IDT) with double quenched probes (5'FAM / ZEN / 3' IBFQ).  

Assay ID Gene Species RefSeq Transcripts hit Detects all 
variants 

Exon 
location 

Design 
score 

Hs.PT.58.3368888 PGD Human NM_002631 NM_002631 Yes 6 - 7 17.6013 

Hs.PT.58.20384174 FASN Human NM_004104 NM_004104 Yes 3 - 4 16.8263 

Hs.PT.58.3359761 SREBF1 Human NM_001005291 NM_001005291, 
NM_004176 

Yes 6 - 7 16.7304 

Hs.PT.58.20474921 TKT Human NM_001064 NM_001064, 
NM_001135055, 
NM_001258028, 
NR_047580 

Yes 9 - 10 16.7025 

Hs.PT.58.27558354 G6PD Human NM_001042351 NM_001042351 No 1 - 3 16.5602 

Hs.PT.39a.22214847 ACTB Human NM_001101 NM_001101 Yes 1 - 2 0 

Primer 1 Primer 2 Probe Amplicon Start pos. End pos. 

CCATACTCTATCCCGTT 
GTGC 

AGACCATCTTCCAAGG 
CATT 

CTCCCTCATCTCCCACCCA 
GTCA 

118 551 668 

CGGAGTGAATCTGGGTT 
GATG 

TTTGATGCCTCCTTCTT 
CGG 

CCATCGTGTGTGCCTGC 
TTGG 

125 295 419 

CTGCTTGAGTTTCTGG 
TTGC 

CTACCGCTCCTCCATC 
\AATG 

TTATTCAGCTTTGCCTCA 
GTGC 
CCA 

145 1286 1430 

CATGCGAATCTGGTCA 
AAGG 

CCGCTTCATCGAGTG 
CTAC 

AGGACGGTGCCCTTC 
TGCA 

136 1243 1378 

GTATCCGACTGATGGA 
AGGC 

TCCGGAGAGAAGTCTG 
AGTC 

AGCTCGACAGCGTCAT 
GGCA 

150 56 205 

CCTTGCACATGCCGGAG ACAGAGCCTCGCCTTTG TCATCCATGGTGAGCTGG 
CGG 

110 30 139 

RefSeq Transcripts hit Detects all 
variants 

Exon location Design score Primer 1 

NM_002631 NM_002631 Yes 6 - 7 17.6013 CCATACTCTATCCCGTTGTGC 

NM_004104 NM_004104 Yes 3 - 4 16.8263 CGGAGTGAATCTGGGTTGATG 

NM_001005291 NM_001005291, 
NM_004176 

Yes 6 - 7 16.7304 CTGCTTGAGTTTCTGGTTGC 

NM_001064 NM_001064, 
NM_001135055, 
NM_001258028, 
NR_047580 

Yes 9 - 10 16.7025 CATGCGAATCTGGTCAAAGG 

NM_001042351 NM_001042351 No 1 - 3 16.5602 GTATCCGACTGATGGAAGGC 

NM_001101 NM_001101 Yes 1 - 2 0 CCTTGCACATGCCGGAG 

Primer 2 Probe Amplicon Start pos. End pos. 

AGACCATCTTCCAAGGCATT CTCCCTCATCTCCCACCCAGTCA 118 551 668 

TTTGATGCCTCCTTCTTCGG CCATCGTGTGTGCCTGCTTGG 125 295 419 

CTACCGCTCCTCCATCAATG TTATTCAGCTTTGCCTCAGTGCCCA 145 1286 1430 

CCGCTTCATCGAGTGCTAC AGGACGGTGCCCTTCTGCA 136 1243 1378 

TCCGGAGAGAAGTCTGAGTC AGCTCGACAGCGTCATGGCA 150 56 205 

ACAGAGCCTCGCCTTTG TCATCCATGGTGAGCTGGCGG 110 30 139 

 

2.6 Oil Red O assay 

Oil Red O, also known as Sudan Red 5B, is a fat-soluble diazo dye used for staining 

lipids. The dye is dissolved in a solvent, usually isopropanol. This means that the dye 

can enter the cells and stain the lipids bright red while the excess is removed by 

washing with water. An advantage of this protocol is that the Oil Red O stain can be 

eluted from the cells using isopropanol without dissolving the lipids themselves; thus, 

the level of staining can be quantified spectrophotometrically.  
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For the Oil Red O assay, HepG2 were seeded at 3×105 cells per ml in a 6-well plate. 

The following day, media was removed, washed twice with 1X DPBS, and serum-free 

MEM (Gibco, catalog: 51200-038) media was added along with 10 µM SF pre-

treatment. Following 24 h SF pre-treatment, the media was removed, washed twice 

with 1X DPBS, and the cells treated with 0.2 mM BSA-palmitate conjugate or control 

(BSA/DMSO) for 24 h. After 24 h palmitate treatment, cells were washed twice with 1X 

DPBS and fixed with 10% formalin for 1 h. After fixation, cells were washed once with 

ddH2O and then twice with 60% isopropanol and stained with Oil Red O working 

solution (2.5 g of Oil Red O (Sigma, catalog: O9755) in 100% isopropanol) for 20 min 

at room temperature. Cells were washed again with ddH2O to remove unbound 

staining. To quantify Oil Red O content levels, 100% isopropanol was added to each 

well; after shaking at room temperature for 5 min. Finally, 200 µL of each sample was 

added to a 96-well plate, and the density of samples was read at 492 nm on a 

spectrophotometer. 

2.7 Seahorse Assays: 

I used the Seahorse BioScience (Agilent) to assess metabolism measuring the oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR). These measure 

the rate of oxidative phosphorylation and glycolysis respectively. The Seahorse can 

also assess additional metabolic pathways such as fatty acid metabolism in real time. 

The assay works through the acute injections of up to four test compounds. These 

compounds stress the cells, thus enabling the assessment of the potential changes in 

energy production (Ferrick et al., 2008).  

OCR was measured in real-time using the XFp extracellular analyzer (Agilent 

Technologies, Seahorse Biosciences) according to the manufacturer's protocol. Briefly, 

cells were seeded at a density of 5×104 cells/well in six wells of the eight-well 

Seahorse plate and grown for 48 h. For both the OCR and the ECAR assays, the 

Seahorse XFp sensor cartridge (Agilent Technologies) was hydrated a day before the 

treatment using XF calibrant (Agilent Technologies) and placed in a 37oC non-CO2 

incubator.   

Before running the assays, the media was replaced with Seahorse Base Media 

(DMEM) (Agilent, catalog: 102353-100) containing 4 mM glutamine (Gibco, catalog: 

A2916801, 1 mM sodium pyruvate (Giblco, catalog: 11360070). The plates were then 

placed in a non-CO2 incubator for 45 min to 1 h and then placed in the XFp 

extracellular flux analyzer for calibration. Oligomycin (Catalog: 75351), Carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (Catalog: C920), rotenone, and 
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antimycin A (Catalog: R8875/A8674) were purchased from Sigma- Aldrich and diluted 

in DMSO to generate 10 mM stock solutions which were stored at -20 ⁰C until required.  

The Seahorse cartridge was prepared during the plate incubation in the non-CO2 

incubator. The stock drug compounds were diluted to working concentrations using the 

Seahorse media. Mitochondrial activity was evaluated by sequential injections of four 

components that affect its activity, as summarised in table 2.1 and figure 2.1. 

Table 2.1: Summary of the compounds added to the Seahorse cartridge to the stress the 
mitochondrial for the Seahorse Mito stress kit  

Port ID Compound Added Injection 
Volume 

Port 
Concentration 

Final Well 
Concentration 

A Oligomycin 20 10 µM 1 µM 

B FCCP 22 5 µM 0.5 µM 

C Rotenone/Antimycin 
A 

25 5 µM 0.5 µM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Summary of how the drug compounds affect the mitochondrial electron 

transport chain.  

 

For the extracellular acidification rate (ECAR)-XFp glycolysis rate assay (Agilent 

Technologies), cells were seeded at a density of 5×104 cells/well in 6 wells of the 8-

well Seahorse plate and grown for 48 h. On the day of the treatment, media was 

removed, and the wells were washed twice as described above. Before running the 

assays, the media was replaced with Seahorse base media (DMEM, 102353-100 

Agilent) containing 4 mM glutamine (Gibco, catalog: A2916801). The plate was then 

 

Outer mitochondrial membrane 

 
Complex I 

 

CompleIx 

II 

 

Complex  
III 

Inner 
mitochondrial 
membrane 

 
 NADH NAD+ 

FAD FADH2 

 

4H+ 

H+ 

2e- 

e- 

H+ H+ 

H+ H+ 

2H+ 

H+ 

H+ 

H+ H+ 

Antimycin   AA Rotenone 
A 

 

H+ 

H
+ 

H+ 

 Complex  IV 

 

 
O2 2H2O 

QH2 

4H+ 

 
4x Cyt c 
(red) 

 
4x Cyt c 
(ox) 

Succinate Fumarate 

 

4
H

QH. 

e- 

e- 4e- 

Inner membrane space 

 

Proton 

Uncoupling 

 

ADP +Pi 

 

 
ATP  

Synthase 

 

 

ATP 

H+ 

H+ 

Oligomycin 

 

Proton 

Leak 

H+ 

H+ 

H+ 



65 
 

placed in a non-CO2 incubator for 1 h before putting it in the XFp extracellular flux 

analyzer for calibration. Following calibration, glycolysis function was assessed by 

sequential injections of two components that affect its activity, as summarised in table 

2.2 and figure 2.2. For both the OCR and ECAR assays, protein from each well was 

extracted to normalize for variation in cell number. Briefly, cells were lysed with 1X lysis 

buffer (Cell Signalling Technology, catalog: 9803S), lysates were centrifuged at 17,000 

g at 4 °C for 10 min. Protein concentrations were then quantified using the 

bicinchoninic protein assay (Sigma catalog: BCA1-1KT).  

Table 2.2: Summary of the compounds added to the Seahorse cartridge to assess 
glycolytic function through the glycolysis stress test 

Port ID Compound 
Added 

Injection 
Volume 

Port 
Concentration 

Final Well 
Concentration 

A Glucose 20 100 mM 10 mM 

B Oligomycin 22 10 µM 1 µM 

C 2-DG 25 500 mM 50 mM 

 

 

 

Figure 2.2. Summary of how the drug compounds affect glycolysis 

 

2.8 RNA Sequencing and gene expression analysis 

RNA sequencing often abbreviated to RNA-seq is a technology that uses next-

generation sequencing (NGS) to reveal the presence and quantity of RNA at a given 

time point to asses the transcriptome (Stark et al., 2019). Before RNA-seq, gene 

expression studies were conducted using microarrays; although RNA seq offers many 

more advantages. For example, it doesn’t require specific probes, and it can detect 

novel transcripts, alternative splicing junctions, new single nucleotide variants, allele-
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specific expression, and other changes that arrays cannot identify (Rao et al., 2019). In 

addition, RNA seq can look at different populations of RNA such as total RNA, miRNA, 

tRNA, and ribosomal profiling. In this analysis, polyA sequencing was performed which 

only assesses mRNA. Compared to microarray experiments, the high specificity and 

sensitivity of RNA-seq can capture not only a higher percentage of differentially 

expressed genes but also genes that are usually low expressed (given the adequate 

sequencing depth) more accurately than microarray without the requirement for 

hybridization (Rao et al., 2019).   

HepG2 cells were seeded on a 6 well plate (2×105 cells/well). Before sequencing RNA 

quality was first checked on the 2100 Bioanalyzer using the Agilent RNA 6000 Nano 

Reagents. RNA that had an RNA Integrity value (RIN) > 7 was sent for sequencing. For 

chapter 4 RNAseq analysis, RNA samples were then sent to Macrogen (South Korea). 

Macrogen then conducted the following: samples were ribo depleted through the 

TruSeq RNA-Poly A. Sequencing of 36 libraries was performed on an Illumina 

NovaSeq 2x using 100-bp paired-end reads, generating 30 million reads/library.  

The RNA-sequencing data analysis was divided into two steps: processing the raw 

RNA-sequencing data to estimate genes counts and then the comparative analysis of 

the transcriptomics data (figure 2.3). The data processing was performed by the QIB 

bioinformatician Dr. Perla Troncoso Rey following the protocol for the “new Tuxedo” 

suite for short reads (Pertea et al., 2016a) and using the HPC environment managed 

by the Norwich Bioscience Institute’s Computing infrastructure for Science, CiS (Pertea 

et al., 2016b). The new Tuxedo suit includes computational tools for the alignment of 

RNA-seq reads to a reference genome, the assembly of transcripts, quantification of 

gene and transcript expression, and differential expression analysis. 

The first part of the analysis started with the processing of raw RNA-seq data to 

remove Illumina adapter sequences, low-quality and short reads using Trim Galore! 

v.0.6.5 . Adaptor sequences were removed with an overlap of a minimum of 5 bases (--

stringency 5). For this analysis, the quality control (based on the ‘Phred33’ score) 

removed reads with a quality of less than 30 (-q 30) and reads shorter than 60 bp (-

length 60).  

The alignment of high-quality reads was performed with HISAT2 v.2.1.0 (Kim et al., 

2015) to the ensembl’s human reference genome GRCh38, release 97 (July 2019) . 

HISAT2 is an ultrafast splice-aware aligner based on the principles of some of the most 

widely used aligners; the Burrows-Wheeler aligner (BWA) and Bowtie (Li and Durbin, 

2009), which uses the Burrow-Wheeler transform to store the reference genome in a 
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highly compressed form. Using the Ferragina-Manzini, FM, indexing, Bowtie, and BWA 

can search a genome very rapidly.  

The alignments were then assembled into full-length transcripts and quantified in each 

sample using StringTie v.1.2.2 (Pertea et al., 2016a). StringTie creates as many 

isoforms as needed to explain the data, and estimates the expression levels of all 

known genes and transcripts. After the initial assembly, the assembled transcripts were 

merged to create a uniform set of transcripts for all samples  (Pertea et al., 2016a). The 

merged transcripts were then compared to the reference human annotation and 

statistics on this comparison were calculated using gffcompare v.0.9.8 (Pertea and 

Pertea, 2020). Finally, the read alignments and the merged transcripts were used to re-

estimate abundances (where necessary) and create transcript and gene counts for 

further analyses.  

The complete bioinformatics pipeline, differential gene expression (DGE) analyses, and 

statistical analysis follow the QIB’s GitHub repository for RNA-seq analysis in the 

following link: https://github.com/quadram-institute-bio science/FIH-RNAseq-analysis. 

Detailed information on how the comparative analysis of the transcriptomics data was 

carried out has been explained in chapters 4 and 6. Finally, plots for the genes vs the 

logFC were constructed using ggplot2 (3.1.0). Network analysis was conducted on 

Cytoscape 3.7.2.   

For the RNAseq analysis conducted in chapter 6 RNA was extracted from Wild Type 

and NRF2KD HepG2 treated with 10 µM SF at 3, 9, and 24 h or control (DMSO) in 

serum-free DMEM without glucose (catalog: 11966025 Gibco) supplemented with 1 

mM sodium pyruvate (catalog: 11360070 Gibco) and 25 mM glucose (catalog: 

A2494001 Gibco). RNA was sent to GeneWiz (Essex, United Kingdom). Both quality 

control and sequencing were carried out by GeneWiz through BioAnalyzer. Samples 

were then ribo depleted through the TruSeq RNA-Poly A. Sequencing of 36-324 

libraries was performed on an Illumina NovaSeq 2x using 150-bp paired-end reads, 

generating 35 million reads/library. Processing the raw RNA-sequencing data to 

estimate genes counts were carried as mentioned above. Differentially expressed 

genes were obtained though, through the DESeq2 package. See chapter 6 for an in-

depth explanation.  
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Figure 2.3. Summary of RNAseq data analysis pipeline 

2.9 Gas chromatography/Mass spectrometry (GC-MS): 

For the 13C6 glucose assay, HepG2 cells were seeded at a density of 3×105 cells/well 

on a 6-well plate and grown for 48 h. On the day of the assay, cells were washed once 

with 1XDPBS and incubated for a further 24 h with DMEM (Sigma, catalog: D5030) 

supplemented with 13C6 glucose (Sigma, catalog: 389374) and 12C5 glutamine (Roth, 

catalog: HN08.2), sodium pyruvate (Sigma, catalog: P8574) and sodium bicarbonate 

(Sigma, catalog: S5761) with 10 µM of SF or control (DMSO) without serum.                                                                                                                                          

For the 13C5 glutamine assay, HepG2 cells were treated as described for the 13C6 

glucose assay except using 12C6 glucose and 13C5 glutamine (Sigma, catalog: 605166). 

For the 1-2-13C6 glucose assay, HepG2 cells were treated as described for the 13C6 

glucose assay except using 1-2-13C6 glucose tracer (Sigma, catalog: 453188) and 12C5 

glutamine.  

Following 24 h incubation, the plate was washed once with 2 ml of 0.9% sodium 

chloride (NaCl) (Sigma, catalog: S3014). The intracellular metabolite was extracted by 

adding 400 µL each of methanol (-20 °C) and double distilled water (4 °C) containing 1 

µgml-1 of the internal standard (IS) D6-glutaric acid (CDN isotopes catalog: D-5227). 

Cells were scraped and transferred to a tube containing 400 µL of chloroform (-20 °C) 

and vortexed for 20 min at 1400 rpm at 4 °C (Eppendorf ThermoMixer C). Polar, 

aqueous, and non-polar phases were separated by centrifugation (21,000g at 4 °C for 

5 min) and 300 µL of the polar phase was transferred to a GC glass vial. Vials were 

dried vacuum-centrifuged at 4 °C, capped, and stored at -80 °C for further analysis.  
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Extraction of the extracellular metabolites was carried out using a methanol/water 

mixture (8:1 v/v). The water fraction contained the IS D6-glutaric acid 2 ugml-1. 20 µL of 

medium were added to 180 µL of ice-cold methanol/water mixture (8:1 v/v) and 

vortexed for 10 min at 1400 rpm at 4 °C (Eppendorf ThermoMixer C). Polar, aqueous, 

and non-polar phases were separated by centrifugation (10 min at 17,000g for 4 °C) 

and 80 µL of the polar phase was transferred to a GC glass vial. Vials were dried 

vacuum-centrifuged at 4 °C, capped, and stored at -80 °C for further analysis. 

Derivatisation of the samples (carried out at the BRICS from the Technical University of 

Braunschweig) was performed with an Axel Semrau Chronect Robotic Pal RTC directly 

before GC-MS measurement. 15 µL of 2 % methoxyamine hydrochloride in pyridine 

were added to the samples and agitated for 60 min at 40 °C. Afterward, an equal 

volume of N-Methyl-N-(trimethylsilyl) trifluoroacetamide was added and shaking 

continued for 30 min at the same temperature. 1 µL of each derivatized sample was 

injected in splitless mode into an SSL injector heated to 270 °C. The gas 

chromatographic separation was performed on an Agilent 7890B GC equipped with a 

30 m ZB-35 + 5 m duraguard column (Phenomenex). Helium was used as a carrier gas 

with a flow rate of 1 ml min-1. Initially, the GC oven temperature was held at 80 °C for 6 

min. Afterward, the temperature was raised by 6 °C/min until 300 °C was reached and 

finally held for 10 min. Then, the temperature was increased to 325 °C at 10 °C/min 

and held for an additional 4 min, resulting in a total run time of 59.167 min for one 

sample. The GC system was coupled to an Agilent 5977B MSD. Electrical ionization of 

the metabolites was performed at 70 eV. The MS ion source was constantly heated to 

230 °C and the quadrupole to 150 °C. For the untargeted approach, full scan mass 

spectra were acquired from m/z 70 to m/z 800. For the labeling experiments, the 

connected detector was operated in selected ion monitoring. GC-MS chromatograms 

were processed using the in-house developed software, MetaboliteDetector, 

v3.320200313 (Hiller et al., 2009). Mass isotopomer distributions were calculated 

according to the chemical formulas from Wegner et al. (Wegner et al., 2014). 
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Table 2.3: Deconvolution and parameter settings on the metabolite detector used to 

obtain the MID  

The MID values were then exported to an Excel spreadsheet, where the values were 

imported into GraphPad Prism. Statistical analysis was carried out using a two-way 

ANOVA. 

Parameters Values 

Peak height 5 

Peak threshold 5 

Deconvolution width 5 

Bins/scan 10 

Baseline adjustment Off 
 

2.10 Liquid Chromatography/Mass Spectrometry (LC-MS) 

2.10.1  Analysis of glutamine, glutamic acid, pyroglutamic acid, and 

glutathione in basal and high glucose 

The concentration of glutamine, glutamic acid, pyroglutamic acid, and oxidized/reduced 

glutathione in the cell and media were assessed through LC-MS.  

Before performing the extraction, the cells were treated with 10 µM SF or control 

(DMSO) in media without glucose (Gibco, catalog: 11966025) and supplemented with 5 

and 25 mM glucose (Gibco, catalog: A2494001) to represent the basal and high 

glucose environments. For the extraction, cells were washed once with 10 mL ice-cold 

0.9% NaCl (Sigma, catalog: S3014) and harvested using 0.05% (w/v trypsin (Gibco, 

catalogue: 25200056). After cell count with the Countess™ (ThermoFisher Scientific 

Ref: AMQAX2000), the cell suspensions were centrifuged at 1,200g for 10 min at room 

temperature. The supernatant was discarded, and the cells were resuspended in 10 ml 

of 0.9% warm sodium chloride (Sigma, catalog: S3014), before centrifugation at 1,200g 

for 10 min. The supernatant was then removed and 0.5 mL of perchloric acid (0.3 mM) 

was added (Sigma, catalog: 50439). The mixture was kept on ice for 10 min followed 

by further centrifugation at a higher speed of 12,000 g at 4 oC for 10 min. The 

supernatant (50µl) was transferred to HPLC vials (Fisher Scientific, catalog: 10003264) 

and stored at -20 until further analysis. I performed triplicate readings per sample.  

Metabolites were also extracted from the media. Briefly, 1ml of the culture medium was 

collected before harvesting HepG2 cells with trypsin, and 10% perchloric acid (3 mM) 

(Sigma, catalog: 50439) was added. Samples were kept on ice for 10 min followed by 

further centrifugation at a higher speed of 12,000 g at 4 oC for 10 min. The supernatant 

(50 µl) was transferred into HPLC vials and stored at -20 oC until further analysis 

https://www.thermofisher.com/order/catalog/product/AMQAX2000
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A standard curve was produced with 1mgml-1 concentration for glutamine, glutamic 

acid, pyroglutamic acid, all purchased from Sigma-Aldrich: glutamine (catalog: G3126), 

glutamic acid (catalog: G1251), pyroglutamic acid (catalog: 83160). A separate 

standard curve was prepared for oxidized glutathione (catalog: G4376) and reduced 

glutathione (catalog: G6013). Finally, for all chemicals, a five-point standard curve was 

produced with a 10-fold serial dilution, in either water for cell samples or DMEM media 

for media samples over the range of 1000 µgml-1 to 0.01 µgml-1.  

For LC-MS/MS analysis, the Agilent 1200 Series with 6490 Triple Quad LC-MS mass 

spectrometer was used, carried out at the Quadram Institute through the support of the 

senior analytical chemist Dr Shikha Saha. The HyperCarb UPLC column was used to 

separate glutamic acid, glutamine, and pyroglutamic acid (50X2.1, ThermoFisher), 

oxidized/reduced glutathione were separated using Luna Omega Polar 1.6 µM Polar 

C18 (Thermofisher) column, and the temperature for both columns was set to 30 °C. 

For the chromatographic separation gradient, mobile phases were used. Mobile phase 

A was 0.1% formic acid in water and mobile phase B was 0.1 % formic acid in 

methanol.  

For the separation of all compounds, the mobile phase gradient was started from 1% B 

for 2 min, 2 % B by 4.1 min, 10% B by 5 min, 20% B by 6 min. After 1 min the column 

was washed up with 90% B and re-equilibrated for 2 min by 1% B. The flow rate was 

0.1 ml/min.  

The LC eluent flow was sprayed into the mass spectrometer interface without splitting. 

All ions were monitored using mass spectrometry in multiple reaction monitoring modes 

(MRM) in positive polarity with electrospray ionization (ESI) source. The source 

parameters were:  

1. A gas temperature of 200 ˚C with a gas flow of 16 l/minute,  

2. A sheath gas temperature of 300 ˚C with a sheath gas flow of 11 l/minute,  

3. A nebulizer pressure of 50 psi and capillary voltage of 3500 °C. 4 

 

The quantification was performed using a matrix match calibration curve.  Identification 

was achieved based on the retention time and product ions. Table 2.4 summarises the 

monitored ions and the optimized MS operating parameters of the analyte. 
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Table 2.4: Summary of LC-MS/MS parameters 

Analyte Retention 
time (mins) 

Precursor 
ion (m/z) 

Production 
(m/z) 

Collisio
n 
energy 

Cell 
accelerat
or energy 

Polarity 

Glutamine 1.04 147.16 83.9 18 4 Positive 

Glutamine 1.04 147.16 56 30 4 Positive 

Glutamic acid 1.22 148.14 83.4 14 44 Positive 

Glutamic acid 
 

1.22 
 

148.14 
 

56 
 

30 
 

4 
 

Positive 
 

Pyroglutamic 
acid 

4.44 130.0 84 10 4 Positive 

Pyroglutamic 
acid 

4.44 130.0 56 30 4 Positive 

Glutathione 3.6 308.33 84 42 4 Positive 

Oxidized 
Glutathione 

3.60 308.33 
 

76 26 4 Positive 

Glutathione 4.436 613.64 355.1 22 4 Positive 

Oxidized 
Glutathione 

4.436 613.64 231 30 4 Positive 

 

2.10.2  Analysis of folate and methionine cycle and transsulfuration 

pathway metabolites in basal and high glucose 

Analysis of the following metabolites: betaine, cysteine, cystine, homocysteine, 

homocystine, glutamic acid, glycine, serine, methionine, S-adenosyl-methionine (SAM), 

and S-adenosylhomocysteine (SAH) in the cell and media were quantified using the 

Agilent 1200 Series LC 6490 Triple Quad LC-MS mass spectrometer. Briefly, following 

the metabolite extraction (as described above), 20 µL of the supernatant from both cell 

and media samples were added to 180 µL of 60% of acetonitrile. 

50 µL of this solution was added to the HPLC vials. Triplicate readings were performed 

per sample. A mix standard curve was produced with 1mgml-1 concentration for 

cysteine, cystine, glutamic acid, glycine, serine and methionine, all purchased from 

Sigma-Aldrich: betaine (catalogue: B2629), cysteine (catalogue: C-7755), cystine 

(catalogue: C-8755), L-homocysteine (catalogue: 69453), L-homocystine (catalogue: 

H6010)  glutamic acid (catalogue: G1251), glycine (catalogue: G-7126), serine 

(catalogue: S-4500), methionine (catalogue: M9625), SAM (catalogue: A7007), SAH 

(catalogue: A9384). For all metabolites, a five-point standard curve was produced with 

a 10-fold serial dilution, in either water for cell samples or DMEM media (catalogue: 

11966025 Gibco) for media samples over the range of 100 µgml-1 to 0.001 µgml-1. 

Finally, 20 µL of the standards prepared in both water and media were added to 180 µL 

of 60% acetonitrile, 50 µL of which was added to HPLC vials. The Acquity BEH Amide 

(2.1×100mm,1.7μm particle size) including a Van Guard™ UPLC BEH Amide pre-

column (2.1×5 mm, 1.7 μm particle size) (Waters, Milford, USA) was used to separate 

the amino acids.  The column was maintained at a temperature of 35 °C, and 2 μL of 
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the sample volume was injected. Two mobile phases were used for the run: solvent A 

(10 mM ammonium formate in 85 % acetonitrile containing 0.15% formic acid) and 

solvent B (10 mM ammonium formate in Milli Q-water containing 0.15 % formic acid pH 

3.0). Chromatographic separation was achieved at a flow rate of 0.4 mLmin-1. 

2.10.3  Amino acid analysis between WT and NRF2 KD HepG2 

The extraction method used to extract metabolites in section 2.10.1 and 2.10.2 lacked 

a quencher. Therefore, the downstream analysis yielded variable results, most likely 

because the metabolites had already begun to degrade. Analysis of amino acids in WT 

and NRF2KD cells (chapter 6) therefore were extracted using a completely different 

method.  

WT and NRF2KD HepG2 cells were seeded at a density of 3×105 cells/well on a 6-well 

plate and grown for 48 h. On the day of the assay, cells were washed once with 

1XDPBS and incubated for another 3, 9, and 24 h with DMEM without glucose (Gibco, 

catalog: 11966025), supplemented with 1 mM sodium pyruvate (Gibco, catalog: 

11360070) and 25 mM glucose (Gibco, catalog: A2494001) with DMEM without FBS, 

along with 10 µM SF or its control DMSO. Cells were plated in quadruplicates plus an 

extra plate for cell counting. Cells were counted using the Invitrogen™ Countess™ 

automated cell counter based on the manufacturer's instructions to give the total 

number of cells per well.  

Following removal of media, the cells were washed once with 0.9% NaCl (4 °C). 

Metabolite extraction was performed by adding 500 µL of metabolite extraction buffer 

(MEB) per million cells, consisting of 50% methanol, 30% acetonitrile, and 20% Milli Q 

water, kept at -20 oC. Plates were incubated at 4oC on a shaker for 5 min, followed by 

24h incubation at -80 oC. Following incubation, cells were scraped and the insoluble 

material was transferred to a pre-chilled Eppendorf tube, vortexed for 15 min at 1400 

rpm at 4 °C (Eppendorf ThermoMixer C), followed by centrifugation 18,000g at 4 °C for 

20 min. The supernatant, 80 µL was transferred to an LC-MS vial and was dried 

vacuum-centrifuged at room temperature for 30 min. For the analysis, vials were 

resuspended with 50 µl of 60% acetonitrile. 

 

2.11 CRISPR Cas 9 transfection 

The clustered regularly interspaced short palindromic repeats (CRISPR) system is one 

of the main mechanisms for bacteria and archaea to protect themselves from foreign 

genetic material, from pathogens such as bacteriophages and plasmids (Marraffini, 
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2015). This process utilizes a Cas protein. On average about twenty nucleotides 

present at the 5’end of the guide RNA (gRNA), guide the Cas to the target sequence in 

the DNA through RNA-DNA complementary base pairing. The Cas-gRNA complex can 

then cleave the foreign DNA, (in this case, it is the NRF2 genomic sequence) as it can 

recognize a protospacer adjacent motif (PAM) (Jiang and Doudna, 2017).  

Cell transfection in a 6-well plate was carried out using lipofectamine CRISPRMAX. A 

reverse transfection protocol was used for HepG2 cells. HepG2 cells were transfected 

the same day they were passaged. Briefly, DMEM media (Gibco, catalog: 31880230) 

was removed, the flask was washed twice with 1X DPBS (Gibco, catalog: 14190144) 

and 1.5 mL of 0.05% trypsin (Gibco, catalog: 25300054) was added per flask. Flasks 

were incubated at 37 oC 5% CO2 for 5-10 min, followed by neutralization with DMEM + 

10% FBS (Gibco, catalogue:10082147). The cell suspension was added to 50 mL 

falcon, spun at 1000g for 5 min, the media was removed and the cells were 

resuspended in 1X DPBS further spun at 1000g for 5 min and finally resuspended in 20 

ml of Opti-MEM reduced serum (Gibco, catalog: 31985070) media without FBS nor 

pen/strep. 

During the centrifugation step, the Cas9 ribonucleoprotein and lipofectamine 

CRISPRMAX reagent were prepared in separate 2 ml Eppendorf tubes. Tube 1 (the 

control) was prepared by adding 777 µL of Opti-MEM with 12.5 µg of GeneArt platinum 

Cas9 nuclease and 144 µL of Cas9 plus reagent (Invitrogen, catalog: A36499). Tube 2 

was prepared by the addition of 777 µL of Opti-MEM with 12.5 µg of GeneArt platinum 

Cas9 nuclease, 144 µL of Cas9 plus reagent, and 2.5 µg of sgRNA (Table 2.5). The 

solution was incubated at room temperature for 5-10 min. In two separate 2 ml 

Eppendorf tubes, 9 µL of lipofectamine CRISPRMAX (Invitrogen, catalog: 

CMAX00003) was added to 116 µL of Opti-MEM and incubated at room temperature 

for 5 min. After incubation, the Cas9 RNPs were added to the lipofectamine 

CRISPRMAX solution and incubated for 15-20 min at room temperature (Yu et al., 

2016). In the meantime, cells were counted and 2X105 cells per ml were seeded per 

well.  The Cas9 RNP/lipofectamine CRISPRMAX solution was added dropwise onto 

the suspension of the cells. At around 9 h post-transfection, the media containing the 

transfection reagent was removed and replaced with DMEM supplemented with 10% 

FBS and pen/strep. The transfected cells were incubated for 48-72 h before analysis. 
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Table 2.5: guide RNA sequences used to target the NRF2 gene including the positive 
control HPRT1 

Gene Sequence PAM Strand Reference 

NRF2 TCGATGTGACCGGGAATATC AGG + A35510 
CRISPR746137_SGM 
(ThermoFisher 
Scientific)   

NRF2 GCGACGGAAAGAGTATGAGC TGG - A35510 
CRISPR746131_SGM 
(ThermoFisher 
Scientific) 

NRF2 GGAGTAGTTGGCAGATCCAC TGG + Hs.Cas9.NFE2L2.1.AE 
(IDT) 

HPRT1 GCAUUUCUCAGUCCUAAACA  + A35524 (Thermo 
Fisher Scientific) 

 

2.11.1  Genomic cleavage assay 

The GeneArt Genomic Detection Assay kit was used to assess genomic modification 

efficiency according to the manufacturer's instructions (ThermoFisher Scientific, 

catalog: A24372). Briefly, 48 h and 72 h post-transfection, the cells were washed with 

1X DPBS followed by the addition of 500 µL of trypsin per well. The cells were 

harvested by centrifugation at 1000g for 5 min, then lysed with 50 µL of cell lysis buffer 

with 2 µL of proteinase K. Upon treatment with proteinase K, the samples were placed 

in a thermocycler set to the following conditions: 15 min for 68 oC followed by 95oC for 

10 min. The cell lysate (3 µL) was then used for PCR amplification with AmpliTaq Gold 

360 master mix along with the addition of 1 µL of each of the forward and reverse 

primers (Table 2.6). The PCR program was set at 95 oC for 10 min for one cycle, then 

at 95 degrees for 30 s, 55 degrees for 30 s, and 72 degrees for 30 s for a total of 40 

cycles. The final extension was set at 72 oC for 7 min. The resulting PCR product (3 

µL) was added to 7 µL nucleotide-free water along with 2.5 µL of loading dye (New 

England Biolabs, catalog: B7025S) and visualized using a 2% agarose gel. The PCR 

product (1 µL) was mixed with 1 µL of 10X detection reaction buffer and 7 µL of water, 

and then subjected to denaturation and re-annealing on a thermocycler set to 95 

degrees for 5 min, 95-85 oC, -2 oC/s, followed by 85-25oC -0.1 degree/s. Finally, 1 µL of 

10x detection enzyme (T7 Endonuclease I) was added to each sample and incubated 

on a thermocycler at 37 oC for 1 h. The digested product was analyzed with a 2% 

agarose gel.  The summary of the CRISPR transfection and the GCD assay is shown 

in figure 2.4. 
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Figure 2.4 Schematic summary of how the CRISPR system is carried out in vitro. After the 

cells have been transfected with the Cas9 protein along with the gRNA, after 48-72 h, cells are 

lysed. DNA is amplified through PCR, and then a T7 Endonuclease I is added, which will cleave 

and INDEL generated by the editing. The DNA is then run on an agarose gel to identify the 

efficiency of the editing. Courtesy to ThermoFisher Scientific for providing the image.  

Table 2.6: Primer sequences used for the PCR reaction for Genomic Cleavage Detection 
Assay 

Gene  Forward 5' to 3' Reverse 5' to 3' 

NRF2 AGCACCCTCCAATCCTTCCT AAGAGCCAGCTGGGCAATAA 

NRF2 TGCCCTTTAGTGACCTCTACC TGTACCTGGGAGTAGTTGGC 

NRF2 GCTTGCCACACACAGTAACG TCAGTCAGCGACGGAAAGAG 

HPRT1 GAATATGTCCCAGATAGCAC GTTCTCAGTGGCCACCTGC 

 

2.11.2  Clone isolation 

Following 72 h post-transfection, transfected cells (with the Cas9 and gRNA RNP) were 

washed with 1XDPBS, 500 µL of trypsin added to each well of a 6 well-plate and 

incubated for 10-15 min at 37 oC in 5% CO2. Trypsin was neutralized with 1.5 ml of 

DMEM with 10% FBS and 100 µml-1 penicillin, and 100 µml-1 streptomycin. Cells were 

then centrifuged at 300g for 5 min. Following centrifugation, the cells were 

resuspended in DMEM with 10% FBS +pen/strep and diluted to a density of 8 cells ml-1 

through serial dilution using the Countess™. The diluted cell suspension (100 µL) was 

added to the interior wells of seven 96-well plates. The plates were incubated at 37 °C 

in 5% CO2. The media was changed every three days. Brightfield and phase contrast 

images were obtained on the AxioImager M2 fitted with a halogen light source, using 

5x, 10x, and 20x EC Plan-Neofluar objectives with an AxioCam 105 cMOS colour 

camera and operated by Zen 2 (Blue edition) software  (Carl Zeiss Ltd, Cambridge, 

UK). Images obtained were 2560 x 1920 with a 2.2 µm2 pixel size and 1:1 binning. 

Images were analysed and altered for brightness and contrast with FIJI free image 

analysis software (Schindelin et al., 2012) 
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2.12 NRF2 protein quantification 

Following 72h post-transfection, the supernatant from the transfected cells was 

removed, washed once with 1X DPBS, and then treated with 10 µM SF diluted in 

EMEM serum-free media. Following treatment for 16 hours, the culture supernatant 

was removed, washed twice with 1X DPBS (Gibco) and 200 µL of 1X cell lysis buffer 

(Cell Signalling Technologies, catalog: #9803S), containing a protease and 

phosphatase cocktail inhibitor (Cell Signalling Technologies, catalog: #5872S) and 

phenylmethylsulfonyl fluoride (PMSF), (Sigma-Aldrich, catalog: 93482-50ML-F) was 

added to each well and incubated for 5 min at 4°C. The wells were then scraped, cell 

debris removed, and placed into Eppendorf tubes. Tubes were vortexed briefly and 

kept on ice for 15 min, with vortexing every 5 min. After 15 min, 1 µL of benzonase 

nuclease (Sigma-Aldrich, catalog: E1014-25KU) was added to each tube. The cell 

extract was centrifuged at 14000g for 10 min at 4 °C. According to the manufacturer's 

instructions, the protein supernatant was removed and quantified using a bicinchoninic 

acid (BCA) assay (Sigma-Aldrich, catalog: BCA1-1KT).  

Briefly, known concentrations ranging from 0-1000 mgml-1 of bovine serum albumin 

(ThermoFisher Scientific, catalog: 23209) were compared to the protein samples, 

diluted 1:10 in Napi buffer (50 mM pH6 containing 5 mM of EDTA). After adding 200 µL 

BCA working reagent to 25 µL of protein samples to the 96-well plates (50:1 dilution 

between BCA and copper (II) sulfate solution), the samples were incubated for 30 

minutes at 37°C without CO2. The absorbance was measured at 562 nm using the 

Fluorostar Optima plate reader (BMG Labtech). Once quantified, the supernatant was 

stored at -20°C until the Western blot analysis. 

2.12.1  Gel electrophoresis 

Protein samples (30 µg) were heated at 70 °C for 10 min in 4x NuPAGE LDS sample 

buffer (Invitrogen, catalog: NP0007) and 10x NuPAGE sample reducing agent 

(Invitrogen, catalog: NP0009). Samples were centrifuged briefly to remove any air 

bubbles present before loading onto the gel. The samples (10 µL) were separated on a 

15 well, 10% NuPAGE Bis-Tris gels (Invitrogen, catalog: NP0301BOX) through a diluted 

MOPS SDS running buffer (20X) (Invitrogen, catalog: NP000102) with the presence of 

an antioxidant (Catalogue: NP0005) for 55 min at 200 V at room temperature, using the 

XCell SureLockTM Mini-Cell (Invitrogen, catalog: EI0001). 

2.12.2  Immunoblotting 
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Upon completion of the electrophoresis, the sponges, filter paper, and gel were soaked 

in diluted transfer buffer (Invitrogen, catalog: NP00061) containing 10% (v/v) methanol 

and antioxidant and assembled onto the XCell IITM Blot Module (Invitrogen, catalog: 

EI9014). The blot module was then placed in the XCell SureLockTM Mini-Cell 

Electrophoresis system, and the tank was filled with transfer buffer. Proteins were 

electrotransferred onto a polyvinylidene-difluoride (PVDF) membrane (Sigma-Aldrich, 

catalogue:10600016) for 3 h at 30 V.  

The transfer of proteins from the gel to the membrane was determined through ponceau 

S staining (Sigma-Aldrich, catalog: P7170-1L). The membrane was washed several 

times with Mili Q water to ensure the ponceau staining was removed, cut depending on 

the size of protein of interest, before being blocked with 5 % bovine serum albumin 

(Catalogue: A2153-50G Sigma-Aldrich) in 1XDPBS (Fisher Scientific, catalog: 

BR0014G) containing 0.1% Tween-20 (Fisher Scientific, catalog: BP337-100) (PBS-T) 

for 60 min at 25 °C. Membranes were then incubated with the primary antibody, NRF2 

(1:1000 CST Rabbit mAB #12721S) and β-actin (1:5000 CST Rabbit mAB #4970S) in 

blocking buffer for 16 h at 4 °C with gentle agitation. After incubation with primary 

antibody, the membranes were washed 3 times for 10 min, 5 min, and 5 min respectively 

with (PBS-T) and incubated with secondary antibody anti-rabbit IgG HRP-conjugated (1: 

5000 CST #7074P2) in blocking buffer for 90 min at 25°C with gentle agitation (Table 

2.7). Membranes were washed 3 times for 10 min, 5 min, and 5 min respectively with 

(PBS-T) and incubated with enhanced chemiluminescent detection reagent (BIO-RAD 

Laboratories Ltd, catalog: 1705061).  

 

Table 2.7: List of primary antibodies used for Western Blotting 

Protein Reference/Species Provider 

Anti-NRF2 D1Z9C mAb Rabbit Cell Signaling 
Technologies (CST 

Anti-β-
actin 

13E5 mAb Rabbit Cell Signaling 
Technologies (CST 

Anti-
Rabbit 
HRP 
Conjugate 

7074S  Cell Signaling 
Technologies (CST) 

 

2.13 Statistical analyses 

I used the Graph Pad Prism 9.2 software for all the statistical analysis, unless where 

otherwise stated. 

2.13.1  WST-1 Assay  
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Optical density (OD) values from the 450nm reading (corrected with data from 610nm) 

were used to determine the percentage of viable cells. For all treatments, the 

percentage viability was calculated against the untreated control cells. In experiments 

carried out with ranging doses of treatments, following the assumption of normality, 

one-way ANOVA was performed, followed by Tukey's multiple comparison tests. The 

results were represented as means ± SD.  

2.13.2  qRT-PCR  

In experiments carried out with ranging doses of treatments, if the data met the 

assumptions of normality, one-way ANOVA was performed, followed by Tukey's 

comparison tests. In the experiments carried out over a period with single-dose 

treatments, Student t-tests were performed for data that met assumptions of normality. 

Results were represented as means ± SD.  

2.13.3  Oil red O assay  

The obtained optical density (OD) values were corrected by subtracting the value found 

with isopropanol alone, and these raw data values were used for the analysis. In 

experiments carried out with ranging doses of treatments, following the assumption of 

normality, one-way ANOVA was performed, followed by Tukey's multiple comparison 

tests. The results were presented as means ± SD 

2.13.4  RNAseq 

Detailed analysis on how the RNAseq data were analyzed including how the raw reads 

were converted to gene counts and how the gene counts were then converted to the 

differentially expressed genes has been explained in chapters 4 and 6.  

2.13.5  Seahorse analysis 

Data files from Wave (the output of the Seahorse Analyzer) were exported to 

GraphPad Prism version 9.2. Each of the glucose levels was analyzed separately. 

Values of basal respiration and respirations following injection of oligomycin, FCCP, 

and rotenone were analyzed by doing a student t-test (DMSO vs SF) after the 

assumptions of normality were met. Results are represented as means ± SD.  

2.13.6  GC-MS analysis 

Deconvolution of mass spectra, peak picking, integration, retention time calibration, 

and mass isotopic distribution (MID) determination was performed using 



80 
 

MetaboliteDetector. Compounds were identified by retention time and mass spectrum 

with an in-house library. Settings for deconvolution and compound detection are shown 

in table 2.3. Intensities were normalized by the internal standard D6-Glutaric acid. MID 

of metabolites were then exported into an Excel spreadsheet. Values were then 

imported in GraphPad Prism.  Following the assumption of normality, statistical 

analysis was performed using a two-way ANOVA through Tukey multiple comparisons. 

To assess how SF treatment with respect to the control DMSO affected the various 

mass isotopomers (M0, M1, M2) in the two glucose environments, multiple testing was 

carried out and corrected using Benjamini-Hochberg.  The two factors included glucose 

concentrations (basal and high), and the treatments, DMSO and sulforaphane. Results 

are represented as means ± SD.  

 

 

2.13.7  LC-MS analysis  

Here, the data files were explored and analysed using the MassHunter Workstation 

software (Agilent). The peak areas of the analytes were determined and the peak area 

ratio (peak area of analyte/peak area of its companion internal standard) was used to 

determine the concentration of the analyte. Following the assumption of normality, 

statistical analysis was performed using a two-way ANOVA through Tukey multiple 

comparisons. The two factors included glucose concentrations (basal and high), and 

the treatments, DMSO and sulforaphane. Results are represented as means ± SD. 

2.13.8  Western blots 

Blot images obtained through the BioRad bioanalyzer were transported in Fiji and 

quantified (Schindelin et al., 2012). The quantified values were then transported to Excel, 

where the target protein was normalized to the housekeeping protein (β-actin). The 

results were presented as means ± SD. A Student t-test was performed to assess the 

effect of SF on NRF2 protein compared to the control DMSO.  

 

 

 

 
 
 
 
 



81 
 

 

 

 

 

 

 

CHAPTER 3: How does sulforaphane 

modulate hepatic metabolism? 
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Chapter 3 Figures 
 

Figure 3.1: The viability of HepG2 following treatment with SF for 24 h 

Figure 3.2: Effect of continuous 10 µM SF treatment on two NRF2 target genes in 

HepG2 

Figure 3.3: Effect of continuous 10 µM SF treatment on two metabolic genes in HepG2 

Figure 3.4: The viability of HepG2 following treatment with SF for 2 h 

Figure 3.5: Effect of 10 µM SF treatment on two NRF2 target genes in HepG2 following 

short SF exposure 

Figure 3.6: Effect of 10 µM SF treatment on two metabolic genes in HepG2 following 

short SF exposure. 

Figure 3.7: Lipid accumulation determined by Oil Red O Assay 

Figure 3.8: Assessing HepG2 energy production in the presence of Palmitate 

Figure 3.9: Sulforaphane pre-treatment but not co-treatment suppress, lipid 

accumulation following palmitate treatment determined through Oil Red O Assay 

Figure 3.10: Effect of lipid accumulation determined through microscopy  

Figure 3.11: Cell energy phenotype analysis comparing HepG2 cultured in basal 

glucose vs either a no-glucose or high-glucose environment 

Figure 3.12: Cell energy phenotype of HepG2 cells following treatment Sulforaphane 

for 24h treatment under basal and high glucose conditions 

Figure 3.13: Cell energy phenotype of HepG2 cells following Sulforaphane treatment 

for 2 and 4h treatment under basal and high glucose conditions 

Figure 3.14: Assessing three genes involved in the Pentose Phosphate Pathway in 

HepG2 treated continuously with 10 µM SF under high glucose 

Figure 3.15: Cell energy phenotype of HepG2 cells following Sulforaphane treatment 

for 24h under no glucose environment 

Figure 3.16: Cell energy phenotype of HepG2 cells following Sulforaphane treatment 

for 24h under with 10 mM Galactose 

Figure 3.17. Summary of the findings of this chapter, showing SF preliminary effects as 

a metabolic regulator 
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3.1 Introduction: 

As stated in the general introduction (see chapter 1), insulin resistance (IR) is a 

pathological condition, in which cells fail to respond to insulin. Over a prolonged period, 

IR can result in the development of a wide range of conditions such as type 2 diabetes 

and cardiovascular diseases, (Vazquez et al., 2007, Sung et al., 2012, McAuley and 

Mann, 2006).  

Central to IR is the dysregulation of glucose homeostasis as well as other metabolic 

processes in the liver.  

 

Due to being extensively studied and well characterized, the work conducted 

throughout the thesis has been carried out using a hepatocellular carcinoma cell line 

(HepG2) (Donato et al., 2015). HepG2 cell line was first derived in 1975, during “the 

lobectomy of a 15-year-old Argentinian Caucasian male with a well differentiated 

hepatocellular carcinoma”. HepG2 is widely used in tissue culture, as it behaves 

similarly to that of normal differentiated liver tissue. For example, HepG2 secretes 

major plasma proteins and is responsible for cholesterol and bile acid metabolism, lipid 

metabolism and transport, glycogen synthesis, and insulin signalling (Donato et al., 

2015). Confluent HepG2 monolayers have been shown to express normal levels of 

low-density lipoprotein (LDL) receptors and are known to internalize cholesterol-

containing chylomicrons (Javitt, 1990). They are also easy to handle and have a stable 

phenotype (Donato et al., 2015). In addition, HepG2 also display an epithelial, 

polarised morphology when grown in solid surface conditions and exhibit rudimentary 

bile cuniculi formations between adjacent cells in culture (Sormunen et al., 1993). 

Despite having similar levels of total lipoproteins and cholesterol to that of primary 

hepatocytes, HepG2 markers of lipoproteins do differ from those found in blood plasma 

under physiological conditions. For example, ApoB is the predominant apolipoprotein 

expressed in HepG2 instead of ApoA found in plasma (Dashti and Wolfbauer, 1987).  

 

Another crucial metabolic process regulated by the liver is glucose metabolism and 

insulin signalling. It has recently been identified that compared to primary hepatocytes, 

hepatoma cells, including HepG2, have higher basal phosphorylation of AKT and 

constitutively activate RAS-MAPK signalling. The hepatoma cells also showed a 

reduction in the phosphorylation of GSK by insulin, suggesting insensitive to the effects 

of insulin along with decreased glucose production (Nakajima et al., 2000, Molinaro et 

al., 2020). 

One of the main difficulties in studying insulin resistance and diabetes using HepG2 is 

the choice of substrate used to induce IR. For example, some studies stimulate HepG2 
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with high glucose levels, whilst others involve the addition of the fatty acid palmitate. 

Palmitate has become an established method to induce hepatic insulin resistance. 

Several studies have reported that palmitate treatment inhibits insulin signalling, and 

the fatty acid results in the ubiquitination and the degradation of several key insulin 

signalling molecules simultaneously, promoting insulin resistance (Ishii et al., 2015).  

Lee and colleagues showed that palmitate induced insulin resistance through the 

activation of specific kinases within the insulin signaling cascade but did not 

accumulate triglycerides within HepG2 (Lee et al., 2010). Another study showed that 

palmitate treatment also leads to suppression of several subunits of the respiratory 

chain, leading to increased oxidative stress resulting in the oxidative damage of 

mitochondrial DNA (García-Ruiz et al., 2015).  

 

Besides the above insulin resistance can be induced by culturing HepG2 under supra-

physiological concentrations of glucose. Although mitochondrial function remained 

intact, culturing HepG2 under high glucose results in increased lipid accumulation 

along with a subsequent increase in markers of non-alcoholic fatty liver. (Su et al., 

2019). Further, Chandrasekaran and colleagues reported that exposure to HepG2 in 50 

mM glucose resulted in increased ROS as well as lipid peroxidation, protein carbonyl, 

and 3-nitryrosin adduct formation (Chandrasekaran et al., 2010).  The consensus 

seems to allude that whether high glucose or palmitate are added, both substrates lead 

to increased oxidative stress, and several studies have reported that oxidative stress is 

a potential mechanism resulting in IR (Hurrle and Hsu, 2017).  

 

Since its discovery, SF has yielded promising results. Specifically,  it has induced anti-

inflammatory effects in a wide range of in vitro and animal models (Juge et al., 2007) 

and has recently been linked as a metabolic regulator (Hayes and Dinkova-Kostova, 

2014). A notably interesting finding arising from several human studies is that the 

pharmacokinetics of sulforaphane indicate that it is secreted from the body within a few 

hours, but its effect in terms of reducing oxidative stress lasts for a long time (Gasper et 

al., 2005). This suggests that short stimulation of the NRF2 pathway is sufficient to 

cause long-term gene expression changes. At present, in vitro studies in hepatocytes 

showing the effect of SF in modulating metabolism are still not clear. Moreover, we do 

not know how intermittent activation of NRF2 through either cruciferous vegetable 

intake or NRF2 modulating drugs can offer long term protection from radical damage. 

Only one study has assessed the intermittent activation of NRF2 using astrocytes cells 

(Bergstrom et al., 2011).   

To address these gaps in our knowledge, this chapter aimed to use an in vitro model of 

liver metabolic dysregulation (potentially insulin resistance) to understand how 
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physiological levels of SF impact hepatic metabolism. This was tested through the 

following objectives 

 

1. To identify NRF2 induction following SF treatment by measuring two direct targets 

of NRF2: HMOX1 and NQO1 using quantitative real-time PCR. 

2.  To identify how SF affects lipid metabolism, assessed through Oil Red O after 

stimulating HepG2 with palmitate and monitoring two genes involved in lipid 

metabolism.  

3. To determine how SF affects mitochondrial and non-mitochondrial respiration using 

the Seahorse BioScience Flux Analyzer after HepG2 challenged with differing 

concentrations of glucose to represent metabolic dysregulation.   

 

The hypothesis driving the research presented in this chapter was that SF could 

attenuate lipid accumulation and improve mitochondrial function.  

 

3.2 Results: 

3.2.1 SF induces the antioxidant response and metabolic genes involved 

in metabolism 

  

Physiological concentrations of SF in the liver (the concentration that would be 

expected to be found circulating in the body following the consumption of cruciferous 

vegetables such as broccoli) have been suggested to range from 2 up to 10 µM. I, 

therefore, used a 10 µM concentration of SF for my work. To ensure that the 

concentration of sulforaphane was not cytotoxic, the first experiment that was carried 

out was cell viability, through the cell proliferation WST-1 assay. Although WST-1 is 

referred to as a cell proliferation assay, it measures the activity of Complex II, succinate 

dehydrogenase, (an enzyme in the respiratory chain), therefore resulting in more of a 

metabolic assay. By progressively increasing the concentration of SF, cells become 

less viable decreasing Complex II activity. Most importantly, figure 3.1 shows that no 

significant reduction was seen in cell viability compared to the control with 

concentrations of 10 μM, indicating it was safe to use. 
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Figure 3.1. The viability of HepG2 following treatment with SF for 24 h. The viability of 

HepG2 exposed to various concentrations of SF was measured through WST1 assay using 

absorbance (450 nm) as a relative measure of metabolic activity. All values are expressed as 

mean ± SD from six independent wells, (technical replicates, although the experiment was 

repeated three times and this representative of other experiments). Statistical analysis was 

performed through a One-Way ANOVA, following a Tukey post-hoc comparing the 

concentrations to the control. Control vs 25 μM SF p<0.0001, control vs 50 μM SF p<0.0001, 

control vs 75 μM SF p<0.0001, control vs 100 μM SF p<0.0001, and control vs 200 μM SF 

p<0.0001. 

 

To understand NRF2 activation in HepG2, the kinetics of two well established direct 

targets of NRF2, known to have an ARE sequence HMOX1 and NQO1 and shown to 

play an important role in upregulating the antioxidant response were investigated. 

Additionally, to assess whether SF affects genes involved in metabolism, two additional 

genes were also measured: CPT1a and FASN. CPT1a is involved in the beta-oxidation 

of long chain fatty acids, by adding carnitine to long chain fatty acids, so that they can 

diffuse from the cytoplasm into the mitochondrial matrix. FASN is involved in the de 

novo synthesis of saturated fatty acids. Following continuous treatment of physiological 

concentrations 10 µM SF RNA was extracted from HepG2 at the following time points: 

2,4,6 and 24 h, representing acute and long-term exposure.  

 

Following treatment, the antioxidant response gene HMOX1 was immediately induced. 

mRNA levels of HMOX1 increased by 3-fold after 2 h (95% CI, 1.162 to 2.346, p= 

0.0012), reaching a 9-fold increase after 6 h (95% CI, 0.589 to 1.463 p= 0.0095) and 
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returning to basal levels after 24 h (figure 3.2 a). NQO1 on the other hand responded 

slower to SF. After 6 h mRNA increased by 1.5-fold (95% CI -0.4450 to -0.2550, 

p=0.0005), but a large increase was observed after 24 h, almost a 3-fold increase (95% 

CI, -2.619 to -2.1 p< 0.0001 (figure 3.2 b).  

 

 

 

Figure 3.2. Effect of continuous 10 µM SF treatment on two NRF2 target genes in HepG2. 

A) HMOX1 and B) NQO1. Cells were cultured in basal glucose (5 mM) and RNA was extracted 

at 2, 4, 6, and 24 h time points before gene expression was assayed by qRT-PCR. Samples 

were normalized to the Housekeeping control beta-actin and mRNA fold change was 

determined by dividing each normalized treatment by the average of the normalized control. All 

values are expressed as mean ± SD from three biological replicates. Statistical analysis was 

determined by a t-test between treatment compared to its respective control, (* = p < 0.05, *** = 

p < 0.001, **** = p < 0.0001). 

 

Interestingly, the induction of the metabolic genes following SF treatment was only 

observed after 24 h. The activity of FASN after 24 h of continuous 10 µM SF treatment 

led to a 50% decrease in activity (95% CI -0.6528 to -0.2901, p= 0.002), along with a 

2.5-fold increase in CPT1a activity (95% CI 1.427 to 1.923, p< 0.0001) (figure 3.3 a 

and b). 

 
 

A) B) 
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Figure 3.3.Effect of continuous 10 µM SF treatment on two metabolic genes in HepG2. A) 

CPT1a and B) FASN. Cells were cultured in basal glucose (5 mM), and RNA was extracted at 2, 

4, 6, and 24 h time points before gene expression was assayed by qRT-PCR. Samples were 

normalized to the Housekeeping control beta-actin, and mRNA fold change was determined by 

dividing each normalized treatment by the average of the normalized control. All values are 

expressed as mean ± SD from three biological replicates. Statistical analysis was determined by 

a t-test between treatment compared to its respective control, (* = p < 0.05, *** = p < 0.001, **** 

= p < 0.0001). 

 

To better understand whether a brief exposure of SF was similar to the short exposure 

that tissues are exposed to following consumption of a meal rich in broccoli can lead to 

prolonged changes in gene expression, HepG2 cells were treated with 2.5, 10, and 25 

µM SF. The higher concentration of SF was used to potentially understand what effects 

consuming broccoli with a higher dose of glucoraphanin (such as that found in 

Beneforte) could have on human health (Traka et al., 2013). Firstly, a second cell 

viability was carried out to make sure that the 25 µM SF was not cytotoxic. The results 

revealed that up to 100 µM SF for 2 h did not affect the viability of HepG2, (figure 3.4).  

 

A) B) 
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Figure 3.4. The viability of HepG2 following treatment with SF for 2 h. The viability of 

HepG2 exposed to various concentrations of SF was measured through WST1 assay using 

absorbance (450 nm) as a relative measure of metabolic activity. All values are expressed as 

mean ± SD from six independent wells (technical replicates, although the experiment was 

repeated three times and this representative of other experiments). Statistical analysis was 

performed through a One-Way ANOVA, following a Tukey post-hoc comparing the 

concentrations to the control. Control vs 200 µM SF p<0.0001, control vs 300 µM SF 

p<0.0001, control vs 400 µM SF p<0.0001, control vs 500 µM SF p<0.0001, and control vs 

700 µM SF p<0.0001.  

The results obtained from the brief SF exposure experiment (figures 3.5 and 3.6) 

resemble those shown in figures 3.2 and 3.3. After 2 h of sulforaphane treatment, 

mRNA levels of HMOX1 rose, to just under 2-fold for 2.5 µM (95% CI -1.097 to -0.3120, 

p=0.0022), 2-fold for 10 µM (95% CI -1.500 to -0.7152, p=0.001), and 2.8-fold for 25 

µM concentrations (95% CI -2.224 to -1.439, p<0.0001). mRNA levels of HMOX1 

following exposure of the small dose of SF remained active only 2 h post SF washout 

(95% CI -1.271 to -0.2776, p=0.006) (figure 3.5 a).                                                                                                                                                           

For the 10 µM SF dose, mRNA levels of HMOX1 peaked at 4 h post treatment resulting 

in a 3.5-fold increase (95% CI -2.898 to -1.134, p=0.0005). The higher dose, on the 

other hand, HMOX1 mRNA peaked at 6 h post treatment, resulting in a 6-fold increase 

in HMOX1 mRNA (95% CI -6.934 to -5.171p <0.0001). Despite the higher SF dose, 

after 24 h, the results showed HMOX1 mRNA levels returned to baseline (figure 3.5 a).  

NQO1 gene expression also followed a similar trend as HMOX1, with the greatest 

effect being seen at 25 µM dose. The addition of 2.5 µM SF after 2 h resulted in a slight 

increase in NQO1 (95% -0.4654 to -0.001912, p=0.048) and remained high 2 h after 
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the removal of SF from the media (95% -0.8626 to -0.09510, p=0.017) (figure 3.5 b). 

The 10 µM dose only began to induce the mRNA of NQO1 after 4 h, resulting in a 2-

fold increase (95% CI -1.156 to -0.3884, p=0.0011), whereas the high dose of SF 

resulted immediately in a 1.5-fold increase in the mRNA of NQO1(95% CI -0.7061 to -

0.2427, p=0.001) (figure 3.5 b). mRNA of NQO1 appeared to continue to accumulate 

even at 24h, and the biggest effect was seen with 25 µM resulting in nearly a 3-fold 

increase (95% CI -2.540 to -1.407, p <0.0001), while 10 µM resulted in a 1.8-fold 

increase (95% CI -1.591 to -0.3242, p=0.0077) (figure 3.5 b).  

 

 
 

Figure 3.5 Effect of 10 µM SF treatment on two NRF2 target genes in HepG2 following 

short SF exposure. A) HMOX1 and B) NQO1. Cells were cultured in basal glucose (5 mM) and 

treated with 2.5,10 and 25 µM SF for 2 h only. RNA was extracted at 2, 4, 6, 8, and 24 h time 

points before gene expression was assayed by qRT-PCR. Samples were normalized to the 

Housekeeping control beta-actin and mRNA fold change was determined by dividing each 

normalized treatment by the average of the normalized control. All values are expressed as 

mean ± SD from three biological replicates. Statistical analysis was determined by a One Way 

ANOVA between control and treatments followed by Tukey post hoc (* = p < 0.05, *** = p < 

0.001, **** = p < 0.0001).  

 

Levels of CPT1a and FASN were also assessed. Interestingly, 2.5 µM did not affect the 

mRNA of CPT1A. SF treatment 25 µM after 2 h instantly led to a slight increase 

resulting in a 1.3-fold change in the mRNA of CPT1a (95% CI -0.4847 to -0.04481, 

p=0.02) (figure 3.6 a). At this dose, mRNA continued to increase up to 10h, followed 

by a slight decrease, but still resulted in a 2-fold increase after 24 h (95% CI -1.399 to -

0.7054, p<0.0001) (figure 3.6 a). In contrast, 10 µM dose only began having an effect 

after 6h post SF treatment, resulting in a 1.5-fold increase (95% CI -0.9583 to -0.2952, 

p=0.0016) and after 24h, the levels returned almost to baseline (95% CI -0.7321 to -

0.03879, p=0.03), (figure 3.6 a). For FASN, progressive doses of SF did lead to a 

A) B) 
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decrease in mRNA but failed to reach statistical significance (figure 3.6 b). Significant 

downregulation of the mRNA of FASN was observed at a much higher SF dose of 50 

and 75 µM. However, these results were not included as high levels of SF in the human 

plasma are unlikely. 

 

 

 

Figure 3.6. Effect of 10 µM SF treatment on two metabolic genes in HepG2 following short 

SF exposure. A) CPT1a and B) FASN. Cells were cultured in basal glucose (5 mM) and treated 

with 2.5,10 and 25 µM SF for 2 h only.  RNA was extracted at 2, 4, 6, 8, and 24 h time points 

before gene expression were assayed by qRT-PCR. Samples were normalized to the 

Housekeeping control beta-actin, and mRNA fold change was determined by dividing each 

normalized treatment by the average of the normalized control. All values are expressed as 

mean ± SD from three biological replicates. Statistical analysis was determined by a One Way 

ANOVA between control and treatments followed by Tukey post hoc (* = p < 0.05, *** = p < 

0.001, **** = p < 0.0001). 
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3.2.2 SF attenuates lipid accumulation in an in vitro model of NAFLD 

In light of these in vitro findings, suggesting that physiological concentration of SF 

appeared to have a substantial effect in modulating genes involved in fatty acid 

metabolism, the next question that I asked was whether SF could mitigate the 

consequences following the consumption of a high fat meal. This was established by 

treating HepG2 cells with the saturated fatty acid palmitate (PA). PA was used since it 

is the most abundant saturated fatty acid (Carta et al., 2017). Exposure of PA to 

HepG2, therefore challenging hepatocytes with lipids, has been shown to represent an 

in vitro model of NAFLD. 

Lipid accumulation was assessed through an Oil Red O Assay. Oil Red O is a fat-

soluble dye that can bind onto lipids so that the absorbance can thus be quantified. 

Due to the presence of lipids in the serum (FBS), HepG2 cells were starved for 24 h. 

Following starvation, cells were treated with 0.2 mM PA for 24 h. PA treatment led to a 

significant increase in lipid accumulation (figure 3.7).  

 

Figure 3.7. Lipid accumulation determined by Oil Red O Assay. HepG2 were cultured in 

EMEM, basal glucose media with 0.2 mM palmitate for 24 h. Following 24 h, lipid accumulation 

was measured at an absorbance of 492 nM.  All values are expressed as mean ± SD from three 

biological replicates. Statistical analysis was performed through a t-test comparing the treatment 

to the control, BSA vs PA, p<0.0001.  

The Seahorse Analyser was then used to assess how lipid accumulation could affect 

mitochondrial bioenergetics by measuring the Oxygen Consumption rate through the 

Mito Stress Test. Treatment of PA showed that increased accumulation of lipids on 

HepG2 suppressed mitochondrial activity, forcing the cells to become more glycolytic 

(figure 3.8). 
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Figure 3.8. Assessing HepG2 energy production in the presence of Palmitate. HepG2 

were cultured in EMEM basal glucose media with 0.2 mM Palmitate for 24 h. A) Mitochondrial 

and B) non-mitochondrial respiration was measured in the form of oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR), respectively. Experimental wells are shown in 

red, and controls are depicted in blue. All values are expressed as mean ± SEM from three 

biological replicates.  

It was then determined whether SF could mitigate the effects induced by palmitate. Co-

treatment of 10µM SF and PA for 24 h had no effect in reducing lipid accumulation, on 

the contrary, resulting instead an even further slight increase in the intracellular 

concentration of lipids (figure 3.9 a and figure 3.10 d). Interestingly, however, in a 

separate experiment, where HepG2 cells were pre-treated with 10 µM SF for 24 h, 

followed by PA treatment for 24h, the barplot of the SF treatment and palmitate group 

resembled that of SF treatment samples only, thereby showing that SF was able 

attenuated lipid accumulation shown in (figure 3.9 b). 
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Figure 3.9. Sulforaphane pre-treatment but not co-treatment suppress lipid accumulation 

following palmitate treatment determined through Oil Red O Assay. A) HepG2 were 

cultured in EMEM, basal glucose media with 0.2 mM palmitate, 10 µM SF only or 10 µM SF and 

0.2 mM PA combined for 24 h. B) HepG2 were cultured in EMEM, basal glucose media with 0.2 

mM palmitate, 10 µM SF only, or cells were pre-treated with 10 µM SF for 24h. After 24h, SF 

was removed, and then 0.2 mM PA was added for a subsequent 24h. Lipid accumulation was 

measured at an absorbance of 492 nM.  All values are expressed as mean ± SD from three 

biological replicates. Statistical analysis was performed through a One way ANOVA followed by 

Tukey post. A) BSA vs PA p<0.0001, PA vs SF p<0.0001, and PA vs SF+PA p=0.035. B) PA 

vs SF+PA p<0.0001.  

 

 

 

 

 

 

 

 

 

 

A B 

 



95 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control BSA-DMSO 

 

 

0.2 mM PA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 µM SF  

10µm  

10µm  10µm  

10µm  

A) 

B) 

C) 

10µm  

10µm  



96 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Effect of lipid accumulation determined through microscopy. A) HepG2 were 

cultured in EMEM, basal glucose media BSA-PA, the control. B) HepG2 were cultured with 0.2 

mM Palmitate. C) HepG2 were cultured with 10 µM SF only. D) HepG2 were cultured with 10 

µM SF and 0.2 mM PA combined for 24 h. Scale bar 10 µm. 

 

3.2.3 SF redirects metabolism under different glucose environments  

Having assessed how palmitate treatment to HepG2 can lead to mitochondria 

impairment, the subsequent analysis involved assessing how HepG2 challenged with 

various glucose concentrations would impact mitochondrial function.  In this assay, 

HepG2, after being cultured in normal basal glucose media on the day of the treatment, 

media was switched composing of: no glucose, to mimic a state of starvation (no 

glucose); basal, to represent a healthy liver (basal glucose); or, excessive amounts of 

glucose (high glucose) to represent a state of hyperglycemia, and therefore mimic a 

state of metabolic syndrome and pre-diabetes. All of the assays were conducted 

without the presence of serum. The results are shown in figure 3.11.  
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Figure 3.11. Cell energy phenotype analysis comparing HepG2 cultured in basal glucose 

vs either a no-glucose or high-glucose environment. Cells were treated with either (A) no 

glucose (blue 0 mM) vs basal-glucose (red 5.5 mM) or (B) basal glucose (red 5.5 mM) vs high-

glucose (blue 25 mM) for 24 h. Mitochondrial and non-mitochondrial respiration were measured 

in the form of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). 

Experimental wells are shown in red, and controls are depicted in blue. All values are expressed 

as mean ± SEM from three biological replicates. For this assay, samples were not normalized to 

protein. 

Cell energy phenotyping using the Seahorse XFp Mito stress assay, figure 3.11a 

revealed that under glucose starvation, compared to basal glucose, the lack of glucose 

results in suppression of both the oxygen consumption rate (OCR) and extracellular 

No vs Basal Glucose 

Basal vs High Glucose 

A) 

B) 
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acidification rate (ECAR), an indirect measurement of glycolysis, potentially implying 

the inability of cancer cells to produce energy under glucose deprivation. In contrast, 

when mitochondrial and non-mitochondrial metabolism was assessed in HepG2 

cultured with basal compared to high glucose levels, whilst excessive glucose 

concentrations result in a decrease in OCR, an increase in ECAR was observed 

(figure 3.11b). The results suggest that under excess glucose, HepG2, due to its 

cancer phenotype, rewire their metabolism to produce energy mainly through glycolysis 

(the Warburg effect).  

Next, the effect of physiological concentrations of SF on mitochondria activity in these 

two glucose environments was assessed. When HepG2 was exposed to SF for 24 h in 

basal glucose environments, SF compared to the DMSO control did not affect the 

mitochondrial activity of the cells (figure 3.12a). In contrast, in the presence of a high 

glucose environment, SF treatment after 24 h compared to the DMSO control resulted 

in an overall reduction in both mitochondria and non-mitochondrial (glycolysis) 

metabolism (figure 3.12b).  
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Figure 3.12. Cell energy phenotype of HepG2 cells following Sulforaphane treatment for 

24 h under basal and high glucose conditions. HepG2 was cultured in A) DMEM basal 

glucose 5.5 mM media with 10 µM SF for 24 h or B) DMEM High Glucose media 25 mM with 10 

µM SF for 24 h. Mitochondrial and non-mitochondrial respiration were measured using oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR), respectively. Experimental 

wells are shown in red, and controls are depicted in blue. All values are expressed as mean ± 

SEM from three biological replicates. 
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To assess whether the overall reduction in mitochondrial activity occurs immediately 

following SF exposure or only after following a long incubation period, the experiment 

was repeated using a 2 h and 4 h treatment (figure 3.13 a and b). Both experiments 

showed that early point, SF also reduces both mitochondrial and non-mitochondrial 

respiration compared to the DMSO control. 

 

 

 

 

 

 

 

Figure 3.13. Cell energy phenotype of HepG2 cells following Sulforaphane treatment for 2 

and 4 h under basal and high glucose conditions. HepG2 were cultured in A) DMEM high 

glucose 25 mM media with 10 µM SF for 2 h or B) DMEM high glucose media 25 mM with 10 

µM SF for 4 h. Mitochondrial and non-mitochondrial respiration were measured using oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR), respectively. Experimental 

A) High Glucose (25 mM)-2H 

B) High Glucose (25 mM)-4H 

A) 

B) 
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wells are shown in red, and controls are depicted in blue. All values are expressed as mean ± 

SEM from three biological replicates. 

 

As previous studies have shown that constituent NRF2 activation results in glucose 

and glutamine being redirected towards the PPP, for anabolic programming (Mitsuishi 

et al., 2012), I hypothesized that the reduction in OCR (figure 3.12 b) observed by SF 

is due to the glucose being redirected towards the PPP. The expression of three key 

genes in the PPP through qRT-PCR was assessed to test the hypothesis. RNA was 

extracted from HepG2 cultured in 25 mM glucose following 24 h of continuous SF 

treatment. SF significantly upregulated G6PD, PGD, and TKT, shown in figure 3.14. 

These three genes were chosen as they have all been shown to have an ARE 

sequence and therefore are known to be direct targets of NRF2.  
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Figure 3.14. Assessing three genes involved in the Pentose Phosphate Pathway in 

HepG2 treated continuously with 10 µM SF under high glucose. HepG2 were cultured in 

high glucose (25 mM) from three biological replicates, and RNA was extracted at a 24 h time 

point before gene expression was assayed by qRT-PCR. Samples were normalized to the 

Housekeeping control beta-actin. All values are expressed as mean ± SD from three 

independent wells. A t-test between control and treatment determined statistical analysis. A) 

G6PD: (95% CI 0.3437 to 0.493, P<0.0001), B) PGD: (95% CI 0.7315 to 1.327, P=0.0007), and 

C) TKT: (95% CI 0.2323 to 0.4495, P< 0.0010).  

 

 

A)  
B)  

C)  



103 
 

Given that HepG2 is a carcinoma cell line, despite having a functional mitochondrion, 

cancer cells tend to rewire their metabolism and produce a large proportion of energy 

through glycolysis, a phenomenon known as the Warburg effect. It was, therefore, 

asked what would happen when HepG2 was challenged with either the presence of no 

glucose or galactose, a monosaccharide that is, however, not metabolized through 

glycolysis. In a no glucose environment, the two major metabolites used by the cells as 

an energy sources are pyruvate and the amino acid glutamine. Pyruvate enters the 

TCA cycle immediately; glutamine, on the other hand, can instead enter the TCA cycle 

through a two-step process known as glutaminolysis. Firstly, glutamine is lysed to form 

glutamate by glutaminase. Glutamate is then converted to α-ketoglutarate by glutamate 

dehydrogenase. Continuous physiological treatments of SF for 24 h in a no glucose 

environment resulted in a reduction in maximal respiration along with a reduction in 

non-mitochondrial respiration (figure 3.15 a and b).  

 

 

 

 

Figure 3.15. Cell energy phenotype of HepG2 cells following Sulforaphane treatment for 

24h under no glucose environment. HepG2 were cultured in DMEM no glucose media, 4 mM 

glutamine with 10 µM SF for 24 h. Mitochondrial and non-mitochondrial respiration were 

measured in the form of A) oxygen consumption rate (OCR) and B) extracellular acidification 

rate (ECAR), respectively. Experimental wells are shown in red, and controls are depicted in 

blue. All values are expressed as mean ± SEM from three biological replicates. 

Galactose was chosen as a substrate since the oxidation of galactose to pyruvate 

through glycolysis produces no ATP (Marroquin et al., 2007). When glucose in the 

media is replaced with galactose and glutamine, cells oxidise pyruvate via oxidative 

phosphorylation to survive. Figure 3.16 shows, as expected, that in the presence of 

galactose (rather than glucose), SF does not affect glycolysis. However, in the 

No Glucose (0 mM) 

A)  B)  
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presence of galactose, SF reduces maximal mitochondrial respiration (figure 3.16 a). 

The results may imply that this reduction may be due to either SF affecting TCA genes 

or affecting other entry points in the TCA cycle. 

 

 

 

Figure 3.16. Cell energy phenotype of HepG2 cells following Sulforaphane treatment for 

24 h under 10 mM Galactose. HepG2 were cultured in DMEM No glucose media, 

supplemented with 10 mM Galactose and 4 mM Glutamine with 10 µM SF for 24 h. 

Mitochondrial and non-mitochondrial respiration were measured in the form of A) oxygen 

consumption rate (OCR) and B) extracellular acidification rate (ECAR), respectively. 

Experimental wells are shown in red, and controls are depicted in blue All values are expressed 

as mean ± SEM from three biological replicates.  
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3.4 Discussion: 
 

One of the main aims of this chapter was to establish a cell culture model of liver 

dysregulation to assess how SF impacts hepatic metabolism. This was achieved by 

exposing HepG2 cells to a wide range of substrates in the presence of sulforaphane. 

To date, only a few in vitro studies have shown how physiological concentrations of SF 

may modulate hepatic metabolism. This chapter is the first that looked at the effect of 

SF on metabolic regulation using a combination of transcriptional, analytical, and live 

mitochondrial phenotyping methods, along with providing insights on the timing and 

duration of treatments and the interaction with fatty acids and glucose metabolism.  

3.4.1 SF effects on the antioxidant response and metabolic genes: 

The gene expression time course kinetics identified that SF induced the expression of 

both the antioxidant response genes HMOX1 and NQO1 and two metabolic genes, 

CPT1a and FASN. For HMOX1, an immediate induction was observed; however, this 

began to drop after 6 h, returning to basal at 24 h. NQO1, on the other hand, only 

began to be induced at 4 h and reached 2.5-fold after 24 h SF treatment. The transient 

SF treatment showed similar findings. My results agree with that reported by  

(Bergstrom et al., 2011). In his study, Bergstrom exposed 15 µM SF to astrocytes and 

monitored both the mRNA and protein levels of two key NRF2 target genes: HMOX1 

and NQO1. Firstly, the group showed that continuous treatment of 15 µM SF at early 

time points resulted in a large increase in the mRNA of HMOX1 and following 24 h 

returned to baseline. NQO1, on the other hand, at early time points was not induced, 

but a large increase was observed after 24 h. Similarly, the same trend was observed 

when astrocytes were transiently exposed to SF. The protein levels of these two genes 

also followed a similar pattern, despite the effect not being so profound. Another critical 

finding carried out in his work was when astrocytes were repeatedly stimulated daily 

with SF for a short time; although SF did not affect HMOX1, it did result in a persistent 

accumulation of both mRNA and protein levels of NQO1. The outcome was continuous 

cell protection against oxidative damage (Bergstrom et al., 2011). Nevertheless, it can 

be argued that 15 µM SF may not represent physiological concentrations of SF for 

astrocytes and instead may be quite a high dose, thereby not representing a realistic 

model.  

Work from this chapter, builds on the findings of Bergstrom and colleagues by 

identifying SF regulating the activity of both CPT1a and FASN. One of the interesting 

findings from this work is that the induction of the metabolic genes CPT1A and FASN 

occurs at a late time point, thereby suggesting that either NRF2 may be activating an 
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intermediate protein that regulates the activity of these genes, or SF may simply be 

inducing other genes and/or transcription factors. However, it was surprising to see that 

a short high dose of SF (2 h at 25 µM SF) was already able to induce the mRNA of 

CPT1a, potentially implying that NRF2 may regulate the activity of CPT1a. Although in 

a real-life scenario obtaining such a high dose of SF would be difficult, it does, 

nevertheless, raise the question of whether regular intake of broccoli may indeed 

mitigate the effects of the high fat meal. Future work should also repeat the daily SF 

treatment such as the one conducted in the study to assess the levels of both CPT1a 

and FASN, to explore whether over prolonged periods SF can improve hepatic 

metabolism in individuals suffering from insulin resistance or type 2 diabetes. An 

additional limitation worth highlighting was that the current work conducted only 

assessed the mRNA but not the protein levels of these four genes. Protein levels of 

CPT1a and FASN should have also been assessed to check whether mRNA was 

indeed translated to the protein as opposed to being sent for ubiquitination.  

3.4.2 SF effect on fatty acid metabolism: 

Although the work in this chapter, assessing SF impact on fatty acid metabolism, is not 

novel, the data generated still provides new insights into the role of SF in regulating 

lipid metabolism. In this chapter, an in vitro model of NAFLD was utilised through 

palmitate treatment. The Oil Red O work that was conducted showed that although co-

treatment of sulforaphane and palmitate had no effect in preventing lipid accumulation, 

SF pre-treatment followed by palmitate was instead able to mitigate the effects of the 

fatty acids. Therefore, it could be hypothesized that CPT1a upregulation followed by SF 

treatment allowed the mobilization of the fatty acid to the mitochondria for β-oxidation, 

rather than instead accumulating on the liver, which could lead to cirrhosis of the liver. 

The basis of this work originates from the research conducted by (Nagata et al., 2017, 

Axelsson et al., 2017), where the study showed that mice and rats challenged a high 

fat diet along with glucoraphanin and SF supplementation, ameliorated insulin 

resistance, and markers of fatty liver.  

The major limitation of this work was that the cells were exposed to a single fatty acid; 

although palmitate is the most abundant saturated fatty acid, it does not mimic a high 

fat meal. Therefore, the assay should have been repeated using a combination of fatty 

acids such as palmitate, oleic acid (monosaturated fatty acid), and α-linoleic acid 

(polyunsaturated fatty acid). The Seahorse data (figure 3.8) revealed that treatment of 

palmitate suppressed mitochondrial respiration. Other studies have shown a similar 

finding. For example, one study showed that HepG2 treated with palmitate results in 

the suppression of the activity of several protein complexes of the respiratory chain, 
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along with increased production of reactive oxygen species (ROS) (García-Ruiz et al., 

2015). A second study identified that co-treatment of palmitate along with high glucose 

also results in a 25-40% reduction of Complex IV along with a reduction inhibition of 

Complex V (Alnahdi et al., 2019). The most recent study determined that palmitate 

treatment on both HepG2 and primary rat hepatocytes resulted in increased necrosis 

and cell death. This effect was suppressed though by, the anti-diabetic drug metformin 

as well as resulting in a reduction in the number of ROS induced, through increased 

superoxide dismutase activity. Seahorse data from the study also revealed that 

palmitate and metformin co-treatment resulted in an overall reduction in mitochondrial 

respiration (Geng et al., 2020). Whilst in this chapter seahorse analysis of SF and 

palmitate should have also been carried out, nevertheless, the results obtained by 

Geng and colleagues are similar to the data of the overall reduction of mitochondrial 

respiration induced by sulforaphane, following exposure to high glucose. This further 

highlights the potential of simple lifestyle changes, for example, increasing the number 

of vegetables in the diet such as broccoli, to mitigate the effects of a high fat meal. The 

results also raise the possibility that these phytochemicals may provide similar benefits 

as the drug metformin, challenging the current health care system that general 

practitioners should perhaps consider start prescribing lifestyle changes and not just 

medication (Jarbøl et al., 2017).  

Tian and colleagues also showed that SF treatment to an immortalized human liver cell 

line HHL5 in the presence of the fatty acids (oleic and palmitic acid) improved lipid 

metabolism. The group went further by identifying a mechanism through which SF 

impacts lipid metabolism via two separate ways: endoplasmic reticulum (ER) stress-

dependent and independent manners (Tian et al., 2018).  More specifically, the group 

found that SF could inhibit both the protein and mRNA level of the transcription factor 

SREBF1 by blocking the expression of eukaryotic translation initiation factor 2-alpha 

kinase 3 (PERK). SF also decreased ER stress by attenuating the expression of X-box 

binding protein 1 (XBP1) (Tian et al., 2018). In the second study, the group showed 

that fatty acid treatment (2:1 mixture of oleic and palmitic acid) led to a decrease in 

UCP2, whilst SF pre-treatment reversed that effect. SF also increased the expression 

of two genes involved in hepatic lipid metabolism: hormone sensitive lipase (HSL) and 

adipose triglyceride lipase (ATGL), both involved in inducing lipolysis (Lei et al., 2019). 

In both studies two different concentrations of SF were utilized: 10 and 20 µM, 

potentially representing physiological concentrations.  

A separate study by Teng et al also demonstrated an additional mechanism through 

which SF could mitigate the effects induced by palmitate. Teng and his team showed 

that SF regulated the functions of two proteins involved in glucose uptake: the insulin 
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receptor substrate 1 (IRS-1) and protein kinase B (Kamal et al., 2020), both involved in 

the insulin signaling pathway in a dose-dependent manner (Teng et al., 2019).  The 

overall findings from the study identified SF downregulating the transcription factor 

regulating genes related to ceramide biosynthesis and in doing so ameliorating the 

onset of metabolic syndrome. In this thesis chapters, 4 and 6 provide further insight 

into the mechanistic basis for the protective effect of SF in a high glucose environment. 

Additional studies have also reported that the effect of SF in improving lipid 

homeostasis is not limited to the liver, but also present in additional tissues. For 

example, SF has been shown to impact fatty acid metabolism in prostate cancer cell 

lines such as LNCAP and castration resistant (22Rv1) and in vivo, Transgenic 

Adenocarcinoma Mouse Prostate (TRAMP). SF treatment to LNCAP and 22Rv1 cells 

resulted in downregulation of both protein and mRNA levels of both ACC and FASN, 

but not ACL similar to what has been identified in other studies. The study showed that 

the downregulation of these proteins was due to SF inhibiting SREBF1 (Singh et al., 

2018). It appears that one of the exciting findings worth exploring is whether the 

inhibition of the transcription factor SREBF1 is mediated through NRF2 or other 

proteins.  

Sulforaphane is regarded as a nutrigenomic activator. Other nutrigenomic activators 

that are currently under research include certain polyphenols, such as resveratrol found 

in red wine, lycopene found predominantly in tomatoes, and curcumin found in turmeric 

(Houghton et al., 2016). For example, the polyphenol resveratrol and its metabolites 

also improved fatty acid metabolism (Trepiana et al., 2020). In this study, mouse 

hepatocytes AML12 were incubated with the presence of resveratrol 1 µM and/or its 

breakdown products (trans-resveratrol-40 -O-glucuronide (R-4G); trans-resveratrol-3-

O-glucuronide (R-3G); trans-resveratrol-3-O-sulfate and dihydro-resveratrol (DH-R)) in 

the presence of palmitate 0.3 mM. The study showed that resveratrol and its 

breakdown products resulted in the phosphorylation of ACC, thereby inhibiting its 

function. Resveratrol treatment for 18h resulted in the activity of FASN returning to that 

present in non-steatotic cells, whilst cells treated with the breakdown metabolites R-4 

and R3-G showed even lower FASN activity (Trepiana et al., 2020). Several studies 

have shown that resveratrol is a powerful activator of Sirtuin 1(NAD-dependent 

acetylase), a well-established metabolic regulator (Chao et al., 2017, Mohar and Malik, 

2012). Currently, only a single study has shown that SF influences the activity of sirtuin 

1 (Li et al., 2016). Therefore an additional mechanism through which SF may affect 

lipid metabolism is through SF inducing sirtuin1 and other SIRT proteins, thereby 

potentially explaining a mechanism for the downregulation of genes involved in fatty 
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acid metabolism such as FASN (Zhang et al., 2014). Future research should therefore 

also assess whether SF affects the activity of SIRT proteins. 

3.4.3 SF effect on glucose homeostasis: 

When it comes to diet, excessive intake of sugars such as glucose and in particular 

fructose for prolonged periods has been shown to alter hepatic metabolism leading to 

metabolic syndrome and its respective complications (Zhao et al., 2016). In the current 

work, an established in vitro model of metabolic syndrome was used by challenging, 

HepG2 with the presence of high levels of glucose (25 mM).   

To assess and provide a snapshot of how SF would impact hepatic metabolism in the 

presence of different glucose environments, the Seahorse Analyzer was used. Without 

the presence of SF, high glucose led to an increase in glycolysis, seen through the 

increase in EACR. SF treatment, on the other hand successfully reduced this. 

Therefore it was hypothesized that this reduction was due to the glucose being 

redirected to the PPP. Further analysis did identify the induction of glucose-6-

phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transketolase 

genes involved in the pathway. The PPP is split into two distinct phases: an oxidative 

irreversible pathway generating NADPH, and a ribose-5-phosphate molecule. The non-

oxidative pathway is made up of several reversible reactions interconverting between 

ribose phosphates and glycolytic intermediates depending on the cell’s requirements 

for NADPH, ribose phosphates, or ATP (Wamelink et al., 2008). Several additional 

studies have shown that activation of NRF2 leads to the upregulation of these genes. 

Yamamoto and colleagues showed that G6PD, PGD, TKT, and TALDO are all direct 

targets of NRF2 having an ARE sequence (Mitsuishi et al., 2012). A second study by 

Agyeman, where non-cancerous human breast epithelial MCF10A were treated 15 µM 

SF for 24 hours, also showed a significant increase of at least 1.2-fold in the 

expression of PGD, G6PD, TALDO1, and TKT (Agyeman et al., 2012).  

Within the last couple of years, SF has also attracted attention due to its ability to 

improve glucose homeostasis in type 2 diabetics. A recent study, where T2D 

supplemented with broccoli sprout extract (BSE), containing a high concentration of 

glucoraphanin (delivering the equivalent of 150 µM SF), resulted in a significant 

decrease in fasting blood glucose between the intervention (8.3 ± 0.3 mM) compared 

to the placebo group (9 ± 0.4 mM) (Axelsson et al., 2017). Furthermore, Hb1Ac levels 

also changed; the placebo group had (57 mmol/mol) whilst the BSE treated was 

reduced to (53 mmol/mol).  What remains unclear is the molecular mechanism through 

which SF carries this out. One potential mechanism was identified in a recently 

published study, where SF reduced the activity of several glycolytic genes. This was 



110 
 

also reflected by a reduction in non-mitochondrial metabolism assessed through the 

Glycolysis Stress Test from the Seahorse BioScience (Carrasco-Pozo et al., 2019).  

Culturing hepatocytes in a high glucose environment has been shown to result in a 

wide range of metabolic alterations. One study showed an increased accumulation of 

triglycerides, along with increased expression of genes involved in fatty acid 

biosynthesis, such as SREBF1, SCD, and CD36. However, no effect on mitochondrial 

function was identified (Su et al., 2019). An additional study showed that high glucose 

results in activation of the NF-Ƙβ pathway, along with increased production of 

inflammatory cytokines and ROS (Panahi et al., 2018). A third study where HepG2 

were cultured under various glucose concentrations ranging from 15-57 mM showed 

that the high concentration of glucose (33 mM) blocked the phosphorylation of the 

protein AKT, which lies downstream of the insulin receptor. This resulted in inhibiting 

protein kinases, thereby blocking the signalling pathway and suppressing glycogen 

synthesis (Nakajima et al., 2000).  There is increasing evidence showing that whilst 

ROS plays an important role as a signalling molecule, metabolic syndrome results in 

ROS overproduction (Ando and Fujita, 2009). The increase in free radicals, in turn, 

results in increased attack and damage to proteins, nucleic acids, and even lipids. 

These oxidized products consequently decrease biological activity, leading to altered 

cell signalling and function (Mahjoub and Masrour-Roudsari, 2012).    

The current work was also extended further by culturing HepG2 without glucose for 24 

h (a hypoglycemic state). Assessment of the literature revealed that no other studies 

had carried this out. One study used very low glucose concentrations (0.5 mM); 

nevertheless, glucose was still added (Deorosan and Nauman, 2011). In this study, 

Bone-Marrow Derived Mesenchymal Stem Cells cultured in the lowest concentration of 

glucose experienced increased cell death and slowest proliferation rate (Deorosan and 

Nauman, 2011). It is worth mentioning, however, that in a real-life scenario, no glucose 

circulating in the blood would ever occur. Even after having fasted for long periods or 

following a ketogenic diet, small amounts of glucose would still be circulating in the 

blood.  

 

This no glucose environment was carried out to determine whether a method could be 

developed to assess the effect of SF on mitochondrial function only. The Seahorse 

analysis still revealed that cells were still carrying out glycolysis despite the lack of 

glucose, highlighting the cancer phenotype of HepG2. The pyruvate was most likely 

derived from the carbon source glutamine through glutaminolysis and the conversion of 

malate to pyruvate through the action of malate dehydrogenase. Notably, the presence 

of SF in the glucose starved HepG2 cells showed a reduction in glycolysis, suggesting 
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the health benefits of SF also interfering with the glutamine metabolism pathway and 

suppressing the tumorigenic Warburg effect. The reduction in maximal respiration may 

also be to SF resulting in decreased activity of the TCA cycle. At the same time, 

however, deprivation of glucose in cancer cells may result in increased oxidative stress 

(Gatenby and Gillies, 2007). Therefore, it was hypothesized that the reduction in 

maximal respiration may also be due to glutamine being redirected for glutathione 

biosynthesis.  

 

A potentially better model to assess how SF affects the mitochondria only was 

established by treating the cells with 10 mM galactose (Marroquin et al., 2007). 

Previously, using the universally labelled glucose and galactose 13C6 tracers revealed 

that in the presence of the galactose tracer, no 13C lactate tumortutuunmwas 

identified, compared with the universal glucose tracer, which resulted in large amounts 

of 13C lactate (Xu et al., 2019). Therefore, the cells can only survive by producing ATP 

through oxidative phosphorylation (Marroquin et al., 2007). Thus, cells switch to an 

"aerobic" state under galactose treatment. Under the presence of galactose Xu, HepG2 

increases glutaminolysis to try and maintain the high ATP production demands (Xu et 

al., 2019). Interestingly, in the current study, when SF was added in galactose treated 

HepG2 cells, SF could still reduce mitochondrial respiration. This suggests that the 

reduction in mitochondrial respiration is due to a decrease in glycolysis and the 

subsequent entry of fewer substrates into mitochondrial respiration and other 

mechanisms, for example, targeting enzymes involved in the TCA cycle (see chapter 5) 

or further redirection of metabolic intermediates.  
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Figure 3.17. Summary of the findings of this chapter, showing SF preliminary effects as a 

metabolic regulator.  When HepG2 are cultured with the presence of palmitate, palmitate 

accumulates, resulting in NAFLD the latter can develop to HCC. SF treatment instead results in 

NRF2 activation, resulting in inhibition of FASN along with induction of CTP1. The outcome is 

inhibition of fatty acid biosynthesis, thereby restoring metabolic homeostasis. When HepG2 are 

cultured in high glucose, the glucose is mainly metabolized through glycolysis; in contrast, SF 

addition results in NRF2 activation, which redirects the glucose towards the PPP.  
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3.5 Conclusion: 
 

The effect of SF as a metabolic regulator has been largely unexplored, yet it provides a 

huge opportunity to explain some of the beneficial effects observed in populations with 

high dietary intake and in disease models. In addition, NRF2, one of the targets of SF 

in the cell, has also been shown to regulate a wide range of metabolic processes. In 

this current chapter, an in vitro model of liver metabolic dysregulation (potentially 

insulin resistance) was used by treating a well-established carcinoma cell line HepG2 

with physiological concentrations of sulforaphane along with the presence of a wide 

range of substrates. The data obtained from this chapter supports the current findings 

from the literature that SF activates both the antioxidant response through NRF2 and 

can also act as a metabolic regulator. Furthermore, it was also identified that short 

exposure to SF is enough to lead to sustained transcription effects. The data also 

recalled that SF treatment profoundly affected lipid metabolism by inducing CPT1a and 

downregulating the activity of FASN, and suppressing the accumulation of lipids on 

HepG2 challenged with fatty acids. A crucial finding from figure 11 is that there needs 

to be a “priming” of the cellular machinery ahead of exposure to palmitate for SF to 

prevent its detrimental effects in lipid accumulation. The Seahorse analysis furthermore 

showed that when hepatocytes were challenged with high glucose alone, this resulted 

in increased EACR along with decreased OCR. SF treatment suppresses this effect by 

reducing overall mitochondrial respiration and re-directing the glucose to other 

pathways. In the next chapter, this work will be explored further by conducting an 

RNAseq study, assessing the whole transcriptome of HepG2 with the presence of SF 

in these three distinct metabolic environments.   
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Chapter 4 Figures 
 

Figure 4.1: Representation through box plots and histograms of counts data before and 

after normalization 

Figure 4.2: Mean-variance relationship before and after the transformation 

Figure 4.3: Effect of SF in the presence of various glucose environments on gene 

expression 

Figure 4.4: Multidimensional scaling analysis (MDS) plot of differential expression data 

gathered from HepG2 cells cultured under three different glucose environments with 

the presence of Sulforaphane for 24h. 

Figure 4.5: Significantly enriched gene sets identified within the differential expression 

data of HepG2 cells cultured under a no-glucose environment when compared to 

Sulforaphane treatment.  

Figure 4.6: Significantly enriched gene sets identified within the differential expression 

data of HepG2 cells cultured under a basal glucose environment when compared to 

Sulforaphane treatment 

Figure 4.7:  Significantly enriched gene sets identified within the differential expression 

data of HepG2 cells cultured under a high glucose environment when compared to 

Sulforaphane treatment 

Figure 4.8: Pathways that have significantly been enriched by SF common in all three 

glucose environments 

Figure 4.9: Top enriched Differentially expressed genes from the Glutathione 

Metabolism gene set 

Figure 4.10: Top enriched differentially expressed genes from the Metabolism of 

Xenobiotics by Cytochrome P450 gene set 

Figure 4.11: Induction of a selection of Phase I genes by 10 µM SF in different glucose 

environments.   

Figure 4.12: Induction of a selection of Phase II genes by 10 µM SF in different glucose 

environments 

Figure 4.13: Induction of a selection of Phase III genes by 10 µM SF in different 

glucose environments. 

Figure 4.14: Induction of a selection of genes involved in the antioxidant response by 

10 µM SF in different glucose environments.  

Figure 4.15: Induction of a selection of genes involved in lipid metabolism (both lipid 

synthesis and oxidation) by 10 µM SF in different glucose environments 
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Figure 4.16: Top enriched differentially expressed genes from the histidine metabolism 

gene set by 10 µM SF in different glucose environments.  

Figure 4.17: Top enriched differentially expressed genes from the lysine degradation 

gene set by 10 µM SF in different glucose environments.  

Figure 4.18: Transcription factors activity influenced by NRF2 in the high glucose 

dataset 

Figure 4.19. Summary of the findings from this chapter shows how varying glucose 

concentrations affect NRF2 downstream metabolic processes 

Chapter 4 Tables: 
 

Table 4.1: Number of genes differentially expressed in response to SF under the 

various glucose environments under varying adjusted p values 

Table 4.2: Summary Statistics of the GSEA analysis using the KEGG Database 

Table 4.3: A selection of differentially expressed genes in response to SF under 

various glucose concentrations involved in detoxification pathways. 

Table 4.4: Genes differentially expressed in response to SF under various glucose 

concentrations involved in lipid metabolism. 

Table 4.5: Top enriched differentially expressed genes from the histidine metabolism 

gene set by 10 µM SF in different glucose environments. 

Table 4.6: Top enriched differentially expressed genes from the lysine degradation 

gene set by 10 µM SF in different glucose environments. 

Table 4.7: Differentially expressed genes in response to SF in no glucose 

concentrations involved in Lipoprotein metabolic processes. 

4.1 Introduction:  
 

One of the liver's many functions is maintaining blood glucose concentrations in the 3.9 

to 5.5 mM range. This process is highly regulated by balancing the liver's glucose 

output with the amount of glucose absorbed in the peripheral tissue (Klover and 

Mooney, 2004). Abnormal glucose homeostasis can result in pre-diabetes, metabolic 

syndrome, and, if left untreated, ultimately type 2 diabetes. In type 2 diabetes (T2DM), 

the resulting circulating levels of glucose in the blood can rise into the hyperglycaemic 

range (greater than 5.5 mM) (Tolman et al., 2007). If left untreated, the resulting 

outcome can have detrimental effects throughout the body. A couple of studies have 

shown that diets rich in refined/processed carbohydrates (such as monosaccharides 

and disaccharides) to overweight and obese individuals who already have metabolic 
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dysfunction were associated with increased de novo lipogenesis (Marques-Lopes et al., 

2001, McDevitt et al., 2001). In the liver, the excessive abundance of glucose will first 

be converted to glycogen. The remaining glucose will be utilized for de novo 

lipogenesis if the glycogen stores are full. The outcome is lipid accumulation in 

hepatocytes through insulin. Insulin induces the activation of the mammalian target of 

rapamycin complex 1 (mTORC1) through the phosphoinositide 3-kinase AKT pathway, 

and mTORC1 is required for insulin to induce the expression of SREBF1 (Li et al., 

2010). Hepatic inhibition of AKT2 through deletion of the rictor gene results in 

attenuation of glycolysis and lipogenesis (Hagiwara et al., 2012). This results in a 

phenomenon called steatosis, where the accumulation of lipids in the liver is greater 

than 5% (Fabbrini et al., 2009). The hallmark of non-acholic fatty liver diseases, the 

leading cause of liver complications, is steatosis. If left untreated, steatosis can 

progress to cirrhosis/fibrosis and eventually hepatocellular carcinoma (Soto-Angona et 

al., 2020). This accumulation of lipids and the continuous supply of glucose 

consumption can form chronic reductive stress (Farhana et al., 2010, Valadi et al., 

2004, Teodoro et al., 2013). The aerobic breakdown of glucose from glycolysis results 

in pyruvate: which enters the TCA cycle resulting in the production of electrons stored 

and transported by NADH/FADH2. Therefore a constant intake of glucose results in the 

overproduction of NADH, and coupled with the lack of NAD+, the outcome is an 

imbalance between the two metabolites leading to a condition referred to as 

pseudohypoxia (Gomes et al., 2013, Ido and Williamson, 1997). Under this state 

oxygen is not effectively consumed; the outcome is metabolic stress which can result in 

metabolic syndrome often found in individuals with diabetes (Williamson et al., 1993). 

This reductive stress leads to oxidative stress by overproducing mitochondrial 

superoxide and other ROS such as hydrogen peroxide and peroxynitrite (Turrens, 

1997, Shah et al., 2007). These ROS can react and cause the oxidation of proteins, 

lipids, and DNA (Cai and Yan, 2013). The increased ROS accumulation and NADPH 

can also inhibit the glycolytic gene glyceraldehyde-3-phosphate dehydrogenase 

(Rivera-Nieves et al., 1999), resulting in the build of glyceraldehyde-3-phosphate, 

which is redirected towards both the polyol and the glyceraldehyde autoxidation 

pathways and methylglyoxal production (Lovestone and Smith, 2014). Essentially these 

pathways further contribute to the production of ROS. The metabolite methylglyoxal 

has been shown to modify proteins via glycation of the amino groups present on 

proteins (Queisser et al., 2010, Thornalley et al., 1999). This glycation process, in 

addition, results in the production of ROS. The outcome is the activation of several 

redox-sensitive transcription factors such as the NF-ƙB pathway, activator protein 1 

(AP-1) and the early growth response 1 (EGR1), resulting in further inflammation 

(Muñoz and Costa, 2013).  
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To counterbalance the build-up of ROS, activation of NRF2 either through 

pharmacological or dietary means has been shown to play a vital role in resistance to 

oxidative stress (Ma, 2013). Major antioxidants identified include small molecular 

molecules such as reduced glutathione, thioredoxin (TRX), glutaredoxin, along with 

enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (Ma, 2013). 

In addition to SF regulating the antioxidant response through NRF2, within the last 

couple of years, increasing evidence has shown that broccoli bioactives such as SF 

suppresses the effects of a high fat meal in both animals and in vitro studies. For 

example, glucoraphanin supplementation in mice fed a high fat diet suppresses lipid 

accumulation (Nagata et al 2017, Xu et al 2020). In vitro work showed that SF could 

protect beta-cells of the pancreas when treated with cholesterol (Carrasco-Ponzo et al 

2017). To gain a better understanding of the molecular mechanism of how lipid 

metabolism, central metabolism, and the antioxidant response are interconnected, an 

RNA-sequencing study was designed.  

In this study, differential gene expression was performed through RNA sequencing 

from HepG2 in no (0 mM), basal (5 mM), and high glucose (25 mM) representing 

fasting, healthy and insulin-resistant hepatocytes, treated with physiological 

concentrations (10 µM) SF for 24 h. The current study aimed to determine: the 

transcriptional effect of SF in different metabolic states in the liver by addressing the 

following question: 

1. Assessing how the NRF2 target genes respond under different metabolic states 

2. Characterizing SF effect on genes linked to central metabolism in hepatocytes 

under different metabolic states 

This experiment was designed to explore two hypotheses:   

1: Regardless of the levels of glucose, the presence of SF will still induce the 

antioxidant response. 

2: In a high glucose environment (but not basal/no glucose), SF will induce the 

expression of genes involved in fatty acid metabolism (β-oxidation) to suppress the 

detrimental effects of high glucose concentration 
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4.2 Methods: 

4.2.1 Processing the raw reads to obtain the differentially expressed 

genes 

The statistical analysis carried out with RNAseq tests whether there is a difference for 

each gene or differential expression across the two sample groups (control vs 

treatment). The null hypothesis is no differential expression across the two samples.  

The differentially expressed genes were obtained through the limma approach. This 

method converts the RNA seq counts to log2-counts per million, and the mean 

variance relationship is modeled either with precision weights or with an empirical 

Bayes prior trend. Following the processing of the data, StringTie converts the 

assembled RNAseq reads to potential transcripts. The output of StringTie is a matrix of 

raw counts. This is usually in the form of binary data. For example, 0 if a gene is not or 

very low expressed and 1000 or greater if the gene is expressed. This introduces a lot 

of bias to the data as the gene size, the sample size, and sequencing depths are not 

considered. Therefore, the data must be transformed. Popular transformation includes 

counts per million (CPM), which accounts for differences in sequencing depths 

between samples, log counts per million, or fragments per kilobase of transcript per 

million (FPKM) (Robinson and Oshlack, 2010, Robinson et al., 2010). In this analysis, 

the counts were converted to log2-counts per million (log CPM) using the cpm function 

in edgeR, (package in the Statistical software R) where log transformations use a prior 

count of 0.25 to avoid taking the log of zero (Robison et al 2010). Once the counts 

have been converted, the outcome is a distribution that contains all the genes. Genes 

that are not expressed at a biologically meaningful level however need to be discarded 

as they provide little evidence for differential expression. What is hoped to get is a plot 

for the filtered data that resembles a normal distribution (Law et al 2016). 

The final step consists of carrying out the differential gene expression to obtain the 

differentially expressed genes (DEGs). Several options can be used at this stage; 

either the limma-trend or the voom plot. Which approach is used, very much depends 

on the quality of the data. The limma-trend works well when the sequencing depth is 

consistent across all RNA samples. This approach works well if the ratio of the largest 

library size to the smallest is not more than about 3 fold. When variability is present 

between samples or library sizes then the voom approach is more powerful/robust than 

the limma trend (Law et al., 2014).  

Both the limma-trend and the voom approach calculate the DEG using the same 

approach. The basis of statistics is moderated t-statistics; this is like a t-statistic test 
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only that the linear model has been replaced using Bayesian inference (empirical 

Bayes. With Empirical Bayes the prior distribution is estimated from the data, which is 

different from a normal Bayesian inference. In normal Bayesian inference, the prior 

distribution is kept constant and the posterior distribution is utilized to estimate the 

data. This approach is preferred as the degrees of freedom are increased and the 

standard error is reduced. For this analysis, the voom using precision weights was 

carried out.  

4.2.2 Gene Set Enrichment Analysis (GSEA) 

After obtaining the DEGs, functional analysis was performed with the ranked list of 

expressed genes using the rank-rank hypergeometric overlap algorithm (RRHO) 

(Plaisier et al., 2010).  The RRHO algorithm is used to compare two gene expression 

profiles as a ranked list, typically using the statistical results from the differential 

expression analysis. The algorithm uses the complete list of expressed genes instead of 

using a subset of the top differentially expressed genes, which increases the sensitivity 

to small but concordant changes.  The motivation for using the whole gene expression 

profile is that groups of genes with small but consistent changes tend to be discarded 

when taking only the top changing genes as representatives for genome-wide expression 

profiles. Considering all expressed genes allows for the detection of enriched groups of 

related genes that would have been considered weakly differential on their own, but with 

a concordant change in expression.  

The results of the differential expression test were represented as the list of expression 

changes ranked on the statistical significance of differential expression of no glucose SF 

treated vs no glucose control (group 1), basal glucose SF vs basal glucose control (group 

2), and high glucose SF vs high glucose control (group 3). The same genes were ranked 

using the (negative) -log10-transformed p-value multiplied by the sign of the log2-FC, 

where the sign denotes the direction of the change: positive for upregulated gene 

expression in samples in group 1 and negative for downregulated expression in samples 

in group 1.  The most significantly upregulated genes are at the top of the list, the most 

significantly downregulated genes are at the bottom and those genes with small changes 

are in the middle. The same was carried out for group 2 and group 3 

The list of the ranked genes was then compared against genes sets to search for 

coordinated changes in the gene expression dataset using Gene Set Enrichment 

Analysis, GSEA, v4.0.3 (Subramanian et al., 2005) and the Kyoto Encylopedia of Genes 

and Genomes (KEGG) (Kanehisa et al., 2017, Kanehisa et al., 2015). The KEGG 

database contains 186 gene sets. These genes sets contain information on the following 

processes: 
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• Metabolism- including metabolic pathways and an overall picture of metabolism 

• Genetic information processing (transcription, translation, DNA replication, and 

repair) 

• Environmental processing (signal transduction) 

• Cellular processes (cell growth, cell death, and cell membrane functions) 

• Human diseases 

• Drug development 

• The immune system, endocrine, and nervous system function.  

GSEA was performed using the GSEA Preranked tool with a weighted enrichment 

statistic and 1000 permutations to correct for multiple hypotheses testing. The 

normalized enrichment score for each pathway and their associated p-values and FDR-

adjusted p-values for the transcriptomic differences between groups are reported.  

4.2.3 Network Analysis 

The network analysis was constructed using the NRF2ome database 

(http://nrf2ome.org/) through Cytoscape (https://cytoscape.org/). NRF2ome is a 

manually curated database.  The database contains vast information on how both 

upstream and downstream targets (both direct and indirect targets of NRF2), influence 

additional signaling pathways, thereby identifying the possible involvement of NRF2 in 

various pathways. It also contains information on how NRF2 regulates transcription 

factors (TF) and miRNAs. The database contains over 8,000 proteins out of which 

NRF2 directly regulates 225 but over 7,000 are indirectly regulated by NRF2. These 

interactions have been identified both through manual curation of the literature and 

have also been experimentally predicted (Papp et al., 2012, Turei et al., 2013). This 

analysis by master regulators implied identifying whether NRF2 controlled the activity 

of any TF.  When it comes to biological networks, the most common nomenclature 

used to describe the network, hence the genes and its interactions, are node and 

edges. A node can represent, genes, RNA, proteins, etc, whilst an edge represents the 

interaction occurring between the nodes. These interactions can be directed, this 

means, for example, a gene or protein is directly binding to another gene/protein, or 

undirected. These interactions can also tell if it's stimulatory or inhibitory, hence 

whether the interaction will induce downstream targets or inhibit these targets. 

http://nrf2ome.org/
https://cytoscape.org/
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4.3 Results: 

4.3.1 RNA-sequencing data analysis and identification of treatment 

clustering 

Figure 4.1 shows the data normalisation, using the trimmed mean of M-values (TMM). 

From figure 4.1, it can be seen how the normalization was effective as the boxplots of 

samples after normalization are symmetrical. The data was then analyzed using the 

edgeR-limma package to obtain the differentially expressed genes. 

 

 

Figure 4.1. Representation through box plots and histograms of counts data before and 

after normalization. Normalization is essential because to conduct any form of statistical 

analysis such as a t-test, one assumption is that the data needs to be normally distributed.  

In the next step, heteroscedasticity in the count data was removed, shown in figure 4.2. 

Heteroscedasticity occurs when the variance is no longer constant to the mean, 

mean=variance. This is shown by the voom plot by the decreasing trend between the 

mean and variances (figure 4.2 a). This results from a combination of both technical 

variations in the sequencing experiment and biological variation among the replicates. 

Following transformation, the trend disappears resulting in gene counts with a constant 

variance, thereby removing heteroscedasticity.  
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Figure 4.2. Mean-variance relationship before and after the transformation.  Means (x-axis) 

and variance (y-axis) between each gene to show the relationship between the two, before the 

voom precision weights are applied to A to transform the data. Notice how after the 

transformation the trend/pattern in A disappears. Plot A is obtained through the voom function in 

R and is constructed by extracting the residual variances from the linear regression. The square 

root of the residual variances is then taken and plotted against the mean expression of each 

gene. The mean is then log2 transformed.  

In the final step, a pairwise comparison was then conducted between 10µM SF and the 

untreated control under the various glucose levels to determine the number of 

differentially expressed genes changed at different adjusted p values. Results are 

shown in table 4.1.  

 

 

A B 
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Table 4.1 Number of genes differentially expressed in response to SF under the various 

glucose environments under varying adjusted p values  

Ctrl vs SF No glucose DMSO vs  
no glucose SF 

Basal glucose DMSO 
vs basal glucose SF 

High glucose DMSO vs 
high glucose SF 

q < 0.05 
 
q < 0.1 
 
q < 0.2 
 
q < 0.25 

393 (↑139 ↓254) 

907 (↑369 ↓538) 

2312 (↑1067 ↓1245) 

3174 (↑1500 ↓1674) 

1657 (↑691 ↓966) 

2553 (↑1117 ↓1436) 

3895 (↑1741 ↓2154) 

4505 (↑2022 ↓2483) 
 

1250 (↑536 ↓714) 

1981 (↑ 846↓1135) 

3048 (↑1309 ↓1739) 

3556 (↑1540 ↓2016) 

The number of genes in bold is the total number of transcripts changed. In brackets ↑ indicates the 
number of upregulated genes while ↓ indicates the number of downregulated genes. 

q values are adjusted for false discovery rates using the Benjamini-Hochberg correction 
 

 

Table 4.1 revealed that a total of 393 genes were differentially expressed in response 

to 10µM SF compared to untreated controls in the no glucose environment, in basal 

glucose 1657 genes and high glucose 1250 genes were differentially expressed 

compared to the untreated control (adjusted p < 0.05 or q < 0.05). 

The next question addressed was whether any of the significant genes were expressed 

in more than one group. A Venn diagram was therefore constructed to investigate the 

overlap between these three different pairwise comparisons. Interestingly 90 genes 

were common in all three glucose environments (figure 4.3). 
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Figure 4.3. Effect of SF in the presence of various glucose environments on gene 

expression. 83 genes were found to be affected by 10 µM SF in no, basal, and high glucose 

environments. 16 genes were found to be affected by 10 µM SF in no and high glucose. 56 

genes were found to be affected by 10µM SF in no and basal glucose. 695 were found to be 

affected by 10 µM SF in basal and high glucose 

 

The multidimensional scaling plot (MDS) shown in (figure 4.4) immediately highlights 

two interesting observations: firstly, the no glucose samples behave completely 

differently from the samples with glucose, which is to be expected. Interestingly, the 

basal glucose samples treated with SF responded in a similar manner to the samples 

in high glucose and behaved differently to their respective control.  

 

Differentially Expressed Genes with q < 0.05 
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Figure 4.4. Multidimensional scaling analysis (MDS) plot of differential expression data 

gathered from HepG2 cells cultured under three different glucose environments with the 

presence of Sulforaphane for 24 h. The distance on the plot corresponds to the leading fold 

change which is the average log2-fold change. The first dimension which in this dataset 

represents the glucose environments, explains the largest proportion of variation of the data 

(Law et al., 2016). Yellow = NG +SF, Green = NG +DMSO, Blue= BG+ DMSO, Orange = BG + 

SF, Pink = HG +SF, Purple = HG+ DMSO 

 

4.3.2 Identification of enriched gene sets by SF under different metabolic 

states obtained through the Gene Set Enrichment Analysis  

The output of the limma plot (figure 4.2) is a list of differentially expressed genes. A 

gene is said to be differentially expressed if its expression levels or read counts are 

different compared to its respective control following statistical analysis. In the next 

step, the GSEA was conducted. Detailed analysis that includes all of the pathways 

including those enriched and not enriched by SF has been put in Table S1.0 

(Appendix). A summary statistic of the pathway analysis by KEGG is instead shown in 

table 4.2. Figures 4.5-4.7 represent the enriched gene sets following multiple testing 

corrections (q<0.05) by SF under the different glucose environments  
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 Table 4.2 Summary Statistics of the GSEA analysis using the KEGG Database 

Samples Enriched 
Pathways 

FDR q <0.25 Nominal p-value 
<0.05 

Nominal p-value  
<0.01 

No Glucose 
 

151 (↑83 ↓68) 97 (↑56 ↓41) 

 

56 (↑36 ↓33) 38 (↑20 ↓18) 

Basal Glucose 
 

151 (↑65↓86) 21 (↑8 ↓13) 21 (↑8 ↓13) 17 (↑7 ↓10) 

 
High Glucose 

 
151 (↑91 ↓60) 

 
 

 
48 (↑43 ↓5) 

 
38 (↑30 ↓8) 

 
 

 
16 (↑13 ↓3) 

 
 

Pathway analysis was carried out using the GSEA software mapped to the KEGG database. 

151 total pathways were calculated where ↑ represents upregulated pathway ↓ is 

downregulated pathway. The bold values under the FDR q value column represent the 

statistically significant pathways that have been enriched, the p-value that has corrected using 

Benjamini-Hochberg. The nominal p-value is the p-value normalized to the enrichment score  

 

For the GSEA analysis and the remaining analysis of this chapter, the FDR q-values 

were chosen over the nominal p-values; as the FDR q-values are an estimated 

probability that the normalized enrichment score will represent a false positive finding.  
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Figure 4.5. Significantly enriched gene sets were identified within the differential 

expression data of HepG2 cells cultured under a no-glucose environment compared to 

the sulforaphane treatment. The x-axis represents the normalized enrichment score (NES). 

The NES is calculated using the GSEA. NES represents an estimation of the significance of the 

gene set normalized to the size of each gene set. An increase in the gene set shows positive 

NES, and negative NES denotes an overall decrease in the gene set.  The y-axis represents the 

gene sets. Both treatment and controls are representative of triplicate samples 
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Figure 4.6. Significantly enriched gene sets were identified within the differential 

expression data of HepG2 cells cultured under a basal glucose environment compared to 

sulforaphane treatment. The x-axis represents the normalized enrichment score (NES). The 

NES is calculated using the GSEA. NES represents an estimation of the significance of the 

gene set normalized to the size of each gene set. An increase in the gene set shows positive 

NES, and negative NES denotes an overall decrease in the gene set.  The y-axis represents the 

gene sets. Both treatment and controls are representative of triplicate samples 
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Figure 4.7 Significantly enriched gene sets identified within the differential expression 

data of HepG2 cells cultured under a high glucose environment when compared to 

sulforaphane treatment. The x-axis represents the normalized enrichment score (NES). The 

NES is calculated using the GSEA. NES represents an estimation of the significance of the 

gene set normalized to the size of each gene set. An increase in the gene set shows positive 

NES, and negative NES denotes an overall decrease in the gene set.  The y-axis represents the 

gene sets. Both treatment and controls are representative of triplicate samples 
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4.3.3. Determining the transcriptional effects of SF in different metabolic 

states in the liver 

To ask the question of whether the same transcriptional changes occur under the 

different glucose conditions, common enriched pathways by sulforaphane in the 

presence of the various glucose environments were plotted as bar plots to visualize 

common pathways (figure 4.8). 

 

Figure 4.8. Pathways that have significantly been enriched by SF are common in all three 

glucose environments. The x-axis represents the normalized enrichment score (NES). The 

NES is calculated using the GSEA. NES represents an estimation of the significance of the 

gene set normalized to the size of each gene set. Positive NES is shown by an increase in the 

gene set, and negative NES denotes an overall decrease in the gene set.  The y-axis 

represents the gene sets. Both treatment and controls are representative of triplicate samples. 

Figure 4.8 shows that three pathways were enriched in all three glucose environments: 

upregulation of epithelial cell signaling in Helicobacter Pylori infection, in all three sets, 

downregulation of serine, glycine, and threonine metabolism in all three sets, and 

upregulation of metabolism of xenobiotics by cytochrome P450 in basal and high 

glucose along with a downregulation in the no glucose environment. Upregulation of 

metabolism of xenobiotics by cytochrome P450 along with glutathione metabolism is a 

marker of NRF2 induction. This consists of genes involved in the antioxidant response 

and phase II detoxification. The first hypothesis that the study wanted to address is that 

the presence of SF, regardless of the glucose levels, NRF2 induction would still occur. 

Downregulation, therefore, of the metabolism of xenobiotics by cytochrome P450 gene 

set and no induction of glutathione metabolism in the no glucose environment could be 
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an indicator that NRF2 is not induced in this environment. This hypothesis was 

validated by assessing a couple of NRF2 target genes, through qPCR (Appendix figure 

S1.0) The results do seem to support that NRF2 is not induced in glucose deprivation.   

A novel finding from the analysis is the downregulation of the serine glycine and 

threonine metabolism. Serine and glycine are non-essential amino acids. Serine is 

synthesized from 3-phosphoglycerate a glycolytic intermediate, whilst glycine is derived 

from serine. Threonine is instead an essential amino acid. A detailed analysis of the 

enrichment in this pathway can be found in the next chapter (chapter 5)  

4.3.4 Assessing how the NRF2 target genes respond under different 

metabolic states 

Figure 4.8, identified that in the presence of glucose, upregulation of the gene sets 

metabolism of xenobiotics by cytochrome P450 along with glutathione metabolism 

occurred. The analysis was expanded by extracting all the differentially expressed 

genes from those two enriched pathways. This analysis also included the same set of 

genes in the no glucose environment, to further assess whether glucose is necessary 

for the induction of NRF2. These results are shown in figures 4.9 and 4.10. Analysis of 

the glutathione metabolism gene set revealed strong upregulation of more than 4-fold 

in genes involved in glutathione biosynthesis such as GCLC/GCLM in both basal and 

high glucose environments. Under no glucose, GCLC/GCLM induction was attenuated 

(table 4.3 and figure 4.9). 

Similarly, SF treatment resulted in a 2-fold increase in glutathione reductase (GSR) in 

both glucose environments, with glucose deprivation inhibiting GSR induction. GSR is 

involved in catalyzing the conversion of oxidized glutathione to reduced glutathione in 

the presence of NADPH. The gene set also revealed that SF treatment induced G6PD, 

the rate-limiting step of the pentose phosphate pathway, involved in NADPH production 

(although only statically significant in the high glucose environment q= 0.01). In this 

gene set, the analysis also revealed SF upregulating the ornithine decarboxylase gene 

in both glucose environments (ODC1 only statistically significant in basal q <.0.0001, 

and high glucose q <0.0001). This gene is involved in catalyzing the breakdown of 

ornithine an intermediate in the urea cycle to putrescine the first step in polyamine 

synthesis.  Putrescine through a series of reactions can be converted to glutathionyl 

spermidine which is then converted to glutathione. Therefore the results suggest that 

polyamine biosynthesis may also contribute to the antioxidant response.  
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Figure 4.9. Top enriched differentially expressed genes from the glutathione metabolism 

gene set. These top enriched genes also referred to as the leading edge are defined as those 

which contributed most to the set enrichment score; reflecting their degree of 

overrepresentation in a running-sum metric. This is calculated using both the fold enrichment 

and degree of significance (p-value). Genes were plotted against the log2 of the fold change 

under the various glucose environments: no (0 mM), basal (5.5 mM), and high glucose (25 mM). 

Glucose-6-Phosphate (G6PD), Glutamate-Cysteine Ligase Catalytic Subunit (GCLC), 

Glutamate-Cysteine Regulatory Subunit (GCLM), Gamma-Glutamyltransferase 5 (GGT5), 

Glutathione Peroxidase2 (GPX2), Glutathione Reductase (GSR), Glutathione S-Transferase 

Omega-1 (GSTO1), Microsomal Glutathione S-transferase 1 (MGST1) and Ornithine 

Decarboxylase 1 (ODC1).  All the genes in both the basal and the high glucose environment but 

not in the no Glucose were statistically significant following multiple testing (q < 0.05).  

  

For the metabolism of xenobiotics by cytochrome P450 gene set, (figure 4.10) the 

analysis further reinforced the idea that in the absence of glucose NRF2 activation 

does not occur, thereby suggesting glucose is necessary for NRF2 activation. The 

analysis identified that both basal and high glucose SF treatment resulted in a more 

than 4-fold increase in two genes belonging to the Aldo-Keto reductase family: 

AKR1C1 and AKR1C2. Again in the presence of no glucose, this effect was not 

observed.  The analysis also identified SF in both basal and high glucose inducing two 

genes that were also enriched in the glutathione metabolism gene set GSTO1 and 

MGST1, thereby suggesting a link between the glutathione and metabolism of 

Log2 FC 



134 
 

xenobiotics by cytochrome P450 gene sets. GSTO1 and MGST1 both are involved in 

conjugating glutathione to xenobiotics so that they can be detoxified.  

 

 

 

Figure 4.10. Top enriched differentially expressed genes from the metabolism of 

xenobiotics by cytochrome P450 gene set. These top enriched genes also referred to as the 

leading edge are defined as those which contributed most to the set enrichment score; 

reflecting their degree of overrepresentation in a running-sum metric. This is calculated using 

both the fold enrichment and degree of significance (p-value). The x-axis represents the log2 

fold change whilst, the y-axis represents the genes of interest Aldo-Keto Reductase 1 Family 

Member C1 (AKR1C1), Aldo-Keto Reductase 1 Family Member C2 (AKR1C2), Epoxide 

Hydrolase 1 (EPHX1), Glutathione S-transferase Omega-1 (GSTO1), Microsomal Glutathione 

S-transferase 1 (MGST1). All the genes in both the basal and the high glucose environment but 

not in the no glucose were statistically significant following multiple testing (q < 0.05).  

 

Whilst the analysis from the glutathione metabolism and metabolism of xenobiotics by 

cytochrome P450 gene sets showed that SF as expected upregulated genes involved 

in the antioxidant response through NRF2, quite a few of the NRF2 target genes such 

as NQO1 were however missing from the GSEA predetermined gene sets. Therefore, 

to make sure that no information is lost, the analysis was further expanded. Additional 

NRF2 target genes involved in phase 1, 2, and 3 metabolisms along with antioxidant 

glutathione metabolism, antioxidant TXN-based, all that have reported having an ARE 

Log2 FC 
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sequence were also individually assessed from the output table of the voom plot. 

These genes were selected from the following publications (Hayes and Dinkova-

Kostova, 2014, Thimmulappa et al., 2002, Tebay et al., 2015, Chorley et al., 2012, 

Malhotra et al., 2010). The results are displayed in the following table 4.3 and bar plots 

were also carried out to visualize and compare the results in the different glucose 

environments shown in figures 4.11-4.14.  

Table 4.3 A selection of differentially expressed genes in response to SF under various 

glucose concentrations involved in detoxification pathways 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Control 
NG 

SF 
Log2 
Fold 

Change 
vs 

Control 
HG 

SF 
Log2 
Fold 

Change 
vs 

Control 
BG 

Phase I enzymes      

ENSG00000198074 AKR1B10 

 

Aldo-keto 
reductase family 
member 1 B10 

0.26 
 

3.583 
 

3.483 

 

ENSG00000187134 AKR1C1 Aldo-keto 
reductase family 
member 1 C1 

0.21 
 

2.333 

 
2.363 

 

ENSG00000165092 ALDH1A1 Aldehyde 
dehydrogenase 
family member 1 

A1 

-0.21 
 

0.792 

 
1.003 

 

ENSG00000164904 ALDH7A1 Aldehyde 
dehydrogenase 
family member 7 

A1 

-0.41 
 

-0.411 

 
-0.431 
 

ENSG00000159228 CBR1 Carbonyl reductase 
C1 

-0.07 
 

0.841 

 
0.29 

 

ENSG00000019186 CYP24A1 Cytochrome P450, 
family 24, member 

A1 

-0.13 
 

1.411 

 
 

1.753 
 

ENSG00000143819 EPHX1 Expoxide hydrolase 
1 

0.09 
 

1.383 
 

1.022 
 

ENSG00000106853 PTGR1 Prostaglandin 
reductase 1 

0.15 
 

2.393 

 
2.393 

 

ENSG00000198848 CES1 Carboxylesterase 1  0.721 
 

0.731 0.721 

Phase II enzymes      

ENSG00000134202 GSTM3 Glutathione-S-
transferase M3 
brain 

-0.22 
 

0.17 -0.20 

ENSG00000168765 GSTM4  Glutathione-S-
transferase Mu 4  

-0.34 
 

-0.551 -0.551 
 

ENSG00000148834 GSTO1 Glutathione-S-
transferase omega-

1 

-0.15 
 

0.501 

 
0.591 
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ENSG00000008394 MGST1 Microsomal 

glutathione S-

transferase 1 

-0.21 1.152 1.322 

ENSG00000181019 NQO1 NAD(P)H 

dehydrogenase, 

quinone (1) 

-0.13 1.643 1.713 

ENSG00000196502 SULT1A1 Sulfotransferase 

1A1 

-0.43 0.61 0.801 

ENSG00000197165 SULT1A2 Sulfotransferase 

1A2 

-0.581 1.092 1.032 

 

Phase III enzymes 
 

     

ENSG00000103222  ABCC1  Multidrug 

resistance-

associated protein 

1 (MRP1) 

0.36 0.682 0.652 

ENSG00000023839 ABCC2 Multidrug 

resistance-

associated protein 

2 (MRP2) 

0.44 1.073 1.182 

ENSG00000108846 ABCC3 Canalicular 

multispecific 

organic anion 

transporter 2 

-0.1 1.723 1.33 

ENSG00000118777 ABCG2 ATP-binding 

cassette super-

family G member 2 

-0.21 0.633 0.913 

Antioxidant response enzymes 
 

     

ENSG00000001084 GCLC Glutamate-cysteine 

ligase catalytic 

subunit 

0.32 
 

2.153 2.063 

ENSG00000023909 GCLM Glutamate-cysteine 

ligase regulatory 

subunit 

0.50 2.313 2.583 

ENSG00000173221 
 
 
 
 

GLRX Glutaredoxin-1 0.075 
 

0.882 0.411 

ENSG00000176153  GPX2 Glutathione 

Peroxidase 2 

-0.42 
 

1.481 0.991 

ENSG00000104687 GSR Glutathione 

Reductase 

0.19 1.223 1.173 

ENSG00000196517 SLC6A9 Glycine transporter 

1 

-0.052 -0.931 -0.751 

ENSG00000151012 SLC7A11 Cysteine/Glutamate 

transporter 

0.63 1.41 1.451 



137 
 

ENSG00000117450 PRDX1 
 

Peroxiredoxin 1  -0.013 0.631 0.601 

ENSG00000271303 SRXN1 Sulfiredoxin 1 0.35 2.433 2.443 

ENSG00000136810 TXN Thioredoxin 0.091 0.931 0.871 

ENSG00000198431 TXNRD1 Thioredoxin 

reductase 1 

0.99 2.201 0.992 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The adjusted p-values were obtained 
through a linear model by the limma function. The gene counts were first converted to log counts per 
million. Limma then plots the log-cpm for each experimental design control vs treatment. The residual 
standard deviations for every gene is fit to a global mean-variance trend across all the genes of all 
samples. In the final step, precision weights are calculated for each gene.   
  

 

Phase I enzymes which are mainly cytochrome P450 involve the transfer of hydroxyl, 

carboxyl, or an amino group to the toxic compound (Lin et al., 2016). In the analysis 

shown in figure 4.11, the Aldo-Keto reductase family (AKR) had the largest increase in 

expression, followed by prostaglandin reductase (PTGR), with SF treatment in both 

basal and high glucose resulting in a 4-fold increase in PTGR activity. In the no glucose 

environment, PTGR activity was also abolished. The analysis identified that SF also 

upregulated in both basal and high glucose several aldehyde dehydrogenases along 

with several genes from the cytochrome P450 family. These effects were not observed 

in the no glucose environment (figure 4.11 and table 4.3).   
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Figure 4.11. Induction of a selection of phase I genes by 10 µM SF in different glucose 

environments.  The x-axis represents the log2 fold change whilst, the y-axis represents the 

genes of interest. These include Aldo-Keto Reductase 1 Family Member B10 (AKR1B10), Aldo-

Keto Reductase 1 Family Member C1 (AKR1C1), Aldehyde Dehydrogenase 1 Family Member 

A1, Aldehyde Dehydrogenase 7 Family Member A1 (ALDH7A1), Carbonyl Reductase (CBR1), 

Carboxylesterase (CES1), Cytochrome P450 Family 24 Subfamily A Member 1 (CYP24A1), 

Cytochrome P450 Family 4 Subfamily F11 (CYP4F11), Cytochrome P450 Family 4 Subfamily 

F12 (CYP4F12), Epoxide Hydrolase 1 (EPHX1) and Prostaglandin Reductase (PTGR).  The 

statistical significance of the DEG can be found in table 4.3.  

 

Phase II enzymes are also referred to as transferases as they can transfer the modified 

metabolite to hydrophilic molecules. From figure 4.12, SF treatment resulted in a large 

induction, more than 3-fold in both basal and high glucose in NQO1, thereby confirming 

the qt-PCR data identified in chapter 3 (figure 3.2b and 3.5b). In addition, the analysis 

identified SF upregulating two members of the sulfotransferase family (SULT1A1/A2) 

involved in the conjugation of a wide range of xenobiotics rendering them more water 

soluble to facilitate its excretion. The analysis also identified SF downregulating the 

expression of two glutathione S-transferase genes (GSTM3/M4) whose function is 

involved in conjugating glutathione to xenobiotics, thereby potentially suggesting that 

these two GSTMs are not needed for the detoxification of xenobiotics. What is striking 

is that all of the phase II genes analyzed were instead downregulated in the no glucose 

environment (figure 4.12, table 4.3).  
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Figure 4.12. Induction of a selection of phase II genes by 10 µM SF in different glucose 

environments. The x-axis represents the log2 fold change whilst, the y-axis represents the 

genes of interest. These include Glutathione-S-transferase Mu 3 (GSTM3), Glutathione-S-

transferase Mu 4 (GSTM4), Glutathione-S-transferase Omega 1, (GSTO1), Microsomal 

Glutathione S-transferase 1 (MGST1), NAD(P)H Dehydrogenase Quinone 1, (NQO1), 

Sulfotransferase 1A1 (SULT1A1), Sulfotransferase 1A2 (SULT1A2). The statistical significance 

of the DEG can be found in table 4.3.  

After phase II enzymes have increased the hydrophobicity of the xenobiotic, this 

facilitates the excretion of the toxic compound by phase III enzymes. In the analysis, it 

was identified that SF in the basal and high glucose environment upregulated several 

multidrug resistance-associated proteins such as ABCC1, ABCC2, ABCC3, and 

ABCG2: thereby identifying several different mechanisms on how SF enables liver cells 

to eliminate toxic substrates (figure 4.13 and table 4.3) In the no glucose environment 

it was identified no induction of the multidrug resistance-associated proteins (figure 

4.13 and table 4.3).   

 

 

Figure 4.13. Induction of a selection of phase III genes by 10 µM SF in different glucose 

environments. The x-axis represents the log2 fold change whilst, the y-axis represents the 

genes of interest. These include Multidrug resistance-associated protein 1 (ABCC1), Multidrug 

resistance-associated protein 2 (ABCC2), Canalicular multispecific organic anion transporter 2 

(ABCC3), and ATP-binding cassette superfamily G member 2 (ABCG2). The statistical 

significance of the DEG can be found in table 4.3. 
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The data from figure 4.14, revealed that SF in the basal and high glucose environments 

upregulated genes involved in two different mechanisms through which NRF2 induces 

the antioxidant response: inducing genes involved in glutathione production, as well as 

thioredoxin reductase (TXNRD1). SF treatment resulted in a 4-fold increase in 

TXNRD1 compared to a 2-fold increase in both no and basal glucose. TXNRD1 

functions in maintaining thioredoxin (TXN) in the reduced state through the reduction of 

CySS- to Cys in the presence of NADPH. SF also induced the expression of the 

SLC7A11 transporter to the same extent in both glucose environments, whose function 

is importing cysteine from the media into the cell. SF treatment also resulted in a 3-fold 

increase in the high glucose environment in glutathione peroxidase (GPX) and a 2-fold 

increase in peroxiredoxin (PRDX1) in both glucose environments whose functions are 

involved in reducing hydrogen peroxide through the action of reduced glutathione. 

Finally, SF treatment resulted in a 4-fold increase in both basal and high glucose in 

sulfiredoxin (SRXN1) involved in reducing the cysteine-sulfinic acid formed under 

exposure to oxidants. The most prominent finding from figure 4.14 is the identification 

of a greater induction of the antioxidant genes in the high glucose environment 

compared to basal and no, thereby identifying a mechanism on how SF increases the 

antioxidant response, to suppress the increased ROS induced by the excessive 

glucose.   
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Figure 4.14. Induction of a selection of genes involved in the antioxidant response by 10 

µM SF in different glucose environments. The x-axis represents the log2 fold change whilst, 

the y-axis represents the genes of interest. These include Glutamate-Cysteine Ligase Catalytic 

Subunit (GCLC) and the Glutamate-Cysteine Regulatory Subunit (GCLM), Glutaredoxin-1 

(GLRX), Glutathione Peroxidase (GPX2), Glutathione Reductase (GSR), Peroxiredoxin-1 

(PRDX1), Sodium and Chloride Dependent Glycine Transporter 1 (SLC6A9), Cystine/Glutamate 

Transporter (SLC7A11), Sulfiredoxin-1 (SRXN1), Thioredoxin (TXN), Thioredoxin Reductase 1 

(TXNRD1). The statistical significance of the DEG can be found in table 4.3.   

 

This analysis also revealed that under no glucose, despite the presence of SF NRF2 

activation does not occur, as none of the NRF2 target genes are induced and failed to 

reach statistical significance.  
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4.3.5. Characterizing SF effect on genes linked to central metabolism in 

hepatocytes under different metabolic states 

In the previous chapter, physiological concentrations of SF resulted in a decrease in 

lipid accumulation through the Oil Red O assay (figure 3.9b), along with upregulation 

of CPT1a and downregulating the gene responsible for the synthesis of fatty acid 

synthase FASN (figure 3.3 a and b). In addition, the high glucose environment showed 

the upregulation of three essential genes involved in the PPP. To gain a mechanistic 

understanding of how these processes are interconnected, the next section of the 

analysis focused on characterising SF's effect on genes linked to central metabolism in 

hepatocytes cultured in the different glucose environments.    

4.3.5.1 SF impacts key genes involved in lipid metabolism: 

GSEA did not identify any pathway related to lipid metabolism being enriched. Perhaps 

this was due to the limited sample size utilized in the study. To assess, therefore, how 

SF affects lipid metabolism, genes involved in lipid metabolism (both biosynthesis and 

oxidation) were consequently carried out manually by selecting genes from the output 

table of the voom plot. Key selected genes that NRF2 influences were obtained from 

the following papers (Hayes and Dinkova-Kostova, 2014, Tebay et al., 2015). Manual 

identification revealed that SF in both the basal and the high glucose environment 

profoundly affected a wide range of genes involved in lipid metabolism (both oxidation 

and biosynthesis (table 4.4 and figure 4.15) therefore providing evidence that SF is 

interfering in this biological process despite the gene set not passing the enrichment 

threshold. The most exciting finding is that SF downregulated the mRNA of three 

crucial transcription factors involved in lipid metabolism: SREBF1 regulates the activity 

of genes in lipid biosynthesis. SREBF2 regulates the activity of genes in cholesterol 

homeostasis and CCAAT enhancer-binding protein A (CEBPA), a transcription 

involved in adipogenesis, the synthesis of new fat cells (table 4.4 and figure 4.15). 

CEBPA was differentially expressed in all three-glucose environments, whilst SREBF1 

in basal and high glucose and SREBF2 only in basal glucose. Although FASN was not 

differentially expressed, the activity of this gene along with FADS1 (involved in adding 

double bonds to synthesize monounsaturated fatty acids) is regulated by SREBF1.  

The other promising finding emerging from this analysis was the downregulation in the 

activity of acetyl CoA carboxylase (ACACA) (only in the high glucose environment 

q=0.01) coupled with an increase in malonyl CoA decarboxylase (MLYCD). ACACA is 

involved in the rate-limiting step in fatty acid biosynthesis by converting acetyl-CoA to 

malonyl CoA, whilst MLYCD essentially catalyzes the reverse reaction, breaking down 
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malonyl CoA back to acetyl CoA. Acetyl CoA is an intermediate in a wide range of 

cellular processes. The analysis also revealed SF interfering with β-oxidation by 

upregulating CPT1a in both glucose environments, confirming the results in chapter 3 

(figure 3.3a and 3.6a) but also downregulating the activity of two genes involved in the 

synthesis of triglycerides: diacylglycerol O-acyltransferase 1/2 (DGAT1/2) (Yen et al., 

2008). Further analysis revealed that SF downregulated the long-chain-fatty acid-CoA 

ligase 1/5 (ACSL1) gene, whilst at the same time upregulating the ACSL5 gene. These 

genes are involved in converting free long-chain fatty acids into fatty acyl-CoA esters.  

These fatty acyl-CoA esters are then transported to the mitochondrial through the 

action of CPT1a to fatty acylcarnitine. SF also affected the activity of the fatty-acid 

binding protein 1/5. These proteins located in the cytoplasm bind long chain fatty acids 

as well as other hydrophobic ligands.   
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Table 4.4 Genes differentially expressed in response to SF under various glucose 

concentrations involved in lipid metabolism  

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Control 
NG 

SF Log2 
Fold 

Change 
vs 

Control 
HG 

SF Log2 
Fold 

Change 
vs 

Control 
BG 

Lipid metabolism      

ENSG00000278540 ACACA Acetyl CoA 

carboxylase 1 

-0.06 -0.511 -0.18 

ENSG00000122971 ACADS Acyl CoA 

dehydrogenase 

-0.45 -0.22 -0.521 

ENSG00000151726 ACSL1 Long-chain-fatty 

acid-CoA ligase 1 

0.25 -0.561 -0.351 

ENSG00000197142 ACSL5 Long-chain-fatty 

acid-CoA ligase 5 

0.571 0.903 1.143 

ENSG00000245848 CEBPA CCAAT enhancer 

binding protein A 

-0.831 -1.193 -1.443 

ENSG00000198848 CES1 Carboxylesterase 0.721 0.741 0.721 

ENSG00000110090 CPT1A Carnitine 

palmitoyltransferase 

I 

0.20 0.982 0.782 

ENSG00000185000 DGAT1 Diacylglycerol O-

acyltransferase 1 

-0.36 -0.51 -0.851 

ENSG00000062282 DGAT2 Diacylglycerol O-

acyltransferase 2 

-1.09 -0.70 -0.851 

ENSG00000163586 FABP1 Fatty Acid Binding 

Protein 1 

-1.231 -0.49 -0.971 

ENSG00000164687 
 

FABP5 Fatty Acid Binding 

Protein 5 

-0.831 0.651 0.743 

ENSG00000149485 FADS1 Fatty acid 
desaturase 1 

0.20 -0.541 -0.371 

ENSG00000103150 MLYCD Malonyl-CoA 

decarboxylase 

0.02 2.043 1.693 

ENSG00000072310 SREBF1 Sterol regulatory 

element-binding 

transcription factor 1 

-0.36 -0.531 -0.561 

ENSG00000198911 SREBF2 Sterol regulatory 

element-binding 

transcription factor 2 

0.02 -0.3 -0.321 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The adjusted p-values were obtained 
through a linear model by the limma function. The gene counts were first converted to log counts per 
million. Limma then plots the log-cpm for each experimental design control vs treatment. The residual 
standard deviations for every gene is fit to a global mean-variance trend across all the genes of all 
samples. In the final step, precision weights are calculated for each gene.   
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Figure 4.15. Induction of a selection of genes involved in lipid metabolism by 10 µM SF in 

different glucose environments.  The x-axis represents the log2 fold change whilst, the y-axis 

represents the genes of interest. These include Acetyl-CoA Carboxylase A (ACACA), Acyl-CoA 

Dehydrogenase Short Chain (ACADS), Long Chain-Fatty Acid-CoA Ligase 1/Ligase 5 

(ASCL1/ASCL5), CCAAT/enhancer Binding Protein Alpha (CEBPA), Carboxylesterase 1 

(CES1), Carnitine Palmitoyltransferase I (CPT1a), Diacylglycerol O-acyltransferase 1/2 

(DGAT1/2), Fatty Acid Binding Protein 1/5 (FABP1/5), Fatty Acid Desaturase 1 (FADS1), 

Malonyl-CoA Decarboxylase Mitochondrial (MLYCD), Sterol Regulatory Element Binding 

Transcription Factor 1/ 2 (SREBF1/2). Statistical significance of the DEG can be found in table 

4.4  
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4.3.5.2 SF affects a wide range of additional metabolic processes.  

GSEA in a high glucose environment (figure 4.7) revealed SF rewiring hepatic 

metabolism by affecting a wide range of additional metabolic processes including 

upregulation of oxidative phosphorylation, fructose, and mannose metabolism, one 

carbon pool by folate, along with downregulation of histidine and serine, glycine, and 

threonine metabolism. Detailed analysis on how SF affects each gene set has been 

explained in the section below and the next chapter 5.  

 

4.3.5.3 SF affects Carbohydrate metabolism and Pentose Phosphate 

Table 1 (Appendix) revealed that in the high glucose environment only SF induced 

genes in the PPP, although following multiple corrections the gene set failed to reach 

significance (q=0.08). A more detailed analysis of the enriched core genes in the gene 

set is covered in chapter 5.   

4.3.5.4 SF affects oxidative phosphorylation in the high glucose 

environment 

Figure 4.7 identified that in the presence of excess glucose, SF upregulates the gene 

set oxidative phosphorylation implying SF affects and therefore increases the activity of 

proteins involved in the Electron Transport Chain. A closer assessment of the pathway 

revealed that the top two upregulated genes are: ATP6V1E1 and ATP5G1. Both 

proteins are involved in regulating the activity of complex V, ATP synthase. Despite the 

reduction in mitochondrial respiration by SF described in (figure 3.12 b) individual 

genes in the OxPhos pathway were upregulated by SF. This could be a 

consequence/response of the mitochondrial respiration reduction, but the mechanisms 

are unknown.  

4.3.5.5 SF affects both glycine, serine, and threonine along with one 

carbon metabolism in both basal and high glucose 

The analysis from figures 4.5-4.7 stumbled upon a novel finding. SF downregulates the 

serine, glycine, and threonine gene set in all three glucose environments along with 

upregulation of one pool by folate, better known as one carbon metabolism.   

One carbon metabolism is series of biosynthetic reactions largely derived from two 

amino acids; serine and glycine. Analysis of both gene sets (serine, glycine, and 
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threonine along with one carbon pool by folate) has been conducted in the following 

chapter 5. 

4.3.5.6 SF affects histidine metabolism in both high and no glucose. 

Another interesting finding that no studies have reported in the literature was SF 

downregulating genes involved in histidine metabolism. Histidine metabolism involves 

both its biosynthesis but also its degradation. GSEA revealed that SF downregulated 

the activity of four genes involved histidine catabolism to glutamate: in the high glucose 

environment SF led to a 1.7-fold downregulation in the histidine ammonia ligase (HAL) 

gene. HAL catalyzes the first reaction in histidine catabolism, the 

nonoxidative deamination of L-histidine to trans-urocanic acid or urocanate. In the 

basal and no glucose environment, HAL was also downregulated but failed to reach 

significance (table 4.5 and figure 4.16). SF also resulted in a 4-fold downregulation in 

both basal and high glucose in the urocanase (URCO1) gene. URCO1 catalyzes the 

second step in the degradation of histidine, the hydration of urocanate into 

imidazolonepropionate. SF also resulted in a 2-fold downregulation in both basal and 

high glucose environments of the imidazolonepropionase (AMDHD1) gene. AMDHD1 

converts 4-imidazolone-5-propanoate to N-formimidoyl-L-glutamate (table 4.5 and 

figure 4.16). The final gene that was found to be downregulated by SF again in both 

basal and high glucose environments, still involved in histidine catabolism is the 

aminoacylase 3 (ACY3). ACY3 removes the acetyl group from N-acetyl glutamate to 

generate glutamate. The acyl group is what provides stability for the amino acid, 

making it more resistant to degradation. The data therefore may suggest a build of the 

amino acid histidine and thereby potentially implying that SF is redirecting histidine to 

other metabolic processes.    

The analysis also identified SF downregulating several genes in the family of aldehyde 

dehydrogenase in the different metabolic states: aldehyde dehydrogenase 1 family 

member B1 (ALDH1B1), aldehyde dehydrogenase 9 family member A1 (ALDH9A1), 

and aldehyde dehydrogenase 7 family member A1 (ALDH7A1). Aldehyde 

dehydrogenase utilizes NADPH to convert aldehydes to carboxylic acids. Therefore 

downregulation of all these family of enzymes may suggest SF inhibiting these 

reactions so that the NADPH may be redirected to support the antioxidant response, 

glutathione production/utilization (figure 4.14). Results are shown in table 4.5 and 

figure 4.16.  
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Table 4.5 Top enriched differentially expressed genes from the histidine metabolism 

gene set by 10 µM SF in different glucose environments 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Control 
NG 

SF 
Log2 
Fold 

Change 
vs 

Control 
HG 

SF 
Log2 
Fold 

Change 
vs 

Control 
BG 

Histidine metabolism      

ENSG00000132744 ACY3 Aminoacylase 3 -1.95 -1.342  -1.613 

ENSG00000137124 ALDH1B1 Aldehyde 

Dehydrogenase 1 

family member B1 

-0.871 0.02 -0.14 

ENSG00000006534 ALDH3B1 Aldehyde 

Dehydrogenase 3 

family member B1 

 -0.57 -1.212  -1.333 

ENSG00000164904 

 

ALDH7A1 Aldehyde 

Dehyrogenase 7 family 

member A1 

 -0.41 -0.411  -0.431 

ENSG00000143149 ALDH9A1  Aldehyde 

Dehydrogenase 9 

family member A1 

  0.06 -0.461  -0.331 

ENSG00000139344 AMDHD1 Imdidazolonepropinase     0.1 -1.253  -1.032 

ENSG00000084110 HAL Histidine ammonia 

ligase 

-0.57 -0.741 -0.49 

ENSG00000159650 UROC1 Urocanase -0.09 -2.631 -2.301 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The adjusted p-values were obtained 
through a linear model by the limma function. The gene counts were first converted to log counts per 
million. Limma then plots the log-cpm for each experimental design control vs treatment. The residual 
standard deviations for every gene is fit to a global mean-variance trend across all the genes of all 
samples. In the final step, precision weights are calculated for each gene.   
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Figure 4.16. Top enriched differentially expressed genes from the histidine metabolism 

gene set by 10 µM SF in different glucose environments.  The -axis represents the log2 fold 

change whilst, the y-axis represents the genes of interest. These include Aminoacylae 3 

(ACY3), Aldehyde Dehydrogenase 1 Family Member B1(ALDH1B1), Aldehyde Dehydrogenase 

3 Family Member B1 (ALDH3B1), Aldehyde Dehydrogenase 7 Family Member A1 (ALDH7A1), 

Aldehyde Dehydrogenase 9 Family Member A1 (ALDH9A1), Imdidazolonepropinase 

(AMDHD1), Histidine Ammonia Ligase (Hal), Urocanase (UROC1). Statistical significance of the 

DEG can be found in table 4.5  

 

4.3.5.7 SF inhibits genes involved in lysine downregulation in basal 

glucose environments  

GSEA identified that in the basal glucose environment, SF downregulated the gene set 

lysine degradation. Therefore, like with the other gene sets, the DEG were extracted 

and plotted in bar plots to gain a better understanding, of how SF targets this specific 

pathway. The analysis revealed that essentially SF downregulated (table 4.6 figure 

4.17 the first two and the last two genes involved in the breakdown of lysine to 

carnitine, potentially suggesting more lysine in the system to be converted to carnitine 

for FA metabolism. SF also downregulated greater than 8-fold the histone-lysine-N-

methyltransferase (SETD7) gene (figure 4.17 and table 4.6). This effect was only 

identified in the basal glucose environment. SETD7 function is to catalyze the first step 

in the breakdown of lysine to carnitine,( lysine to N6-ME-lysine). SF also 

Log2 FC 
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downregulated by 1.7-fold the euchromatic histone-lysine-N-methyltransferase 2 

(EHMT2), involved in converting N6-ME-Lysine to N, N-trimethyl lysine, along with 

downregulating about 1.5-fold both ALDH7A1 and ALDH9A1 which convert 4-

trimethylammoniobutanal to 4-trimethylammoniobutanoate (figure 4.17 and table 4.6). 

SF also led to 1.4-fold downregulation in both basal and high glucose in HADH, 

involved in the breakdown of S-3-Hydroxy-butanoyl-CoA to Acetoacetyl-CoA (figure 

4.17 and table 4.6). Acetoacetyl-CoA feeds into the TCA cycle. Finally, my results also 

showed that SF led to a 1.5-fold downregulation in the 2-oxoglutarate dehydrogenase, 

mitochondrial (OGDHL) gene, involved in the breakdown of 2-oxoglutarate to succinate 

and a 128-fold downregulation in the histone-lysine-N-methyltransferase, H3 lysine-36 

specific (NSD1) gene, a histone-lysine-N-methyltransferase, potentially implying, that 

SF was inhibiting the transfer of methyl groups from the lysine to histones. Results can 

be identified in figure 4.17 and table 4.6.  

Table 4.6 Top enriched differentially expressed genes from the lysine degradation gene 

set by 10 µM SF in different glucose environments 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Control 
NG 

SF 
Log2 
Fold 

Change 
vs 

Control 
HG 

SF 
Log2 
Fold 

Change 
vs 

Control 
BG 

Lysine degradation      

ENSG00000145391 
 

SETD7 Histone-lysine-N-
Methyltransferase 

-0.02 0.40 -3.652 

ENSG00000138796 
 

HADH Hydroxyacyl-

Coenzyme A 

dehydrogenase 

-0.03 -0.442 -0.571 

ENSG00000204371 
 

EHMT2 Euchromatic 

histone-lysine-N-

methyltransferase 2 

-0.65 -0.31 -0.711 

ENSG00000165671 
 

NSD1 Histone-lysine-N-

methyltransferase, 

H3 lysine-36 specific 

3.63 0.50 -7.532 

ENSG00000164904 
 

ALDH7A1 Aldehyde 

Dehydrogenase 7 

family member A1 

-0.41 -0.411 -0.431 

ENSG00000143149 ALDH9A1  Aldehyde 

Dehydrogenase 9 

family member A1 

  0.06 -0.461  -0.331 

ENSG00000197444 
 

OGDHL  2-Oxoglutrate 

dehydrogenase like, 

mitochondrial 

-0.91 -0.05 -0.601 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The adjusted p-values were obtained 
through a linear model by the limma function. The gene counts were first converted to log counts per 
million. Limma then plots the log-cpm for each experimental design control vs treatment. The residual 
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standard deviations for every gene is fit to a global mean-variance trend across all the genes of all 
samples. In the final step, precision weights are calculated for each gene.   

 

 

Figure 4.17. Top enriched differentially expressed genes from the lysine degradation 

gene set by 10 µM SF in different glucose environments.  The x-axis represents the log2 fold 

change whilst, the y-axis represents the genes of interest. These include Aldehyde 

Dehydrogenase 7 family member A1, (ALDH7A1), Aldehyde Dehydrogenase 9 family member 

A1 (ALDH9A1), Euchromatic histone-lysine-N-methyltransferase 2 (EHMT2), Hydroxyacyl 

Coenzyme A dehydrogenase (HADH), Histone-lysine-N-methyltransferase H3, lysine 36 specific 

(NSD1), 2-Oxoglutarate dehydrogenase like mitochondrial (OGHDL) and Histone-lysine-N-

methyl transferase (SETD7). The statistical significance of the DEG can be found in table 4.6. 
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4.3.6 SF rewires metabolism in no glucose environment to promote cell 

survival 

Figure 4.5, revealed that in glucose starvation, SF downregulated a wide range of 

metabolic pathways. Whether downregulation of these metabolic pathways is simply a 

consequence of the lack of glucose, due to the cancer phenotype of HepG2 requiring 

glucose to fuel their activity or SF's actual contribution is something to consider. As 

table 4.1 identified a small number of genes being downregulated in each metabolic 

pathway, the analysis has been broken down into the following section and certain 

gene sets of interest have been analyzed.  

4.3.6.1 SF impacts on arginine and proline metabolism 

The gene set arginine and proline metabolism consist of a series of reactions which 

include the following: proline and arginine biosynthesis, creatine metabolism, 

polyamine biosynthesis either from the breakdown of ornithine or from the breakdown 

of arginine, and finally arginine succinyltransferase pathway. The analysis revealed 

four genes in the set were downregulated and differentially expressed after multiple 

testing corrections. These are ALDH1B1, argininosuccinate synthetase (ASS1), 

guanidinoacetate N-methyltransferase (GAMT), and creatine kinase (CKM). ALDH1B1 

can catalyze two reactions: 4-aminobutanal into 4-aminobutarate and N4-

acetylaminobutanal into 4-acetaminobutaonate. ASS1 catalyzes the penultimate step 

of the urea cycle; the formation of arginosuccinate from, citrulline, aspartate, and ATP. 

Along with argininosuccinate lysases, these two enzymes are responsible for producing 

arginine. Downregulation of ASS1 may imply an accumulation of the amino acid 

aspartate and decreased formation of arginine.  GAMT catalyzes the conversion of 

guanidinoacetate to creatine through the methyl donor S-Adenosylmethionine SAM. 

Both ASS1 and GAMT genes are both highly specific in the liver.  Finally, CKM 

catalyzes the addition of a phosphate group on creatine. Downregulation of CKM 

results in a build of creatine.  

4.3.6.2 SF impacts on serine glycine and threonine metabolism 

The two core enriched genes identified from the serine glycine and threonine pathway 

in this glucose environment following multiple testing correction were GAMT and 

glycine C-acetyltransferase (GCAT). GCAT is involved in the degradation of threonine 

to glycine. Threonine degradation is a two step process: in the first step, L-threonine 

dehydrogenase breaks down L-threonine to 2-amino-3-ketobutarate. In the second 

step, GCAT converts this intermediate into glycine and acetyl CoA. Downregulation of 
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these genes may imply a reduction in the formation of glycine. It was also identified that 

SF downregulated the activity of methionine S-adenosyltransferase (MAT1A). Whilst 

this gene is not involved in serine, glycine, and threonine metabolism, it is involved in 

methionine metabolism. This gene catalyzes the conversion of methionine to S-

Adenosylmethionine (SAM). Therefore, downregulation of this gene will result in the 

accumulation of the amino acid methionine (see chapter 5).  

4.3.6.3 SF impacts on tryptophan metabolism 

Tryptophan metabolism consists of both its biosynthesis, catabolism, and melatonin 

synthesis. The two differentially expressed genes identified following multiple testing 

were glutaryl-CoA dehydrogenase (GCDH) and acetyl-CoA acetyltransferase 

mitochondrial (ACAT1). Although involved in tryptophan metabolism, these two genes 

are also involved in a wide range of different metabolic reactions, including fatty acid 

metabolism. GCDH catalyzes a two-step reaction: firstly, the oxidation of glutaryl-CoA 

to glutaconyl-CoA. This intermediate remains bound to the enzyme and is then 

decarboxylated to form crotonyl-CoA. ACAT1 instead catalyzes the breakdown of 

acetoacetyl-CoA into two molecules of acetyl-CoA. As this reaction is reversible, it 

could also imply an increase in either the metabolites acetyl-CoA or acetoacetyl-CoA, 

the latter is the precursor that feeds into the mevalonate pathway for cholesterol 

biosynthesis. These two genes are also present in the KEGG fatty acid metabolism 

gene set.  

4.3.6.4 SF impacts on retinol metabolism 

Retinol metabolism is associated with the metabolism of vitamins and cofactors. 

Results of the GSEA revealed that three genes were significantly downregulated. 

These are ADH6, CYP3A5, and DHRS3. Alcohol dehydrogenase 6 (ADH6) and short 

chain dehydrogenase/reductase 3, (DHSR3) catalyze the reversible reaction of retinol 

to retinal. The forward reaction retinol to retinal via NADH is produced. Cytochrome 

P450 family 3 subfamily A member 5 (CYP3A5) belongs to the family of cytochrome 

P450.  CYP3A5 catalyzes the conversion using NADPH of retinoate to all-trans-5-6-

Epoxyretinoic acid.  

 

 



154 
 

4.3.6.5 SF impacts on glycerolphospholipid, glycerolipid, and fatty acid 

metabolism: 

Since the enriched genes in the tryptophan metabolism gene set were related to fatty 

acid metabolism, and as glycerolphospholipid glycerolipid gene sets were negatively 

enriched, the analysis was extended to gain a mechanistic understanding of how SF 

affects lipid metabolism in glucose deprivation. In the glycerolphospholipid pathway, 

the following genes were differentially expressed following multiple testing corrections: 

glycerol-3-phosphate dehydrogenase (GPD1), phospholipase D1 (CHPT1), 

lysophospholipid acyltransferase (LPCAT4), glycerol-3-phosphate acyltransferase 1 

(GPAM), and group XIIA secretory phospholipase A2 (PLA2G12A). GPD1 catalyzes 

the reversible reaction of glycerol-3-phosphate to glycerone phosphate utilizing NAD. 

Glycerone 3 Phosphate, more commonly referred to as dihydroxyacetone phosphate, 

is then redirected towards triglycerides synthesis metabolism, although it also 

participates in glycolysis, whereas accumulation of glycerol-3-phosphate can be 

directed for the de novo synthesis of glycolipids. CHPT1 is the diacylglycerol choline 

phosphotransferase. This enzyme regulates the reversible conversion of CDP-choline 

to phosphatidylcholine, an essential component of cell membranes. LPCAT4 is the 

lysophospholipid acyltransferase 4. This gene is also responsible for controlling the 

synthesis of phosphatidylcholine. GPAM catalyzes the committed step in glycerolipid 

biosynthesis. This gene controls the levels of cellular triacylglycerol and phospholipid 

levels. Finally, PLA2G12A, a secretory phospholipase A2, is involved in producing 

arachidonic acid from phospholipids required to produce eicosanoids. 

With regards to the glycerolipid and fatty acid metabolism pathway, the following genes 

that were differentially expressed following multiple testing included genes that also 

appear to regulate additional pathways these include: ACAT1, GCDH, ADH6 (see 

section above) as well as ALDH1B1, sterol O-acyltransferase 2 (SOAT2), malonyl CoA 

acyl carrier protein transacylase (MCAT), apolipoprotein A-II (APOA2), and 

apolipoprotein F (APOF). SOAT2 is involved both in steroid and cholesterol 

metabolism. This enzyme catalyzes the reversible formation of sterol esters 

(cholesterol esters) from a sterol and a long chain fatty acyl-coenzyme A. 

Downregulation of this gene could imply the build-up of cholesterol. MCAT is 

exclusively found in the mitochondria where it catalyzes the transfer of the malonyl 

group from malonyl-CoA to the mitochondrial carrier protein. APOA2 and APOF both 

belong to the family of apolipoprotein. APOA2 is the second most abundant protein in 

high-density cholesterol. APOF is instead involved in binding with lipoproteins and may 

also be involved in transporting cholesterol.  Other DEGs that were identified to play a 
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role in lipid metabolism are HSD3B7, involved in the biosynthesis of several hormonal 

steroids, paraoxonase 3 (PON3) which belongs to the family of paraoxonase is 

involved in inhibiting the oxidation of LDL-cholesterol as well as regulating the activity 

of HDL protein. It was also identified downregulation of both the fatty acid binding 

protein 1 and 5 (FABP1/5) and ASCL5 genes, which have already been mentioned in 

section 3.1.  A summary of all the genes that have been downregulated in Lipoprotein 

metabolism can be found in table 4.7. 

Table 4.7 Differentially expressed genes in response to SF in no glucose concentrations 

involved in Lipoprotein metabolic processes  

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Control 
NG 

Lipoprotein  
metabolic processes 

   

ENSG00000075239 ACAT1 Acetyl-CoA 

aceyltransferase 

mitochondrial 

-0.491 

ENSG00000158874 APOA2 Apolipoprotein A-II -0.761 

ENSG00000175336 APOF Apolipoprotein F -0.901 

ENSG00000119927 GPAM Glycerol-3-phosphate 

acyltransferase 1 

-0.871 

ENSG00000099377 HSD3B7  cholest-5-ene-3β,7α-

diol 3β-dehydrogenase 

-0.841 

ENSG00000167780 SOAT2 Sterol O-

acyltransferase 2 

-0.941 

ENSG00000197142 ACSL5 Long-chain-fatty acid-

CoA ligase 5 

0.571 

ENSG00000111666 CHPT1 Phospholipase D1 -0.441 

ENSG00000163586 FABP1 Fatty Acid Binding 

Protein 1 

-1.231 

ENSG00000164687 
 

FABP5 Fatty Acid Binding 

Protein 5 

-0.831 

ENSG00000105607 GCDH Glutaryl-CoA 

dehydrogenase 

-0.761 

ENSG00000151224 MAT1A S-adenosylmethionine 

synthetase 1 

-0.871 

ENSG00000100294 MCAT Malonyl CoA acyl 

carrier protein 

transacylase 

-0.651 

ENSG00000105852 PON3 Paraoxnase 3 -0.441 
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ENSG00000167588 GPD1 Glycerol-3-phosphate 

dehydrogenase 

-1.091 

ENSG00000176454 LPCAT4 Lysophospholipid 

acyltransferase 

-0.811 

ENSG00000123739 PLA2G12A Group XIIA secretory 

phospholipase A2 

-0.461 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The adjusted p-values were obtained 
through a linear model by the limma function. The gene counts were first converted to log counts per 
million. Limma then plots the log-cpm for each experimental design control vs treatment. The 
residual standard deviations for every gene is fit to a global mean-variance trend across all the genes 
of all samples. In the final step, precision weights are calculated for each gene.   
 

 

4.3.7. Identification of master regulators in the presence of excess 

glucose from downstream metabolic pathways that are induced by 

NRF2 activation.  

Up to now, it has been identified that SF can modulate, especially in extreme glucose 

environments a wide range of metabolic processes. To identify whether these enriched 

gene sets are mediated through NRF2 or other transcription factors, the final analysis 

that was conducted in the chapter was using regulatory networks. A network usually 

contains a collection of genes, some of which can act as regulators. These regulators 

depending on the stimuli will, in turn, control the expression of genes, thereby 

regulating the mRNA levels and in turn protein of those subsets of genes. The outcome 

will determine the function of the cell.   

For the network analysis, only the high glucose data set was analyzed, as in this 

environment, SF yielded the most prominent changes in metabolic responses. The 

analysis first identified NRF2 interacting and potentially regulating a total of 37 other 

TF. The analysis also revealed that the number of edges, thereby the number of 

interactions between the different TF was 30. The results are shown in figure 4.18. 

From the analysis, an important finding was the upregulation of the Sp1. Sp1 has been 

previously been reported to take part in a wide range of cellular processes including 

cell differentiation, cell growth, cell differentiation, cell growth, apoptosis, as well as 

regulating immune response and damages to DNA. This may suggest that NRF2 may 

be either forming a protein-protein interaction with Sp1 to regulate some of the 

metabolic processes identified in this chapter. For example, in figure 4.18 the key 

findings identified from the analysis revealed that a downstream target of Sp1 is 

SREBF1, a crucial transcription factor involved in fatty acid biosynthesis, thereby 

getting a better mechanistic understanding of how SF regulates lipid metabolism. A 
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second TF involved in lipid metabolism is also regulated by Sp1  although this time it is 

indirect, as it is through EGR1 is CEBPA, involved in adipogenesis.  

 

 

 

 

 

 

Figure 4.18. Transcription factors activity influenced by NRF2 in the HG dataset. Blue 

represents downregulation whilst red represents upregulation. The reference database was 

NRF2ome. The whole database was downloaded as a CSV file. It was then filtered to import a 

database containing only transcriptional regulation into Cytoscape.  The image was constructed 

using Cytoscape 3.7.1. 
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4.4 Discussion: 
 

In this study, HepG2 were treated for 24 h with physiological concentrations of SF 10 

µM under different glucose conditions: NG, BG, and HG. Transcriptome analysis was 

conducted to address the transcriptional effect of SF in different metabolic states in 

HepG2 by mainly assessing, i) how the NRF2 target genes respond under different 

metabolic states, as well as ii) characterizing the SF effect on genes linked to central 

metabolism in hepatocytes under different metabolic states. To date, no RNAseq 

studies have been previously reported in HepG2 with 10 µM SF in different glucose 

environments. Findings from this detailed study have identified novel pathways that SF 

targets, and therefore the analysis has shed some light on how SF can act as a 

metabolic regulator. Whether all these changes in pathways are mediated primarily 

through NRF2 will be explored in chapter 6. A summary of the findings from this 

chapter have been presented in figure 4.19 

4.4.1 Genes encoding xenobiotic metabolism 

SF has been heavily studied both in vitro and in vivo. Its major effects are inducing 

Phase II genes and increasing the antioxidant capacity of cells, but also is involved in 

inducing apoptosis, inhibiting specific cyclin-dependent kinases in the cell cycle, and 

blocking angiogenesis, thereby preventing tumour growth (Juge et al., 2007).   

As previously mentioned, in the presence of SF, NRF2, which is usually bound to 

KEAP1 and sent for proteasomal degradation, is instead released and translocates to 

the nucleus binding to a specific site on the DNA known as antioxidant response 

element (ARE). This study, it was shown that 10 µM of SF, in both basal and high 

glucose, induced several well-characterized NRF2 targets such as NQO1, GCLC, 

GCLM, etc (Table 4.3). This is the first in vitro study that indicates that dietary 

activation of NRF2 by SF is still maintained during excess glucose. As mentioned in the 

discussion in chapter 3, culturing hepatocytes in supraphysiological concentrations of 

glucose results in increased production of ROS and inflammatory cytokines (Panahi et 

al., 2018).  Two studies on rats showed similar and consistent findings, that following a 

high-fat diet after 8 and 11 weeks, the mice started to develop mitochondrial 

dysfunction due to the increased production of ROS, along with inhibition of fatty acid 

oxidation (Vial et al., 2011, Togo et al., 2018). Therefore, the data suggests how SF 

inducing the anti-oxidant response is an important mechanism in preventing diseases 

of metabolic dysregulation such as type 2 diabetes, and not just simply involved in 

detoxifying xenobiotics.  
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Upregulation of the antioxidant response by SF is in agreement with what has been 

previously published in the literature. For example, SF treatment of 1,2,25 and 50 µM 

to a colon adenocarcinoma cell line Caco2, also showed induction of genes that were 

previously been reported to be upregulated by NRF2 (Traka et al., 2005). Moreover, 

data from non-cancerous primary prostate epithelial and stromal cells treated with 

15µM SF for 24 hours showed that 196 genes were found to be altered by more than 

1.5-fold in epithelial cells including members of the oxidoreductase family. In stroma 

cells, only 42 genes were altered by more than 1.5-fold (adjusted p-value < 0.001) 

(Chambers et al., 2009). At the same time cancerous LNCaP prostate cells, treated 

with 25µM SF had 2579 transcripts differentially expressed and 3061 transcripts 

differentially expressed in response to 10 µM SF compared to controls (p < 0.05) 

(Bhamre et al., 2009). The study by Bhamre and colleagues showed that those genes 

that were altered to the greatest extent in the LNCaP cells were those that encoded 

enzymes involved in xenobiotic metabolism and detoxification such as NQO1, 

TXNRD1, MGST1, and SOD1. In another study using non-cancerous human breast 

epithelial MCF10A cell line, treatment with 15µM SF for 24 hours resulted in increased 

expression of many xenobiotic genes: the Aldo-Keto reductases along with the 

following NQO1, HMOX1, TXNRD1, TXN, SRXN1, EPHX1, MGST1, GCLM, and GSR 

were all up-regulated at a transcriptional level (Agyeman et al., 2012). It is worth 

highlighting though that in some of the studies conducted, supraphysiological 

concentrations were used, therefore questioning, the significance of the findings. 

In the current study it was revealed through the GSEA, that in the BG data, SF resulted 

in a downregulation of the DNA replication gene set, further implying SF potentially 

impacting the cell cycle, and thereby inhibiting cell proliferation. This finding is in 

agreement with a recent study, showing that SF treatment (11 µM) to the melanoma 

cell line A375, RNAseq identified that the treatment not only resulted in the 

upregulation of specific genes involved in the antioxidant response, such as TXNRD1, 

SRXN1, GCLC/GCLM, etc, but also suppressing the G2/M cell cycle, causing cell cycle 

arrest, and promoting apoptosis through the activation of the following caspases 3,8,9. 

The outcome was inhibition of the melanoma cells to migrate and invade. Some of the 

pro-apoptotic genes that SF upregulated included were p53, BAX, PUMA, and MDM2 

(Arcidiacono et al., 2018). Network analysis in the study conducted by Arcidiacono et al 

revealed that the transcription factor EGR1, also identified in the current work was one 

of the responsible candidates involved in upregulating genes in growth arrest and 

proliferation. Several additional studies on ovarian and breast cancer cell lines have 

also reported similar findings; SF treatment resulted in downregulating cyclinD1 and 

upregulating apoptosis through modulation of the AKT/PI3K pathway (Cheng et al., 

2019, Pastorek et al., 2015).                                                   
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4.4.2 Genes encoding glucose and lipid metabolism: 

In addition to genes encoding proteins involved in xenobiotic metabolism and phase 2 

enzymes being differentially regulated in response to SF, it was also identified that SF 

induced changes in a wide range of different metabolic pathways such as lipid 

metabolism as well glycine, serine, and threonine metabolism, one carbon metabolism 

and metabolism of the amino acids lysine and histidine.  

Fatty acid metabolism consists of both the synthesis of novel lipids (de novo 

lipogenesis) as well as the breakdown of fatty acids through a process known as beta-

oxidation. This current work further supports findings that have been published in the 

literature. In this study, it was revealed that SF in both basal and high glucose 

downregulated several genes in fatty acid biosynthesis, including the Transcription 

Factors SREBF1, CEBPα, along with fatty acid desaturase (FADS), whilst acetyl CoA 

carboxylase (ACACA), the rate-limiting enzyme in the biosynthesis of fatty acids was 

only downregulated by SF in the high glucose set. The analysis also showed 

upregulation of several genes involved in β-oxidation such as CPT1α and MLYCD. 

Lipid biosynthesis is one of the most NADPH-consuming processes that occur in cells. 

Thereby downregulation of these genes by SF may suggest that the NADPH might be 

redirected to support the antioxidant response, especially for the reduction of 

glutathione and TXNRD1, again to prevent the metabolic dysregulation induced by the 

excessive glucose (Lin et al., 2016).  

Dysregulation in lipid metabolism not only contributes to the pathogenesis of CVD, but 

the increased accumulation of lipids can result in increased metabolic alterations, 

including obesity, insulin resistance, and metabolic syndrome, to name a few. Obesity 

is also an initiator and contributor to certain cancers such as prostate, postmenstrual, 

breast, bladder, ovarian, liver colon, and pancreas (Lega and Lipscombe, 2019). The 

accumulations of lipids have been shown to initiate carcinogenesis. For example, 

ovarian cancer relies on lipids provided by adipocytes in the tumour microenvironment 

for sustained growth, and hypertrophy of adipose tissue diminishes the oxygen levels 

available, promoting angiogenesis (Butler et al., 2020). Whilst tumours have 

dysregulated glucose metabolism, several tumours also have abnormally active lipid 

metabolism, allowing them to synthesize, elongate and desaturate fatty acids to 

support proliferation (Fernández et al., 2020). Several genes in de novo lipogenesis 

and cholesterol metabolism have also been identified as biomarkers for cancer 

prognosis. For example, FASN, which in the previous chapter, SF downregulated its 

activity (figure 3.3b), is upregulated in both prostate and breast cancer (Menendez et 

al., 2016, Menendez and Lupu, 2007). Once synthesized, fatty acids can become 
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activated by fatty acyl-CoA synthetases (ACSLs), required for the synthesis of 

phospholipids and triglycerides. In this study, it was identified that SF downregulated 

the activity of ASCL1 whilst upregulating the activity of ASCL5 in both basal and high 

glucose environments. This family of genes has also been proposed as biomarkers of 

cancer. For example, ASCL1/4, overexpression has been associated with poor clinical 

outcomes in patients with stage II Colon rectal cancer along with lung cancer (Vargas 

et al., 2016, Chen et al., 2016a). In contrast breast cancer patients with downregulation 

of ASCL5 again are associated with poorer prognosis (Yen et al., 2017). The analysis 

also identified SF downregulating two genes involved in triacylglycerol biosynthesis.  

The final step in the synthesis of triacylglycerol is catalyzed by the gene DGAT, where 

the diacylglycerol is esterified with a fatty acid. Two humans' DGAT genes have been 

identified. In this study, SF resulted in a downregulation in the DGAT1 gene in both 

glucose environments, while DGAT2 was only downregulated in the basal glucose set. 

Certain studies have found dysregulation of DGAT2 is found in HER2-breast cancer 

along with endometrial cancer (Gao et al., 2020).  All these novel findings may suggest 

new mechanisms on how SF may suppress the formation of cancers.                                                                  

One mechanism that has been understood on how SF modulates fatty acid metabolism 

is by inducing pAMPK and changing the pAMPK/AMPK ratio (Chen et al., 2018, Li et 

al., 2020b). AMPK acts as a molecular sensor (Herzig and Shaw, 2018). Activation of 

pAMPK leads to phosphorylation of acetyl-CoA carboxylase, thereby leading to its 

inhibition and promoting fatty acid oxidation (Viollet et al., 2006). Its activation also 

results not only in increased energy expenditure through expression PPAR-α; but, 

PPAR-α interacts with PGC-1α an inducer of mitochondrial biogenesis. pAMPK 

activation has also been shown to regulate the activity of the CD36 protein which 

enhances the uptake of fatty acids from the plasma membrane (Xu et al 2013).  

The analysis, also identified not only SF interfering in lipid metabolism but also with 

adipogenesis, the synthesis of new fat cells, through downregulation of the 

transcription factor CEBPα. Two studies using adipocytes have also support this 

finding. The first study showed, that SF treatment to the adipocyte cell line 3T3-LI 

resulted in decreased lipid accumulation shown by Oil Red O staining. This reduction 

was due to SF downregulating the expression of the TF PPARү and CEBPα, thereby 

confirming the findings obtained in this chapter (Choi et al., 2014). This study also 

identified, as previously mentioned that SF arrested genes in the cell cycle, along with 

promoting the expression of the protein p27, thereby preventing the ability of 

adipocytes to differentiate. The second study showed SF induced adipocyte browning, 

based on the increased number of mitochondrial and enzymes in the respiratory chain, 

through NRF2, SIRT1, and PGC1-α pathway. SF also increased the expression of the 
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uncoupling protein 1 (UCP1), increased glucose uptake, and inhibited gene related to 

FA synthesis (Zhang et al., 2016). In the current work, the expression of UCP1 and 

downstream targets of the PGC1-α were also assessed, but none of the genes 

identified were differentially expressed.  

Downstream targets of CEBPα include a wide range of genes that code for 

apolipoprotein. Whilst the network analysis should have been extended further to 

assess the downstream targets of CEBPα; it is possible to speculate SF is 

downregulating a wide range of apolipoprotein. The proteins are involved in the binding 

and transport of lipids in the blood. It has been identified that dysregulation of these 

proteins can lead to the formation of a wide range of metabolic disorders. For example, 

elevated levels of APOC3 results in increased accumulation of triglycerides and can 

contribute to atherosclerosis pathogenesis (Khetarpal et al., 2017). Increased levels of 

ApoD and ApoE have been implicated with the following pathologies: dementia, 

Alzheimer’s disease, and stroke (Dassati et al., 2014, Chang et al., 2017). Defects in 

ApoA can result in abnormal cholesterol metabolism, thereby contributing to 

hypercholesteremia and potential increased risk of developing cardiovascular diseases. 

Currently, the most common treatment for managing CVDs is through the prescription 

of the drug statin, with a couple of studies showing that the evidence and benefits of 

taking statins are currently limited (Armitage et al., 2019, Byrne et al., 2019). Future 

studies using in vivo models should explore further whether SF can affect these 

proteins, thereby helping to identify novel strategies to deal with cardiovascular 

diseases.  

4.4.3 Genes encoding additional metabolic processes such as Histidine 

and Lysine Metabolism: 

An additional finding of the GSEA is that SF downregulated the gene set histidine 

metabolism in the high glucose environment and lysine degradation in the basal 

glucose environment. Histidine is an essential amino acid, with unique properties; it can 

act as a buffer by accepting or donating protons, it is involved in metal ion chelation, it 

can scavenge reactive oxygen and nitrogen species, as well as is involved in 

erythropoiesis and the histaminergic system (Holeček, 2020). In the current analysis it 

was identified that SF downregulated the activity of three genes involved in histidine 

catabolism; histidiase then urocanase (AMDHD1) and finally aminoacylase 3 (ACY3). 

The current data suggest that SF treatment results in the accumulation of histidine. 

Literature analysis revealed that this is the first study to report SF affecting these two 

amino acids. As this was not seen in the absence of NRF2 activation under the 

glucose-deprived environment, these pathways are likely NRF2 dependent. A couple of 
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studies have shown a link between histidine metabolism, histidine's catabolism, and 

one carbon metabolism (see next chapter for SF interfering with one carbon 

metabolism). 

For example, the metabolite forminoglutamate can be converted to glutamic acid by 

formininotransferase in the presence of tetrahydrofolate. If folate is deficient, FIGLU 

accumulates, and HIS catabolism is inhibited (Luhby et al 1958). Depletion of THF may 

lead to a reduction in the ability of cells to synthesize glycine from serine (Holeček and 

Vodeničarovová, 2019, Meléndez-Hevia et al., 2009). Several additional studies have 

shown that methionine, S-Adenosylmethionine, homocysteine, and S-

Adenosylhomocysteine can activate HIS catabolism by increasing the availability of 

THF (Fell and Steele, 1983, Billings et al., 1981). Studies on rats administered with 

histidine have shown it to improve gastric mucosal damage induced by aspirin (Lim et 

al., 1979), along with inhibiting the development of stroke induced by the occlusion of 

the middle cerebral artery (Adachi et al., 2005), and preventing cardiotoxicity induced 

by the drugs isoproterenol and doxorubicin (Moradi-Arzeloo et al., 2016, Farshid et al., 

2014). For obese women with metabolic syndrome, histidine supplementation at 4g/day 

for 12 weeks, resulting in improved insulin resistance, along with a decrease in body 

mass index, waist circumference, body fat, and markers of systemic inflammation (Niu 

et al., 2012).   

This downregulation of catabolic genes potentially leading to increased histidine could 

be due to the histidine being redirected for carnosine biosynthesis. Carnosine is 

synthesized using the amino acids histidine and beta-alanine in the presence of ATP 

(Derave et al., 2010). The major source of carnosine can be found in skeletal muscle, 

with smaller quantities present in cardiac muscle, brain, and other tissues (Abe, 2000, 

Boldyrev et al., 2013). Carnosine is a more efficient proton buffer, metal chelator, and 

antioxidant compound (anti-glycating agent) than histidine (Holecek 2020). Within the 

last couple of years, studies on mouse models of diabetes and metabolic syndrome 

have shown that supplementation with carnosine is effective in suppressing insulin 

resistance, plasma lipids as well as delayed onset of atherosclerosis (Sun et al., 2014, 

Aldini et al., 2011, Brown et al., 2014). Similarly, carnosine administration at the same 

time has been shown to inhibit cognitive decline in a mouse model of Alzheimer’s 

diseases (Herculano et al., 2013), suppress tumorigenesis in a wide range of cancer 

including human glioblastoma, colorectal, and ovarian carcinoma cells (Rybakova and 

Boldyrev, 2012, Mikuła-Pietrasik and Książek, 2016, Iovine et al., 2014).  Human 

intervention studies have also reported similar findings. For example, prediabetic 

subjects supplemented with carnosine 200mg/day resulted in a decrease in fasting 

plasma glucose levels (Liu et al., 2015).  
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In this analysis, SF was also shown to affect lysine metabolism. Lysine is another 

essential amino acid. For humans, this means that it cannot be synthesized and 

therefore must be obtained externally either through diet or supplementation. Lysine is 

involved in several functions: firstly, it is incorporated in the formation of a wide range 

of proteins. For example, the crosslinks found in collagen, an essential protein involved 

in the formation of connective tissue, are formed by a triple helix structure consisting of 

lysine residues. Lysine can also be broken down to carnitine essential for fatty acid 

metabolism. Finally, it has also been shown that lysine, like methionine, is also involved 

in histone modification and thus can impact the epigenome (Dambacher et al., 2010). 

The positive side chain along with its long hydrophobic backbone makes lysine 

somewhat amphipathic. Due to its hydrophilicity, lysine residues are often buried within 

the protein. The other important role that lysine play is epigenetic regulation. Up to 

three lysine residues can be methylated or at the same time, acetyl groups can be 

added to form acetyl-lysine or removed (Dambacher et al 2010). In this study, SF was 

shown to downregulate two key genes involved in epigenetic regulation: SETD7 and 

NSD1. Over the past couple of years, the SETD7 gene has been identified to regulate 

at least 30 non-histone proteins, and may therefore be a potential target for several 

human diseases (Batista and Helguero, 2018). For example, some SETD7 targets 

include genes involved in the following cellular pathways: cell cycle regulation, DNA 

damage responses, RNA-polymerase II-dependent gene transcription, chromatin 

modulation, and cell differentiation (Del Rizzo and Trievel, 2011). Out of these targets, 

increasing evidence suggests that this gene is mainly involved in regulating cellular 

differentiation and proliferation. For example, pluripotent stem cells have been shown 

to exhibit low expression of SETD7 which is thought to be due to the pluripotency 

maintenance proteins OCT4, NANOG, and SOX2, which bind to the STED7 promoter 

and suppress its activity (Kamran et al., 2013). Similarly, differentiation of embryonic 

stem cells, as well as smooth muscle, is regulated through STED7 methylation of 

SOX2, leading to its degradation (Fang et al., 2014) and H3K4 and SRF, which 

regulate the expression of differentiation genes TAGLN and ACTA2 (Tuano et al., 

2016). SETD7 activity has also been shown to be tissue specific. For example, 

inhibition of SETD7 in breast cancer cells results in downregulation of the genes E2F1 

and DNMT1. The outcome is downregulation of the signaling cascade that promotes 

invasion and metastasis (Montenegro et al., 2016). In three gastric cell lines (MKN74, 

MKN45, and AGS), reduced expression of SETD7 is associated with gastric cancer 

progression (Akiyama et al., 2016). In addition, methylation of β-catenin through 

SETD7 results in reduced proliferation of the HeLa cell line (Shen et al., 2015). 

Perhaps the most promisingly finding is that several hepatocellular carcinoma cell lines 

have SETD7 overexpressed, resulting in an increased risk of metastasis and 
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recurrence, along with larger tumor size and increased cell proliferation (Chen et al., 

2016b). Therefore, the data may indicate a novel mechanism on how SF  can act as an 

anti-carcinogenic agent.    

4.4.4 Assessing SF effect in the no glucose environment 

One of the major findings in this chapter is that in the absence of glucose antioxidant 

genes were not induced by SF, which suggests that the NRF2 activation is dependent 

on the presence of glucose. This is in agreement with Heiss and colleagues were the 

group showed that activation of NFR2 in fibroblasts leads to increased glucose uptake 

(Heiss et al., 2013). This glucose is preferably metabolized through the pentose 

phosphate pathway to produce NADPH. Interference with this process blocks the ability 

of the cellular antioxidant capacity of the cells to reduce ROS, also leading to reduced 

expression of antioxidant genes such as glutathione and haem oxygenase (Heiss et al., 

2013). Therefore, it is possible to hypothesize that the absence of induction of NRF2 

genes observed in no glucose is due to the severely diminished levels of NADPH, 

further supporting a strong link between NRF2, glucose, and NADPH production.  

Further analysis should therefore assess the levels of NADPH in these three separate 

glucose environments. Whether in the fasting state NRF2 is induced or not is still not 

fully understood. For example, in a study where mice were placed on a 24h fast, the 

mRNA levels of NRF2, GCLC, GCLM, HMOX1, GSR, and GPX4 from the skeletal 

muscles, were all induced compared to the fed mice. This induction resulted in the 

inhibition of lipid peroxidation (Lettieri-Barbato et al., 2020). The group carried out in 

vitro studies by culturing the muscle cell line C2C12 under 0.5% serum and 5.5 mM 

glucose to mimic a fasting state and still identified an induction in specific antioxidant 

genes. The cells were still cultured in glucose and serum in this study, not mimicking a 

fasted state (Lettieri-Barbato et al., 2020). It may be that the lack of glucose could have 

resulted in cell death; if that was the case, then the study should have considered 

potentially utilizing lower concentrations of glucose.  

In the current data, it was identified that despite NRF2 activation, SF upregulated a 

wide range of gene sets regulating the cytoskeleton of cells such as tight, gap, and 

adherents junctions as well as focal adhesion, whilst at the same time downregulating 

a wide range of genes involved in metabolic processes. Present on the surface of cells 

are integrin and cadherin receptors. These receptors act as bridges and allow cells to 

communicate with the external environment. For example, what may occur with the 

depletion of glucose in these receptors can alter the structure of the actomyosin 

cytoskeletal network, resulting in changes in downstream signalling pathways 

(Schlaepfer et al., 1994). According to the literature, the cytoskeleton plays a vital role 
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in regulating three metabolic processes involved in glucose homeostasis: the 

distribution of the insulin receptor substrate (IRS), translocation of the glucose 

transporter GLUT4 and the internalization of the insulin receptor (INSR) (Liu et al., 

2006). At the same time these, components of the cytoskeleton are the first to interact 

with glycolytic enzymes (Tanner et al., 2018). Therefore, upregulation of these gene 

sets may suggest that SF is allowing the cells to remodel their structure enabling them 

to utilize additional energy sources, such as glutamine.                                                                                

A cell culture model without the presence of glucose could also be considered an in 

vitro model for a ketogenic diet. Therefore this no glucose environment may be a good 

proxy for studying the effects of a ketogenic diet. When levels of glucose in the body 

are severely diminished, through prolonged fasting, or diet, the major energy source is 

β-hydroxybutyrate (ketone bodies). In the liver what occurs is that oxaloacetate and 

citrate are not able to condense to form acetyl-CoA, instead of in these circumstances, 

the already available acetyl-CoA is broken down to β-hydroxybutyrate and 

acetoacetate. These are then transported to other tissues where it is converted to 

acetyl-CoA which enter the citric acid cycle and oxidized in the mitochondria for energy 

(Rui, 2014). For example, two studies, one on rat glioma cells and the other on 

pancreatic cancer cells have both shown that in this environment cancers cells are 

incapable of proliferating and growing as they are unable to utilize ketone bodies as an 

energy source (Maurer et al., 2011, Shukla et al., 2014). As research in ketogenic diets 

is emerging, this is also the first time to assess the effect of food bioactive, therefore 

opening the opportunities to understand the benefits of how fasting along with plant 

bioactives may affect health.  

4.4.5 Transcription Factor Analysis: 

In the final section of the analysis, a network was constructed to gain a better 

mechanistic understanding of whether the metabolic changes induced by SF in the 

high glucose environment, were mediated through NRF2 or other transcription factors.  

The interesting finding was the upregulation of Sp1. This is contrary to what has been 

published in other studies, thereby suggesting that Sp1 activity and regulation may be 

tissue specific. Previous studies have already identified that SF treatment in the 

prostate cancer cell line LNcaP decreased the activity of Sp1 (Beaver et al., 2014). Sp1 

and Sp3 are TF that can enhance or repress genes in a wide range of cellular 

processes such as cell differentiation, cell growth, apoptosis, immune responses, 

response to damaged DNA, and chromatin remodeling (Tan and Khachigian, 2009). 

Several different cancer cells have been reported to have increased levels of Sp1 and 

its reduction is associated with decreased angiogenesis and increased cancer cell 
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death (Li and Davie, 2010). In patients with prostate cancer, the increase of both Sp1 

and Sp3 predicts the recurrence of the disease (Bedolla et al., 2012). 

Similarly, siRNA of Sp1 in the prostate cancer cell line DU145 suppresses the 

proliferation of the cell line (Lu and Archer, 2010). The RNAseq study that Beaver and 

colleagues conducted and other reported literature identified that up to 25% of genes 

induced by SF were through both the transcription factors Sp1 and Sp3 (Beaver et al 

2014). Similarly, in keratinocytes exposed to SF, Sp1 was shown to regulate the 

expression of p21 (Chew et al., 2012).  This opens the door to new scientific questions 

about whether there is a connection between the NRF2 pathway and Sp1 and whether 

some of the metabolic targets mediated by SF are through Sp1.  

 

 

 

Figure 4.19. Summary of the findings from this chapter shows how varying glucose 

concentrations affect NRF2 downstream metabolic processes. In an environment lacking 

glucose, NRF2, despite the presence of SF, is not induced. In basal glucose, NRF2 is induced 

but only regulates the expression of genes involved in Phase II metabolism. In glucose excess, 

NRF2 regulates the expression of genes involved in Phase II metabolism and a wide range of 

metabolic genes to cope with the detrimental effects of the excess glucose load.  
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4.6 Conclusion: 
 

The work that I carried out in this chapter is the first to report the effect of physiological 

concentrations of SF on liver cells cultured under three different metabolic states 

(fasting, healthy and insulin-resistant). Firstly through the GSEA, I identified that NRF2 

targets are not induced in the absence of glucose. In the presence of glucose,  SF 

upregulated the antioxidant response. This effect was still maintained in the excessive 

glucose state, thereby suggesting how SF inducing the anti-oxidant response is an 

important mechanism in preventing diseases of metabolic dysregulation. The focus of 

the current chapter was to assess the effect of SF at the transcriptional level and 

identified that glucose availability is key to mediating the metabolic effects of SF. In the 

next chapter, the use of isotopic tracers such as a fully labeled glucose and glutamine 

tracer were utilized to assess how SF utilizes these substrates in various metabolic 

pathways, especially under differing glucose environments.  
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Chapter 5: Global metabolomic profile of 

HepG2 cells exposed to sulforaphane in 

basal and high glucose environments 
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Chapter 5 Figures: 
 

Figure 5.1: Pyruvate and lactate labelling pattern from the 13C6  glucose tracer reveals 

SF interfering with glycolysis. 

Figure 5.2: SF effect on glycolysis and mitochondrial respiration in basal and high 

glucose environment through the Seahorse XPF Analyzer. 

Figure 5.3: SF effect on genes involved in the glycolysis and gluconeogenesis 

pathway. 

Figure 5.4: Summary of how the 1-2-13C2  glucose tracer is metabolized to assess 

glycolysis and PPP activity. 

Figure 5.5: Pyruvate and lactate labelling pattern from the 1-2-13C6  glucose tracer. 

Figure 5.6: Untargeted metabolomics reveals SF interfering with 1C metabolism. 

Figure 5.7: Summary of serine biosynthesis from glucose through the serine synthetic 

pathway. 

Figure 5.8: Identification of SF interfering with 1C metabolism through both the 13C6 

glucose tracer and the 13C5 glutamine tracer. 

Figure 5.9: The effects of SF interfering on one carbon metabolism using the 13C5 

glutamine tracer. 

Figure 5.10 LC-MS analysis revealing SF depleting serine and glycine pool.  

Figure 5.11 Whole transcriptome analysis (RNAseq) reveals that SF interferes with 1C 

metabolism. 

Figure 5.12: SF affects glutathione biosynthesis  

Figure 5.13: SF effect on genes involved in the NADPH production and glutathione 

biosynthesis. 

Figure 5.14: Reduction of TCA metabolites through the glutamine tracer suggesting SF 

redirecting glutamine towards a different pathway, possibly glutathione biosynthesis. 

Figure 5.15: SF effect on cysteine metabolism. 

Figure 5.16: SF influence on the methionine cycle. 

Figure 5.17: SF affects pyruvate anaplerosis in the high glucose environment. 

Figure 5.18: Summary of the findings of this chapter, showing how SF interferes with 

1C metabolism in the high glucose environment to promote the antioxidant response. 
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5.1 Introduction 
 

Metabolic pathways consist of a series of biochemical reactions which are connected 

by the intermediates; the products of the reaction are the substrate for subsequent 

reaction. Whilst most chemical reactions are reversible metabolic pathways are 

considered to flow in one direction. For example, the pathway for the biosynthesis of an 

amino acid will defer from that of its breakdown. The only exception to the rule is the 

metabolism of glucose. The breakdown of glucose occurs through glycolysis, but at the 

same time, several reactions of glycolysis are reversible and participate in the re-

synthesis of glucose a process known as gluconeogenesis. These metabolic pathways 

can act as both anabolic (growth) and catabolic (break down). The best characterized 

catabolic pathway is the production of ATP. The breakdown of glucose through 

glycolysis generates pyruvate, which feeds into the TCA cycle to produce the electron 

carriers nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 

(FADH) required for the synthesis of ATP in the mitochondria. An example of an 

anabolic pathway is gluconeogenesis (Blanco and Blanco, 2017). 

A vital pathway regulating glucose metabolism is the pentose phosphate pathway 

(PPP), which works parallel to glycolysis (Ge et al., 2020) (figure 1.10 ). After glucose 

is phosphorylated to G6P, it continues down the glycolysis pathway to generate 

fructose-6-phosphate and glyceraldehyde 3-phosphate or can be re-directed to the 

PPP. The PPP is split into two distinct pathways: the oxidative phase in which NADPH 

is produced and the non-oxidative synthesis of ribose-5-phosphate (R5P), a five-

carbon sugar. Both pathways occur in the cytosol. The two crucial enzymes in the 

oxidative phase of the PPP are: the G6PD, which catalyzes the conversion of glucose-

6-phosphate to 6-phosohogluconolactone, also the rate-limiting step for the PPP, and 

PGD which catalyzes the conversion of 6-phosphogluconate to R5P. Both reactions 

are crucial as they produce nicotinamide adenine dinucleotide phosphate (NADPH). 

The largest proportion of NADPH in cells arises from the PPP, with small amounts also 

being produced from the malic enzyme (ME1), isocitrate dehydrogenase (IDH1), and 

the 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) (Ge et al., 2020).  

NADPH and R5P are two essential metabolites for cell survival and proliferation. R5P 

is the building block for the synthesis of nucleotides. On the other hand, NADPH is the 

reducing agent needed for the biosynthesis of fatty acids as well as sterols, 

nucleotides, and non-essential amino acids (Patra and Hay, 2014, Wamelink et al., 

2008).  NADPH is also required to convert oxidized glutathione to reduced glutathione 

through the action of glutathione reductase (GSR). Reduced glutathione can act as a 

cellular antioxidant (Bradshaw, 2019).  
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Glutathione (GSH) is a tripeptide (synthesized from glycine, cysteine, and glutamate) 

and is largely synthesized in the liver. The concentration of GSH in most cells is around 

the 5 mM range, similar to the concentration of glucose in the blood (Pizzorno, 2014). 

Glutathione can either be synthesized de novo via a 2-step process catalyzed by the 

enzyme glutamate-cysteine ligase (GCL), composed of both a catalytic and regulatory 

subunit, followed by glutathione synthetase which requires ATP, or it can be 

regenerated where oxidized glutathione is recycled back to reduced GSH through the 

action of GSR and NADPH (Pizzorno, 2014). Finally, less common is the recycling of 

cysteine from oxidized glutathione via gamma-glutamyltransferase (GGTP) through the 

presence of NADPH. The rate at which glutathione is synthesized as well as recycled 

and regenerated is dictated by three factors: during de novo synthesis, glutathione is 

primarily regulated by the intracellular concentration of cysteine (Pizzorno, 2014). The 

buildup of GSH can also inhibit the activity of GCL as direct feedback inhibition. Finally, 

under increased oxidative stress or inflammation where GSH is depleted, de novo 

synthesis of GSH occurs where the cysteine pool is obtained through the recycling of 

oxidized form of glutathione through the action of GGTP (Pizzorno, 2014).  

Previous literature has identified NRF2 activation as a critical event in glucose 

redirection towards the PPP. For example, Mitsuishi showed that constituent activation 

of NRF2 in the A549 cell resulted in the glucose being redirected to the PPP. The 

group was the first to identify that the three essential genes of the PPP: G6PD, PGD, 

and TKT contain an antioxidant response element (ARE) sequence, therefore, being 

direct targets of NRF2 (Mitsuishi et al., 2012). A second study by Heiss and colleagues 

showed that in fibroblast, upon NRF2 activation, glucose is preferentially metabolized 

through the PPP (Heiss et al., 2013). Furthermore, an increase in glutathione synthesis 

is considered a key outcome of SF treatment. However, aside from transcriptional 

activation of glutathione biosynthesis genes, the molecular mechanism on how 

cysteine, glycine, and glutamate are obtained intracellularly for glutathione biosynthesis 

remains unknown.   

In the previous chapter, the role of SF in metabolic regulation, as well as its potential 

for transcriptional regulation of major metabolic pathways, such as PPP, one carbon 

(1C) metabolism, as well as regulating amino acids biosynthesis and utilization such as 

glycine, serine, and threonine along with histidine metabolism, was identified in HepG2 

cells for the first time. To provide further insight into the metabolic flux and the changes 

in metabolite utilization, this chapter focused on providing a better understanding of 

how glucose and glutamine are utilized by the cells in the presence of sulforaphane. 

This was undertaken using glucose and glutamine isotopic tracers. This chapter 
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particularly explored whether SF would affect carbon flux at different concentrations of 

glucose. 

To examine intracellular fluxes, for example, to assess whether the glucose is 

redirected to the PPP, the most common approach that is currently utilized is using 

isotope tracers such as 13C. Using GC-MS it is then possible to measure the isotopic 

distribution of each metabolite of interest. The labeling pattern also referred to as mass 

isotopomer distribution (MID) vector is represented by metabolite m+n where n is the 

number of carbon atoms. A metabolite with n carbon atoms can have 0 to n of its 

carbon atoms labeled with 13C. A fully unlabeled metabolite (all carbon atoms 

unlabeled) with be represented by M0. In contrast, one labeled carbon atom will be 

represented by M1 and so on (Buescher et al., 2015).  

In this chapter the following aims were assessed:  

Aims:  

1. Does SF redirect the glucose in the high glucose environment towards the pentose 

phosphate pathway? 

2. Similarly, is SF redirecting is the glutamine in the high glucose environment towards 

glutathione biosynthesis? 
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5.2 Results:  
 

5.2.1 SF interferes with glycolysis in both basal and high glucose 

environments:  

To gain a mechanistic understanding through which SF reduces mitochondrial 

respiration in the high glucose environment as demonstrated in chapter 3, through the 

Seahorse Mito Stress assay (figure 3.12b), HepG2 were cultured with the uniformly 

labeled glucose tracer 13C6 as the sole glucose source. The 13C6 tracer is metabolized 

via glycolysis to yield M3 pyruvate and lactate. After 24h, in the basal glucose 

environment, physiological concentrations of SF did reduce M3 pyruvate (p<0.0001), 

although levels of M3 lactate did not change (figure 5.1). This effect was not identified 

in the high glucose environment. The Seahorse XF analyzer was then applied to 

measure glycolysis in real-time through the Glycolysis Stress Test, hypothesizing that 

SF treatment would result in a reduction in glycolysis  

 

 

Figure 5.1. Pyruvate and lactate labelling pattern from the 13C6  glucose tracer. HepG2 

cells were treated with 10 µM SF for 24 h in the presence of the fully labelled glucose tracer in 

basal glucose (5.5 mM) or high glucose (25 mM).  After 24 h, metabolites were extracted and 

quantified using GC-MS. A) Pyruvate, B) Lactate. All values are expressed as mean ± SD from 

three individual culture wells. The x-axis M0 to M3 represents the relative mass isotopomer 

(MID). This represents the incorporation of the isotope into the metabolite. M0 means that all 

the carbon atoms in the metabolite are from carbon-12, whereas M+n all labelled carbon atoms 

come from the carbon isotope. The MID represents the relative abundances of M+0 to M+n 

isotopologues (Isotopologues are molecules, in my case, the metabolite of interest with a 

different number of isotopes). For each particular metabolite. Consequently, the sum of all 

fractions from M+0 to M+n is 100% or 1. Statistical analysis was conducted by a 2-ANOVA was 

carried as the two factors are the treatment and glucose levels: M3 Pyruvate: DMSO BG vs SF 

BG p<0.0001, DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs SF HG p=0.99. M3 

A)

 

B)

 



175 
 

Lactate: DMSO BG vs SF BG p=0.99, DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs 

SF HG p=0.99.  

The glycolysis stress kit revealed a reduction in the extracellular acidification rate 

(ECAR) by SF in the basal glucose environment (figure 5.2a). Glycolytic capacity, 

which represents maximum energy production from glycolysis following injection of 

oligomycin and glycolysis, were significantly reduced, while non-acidification glycolytic 

rate just failed to reach significance (p=0.054) (Appendix supplementary figure S2). 

Although the uniformly glucose tracer in the high glucose environment revealed no 

difference between the control and the treatment, the Glycolysis Stress Test was also 

conducted on HepG2 cultured in high glucose to understand how SF regulates glucose 

homeostasis. It was also identified that SF resulted in a reduction in glycolysis 

although, assessing the Seahorse data of the two assays together revealed that the 

cells behaved less glycolytic in the high glucose environment (figure 5.2b).      

 

 

 

 

Figure 5.2. SF effect on glycolysis in basal and high glucose environment through the 

Seahorse XPF Analyzer. A) Extracellular acidification rate (ECAR) of HepG2 treated with 10 

µM SF in 5.5 mM glucose. B) Extracellular acidification rate (ECAR) of HepG2 treated with 10 

µM SF in 25 mM glucose. All values are expressed as mean ± SD from biological replicates.  

 

Finally, GSEA of RNAseq results in chapter 4 revealed that SF led to a reduction in the 

glycolysis and gluconeogenesis pathway (q=0.052. Appendix table 1.0).  

In particular, SF downregulated the carbohydrate-responsive element-binding protein, 

also referred to as MLXIPL (MLXIPL, BG DMSO vs BG SF q=0.01,  HG DMSO vs HG 

SF q=0.11) (figure 5.3). Glucose flux in the liver will induce the MLXIPL gene, which is 

involved in the induction of glycolysis and lipogenesis. SF also upregulated more than 

Non-mitochondrial Respiration- Glycosis Stress Test 

A)  B)  
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2-fold the glucokinase regulatory protein (GCKR, BG DMSO vs BG SF q= 5.01e-05,  

HG DMSO vs HG SF q= 4.61e-05), involved in binding and controlling the function of 

glucokinase, the first gene in glycolysis (figure 5.3). Glucokinase in liver cells will 

phosphorylate glucose; this allows the glucose to be broken down through glycolysis or 

converted to glycogen. SF also downregulated several genes along the glycolytic 

pathway, including phosphofructokinase muscle sub-type by more than 3-fold in the 

basal glucose environment (PFKM, BG DMSO vs BG SF q=0.002, HG DMSO vs HG 

SF q= 0.55), whose function is to catalyze the phosphorylation of fructose-6-phosphate 

to fructose-1-6-bisphosphate (figure 5.3). Enolase 3 (ENO3, BG DMSO vs BG SF q= 

0.0006, HG DMSO vs HG SF q=0.01) catalyzes the reversible conversion of 2-

phosphoglycerate to phosphoenolpyruvate. Phosphoglucomutase-1 (PGM1, BG DMSO 

vs BG SF q=0.003, HG DMSO vs HG SF q=0.02) catalyzes the interconversion of a 

phosphate group between positions 1 and 6 in the glucose chain (figure 5.3). The data 

also revealed that SF downregulated two genes acyl-coenzyme A synthetase short-

chain 1 and 2 (ACSS1/2, BG DMSO vs BG SF q=0.004, HG DMSO vs HG SF q=0.01) 

involved in the formation of acetyl-CoA from acetate required for lipid synthesis, 

thereby identifying an additional mechanism how SF may inhibit lipid biosynthesis. The 

final genes that were differentially expressed in the data were two aldehyde 

dehydrogenase genes: ALDH7A1 (BG DMSO vs BG SF q=0.01, HG DMSO vs HG SF 

q=0.03) and ALDH9A1 (BG DMSO vs BG SF q=0.04, HG DMSO vs HG SF q=0.01), 

whose function is to catalyze the interconversion of acetaldehyde to acetate in the 

presence of NAD to generate NADH (figure 5.3). In the high glucose environment, it 

was instead identified that the only glycolytic gene that SF significantly downregulated 

was ENO3, along with both the ACSS1/2 and both aldehyde dehydrogenase genes 

(figure 5.3). 
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Figure 5.3.SF effect on genes involved in the glycolysis and gluconeogenesis pathway. 

HepG2 was treated with 10 µM SF for 24 h in basal (5.5 mM) and high glucose (25 mM). After 

24 h RNA was extracted and was sent for RNAseq on Illumina. Differentially expressed genes 

were obtained through edgeR and limma. All genes are statistically significant following 

Benjamini-Hochberg multiple testing correction q <0.05. Acyl-Coenzyme A Synthetase Short 

Chain 1 and 2 (ACSS1/2), Aldehyde Dehydrogenase 7 Family Member A1 (ALDH7A1), 

Aldehyde Dehydrogenase 9 Family Member A1 (ALDH9A1), Enolase 3 (ENO3), Glucokinase 

Regulatory Protein (GCKR), Carbohydrate-Responsive Element-Binding Protein (MLXIPL), 

Phospho-Fructo Kinase Muscle subtype (PFKM) and Phosphoglucomutase-1 (PGM1). 
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5.2.2: SF effect in the PPP using the 1,2-13C-glucose tracer: 

One potential explanation for the reduction in glycolysis in figure 5.2b and 

mitochondrial respiration in the high glucose environment by SF could be the glucose 

being redirected towards the PPP. In chapter 4, it was identified through the gene set 

enrichment analysis (GSEA) that the PPP gene set was enriched, although it did not 

reach significance after correcting multiple testing (Appendix Table S1). The fully 

labelled glucose tracer (13C6) is the commonly used tracer for measuring glycolysis, as 

all the carbons of intermediates in glycolysis will be labelled.  Due to ambiguities in 

detecting 13C3 lactate production from 13C6 because lactate can be derived from other 

pathways (not just glycolysis), the 1,2-13C-glucose is utilised to estimate glycolytic flux 

better (Brutz et al., 2017). The 1,2-13C-glucose, rather than the fully labelled glucose 

tracer, was utilized to validate further whether the glucose is metabolised through the 

PPP pathway.  The breakdown of the 1,2-13C glucose tracer through PPP detects the 

accumulation of ribose-5-phosphate (R5P). Flux through the PPP generates M1 lactate 

(one carbon atom labelled), while glycolysis generates M2 lactate (two carbon atoms 

labelled) (figure 5.4). M1/ M2 lactate ratio reflects PPP overflow to glycolysis (Lee et 

al., 1998).  Ribose phosphate labelling instead represents whether oxidative PPP or 

non-oxidative PPP is occurring (Lee et al., 1998). In the current experiment, HepG2 

cells were cultured in basal and/or high glucose with the 1,2-13C-glucose tracer as the 

only glucose source, with the presence of SF for 24h. Figure 5.5 revealed that SF did 

not lead to M1 lactate accumulation in the high glucose environment, shown by lower 

M1 labelling compared to the M1 in the basal glucose environment. In addition, M2 

levels of lactate were considerably higher than M1 lactate.  
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Figure 5.4. Summary of how the 1-2-13C2  glucose tracer is metabolized to assess 

glycolysis and PPP activity. Following the phosphorylation of glucose through hexokinase to 

generate glucose-6 phosphate (G6P), the labeled G6P molecule can continue glycolysis 

producing M2 lactate and pyruvate, or if it metabolized through the oxidative phase of PPP to 

generate M1 ribulose 5-phosphate (Ru5P), the end product of the oxidative branch of the PPP. 

Red circles represent the labeled 13C carbon, whilst stripped circles represent the labeled 13C 

carbon derived from the non-oxidative branch of the PPP. Image has been reproduced from 

(Bruntz et al., 2017).  
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Figure 5.5. Pyruvate and lactate labelling pattern from the 1-2-13C6  glucose tracer. HepG2 

cells were treated with 10 µM SF in DMEM media containing basal glucose (BG) 5.5 or high 

glucose (HG) 25 mM of the 1-2-13C6 glucose tracer along with 4 mM 12C5 glutamine -FBS. After 

24h, metabolites were extracted and determined by GC-MS. The x-axis M0 to M3 represents 

the relative mass isotopomer (MID). This represents the incorporation of the isotope into the 

metabolite. M0 represents that all the carbon atoms in the metabolite are from carbon-12 

whereas M+n all labelled carbon atoms come from the carbon isotope. The MID represents the 

relative abundances of M+0 to M+n isotopologues for each particular metabolite. Consequently, 

the sum of all fractions from M+0 to M+n is 100% or 1. Statistical analysis was conducted by a 

2-ANOVA was carried as the two factors are the treatment and glucose levels. N=3 and the 

error bars represent standard deviation. M2 Pyruvate: DMSO BG vs SF BG p<0.0001, DMSO 

BG vs DMSO HG p<0.0001, and DMSO HG vs SF HG p=0.99. M2 Lactate: DMSO BG vs SF 

BG p=0.99, DMSO BG vs DMSO HG p=0.99, and DMSO HG vs SF HG p=0.99.  
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5.2.3 Global untargeted metabolomics reveals that SF interferes with 

one carbon metabolism:   

To gain further insight and to assess the effect of sulforaphane on modulating hepatic 

metabolism, HepG2 cells were treated with physiological concentrations of SF under 

both basal and high glucose conditions. After 24 h, metabolites were extracted and 

untargeted metabolomics was conducted using Gas Chromatography coupled to Mass 

Spectrometry (GC-MS). Out of a total of 97 metabolites measured, 18 were altered by 

SF in BG and 15 in HG, shown by the heatmap in figure 5.6a. SF treatment reduced 

serine (p <0.01) and increased methionine (p<0.05) in both glucose environments 

(figure 5.6 a and b), which are key metabolites of the folate cycle and methionine 

cycle, respectively, and are part of one carbon (1C) cellular metabolism. The other key 

finding identified from the untargeted metabolomics data is that SF treatment in the 

basal glucose environment (figure 5.6 a) reduced the two end products of glycolysis, 

pyruvate (p=0.004) and lactate (p=0.01), thereby supporting the findings from both the 

fully labelled glucose tracer (figure 5.1) and Seahorse Glycolysis Stress Test (figure 

5.2), (Appendix supplementary figure S3). It is also worth reporting that SF treatment 

in both glucose environments (figure 5.6 a and b) was shown to increase the 

intracellular levels of the following essential amino acids: tryptophan, phenylalanine, 

methionine, along with leading to a reduction in several non-essential amino acids: 

alanine, aspartic acid, and serine.  The data suggest that SF may be affecting the 

amination and deamination of the non-essential amino acids. For example, the 

deamination of alanine with the amine group being incorporated into 2-oxogluartic acid 

to form glutamate.  
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Figure 5.6 Untargeted metabolomics reveals SF interfering with one carbon metabolism.  

HepG2 cells were treated with 10 µM SF for 24 h in basal glucose (5.5 mM) or high glucose (25 

mM). After 24 h, metabolites were extracted and quantified using GC-MS.  A) Statistically 

significant metabolites are displayed in a heatmap, where blue is upregulation and red is 

downregulation, in the basal glucose environment p<0.05, Welch t-test. B) Statistically 

significant metabolites are displayed in a heatmap, where blue is upregulation and red is 

downregulation, in a high glucose environment p<0.05, Welch t-test. C) Readings from the 

serine and D) methionine from the heatmap were extracted and plotted into a bar plot. All 

values are expressed as mean ± SD from three biological replicates. 2-ANOVA was carried as 

the two factors are the treatment and glucose levels. Serine: basal glucose DMSO vs basal 

glucose SF p=0.0047 and high glucose DMSO vs high glucose SF p=0.0059. Methionine: 

basal glucose DMSO vs basal glucose SF p=0.031 and high glucose DMSO vs high 

glucose SF p=0.13. 

 

5.2.4 Uniformly glucose tracer reveals that SF results in serine 

consumption:   

One carbon (1C) metabolism consists of a broad range of biosynthetic reactions that 

can occur in both the cytoplasm and the mitochondria; to maintain cellular 

homeostasis, functioning as an integrator of nutrient status. The output of these 

reactions are metabolites that are used as the building blocks for methylation, redox, 

and nucleotide biosynthesis. One carbon unit is largely derived from two essential 

amino acids: serine and glycine, both of which can be either obtained from exogenous 

sources, such as media in cell culture, or synthesized directly.  Serine can be 

synthesized de novo from a glycolytic intermediate 3-phosphoglycerate through a 

C) D) 
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series of reactions, commonly referred to as the serine synthetic pathway (SSP). To 

investigate further the effect of SF on the metabolic flux of glucose metabolism, the 

uniformly glucose tracer 13C6 was used in a further experiment. In this experiment, 

HepG2 was cultured with the 13C6 glucose tracer as the only glucose source, with the 

presence of SF for 24hrs. The uniformly labeled (13C6) tracer can then be metabolized 

via the glycolytic intermediate 3-phosphoglycerate (3-PG) to serine M3 (with three 

labeled carbon atoms) and, subsequently, to M2 glycine (with two labeled carbon 

atoms) through the combined action of the SSP and serine hydroxymethyltransferase 

(SHTM1/2).  A summary figure on how serine is derived from glucose through the 

serine synthetic pathway is shown in figure 5.7. 

 

Figure 5.7 Summary of serine biosynthesis from glucose through the serine synthetic 

pathway. Serine, a non-essential amino acid, can be obtained from the cell culture media or 

synthesized intracellularly through glucose.  As glucose is absorbed into the cell through the 

SLC2A4 receptor, glucose is metabolized through glycolysis. An intermediate in the glycolytic 

pathway 3-PG is then redirected towards serine biosynthesis leading to the formation of serine 

through the action of the following enzymes; PHGDH, PSATI and PSPH.  

Using GC-MS, serine and glycine labelling were quantified. It was identified that 

increasing glucose levels (basal to high) resulted in a significant increase in both M3 

serine and M2 glycine (figure 5.8 a and b). The addition of SF led to a further slight 

rise in the abundance of M3 serine (p= 0.01) but not M2 glycine (p=0.7), suggesting 

that the biosynthesis of glycine from glucose does not differ within treatments (figure 

5.8 a and b). The tracer also revealed that SF under the high glucose environment 

resulted in a decrease in the abundance of both M2 (p=0.2) and M1 serine (p<0.0001) 
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(figure 5.8 a). A decrease in M1 and M2 serine suggests that the forward reaction in 

one carbon metabolism is occurring. That means that as serine enters the folate cycle, 

a methyl group is transferred to generate tetrahydrofolate and glycine by serine 

hydroxymethyltransferase (figure 5.7).  

 

 

 

Figure 5.8. Identification of SF interfering with one carbon metabolism using the 13C6 

glucose tracer. HepG2 was treated with 10 µM SF for 24 h in the presence of either the fully 

labelled glucose tracer in basal glucose (BG) (5.5 mM) or high glucose (HG) (25 mM) with 4 mM 

12C5 glutamine.  After 24 h, metabolites were extracted and quantified using GC-MS. A) Serine, 

B) Glycine.  The x-axis M0 to M3 and M0 to M2 for glycine represents the relative mass 

isotopomer (MID). This represents the incorporation of the isotope into the metabolite. M0 

represents that all the carbon atoms in the metabolite are from carbon-12 whereas M+n all 

labelled carbon atoms come from the carbon isotope. The MID represents the relative 

abundances of M+0 to M+n isotopologues for each particular metabolite. Consequently, the 

sum of all fractions from M+0 to M+n is 100% or 1. Statistical analysis was conducted by a 2-

ANOVA was carried as the two factors are the treatment and glucose levels: A) Serine M3: 

DMSO BG vs SF BG p=0.25, DMSO BG vs DMSO HG p<0.0001, DMSO HG vs SF HG p= 

0.0152, Serine M1: DMSO HG vs SF HG p <0.0001. B) Glycine M2: DMSO BG vs SF BG 

p=0.99, DMSO BG vs DMSO HG p<0.0001 DMSO HG VS SF HG p = 0.7.  

 

To assess whether the serine in the high glucose environment was derived only from 

glucose and not other substrates such as glutamine, a separate experiment was 

conducted where the uniformly glutamine 13C5 tracer was used as the only source of 

glutamine. Data from this experiment confirmed that in the high glucose environment, 

all the serine and pyruvate are derived from glucose, shown by no labelled M3 serine 

and pyruvate in the high glucose environment, compared to the basal glucose. This 

suggests that glutamine does not contribute significantly to the formation of pyruvate 

B) A) 
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and serine through the action pyruvate carboxylase (PC) and phosphoenolpyruvate 

carboxykinase (PEPCK) (figure 5.9 a and b).  

 

 

 

Figure 5.9. The effects of SF interfering on one carbon metabolism using the 13C5 

glutamine tracer. HepG2 treated with 10µM SF for 24 h in the presence of either the fully 

labelled glutamine tracer in basal glucose (BG) (5.5 mM) or high glucose (HG) (25 mM) with 

12C6 glucose.  After 24 h, metabolites were extracted and quantified using GC-MS. A) Serine 

and B) Pyruvate.  The x-axis M0 to M3 represents the relative mass isotopomer (MID). This 

represents the incorporation of the isotope into the metabolite. M0 represents that all the carbon 

atoms in the metabolite are from carbon-12 whereas M+n all labelled carbon atoms come from 

the carbon isotope. The MID represents the relative abundances of M+0 to M+n isotopologues 

for each particular metabolite. Consequently, the sum of all fractions from M+0 to M+n is 100% 

or 1. Statistical analysis was conducted by a 2-ANOVA was carried as the two factors are the 

treatment and glucose levels: A) Serine M3: DMSO BG vs SF BG p=0.99, DMSO BG vs DMSO 

HG p<0.0001 DMSO HG vs SF HG p=0.99. B) Pyruvate M2: DMSO BG vs SF BG p=0.0028, 

DMSO BG vs DMSO HG p<0.0001 and DMSO HG vs SF HG p=0.98. 

 

5.2.5 Targeted Metabolomics reveals that SF also depletes glycine pool: 

To elucidate whether the depletion of total serine observed in the untargeted 

metabolomics experiment (figure 5.6 a-c) was due to intracellular utilization, or due to 

a reduction in the cellular import ability from the media, the levels of both serine and 

glycine in the media, and intracellularly were measured. In this experimental condition, 

HepG2 cells were cultured in basal and high glucose without the tracers (standard 

DMEM media). The LC-MS analysis identified that intracellularly SF resulted in a 

decrease in the serine and glycine pool. In the basal environment, the intracellular 

concentration of serine in the control samples was 50 µM, with SF decreasing it to 

35µM. Shifting to the high glucose, a large depletion was identified where this time the 

intracellular concentration of serine in the control was 30 µM and SF resulting in a 

A) B) 
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further decrease to 15 µM, independently supporting both the GC-MS and RNAseq 

data (figure 5.10 a). 

Similarly, for glycine, the control intracellular concentration in the basal glucose 

environment was 100 µM with SF treatment decreasing it to 70 µM, whilst in the high 

glucose environment, the control concentration dropped to 50 µM with SF further 

reducing it to 25 µM SF.  The decrease in the total glycine pool (figure 5.10 b) should 

not be confused with the no-change observed in M2 glycine in figure 5.5b. The total 

glycine pool, measured through the LC-MS, represents glycine derived, from a 

combination of metabolic pathways, such as serine synthetic pathway, along with 

threonine catabolism. This decrease in total glycine may suggest glycine redirection for 

glutathione biosynthesis (figure 5.8 b). The analysis also identified no difference 

between control and treatment in the media samples, suggesting that SF reduction was 

because both serine and glycine were utilized intracellularly (figure 5.10 c-d). 
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Figure 5.10. LC-MS analysis revealing SF depleting serine and glycine pool.  Serine and 

glycine intracellular and extracellular measurements were quantified using LC-MS.   All values 

are expressed as mean ± SD from three individual culture wells. A) Serine intracellular levels: 

DMSO BG vs SF BG p=0.0024, DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs SF HG 

p=0.0006, B) Glycine Intraceullar Levels: DMSO BG vs SF BG p=0.0003, DMSO BG vs 

DMSO HG p<0.0001, and DMSO HG vs SF HG p=0.0003 C) Serine Extraceullar Levels: 

DMSO BG vs SF BG p=0.99, DMSO BG vs DMSO HG p=0.0075, and DMSO HG vs SF HG 

p=0.6. D) Glycine Extraceullar Levels: DMSO BG vs SF BG p= 0.82, DMSO BG vs DMSO 

HG p= 0.08, and DMSO HG vs SF HG p=0.99.  

D) 

A) B) 

C) 
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5.2.6 Whole transcriptome analysis reveals that SF affects the activity of 

genes involved in both one carbon metabolism and glycine, serine 

metabolism: 

In the previous chapter, it was identified through the GSEA that SF in both glucose 

environments downregulated the glycine, serine, and threonine pathway gene set, 

along with upregulating genes in the one carbon pool folate gene set (figure 5.11 a). 

To identify the transcriptional mechanism for the decrease in total serine and an 

increase in total methionine, differentially expressed genes by SF from the two 

pathways were analyzed. SF downregulated the first and the rate-limiting step in serine 

biosynthesis, phosphoglycerate dehydrogenase (PHGDH, BG DMSO vs BG SF 

q=0.0045,  HG DMSO vs HG SF q=0.01) (figure 5.11 b). The other two genes involved 

in SSP, phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase 

(PSPH) along with SHTM1/2 were not differentially expressed. In addition, SF 

downregulated the expression of two genes involved in the catabolism of glycine: 

glycine decarboxylase (GLDC, BG DMSO vs BG SF q=0.005,  HG DMSO vs HG SF 

q=0.03), and glycine-N-methyltransferase (GNMT, BG DMSO vs BG SF q=0.001,  HG 

DMSO vs HG SF q=0.03) (figure 5.11 b). GLDC catalyzes the degradation of glycine 

to H-protein-S-aminomethyldihydrolipoyllysine and carbon dioxide.GNMT instead 

catalyzes the synthesis of N-methyl glycine (sarcosine) from glycine using S-Adenosyl 

methionine (SAM) (AdoMet) as the methyl donor. GNMT acts as an enzyme to regulate 

the ratio of SAM to SAH (AdoHcy) and participates in the detoxification pathway in liver 

cells. Downregulation of both these genes may suggest that glycine might instead be 

redirected for glutathione biosynthesis and potentially also for bile acid conjugation. 

With regards to the enriched genes from the one carbon pool by folate, SF upregulated 

the activity of 10-formyltetrahydrofolate dehydrogenase (ALDH1L1, BG DMSO vs BG 

SF q= 7.12e-04,  HG DMSO vs HG SF q= 0.00016), involved regenerating THF from 

10-formyl THF, along with monofunctional C1-tetrahydrofolate synthase (MTHFD1L, 

BG DMSO vs BG SF q=0.01,  HG DMSO vs HG SF q= 0.05) both genes involved in 

producing NADPH, along with two genes: Trifunctional purine biosynthetic protein 

adenosine-3 (GART, BG DMSO vs BG SF q=0.009,  HG DMSO vs HG SF q=0.03) and 

Inosine monophosphate synthase (ATIC, BG DMSO vs BG SF q=0.03,  HG DMSO vs 

HG SF q=0.009), involved in the first steps in purine biosynthesis. The results, 

therefore, suggest that the decrease in total serine is due to a combination of both SF 

inhibiting serine biosynthesis but also SF promoting genes involved in serine 

catabolism (figure 5.11 b). 
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Figure 5.11. Whole Transcriptome Analysis (RNAseq) reveals that SF interferes with one 

carbon metabolism. A) Gene sets were significantly affected by the differential expression in 

samples treated with sulforaphane in HepG2 cells cultured under basal (5.5 mM) and high 

glucose (25 mM). Normalized enrichment scores (NES) were determined using the GSEA 

software. NES represents an estimation of the significance of the gene set normalized to the 

size of each gene set. Positive NES is shown by an increase in the gene set, and negative NES 

denotes an overall decrease in the gene set. Both treatment and controls are representative of 

triplicate samples. glycine, serine, and threonine metabolism (basal glucose, NES =-1.76, 

q=0.027), glycine, serine, and threonine metabolism (high glucose, NES= -1.74, q=0.047) 

and one carbon pool folate (high glucose q=0.026, NES= 1.72 B). B) Genes from the glycine, 

serine, and threonine along with the one carbon pool folate were extracted and plotted using 

Log
2
FC 

A) 

B) 
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ggplot (R).  All genes are statistically significant following Benjamini-Hochberg multiple testing 

correction q <0.05. Serine-Pyruvate Aminotransferase (AGXT), 10-Formyltetrahydrofolate 

Dehydrogenase (ALDH1L1),  Amine Oxidase, Copper Containing 3 (AOC3), Inosine 

Monophosphate Synthase (ATIC), Betaine-Homocysteine S-Methyltransferase/isoform2 

(BHMT/BHMT2), Cystathionine Beta-Synthase (CBS) Trifunctional Purine Biosynthetic Protein 

Adenosine-3 (GART) Glycine Decarboxylase (GLDC), Glycine, N-Methyltransferase (GNMT), 

Monofunctional C1-tetrahydrofolate synthase (MTHFD1L, Phosphoglycerate Dehydrogenase 

(PHGDH), Peroxisomal sarcosine oxidase (PIPOX), and Solute Carrier Family 1 Member 

(SLC1A4).  

 

5.2.7 SF interferes with 1C metabolism to promote the antioxidant 

response: 

Supported by the findings of both the untargeted metabolomics and the glucose tracer, 

the next step was to determine whether SF was rewiring one-carbon metabolism to 

support the antioxidant response, mainly through glutathione production. GSEA 

analysis in the previous chapter revealed that SF upregulated genes involved in 

glutathione metabolism in both glucose environments. Therefore, in a separate 

experiment, the levels of oxidized and reduced glutathione were assessed by LC-MS in 

HepG2 cultured in both glucose environments in the presence of SF for 24h. Firstly it 

was identified that SF resulted in an increase in both glucose environments in 

pyroglutamic acid. Pyroglutamic acid is a metabolite derived from the amino group from 

glutamic acid or glutamine cyclizing to form a lactam ring. It is commonly present in the 

glutathione cycle, whose main function is glutamate storage (figure 5.12 a).  The most 

prominent finding was in the high glucose environment, where SF resulted in a large 

increase in the intracellular concentration of reduced glutathione; this effect was not 

identified in the basal glucose environment (figure 5.12 b). The analysis also revealed 

that the intracellular concentration of oxidized glutathione in both glucose environments 

was not detected, suggesting that all the glutathione is readily and promptly converted 

to the reduced form.  

Using the RNAseq data from the previous chapter, a subset of the differentially 

expressed genes from the PPP pathway, along with additional genes involved in 

NADPH production and glutathione metabolism, were assessed. One of the primary 

functions of the PPP is the production of NADPH. This NADPH can then be used by 

the cells to convert oxidized glutathione to the reduced form to prevent oxidative stress 

(Yuan and Kaplowitz, 2009, Lu, 2013). It was identified that in the high glucose 

compared to basal glucose environment, SF had a stronger effect in upregulating both 
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transketolase (TKT, BG DMSO vs BG SF q=0.02,  HG DMSO vs HG SF q=0.005) and 

transaldolase1 (TALDO1 BG DMSO vs BG SF q= 0.0005,  HG DMSO vs HG SF q= 

0.0003), whilst glucose-6-phosphate dehydrogenase the rate-limiting step in the PPP 

was only upregulated by SF in the high glucose environment (G6PD, BG DMSO vs BG 

SF q=0.33,  HG DMSO vs HG SF q=0.01), (figure 5.13). It was also identified that 

glutathione reductase (GSR) was upregulated by SF, indicating that the glutathione 

was indeed found in the reduced form. 

 

 

Figure 5.12. SF affects glutathione biosynthesis. HepG2 cells were treated with 10 µM SF 

for 24 h in basal (5.5 mM) and high glucose (25 mM). A-B) After 24 h metabolites were 

extracted and quantified using the LC-MS TripleQuad 6490 Agilent. C) PyroGlutamic acid 

Intracellular Levels. D) Reduced Glutathione Intracellular Levels. All values are expressed as 

mean ± SD from three individual 10 cm dishes culture dishes. Statistical analysis was carried 

out using a 2-ANOVA was carried as the two factors are the treatment and glucose levels. 

Metabolites were normalized to the total number of cells. Pyroglutamic acid: DMSO BG vs SF 

BG p= 0.0027, DMSO BG vs DMSO HG p=0.6, and DMSO HG vs SF HG p=0.0027. Reduced 

glutathione: DMSO BG vs SF BG p= 0.8, DMSO BG vs DMSO HG p= 0.13, and DMSO HG vs 

SF HG p<0.0001.  

A) B) 
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Figure 5.13. SF effect on genes involved in the NADPH production and glutathione 

biosynthesis. HepG2 cells were treated with 10 µM SF for 24 h in basal (5.5 mM) and high 

glucose (25 mM). After 24 h RNA was extracted and was sent for RNAseq on Illumina. 

Differentially expressed genes were obtained through EdgeR and limma. All genes are 

statistically significant following Benjamini-Hochberg multiple testing correction q <0.05. 

Glucose-6-Phosphate Dehydrogenase (G6PD), Glutamate-Cysteine Ligase Catalytic Subunit 

(GCLC), Glutamate-Cysteine Regulatory Subunit (GCLM), Glutamate Dehydrogenase 1 

(GLDU1, Glutathione Reductase (GSR), Malic Enzyme 2 (ME2), Ornithine Decarboxylase 

(ODC1), Transaldolase 1 (TALDO1), and Transketolase (TKT).  

 

5.2.8 SF redirects glutamine towards glutathione biosynthesis: 

Glutathione biosynthesis occurs in the presence of glutamate, cysteine, and glycine. 

Glutamate is derived from glutamine, which can also act as an energy source by 

entering the TCA cycle (Zielke et al., 1984). Using the data from the universally labelled 

glutamine tracer as the only glutamine source (figure 5.6), further analysis was carried 

out to assess whether SF redirected glutamine towards glutathione biosynthesis in the 

high glucose environment. The glutamine tracer can be converted through the action of 

glutaminase to M5 glutamate (all five carbon atoms labelled). Glutamate can 

alternatively feed into the TCA cycle through glutamate dehydrogenase, resulting in M5 

α-ketoglutarate. Using GC-MS, the abundance of the metabolites glutamine, glutamate, 

succinate, and fumarate were quantified. It was identified that SF in a high glucose 

Log
2
FC 
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environment resulted in an increased abundance of M5 glutamine (p=0.0065), followed 

by a decrease in M5 glutamate (p=0.0075). The tracer also revealed a profound 

decrease in M4 succinate (four carbon atoms labelled, due to the release of a molecule 

of carbon dioxide during the reaction) (p=0.0028), also along with a decrease in M4 

fumarate, although failing to reach statistical significance. This decrease in the 

metabolites of the TCA could be an explanation of the reduction in mitochondrial 

respiration seen by the Seahorse in the high glucose environments (chapter 3, figure 

3.12b). The results support the hypothesis that glutamine is indeed re-directed towards 

glutathione biosynthesis (figure 5.14).  
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Figure 5.14. Reduction of TCA metabolites through the glutamine tracer suggests SF 

redirecting glutamine towards a different pathway, possibly glutathione biosynthesis. 

HepG2 cells were treated with 10 µM SF for 24 h in the presence of the fully labelled glutamine 

tracer (13C5) in basal glucose (BG, 5.5 mM) or high glucose (HG, 25 mM).  After 24 h, 

metabolites were extracted and quantified using GC-MS. A) Schematic representation of how 

glutamine is metabolized in the TCA, either through oxidative glutamine metabolism or reductive 

glutamine metabolism. B) Labelling pattern of glutamine, C) Labelling pattern of glutamate D) 

Labelling pattern of succinate, and E) Labelling fumarate. All values are expressed as mean ± 

SD from three individual culture wells. The x-axis M0 to M5 for glutamine and M0 to M4 for 

succinate and fumarate represent the relative mass isotopomer (MID). This represents the 

incorporation of the isotope into the metabolite. M0 means that all the carbon atoms in the 

metabolite are from carbon-12, whereas M+n all labelled carbon atoms come from the carbon 

isotope. The MID represents the relative abundances of M+0 to M+n isotopologues for each 

particular metabolite. Consequently, the sum of all fractions from M+0 to M+n is 100% or 1. 

Statistical analysis was conducted by a 2-ANOVA was carried as the two factors are the 

treatment and glucose levels. M5 glutamine: DMSO BG vs SF BG p= 0.0002, DMSO BG vs 

DMSO HG p=0.96, and DMSO HG vs DMSO SF p=0.0065. M5 glutamate: DMSO BG vs SF 

BG p=0.2, DMSO BG vs DMSO HG p= 0.01, and DMSO HG vs SF HG p=0.0075. M4 

B) 

 

C) 

 

D) 

 

E) 
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succinate: DMSO BG vs SF BG p= 0.19, DMSO BG vs DMSO HG p=0.0016, and DMSO HG 

vs SF HG p=0.0028. M4 fumarate: DMSO BG vs SF BG p= 0.96, DMSO BG vs DMSO HG 

p<0.0001, and DMSO HG vs SF HG p=0.69.  

 

5.2.9 SF drives Methionine to produce S-Adenosyl Methionine to feed 

methylation reactions 

The untargeted metabolomics (figure 5.6) revealed that in both glucose environments 

SF increased the levels of methionine (figure 5.6 d). Since the extracellular levels of 

methionine were not changed by SF (Appendix Supplementary S4), the next 

question that was assessed was firstly understanding where the methionine was 

derived from and secondly the purpose of the increase in methionine. As methionine is 

the only other amino acid, apart from cysteine, to have a sulfur group, it was assessed 

whether the additional methionine was obtained from cysteine through the backflow of 

the Transsulfuration pathway. Once in the cell, cysteine can enter the methionine cycle 

by a two-step process: first, it is converted to cystathionine and eventually to SAH, 

since these reactions are reversible. Using LC-MS, it was identified that the 

extracellular levels of cysteine in both glucose environments were indeed largely 

decreased compared to the controls, suggesting that SF resulted in increased cysteine 

import into the cell (figure 5.15a). Figure 5.15b revealed that the high compared to 

basal glucose environment, SF treatment decreased the intracellular concentrations of 

cysteine, suggesting that a part of the cysteine pool was redirected towards glutathione 

biosynthesis, whilst the other part was redirected into the transsulfuration pathway for 

eventually the regeneration of methionine. Using the RNAseq data it was recognized 

that SF upregulated the activity of cystine/glutamate transporter, in both glucose 

environments transporter (q < 0.05, figure 5.15c). 
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Figure 5.15. SF effect on cysteine metabolism. HepG2 cells were treated with 10 µM SF for 

24 h in basal (5.5 mM) and high glucose (25 mM). After 24 h, metabolites were extracted and 

quantified using the LCMS TripleQuad 6490 Agilent. A) Extracellular levels of cysteine. B) 

Intracellular levels of cysteine. C) Whole transcriptome analysis on HepG2 looking at the cystine 

receptor q<0.05 corrected using the Benjamini Hochberg. All values are expressed as mean ± 

SD from three individual 10cm dishes. For LC-MS data, statistical analysis was carried out using 

a 2-ANOVA was carried as the two factors are the treatment and glucose levels. Metabolites 

were normalized to the number of cells. Cysteine Extraceullar Levels: DMSO BG vs SF BG 

p<0.0001, DMSO BG vs DMSO HG p=0.077, and DMSO HG vs SF HG p<0.0001. Cysteine 

Intraceullar Levels: DMSO BG vs SF BG p=0.51, DMSO BG vs DMSO HG p=0.0014, and 

DMSO HG vs SF HG p=0.15. 

A) 

 

B) 

 

C) 
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As the GSEA analysis revealed no enrichment in genes related to the methionine 

cycle, a method was developed using the LC-MS to assess all the metabolites in the 

methionine cycle:  methionine, SAM, SAH, and homocysteine. This was done to gain a 

better understanding of the molecular mechanism of how methionine is metabolized by 

SF. It was identified that the increased levels of methionine by SF correlated with 

increased SAM levels, the first step in methionine metabolism, in both basal and high 

glucose environments (Fig. 5.16 a,b). The RNA-seq data was used to assess whether 

the increased levels of SAM would feed into the methylation reaction (figure 5.16 e). It 

was identified in the high glucose environment, SF resulted in almost a 32-fold 

upregulation in the DNA (cytosine-5)-methyltransferase 3-like (DNMT3L) gene, along 

with a small significant downregulation, approximately 2-fold of histone deacetylase 5 

(HDAC5), histone deacetylase 6 (HDAC6) and DNA (Cytosine-5)-methyltransferase 3 

beta (DNMT3B), by SF in both glucose environments.   

The analysis through LC-MS also revealed that in the high glucose environment, SF 

resulted in a decrease in SAH, further supporting the idea that the reduction in the 

recovered SAH, was due to SAM being redirected for methylation reaction. The final 

step in the cycle is the conversion of homocysteine back to methionine. This can occur 

through two different pathways: either through methionine synthase where the methyl 

group is obtained from folate through vitamin B12 through the aid of 1C metabolism or 

through betaine, an amino acid that acts as an important cofactor for methylation 

reactions. The use of betaine is restricted to the liver and kidney tissue only 

(Finkelstein, 1998). As it was identified in the RNAseq data a large upregulation of the 

betaine-homocysteine S-methyltransferase (BHMT2) gene (figure 5.8 b), it was 

postulated that the remethylation of homocysteine was derived through betaine. LC-MS 

analysis also revealed that physiological concentrations of SF, resulted in a decrease 

in betaine, supporting the results of the gene expression. The results, therefore, 

indicate that SF is feeding methylation reactions, as there is a blockage in the top part 

of the methionine cycle (figure 5.16).  
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Figure 5.16. SF influence on the methionine cycle. HepG2 cells were treated with 10 µM SF 

for 24 h in basal (5.5 mM) and high glucose (25 mM). After 24 h, metabolites were extracted 

and quantified using the LC-MS TripleQuad 6490 Agilent. A) Methionine: DMSO BG vs SF BG 

p=0.18, DMSO BG vs DMSO HG p=0.0082. and DMSO HG vs SF HG p=0.81 B) S-Adenosyl 

methionine (SAM): DMSO BG vs SF p= 0.14, DMSO BG vs DMSO HG p=0.0011, and DMSO 

HG vs SF HG p=0.04. C) S-Adenosyl homocysteine (SAH): DMSO BG vs SF BG p=0.77, 

DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs SF HG p=0.0064 D) Betaine: DMSO BG 

vs SF BG p<0.0001, DMSO BG vs DMSO HG p=0.57, and DMSO HG vs SF HG p= 0.01. All 

values are expressed as mean ± SD from three individual 10 cm dishes culture dishes. 

Statistical Analysis was carried out using a 2-ANOVA was carried as the two factors are the 

treatment and glucose levels. Metabolites were normalized to the number of cells. E) Whole 

transcriptome analysis on HepG2 looking at the Genes involved in DNA methylation. HDAC8 

(Histone deacetylase 8), HDAC6 (Histone deacetylase 6), HDAC5 (Histone deacetylase 5), 

HDAC10 (Histone deacetylase 10), DNMT3L (DNA (cytosine-5)-methyltransferase 3-like), 

DNMT3B (DNA (Cytosine-5)-methyltransferase 3 beta, DNMT3A (DNA (Cytosine-5-)-

methyltransferase 3A. The following genes HDAC5, HDAC6, DNMT3B, and DNMT3L were 

significant q<0.05 after multiple testing corrections by Benjamini Hochberg.  
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5.2.10 SF in a high glucose environment contributes to pyruvate 

anaplerosis through pyruvate carboxylase activity 

Pyruvate anaplerosis (anaplerosis is the act of replenishing intermediates of the TCA 

cycle that have been used up for the biosynthesis of additional pathways) allows the 

TCA cycle to oxidize acetyl-CoA, providing backbones for biomass production. Using 

the uniformly glucose tracer it is possible to identify pyruvate anaplerosis by measuring 

M3 malate, fumarate, or oxaloacetate (OAA). However, since OAA is very unstable, the 

labeling pattern of aspartate is instead measured as it can serve as a surrogate of 

oxaloacetate. In the experiment where HepG2 was cultured with the labelled uniformly 

glucose tracer as the sole glucose source, it was identified that physiological 

concentrations of SF in a high glucose environment resulted in a significant increase in 

M3 malate (p=0.006), and fumarate although failed to reach significance. The data also 

revealed a significant increase in M5 citrate (p <0.0001) (figure 5.17 b and c).  

Pyruvate carboxylase (PC) can carboxylate 13C3 pyruvate with CO2, producing 13C3 

OAA (Buescher et al., 2015). In turn, M3 OAA condenses with M2 acetyl-CoA to 

generate M5 citrate. The levels of M3 aspartate were therefore also assessed. A 

decrease in M3 aspartate (p=0.01) was identified, potentially suggesting that aspartate 

was being utilized by reacting with acetyl-CoA to generate citrate (figure 5.17 d). Gene 

expression of pyruvate carboxylase was looked at in the RNA seq data but was not 

differentially expressed. Untargeted metabolomics in both the basal and glucose 

environments also revealed an increase in the metabolite Pantothenic acid coupled 

with a decrease in the metabolite N-acetyl Aspartic acid (NAA) (figure 5.6 c). 

Pantothenic acid is used for the synthesis of coenzyme A. CoA can transfer the acyl 

group to produce acetyl-CoA. It may be that pyruvate anaplerosis is occurring to allow 

acetyl-CoA to be transferred to the cytoplasm to allow the synthesis of NAA. NAA has 

been identified to be the second most abundant metabolite in the human brain after the 

amino acid glutamate. It is thought to act as a neurotransmitter. Further research is 

nevertheless needed to understand the function of this metabolite.  
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Figure 5.17. SF affects pyruvate anaplerosis in the high glucose environment. HepG2 

cells were treated with 10 µM SF in DMEM media containing 5.5 and 25 mM 13C6 glucose and 

4 mM 12C5 glutamine -FBS. After 24 h, metabolites were extracted and determined by GC-MS. 

The x-axis M0 to M6 for citrate and M0 to M4 for the other metabolites represent the relative 

mass isotopomer (MID). N=3. A) Schematic representation of how the glucose tracer is 

metabolized in the TCA. B) Labelling pattern of malate, C) Labelling pattern of fumarate D) 

Labelling pattern of citrate, and E) Labelling aspartate All values are expressed as mean ± SD 

from three individual culture wells.  

 M3 Malate: DMSO BG vs SF BG p=0.99, DMSO BG vs DMSO HG p<0.0001, and DMSO HG 

vs SF HG p=0.0067. M3 Fumarate: DMSO BG vs SF BG p= 0.99, DMSO BG vs DMSO HG 

p<0.0001, and DMSO HG vs SF HG p=0.59. M3 Citrate: DMSO BG vs SF BG p=0.91, DMSO 

BG vs DMSO HG p=0.88, and DMSO HG vs SF HG p=0.01. M5 Citrate: DMSO BG vs SF BG 

p=0.015, DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs SF HG p<0.0001. M3 

Aspartate: DMSO BG vs SF p=0.62, DMSO BG vs DMSO HG p<0.0001, and DMSO HG vs SF 

HG p=0.001. 
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5.3 Discussion:  
 

In this chapter, HepG2 cells were treated with physiological concentrations of SF, in the 

presence of glucose and glutamine isotopic tracers. The main aim was to understand 

how SF affects the metabolism of these substrates in the liver. One of the aims of this 

chapter was to determine whether the reduction in overall mitochondrial respiration 

(Seahorse result, chapter 3) was due to the glucose being re-directed towards the 

PPP. Although the tracer experiment suggests that the glucose is not directed towards 

the pentose phosphate pathway, there is sufficient evidence to suggest through an 

increase in the PPP gene set (Table S1 Appendix) and reduction in glycolysis and 

increase in the metabolite ribulose-5-phosphate, the end product of the oxidative 

branch of the PPP in the HG data by SF (figure 5.6 b), that the glucose is still 

redirected towards the PPP.The research presented in this chapter also stumbled on a 

novel finding; identifying the molecular mechanism on how SF interferes with 1C 

metabolism. This is the first study to identify a mechanism on how SF rewires central 

metabolism to support the antioxidant response. Figure 5.18 summarizes the findings 

of this chapter on how SF interferes with 1C metabolism.  

5.3.1 SF and One Carbon Metabolism: 

One carbon (1C) metabolism is a series of biosynthetic reactions consisting of two 

main pathways: the folate and methionine cycles. 1C metabolism acts as a sensor to 

regulate the nutrient status of the cells. The main purpose is to catabolize one-carbon 

(methyl units) required for vital cellular functions such as: providing nucleotides for 

DNA synthesis, the cell building blocks, as well as reducing agents such as 

NADH/NADPH (Rosenzweig et al., 2018). These one carbon units are derived mainly 

from two non-essential amino acids; serine and glycine.   

In its long history of research, SF has been referred to as a chemopreventive agent 

due to its ability to target several different mechanisms within the cell to prevent 

carcinogenesis (Nandini et al., 2020). This is the first study, to identify SF's ability to 

interfere with 1C metabolism, by decreasing the intracellular levels of serine and 

glycine, and downregulating genes involved in the serine and glycine biosynthetic 

pathway, along with upregulating genes in the folate cycle. Although the expression of 

PSAT1, PSPH, and SHMT1 was not detected, SF did downregulate PHGDH. 

Reduction of serine may suggest a reduction in the number of methyl units entering the 

cycle. In turn, this could result in fewer substrates available for DNA synthesis, hence 

potentially identifying novel mechanisms through which SF may have anticarcinogenic 

properties. These SSP genes such as PHGDH and SHMT are often upregulated in 
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certain cancer cell lines, including but not limited to: lung and breast cancer cell lines 

along with melanoma. The outcome is the ability of the cells to proliferate and 

metastasize (Mattaini et al., 2016, Locasale et al., 2011, Ye et al., 2014). 

Similarly, overexpression of PHGDH in non-tumorigenic breast cells can result in these 

cells developing a cancer phenotype (Chen et al., 2013). Simply inhibiting the activity of 

PHGDH, either genetically or chemically, inhibits the proliferation of cancer cells. 

Similarly, deleting or silencing SHMT relies on tumours becoming addicted to 

exogenous serine, and serine starvation has been shown to reduce tumour growth 

(Yang and Vousden, 2016). Mutations in the 1C metabolism pathway are often found in 

tumour cells. For example, mutation of the oncogene KRAS results in increased DNA 

methylation due to increased levels of SAM obtained via 1C metabolism. 

Furthermore, the mechanistic target of rapamycin (mTOR) is a serine/threonine protein 

kinase that is the core component of two distinct protein complexes: mTORC1 and 

mTORC2, involved in regulating a wide range of cellular processes (Zou et al., 2020b). 

Within the last couple of years, emerging evidence has shown an oncogenic interplay 

between mTOR and 1C metabolism. For example, a study showed that mTORC1 

activates 1C metabolism in myelopoiesis. It was identified that deletion of mTORC1 

impaired cells' ability to uptake glucose, carry out glycolysis, and redirect the glucose 

towards 1C metabolism (Karmaus et al., 2017). A second study identified that primary 

pancreatic ductal epithelial cells obtained from mice that expressed a mutation in the 

KRAS gene, along with deletion of the LKB1 gene, results in mTOR activation resulting 

in increased de novo serine biosynthesis along with 1C metabolism (Kottakis et al., 

2016). It has also been shown that for lung cells to metastases, the resulting pyruvate 

levels in the environment result in increased mTORC1 signalling; the outcome is 

amplified serine biosynthesis (Rinaldi et al., 2021). A potential mechanism on how SF 

may inhibit these genes involved in the serine and glycine synthetic pathway that this 

research did not address is through mTOR inhibition. It has recently been discovered 

that SF can inhibit mTOR in an NRF2 independent manner (Zhang et al., 2019). In 

addition, a second study also showed that primary hepatocytes obtained from mice 

placed on a High-Fat diet treated with SF resulted in autophagy through AMPK, 

resulting in inhibition of mTOR (Yang et al., 2016).  

Through the GSEA, it was possible to obtain a molecular mechanism on how SF 

interferes with 1C metabolism. The data identified that SF increased the expression of 

MTHFD1L. Whilst this gene has also been shown to be upregulated in cancer, (Lee et 

al., 2017, Ducker et al., 2016), the reaction catalyzed by MTHFD1L is involved in the 

production of NADPH. A hypothesis is that the upregulation of MTHFD1L along with 

additional genes such as ALDH1L1 in the folate cycle occurs to produce NADPH to 
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support the conversion of oxidized to reduced glutathione. Culturing hepatocytes under 

high concentrations of glucose results in these cells undergoing a state of 

inflammation, having increased oxidative stress and increased production of 

inflammatory cytokines (Panahi et al., 2018). Therefore, SF interfering with 1C 

metabolism in the high glucose environment is a likely mechanism for the cells to 

increase their antioxidant capacity by synthesizing additional glutathione (Konno et al., 

2017, Li and Ye, 2020). 

When respiration is impaired, serine catabolism becomes the primary source of NADH. 

If this NADH is not used, its accumulation inhibits the TCA cycle, resulting in decreased 

cell proliferation (Yang et al., 2020a). Whilst the overall reduction in mitochondrial 

respiration (Seahorse Data) due to the glutamine being redirected to different 

processes may not necessarily impair respiration, it is likely, though, that the NADH 

pool from the TCA cycle may be reduced. Therefore, to support glutathione function, 

the reduction of serine may also be due to an increase in the concentrations of 

NADH/NADPH. It was also surprising to find that SF treatment upregulated two genes 

involved in purine metabolism: GART and ATIC. ATIC is involved in the production of 

inosine monophosphate (Yin et al., 2018). Purine metabolism is related to several 

biochemical reactions, such as maintaining the adenylate and guanylate pool. The 

primary metabolite in purine metabolism is inosine monophosphate (Yin et al., 2018). 

IMP carries out many functions as it can be used for purine biosynthesis but can also 

be converted to AMP and/or GMP (Zhao et al., 2015). Most specifically, AMP can then 

be regenerated to ATP through adenosine kinase (AK). It has recently been shown that 

the reduced form of nicotinamide ribonucleoside (NRH) NRH is phosphorylated to 

NMNH by AK through ATP, which is then eventually converted to NADH. The final 

additional step consists of NAD+ being phosphorylated through the action of NAD+ 

kinase in the presence of ATP to produce NADP+  (Yang et al., 2020b). Therefore, it is 

hypothesized that upregulation of GART and ATIC is a mechanism for the cells to 

regenerate their ATP levels which can then be used either as a feedback loop 

mechanism to fuel additional NADPH or for the production of additional SAM for 

methylation reactions (Boison et al., 2002).                                                                                                                                                             

So far, only one other study identified NRF2 regulating 1C metabolism (DeNicola et al., 

2015). This study reported that constituent activation of NRF2 in the lung carcinoma 

A549, along with additional lung carcinoma cell lines through the action of ATF4, 

resulted in the upregulation of the genes involved in the SSP. This led to increased 

levels of serine and glycine, allowing the tumour cells to metastasize (DeNicola et al., 

2015). Although this may be tissue specific, it also suggests that constituent NRF2 

activation has an adverse effect. The data further highlights that that intermittent and 
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cyclic NRF2 induction, such as that observed following a diet rich in NRF2 inducers (S-

containing metabolites and polyphenols) offers imporved hepatic metabolism.                                                                                                                   

The other amino acid also critical in 1C metabolism is glycine. It was identified that SF 

resulted in a decrease in the intracellular levels of glycine. One of the primary genes 

involved in glycine metabolism is the glycine cleavage pathway, glycine decarboxylase 

(GLDC). Studies have shown that non-small cell lung cancer and glioblastomas have 

sustained GLDC hyperactivity, promoting tumorigenesis in these cells (Zhang et al., 

2012a). In this study, it was identified that SF was also able to suppress the activity of 

GLDC. This depletion of glycine and the inhibition of the GLDC enzyme are likely due 

to the glycine being utilized for Glutathione biosynthesis (Ye et al., 2014). In regulatory 

T cells (Tregs), a group of immune cells whose function is to prevent autoimmunity and 

reduce the formation of chronic inflammatory diseases, disruption of glutathione by 

GCLC deletion in mice results in increased ROS accumulation. This triggers NRF2, 

resulting in increased serine import. This increase in serine, although it fuels 1C 

metabolism it, also suppresses Tregs ability to scavenge radicals (Kurniawan et al., 

2020). This stress feedback loop between glutathione and serine that controls Tregs 

function, may also be occurring similarly in hepatocytes.  

Targeting 1C metabolism for cancer therapy is not straightforward. Currently, there are 

two drugs available on the market. The current therapies used to inhibit 1C metabolism 

in cancer cells include methotrexate and 5-fluorouracil (5-FU). Methotrexate belongs to 

the family of antifolates, as it inhibits the enzyme DHFR in the folate cycle.  5-FU, on 

the other hand, has been shown to inhibit the enzyme thymidylate synthase (TYMS), 

which catalyzes the transfer of a methyl group from methylene-THF onto dUMP to 

make dTMP (Ducker and Rabinowitz, 2017).  The present work provides the first in 

vitro evidence to suggest that a broccoli bioactive and potentially other food bioactives 

have the capability of inhibiting 1C metabolism.  

5.3.2 SF and methionine 

Another key finding in this chapter is the consistent increase in the levels of 

methionine; in both glucose environments. SF has been previously stated to impact 

epigenetics by affecting the DNA methylation status of cells (Su et al., 2018). For 

example, SF treatment on LnCap prostate cancer cells decreased the expression of 

specific DNA methyltransferases such as DNMT1 and DNMT3b, but at the same time, 

SF lowered the methylation in the promoter region of the cyclin D2 gene. This region 

has been shown to contain multiple binding sites where the transcription factors c-Myc 

and Sp1 bind onto (Hsu et al., 2011). The study showed that reduced methylation of 

the cyclin D2 promoter resulted in increased expression of the cyclin D2 gene, 
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contributing to the anti-proliferative effect of SF (Hsu et al., 2011). A more recent study 

on HepG2 showed that varying concentrations of SF from 2-32 µM resulted in SF 

inhibiting histone deacetylases (HDACs). This resulted in SF altering the methylation 

status in the promoter region of several oncogenic transcription factors. This resulted in 

leading to induced cell death through apoptosis and cell cycle arrest, thereby further 

highlighting its chemopreventive action (Dos Santos et al., 2020).  Up to now, although 

it was recognized that SF acted as an epigenetic modulator; the mechanism, however, 

on how this occurred was not fully understood. In this chapter, a potential mechanism 

is identified for the first time through which SF leads to the accumulation of methionine, 

which feeds into the methionine cycle, resulting in increased SAM. This SAM acts as 

the substrate for the methylation reactions needed to alter the DNA. Research on 

varying hepatocellular carcinoma cell lines has shown a consistent downregulation in 

MAT1A; this gene is involved in the synthesis of S-Adenosylmethionine along with an 

upregulation of the MAT2A gene (Frau et al., 2013). The downregulation in MAT1A 

along with upregulation of MAT2A resulted in decreased levels of SAM. Studies on 

rodents treated with carcinogens have shown that supplementation with SAM inhibits 

carcinogenesis, whereas MAT1A-KO mice exhibit steatosis, resulting in the 

accumulation of mononuclear cells in periportal areas, ultimately leading to 

hepatocellular carcinoma (Frau et al., 2013). This imbalance between MAT1A and 

MAT2A has also been associated with global DNA hypomethylation, along with a wide 

range of molecular signalling dysfunctions such as a decrease in DNA repair, increase 

in polyamine synthesis, etc (Frau et al., 2013). The fact that SF increases the levels of 

SAM in the hepatocellular carcinoma cell line may suggest a different mechanism on 

how SF can suppress carcinogenesis or improve metabolic functions.                                                                                                 

In addition, what remains unclear is whether NRF2 or other proteins mediate the 

increase in methionine through SF. It has recently been identified through both 

RNAseq and metabolomics of livers from mice fed a methionine restricted (MR) diet 

that 6h post-MR resulted in inactivation of both the integrated stress response as well 

as the anti-oxidant response through the combined action of the PERK/NFE2L2 

signalling pathway along with the action ATF4 (Stone et al., 2021). This MR did not, 

however, result in increased ER stress or induced the unfolded protein response. This 

current study demonstrated that the sulfur group to support increased methionine 

production by SF was likely derived from the increased import of cysteine from the 

media. One of the remaining unanswered questions in this chapter is understanding 

the source of methyl donors for the synthesis of methionine. The data obtained suggest 

that betaine (trimethylglycine) is the most likely candidate, although it may be through a 

combination of both serine and betaine. This may also further explain serine depletion 

and upregulation of genes involved in 1C metabolism. Therefore, future work should 



209 
 

carry out experiments with both the labelled hydroxymethyl group of the serine tracer 

along a labelled betaine tracer.  

5.3.4 SF and its effect on glycolysis:  

Due to the increasing amount of evidence from both in vitro and in vivo studies that SF 

impacts glucose homeostasis, in chapter 3 the Seahorse Extracellular Flux Analyzer 

was used to assess whether altering the glucose environment, would impact 

mitochondrial metabolism; (assessing the TCA cycle and oxidative phosphorylation). In 

this chapter, data from four separate independent experiments (untargeted 

metabolomics, glucose tracer, RNAseq, and the Seahorse) all identified a common 

theme; physiological concentrations of SF had a profound effect in reducing glycolysis, 

especially in the basal glucose environment. The untargeted metabolomics, revealed a 

decrease of both end products of glycolysis (lactate and pyruvate), in basal glucose, 

whilst the glucose tracer revealed a profound decrease in M3 pyruvate in basal but not 

high. The Seahorse metabolic analysis revealed a decrease in the ECAR (a 

measurement of glycolysis) in both glucose environments and  RNAseq revealed a 

wide range of genes in the basal glucose environment being downregulated. These 

findings build on previous findings in the literature, shown by Carrasco-Pozo who 

identified that SF downregulated the activity of two additional glycolytic genes, 

hexokinase and pyruvate kinase (Carrasco-Pozo et al., 2019). The most common 

medication given to type 2 diabetics to treat diabetes is the drug metformin 

(Glucophage). It has been identified that metformin acts to suppress circulating glucose 

by two separate mechanisms: firstly, it can act directly on the liver by lowering the 

liver's ability to produce glucose whilst at the same time acts on the gut to increase the 

utilization of glucose, as well as increasing the levels of GLP-1 and can also alter the 

microbiome (Rena et al., 2017). At the molecular level, metformin seems to have a 

similar effect to SF, activating pAMPK, increasing insulin sensitivity, reducing the 

expression of gluconeogenic genes, as well as potentially inhibiting the activity of the 

glycolytic gene fructose-1,6-bisphosphate (Rena et al., 2017). Whilst the data needs to 

be interpreted with caution, as was carried out in a cancer cell line, which has 

increased glucose uptake and increased glucose utilization, nevertheless, the data 

shows SF as a promising bioactive that can regulate glucose homeostasis. Therefore, 

it is hoped that the output of this research will in the long term support dietary 

recommendations in diabetes and the pre-diabetic cohort of patients to undertake 

lifestyle changes.   
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Figure 5.18: Summary of the findings of this chapter, showing how SF interferes with 1C 

metabolism in the high glucose environment to promote the antioxidant response. The 

inputs include the starting substrates: these include glucose, and amino acids (threonine). The 

outputs are the product of the reaction and cycle, which have also been colored red by a 

decrease and blue increase in those metabolites that have been measured. For example, the 

output of the serine synthetic pathway is serine, which its intracellular concentration is 

decreased. Serine feeds into the folate cycle, in which the output is nucleotides. The function of 

the nucleotides is ATP production and synthesis of nucleic acids.  
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5.4 Conclusion: 
 

The main question that this chapter aimed to explore was whether SF was redirecting 

the glucose to the PPP in the high glucose environment. Real-time energy production 

assessed using the Seahorse Extracellular Flux Analyser demonstrated that SF 

reduced glycolysis in HepG2 cells in basal and high glucose environments, suggesting 

the excess glucose is redirected towards the PPP. To support GSH synthesis, SF 

altered levels of the three amino acids that are the biosynthetic building blocks, namely, 

increased intracellular utilization of glycine and glutamate, by redirecting the latter away 

from the TCA cycle, as well as increased the import of cysteine from the media. To 

support the cellular antioxidant enzyme response, SF also altered pathways generating 

NADPH, the necessary cofactor for these oxidoreductase reactions, namely pentose 

phosphate pathway (PPP) and 1C-metabolism. Firstly, SF increased genes in the PPP 

pathway, including the glucose-6-phosphate dehydrogenase, the rate-limiting step of 

the PPP, and increased the PPP metabolite ribulose-5-phosphate. Secondly, SF 

upregulated genes in the folate cycle, namely ALDH1L1 and MTHFD1L, and utilized 

serine as a methyl donor for THF to support the 1C metabolism, along with SF 

inhibiting genes involved in the serine and glycine synthetic pathway. The other 

prominent finding is identifying a mechanism on how SF modulates epigenetics by 

regulating the levels of methionine and controlling the methionine cycle. Future work 

could look at methylation status in the presence of methionine and SF? The remaining 

question that needs to be answered is whether these changes are mediated by NRF2 

or through additional proteins. The following chapters will address this question by 

utilizing the genome-editing technique CRISPR/Cas9. 
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Chapter 6 Figures 
 

Figure 6.1. Gel image along with bands quantification of the genomic detection 

cleavage assay in transfected cells using the first gRNA, targeting the NRF2 genome  

Figure 6.2. Gel image along with bands quantification of the genomic detection 

cleavage assay in transfected cells using the second gRNA, targeting the NRF2 

genome. 

Figure 6.3. Western Blot analysis of transfected HepG2 cells to assess NRF2 protein. 

Figure 6.4. Monitoring of clonal expansion of NRF2KO HepG2, four weeks post-

transfection. 

Figure 6.5. Monitoring of clonal expansion of NRF2KO HepG2, five weeks post-

transfection. 

Figure 6.6. Monitoring of clonal expansion of NRF2KO HepG2, six weeks post-

transfection. 

Figure 6.7. Gel image of the genomic detection cleavage assay in transfected cells 

using all three gRNA simultaneously, targeting the NRF2 genome. 

Figure 6.8. Western Blot assessing NRF2 protein WT and NRF2 KD HepG2 treated 

with 10µM SF overnight. 

Figure 6.9. qrt-PCR of NRF2 target genes in WT and NRF2KD HepG2. 

Figure 6.10. qrt-PCR of metabolic genes in WT and NRF2KD HepG2. 

Figure 6.11. qrt-PCR of NRF2 target genes in WT and NRF2KD HepG2. 

Figure 6.12. Cell energy phenotype of WT and NRF2KD HepG2 cells with and without 

the presence of SF. 

Figure 6.13. Metabolomic profile of amino acids related to 1C Metabolism in WT and 

NRF2 KD HepG2 cells. 

Figure 6.14. Generalized principal component analysis (PCA) plot on raw count data 

for first and second dimensions. 

Figure 6.15. Euclidean distance heatmap for each sample and treatment transformed 

by rlog. 

Figure 6.16. Testing for differential expression between SF vs DMSO. 

Figure 6.17. Significantly enriched gene sets identified within the differential expression 

data of WT HepG2 (green) and NRF2KD HepG2 (red) cells cultured under a high 

glucose environment when compared to sulforaphane treatment. 
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Figure 6.18. Bar plot of the top enriched core gene, from the metabolism of xenobiotics 

by cytochrome P450 gene set by 10 µM SF. 

Figure 6.19. Top enriched differentially expressed genes from the glutathione 

metabolism gene set by 10 µM SF. 

Figure 6.20. Top enriched differentially expressed genes from the pentose phosphate 

pathway gene set by 10 µM SF. 

Figure 6.21. Top enriched differentially expressed genes from the glycine serine and 

threonine metabolism, including one carbon pool by folate gene set by 10 µM SF. 

Figure 6.22. Top enriched differentially expressed genes from the unsaturated fatty 

acids biosynthesis gene set by 10 µM SF. 

Figure 6.23. Top enriched differentially expressed genes from the cytokine-cytokine 

interaction gene set by 10 µM SF. 

Figure 6.24. Top enriched differentially expressed genes from the DNA replication gene 

set by 10µM SF. 

Figure 6.25. Top enriched differentially expressed genes from the base excision repair 

gene set by 10µM SF. 

Figure 6.26. Top enriched differentially expressed genes from the DNA mismatch 

repair gene set by 10µM SF. 

Figure 6.27. Top enriched differentially expressed genes from the propanoate 

metabolism gene set by 10µM SF. 

Figure 6.28. Top enriched differentially expressed genes from the valine leucine and 

isoLeucine degradation gene set by 10µM SF. 

Figure 6.29. Top enriched differentially expressed genes from the steroid biosynthesis 

gene set by 10µM SF. 

Figure 6.30. Overall summary of the findings of the thesis. A mechanistic 

understanding of how SF regulates NADPH status within the cell by interfering with 

various metabolic pathways. 

Chapter 6 Tables: 
 

Table 6.1. The number of genes differentially expressed in response to SF in the WT 

and NRF2KD samples following 24h SF treatment. 

Table 6.2. Summary statistics of the pathway analysis using the KEGG database 

between the WT and NRF2KD Samples after SF 24h SF treatment 
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Table 6.3. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in Metabolism of Xenobiotics Pathway by Cytochrome 

P450. 

Table.6.4. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in glutathione metabolism. 

Table.6.5 Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in the pentose phosphate pathway. 

Table.6.6. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in glycine serine and threonine including one carbon 

pool by folate gene sets.  

Table.6.7. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in the biosynthesis of unsaturated fatty acids. 

Table.6.8. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in cytokine-cytokine interaction pathway. 

Table.6.9. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in DNA replication. 

Table.6.10 Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in base excision repair. 

Table.6.11 Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in DNA mismatch repair.  

Table.6.12. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in propanoate metabolism. 

Table.6.13 Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in valine, leucine, and isoLeucine degradation 

Table.6.14. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in steroid biosynthesis 
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6.1 Introduction: 
 

In 28 years of NRF2 research, the advancements in our understanding of how NRF2 

regulates the antioxidant response and its emerging role in central metabolism have 

been predominantly assessed using NRF2 KO mice models. For example, the first 

animal study to evaluate the effect of knocking out NRF2 was conducted by 

Thimmulappa and colleagues. In this study, the transcriptomic profile of WT and 

NRF2KO mice intestine treated with SF identified that NRF2 was not only involved in 

regulating the antioxidant response but also the genes involved in cellular NADPH 

regeneration, such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate 

dehydrogenase, and the malic enzyme (Thimmulappa et al., 2002). 

Following this, a wide range of studies assessing a diverse range of tissues has 

reported NRF2 to be crucial in regulating numerous metabolic functions.  One of the 

initial findings from NRF2KO mice studies showed that the transcriptional factor's loss 

results in reduced cell proliferation and redox homeostasis becoming compromised. 

For example, mouse embryonic fibroblasts (MEF), along with macrophages from 

NRF2KO mice, have a 75% decrease in the intracellular concentrations of glutathione 

compared to WT MEF (Wakabayashi et al., 2004, Higgins et al., 2009). This decrease 

in glutathione is also associated with a reduction in expression several genes involved 

in the antioxidant response, such as GCLC, GCLM, PRDX1, SLC7A11, TXRND1 

(Higgins et al., 2009, Ishii et al., 2000, Niso-Santano et al., 2010). Livers from NRF2 

KO mice have also reported a decrease in the intracellular concentration of glutathione, 

although this decrease was not as high as that in MEF or macrophages of NRF2KO 

mice; NRF2KO livers were shown to have a 20% reduction in the intracellular 

concentration of glutathione (Chowdhry et al., 2010, Zhang et al., 2013b). In alveoli 

cells, NRF2KO has been shown to cause a 50% reduction in intracellular 

concentrations of glutathione (Reddy et al., 2007). This decrease in glutathione 

production results in increased intracellular levels of ROS, as several studies have 

reported that NRF2KO cells have a 1.6 to 4-fold increase in the levels of ROS 

compared to WT cells. To name a few, ROS levels in NRF2KO MEF are 2.3-fold higher 

compared to WT (McDonald et al., 2010, Holmstrom et al., 2013), and similar 

cardiomyocytes (heart cells) of NRF2KO mice have 2.5-fold higher ROS compared to 

the WT cells (He et al., 2009). This increase in ROS has detrimental effects, as primary 

alveolar epithelial cells obtained from NRF2 KO mice, the increased ROS results in 

activation of the ataxia-telangiectasia mutated DNA damage response pathway, along 

with the arrest of the cell cycle as fewer cells enter the S-phase of the cell cycle (Reddy 

et al., 2008). The outcome is inhibition of cell proliferation.  
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Due to the compromised antioxidant response, studies have shown that NRF2 null 

mice are much more susceptible to a wide range of chemicals such as acetaminophen, 

benzo[a]pyrene, butylated hydroxytoluene, diesel exhaust fumes, 7,12-

dimethylbenz[a]anthracene, nitrosamine, and tobacco smoke (Kensler et al., 2007, Xu 

et al., 2006, Becks et al., 2010). Moreover, MEF from NRF2 KO mice have reduced 

expression of the alpha, mu, pi GST isoenzymes, resulting in a decreased ability to 

bind and conjugate glutathione to the xenobiotic substrate, thereby further impairing the 

ability to detoxify toxic xenobiotic (Higgins et al., 2009). This ability to withstand fewer 

xenobiotics has also been implicated with NRF2KO mice being more susceptible to 

developing cancer. For example, NRF2KO mice after four weeks of intraperitoneal 

injection of the toxin urethane was sufficient to result in a seven-fold increase of 

nodules in the lungs compared to its WT counterparts, and after 8 weeks, all of the 

lungs of the NRF2KO mice developed lung tumours, compared to only half of those 

with/in/of the WT (Higgins and Hayes, 2011).  

Identification of NRF2 regulating central metabolic processes such as lipid metabolism 

and mitochondrial respiration was also identified using animal models. For example, 

several studies have shown that deletion of NRF2 results in increased mRNA of genes 

involved in lipid metabolism such as sterol regulatory element-binding proteins 1c and 2 

(SREFB1/2), fatty acid synthase (FASN), acetyl-CoA carboxylase 1 (ACACA1) (Tanaka et 

al., 2008, Tanaka et al., 2012, Wu et al., 2011). Development of non-alcoholic 

steatohepatitis is also accelerated in mice that lack the transcription factor NRF2, as 

loss of NRF2 resulted in a 10-fold increase in the p65 protein subunit of the nuclear 

NF-Ƙb, along with a 5-fold increase in the mRNA levels of the following genes: 

interleukin 1β, tumour necrosis factor α, and cyclooxygenase 2 compared to WT mice 

(Chowdhry et al., 2010). Loss of the transcriptional factor has also been shown to 

diminish the activity and bioenergetics of the mitochondrial. MEF and neurons from 

NRF2KO mice have reduced membrane potential, which results in reduced ATP 

production and respiration (Holmstrom et al., 2013). This attenuation of mitochondrial 

function also results in the oxidation of long chain fatty acids becoming impaired 

(Ludtmann et al., 2014).  

The majority of the studies conducted on NRF2KO mice have been carried out to 

assess the function of NRF2 rather than assessing the health benefits of SF. In the 

previous two chapters (4 and 5), it was identified that SF treatment to HepG2 resulted 

in a wide range of metabolic responses in high glucose environments, particularly 

rewiring central metabolism, for increased NADPH production, as well as upregulating 

glutathione metabolism, to induce the antioxidant response. As the work conducted in 

the thesis was carried out in human cell lines, rather than in NRF2KO mice model, this 
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chapter aimed to assess whether the metabolic effects of SF in liver cells (SF 

interfering with 1C metabolism and the serine synthetic pathway) are mediated through 

NRF2. Therefore a novel liver NRF2 knockdown (NRF2KD) cell line was developed 

using the CRISPR/Cas9 genome editing technology. Knockdown rather than knockout 

was favoured as KD results in partial obstruction through the degradation of NRF2 

mRNA, thereby resulting in abortive protein translation rather than complete deletion, 

resulting in complete erasing of downstream targets, which rarely occurs 

physiologically.  

Subsequently, the effect of NRF2 deletion on the bioactivity of SF was assessed 

through: 

1. Metabolic phenotyping (Seahorse and targeted LC-MS analysis) 

2. Transcriptional phenotyping (RNAseq technologies) 

6.2 Methods: 

6.2.1: Processing the raw reads to obtain the differentially expressed 

genes 

In chapter 4, the RNAseq analysis was carried through edgeR-limma. Limma uses an 

empirical Bayes, and the test statistics that is used is a t-statistic (F-statistic). The 

analysis for the RNAseq in this chapter was conducted using DESeq2. The limitation 

with the edgeR-limma model is that its estimates of the variance are lower for weakly 

expressed genes, and higher for strongly expressed genes compared with DESeq2. 

Essentially, it is anti-conservative for genes that are low expressed, but this is 

compensated by being more conservative for strongly expressed genes. Overall, the 

type I error is maintained (Anders and Huber 2010). Nevertheless, this can still result in 

some form of bias, as low expressed genes tend to be overrepresented whilst only a 

few genes that are highly expressed tend to be differentially expressed. Using DESeq2, 

this limitation is avoided as DEseq2 can control the variance estimation. (Anders and 

Huber, 2010).  

DESeq2’s function estimateSizeFactors uses the median ratios method to estimate a 

normalization factor for each sample or size factor. These normalization factors are the 

median ratio of the samples over a “pseudo-sample”, where for each gene, is the 

geometric mean of all samples. Estimating size factors is performed as follows:  

1) Calculate a pseudo-reference sample geometric mean for each gene, that is 

equal to the geometric mean across all samples  
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2) Calculate the ratio of each sample to the reference: for every gene in a sample, 

the ratios sample/reference are calculated. This is performed for each sample in 

the dataset.  

3) Calculate the size factor, which is the median value of all ratios for a given 

sample for that sample.  

4) Calculate the normalized count values using the normalization factor: this is 

performed by dividing each raw count value in a given sample by that sample’s 

normalization factor.  

 

Following the construction of the DESeq2 model, before carrying out diagnostic plots to 

assess the quality of the data, lowly expressed genes were filtered. Genes that had a 

count of less than ten were discarded as they provide little information for differential 

expression. Pre filtering, the starting gene count matrix consisted of 60617 counts, and 

post filtering this number was reduced to roughly 34000 counts. Normally with count 

data, the Poisson distribution is widely used since it assumes that the mean is equal to 

the variance. However, with RNAseq data, the common occurrence is that the count 

data generated results in overdispersion; this means that the assumption of 

mean=variance is violated. To overcome this limitation, DESeq2 utilizes a negative 

binomial distribution to model the RNA-seq counts. DESeq2 like edgeR-limma works 

by building a model or models, depending on the set of parameters to be tested. For 

this analysis, the two parameters that need to be considered are the time and the line 

(WT and KD). DESeq2 will fit the normalized count data to the model and coefficients 

are estimated for each sample group. These coefficients are represented as the log2 

fold change for each sample group, along with various other statistical outputs such as, 

among others, standard error and p-value.  

6.2.2 Negative binomial GLM fitting and Wald statistics 

(nbinomWaldTest) 
 

For hypothesis testing, the null hypothesis for each gene is that there is no differential 

expression across groups: LFC = 0. DESeq2 uses the Wald test, a hypothesis test, 

where the estimated standard error of a log2 fold change is used to test if it is equal to 

zero. DESeq2 uses the Wald test as follows: takes the LFC and divides it by its 

standard error, resulting in a z-statistic; the z-statistic is compared to a standard normal 

distribution, and a p-value is computed reporting the probability that the z-statistic could 

be observed at random, and if the p-value is small we reject the null hypothesis as 

there is evidence against that the gene is indeed differentially expressed. 
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DESeq2 uses independent filtering which helps reduce the number of genes tested by 

removing genes unlikely to be significantly differentially expressed before testing, such 

as those with a low number of counts and outliers. A significance cutoff of 0.1 was used 

to optimize the independent filtering. Independent filtering uses a low mean threshold 

that is empirically determined from the data. Using this threshold, significantly 

differentially expressed genes can be increased by reducing the number of genes 

tested.    

The p values from the Wald test are corrected for multiple testing using the False 

Discovery Rate method based on the Benjamini-Hochberg, BH, algorithm. 

6.2.3 Exploratory Analysis of Gene Expression Profiles 

 

Principal Component Analysis (PCA) is a well-known transformation for high-

dimensional data. It is used also as an easy visualization to inspect the similarity and 

dissimilarity of transcriptomics profiles based on a few components that capture most 

of the variance of the data. For gene expression data, typically the 500 genes with 

higher variance (after pre-filtering) are included. The high-dimensional data is reduced 

such that the first principal components (PCs) capture most of the variance in the 

datasets. Then, the first 2 or 3 principal components can be shown as 2 or 3-

dimensional plots.  

Methods for exploratory analysis of multi-dimensional data (such as clustering and 

principal component analysis (PCA)) work best for homoscedastic data, where the 

variance of a feature (i.e., the expression of a gene) does not depend on the mean. 

Because variance grows with the mean with RNA-sequenced data, DESeq2 provides 

two transformations to produce more homoscedastic data: the variance stabilizing 

transformation (VST) and the rlog. VST attempts to create data that is more 

approximately normally distributed than the original data (or at least has more constant 

variance) so that a variable value is not related to the mean value. VST is 

recommended for medium to large datasets, as it is much faster to compute and is less 

sensitive to high count outliers than the rlog. These transformations are functions of 

DESeq2 which are provided for application and visualization of the data only and are 

not used for differential testing (which uses the raw untransformed counts).  

To explore the similarity of transcriptional profiles between samples, heatmaps, 

hierarchical clustering, and dendrogram are typically used. For this, R and the R library 

pheatmap (version 1.0.12) were used on the count matrix. First, Euclidean distances 

are calculated according to Equation 1. A larger Euclidean distance represents a 

smaller similarity. A smaller Euclidean distance represents a higher similarity. Thus, a 
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Euclidean distance of 0 means the two samples being compared are equal. Heatmaps 

of the sample-to-sample distances are plotted using dendrograms to give an overview 

of similarities and dissimilarities between samples. Dendrograms also show how the 

samples are clustered into groups based on their similarities, where the distance (or 

height of the dendrogram) represents the similarity between two samples: a shorter 

height represents more similar samples, while a larger height represents less similar 

samples. 

𝑑(𝑝, 𝑞) =  √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 Eq. 1 

  
where  

p, q      are two points in Euclidean n-space 

qi, pi  are Euclidean vectors, starting from the origin of the space (initial point) 

n      is the n-space 

 

Finally, extracted differentially expressed genes were used to produce Mean Average 

(MA) plots. MA plots are 2-D scatter plots used for the visualization of genomic data 

and provide a useful overview for two-group comparison. They allow the visualization 

and identification of gene expression changes from two groups in terms of log fold 

change (M – on Y-axis) and the log of the mean of normalized expression counts over 

all samples (A – on X-axis). By producing MA plots, we can visualize the degree of 

differentially expressed genes and in which direction; genes with similar expression in 

both groups will cluster around M=0 value (i.e. no significant difference in the 

expression), whereas points away from the M=0 line indicate significantly differentially 

expressed genes (upregulated or downregulated if above or below the line 

respectively).  

 

6.3 Results: 

6.3.1 Development of a novel NRF2 KD liver cell line 

To test the hypothesis that SF interfering with 1C and lipid metabolism along with the 

serine synthetic pathway identified in chapters (3,4 and 5) are mediated through NRF2, 

the genome editing technique CRISPR/Cas 9 was employed to develop a novel liver 

cell line that lacks NRF2. The optimisation's first step consisted of carrying out 

Genomic Detection Cleavage (GCD) to determine the % of modified cells (how 
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efficiently the Cas9 has cut the DNA strand). The GCD kit uses genomic DNA isolated 

from cells transfected with CRISPR/Cas 9 constructs. 

Following the CRISPR/Cas 9 transfection, genomic insertions or deletions are created 

by the cellular repair mechanisms (NHEJ mechanism). The genomic DNA sites where 

the insertions or deletions occur are amplified by PCR. Next, the PCR product is 

denatured and reannealed so that mismatches are generated as strands with an indel 

re-annealed to strands with no indel or a different indel. 

The mismatches are subsequently detected, followed by cleavage by an endonuclease 

enzyme. When running the PCR products on a gel, the cleaved bands will estimate 

how high the editing efficiency was. 

  

In this GCD protocol, two gRNAs targeting two regions of the NRF2 genome were 

tested. 

For the first gRNA, the editing efficiency after 48 h was 15% of the edited cells had two 

additional smaller amplicons: one band at 381 bp and the other 267 bp. After 72 h, the 

% of edited cells increased to 31% (figure 6.1).  This suggests that the editing was 

effective, as shown by the T7 Endonuclease I enzyme identifying and cleaving 

mismatches in the DNA double strands.  

After identifying that the first gRNA was successful in editing the DNA, a second 

separate experiment was then conducted, testing the efficiency of the second gRNA. 

Similarly, 48 h and 72 h post transfection, the DNA was extracted and assessed using 

the GCD Assay. After 48 h, compared to the negative control, which had a single NRF2 

amplicon at 550 bp, 75% of the transfected cells were still WT and had a single band at 

550bp. In contrast, about 15% of the edited cells yielded two smaller amplicons, one at 

380 bp and 170 bp. After 72 h, the transfection efficiency increased to about 

31%,  figure 6.2. 
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Figure 6.1. Gel image and bands quantification of the genomic detection cleavage assay 

in transfected cells using the first gRNA, targeting the NRF2 genome. Cells were 

transfected using the Gene Art Cas 9 protein through lipofectamine transfection. A) Following 

re-annealing and addition of the T7 Endonuclease I enzyme transfection, the amplified DNA 

was run of agarose gel to assess transfection efficiency. Samples are the following: 1-Control 

Template, 2-Negative Control 48 h, 3-Positive Control HPRT1 gene 48 h, 4-NRF2 gene 48 h, 5-

Negative Control 72 h, 6-Positive Control HPRT1 gene 72 h, 7-NRF2 gene 72 h. B) The 

quantified results of the GCD assay. The cleavage product consisting of two bands and the 

parental band was quantified using Fiji. Gene Modification Efficiency represented by % of 

INDEL (Insertion/Addition) was calculated through the following equation = [1- ((1-fraction 

cleaved) 1/2)] × 100. 
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Figure 6.2. Gel image and bands quantification of the genomic detection cleavage assay 

in transfected cells using the second gRNA, targeting the NRF2 genome. Cells were 

transfected using the Gene Art Cas 9 protein through lipofectamine transfection. A) Following 

re-annealing and addition of the T7 Endonuclease I enzyme transfection, the amplified DNA 

was run of agarose gel to assess transfection efficiency. Samples are the following: 1-Control 

Template, 2-Negative Control 48 h, 3-Positive Control HPRT1 gene 48 h, 4-NRF2 gene 48 h, 5-

Negative Control 72 h, 6-Positive Control HPRT1 gene 72 h, 7-NRF2 gene 72 h. B) The 

quantified results of the GCD assay. The cleavage product consisting of two bands and the 

parental band was quantified using Fiji. Gene Modification Efficiency represented by % of 

INDEL (Insertion/Addition) was calculated through the following equation = [1- ((1-fraction 

cleaved) 1/2)] × 100 
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To assess whether the editing in the DNA resulted in a reduction in the protein level of 

NRF2, the next step in optimization was assessing NRF2 protein through Western 

Blotting. In this assay, HepG2 was transfected with both gRNA simultaneously. Cell 

lysates were then collected at 48 and 72 h post transfection.  NRF2 under unstressed 

conditions is heavily regulated by binding to KEAP1 and sent to for proteasomal 

degradation, both the WT and KO were treated with 10 µM SF for 16/17 h before 

protein extraction to induce protein NRF2. Figure 6.3 revealed that 48h post-

transfection, the editing resulted in a 70 decrease in the NRF2 protein, and 72 h this 

was even further reduced to 82%.   

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 6.3. Western Blot analysis of transfected HepG2 cells to assess NRF2 protein. 

Cells were treated with SF, and A) Protein lysates were extracted at 48 h and B) at 72 h post-

transfection. Band Intensity was quantified using Fiji, and NRF2 was normalized to beta-actin. 

Error bars represent the standard deviation. Statistical analysis was performed by independent 

unpaired two-way t-test p= 0.003 in three biological replicates 
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In the previous assays (figures 6.1-6.3), transfection resulted in forming a 

heterogenous population (a mixture between WT and KD cells). To fully generate a 

novel NRF2KO liver cell line, the assay was repeated and 72 h post-transfection single 

cells were seeded onto 7, 96 well plates. The seeded cells were monitored weekly and 

images were taken to track colony formation (figures 6.4-6.6). 

 

 

 

 

 

Figure 6.4. Monitoring of clonal expansion of NRF2KO HepG2, four weeks post-

transfection.  NRF2KO cells were obtained by transfecting with Cas9/gRNA with lipofectamine. 

Cells were diluted to single cells and were seeded into individual wells of 96 well plates for 

colonial expansion. A) represents 5 X whilst B) represents the same image as A, only zoomed 

in 10 X magnification. C/D represents cells from independent wells at 5 X magnification, using 

the Zeiss Axion Imager. Each picture represents a separate well, therefore a separate colony. 

Images were taken 4 weeks after seeding.     

Week 4 

A) B) 

C) D) 
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Figure 6.5. Monitoring of clonal expansion of NRF2KO HepG2, five weeks post-

transfection.  HepG2, NRF2KO cells were obtained by transfecting with Cas9/gRNA with 

lipofectamine. Cells were diluted to single cells and were seeded into individual wells of 96 well 

plates, for colonial expansion. A-C) 5 X magnification, D) 20 X magnification. Images were 

obtained using the Zeiss Axion Imager M2. Each image represents a separate well, therefore a 

separate colony. Images were taken 5 weeks after seeding.     
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Figure 6.6. Monitoring of clonal expansion of NRF2KO HepG2, six weeks post-

transfection.  HepG2, NRF2KO cells were obtained by transfecting with Cas9/gRNA with 

lipofectamine. Cells were diluted to single cells and were seeded into individual wells of 96 well 

plates for colonial expansion. A-D) All images were taken at 10 X magnification. Images were 

obtained using the Zeiss Axion Imager. Each image represents a separate well, therefore a 

separate colony. Images were taken 6 weeks after seeding. 

 

Due to the success of the knock-down, it was deemed that a heterogeneous population 

of WT and KO cells would be sufficient to address the aims of this chapter. In an 

independent experiment that also included a third gRNA, the high editing efficiency was 

further confirmed. In this independent experiment, all three gRNA were transfected 

simultaneously. DNA modification was only assessed 72h post transfection as it was 

previously identified that at this time point the greatest amount of editing occurred. 

Week 6 

A) B) 

C) D) 
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GCD revealed in figure 6.7, that for the first gRNA, whilst the WT cells had only a single 

band at 648 bp as expected, the edited cells also had two additional amplicons, one at 

381 bp and the other 267 bp, although only 10% of the cells were edited.  For the 

second gRNA, the NRF2 band for the WT was 550 bp. Interestingly though it was 

identified only one amplicon for the edited cells and this band was approximately 

400bp, suggesting deletion of 150 bp. For the third gRNA, a similar finding to the 

editing of the second gRNA was identified. The DNA band for the WT cells was 540bp. 

For the edited cells only one band was also identified and this band was again 150 bp 

shorter, at around 400bp. The findings from figure 6.7 may suggest that at two out of 

three sites the cells might have had 100% editing efficiency.  

 

 

 

Figure 6.7. Gel image of the genomic detection cleavage assay in transfected cells using 

all three gRNA simultaneously, targeting the NRF2 genome. HepG2 was transfected 

through RNP and Lipofectamine.  Following re-annealing and addition of the T7Endonuclease I 

enzyme transfection, the amplified DNA was run on an agarose gel to assess transfection 

efficiency. Samples are the following: CT= Control Template, WT= Wild type, and KD=NRF2 

Knock Down. For the assay, three biological replicates and three technical replicates were 

used.  

The final optimization assay that was carried out was a second Western Blot to assess 

how the deletion of the 150 bp of the DNA from two sites of the NRF2 gene, identified 

in figure 6.7 impacted the protein levels of NRF2. It was identified that the editing led to 

a 60% reduction in NRF2 protein, (figure 6.8). Notably, the lower band of the NRF2 

was completely deleted.  
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Figure 6.8. Western Blot assessing NRF2 protein in WT and NRF2 KD HepG2 treated with 

10 µM SF overnight. Cell lysates were extracted and determined by Western Blotting. Three 

biological replicates and two technical replicates were run. A) Visualized protein lysates. B) 

Band Intensity was quantified using Fiji, and NRF2 was normalized to beta-actin. Error bars 

represent the standard deviation. Statistical analysis was determined through a student t-test 

p=0.03, comparing three biological replicates. 

 

To assess whether the editing results in loss of function of the downstream targets of 

NRF2,  in a separate experiment, WT and the heterogeneous population of NRF2 

edited cells, therefore, NRF2 knockdown (NRF2KD cells), were cultured in a high 

glucose environment and treated with physiological concentrations of SF at both an 

early 9 h and late 24 h time point. At these time points, RNA was extracted to quantify 
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the expression of key NRF2 targets genes, both involved in the antioxidant response, 

such as NADPH quinone reductase gene (NQO1), glutamate-cysteine ligase catalytic 

subunit (GCLC), thioredoxin reductase (TXRND1), and heme oxygenase (HMOX1) as 

well as genes involved in regulating central metabolism such as glucose-6-phosphate 

dehydrogenase (G6PD)  and transketolase (TKT). The analysis also included CPT1a, 

which up to this point remains unknown whether NRF2 directly regulates its activity or 

not. Firstly I identified that the expression of NQO1, TXRND1 and GCLC in the 

NRF2KD control samples was significantly higher compared to the WT control 

samples, suggestings activation of another NRF2 isoform like NRF1 in the KD 

samples.  

The analysis identified that for NQO1, SF treatment resulted in approximately a 4-fold 

increase. This effect in the NRF2KD was completely attenuated, as SF treatment 

resulted in a 1.4-fold change (figure 6.9 a). For TXNRD1, SF treatment in the WT cells 

also resulted in an over 4-fold increase while the effect SF in the NRF2KD cell line 

resulted in a 1.3-fold change (figure 6.9 b). Induction of GCLC through SF resulted in a 

3.5-fold change in the WT, whilst in the knockdown, this was diminished to a 1.5-fold 

change (figure 6.9 c).  

For the metabolic genes, SF treatment results in a 1.5-and 2-fold change for G6PD and 

TKT respectively. In contrast to our surprise, SF treatment did not induce, the 

expression of G6PD and TKT in the NRF2KD cell line (figure 6.10 a and b). It was 

also identified that regardless of the editing, SF resulted in upregulation of CPT1a, 

thereby identifying that its activity is unlikely to be mediated by NRF2, (figure 6.10 c).  
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Figure 6.9. qrt-PCR of NRF2 target genes in WT and NRF2KD HepG2. Cells were cultured in 

high glucose (25 mM) without FBS, and RNA was extracted after 24 h post SF treatment. Gene 

expression was assessed by qRT-PCR. Samples were normalized to the housekeeping control 

beta-actin. All values are expressed as mean ± SD from three independent wells. Statistical 

analysis was determined by a two-way ANOVA between control and treatment and the effect of 

editing (WT vs NRF2KD). NQO1:  WT DMSO vs WT SF p<0.0001, WT DMSO vs NRF2KD 

DMSO p=0.0014, and NRF2KD DMSO vs NRF2KD SF p<0.0082. TXRND1: WT DMSO vs WT 

SF p<0.0001, WT DMSO vs NRF2KD DMSO p=0.0006, and NRF2KD DMSO vs NRF2KD SF 

p=0.0024. GCLC: WT DMSO vs WT SF p<0.0001, WT DMSO vs NRF2KD DMSO p=0.0005, 

and NRF2KD DMSO vs NRF2KD SF p=0.0003 
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Figure 6.10. qrt-PCR of metabolic genes in WT and NRF2KD HepG2. Cells were cultured in 

high glucose (25 mM) without FBS and RNA was extracted after 24 h post SF treatment. Gene 

expression was assessed by qRT-PCR. Samples were normalized to the housekeeping control 

beta-actin. All values are expressed as mean ± SD from three independent wells. Statistical 

analysis was determined by a two-way ANOVA between control and treatment and the effect of 

editing (WT vs NRF2KD). G6PD: WT DMSO vs WT SF p=0.0004, WT DMSO vs NRF2KD 

DMSO p=0.07, and NRF2KD DMSO vs NRF2KD SF p=0.9. TKT: WT DMSO vs WT SF 

p<0.0001, WT DMSO vs NRF2KD DMSO p=0.0001, and NRF2KD DMSO vs NRF2KD SF 

p=0.52. CPT1a: WT DMSO vs WT SF p=0.0047, WT DMSO vs NRF2KD DMSO p=0.043, and 

NRF2KD DMSO vs NRF2KD SF p=0.015.  
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Analysis of the early time point also revealed similar findings. HMOX1 and NQO1 

expression in the WT stimulated with the presence of SF resulted in a 4-fold increase in 

HMOX1 and a 3-fold increase in NQO1, respectively. In contrast, SF treatment in the 

NRF2 KD cells resulted in a 1.5-fold increase in HMOX1 and a 1.3-fold increase in 

NQO1, thereby further confirming the effectiveness of the editing (figure 6.11 a and b).  

 

 

Figure 6.11. qrt-PCR of NRF2 target genes in WT and NRF2KD HepG2. Cells were cultured 

in high glucose (25 mM) without FBS and RNA was extracted after 9 h post SF treatment. Gene 

expression was assessed by qRT-PCR. Samples were normalized to the housekeeping control 

beta-actin. All values are expressed as mean ± SD from three independent wells. Statistical 

analysis was determined by a two-way ANOVA between control and treatment and the effect of 

editing (WT vs NRF2KD). HMOX1: WT DMSO vs WT SF p<0.0001, WT DMSO vs NRF2KD 

DMSO p=0.99, and NRF2KD DMSO vs NRF2KD SF p<0.0001. NQO1: WT DMSO vs WT SF 

p<0.0001, WT DMSO vs NRF2KD DMSO p=0.0002, and NRF2KD DMSO vs NRF2KD SF 

p=0.0039. 
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6.3.2 Metabolic phenotyping of WT and NRF2KD cells reveals that 

knockdown of NRF2 affects glycolysis and mitochondrial 

respiration.  

To assess how NRF2 knockdown affects metabolism, both mitochondrial activity and 

glycolysis were assessed using the Seahorse Bioanalyzer. As previously shown that 

NRF2 regulates the activity of several genes involved in regulating the TCA cycle 

(Mitsuishi et al., 2012), I hypothesized that KD would reduce the oxygen consumption 

rate (OCR) an indirect measurement of mitochondrial activity) compared to the WT. In 

the first assay, mitochondrial activity and glycolysis in WT and NRF2KD cells were 

assessed without the presence of SF, as shown in figure 6.12. In a separate 

independent experiment, the assay was repeated, with 24 h SF treatment, to assess 

what effect SF would have on the cell bioenergetics. Editing of NRF2KD resulted, as 

expected, in an overall decrease in mitochondrial activity but also a reduction in 

glycolysis, thereby confirming that also glycolysis is regulated by NRF2 (figure 6.12 a 

and c). When SF was added, the reduction in OCR in the NRF2KD cell compared to 

the WT was no longer present, suggesting that the reduction in mitochondrial 

respiration by SF is mediated by NRF2 (figure 6.13 b). In contrast, SF was still able to 

affect/reduce glycolytic function in NRF2KD cells, suggesting that the effect of SF on 

glycolysis is at least in part mediated through NRF2-independent pathways  (figure 

6.12 d). 
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Figure 6.12. Cell energy phenotype of WT and NRF2KD HepG2 cells with and without the 

presence of SF. A) Oxygen consumption rate (OCR) of the WT (in blue) and NRF2KD cells (in 

red) only, B) the Oxygen consumption rate of the WT (in blue) and NRF2KD cells (in red) with 

the presence of 10 µM SF for 24 h without the presence of FBS. C) Extracellular acidification 

rate (ECAR) of the WT (in blue) and NRF2KD cells (in red) only, D) ECAR of the WT (in blue) 

and NRF2KD cells (in red) with the presence of 10 µM SF for 24 h without the presence of FBS. 

All values are expressed as mean ± SEM from three biological replicates. 
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6.3.3 Targeted metabolomics through LC-MS analysis reveals that SF 

interference in 1C metabolism is mediated through NRF2 

To assess the effect of physiologically relevant concentrations of SF on the 

intermediary metabolism of WT and NRF2KD HepG2, cells were cultured in 25 mM 

glucose. Following 9 h and 24 h SF treatment, metabolites were extracted and 

assessed by LC-MS. Consistent with the findings in chapter 5, 24 h SF treatment led to 

an approximately 40% reduction in the levels of serine in WT cells. The intracellular 

concentration of serine in the WT control cells was 120 µM compared with 70 µM of the 

SF treated WT cells. In contrast, levels of serine in both control and SF treated 

NRF2KD cells did not change, suggesting that the effect of SF on the amino acid 

serine is mediated through NRF2 (figure 6.13 a). The analysis for glycine also yielded 

similar results. A 24 h SF treatment also led to a 100 µM decrease in the intracellular 

concentration of glycine. In the edited cells, this decrease in glycine by SF still 

occurred, although the effect was not as profound, resulting in a 30 µM decrease in the 

intracellular concentration of glycine (figure 6.13 b). The analysis also revealed that 

the intracellular concentrations of methionine remained unchanged between the WT 

control vs SF treated cells. However, comparison of the WT vs NRF2KD control 

resulted in a significant reduction, potentially implying that also methionine is regulated 

through NRF2 (figure 6.13 c). On the other hand, Betaine revealed that firstly, the WT 

cells treated with SF had a reduced pool, further confirming the data obtained in 

chapter 5. The most striking was that the concentration of betaine of both the control 

and the SF stimulated NRF2KD cells was greater than its respective WT, therefore 

implying that the SF effect on betaine is not mediated through NRF2 (figure 6.13 d).  
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Figure 6.13. Metabolomic profile of amino acids related to 1C metabolism in WT and 

NRF2 KD HepG2 cells. WT and NRF2 KD HepG2 cells were cultured in 25 mM glucose without 

FBS, and 24 h post SF treatment metabolites were extracted and assessed on the Triple Quad 

6490 LC-MS. A) Serine, B) Glycine, C) Methionine, and D) Betaine. All values are expressed as 

mean ± SD from four independent wells. Statistical analysis was determined by a two-way 

ANOVA between control and treatment and the editing effect (WT vs NRF2KD) compared to 

respective controls. Serine: WT DMSO vs WT SF p=0.0001, WT DMSO vs NRF2KD DMSO 

p=0.0005, and NRF2KD DMSO vs NRF2KD SF p=0.63. Glycine: WT DMSO vs WT SF 

p<0.0001, WT DMSO vs NRF2KD DMSO p<0.0001, and NRF2KD DMSO vs NRF2KD SF 

p=0.02. Methionine: WT DMSO vs WT SF p=0.60, WT DMSO vs NRF2KD DMSO p=0.0020, 

and NRF2KD DMSO vs NRF2KD SF p=0.90. Betaine: WT DMSO vs WT SF p<0.0001, WT 

DMSO vs NRF2KD DMSO p<0.0001, NRF2KD DMSO vs NRF2KD SF p<0.0001. 
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6.3.4 RNA-seq data analysis and identification of treatment clustering 

To gain a molecular understanding of how SF impacts metabolism in the NRF2KD cells 

and to test the central hypothesis of the thesis that all the metabolic effects identified in 

chapters 3, 4, and 5 are mediated through NRF2, an RNAseq study was conducted. In 

this study, WT and NRF2KD cells were treated with physiological concentrations of SF 

under 25 mM glucose. A time course RNAseq study was conducted for this study, 

where RNA was extracted after 3, 9, and 24 h SF treatment. This was done to test the 

following hypotheses 

1) The transcriptional changes induced by SF at early time points will affect genes 

involved in the antioxidant response machinery of the cell. 

2) The transcriptional changes induced by SF at 24 h will affect genes involved in 

central metabolism. 

 

A total of four hepatic mRNA samples per group, at the different time points  (four 

control and four SF treated for WT and same for the NRF2KD), were sent for RNA 

sequencing (RNAseq). Firstly the data were transformed using principal component 

analysis (PCA) and Euclidean distance for visualization. In figure 6.14, PC1 explains 

the biggest variation in the samples (43%) and is likely to be due to the time-course 

nature of the experiment. PC2 explains an additional 8% of the variation, both the WT 

and KD samples change as time progresses, but the transcriptional changes observed 

differ. For the WT, as time progress, the SF treated samples do not change much, 

whilst the control, however, the samples progressively appear to behave differently.  

For the KD samples, the clear separation between the treatment and the control is no 

longer noticeable, clearly highlighting that the transcriptional effects of SF in liver 

HepG2 cells are primarily mediated through NRF2. 
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Figure 6.14. Generalized principal component analysis (PCA) plot on raw count data for 

first and second dimensions.  PCA plot showing how throughout the time course SF affects 

gene expression in HepG2 cultured in a high glucose environment. A) WT samples. B) NRF2KD 

samples. 

 

A) 

B) 
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The result of the Euclidean distance shows that for both the WT and NRF2KD samples 

both the control and DMSO are similar among each other and cluster together. In 

contrast, the SF treated samples cluster separately from their respective control, 

suggesting the effect of SF on inducing transcriptional changes. Most notably the SF 

effect in the NRF2KD differs from the WT shown by the reverse heatmap, further 

implying that the transcriptional effects of SF in liver HepG2 cells are primarily 

mediated through NRF2 (figure 6.15). 

 

 

  

 

 

 

 

A) 
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Figure 6.15. Euclidean distance heatmap for each sample and treatment transformed by 

rlog.  Euclidean distance plot showing how the WT samples treated with SF behave differently 

to the NRF2 KD samples in HepG2 cultured in a high glucose environment after 24h treatment. 

A) WT samples. B) NRF2KD samples. 

6.3.5 Differential expression gene testing 

Differential expression analysis was performed on the gene counts via DESeq2, and 

the differentially expressed genes were corrected for multiple testing by Benjamini 

Hochberg (q<0.05). The mean-difference plot shown in figure 6.16 summarises the 

changes in gene expression induced by SF. A dot represents each gene in the plot, 

and the blue dots represent the differentially expressed genes, following multiple 

testing (q<0.05). For the WT samples out of the 17346 differentially expressed genes, 

7603 were statistically significant (q<0.05). Likewise, for the NRF2KD samples out of 

the 17569 differentially expressed genes, only 4710 were statistically significant 

(q<0.05).   

 

B) 
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Figure 6.16. Testing for differential expression between SF vs DMSO for A) WT samples 

and B) the NRF2KD samples. Scatter plot of log2 ratio (fold change) vs mean. The grey color 

depicts all of the differentially expressed genes, whilst the blue dots represent the differentially 

expressed genes corrected for multiple testing, False Discovery rate set to 5% (Benjamini-

Hochberg). Triangles represent the genes that fall out the y-axis of -5 to 5.  

 

A) 

B) 
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In the final step, the results of the pairwise comparison between 10 µM SF to the 

control in the WT and KD samples under different levels of the adjusted p-value 

(Benjamini-Hochberg) were extracted and published in table 6.1. Table 6.1 revealed 

that a total of 7603 genes were differentially expressed in response to 10µM SF 

compared to untreated controls in the WT, whilst 4710 genes were differentially 

expressed compared to the untreated control in the NRF2KD cell line (q < 0.05). 

Table 6.1. Number of genes differentially expressed in response to SF in the WT and 

NRF2KD samples following 24h SF treatment 

Samples Num of 
Genes 
Expressed 

Pass. 
Wald 
Test 

p.value 
0.1 

p.value 
0.05 

q.value 
0.1 

q.value 
0.05 

WT 17351 17346 9520 8511 8456 7603 

NRF2KD 17578 17569 7240 6122 5561 4710 

Differentially expressed genes were obtained using the DESeq2 model. The statistically 

significant genes were calculated through the Wald test. The Wald test uses a likelihood ratio 

test which has an asymptotical chi-square test statistic. These statistically significant genes 

were then corrected for multiple testing for false discovery rates through the Benjamini-

Hochberg. The differentially expressed genes corrected by multiple testing are represented by 

the q value.  

 

6.3.6 Gene Set Enrichment Analysis 

GSEA analysis was carried out on all the differentially expressed genes, (all 17351 for 

WT not just those with q<0.05). For the WT samples, it was identified that out of a total 

of 161 gene sets, 107 were positively enriched and 54 were negatively enriched. Out of 

these 107, 5 gene sets were enriched with a nominal p-value of <1%, and 23 gene sets 

were enriched at a nominal p-value of <5%. Similarly, in the negatively enriched sets, 5 

gene sets were enriched with a nominal p-value of <1%, and 7 gene sets were 

enriched at a nominal p-value of <5%. For the NRF2KD samples, instead, it was 

identified that 105, were positively enriched and 56 were negatively enriched. For the 

positively enriched genes set, 8 gene sets were enriched with a nominal p-value of 

<1%, and 21 gene sets were enriched at a nominal p-value of <5%. For negatively 

enriched genes set 7 gene sets were enriched with a nominal p-value of <1% and 14 

gene sets were enriched at a nominal p-value of <5%. Summary of the results can be 

identified in table 6.2. 
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Table 6.2. Summary statistics of the pathway analysis using the KEGG database between 

the WT and NRF2KD samples after SF 24h SF treatment 

Samples Enriched Gene 

Sets 

FDR q <0.25 Nominal p 

value <0.05 

Nominal p 

value <0.01 

WT 161 (↑107 ↓54) 21 (↑14 ↓7) 10 (↑5 ↓5) 30 (↑23 ↓7) 

NRF2KD 161 (↑105 ↓56) 39 (↑23 ↓16) 15 (↑8 ↓7) 35 (↑21 ↓14) 

Pathway analysis was carried out using the GSEA software mapped to the KEGG database. 

161 total pathways were calculated where ↑ represents upregulated pathway ↓ is 

downregulated pathway. The bold values under the FDR q value column represent the 

statistically significant pathways that have been enriched, the p-value that has corrected using 

Benjamini-Hochberg. The nominal p-value is the p-value normalized to the enrichment score  

 

For the WT samples, it was identified that out of the positively enriched gene sets five 

reached a q< 0.05. These are: metabolism of xenobiotics by cytochrome P450 (NES= 

1.81, q=0.006) and glutathione metabolism (NES= 1.80, q =0.008), highlighting NRF2 

induction in the antioxidant response. Proteasome metabolism (NES= 1.81, q=0.006), 

was also enriched, thereby identifying NRF2 regulating the activity of several genes 

involved in the assembly of the proteasome. All these pathways were also identified to 

be upregulated in the RNASeq study in chapter 4 by 10µM SF in both the basal and 

high glucose environment (see chapter 4, 4.3.2), as well as being consistent with 

previously published data. SF also upregulated the pentose phosphate pathway (PPP) 

gene set (NES= 1.73, q=0.031), and finally, the steroid hormone biosynthesis pathway 

(NES= 1.71, q=0.038), consisting of additional genes such as the family of Aldo-Keto 

reductases known to be direct targets of NRF2 (figure 6.17). For the negatively 

enriched gene sets, the main gene set that SF downregulated was glycine, serine, and 

threonine metabolism (NES= -1.79, q=0.034), further confirming the findings from 

chapter 4 and 5, followed by propanoate metabolism (NES= -1.78, q=0.018), 

complement and coagulation cascades (NES= -1.72, q=0.031) and valine, leucine, and 

isoleucine degradation (NES= -1.66,  q=0.05), while the gene set biosynthesis of 

unsaturated fatty acids just failed to reach significance (NES= -1.67, q=0.059) (figure 

6.17).                                                                                       

In the NRF2KD samples, it was identified that the only gene set that was enriched in 

also the WT samples was the valine, leucine isoleucine degradation set, suggesting 

that the activity of these genes are likely not mediated by NRF2. Notably, none of the 

other gene sets found in the WT samples were enriched following SF treatment, 

suggesting that the role of SF interfering with one carbon metabolism and serine and 

glycine is mediated through NRF2. The summary results of the GESEA are shown in 

figure 6.17.  
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Figure 6.17. Significantly enriched gene sets identified within the differential expression 

data of WT HepG2 (green) and NRF2KD HepG2 (red) cells cultured under a high glucose 

environment when compared to sulforaphane treatment. The x-axis represents the 

normalized enrichment score (NES). The NES is calculated using the GSEA. NES represents 

an estimation of the significance of the gene set normalized to the size of each gene set. 

Positive NES is shown by an increase in the gene set, and negative NES denotes an overall 

decrease in the gene set.  The y-axis represents the gene sets. Both treatment and controls are 

representative of quadruplicate samples.  

 

6.3.7 The metabolic effects induced by SF in the WT cells are abolished in 

the KD samples 

To get some insight into the genes involved in enriched pathways that were changed 

by SF, the top enriched core genes from each set were analyzed. The enriched core 

genes are defined as the subset of genes that contribute the most to the enrichment 

result. For the metabolism xenobiotics by cytochrome P450 gene set, it was identified 

11 top enriched core genes. These top core enriched genes included several well-

known NRF2 phases I and II targets such as the Aldo-Keto reductase family (AKR) and 

NQO1 (figure 6.18). It was identified from the analysis that the editing had a profound 

effect, in abolishing the response of genes involved in the antioxidant response in the 

KD cell line. For example, for the Aldo-Keto reductase genes, AKR1C1, AKR1C2, and 

AKR1C3 the editing resulted in about a 5- fold decrease in activity compared to the WT 

cells (AKR1C1 WT DMSO vs WT SF log2FC = 2.53 compared to KD DMSO vs KD SF 

log2FC= 0.15, table 6.3 and figure 6.18). For GSTA1, which is involved in glutathione 
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metabolism, by conjugating glutathione to xenobiotics, the editing even resulted in a 

downregulation of its activity compared to the WT (GSTA1, WT DMSO vs WT SF 

log2FC = 1.35 compared to KD DMSO vs SF KD log2FC= -0.36). It was identified 

though that the gene, UGT2B10 involved in phase II metabolism, its expression was 

higher in the KD samples rather than WT, perhaps suggesting that not all of the phase 

II genes are solely regulated by NRF2 (UGT2B10, WT DMSO vs WT SF log2FC = 0.48 

compared to KD DMSO vs SF KD log2FC= 0.58).  The results of the core enriched 

genes in the metabolism of xenobiotics by cytochrome P450 are shown in table 6.3 and 

figure 6.18.   
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Table 6.3.Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in the metabolism of xenobiotics pathway by cytochrome 

P450 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Control 
WT 

SF 
 Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

Metabolism of Xenobiotics  
by Cytochrome P450 

    

ENSG00000198099 ADH4 Alcohol dehydrogenase 4 0.533 0.231 

ENSG00000187134 AKR1C1 Aldo-keto reductase 

family member 1 C1 

2.533 0.152 

ENSG00000151632 AKR1C2 Aldo-keto reductase 

family member 1 C2 

2.903 0.2613 

ENSG00000196139 AKR1C3 Aldo-keto reductase 

family member 1 C3 

1.643 0.403 

ENSG00000167600 CYP2S1 Cytochrome P450 family 

2 Subfamily S1 

1.143 0.443 

ENSG00000143819 EPHX1 Expoxide hydrolase 1 1.233 0.443 

ENSG00000243955 GSTA1 Glutathione S-transferase 

alpha 1 

1.353 -0.363 

ENSG00000148834 GSTO1 Glutathione-S-transferase 

omega-1 

0.673 0.363 

ENSG00000008394 MGST1 Microsomal glutathione S-

transferase 1 

1.193 0.173 

ENSG00000181019 NQO1 NAD(P)H dehydrogenase, 

quinone (1) 

1.523 0.273 

ENSG00000109181 UGT2B10 UDP 

glucuronosyltransferase 

family 2 member B10 

0.483 0.563 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 
geometric mean for each gene across the samples is calculated. The count for each gene is then divided 
by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg.  
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Figure 6.18. Bar plot of the top enriched core gene, from the metabolism of xenobiotics 

by cytochrome P450 gene set by 10 µM SF. These top enriched genes also referred to as the 

leading edge are defined as those which contributed most to the set enrichment score; 

reflecting their degree of overrepresentation in a running-sum metric. This is calculated using 

both the fold enrichment and degree of significance (p-value). Red = KD and Blue= WT 

samples.  The x-axis represents the log2 fold change whilst, the y-axis represents the genes of 

interest. These include Alcohol Dehydrogenase 4 (ADH4), Aldo-Keto Reductase 1 family 

member C1 (AKR1C1), Aldo-Keto Reductase 1 family member C2 (AKR1C2), Aldo-Keto 

Reductase 1 family member C3 (AKR1C3), Cytochrome P450 Family 2 Subfamily S1 

(CYP2S1), Epoxide Hydrolase 1 (EPHX1), Glutathione-S-transferase alpha 1 (GSTA1), 

Glutathione-S-transferase omega 1, (GSTO1), Microsomal Glutathione S-transferase 1 

(MGST1), NAD(P)H Dehydrogenase Quinone 1, (NQO1) and UDP Glucuronosyltransferase 

family 2 member B10 (UGT2B10). The statistical significance of the DEG can be found in table 

6.3.  

 

The next step of the analysis involved assessing the impact of the KD on the enriched 

core genes from the glutathione metabolism gene set. In chapter 4 it was identified a 

large increase in expression of the glutathione biosynthetic genes, correlating with an 

increase in the production of the metabolite reduced glutathione, identified in chapter 5. 

Therefore, it was expected that the editing would also result in a large reduction in the 

activity of genes in this set. It was identified that for the GCLC and GCLM, the rate-

limiting enzymes involved in glutathione biosynthesis, editing resulted in a 2.5 and over 

3-fold decrease in the activity of the genes, whilst GSR, needed for the conversion of 

oxidized to reduced glutathione editing resulted in about a 2-fold decrease (table 6.4 

Log2 FC 
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and figure 6.19). The analysis also revealed that G6PD the rate-limiting enzyme in the 

pentose phosphate pathway and PGD both involved in the pentose phosphate pathway 

the editing completely abolished the activity of these genes (table 6.4 and figure 6.19). 

Two genes involved in spermidine biosynthesis were also identified to be upregulated 

by SF: ornithine decarboxylase (ODC1), (previously reported in chapter 4) involved 

converting ornithine into the biogenic amine putrescine and spermidine synthase 

(SRM), the latter involved converting putrescine into spermidine, with the editing 

resulting in a 1.33-fold decrease in both genes compared to the WT. The results of the 

top 10 core enriched in glutathione metabolism are shown in table 6.4 and figure 6.19. 

Table.6.4. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in glutathione metabolism 

 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 
geometric mean for each gene across the samples is calculated. The count for each gene is then divided 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Control 
WT 

SF  
Log2 Fold 
Change 

vs 
Control  
NRF2KD 

Glutathione Metabolism     

ENSG00000160211 G6PD Glucose-6-

Phosphate 

Dehydrogenase 

0.553 0.02 

ENSG00000001084 GCLC Glutamate-cysteine 

ligase catalytic 

subunit 

1.673 0.423 

ENSG00000023909 GCLM Glutamate-cysteine 

ligase regulatory 

subunit 

2.023 0.453 

ENSG00000176153  GPX2 Glutathione 

Peroxidase 2 

1.003 0.002 

ENSG00000104687 GSR Glutathione 

Reductase 

1.163 0.213 

ENSG00000148834 GSTO1 Glutathione-S-

transferase omega-1 

0.673 0.363 

ENSG00000008394 MGST1 Microsomal 

glutathione S-

transferase 1 

1.193 0.173 

ENSG00000115758 ODC1 Ornithine 

Decarboxylase 

0.673 0.263 

ENSG00000142657 PGD Phosphogluconate 

dehydrogenase 

0.583 -0.0001 

ENSG00000116649 SRM Spermidine 

synthase  

0.533 0.112 
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by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg.  
 
 

 

Figure 6.19. Top enriched differentially expressed genes from the Glutathione 

Metabolism gene set by 10 µM SF. These top enriched genes also referred to as the leading 

edge are defined as those which contributed most to the set enrichment score; reflecting their 

degree of overrepresentation in a running-sum metric. This is calculated using both the fold 

enrichment and degree of significance (p-value). Red = KD and Blue= WT samples. Glucose-6-

Phosphate (G6PD), Glutamate-Cysteine Ligase Catalytic Subunit (GCLC), Glutamate-Cysteine 

Regulatory Subunit (GCLM), Glutathione Peroxidase2 (GPX2), Glutathione Reductase (GSR), 

Glutathione S-transferase omega-1 (GSTO1), Microsomal Glutathione S-transferase 1 

(MGST1), Ornithine Decarboxylase 1 (ODC1), Phosphogluconate Dehydrogenase (PGD) and 

Spermidine Synthetase (SRM).  The statistical significance of the DEG can be found in table 

6.4. 

 

The final positively enriched gene set that was analyzed, was the (PPP). In this set, it 

was identified, nine core enriched genes: the majority involved in the PPP but a couple 

also involved in glycolysis. Two enriched genes, G6PD and PGD respectively also 

overlapped with the glutathione metabolism gene set: Analysis of this gene set 

identified SF upregulating in the WT samples, the activity of the following genes, all 

belonging to the non-oxidative branch of the PPP:  Phosphopentose epimerase (RPE) 

involved in converting ribulose-5-phosphate to xylulose 5-phosphate, transketolase 

(TKT) catalyzes the conversion of xylulose 5-phosphate to a 5 carbon atom aldose (D-

ribose-5-P) to form a 7 carbon atom molecule (sedoheptulose) and transaldolase 

Log2 FC 
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(TALDO) catalyzing the reversible conversion of sedoheptulose to erythrose 4-

phosphate and fructose 6-phosphate. When these genes were assessed in the KD 

samples it was identified that only RPE and TALDO were differentially expressed 

although had a log2FC of 0.11 and 0.15, largely implying that the editing abolished the 

activity of these genes (table 6.5 and figure 6.20). From the core enriched genes of 

the PPP, it was also identified SF upregulating the activity of several glycolytic genes 

such as glucose phosphate isomerase (PGI), involved in converting glucose-6-

phosphate to fructose-6-phosphate, the second step in glycolysis, phosphofrutco 

kinase (PFKP), catalyzing the conversion of fructose-6-phosphate to fructose-1-6-

bisphosphate and aldolase A (ALDOA) or more commonly referred to as fructose-

bisphosphate aldolase involved in catalyzing the reversible reaction of breaking 

fructose-1-6-biphosphate into the triose dihydroxyacetone phosphate (DHAP) and 

glyceraldehyde 3-phosphate (G3P). Again the editing abolished the activity of PFKP 

(WT DMSO vs WT SF log2FC=0.76, compared to KD DMSO vs KD SF log2FC=0.08) 

and ALDOA (WT DMSO vs WT SF log2FC=0.59, compared to KD DMSO vs KD SF 

log2FC=0.09), whilst the activity of PGI was severely diminished (table 6.5 and figure 

6.20). The final gene identified to be enriched in the PPP gene set is phosphoribosyl 

pyrophosphate synthase (PRPS1). This enzyme is involved in synthesizing several 

important metabolites: nucleotides (purines and pyrimidines), cofactors NAD and 

NADP, and the amino acids histidine and tryptophan. The results of the top nine core 

enriched in the pentose phosphate pathway are shown in table 6.5 and figure 6.20. 
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Table.6.5. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in pentose phosphate pathway 

 

 

 

 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 
geometric mean for each gene across the samples is calculated. The count for each gene is then divided 
by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg.  

 

 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Control 
WT 

SF  
Log2 Fold 
Change 

vs 
Control  
NRF2KD 

Pentose Phosphate Pathway     

ENSG00000149925 ALDOA Aldolase A  0.593 0.09 

ENSG00000160211 G6PD Glucose-6-

Phosphate 

Dehydrogenase 

0.553 0.02 

ENSG00000105220 PGI Glucose Phosphate 

Isomerase 

0.403 0.112 

ENSG00000067057 PFKP Phospho Fructo 

Kinase platelet 

0.763 0.08 

ENSG00000142657 PGD Phosphogluconate 

dehydrogenase 

0.583 -0.0001 

ENSG00000147224 PRPS1 Phosphoribosyl 

pyrophosphate 

synthase 1 

0.403 0.06 

ENSG00000197713 RPE ribulose-5-

phosphate-3-

epimerase 

0.323 0.141 

ENSG00000177156 TALDO1 Trans Aldolase 1 1.143 0.163 

ENSG00000163931 TKT Trans Ketolase 0.803 0.03 
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Figure 6.20. Top enriched differentially expressed genes from the pentose phosphate 

pathway gene set by 10 µM SF. These top enriched genes also referred to as the leading 

edge are defined as those which contributed most to the set enrichment score; reflecting their 

degree of overrepresentation in a running-sum metric. This is calculated using both the fold 

enrichment and degree of significance (p-value). Red = KD and Blue= WT samples. Aldolase A 

(ALDOA) Glucose-6-Phosphate (G6PD), Glucose Phosphate Isomerase (PGI) Phosphofructo 

Kinase Platelet (PFKP), Phosphogluconate Dehydrogenase (PGD), Phosphoribosyl 

Pyrophosphate Synthase (PRSP1), Ribulose-5-Phosphate-3-Epimerase (RPE), Transaldolase 

1 (TALDO1), and Transketolase (TKT).  The statistical significance of the DEG can be found in 

table 6.5. 

 

The next step of the analysis focused on assessing the effect of SF in the WT and KD 

samples on glycine, serine, and threonine metabolism, including 1C metabolism. 

Focusing on the serine biosynthetic genes SF downregulated both the rate-limiting 

enzyme of serine biosynthesis phosphoglycerate dehydrogenase (PHGDH) (confirming 

the findings in chapter 5)  as well as the final enzyme involved in serine biosynthesis, 

phosphoserine phosphatase PSPH. This effect in the KD cells by SF was reduced 

(PHGDH, WT DMSO vs WT SF log2FC = -0.30 compared to KD DMSO vs KD SF 

log2FC = -0.19) (table 6.6, figure 6.21). For glycine metabolism, it was identified a 

downregulation in both glycine decarboxylase (GLDC) inhibiting the breakdown of 

glycine and the glycine N-methyltransferase (GNMT) involved in converting glycine to 

sarcosine, and in doing so functions to regulate levels of SAM and SAH, confirming the 

findings identified in chapter 5. Again editing, resulted in attenuation of GLDC and 

GNMT, with the largest effect seen on GNMT (GNMT, WT DMSO vs WT SF log2FC = -

Log2 FC 
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1.53 compared to KD DMSO vs KD SF log2FC = -1.00, table 6.6, figure 6.21). The 

analysis also found SF downregulating in two genes not identified in the previous 

analysis (chapter 5). Sarcosine dehydrogenase (SARDH) by 1.5-fold, is involved in 

synthesizing glycine from sarcosine, thereby potentially resulting in an increase in the 

levels of sarcosine and glycerate-2-kinase (GLYCTK) by 1.33-fold, is involved in 

converting to glycerate to 2-phospho-D-glycerate. Editing resulted in a decrease in 

expression in both SARDH and GLYCTK with SF resulting in a 1.3-fold and 1.15-fold 

change. With regards to the genes involved from the one-carbon pool, folate gene set it 

was identified that the gene with the largest increase in expression is the aldehyde 

dehydrogenase family 1 member L1, also known as the cytosolic 10-

formyltetrahydrofolate (ALDH1L1), with the editing abolishing the activity of ALDH1L1 

(WT DMSO vs WT SF log2FC = 1.19 compared to KD DMSO vs KD SF log2FC = 

0.035, table 6.26, figure 6.21). Like in chapter 5 it was identified that SF upregulated 

two genes GART and ATIC involved in purine metabolism, along with the 

methylenetetrahydrofolate dehydrogenase (MTHFD1L), whilst in the edited cells, this 

effect was diminished. SF also resulted in a 2.3-fold change in BHMT2, whilst the 

editing resulted in a 1.3-fold change. The only gene that was identified to have 

increased expression in the KD cell line compared to the WT was the cystathionine 

beta-synthetase (CBS), which catalyzes the conversion of homocysteine using serine 

to cystathionine, the first step of the transsulfuration pathway. The results of the 

glycine, serine, and threonine metabolism along 1C metabolism are shown in table 6.6 

and figure 6.21. 
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Table.6.6. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in glycine serine and threonine including one carbon pool by 

folate gene sets.  

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Chang
e vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2K

D 

Glycine Serine and Threonine 
Metabolism  

    

ENSG00000172482 AGXT Serine-pyruvate 

transferase 

-1.223 -0.723 

ENSG00000144908 ALDH1L1 Aldehyde Dehydrogenase 

family 1 member L1 

1.193 0.035 

ENSG00000145020 AMT Aminomethyl transferase -0.473 -0.383 

ENSG00000138363 ATIC 5-aminoimidazole-4-

carboxamide 

ribonucleotide 

formyltransferase 

0.423 0.153 

ENSG00000132840 BHMT2 betaine--homocysteine S-

methyltransferase 2 

1.213 

 

0.393 

ENSG00000160200 CBS Cystathione beta-

synthatse 

-0.332 

 
-0.443 

ENSG00000110887 DAO D-amino acid oxidase -1.523 -0.21 

ENSG00000159131 GART Phosphoribosylglycinamid

e formyltransferase 

0.333 0.091 

ENSG00000178445 GLDC Glycine Decarboxylase -0.353 -0.243 

ENSG00000168237 GLYCTK Glycerate-2-Kinase -0.423 -0.172 

ENSG00000124713 GNMT Glycine-N-methyl 

transferase 

-1.533 -1.003 

ENSG00000120254 MTHFD1

L 

Methylenetetrahydrofolate 

dehydrogenase 

0.363 0.111 

ENSG00000092621 PHGDH Phosphoglycerate 

Dehydrogenase 

-0.303 -0.193 

ENSG00000179761 PIPOX Pipecolic acid and 

sarcosine oxidase 

-0.323 -0.132 

ENSG00000146733 PSPH Phosphoserine 

Phosphatase  

-0.473 -0.253 

ENSG00000123453 SARDH Sarcosine 

Dehydrogenase 

-0.573 -0.273 
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geometric mean for each gene across the samples is calculated. The count for each gene is then divided 
by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg. 
 
 
 

 

Figure 6.21. Top enriched differentially expressed genes from the glycine serine and 

threonine metabolism, include one carbon pool by folate gene set by 10 µM SF. These top 

enriched genes also referred to as the leading edge are defined as those which contributed 

most to the set enrichment score; reflecting their degree of overrepresentation in a running-sum 

metric. This is calculated using both the fold enrichment and degree of significance (p-value). 

Red = KD and Blue= WT samples.  Serine-Pyruvate Aminotransferase (AGXT), 10-

formyltetrahydrofolate dehydrogenase (ALDH1L1), Aminomethyl Transferase (AMT), Inosine 

Monophosphate Synthase (ATIC), Betaine-Homocysteine S-Methyltransferase/isoform 2 

(BHMT2), Cystathionine Beta-Synthase (CBS), D-amino acid oxidase, Trifunctional Purine 

Biosynthetic protein adenosine-3 (GART), Glycine Decarboxylase (GLDC), Glycerate-2-Kinase 

(GLYCTK), Glycine, N-methyltransferase (GNMT), Monofunctional C1-tetrahydrofolate 

Synthase (MTHFD1L), Phosphoglycerate Dehydrogenase (PHGDH), Peroxisomal Sarcosine 

Oxidase (PIPOX), Phosphoserine Phosphatase (PSPH), Sarcosine Dehydrogenase (SARDH). 

The statistical significance of the DEG can be found in table 6.6. 

 

With regards to the biosynthesis of the unsaturated fatty acids gene set, it was 

identified that the gene with the highest downregulation was the transcription factor 

sterol regulatory element-binding protein 1 (SREBF1) by 1.8-fold in the WT samples, 

whilst the editing resulted instead a 1.4-fold change. SREBF1 plays a key role in the 

initiation of lipogenesis in the liver (table 6.7, figure 6.22). SF also downregulated the 

rate-limiting enzyme involved in the synthesis of unsaturated fatty acids stearoyl-CoA 
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desaturase (SCD) by 1.3-fold whilst the editing resulted in a 1.2-fold downregulation. 

SCD is involved in the biosynthesis of the monounsaturated fatty acids oleate (oleic 

acid) and palmitoleate (table 6.7, figure 6.22). Another additional enzymes involved in 

regulating the synthesis of unsaturated fatty acids are the fatty acid desaturase family. 

In this analysis, SF was shown to downregulate the activity of both FADS1 and FADS2 

by 1.3 and 1.5-fold respectively in the WT samples, whilst FADS3 interestingly in the 

WT samples was not differentially expressed, but in the NRF2KD, SF resulted in a 

significant downregulation (table 6.2.7, figure 6.22). FADS1, also referred to as delta-5 

desaturase is involved in synthesizing omega-3 and omega-6 fatty acids, by catalyzing 

the formation of eicosapentaenoic acid (EPA) and arachidonic acid. FADS2 also 

referred to as delta-6 desaturase on the other hand is involved in alpha-linoleic acid 

metabolism, by converting linoleoyl CoA to gamma-linoleonoyl CoA. SF also 

downregulated two genes ACOT1 and ACOT2 by 1.4 and 1.14-fold in the WT samples, 

whilst in the NRF2KD samples SF led a 1.17-fold downregulation in ACOT1, whilst 

ACOT2 was no longer induced. ACOT1 and 2 both belong to the family acyl-CoA 

thioesterases, whose function is to catalyze the hydrolysis of various Coenzyme A 

attached to the fatty acid to generate a free coenzyme A plus the fatty acid (table 6..7, 

figure 6.2). The final gene that SF downregulated is the elongation of very long-chain 

fatty acids or more commonly referred to as fatty acid elongase 2 who’s role is to 

synthesize very long polyunsaturated fatty acids by the addition of two carbon atoms. 

The results of the top seven core enriched in the biosynthesis of unsaturated fatty acids 

gene set are shown in table 6.7 and figure 6.22. 
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Table.6.7. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in the biosynthesis of unsaturated fatty acids 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 
geometric mean for each gene across the samples is calculated. The count for each gene is then divided 
by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg. 

 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Control 
WT 

SF  
Log2 Fold 
Change 

vs 
Control  
NRF2KD 

Biosynthesis of Unsaturated Fatty Acids     

ENSG00000184227 ACOT1 Acyl-CoA 
thioesterase 
1 

-0.473 -0.233 

ENSG00000119673 ACOT2 Acyl-CoA 

thioesterase 

2 

-0.193 -0.07 

ENSG00000197977 ELOVL2 Fatty acid 

elongase 2 

-0.393 -0.213 

ENSG00000149485 FADS1 Fatty acid 

desaturase 1 

-0.413 -0.363 

ENSG00000134824 FADS2 Fatty acid 

desaturase 2 

-0.623 -0.593 

ENSG00000099194 SCD Stearoyl-CoA 

Desaturase 

-0.383 -0.313 

ENSG00000072310 SREBF1 Sterol 

regulatory 

element 

binding 

protein 1 

-0.813 -0.543 
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Figure 6.22. Top enriched differentially expressed genes from the biosynthesis of 

unsaturated fatty acids gene set by 10 µM SF. These top enriched genes also referred to as 

the leading edge are defined as those which contributed most to the set enrichment score; 

reflecting their degree of overrepresentation in a running-sum metric. This is calculated using 

both the fold enrichment and degree of significance (p-value). Red = KD and Blue= WT 

samples. Acyl-CoA Thioesterase 1 (ACOT1), Acyl-CoA Thioesterase 2 (ACOT2), Fatty acid 

Elongase 2 (ELVOL2), Fatty acid Desaturase 1 (FADS1), Fatty Acid Desaturase 2 (FADS2), 

Sterol-CoA Desaturase (SCD), and Sterol Regulatory Element-Binding Protein 1 (SREBF1). 

Statistical significance of the DEG can be found in table 6.7. 

 

6.3.8 SF impacts DNA metabolism in the NRF2KD cell line 

GSEA analysis, of the enriched gene sets by SF in the NR2KD cell line identified that 

none of the positively enriched gene sets, reached significance (q<0.05) (figure 6.17). 

The two gene sets, that just failed to reach statistical significance were the cytokine-

cytokine receptor interaction (NES = 1.82 q=0.052) and the JAK-STAT pathway (NES 

= 1.73 q =0.063), followed by glycosaminoglycan degradation (NES = 1.72 q= 0.142). It 

was identified that SF downregulated several gene sets related to DNA Metabolism 

such as: DNA replication (NES = -1.92 q= 0.005), mismatch repair (NES = -1.79 

q=0.019), base excision repair (NES = -1.75 q=0.026), with cell cycle just failing to 

reach significance (NES = -1.69 q=0.069), along with a couple of additional metabolic 

process such as propanoate metabolism (NES = -1.85 q=0.012), steroid biosynthesis 

(NES = -1.83 q=0.013) and valine, leucine and isoleucine degradation (NES =-1.75 

q=0.03) (figure 6.17).     
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For the cytokine-cytokine interaction gene set, the analysis identified that although this 

gene set was enriched in the KD cells only, gene expression activity was still higher in 

the WT samples, (figure 6.23). SF upregulated the expression of the C-C motif 

chemokine ligand 20 (CCL20) and its receptor (CCR6), by 1.39-fold in the WT and 

1.34-fold in the KD samples respectively, whose function is to attract lymphocytes and 

dendritic cells towards epithelial cells of a specific tissue of interest, in this case, the 

liver. SF also increased the expression of several genes belonging to the type I 

cytokine receptor family; the interleukin 6 receptor (IL6R), by 2.2-fold in the WT and 

1.7-fold in the KD samples respectively. IL6R is involved in regulating not only cell 

growth and differentiation, interleukin 13 receptor subunit alpha 1 (IL13RA1), who was 

only differentially expressed in the KD samples, is involved in inducing activation of the 

JAK/STAT pathway, mainly through activation of STAT6 and the oncostatin M receptor 

(OSMR). The analysis also showed SF upregulating three protein receptors belonging 

to the TNF family; TNFRSF10B/D, and TNFRSF1A. In the WT samples, SF led a 1.7-

fold change in both TNFRSF10B/D, compared to 1.2 and 1.39-fold change respectively 

in the KD samples. Both TNFRSF10B/D are also referred to as the death receptors 5 

and 2 are involved in inducing apoptosis. Finally, SF also upregulated the expression of 

the transforming growth factor, beta receptor II (TGFBR2) by 1.35-fold in the WT 

sample compared to 1.2 fold in the KD samples. The full results are shown in table 6.8 

and figure 6.23. 
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Table.6.8. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in cytokine-cytokine interaction pathway 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed genes were 
obtained through DESeq2. In the first step, DEseq2 performs an internal normalization, where the 
geometric mean for each gene across the samples is calculated. The count for each gene is then divided 
by the geometric mean. This procedure is done to normalize library size and RNA bias composition. In 
the next step DESeq2 plots a negative binomial for each gene count to obtain the differentially 
expressed genes. Multiple testing is corrected through Benjamini-Hochberg. 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

Cytokine-Cytokine Interaction       

ENSG00000115009 CCL20 C-C Motif Chemokine 

Ligand 20 

0.471 0.423 

ENSG00000112486 CCR6 C-C Motif Chemokine 

Receptor 6 

0.633 0.583 

ENSG00000146648 EGFR Epidermal growth factor 

receptor 

0.853 0.753 

ENSG00000131724 IL13RA1 Interleukin 13 receptor 

subunit alpha 1 

0.11 0.453 

ENSG00000160712 IL6R Interleukin 6 receptor 1.143 0.753 

ENSG00000145623 OSMR Oncostatin M receptor 0.563 0.483 

ENSG00000163513 TGFBR2 Transforming growth 

factor beta receptor 2 

0.433 0.283 

ENSG00000120889 TNFRSF10B TNF receptor 

superfamily member 

10b 

0.303 0.273 

ENSG00000173530 TNFRSF10D TNF receptor 

superfamily member 

10d 

0.783 0.473 

ENSG00000067182 TNFRSF1A 
 

TNF receptor 

superfamily member 1A 

0.783 0.403 
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Figure 6.23. Top enriched differentially expressed genes from the cytokine-cytokine 

interaction gene set by 10 µM SF. These top enriched genes also referred to as the leading 

edge are defined as those which contributed most to the set enrichment score; reflecting their 

degree of overrepresentation in a running-sum metric. This is calculated using both the fold 

enrichment and degree of significance (p-value). Red = KD and Blue= WT samples. C-C motif 

Chemokine Ligand 20 (CCL20), C-C motif Chemokine Receptor 6 (CCR6), Epidermal Growth 

Factor Receptor (EGFR), Interleukin 13 Receptor Subunit Alpha 1, (IL13RA1), Interleukin 6 

Receptor (IL6R), Oncostatin M Receptor (OSMR), Transforming Growth Factor Beta Receptor 2 

(TGFBR2), TNF Receptor Superfamily Member 10B (TNFRSF10B), TNF Receptor Superfamily 

Member 10D (TNFRSF10D) and TNF Receptor Superfamily Member 1A (TNFRSF1A). The 

statistical significance of the DEG can be found in table 6.8. 

 

With regards to the negatively enriched gene sets, it was identified that both 

proliferating cell nuclear antigen (PCNA) and DNA ligase 1 (Lig1) were downregulated 

in all three gene sets: DNA replication, base excision repair, and DNA mismatch. 

PCNA acts as a clamp allowing the binding of a specific DNA polymerase, delta, in 

eukaryotic cells.  DNA ligase 1 instead is the only known DNA ligase up to now, that is 

involved in both DNA replication and base excision repair processes. LIG1 is especially 

responsible for joining the Okazaki fragments formed on the lagging strand of the DNA 

(table 6.9, figure 6.26). The analysis also revealed that SF downregulated several 

genes from the family of DNA replication of licensing factor also referred to as 

minichromosome maintenance complex component (MCM) 2,3,4,5 and 7. All of these 

proteins are involved with the initiation of DNA replication (table 6.9, figure 6.26). SF 

also downregulated the expression of replication factor 1 (RFC1), one of the five 
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subunits of the DNA Polymerase and the replication protein A 70 kDa binding subunit, 

which has been shown to interact with the binding a wide range of proteins including 

MCM2,4,6 and 7 as well as tumor suppressors genes such as p53 (table 6.9, figure 

6.26). SF also downregulated the activity of Flap structure specific endonuclease 1 

(Flap 1), whose function is to remove 5’ overhang hands. The results of the core 

enriched gene sets in DNA replication are shown in table 6.9 and figure 6.26. 

Table.6.9. Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell lines involved in DNA replication 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

DNA Replication       

ENSG00000168496 FEN1 Flap structure specific 

endonuclease 1 

-0.143 -0.253 

ENSG00000105486 LIG1 DNA Ligase 1 -0.533 -0.473 

ENSG00000073111 MCM2 Minichromosome 

maintenance complex 

component 2 

-0.203 -0.213 

ENSG00000112118 MCM3 Minichromosome 

maintenance complex 

component 3 

-0.213 -0.183 

ENSG00000104738 MCM4 Minichromosome 

maintenance complex 

component 4 

-0.183 -0.203 

ENSG00000100297 MCM5 Minichromosome 

maintenance complex 

component 5 

-0.253 -0.283 

ENSG00000166508 MCM7 Minichromosome 

maintenance complex 

component 7 

-0.132 -0.283 

ENSG00000132646 PCNA Proliferating cell nuclear 

antigen 

-0.293 -0.313 

ENSG00000035928 RFC1 Replication factor 1 -0.453 -0.283 

ENSG00000132383 RPA1 Replication protein A 70 

kDa binding subunit 

-0.153 -0.213 
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Figure 6.24. Top enriched differentially expressed genes from the DNA Replication gene 

set by 10 µM SF. These top enriched genes also referred to as the leading edge are defined as 

those which contributed most to the set enrichment score; reflecting their degree of 

overrepresentation in a running-sum metric. This is calculated using both the fold enrichment 

and degree of significance (p-value). Red = KD and Blue= WT samples. Flap Structure Specific 

Endonuclease 1 (FEN1), DNA Ligase 1 (LIG1), Minichromosome Maintenance Complex 

Component 2 (MCM2), Minichromosome Maintenance Complex Component 3 (MCM3), 

Minichromosome Maintenance Complex Component 4 (MCM4), Minichromosome Maintenance 

Complex Component 5 (MCM5), Minichromosome Maintenance Complex Component 7 

(MCM7), Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A 70 kDa Binding 

Subunit (RPA1). Statistical significance of the DEG can be found in table 6.9. 

 

In the base excision repair (BER), gene set SF downregulated several genes involved 

in coding for subunits of both DNA glycosylases involved in the short patch and long 

patch BER mechanism. SF downregulated, FEN1, PCNA, POLβ, (POLδ1), DNA 

polymerase epsilon/DNA polymerase epsilon subunit 2 (POLε/POLε2) and LIG1 for the 

long patch BER along with (XRCC1) and POLβ, that form part of the short-patch BER 

mechanism (table 6.2.10, figure 6.25). It was also identified that SF downregulated an 

additional two genes, the high mobility group box 1 protein (HMGB1) and uracil-DNA 

glycosylase (UNG) (table 6.10, figure 6.25). UNG functions to remove any uracil 

bases by cleaving the N-glycosidic bond and thereby initiating the BER pathway, whilst 

instead, HMGB1 binds the DNA and in doing so bends it thereby allowing the binding 
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of BER proteins. The results of the core enriched genes in the Base Excision pathway 

are shown in table 6.10 and figure 6.25.  

Table.6.10. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in base excision repair 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg.  

 

 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

Base Excision Repair       

ENSG00000168496 FEN1 Flap structure specific 

endonuclease 1 

-0.143 -0.253 

ENSG00000189403 HMGB1 High mobility group box 

1 protein 

-0.006 -0.151 

ENSG00000105486 LIG1 DNA Ligase 1 -0.533 -0.473 

ENSG00000132646 PCNA Proliferating cell nuclear 

antigen 

-0.293 -0.313 

ENSG00000070501 POLB DNA Polymerase Beta -0.06 -0.221 

ENSG00000062822 POLD1 DNA Polymerase Delta 

subunit 1 

-0.11 -0.181 

ENSG00000177084 POLE DNA Polymerase 

Epsilon 

-0.363 -0.221 

ENSG00000100479 POLE2 DNA Polymerase 

Epsilon subunit 2 

-0.243 -0.281 

ENSG00000076248 UNG Uracil DNA glycosylase -0.203 -0.213 

ENSG00000073050 XRCC1 X-ray repair cross-

complementing protein 

1 

-0.343 -0.313 
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Figure 6.25. Top enriched differentially expressed genes from the Base Excision Repair 

gene set by 10 µM SF. These top enriched genes also referred to as the leading edge are 

defined as those which contributed most to the set enrichment score; reflecting their degree of 

overrepresentation in a running-sum metric. This is calculated using both the fold enrichment 

and degree of significance (p-value). Red = KD and Blue= WT samples. Flap Structure Specific 

Endonuclease 1 (FEN1), High Mobility Group Box 1 Protein (HMGB1), DNA Ligase 1 (LIG1), 

Proliferating Cell Nuclear Antigen (PCNA), DNA Polymerase Beta (POLβ), DNA Polymeraseδ 

Subunit 1 (POLD1), DNA Polymerase Epsilon (POLε), DNA Polymerase Epsilon Subunit 2 

(POLε2), Uracil DNA Glycosylase (UNG) and X-ray Repair Cross-Complementing Protein 1 

(XRCC1). The statistical significance of the DEG can be found in table 6.10. 

In the DNA mismatch repair (MMR) gene set, SF downregulated both mSH6 and 

mSH2 along with downregulating several genes belonging to the family replication 

factor C subunit, RFC1,2 and 4, which allows the binding of PCNA (table 6.11, figure 

6.26). SF also downregulated the activity of exonuclease 1, EXO1, which binds to 

MSH2 and in doing so reducing the number of double-stranded breaks that arise during 

recombination in meiosis. The results of the core enriched genes from the DNA 

Mismatch repair set are shown in table 6.11 and figure 6.26. 
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Table.6.11. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in DNA mismatch repair  

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg.  

 

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

DNA Mismatch Repair       

ENSG00000174371 EXO1 Exonuclease 1 -0.231 -0.283 

ENSG00000105486 LIG1 DNA Ligase 1 -0.533 -0.473 

ENSG00000095002 mSH2 mutS homolog 2 -0.181 -0.223 

ENSG00000116062 mSH6 mutS homolog 6 -0.081 -0.131 

ENSG00000132646 PCNA Proliferating cell nuclear 

antigen 

-0.293 -0.313 

ENSG00000035928 RFC1 Replication factor C 

subunit 1 

-0.453 -0.283 

ENSG00000049541 RFC2 Replication factor C 

subunit 2 

-0.211 -0.253 

ENSG00000163918 RFC4 Replication factor C 

subunit 4 

-0.04 -0.193 

ENSG00000132383 RPA1 Replication protein A 70 

kDa binding subunit 1 

-0.153 -0.213 

ENSG00000106399 RPA3 Replication protein A 70 

kDa binding subunit 3 

-0.272 -0.272 
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Figure 6.26. Top enriched differentially expressed genes from the DNA mismatch repair 

gene set by 10 µM SF. These top enriched genes also referred to as the leading edge are 

defined as those which contributed most to the set enrichment score; reflecting their degree of 

overrepresentation in a running-sum metric. This is calculated using both the fold enrichment 

and degree of significance (p-value). Red = KD and Blue= WT samples. Exonuclease 1 

(EXO1), DNA Ligase 1 (LIG1), mutS Homolog2 (MSH2), mutS Homolog 6 (MSH6), Proliferating 

Cell Nuclear Antigen (PCNA), Replication Factor C Subunit 1 (RFC1), Replication Factor C 

Subunit 2 (RFC2), Replication Factor C Subunit 4 (RFC4), Replication Protein A 70 kDa Binding 

Subunit 1 (RPA1) and Replication Protein A 70 kDa Binding Subunit 3 (RPA3). The statistical 

significance of the DEG can be found in table 6.11. 

 

The next step of the analysis involved assessing SF's role on two gene sets that were 

identified to be downregulated both in the WT and NRF2KD cell line: propanoate 

metabolism and valine, leucine, and isoleucine degradation (figure 6.18). Propanoate 

metabolism is a subsection of carbohydrate metabolism. In the analysis, it was 

identified that SF downregulated a couple of genes belonging to the family of aldehyde 

dehydrogenases: ALDH3A2, ALDH6A1, and ALDH7A1 (table 6.12, figure 6.27). It was 

identified that in this gene set the only two genes that had a stronger downregulation in 

the KD cells were ALDH3A2 and ACAT2. ALDH3A2 is involved in catalyzing the 

oxidation of long chain aliphatic aldehydes to fatty acids. ALDH6A1 instead is part of 

the malonate semialdehyde pathway and functions to catalyze the irreversible 

decarboxylation of the semialdehydes malonate and methylmalonate to acetyl and 

propionyl-CoA. ALDH7A1, first identified in chapter 4 is involved in both the 

detoxification of aldehydes as well in the catabolism of lysine (table 6.12, figure 6.27). 
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SF also downregulated both mitochondrial acetyl-CoA synthetase1/2 ACSS1 and 

ACSS2, catalyzing the conversion of acetate to acetyl-CoA, along with ACAT2, and 

acetyl-CoA acetyltransferase involved in a wide range of reactions that require 

transferring acetyl-CoA groups and ABAT, involved in the breakdown of the 

neurotransmitter gamma-aminobutyric acid into succinate. The results of the top seven 

core enriched genes in the propanoate metabolism are shown in table 6.12 and figure 

6.27. 
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Table.6.12. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell lines involved in propanoate metabolism 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg.  

  

Ensembl ID Gene 
Symbol 

Gene SF Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

Propanoate Metabolism       

ENSG00000183044 ABAT 4-Aminobutyrate 

aminotransferase 

-0.653 -0.443 

ENSG00000120437 ACAT2 Acetyl-CoA 

acetyltransferase 

-0.203 -0.373 

ENSG00000154930 ACSS1 Acyl-CoA synthetase 

short chain family 

member 1  

-0.553 -0.263 

ENSG00000131069 ACSS2 Acyl-CoA synthetase 

short chain family 

member 2 

-0.763 -0.653 

ENSG00000072210 ALDH3A2 Aldehyde 

dehydrogenase 3 family 

member A2 

-0.091 -0.213 

ENSG00000119711 ALDH6A1 Aldehyde 

dehydrogenase 6 family 

member A1 

-0.663 -0.263 

ENSG00000164904 ALDH7A1 Aldehyde 

dehydrogenase 7 family 

member A1 

-0.243 -0.163 
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Figure 6.27. Top enriched differentially expressed genes from the propanoate 

metabolism gene set by 10 µM SF. These top enriched genes also referred to as the leading 

edge are defined as those which contributed most to the set enrichment score; reflecting their 

degree of overrepresentation in a running-sum metric. This is calculated using both the fold 

enrichment and degree of significance (p-value). Red = KD and Blue= WT samples. 4-

Aminobutyrate aminotransferase (ABAT),  Acetyl-CoA Acetyltransferase (ACAT2), Acyl-CoA 

Synthetase Short Chain Family Member 1 (ACSS1), Acyl-CoA Synthetase Short Chain Family 

Member 2 (ACSS2), Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2), Aldehyde 

Dehydrogenase 6 Family Member A1 (ALDH6A1) and Aldehyde Dehydrogenase 7 Family 

Member A1 (ALDH7A1). The statistical significance of the DEG can be found in table 6.12. 

 

The analysis of the valine, leucine, and isoleucine gene set identified SF 

downregulating the following genes: ABAT, ACAT2 along with three dehydrogenase 

ALDH3A2, ALDH6A1, and ALDH7A1 also enriched in this Propanoate gene set, 

suggesting an overlap between propanoate metabolism and the metabolism of valine, 

leucine, and isoleucine. The remaining enriched genes in the set that SF 

downregulated were acetyl-CoA acyltransferase 2 (ACAA2), 3-hydroxyacyl-CoA 

dehydrogenase (HADH), hydroxymethylglutaryl-CoA synthetase more commonly 

referred to as HMG-CoA synthetase, and 3-oxoacid CoA-transferase 1 (OXCT1) (table 

6.13, figure 6.28). ACAA2 and HADH, play a role in regulating β-oxidation; the first 

catalyzes the last step of β-oxidation, whilst the latter can catalyze both the oxidation of 

the straight chain 3-hydroxylacyl-CoA dehydrogenase along with medium chain fatty 

acids. HMG-CoA synthetase, on the other hand, is an intermediary enzyme involved in 

the biosynthesis of cholesterol and ketogenesis, whilst OXCT1, whose downregulation 

Log2 FC 
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was greater in the KD samples compared to the WT is involved in the breakdown of 

ketone bodies by catalyzing the reversible transfer of coenzyme A from succinyl-CoA to 

acetoacetate (table 6.13, figure 6.28). Thereby the analysis revealed that the 

degradation of the amino acids valine, leucine, and isoleucine contribute to fatty acid 

metabolism, and by SF inhibiting these processes, SF through an additional 

mechanism is inhibiting fatty acid metabolism. The results of the top nine core enriched 

genes the valine leucine and isoleucine gene set are shown in table 6.2.13 and figure 

6.28. 

Table.6.13 Comparison of differentially expressed genes in response to SF in the WT and 

NRF2KD cell line involved in valine, leucine, and isoLeucine degradation 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Chang
e vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2K

D 

Valine, Leucine and Isoleucine 
Degradation   

    

     

ENSG00000183044 ABAT 4-Aminobutyrate 

aminotransferase 

-0.653 -0.443 

ENSG00000167315 ACAA2 Acetyl-CoA 

Acyltransferase 2 

-0.263 -0.132 

ENSG00000120437 ACAT2 Acetyl-CoA 

acetyltransferase 

-0.203 -0.373 

ENSG00000072210 ALDH3A

2 

Aldehyde 

dehydrogenase 3 

family member A2 

-0.091 -0.213 

ENSG00000119711 ALDH6A

1 

Aldehyde 

dehydrogenase 6 

family member A1 

-0.663 -0.263 

ENSG00000164904 ALDH7A

1 

Aldehyde 

dehydrogenase 7 

family member A1 

-0.243 -0.163 

ENSG00000138796 HADH 3-hydroxyacyl-CoA 

dehydrogenase 

-0.393 -0.253 

ENSG00000112972 HMGCS1 Hydroxymethylglutaryl

-CoA synthetase 

-0.433 -0.433 

ENSG00000083720 OXCT1 3-oxoacid CoA-

transferase 1 

-0.221 -0.423 
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count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg.  

 

 

 

Figure 6.28. Top enriched differentially expressed genes from the valine leucine and 

isoLeucine degradation gene set by 10 µM SF. These top enriched genes also referred to as 

the leading edge are defined as those which contributed most to the set enrichment score; 

reflecting their degree of overrepresentation in a running-sum metric. This is calculated using 

both the fold enrichment and degree of significance (p-value). Red = KD and Blue= WT 

samples. 4-Aminobutyrate aminotransferase (ABAT), Acetyl-CoA Acyltransferase 2 (ACAA2), 

Acetyl-CoA Acetyltransferase (ACAT2), Acyl-CoA Synthetase Short Chain Family Member 1 

(ACSS1), Acyl-CoA Synthetase Short Chain Family Member 2 (ACSS2), Aldehyde 

Dehydrogenase 3 Family Member A2 (ALDH3A2), Aldehyde Dehydrogenase 6 Family Member 

A1 (ALDH6A1), Aldehyde Dehydrogenase 7 Family Member A1 (ALDH7A1), 3-Hydroxyacyl-

CoA Dehydrogenase (HADH), Hydroxymethylglutaryl-CoA Synthetase (HMGCS1) and  3-

Oxoacid CoA-Transferase 1 (OXCT1). The statistical significance of the DEG can be found in 

table 6.13. 

 

The final enriched gene set by SF in the NRF2KD cell line is steroid biosynthesis 

(figure 6.18). SF downregulated the first two genes in the cholesterol biosynthetic 

process farnesyl diphosphate farnesyltransferase (FDFT1) and squalene 

monooxygenase (SQLE), the latter is also the rate limiting step in sterol biosynthesis, 

Log2 FC 
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with the greatest effect identified in the KD samples. SF also downregulated the activity 

of lanosterol synthase (LSS) involved in converting squalene-2,3 epoxide to lanosterol 

(table 6.14, figure 6.29). SF was shown to downregulate a couple of genes involved in 

converting lanosterol to zymosterol:  the sterol-4-alpha-carboxylate 3-dehydrogenase 

(NSDHL), 17beta-estradiol 17-dehydrogenase (HSD17B7), and the delta14-sterol 

reductase (TM7SF2), with the greatest downregulation of NSDHL and HSD17B7, apart 

from TM7SF2 been identified in the KD samples (table 6.14, figure 6.29). The product 

zymosterol is used for the synthesis of either cholesterol or Vitamin D2. The last 

remaining genes that were downregulated by SF are involved in converting zymosterol 

to cholesterol. SF downregulated the cholesterol delta isomerase (EBP) along with 

delta7-dehydrocholesterol reductase (DHCR7), which catalyzes the final step of 

cholesterol biosynthesis by reducing the double bond in 7-dehydrocholesterol to 

cholesterol, along with the cholesteryl ester hydrolase (CEL). It was identified that the 

greatest downregulation of  CEL, DHCR7, and EBP was in the KD samples compared 

to the WT. The results of the top ten core enriched genes in the steroid biosynthesis 

gene set are shown in table 6.14 and figure 6.29. 
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Table.6.14. Comparison of differentially expressed genes in response to SF in the WT 

and NRF2KD cell line involved in steroid biosynthesis 

Adjusted P values of fold change: p1<0.05, p2<0.001, p3<0.0001. The differentially expressed 

genes were obtained through DESeq2. In the first step, DEseq2 performs an internal 

normalization, where the geometric mean for each gene across the samples is calculated. The 

count for each gene is then divided by the geometric mean. This procedure is done to 

normalize library size and RNA bias composition. In the next step DESeq2 plots a negative 

binomial for each gene count to obtain the differentially expressed genes. Multiple testing is 

corrected through Benjamini-Hochberg.  

 

Ensembl ID Gene 
Symbol 

Gene SF 
Log2 
Fold 

Change 
vs 

Contol  
WT 

SF  
Log2 
Fold 

Change 
vs 

Control  
NRF2KD 

Steroid Biosynthesis       

ENSG00000170835 CEL Cholesteryl ester 
hydrolase  

-0.553 -0.553 

ENSG00000172893 DHCR7 Delta7-

dehydrocholesterol 

reductase 

-0.183 -0.243 

ENSG00000147155 EBP Cholesterol Delta 

isomerase 

-0.393 -0.443 

ENSG00000079459 FDFT1 Farnesyl diphosphate 

farnesyltransferase 

-0.163 -0.283 

ENSG00000132196 HSD17B7 17beta-estradiol 17-

dehydrogenase 

-0.172 -0.313 

ENSG00000160285 LSS Lanosterol synthase -0.523 -0.513 

ENSG00000052802 MSMO1 Methylsterol 

monooxygenase 1  

-0.152 -0.203 

ENSG00000147383 NSDHL Sterol-4-alpha-

carboxylate 3-

dehydrogenase 

-0.162 -0.213 

ENSG00000104549 SQLE Squalene 

monooxygenase 

-0.132 -0.223 

ENSG00000149809 TM7SF2 Delta14-sterol 

reductase 

-0.663 -0.473 
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Figure 6.29. Top enriched differentially expressed genes from the steroid biosynthesis 

gene set by 10 µM SF. These top enriched genes also referred to as the leading edge are 

defined as those which contributed most to the set enrichment score; reflecting their degree of 

overrepresentation in a running-sum metric. This is calculated using both the fold enrichment 

and degree of significance (p-value). Red = KD and Blue= WT samples. Cholesteryl Ester 

Hydrolase (CEL), Delta7-Dehydrocholesterol Reductase (DHCR7), Cholesterol Delta Isomerase 

(EBP), Farnesyl Diphosphate Farnesyltransferase (FDFT1), 17Beta-Estradiol 17-

Dehydrogenase (HSD17B7), Lanosterol Synthase (LSS), Methylsterol Monooxygenase 1 

(MSMO1), Sterol-4-Alpha-Carboxylate 3-Dehydrogenase (NSDHL),  Squalene Monooxygenase 

(SQLE), Delta14-Sterol Reductase (TM7SF2). The statistical significance of the DEG can be 

found in table 6.14. 
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6.4 Discussion: 
 

The main aim of this chapter was to test the hypothesis that the metabolic changes 

observed by SF are all mediated through NRF2. Results from this chapter 

demonstrated that 70% KD of NRF2 expression through CRISPR/Cas9 editing 

successfully supported a profound contribution of NRF2 in regulating cellular metabolic 

processes. Likely, the truncated NRF2 generated through the editing was enough in 

inhibiting NRF2 activity, thereby identifying that metabolic changes described in detail 

in previous chapters 4 and 5 are indeed mediated through NRF2.    

Chapter 5 it was identified SF interfering with the serine synthetic pathway and 1C 

metabolism: in particular, inhibiting genes involved in the serine and glycine 

biosynthesis such as PHGDH and GLDC, along with upregulating genes 1C for 

NADPH production. This chapter confirmed the data obtained in chapter 5 and 

identified that SF also downregulates a 2nd gene in the serine biosynthetic pathway 

PSPH. Results from this chapter have identified that these cellular metabolic processes 

are regulated through NRF2, consistent with the only published study by (DeNicola et 

al., 2015).  

Knocking down NRF2 also resulted in complete inhibition of several genes of the PPP  

(G6PD, PGD, TALDO, TKT, etc), along with a reduction in the activity of genes 

involved in the antioxidant response, which matches the data from (Mitsuishi et al., 

2012). In this study, NRF2 was knocked down using siRNA in the lung cancer cell line 

A549, resulting in decreased activity of genes involved in the PPP pathway and purine 

nucleotide biosynthesis (Mitsuishi et al., 2012). These genes were also identified in 

previous microarrays from mouse and human studies to be direct targets of NRF2 

(Thimmulappa et al., 2002, MacLeod et al., 2009). Although the one pool folate gene 

set was not enriched, looking at the differentially expressed genes, there is still 

sufficient evidence to show SF affecting this cellular metabolic process. In particular, 

chapter 5 identified SF upregulating two genes (ATIC and GART) involved in purine 

biosynthesis. This chapter further supported this evidence by identifying that not only 

ATIC and GART were upregulated but also PRPS1, with the latter no longer being 

differentially expressed in the NRF2KD cell line, and the activity of GART and ATIC 

being severely reduced. All these three genes are involved in purine biosynthesis. 

Once again, all of the data supports NRF2 role in regulating purine metabolism 

(Mitsuishi et al., 2012, Zou et al., 2020a). While NRF2’s role in regulating purine 

biosynthesis is still not fully understood, the upregulation of GART and ATIC may occur 

for the production of the nucleotide inosine monophosphate so that it can be converted 

to ATP/ADP/AM. AMP, in particular, can then be reused for the synthesis of novel 
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NADPH, thereby replenishing the redox regulator NADPH to support glutathione 

function. Its also worth re-emphasizing that both studies (Mitsuishi and De Nicola) 

showed that constituent activation of NRF2 results in dysregulated metabolic effects, 

which allows cancer cells to proliferate continuously, thus further emphasizing that 

transient activation of NRF2 induced through dietary consumption food bioactive, 

provides protective effects. Summary figure of the findings obtained in this chapter and 

the whole thesis is shown in figure 6.30 

6.4.1 SF Response in the NRF2 KD cell line  

Another important finding in this chapter was SF downregulating several genes 

involved in the following metabolic processes: genetic information and processing, in 

particular, DNA replication and repair pathways, including base excision repair (BER) 

and mismatch repair. The analysis for the first time identified that SF had a more 

prominent effect in the KD samples, with the majority of genes having greater 

downregulation. DNA replication consists of a complex network of proteins and 

enzymes; this includes DNA helicase, which helps to unwind the DNA. BER is instead 

the main pathway involved in the repair of small lesions present in the DNA induced 

from either oxidation or alkylation damages. BER is divided into two pathways: short-

patch (BER) where only one nucleotide is replaced and long-patch BER where 8 up to 

12 nucleotides are replaced. The final gene set enriched by SF was the DNA mismatch 

repair (MMR) pathway. During replication of DNA, what may occur is the 

misincorporation of a specific base. As a result, proteins involved in the MMR repair will 

recognize the newly synthesized DNA strand from the template strand and will bind to it 

to repair the damaged DNA. In this analysis, it was identified that two genes were 

downregulated by SF in all three pathways: PCNA and LIG1. Data from this chapter is 

consistent with what has been published in the literature. For example, several 

experimental studies have shown that ITCs induce oxidative stress in cancer cell lines, 

which can contribute to their cytotoxicity. This oxidative stress can arise from two 

distinct methods: one is through the inhibition of mitochondrial respiratory chain 

complexes along with depletion of reduced glutathione, resulting in increased levels of 

ROS (Singh et al., 2004, Singh et al., 2005, Xiao et al., 2009, Sestili et al., 2010, Park 

et al., 2014, Liang et al., 2018). The second is through the inhibition of genes involved 

in DNA metabolism, thereby resulting in the formation of DNA breaks. For example, in 

Ras-transformed cells treated with the ITCs, SF, phenethyl isothiocyanate (PETIC), 

and benzyl isothiocyanate (BETIC) the ITCs were able to induce thiol modification of 

topoisomerase 2α resulting in apoptosis (Lin et al., 2011). A second study also showed 

SF to interact and inhibit the proliferating cell nuclear antigen (PCNA), (Mi et al., 2011).  
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Genotoxic stress is one of the many mechanisms through which ITCs have anticancer 

activities. Several studies have shown that SF and the allyl isothiocyanate (ATIC), 

induce cell cycle arrest along with the induction of үH2A.X histone, a marker of double-

stranded breaks (Singh et al., 2004, Sekine-Suzuki et al., 2008). Two recent studies, 

one in the MG-63 osteosarcoma (bone cancer) cell line and a second in a variety of 

cells lines, have further confirmed these findings. The study using the MG-63 cell 

showed SF resulting G2/M phase arrest along with an increased number of DNA 

breaks and nuclear and mitotic abnormalities (Ferreira de Oliveira et al., 2014). The 

second study showed that SF and PETIC treatments to the advanced prostate cancer 

cell line PC-3, HDF a normal fibroblast cell line along with PNT2 a prostate epithelial 

cell line, resulted in inhibition of DNA replication in all three cell lines, with the more 

prominent effect seen in the PC3 cells along with S cell cycle arrest (Hać et al., 2020).   

At the same time, however, it is likely that the increased DNA damage also resulted 

from the inflamed state of the cells (due to the high glucose), hence the upregulation of 

the cytokine-cytokine and JAK-STAT pathways. As previously stated, culturing 

hepatocytes such as HepG2 in a high glucose environment results in increased 

inflammation, by promoting inflammatory cytokines such as IL6, TNFα, as well as 

increased production of ROS (Panahi et al., 2018). A possible mechanism to suppress 

this inflammation, in the WT cells is through SF rewiring central metabolism, by 

depleting serine and glycine, the latter utilized for the biosynthesis of glutathione and 

upregulating the production of NADPH through both the PPP and 1C metabolism, 

providing the reducing agents for glutathione to eliminate the ROS (Wu et al., 2011). 

Whilst the analysis did not measure the levels of reduced glutathione in the KD 

samples, it was shown though a profound reduction in the activity of glutathione 

biosynthetic genes such GCLC/GCLM. This may lead to a reduction in the intracellular 

concentration of reduced glutathione, thereby preventing the cell's ability to suppress 

the inflammatory status. As the activity of NRF2 in the KD samples is suppressed, the 

outcome is increased DNA damage, potentially resulting in increased cell death.  

A further mechanism that could explain SF downregulation in cellular processes 

involved in DNA metabolism is epigenetic regulation, potentially through chromatin 

modification. Although the analysis did not assess various genes involved in histone 

deacetylation, the previous chapter and other published data have shown SF to inhibit 

histone deacetylases (HDAC), resulting in increased acetylation of histones H3 and H4 

(Myzak et al., 2006b). The outcome was upregulation of genes encoding cell cycle 

inhibition such as p21 and pro-apoptotic proteins (Myzak et al., 2006b). Acetylation of 

histone is an important step during DNA replication, as it facilitates the removal of 

histones during the unwinding of DNA and forms the DNA template, along with 
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reintroducing them on the daughter DNA molecule after DNA Replication has occurred 

(Groth et al., 2007). Since SF discovery, several studies using a wide range of cell lines 

such as acute lymphoblastic leukaemia cells, human colon cancer cells, and lung 

cancer A549 cells have shown SF interfering and inhibiting various proteins along the 

cell cycle such as p21, PRAP, and various cyclin kinases (Cdc2, Cyclin B1 complex, 

and cyclin D1) (Żuryń et al., 2016, Suppipat et al., 2012, Parnaud et al., 2004). Until 

now, it has remained unknown whether these effects are mediated through NRF2 or if 

they are independent of it. The GSEA identified that the gene set cell cycle in the KD 

samples just failed to reach significance (q=0.063), suggesting that NRF2 may not be 

the only pathway affected; other pathways may also be involved. Therefore, future 

analysis/experiments should aim to gain a better molecular mechanism understanding 

of how SF regulates the cell cycle.  

Given that this research used NRF2 knockdown instead of a complete NRF2KO cell 

line, the experiments were kept to a minimum. Moreover, the NRF2 KD cells were 

treated like primary cells and were passaged only twice after resuscitating them. The 

reason for this lied in observing whether progressively passaging the cells over time 

would, firstly, result in the NRF2KO cells dying, and whether, consequently, this would 

result in the remaining WT cells competing for the NRF2KO cells. Future experiments 

should also assess the effects of longer passages on the NRF2 status on the cell. This 

could be achieved by passaging the cell multiple times and after several passages 

assessing the DNA and protein levels of NRF2. This would provide us with interesting 

insights into whether the NRF2KD cells would survive and whether the same metabolic 

responses would be induced upon SF treatment.  

Another significant finding worth mentioning is that the qRT-PCR data showed that the 

expression of the antioxidant genes (such as NQO1) in the control NRF2KD cell line 

was higher compared to the control WT cell lines. A likely explanation could be that 

different NRF isoforms may play a role. For example, a study in human bronchial 

epithelial (HBE1) cells identified that when NRF2 and NRF1 are both present, both can 

translocate to the nucleus and bind onto the ARE and induce the expression of genes 

involved the antioxidant response. However, NRF1 recruits a different set of co-

activators proteins, causing upregulation of both shared genes with NRF2 and unique 

NRF1 target genes (Chepelev et al., 2013).  A second study this time carried out in 

mice identified that KO NRF1 in mice, microarray analyses revealed that hepatic 

deletion of NRF1 did not result in downregulation of the NRF2 target genes; on the 

contrary, these NRF2 target genes were instead upregulated. However, the study 

identified that NRF1 functions to regulate the expression of genes involved in growth 

arrest and DNA damage inducible genes, as well as genes involved in glycosylation, 
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confirming the findings identified in this chapter that the downregulation of the GSEA 

involved in DNA metabolism may be mediated through NRF1 (Ohtsuji et al., 2008).  

An additional point worth discussing is the effect of time. Due to time constraints, the 

GSEA analysis was not conducted at earlier time points. However, from the PCA plot 

figure 6.14, it can be shown that both in the WT and NRF2KD cells at different time 

points, the transcriptional profile of the cell differs. To my surprise it was interesting that 

the PCA plot for the WT samples, SF treatment does not really differ. It is likely that at 

all three time points, SF is affecting the transcriptional machinery of the cells by 

inducing genes only involved in influencing different mechanisms of the antioxidant 

response. At 24 h, induction of genes involved in the antioxidant response is still 

present along with SF also regulating the activity of genes involved in central 

metabolism. In the KD cell line, the effect of SF is abolished, and only time becomes 

the prominent factor.  

6.3.3 NRF2 and Fatty acid Metabolism 

Lipid synthesis requires high amounts of NADPH, which competes with the 

detoxification reactions carried out by NRF2. One of the potential consequences of 

NRF2 inhibiting fatty acid biosynthesis and desaturation is to allow the NADPH to be 

used for detoxification reactions instead. Throughout the course of the thesis, it was 

shown that SF downregulated several genes involved in lipid biosynthesis, inducing 

genes involved in fatty oxidation (chapters 3 and 4) and suppressing lipid accumulation 

(chapter 3). The analysis carried out in this chapter further confirmed the findings from 

previously published literature. For example, SF treatment downregulated the activity of 

both the desaturases (FADS1/2) along with the Stearoyl-CoA desaturase SCD. SCD 

overexpression has been associated with tumour development and reduced survival in 

patients with lung adenocarcinoma (Huang et al., 2016). It has also recently been 

identified that specific cancer cells such as murine hepatocellular carcinomas, lung 

carcinomas, U87 glioblastoma cells, and primary liver cells harbour additional 

desaturase enzymes such as FADS2 rather than the usual SCD (Vriens et al., 2019). 

This allows to covert the fatty acid palmitate to the unusual fatty acid sapienate, 

supporting membrane biosynthesis and sustained proliferation (Vriens et al., 2019). 

The ability of SF to suppress both FADS1 and FADS2 is promising, thereby further 

enhancing the health benefits of SF suppressing lipid metabolism. Therefore, future 

research should consider carrying out human trials assessing the effect of broccoli 

bioactives in patients with dyslipidemia and or hypercholesterolemia. 

This analysis identified that the expression of the lipid biosynthetic genes such as 

FADS1/2 and SREBF1 in the NRF2KD were decreased. This is contrary to the 
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literature where studies using NRF2KO mice have shown that deletion of NRF2KO 

results in increased expression in the lipid biosynthetic genes. For example, Wu 

identified through microarrays 36 genes related to lipid metabolism that had higher 

expression in the NRF2KO mice and lower expression in the Keap1-KO mice. Out of 

the 21 genes related to fatty acid biosynthesis, 14 were more highly expressed in 

NRF2KO mice and lower in the Keap1-KO mice. For example, the abundance of 

FADS1 and FADS2 mRNA was 54% and 52% higher in the NRF2KO mice and 46% 

and 30% lower in the Keap1-KO mice (Wu et al., 2011).  A second study showed that 8 

weeks old mice with NRF2 deleted, the mRNA of SREBF1 and FASN were also more 

highly expressed (Zhang et al., 2010). were decreased. This is likely due to the effect 

of SF, suggesting that SF is interfering with lipid metabolism potentially through 

additional non-NRF2-mediated pathways.  

 

Figure 6.30 Overall summary of the findings of the thesis. A mechanistic understanding 

of how SF regulates NADPH status within the cell by interfering with various metabolic 

pathways. The proposed molecular mechanism on how SF acts as a metabolic regulator 

influencing NADPH production and consumption. In the presence of high glucose without SF, or 

the NRF2KD samples, the excessive concentration of glucose results in increased reactive 

oxygen species accumulating. This may result in metabolic dysfunction which in the long term 

may lead to cirrhosis and even cell death. When SF is instead added, NRF2 is activated. NRF2 

will then induce metabolic pathways involved in NADPH production (major ones are the pentose 

phosphate pathway (PPP) and 1C metabolism (1C) along with some production from the malic 

enzyme 1 (ME1)  as well as inhibiting pathways that consume NADPH such as lipid 

biosynthesis. Instead, the resulting NADPH is re-directed towards the antioxidant response and 

acts as a cofactor for glutathione and other oxidoreductases enzymes such as NQO1 to 

scavenge ROS. 
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6.5 Conclusion: 
 

Within the last 10 to 15 years, a proliferation of scientific evidence has emerged, 

showing that both SF and NRF2 can potentially act as metabolic regulators. 

Nevertheless, whether these metabolic processes affected by SF are mediated through 

NRF2 is yet to be fully understood. To respond to this ambiguity, this chapter employed 

the genome editing technique CRISPR Cas 9 to develop a liver cell line that lacked 

NRF2. As hypothesized, data from this chapter identified that SF regulation in the 

antioxidant response, through the enrichment of the glutathione metabolism and 

metabolism of xenobiotics by cytochrome P450 gene sets, is mediated through NRF2. 

Most importantly, a novel finding was identified: SF regulation of both the serine 

synthetic pathway and 1C metabolism is mediated through NRF2. Although SF 

attenuated the expression of genes involved in these pathways, this was not as 

profound as those involved in the antioxidant response. This may suggest that these 

genes are regulated through alternative (non-NRF2) pathways, although a small 

change may have profound downstream effects. Another critical finding is SF's ability 

to interfere and inhibit through NRF2 the biosynthesis of unsaturated fatty acids. This is 

likely to allow the NADPH for detoxification reactions instead. In the NRF2KD cells, SF 

was shown to have genotoxic properties by affecting DNA metabolism, resulting in 

inhibition of cell proliferation and potentially inducing cell death.  
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Chapter 7: General Discussion 
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Chapter 7 Figures 
 

Figure 7.1. The number of publications on sulforaphane research in PubMed. 

Chapter 7 Tables 
 

Table 7.1 Animal studies using SF Supplementation 

7.1 Summary Findings: 
 

Since its discovery in the early 1990s, the literature on SF and NRF2 has rapidly 

advanced. In 1992, Zhang and colleagues were the first to show that SF is a potent 

activator of phase II enzymes, identifying SF inducing both the NAD(P)H 

dehydrogenase quinone 1 (NQO1), along with the glutathione-S-transferases (GST). 

Both were involved in the detoxification of steroids and the environmental toxin 

benzo(a)pyrene (Zhang et al., 1992, Prochaska et al., 1992, Singletary and 

MacDonald, 2000). Zhang concluded that the anticarcinogenic properties of broccoli 

were due to SF. The problem remained that the exact mechanism through which this 

occurred was still not fully understood. Two years later, the transcription factor NRF2 

was discovered (Moi et al., 1994). Following the discovery that SF regulates the activity 

of NRF2, this led the way to discover the presence of an ARE sequence on the 

promoter region of certain genes, enabling NRF2 to bind and induce the expression of 

those genes.   

A decade later, a study conducted by Thimmulappa resulted in another breakthrough in 

NRF2 research. SF treatment in the small intestine of WT and NRF2 KO mice identified 

for the first time that NRF2 was not only involved in regulating previously reported 

NRF2 genes such as NQO1 and GST but also genes involved in cellular NADPH 

regeneration such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate 

dehydrogenase, malic enzyme, along with various xenobiotic metabolizing enzymes, 

and enzymes involved in the biosynthesis of glutathione and glucuronidation 

conjugation pathways (Thimmulappa et al., 2002). The next breakthrough in NRF2 was 

provided in two separate studies: (Wu et al., 2011) and (Mitsuishi et al., 2012) where 

SF was not used. The study conducted by Wu and colleagues involved microarray 

analysis on livers from WT, NR2KO, and KEAP1-OVR mice. The study identified NRF2 

was not only responsible for upregulating the antioxidant response, and cellular 

NADPH regeneration pathways but also lipid metabolism. The group was the first to 
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propose the hypothesis that NRF2 suppression in lipid metabolism, especially lipid 

biosynthesis is due to NAPDH being redirected for the antioxidant defense to support 

glutathione ability to scavenge and eliminate reactive oxygen species (Wu et al., 2011). 

On the other hand, Mitsuishi was the first to identify that the genes involved in the PPP 

have an ARE sequence, and are therefore direct targets of NRF2, along with identifying 

that NRF2 also regulates purine metabolism (Mitsuishi et al., 2012). Figure 7.1 shows 

the increase in SF research since its first discovery.  

 

 

Figure 7.1. The number of publications on sulforaphane research in PubMed. 

 

Due to the increasing evidence that NRF2 could act as a metabolic regulator (Hayes 

and Dinkova-Kostova, 2014, Lin et al., 2016), research on broccoli began to assess 

whether SF would be able to suppress metabolic dysregulation induced from a poor 

diet; either from excessive intake of refined/processed carbohydrates or sugars or 

increasing intake of saturated fats (Du et al., 2021). In the following years, four key 

papers on this topic were published; The first was a human intervention study, showing 

that consumption of broccoli with 3-5 times higher concentration of the glucosinolate 

glucoraphanin leads to TCA modulation by restoring the imbalance between the 

anaplerotic (reactions that form metabolic intermediates) and cataplerotic (reactions 

that remove or use up metabolic intermediates) reactions necessary to maintain an 

optimum balance between energy generation as well as the synthesis of fatty acids and 

other metabolites required for optimal health (Armah et al., 2013). The second, also a 
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human study by Axelsson, demonstrated that high doses of SF obtained from broccoli 

sprout extracts could improve glucose homeostasis, thereby improving insulin 

resistance in obese and T2D patients (Axelsson et al., 2017). Third, a mouse study by 

Nagata and colleagues assessed how glucoraphanin supplementation in mice fed a 

high-fat diet resulted in improved metabolic function by improving insulin resistance as 

well as reducing obesity and NAFLD (Nagata et al., 2017). Finally, an in vitro study 

assessing mitochondrial activity on β-cells of the pancreas stimulated with cholesterol 

demonstrated that SF could improve and protect the mitochondrial bioenergetics 

against the dysfunction induced by cholesterol (Carrasco-Pozo et al., 2017).  These 

studies collectively supported the role of SF as a metabolic regulator, for example, by 

suppressing fatty acid biosynthesis and improving glucose utilization, but the 

underlying mechanistic basis or the contribution of NRF2 remained unclear. The main 

aim of the current thesis was to provide evidence for the role of SF in regulating critical 

metabolic pathways in the liver and to identify whether such metabolic effects induced 

by SF are mediated through NRF2.  

The work conducted in the thesis has made a significant contribution to the field of 

nutrition and cancer metabolism. Furthermore, it has advanced our understanding of 

how NRF2 regulates cellular metabolism by providing evidence of the specific 

metabolic targets of SF in hepatocellular cell line and demonstrating that these are 

primarily mediated through NRF2. A summary of how each chapter has contributed to 

the scientific literature has been summarized below. 

In chapter 3, the aim was to understand how SF impacts hepatic metabolism. This was 

achieved by culturing the hepatocellular cell line (HepG2) with the saturated fatty acid 

palmitate (the most abundant saturated fatty acid in the body), representing a cell 

culture model of NAFLD. Firstly, experiments showed that physiological concentrations 

of SF could suppress lipid accumulation both by inhibiting fatty acid biosynthesis 

(downregulation of FASN) and inducing fatty oxidation (CPT1a upregulation). I then 

decided to explore an area on which, to the best of my knowledge, no prior research 

has been conducted, by characterizing how SF impacted hepatic metabolism when 

hepatocytes were challenged under various glucose environments: (0 mM) to represent 

a state of starvation, basal (5.5 mM) a healthy condition and high (25 mM) one of under 

metabolic dysregulation. Real-time metabolic phenotyping using the Seahorse 

Extraceullar Analyzer identified that in HepG2 cells exposed to various glucose 

concentrations, SF was able to alter the mitochondrial bioenergetics by reducing 

overall mitochondrial respiration in the high but not glucose environment, as well as 

reducing maximal respiration without the presence of glucose.  
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Chapter 4 aimed to determine the transcriptional effect of SF in different metabolic 

states in HepG2. In this chapter, the transcriptional profile identified that in a no 

glucose environment, in the presence of SF NRF2, induction does not occur. SF 

induced the antioxidant response by upregulating both glutathione metabolism and 

metabolism of xenobiotics by cytochrome P450 gene sets both in the basal and high 

glucose environment. This is the first study showing that SF treatment on NRF2 

regulation in vitro is still maintained during excess glucose, suggesting that SF inducing 

the anti-oxidant response is an essential mechanism in preventing diseases of 

metabolic dysregulation such as type 2 diabetes is not just involved in detoxifying 

xenobiotics. In the high glucose environment only, SF just failed to upregulate the 

pentose phosphate pathway gene set required for the production of NADPH. It was 

also identified in both basal and high glucose that SF interfered in lipid metabolism, 

despite no gene set being enriched.  

Chapter 5 aimed to gain a mechanistic understanding of how SF affects metabolic 

intermediates in central hepatic metabolism, using untargeted metabolomics and stable 

isotope tracers for major carbon sources in the cell through glucose, and glutamine.  

When cells exist in a state of metabolic dysregulation, where HepG2 (human liver cells) 

were cultured in high levels of glucose, inducing insulin impairment, and increased 

inflammatory cytokines, I identified SF leading to a substantial increase in the levels of 

reduced glutathione (GSH). SF induces NRF2 which in turn activates GSH biosynthetic 

genes, but to support GSH synthesis a sufficient supply of metabolic intermediates is 

required. Our knowledge of how SF regulates these metabolic intermediates is still 

poorly studied. Consequently, I set about to understand what metabolic changes occur 

in the presence of SF that support GSH synthesis by specifically looking at the 3 

required amino acids. Firstly I identified a decrease in glutamate through the glutamine 

tracer. Secondly, following SF treatment, levels of extracellular cysteine were lower, 

suggesting that more cysteine is imported. Indeed, the expression of the cysteine 

transporter was increased by SF. However, this increase in cysteine import did not 

correspond to accumulation intracellularly, which suggests that cysteine is utilized in 

downstream metabolic pathways (eg GSH biosynthesis). Finally, I identified SF 

depleting the levels of serine and glycine. Through the use of the glucose tracer, I 

showed that the reduction in serine is due to an increase in serine utilization. 

Transcriptomic data (from chapter 4) also identified SF inhibiting the serine synthetic 

genes. This reduction in serine reflects the reduction in glycine, suggesting redirection 

of glycine towards GSH biosynthesis. Upregulation of 1C metabolism, therefore, is a 

novel molecular mechanism of action of SF that is likely supporting the antioxidant 

response induced by the SF/NRF2 system.  
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The final results’ chapter 6 probed whether SF interfering in 1C metabolism is 

mediated through NRF2, using the genome editing technique (CRISPR-Cas 9) for 

targeting NRF2 in HepG2 cells. Whilst working with a heterogenous edited population, 

thereby resulting in a 60-70% NRF2KD as opposed to a homogenous NRF2KO cell 

line, the RNAseq study revealed that SF can act as a powerful metabolic regulator and 

its effects are mediated through NRF2. Transcriptomics analysis identified that the 

gene sets, glycine serine, and threonine, along with pentose phosphate pathway, and 

the various antioxidant response gene sets (glutathione metabolism and metabolism of 

xenobiotics by cytochrome P450) in the NRF2KD cells were not induced by SF. This 

positively correlated with SF no longer affecting serine and glycine levels. It was also 

identified that SF treatment, also mediated through NRF2 downregulated the 

biosynthesis of unsaturated fatty acids gene set, thereby further suppressing the 

utilization of NADPH so that it could be utilized for glutathione. On the other hand in the 

NRF2KD samples, it was observed that SF induced genotoxic stress as well as 

inhibited cell proliferation, which thus helps us understand how ITCs have 

anticarcinogenic properties.  

7.2 How do the results compare to previously published literature? 
 

In this thesis, HepG2 were used as a proxy for liver model. The liver is the primary 

organ that governs vital cellular processes such as protein synthesis, glucose 

homeostasis, and lipid metabolism, along with playing a crucial role in the detoxification 

of environmental chemicals, drugs, and endogenous toxins (Rui, 2014). NRF2 is a 

master regulator of encoding genes related to protecting against oxidative and 

electrophilic stress. Due to the increase in the obesity epidemic, and with several 

studies over the past 5-10 years with varying experimental designs (mostly mice) 

identifying SF to govern central metabolism, studying NRF2 activation in the liver is of 

vital importance. Three studies have reported that the concentration of sulforaphane in 

the plasma following consumption of standard broccoli ranged from as low as 2 to 6 

µM, whilst consumption of the Beneforte broccoli, which contains 3-5 higher 

concentrations of glucoraphanin, plasma concentrations of SF peaked consistently at 

9-11 µM (Gasper et al., 2005, Sivapalan et al., 2018, Coode-Bate et al., 2019). 

Therefore, this thesis speculated that the concentration of 10 µM was physiologically 

relevant.  

In chapter 3, I identified that SF was able to significantly suppress lipid accumulation 

within the cells, by both blocking fatty acid synthesis, through inhibition of FASN and 

inducing the oxidation of fatty acids through CPT1a. This data is in agreement with 

several studies done both in vitro using a variety of cell lines such as liver (Lei et al., 
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2019, Tian et al., 2018), prostate (Singh et al., 2018), and adipocytes  (Zhang et al., 

2016) and in vivo including both mouse (Nagata et al., 2017) and especially human 

intervention studies (Armah et al., 2015). 

To gain a better mechanistic understanding of what is occurring in the three separate 

environments, samples were sent for RNAseq. Firstly GSEA (chapter 4) revealed that 

in the no glucose environment, deprivation of glucose results in no induction of NRF2. 

This suggests that dietary NRF2 induction by SF is solely reliant on the presence of 

glucose thereby confirming the results identified by Heiss and colleagues. The study by 

Heiss and colleagues demonstrated that interfering with glucose uptake in fibroblast 

inhibits NRF2 ability to induce the PPP, thereby blocking NADPH production, which 

inhibits NRF2 ability to induce the antioxidant response and suppress the ROS 

generated (Heiss et al., 2013).  

The GSEA in chapter 4 also showed that the major role SF played in regulating 

metabolism was by enriching the gene sets involved in glutathione metabolism, 

xenobiotic metabolism, protection against oxidative stress, and upregulating the 

proteasome, needed for the degradation of unwanted/damaged proteins, thereby 

confirming the abundance of literature. Assessing the literature, the concentrations 

ranged from 2µM to utilizing supraphysiologic concentrations of SF such as 50µM 

(Chambers et al., 2009, Traka et al., 2005, Liu et al., 2013, Thimmulappa et al., 2002, 

Dinkova-Kostova et al., 2007, Agyeman et al., 2012, Bhamre et al., 2009). Although the 

pentose phosphate pathway gene set narrowingly failed to reach significance in this 

chapter, the second RNA study in chapter 6 identified this set was enriched, providing 

evidence of SF upregulating cellular NADPH regeneration only in the high glucose 

environment. This is in agreement with several studies, that have identified NRF2 

activation playing a crucial role in inducing genes involved in NADPH production, as 

well as identifying several of those PPP genes having ARE sequence thereby acting as 

direct targets of NRF2 (Thimmulappa et al., 2002, Wu et al., 2011, Mitsuishi et al., 

2012).  

In chapter 5, I identified the major finding and the breakthrough of this thesis, by 

showing SF interfering with several pathways such as 1C metabolism and glycine, 

serine, and threonine metabolism, which before my research have not been identified. 

This is because the liver cells that were not challenged by glucose were not 

metabolically challenged. It is possible that dietary compounds could have minimal 

effects in normal conditions, but only fully mobilize their protective mechanisms when 

the cells are in metabolic dysregulation. Firstly, the metabolomics analysis revealed SF 

depleting the amino acids serine and glycine along with an increase in the amino acids 

methionine, matching the transcriptomic data set. To date, no previous studies have 
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identified SF inhibiting serine and glycine biosynthesis. The only other study in the 

history of the literature of NRF2 regulating serine biosynthesis was by (DeNicola et al., 

2015). The study by De Nicola and colleagues showed that constitutive activation of 

NRF2 has adverse metabolic effects, resulting in continuous serine and glycine 

biosynthesis through upregulation of the serine biosynthetic genes, thus allowing 

cancer cells to proliferate and metastasize. The main gene involved in serine 

biosynthesis also the rate limiting enzyme is phosphoglycerate dehydrogenase 

(PHGDH). In both of the RNAseq chapters 4 and 6, I identified a consistent 

downregulation of PHGDH along with downregulation of PSPH in chapter 6. All of the 

serine biosynthetic genes, and in particular PHGDH, are overexpressed in certain 

cancers such as breast cancer and melanoma. Analysis of large genomic sets obtained 

from breast cancer patients revealed that overexpression of the serine biosynthetic 

genes results in poor survival rates (Antonov et al., 2014, Pollari et al., 2011, 

Possemato et al., 2011, Mullarky et al., 2011). Although the result should be interpreted 

with caution, the results may suggest a novel mechanism through which SF may act as 

an anticarcinogenic agent. Therefore, the discovery in this thesis that SF could inhibit 

the serine biosynthetic pathway, which several cancer cells lines have overexpressed, 

may in the future result in novel therapeutics or better strategies for cancer treatment. 

Chapter 5, I also showed a novel mechanism on how the high glucose environment SF 

rewires central metabolism to support the antioxidant response, thereby linking central 

metabolism and the antioxidant response. The glutamine tracer revealed in high 

glucose, the carbon pool of glutamine being redirected to glutathione biosynthesis, 

shown by reduction in the metabolite succinate of the TCA cycle. The analysis also 

revealed SF upregulating the activity of the cysteine receptor (SLC7A11), matching 

previously identified data (Chorley et al., 2012, Hirotsu et al., 2012). Import of cysteine 

and glycine, the latter produced from serine, along with glutamate are utilized for the 

biosynthesis of glutathione (GSH). As the major glutathione pool is found in the liver, it 

is synthesized by a two-step reaction. The first step is catalyzed by the glutamate-

cysteine ligase GCL, the rate limiting enzyme in the reaction. GCL is formed of two 

subunits: a catalytic and regulatory subunit (GCLC, GCLM). This enzyme combines 

glutamate and cysteine into a dipeptide. In the second step, glycine is added to the 

dipeptide catalyzed by glutathione synthetase. In addition to de novo biosynthesis of 

glutathione, reduced glutathione can also be regenerated through oxidized glutathione 

through glutathione reductase (GSR), along with the presence of NADPH. Both the 

GCLC/GLCM, GSS, and GSR have all been shown to have an ARE sequence, and in 

this study, both chapters 4 and 6 also showed strong induction in these genes (Li et al., 

2009, Chan et al., 2001).     
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Enrichment of the 1C metabolism gene set identified SF upregulating two genes 

involved in the production of NADPH: ALDH1L1 and MTHF1LD (Yang and Vousden, 

2016). NADPH serves as the major reducing agent in the body and many 

oxidoreduction reactions including reducing oxidized Glutathione and thioredoxin occur 

through the oxidation of NADPH to NADP+  (Ju et al., 2020). Therefore I hypothesized 

that upregulation of both PPP and 1C metabolism allows the cells ability to maximize 

NADPH production for the continuous regeneration of GSH, needed to suppress the 

inflammatory cytokines and ROS produced by the high glucose environment. Before 

this research, it was known that the majority of the cellular NADPH is generated 

through the PPP, with small amounts also being produced by the malic enzyme 1 

(Mitsuishi et al., 2012). The discovery of identifying novel pathways of NADPH 

production that are regulated by NRF2 will allow future research to develop novel 

diagnostic or therapeutics for treatments of severe diseases. NRF2 role in regulating 

cellular detoxification is widely characterized and understood, however, its role in 

regulating cellular NADPH remains underdeveloped and thus should receive more 

attention and future research should assess NRF2 and NADPH regulation, as one of 

the hypotheses generated from this thesis is that NRF2 serves to regulate the NADPH 

status of the cell. For example, Wu in his microarray analysis of WT, NRF2KO, and 

KEAP1 KO livers identified that NRF2-null mice have less hepatic NADPH, making 

them more susceptible to oxidative stress whereas KEAP1 KO mice have higher 

cellular NADPH (Wu et al., 2011).  

In chapter 5 I also identified SF downregulating thereby potentially inhibiting the activity 

of certain histone deacetylase (HDAC), as well as affecting certain DNA 

methyltransferases (DNMT). This is in agreement with previously published studies 

showing that SF is a well characterized epigenetic regulator, although the exact 

molecular mechanism through which this occurred was not fully understood (Su et al ., 

2019). For example, studies using various prostate cancer cell lines (BPH-1, LnCaP, 

and PC3) have shown that SF treatment at 15 µM resulted in a 30-40% significant 

inhibition in HDAC activity, which correlated with G2M arrest of the cell cycle, resulting 

in apoptosis (Myzak et al., 2006c, Hsu et al., 2011). A second study using the prostate 

cell lines BHP-1, LnCap, and PC3 showed that SF significantly decreased the 

expression of DNMT1 and DNMT3b (Hsu et al., 2011). This effect of SF to affect HDAC 

and DNMT activity has also been identified in the colon carcinoma CaCo2 (Zhou et al., 

2019). The inhibitory effect of SF on HADC activity has also been identified in vivo 

through animal models. For example, treating mice with a concentration of  7.5µM SF 

daily for 21 days, resulting in a decrease in HADC activity and an increase in global 

histone acetylation (Myzak et al., 2007). Repeated five-day SF treatment to transgenic 

adenocarcinoma of the mouse prostate, with as low as 1-2.5 µM SF representing more 
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or less physiological concentrations also resulted in a decrease in the methylation ratio 

of the first five CpGs of the NRF2 gene promoter (Zhang et al., 2013a). The novelty of 

the work arises by showing that in both glucose environments SF affects the 

methionine cycle through an increase in the intracellular concentrations of the amino 

acid methionine, which correlated with an increase in S-Adenosylmethionine (SAM), 

the universal methyl donor. This SAM is likely the substrate needed to regulate the 

activity of HADC and DNMTs.  

To further validate the role of SF as a metabolic regulator in the final chapter the 

genome editing technique, CRISPR-Cas9 was applied. Firstly, in this chapter, I also 

showed that NRF2KD resulted in both a decrease in mitochondrial activity as well as a 

reduction in glycolysis. This data also agrees with the findings from Holmstrom and 

colleagues, where deletion on NRF2 in mice embryonic fibroblasts results in 

mitochondrial depolarization, reduced ATP production, and ultimately impaired 

respiration (Holmstrom et al., 2013). Reduction in glycolysis is also in agreement with 

published literature, as identified by Carrasco-Pozo and colleagues, sulforaphane 

treatment to prostate cancer LNCaPcells was found to reduce the activity of two 

glycolytic genes: hexokinase and pyruvate kinase (Carrasco-Pozo et al., 2019). The 

RNAseq study in chapter 6 also identified a large attenuation in both the antioxidant 

response genes along with several genes in the PPP pathway that have shown to be 

NRF2 targets such as G6PD, PGD, TKT, and TALDO. My data is in agreement with 

two studies. The first one, by Mitsuishi and colleagues, showed using NRF2 siRNA a 

reduction in the activity of several genes in the PPP along with two genes in the TCA 

cycle: ME1 and IDH (Mitsuishi et al., 2012). The second by Thimmulappa and 

colleagues identified that SF treatment in the small intestine of NRF2KO mouse did not 

induce genes in the PPP compared to WT mice (Thimmulappa et al., 2002). The 

analysis also revealed a similar reduction and thereby potential loss of function in 

several other glycolytic genes such as fructose-bisphosphate aldolase A (ALDOA) 

phosphoribosylpyrophosphate synthetase  (PRPS1), and glucose phosphate 

isomerase (PGI), potentially identifying novel NRF2 target genes.  

Throughout this thesis, SF's ability to affect lipid metabolism has been identified 

several times. In particular, in chapter 6 the gene set biosynthesis of unsaturated fatty 

acids just failed to reach significance. Whilst NRF2's role in regulating lipid metabolism 

is still not fully clear, it is worth highlighting though that lipid biosynthesis, in particular, 

FASN and SCD are enzymes that utilize NADPH as a cofactor (Kuhajda et al., 1994, 

Koh et al., 2004). As a result, NRF2 regulation favors that NADPH is utilized to reduce 

oxidative stress by supporting the antioxidant response, rather than the biosynthesis of 

lipids.  
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Focusing on the downregulated gene sets of the NRF2KD cell line in chapter 6, I 

showed SF to heavily impact DNA metabolism both by blocking DNA replication and by 

downregulating, thereby inhibiting the activity of certain repair enzymes. The results 

match with that from the studies by (Hać et al., 2020, Piberger et al., 2014), where the 

research identified ITC to block DNA replication in both cancer and normal cell lines. 

The results of the data may explain one of the several mechanisms through which ITCs 

have antiproliferative effects on cancer cell lines. As a result, these findings may pave 

the way for future research combining ITCs along with therapeutics that can block DNA 

replication or damage DNA for identifying novel treatments for cancer.  

7.2.1 SF and glucose homeostasis. Can it be used to prevent T2D and its 

complications?  

From the findings identified in this thesis along with the abundance of literature 

surrounding SF, there is strong evidence to suggest that SF and other plant-derived 

bioactive compounds have the potential to bring significant therapeutic benefits to 

human health. The current era of modern medicine is strongly centered around the 

relief of symptoms, with pharmaceuticals providing a vast number of drugs to address 

this demand. However, it is becoming increasingly apparent that while these drugs may 

delay the progression of diseases, they do not target their fundamental upstream 

cause. Finding the upstream cause of diseases is by far no easy stretch, as 

homeostasis in cells relies on a wide range of cellular metabolic processes. That is why 

plant bioactives should be considered as future candidates for therapeutics since they 

can target a wide range of signaling pathways within cells and organs (Budisan et al., 

2017, Probst et al., 2017, Yoo et al., 2018). 

Data from this thesis has shown that SF can be used as a potential therapeutic in a 

wide range of diseases such as T2D, cancer, and potentially other metabolic disorders 

such as CVD and NAFLD. Data from this thesis showed that in the high glucose 

environment, SF redirected the excess glucose load to the PPP pathway to suppress. 

In terms of T2D, accumulating literature is beginning to emerge through various 

mechanisms on how SF can improve T2D. One human intervention study showed 81 

T2D participants after 4 weeks of receiving: 

• either 5 grams of broccoli sprout extract (BSE) (equivalent to 112.5 µM SF)  

• or 10 grams of BSE (225 µM SF),  

SF could reduce, especially at higher doses, lipid peroxidation, in particular a decrease 

in plasma malondialdehyde (MDA) and oxidized LDL (ox-LDL) (Bahadoran et al., 

2011). The reduction in ox-LDL is an important factor as this can infiltrate arteries and 
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form atherosclerotic plaque. In a follow up study where T2D patients were 

supplemented with 5 or 10 g of BSE, after four weeks of consumption of 10 g of BSE, 

participants had a significant decrease in serum insulin concentration and homeostatic 

model assessment of insulin resistance (HOMA-IR) (Bahadoran et al., 2012). Axelsson 

and colleagues' recent human intervention study showed that SF from broccoli sprout 

extract could also reduce Hb1Ac and improve gluconeogenesis (Axelsson et al., 2017).  

From the literature, it has been proposed that oxidative stress is a pathogenic 

mechanism that can result in insulin resistance through the dysfunction of β-cells of the 

pancreas and the endothelium (Ceriello and Motz, 2004, Cohen and Tong, 2010). The 

outcome is diabetes and potentially even cardiovascular disease. For example, plasma 

levels of thiol-related proteins (such as GSH and thioredoxin (TRX)) needed for the 

suppression of ROS and lipid peroxides have been reported to be lower in T2D 

compared to healthy controls (Ceriello et al., 1997). Moreover, levels of GSH are 

reduced in pre-diabetics compared to controls, and as the diseases progress to 

diabetes, whilst the levels of GSH slightly rise, they are nowhere near that of healthy 

individuals resulting in increased cardiovascular complications (Nwose et al., 2006). 

Simply infusing patients with GSH in a clinical trial was shown to improve endothelial 

dysfunction increasing vasodilation and enhancing the activity of nitric oxide (Prasad et 

al., 1999). Similarly, a mouse study showed that downregulation of the GCLC-GCLM in 

ApoE null mice results in reduced levels of GSH, making the mouse more susceptible 

to developing atherosclerosis (Biswas et al., 2005).  

The thioredoxin system consists of two proteins: thioredoxin (TXN) and thioredoxin 

reductase (TXNRD), along with NADPH. Like GSH, TRX has been shown to exhibit a 

cardioprotective effect. A 7-day human intervention study demonstrated that 100 grams 

of fresh broccoli sprouts provided cardiovascular benefits (Murashima et al., 2004). 

This cardioprotective effect arises through the glucose being metabolized through the 

PPP. As glucose is redirected towards the PPP to generate reducing equivalents 

(NADPH), the NADPH is transferred through a series of cycling redox reactions 

(Holmgren and Lu, 2010). The outcome is the induction of TRX and TRX reductase by 

SF that results in the ability of TRX to alleviate much of the metabolic stress associated 

with T2DM.  What’s more, it has been identified that TRX influences both the hormone 

insulin and the activity of the glucocorticoid receptor, as well as other signalling 

proteins and transcription factors (Houghton, 2019).  

It is also recognized that hyperglycemia results in the increased formation of advanced 

glycation end products (AGE). In endothelial cells, the interaction of the AGE with the 

receptor RAGE results in increased ROS production and induction and translocation of 
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NF-Ƙb, inducing a wide range of proinflammatory and procoagulatory molecules 

(Houghton, 2019).  

7.2.2 SF can it be used to delay the onset of cancer? 

In this thesis, I reported for the first time a potential novel anticarcinogenic activity of SF 

by downregulating and thereby inhibiting genes involved in both serine and glycine 

biosynthesis, which are often overexpressed in cancer cells. This finding and additional 

data obtained, such as SF inducing genotoxic stress from this thesis, build on the 

extensive literature on how SF acts as an anticarcinogenic agent. A large number of 

studies of in vitro have shown that SF anticarcinogenic mechanism includes inducing 

both phase I and phase II enzymes (Clarke et al., 2008) as well as disrupting the cell 

cytoskeleton (tubulin polymerization), thereby causing cell cycle arrest by blocking 

G2M phase of the cell cycle, along with inducing apoptosis (Hecht, 2000, Kallifatidis et 

al., 2009, Juge et al., 2007). Several in vitro studies using the breast cancer cell line 

MCF-7 have shown that an additional mechanism on how SF may prevent or treat 

breast cancer is by inducing changes in estrogen metabolism. Excessive estrogen can 

promote purine metabolism, resulting in DNA biogenesis, while estradiol treatment has 

been shown to induce an increase in the amino acids L-proline and L-arginine. 

Together these allow nutrients for cancer cells to divide and proliferate (Aumeeruddy 

and Mahomoodally, 2019). 

To translate the in vitro findings of SF interfering with various aspects of cancer 

metabolism, within the last couple of years, human intervention studies have also been 

conducted on a wide range of tissues such as prostate, and breast cancer as well as 

melanoma, to assess whether SF could reduce the advancement of the disease. A first 

study recently identified that men with prostate cancer under surveillance who 

consumed 5-7 greater amounts of GR had a reduced risk of cancer progression (Traka 

et al., 2019). A second study showed that a single dose of BSE (containing the 

equivalent of 200 µM) to women with breast cancer, SF, was shown to reduce both 

tumour size and growth (Cornblatt et al., 2007).  Simultaneous treatment of SF and 

docetaxel in mice has been shown to reduce the size of breast tumours up to 92%, 

compared to the control alone, along with inhibition of cancer proliferation (Burnett et 

al., 2017). An additional study assessing women with abnormal mammograms were 

randomized and were split into two groups for 2 up to 8 weeks: 

• Control, a placebo supplement 

• Treatment, GR supplement containing SF 
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The study identified that SF reduced the levels of the proliferation marker Ki-67 and 

histone deacetylases 3 but not 6 (HDAC) in the benign tissue. SF was also able to 

reduce the levels of HDAC in peripheral blood mononuclear cells (PBMC). The study 

concluded that whilst GR supplementation was safe, the short intervention was not 

sufficient for producing changes to biomarkers in breast tissue (Atwell et al., 2015). An 

additional human study that was carried out looked at assessing the effect of SF, again 

from BSE, on seventeen participants diagnosed with melanoma. In this study, 

participants were randomly allocated to receive the following: 

• 50 µM BSE, daily for 28 days 

• 100 µM BSE, daily for 28 days 

• 200 µM BSE, daily for 28 days 

The study identified that all concentrations of BSE and sulforaphane were well 

tolerated, and that plasma concentration of inflammatory cytokines decreased and 

levels of the tumor suppressor decorin were also increased (Tahata et al., 2018). It is 

worth highlighting that although the data is promising, all of these trials conducted apart 

from the study by Traka and colleagues were for short intervention. Future research 

should not only consider designing longer interventions but also following up with the 

participants once the trials are over to assess whether indeed SF can increase life 

span. 

7.2.3 SF for the prevention of NAFLD 

Data from this thesis is consistent with published data, showing through both in vitro in 

cell culture models and in vivo animal studies that SF interferes with a wide range of 

genes involved in lipid metabolism (Hayes and Dinkova-Kostova, 2014, Lin et al., 

2016). Only one study has been translated in humans to assess SF impact on 

individuals with fatty liver. 24 participants received 30 mg of GR from broccoli sprout 

(BS) extract capsules for 2 months in this study. GR treatment compared to the control 

significantly reduced serum levels of the following liver function markers: ALT, ү-GTP 

as well as alkali phosphatase activity. Urinary markers of 8-OHdG, an established 

oxidative stress marker, was also significantly reduced in participants who had received 

the BS capsules (Kikuchi et al., 2015).  

7.2.4 SF anti-inflammatory effects of reducing systemic inflammation 

Consumption of a high-fat diet has been shown to alter the gut microbiome 

composition, resulting in decreased bacteria diversity and increased levels of 

Firmicutes and decreased relative abundance of Bacteroides (Le Chatelier et al., 
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2013).  Shifts in gut microbiota activate the Toll-like receptor signalling pathway, 

leading to increased intestinal permeability to endotoxin such as lipopolysaccharide 

(LPS) (Duan et al., 2018). Increased LPS and/or free fatty acids may directly affect 

intestinal cells, resulting in increased production of pro-inflammatory cytokines such as 

interleukin (IL)-1β, IL-6, and tumour necrosis factor-alpha (TNFα) in the gut. These 

cytokines circulating in the system will induce the nuclear factor of kappa B (NF-ƙB) 

signalling pathway. Whilst NF-ƙB does play an important role in the immune systems, 

sustained activation results in the induction of various cellular stress responses, 

including oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis (Duan et 

al., 2018).  

In endothelial cells, SF has been shown to inhibit NF-ƙB, and the same effect would 

likely be observed in other epithelial cells such as intestinal, thereby delaying or even 

preventing the onset of inflammation (Chen et al., 2009). Induction of NRF2 by SF 

allows NRF2 to interact and inhibit NF-ƙB binding to the DNA (Heiss et al., 2001). The 

imbalance between NRF2 and NF-ƙB has been associated with many diseases across 

various tissues and organs of the body (Ben-Neriah and Karin, 2011). This interplay 

between NRF2 and NF-ƙB is nevertheless complex, as NF-ƙB has also been shown to 

regulate the expression of NRF2-ARE genes through several different mechanisms (Yu 

et al., 2011a). It has been suggested that the cross-talk between NRF2 and NF-ƙB 

allows cells to regulate their response to cellular stressors more finely; as previously 

stated, gram-negative bacteria result in the release of the endotoxin LPS. LPS can then 

bind and activate the TLR4 receptor resulting in the generation of inflammatory 

cytokines (Kent et al., 1998). Similarly, saturated fatty acids can act as ligands and bind 

onto the TLR4 receptor of both macrophages and adipocytes, with these signals 

regulating a wide range of pro-inflammatory cytokines (Rahman et al., 2012). SF has 

been shown in a thiol-dependent manner to suppress the dimerization of the TLR4 

receptor (Folkard et al., 2014).  

To assess whether SF can reduce the effect of inflammation markers in humans, forty 

healthy overweight participants consumed 30 grams of fresh broccoli sprouts daily 

(equivalent to 117 µmol of GR). The study assessed the levels of two critical 

inflammatory cytokines: 

• Interleukin-6 (IL-6) 

• C-reactive protein (CRP) 

During the 70 days, markers of both IL-6 and CRP declined. At the end of the study, 

after 90 days, the biomarkers were measured again. Levels of IL-6 continued to 

decrease, whereas CRP started to increase again. When the final measurements were 
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taken at day 160, although CRP had risen, it was lower than the value at the start of 

the study. IL-6 also increased, but it was significantly lower than the baseline 

measurement (López-Chillón et al., 2019). A second study in a cohort of T2D diabetics 

also showed that SF supplementation after four weeks significantly reduced the 

following markers IL-6, CRP, and TNF-α (Mirmiran et al., 2012).  

7.3 Limitation of the Research 
 

The work conducted throughout this thesis was all undertaken through cell culture, in 

vitro cell models, or cell-free systems. Cell culture studies can play an essential role in 

getting a theoretical and mechanistic understanding of how the compound of interest at 

a particular point in time affects cell behaviour. In addition, it is easy to use and cheap 

compared to animal models and not influenced by a range of factors such as age, diet, 

and, to some extent, gender. In particular, when carrying out knockdown investigations, 

it is easier to control that the effects are not indirect, as knockdown in vivo can affect 

other off-target organs, although it is possible in mice to target specific tissues and 

minimize the off-target effects. However, cell culture studies also offer several 

disadvantages. For example, results from in vitro studies are challenging to translate to 

in vivo situations for several reasons. Firstly, as the cells are isolated in the culture, 

they do not experience the same conditions as encountered in vivo, and without 

existing in circulation, many growth factors may not be experienced. Another 

consideration is that each time the cell is passaged, the cell will behave slightly 

differently from the original or previous cell, thereby responding differently to the 

treatment. Nevertheless, it is worth highlighting that relatively narrow passage numbers 

were utilized throughout the courses of this research precisely to avoid introducing any 

anomalies.   

In addition, the work carried out throughout this thesis was conducted using a 

hepatocellular carcinoma cell line (HepG2). Cancer cells can harbour several 

mutations, which makes them challenging to study. Despite HepG2 being a cancerous 

cell line,  HepG2 is the most commonly studied liver cell line because it metabolically 

resembles an in vivo liver tissue. For example, it has been identified that the 

expression of gluconeogenic enzymes glucose-6-phosphatase catalytic subunit 

(G6PC) and phosphoenolpyruvate carboxykinase 1, the latter being the rate-limiting 

enzyme in gluconeogenesis, although expressed in HepG2, were not expressed in the 

liver cell lines THLE2 and AML-12 (Sefried et al., 2018).  

Additional limitations were the concentrations of SF used, along with the 

supraphysiological concentrations or the lack of glucose introduced throughout the 
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research. Physiological concentrations of SF in the plasma were shown to range from 

as low as 2 to 6 µM, whilst consumption of the Beneforte broccoli, which contains 3-5 

higher concentrations of glucoraphanin, plasma concentrations of sulforaphane peaked 

consistently at 9-11 µM (Gasper et al., 2005, Sivapalan et al., 2018, Coode-Bate et al., 

2019). Whilst it was hypothesized that 10 µM SF represents physiological 

concentrations of SF, it is likely that 10 µM would have been on the higher end, thereby 

over capturing all of the metabolic effects of SF. Throughout this research, cells were 

cultured either in glucose excess (25 mM) or lack of glucose for 24 h. It is worth 

highlighting that even a diabetic person does not experience such excess glucose 

levels, as these levels would be cytotoxic, leading to permanent damage to several 

organs and resulting in coma and potentially death in the long term. Similarly, a lack of 

glucose would also never occur. Even diets severely low in carbohydrates glucose 

would still be intracellularly synthesized.  

In chapter 3, it is also worth re-highlighting that in the in vitro model of non-acholic fatty 

liver diseases (NAFLD), high concentrations of the fatty acid palmitate were used. 

Whilst palmitate is the most commonly consumed saturated fatty acid, our diet, 

especially common 21st-century diets that include many processed foods, contains 

several different fatty acids, thereby not representing an accurate picture.   

In chapters 4,5, and 6, the RNAseq data analysis identified that SF affected the 

expression of a wide range of genes. Whilst certain gene sets were enriched, such as 

the 1C metabolism, glycine, serine, threonine metabolism, etc., other genes in this set 

had a slight upregulation. For example, the observed fold change was as low as 1.2-

1.4. Therefore, it would have been more important to follow up the expression of these 

genes by looking at the protein level to support the potential functional consequences 

further. In chapter 6, a heterogenous NRF2KD cell population was used. Since NRF2 

is a master regulator, by regulating a wide range of cellular processes, perhaps 

working with a full NRF2KO cell line, the editing would have been lethal, resulting in 

cell death. RNAseq has become a gold standard to characterise and quantify the 

transcriptome at a given time, allowing the study of transcriptomic profiles under 

different conditions. However, the significant limitations of this technology include: it is 

costly and employs a time-intensive process for both running the assay and data 

analysis (Alpern et al., 2019). Library preparation and generation for RNAseq is a 

complex and error-prone process, requiring many steps, and after each step, sample 

loss may occur (Whitley et al., 2016). 

In the first step, the RNA is reverse transcribed to cDNA, then processed further to 

generate libraries. If high abundance RNAs are present in the sample, additional steps 

must be employed to remove or enrich mRNA. Whilst these steps are essential as they 
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help with the quality of the data (downstream analysis), they add labour cost and 

reduce the quantity of starting RNA, which may be problematic if you are working with 

single cells where your starting RNA concentration is low (Whitley et al., 2016). To 

avoid enriching mRNA, the RNA is both pre-amplified and then deeper sequenced to 

increase the number of reads to overcome this issue. In this thesis, the library 

preparation method selected in both chapters was Poly-A enrichment. Depending on 

the goal of the analysis, sample preparation can consist of either undertaking poly-A, 

which is often the favourable method as it prevents mRNA degradation, requiring less 

sequencing depth. The disadvantage of poly-A adenylation is that it does not allow the 

detection of small RNA (microRNAs) and long non-coding RNAs, thereby potentially 

losing data. (Whitley et al., 2016). Again, depending on the study's goal, other methods 

can be used to preserve the microRNAs in the samples, like using QIAzol lysis reagent 

instead of using the QIAshredder process.  

During the data processing stage, RNAseq is mainly used to measure gene 

expression, whereas other approaches like whole-exome sequencing are used to 

identify mutations in the genome. After obtaining the DEGs, these are added to the 

GSEA to get pathways of interest. Selecting the appropriate database for GSEA is 

crucial to obtaining relevant results. It is essential to verify and validate the results from 

the algorithms and parameters used. It is also important to use diagnostic plots to 

validate any statistical methods used for the data analysis, a critical aspect of ensuring 

transparency and reproducibility in science (Tamayo et al., 2016).   

7.4 Future Research 
 

The data presented in this thesis provides evidence that SF can act as a metabolic 

regulator, and its effects are mediated mainly through NRF2. Several extensions could 

be made to the experimental design to further this project. 

Although NRF2 activation regulates metabolism, few cell line studies have reported 

that constituent activation of NRF2 has an adverse effect, allowing lung cancer cell 

lines to proliferate and metastasize (Mitsuishi et al., 2012, DeNicola et al., 2015), as 

well as worsening glucose tolerance and lipid metabolism in mice, fed a high-fat diet 

(More et al., 2013). Therefore, continuing the in vitro work, the CRISPR-Cas9 system 

could have been used to develop a constituent active NRF2 hepatic cell line through 

KEAP1 knockdown/knockout. This cell line would have then been exposed to 

physiological concentrations of SF, challenged with different concentrations of glucose 

and or fatty acids. The Seahorse, along with transcriptomics and metabolomics, would 
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have been used to assess whether intermittent and cyclic NRF2 induction, such as that 

observed following a diet rich in NRF2 inducers, will improve hepatic metabolism.  

If the in vitro work were to be continued, a second option would be to use either 

primary liver cells or a more robust model like liver organoids. Primary liver cells are 

still considered the gold standard for creating an in vitro model of liver cell culture. Due 

to their origin in the native liver, they reflect the complete functionality of the human 

organ in vivo and thus provide highly predictive results in pharmacological and 

toxicological in vitro research. Furthermore, as each sample is obtained by a different 

donor, it offers the opportunity to analyze a broad range of genetic polymorphisms 

using individual cell isolates (Zeilinger et al., 2016). The significant limitations of 

working with primary cells are that interindividual differences and cell alterations due to 

the isolation procedure will result in variations in experimental results, complicating the 

standardization of models (Zeilinger et al., 2016). Human organoids are formed by 

human stem cells in a 3D culture system; this system makes it possible to re-create the 

architecture and physiology of human organs in remarkable detail, enabling them to be 

essential models for the study of human diseases (Kim et al., 2020). An alternative 

option could be the use of the liver-on-a-chip model. Liver-on-a-chip is a 3D in vitro 

hepatic microphysiological system that aims to recreate the conditions of liver tissue on 

a microscopic scale (Rennert et al., 2015). 

One of the main advantages of this system is integrating several different cell types all 

at once, mimicking liver tissue in real life. For example, the system would incorporate 

non-parenchymal cells (NPCs) in a vascular layer made of HUVECs, tissue 

macrophages, Kupffer cells, and an opposing layer of hepatic stellate cells (HSCs) co-

cultured with hepatocytes. Luminescence-based sensors in the device allow real-time 

measurement of oxygen consumption, thereby assessing how SF treatment or 

challenging the different cells type substrates such as glucose or fatty acids. By 

seeding hepatics spheroids and establishing a liver-on-chip model, the liver tissue will 

resemble the native function and the spheroids the native structure (Hassan et al., 

2020). This, in combination with biosensors integrated into the chips (Kulkeaw and 

Pengsart, 2021), will help address the static model used and provide a novel biological 

understanding of the liver function and SF as a therapeutic compound.     

The in vitro findings of SF affecting the serine biosynthetic pathway and its ability to 

interfere with 1C metabolism should be scaled up to an in vivo model. Several studies 

described in the review by Kamal have shown that SF can act as an anticarcinogenic 

agent (Kamal et al., 2020). As previously stated, certain cancer cell lines have the 

serine biosynthetic genes overexpressed, allowing them to become addicted to serine, 

which is needed for the constant production of nucleotides. To test whether SF may 
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also inhibit or slow down cancer progression by inhibiting these genes, an in vivo study 

design using mice that have either PHDGH or the serine hydroxymethyltransferase 

SHTM1/2 in the liver overexpressed could be carried out. Overexpression of PHGDH 

or SHTM1/2 could be carried out either with a cre knock-in at a tissue-specific locus, 

allowing the overexpression to be specific only at the liver. The alternative could use 

the bacterial artificial chromosome (BAC) system to develop transgenic mice 

(Tsyrulnyk and Moriggl, 2008). The main limitation of BAC is that it is not tissue-

specific, but instead, the overexpression is on the whole body. Control and SF or even 

glucoraphanin (GR) supplemented mice at specific doses (for example, making a dose 

response) would then be administered for a particular time. The primary outcome 

would be to assess whether the supplementation results in the mice living longer 

compared to its respective control and a reduction or even potential inhibition of cancer 

to metastasize. Based on the findings of the primary outcome, the secondary outcome 

would be to obtain the liver tissue and potentially other tissues, extract metabolites and 

RNA from the control and treated samples, and send the samples for metabolomics 

and transcriptomics to assess and identify how SF targets specific pathways that could 

inhibit cancer to spread.  

Within the last couple of years, there have been several studies assessing how SF 

impacts lipid metabolism by feeding mice a high-fat diet along with GR or SF 

supplementation (Axelsson et al., 2017, Nagata et al., 2017, Li et al., 2021, Xu et al., 

2020). An alternative study to assess how SF impacts hepatic metabolism and not 

simply focus on lipid metabolism could also be an in vivo study where mice are fed a 

standard chow diet compared to a high-fat diet. In other words, rather than having a 

diet of 60% in lard or cholesterol, this would be replaced with 30-40% (wt/v) glucose 

and fructose. Fructose has been suggested since it has been shown to worsen liver 

metabolism (Softic et al., 2017, Geidl-Flueck et al., 2021). The glucose and fructose 

would be supplemented through the water. Both the control and the high sugar diet 

would also receive SF, GR, or even better whole broccoli (although that would make it 

more challenging to identify which specific glucosinolate may result in a beneficial 

impact) for 6 to 8 weeks. After 6-8 weeks, RNA from the liver along with metabolites 

would be extracted and sent for both RNAseq and metabolomics analysis, to assess 

whether the broccoli bioactives can mitigate the effects induced by high sugar 

consumption.  

The two limitations of animal studies however include the concentration of SF hoped to 

be achieved, as well as the choice of the delivery method. For example from table 7.1, 

it has been identified that several animal studies involving SF supplementation with a 
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delivery method of either diet supplementation or oral gavage, to ensure SF is still 

subjected to the digestive tract.  

 

 

Table 7.1 Animal studies using SF Supplementation 

Study SF dose 

(µmols/day)* 

Duration of 

supplementation 

Broccoli 

consumption 

(g/day)** 

(Axelsson et al., 

2017) 

56.4 or 2.82 4 weeks 45.12 or 2.26 

(Choi et al., 2014) 28.2 6 weeks 22.6 

(Davidson et al., 

2013) 

3 12 weeks 2.4 

(Abbaoui et al., 

2012) 

7.4 2 weeks 5.6 

(Traka et al., 

2010) 

0.5 or 5 4 or 8 weeks 0.4 or 4 

(Myzak et al., 

2006a) 

2500 16 weeks 2000 

* µmols/day was calculated based on two assumptions; the body weight of a mouse is 

approximately 25g and each mouse consumes around 5g of food per day.                                                   

**Using the assumption that there is 0.8µmol of glucoraphanin per g of broccoli fresh weight 

with 100% conversion to SF (according to the method used within the research group). 

The main drawback of mouse models as shown in table 7.1 is the large variation of the 

concentrations of SF used in animal studies especially compared to the quantity of 

broccoli that would be needed to be consumed to achieve that concentration. As a 

result, it is difficult to translate the dose of SF used in the animal to the levels needed 

for human consumption. In addition, mouse vs human metabolism may also differ, 

making the result difficult to translate to human clinical applications. Davidson and 

colleagues were one of the few studies that carried out in vivo using physiological 

concentrations of SF. Davidson found that SF was able to suppress the activity of 

several cytokines which induced metalloproteinases, thereby decreasing arthritis score 

in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis 

(Davidson et al., 2013).   
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To overcome the difficulties of a mouse study, a human intervention study could be 

carried out, thereby making the result much easier to translate and applicable to the 

general population. Two important factors when designing the experiment for a 

potential human intervention study include deciding the delivery method of the 

treatment and the time frame of the intervention (Quirante-Moya et al., 2020). SF itself 

is unstable, and therefore the precursor of SF, glucoraphanin, would be the appropriate 

source. Glucoraphanin could potentially be delivered as either a supplement, similar to 

the study conducted by (Nagata et al., 2017) or via the use of whole broccoli, such as 

the study conducted both by (Armah et al., 2015) and (Traka et al., 2019). Another 

important factor to consider when designing a human intervention study is sample size 

to reduce inter-individual variability. It is also essential to control for variables (more 

commonly referred to as co-variables) that can influence and impact other variables. 

Covariables such as sex, age, and BMI must be controlled as they greatly influence 

responses linked to inflammatory processes or gene expression. 

In terms of conducting a human intervention study, to assess the effect of broccoli on 

hepatic metabolism, the experimental design could consist of the following. The first 

option could be administrating whole broccoli or BSE containing SF capsules to healthy 

patients (control) vs obese patients, or patients with fatty liver diseases. A second 

study could consist of recruiting patients with fatty liver diseases and splitting them into 

different groups. Each group would consume broccoli with different concentrations of 

the glucosinolates GR, obtained from broccoli with increased expression of the 

transcription factor Myb-related protein-28 (Myb28) from Brassica villosa, enabling 

increased production of glucoraphanin (Traka et al., 2013). In terms of delivery method, 

one option could be in the form of soups, matching the experimental design from the 

recently published study by Traka and colleagues (Traka et al., 2019). When 

considering the preparation of the soups, it is important to consider the various cooking 

processes, since that can affect the final concentration of the glucosinolate, as cooking 

can rapture cell membranes as well as denature the activity of the myrosinase enzyme. 

For example, steaming has been shown to lead to a 20% decrease in glucosinolates 

content, high pressure boiling 33% decrease, conventional boiling 55%, and 

microwaving up to 74%  (Mandrich and Caputo, 2020). An alternative option to avoid 

preparing the broccoli could be through the use of BSE capsules that also contains 

high doses of SF. The main limitation of delivery capsules containing SF is that it just 

focus on a single compound, rather than assessing the synergistic effects of a wide 

range of different glucosinolates. The length of the study could be a medium length 

study and could range from four weeks up to 6 months. The review by Quirante-Moya 

and colleagues identified that medium to long-range studies where SF or other broccoli 

bioactives given to participants for 2 up to 12 months had the greatest effect in inducing 
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transcriptional changes as well as reducing inflammatory markers (Quirante-Moya et 

al., 2020). If feasible, liver biopsy ahead of a scheduled surgery at the end of the study 

would be taken, and transcriptomic/metabolomics analysis would be carried to assess 

how SF affects hepatic metabolism by assessing SF's effect on lipid metabolism, as 

well as other metabolic pathways.  

Although the gut microbiome, within the last 10 to 15 years has shown to play an 

important role in preventing the onset of a wide range of diseases, such as obesity, 

cancer, diabetes, etc. (Fan and Pedersen, 2021), until now limited studies have 

assessed changes in gut microbiota by broccoli and other cruciferous vegetables from 

interventions studies. When brassica vegetables are ingested, the GLs are firstly 

hydrolyzed in the small intestine by active myrosinase in the plant, (provided the 

myrosinase enzyme is not degraded during the cooking process), but can also be 

hydrolyzed in the colon by specific bacterial microflora that produces the myrosinase 

enzyme (Rouzaud et al., 2003). In humans, it has been shown that the inter-individual 

variation in GL hydrolysis is mainly dependent on differences in bacterial microflora 

between individuals. For example, the probiotic strains Lactobacillus plantarum KW30 

and Lactococcus lactis ssp. lactis KF147 were found to convert 30–33% of 

glucoraphanin and/or glucoerucin into sulforaphane nitrile, erucin nitrile, and some 

additional unknown metabolites (Krul et al., 2002). A further study found that the 

Lactobacillus agilis R16, another lactic acid bacterial strain, can hydrolyze sinigrin into 

allyl isothiocyanate (ATIC) (Krul et al., 2002). An additional human study identified 

Lactobacillus agilis R16, capable of metabolizing 10% glucoraphanin and glucoiberin. 

In contrast, though the study identified that Enterococcus casseliflavus CP1 was able 

to metabolize 40–50% of glucoiberin and glucoraphanin, producing relatively low 

concentrations of iberin and sulforaphane. The bacteria that had the highest ability to 

metabolize both glucoraphanin and glucoiberin was Escherichia coli VL8, which was 

shown to metabolized 80–90% of glucoiberin and glucoraphanin. In the process, the 

bacteria were able to bioconvert glucoiberin and glucoraphanin to glucoerucin and 

glucoiberverin, and then further breaking down these compounds, producing erucin, 

erucin nitriles, iberverin, and iberverin nitriles from the two GSLs (Luang-In et al., 

2014). The findings that lactic acid bacteria strains along with E.coli are capable of 

metabolizing certain glucosinolates have also been confirmed by Kellingray and 

colleagues. Their work showed that in vitro fermentation of fecal samples from five 

different participants in combination with broccoli leachate had enhanced growth of 

lactobacilli. This corresponded with increased lactate and short chain fatty acid 

productions, along with increase E.coli required for the bioconversion of glucorphanin 

to its respective analogue (Kellingray et al., 2021).  
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To add further complexity, two recent studies showed that mice supplemented with 

broccoli seeds or stalks/florets, consumption of broccoli resulted in a shift in the 

microbiome: one study showed an increase in the number of Bacteroidetes, and a 

significant decrease in Lachnospiraceae and the other showed an increase in 

Akkermansia muciniphila and a reduction in Mucispirillum schaedleri (Zandani et al., 

2021, Xu et al., 2020).  Studies have shown that Akkermansia can modulate a wide 

range of hormones and genes related to both glucose metabolism as well as fatty acids 

oxidation (Yoon et al., 2021); for example, it has been identified that in type 2 diabetic 

mice treated with Akkermansia, the treatment increased the expression of genes 

related to fatty acid oxidation such as (CPT1, PGC1α, and PPARα) (Everard et al 

2013).  Therefore, with advancements in sequencing technologies, future research 

should focus on understanding the role of the gut microbiota composition in mediating 

the effects of SF and other bioactives in systemic metabolic regulation. For example, 

some questions that could be addressed include: are there specific microbiota profiles 

that would be more susceptible to SF’s action? Is it possible to design personalized 

interventions that target gut microbiota and diet?    

In conclusion, the work of this thesis has contributed to our scientific understanding that 

SF can act as a metabolic regulator, thereby regulating hepatic metabolism and these 

effects are largely mediated through NRF2. As there has been an increasing number of 

in vivo studies assessing the effect of SF or its precursor GR on how it can improve 

metabolic syndrome, moving forward future research should consider the effect of 

whole broccoli intake on individuals who have metabolic syndrome to investigate 

whether frequent consumption of broccoli can ameliorate the problematics of obesity 

and metabolic syndrome. This research could provide further evidence for increasing 

the levels of standard broccoli consumption or potentially recommending to start 

consuming the commercially available high-GSL Beneforté broccoli within the diet. 
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Appendix: 
 

This figure is regarding the data in chapter 4 

 

 

Figure S1.SF does not induce genes related to the antioxidant response in a no glucose 

environment.  HepG2 cells were cultured with 4 mM glutamine and 1 mM pyruvate in a no 

glucose environment. RNA was extracted after 24 h SF treatment before gene expression was 

assayed by qRT-PCR. Samples were normalized to the Housekeeping control beta-actin, and 

mRNA fold change was determined by dividing each normalized treatment by the average of 

the normalized control. All values are expressed as mean ± SD from three independent wells. 

Statistical analysis was determined by a t-test between treatment compared to its respective 

control 
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This table is regarding the data in chapter 4 

Table S1 Pathway analysis of differentially expressed genes in response to SF under 

various glucose environments analyzed through the KEGG database 

 No Glucose Control vs 
Sulforaphane 

Basal Glucose 
Control vs 

Sulforaphane 

High Glucose Controls 
vs Sulforaphane 

KEGG SIZE NES FDR q 
value 

SIZ
E 

NES FDR 
q 
value 

SIZE NES FDR 
q 
valu
e 

ABC 
TRANSPORTERS 

27 -0.991 0.615 27 1.285 0.380 27 1.540 0.099 

ACUTE MYELOID 
LEUKEMIA 

46 1.287 0.174 46 1.119 0.500 46 1.503 0.108 

ADHERENS 
JUNCTION 

55 1.960 0.005 55 0.932 0.680 55 1.015 0.534 

ADIPOCYTOKINE 
SIGNALING 
PATHWAY 

47 -0.922 0.748 47 1.366 0.317 47 1.530 0.102 

ALANINE 
ASPARTATE 
AND 
GLUTAMATE 
METABOLISM 

26 -1.787 0.008 26 -1.653 0.050 26 -1.522 0.288 

ALDOSTERONE 
REGULATED 
SODIUM 
REABSORPTION 

23 -0.881 0.817 23 -0.837 0.849 23 -1.089 0.561 

ALZHEIMERS 
DISEASE 

114 -1.151 0.349 114 0.841 0.830 114 1.248 0.272 

AMINO SUGAR 
AND 
NUCLEOTIDE 
SUGAR 
METABOLISM 

36 -0.880 0.804 36 1.091 0.525 36 1.488 0.107 

AMINOACYL 
TNRA 
BIOSYNTHESIS 

38 -0.622 0.991 38 1.169 0.456 38 1.295 0.238 

AMYOTROPHIC 
LATERAL 
SCLEROSIS ALS 

33 -0.983 0.622 33 -0.760 0.901 33 1.127 0.384 

ANTIGEN 
PROCESSING 
AND 
PRESENTATION 

36 -1.312 0.170 36 -0.872 0.833 36 1.028 0.513 

APOPTOSIS 67 0.973 0.587 67 1.619 0.085 67 1.633 0.059 

ARACHIDONIC 
ACID 
METABOLISM 

22 -1.483 0.073 22 -1.092 0.545 22 -1.106 0.590 

ARGININE AND 
PROLINE 
METABOLISM 

41 -2.192 0.000 41 -0.993 0.688 41 1.242 0.275 

ARRHYTHMOGE
NIC RIGHT 
VENTRICULAR 
CARDIOMYOPAT
HY ARVC 

36 1.656 0.053 36 0.999 0.596 36 1.571 0.083 

AXON 
GUIDANCE 

84 -0.861 0.818 84 -1.558 0.114 84 -1.159 0.658 

B CELL 
RECEPTOR 
SIGNALLING 
PATHWAY 

45 1.293 0.171 45 0.980 0.616 45 1.192 0.318 
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BASAL CELL 
CARCINOMA 

30 0.732 0.935 30 -1.295 0.350 30 -1.143 0.650 

BASAL 
TRANSCRIPTION 
FACTORS 

28 0.924 0.674 28 1.003 0.599 28 1.111 0.400 

BASE EXCISION 
REPAIR 

31 -0.872 0.810 31 -1.012 0.663 31 -1.092 0.570 

BETA ALANINE 
METABOLISM 

15 -1.565 0.050 15 -0.889 0.809 15 -0.948 0.645 

BLADDER 
CANCER 

33 -0.805 0.881 33 -1.055 0.602 33 -1.103 0.578 

BUTANOATE 
METABOLISM 

26 -1.361 0.126 26 -1.306 0.339 26 -1.289 0.475 

CALCIUM 
SIGNALING 
PATHWAY 

66 0.811 0.838 66 -1.333 0.338 66 -1.006 0.582 

CARDIAC 
MUSCLE 
CONTRACTION 

37 -1.634 0.030 37 -0.848 0.839 37 1.032 0.534 

CELL ADHESION 
MOLECULES 
CAMS 

59 -1.435 0.089 59 -1.161 0.456 59 -0.859 0.776 

CELL CYCLE 114 1.271 0.183 114 -1.196 0.450 114 -1.340 0.397 

CHEMOKINE 
SIGNALING 
PATHWAY 

90 1.417 0.117 90 -1.278 0.351 90 0.801 0.867 

CHRONIC 
MYELOID 
LEUKEMIA 

63 1.304 0.163 63 1.215 0.409 63 1.373 0.196 

CITRATE CYCLE 
TCA CYCLE 

29 -1.239 0.247 29 -1.241 0.408 29 0.719 0.952 

COLORECTAL 
CANCER 

52 1.189 0.265 52 -0.870 0.826 52 1.114 0.401 

COMPLEMENT 
AND 
COAGULATION 
CASCADES 

48 -2.182 0.000 48 -1.309 0.347 48 -1.322 0.414 

CYSTEINE AND 
METHIONINE 
METABOLISM 

29 1.100 0.380 29 -0.863 0.830 29 1.131 0.384 

CYTOKINE 
CYTOKINE 
RECEPTOR 
METABOLISM 

86 -1.136 0.360 86 1.704 0.050 86 1.748 0.023 

CYTOSOLIC DNA 
SENSING 
PATHWAY 

26 -1.366 0.125 26 1.388 0.322 26 1.617 0.066 

DILATED 
CARDIOMYOPAH
TY 

40 1.355 0.147 40 -0.988 0.676 40 1.359 0.195 

DNA 
REPLICATION 

32 -0.800 0.862 32 -1.771 0.030 32 -1.516 0.241 

DORSO 
VENTRAL AXIS 
FORMATION 

16 1.661 0.054 16 -0.918 0.765 16 1.015 0.528 

DRUG 
METABOLISM 
CYTOCHROME 
P450 

23 -1.863 0.003 23 0.922 0.691 23 -1.136 0.618 

DRUG 
METABOLISM 
OTHER 
ENZYMES 

22 -1.475 0.075 22 1.292 0.384 22 1.515 0.103 

ECM RECEPTOR 
INTERACTION 

44 1.363 0.143 44 -1.319 0.341 44 1.200 0.309 

ENDOCYTOSIS 140 1.577 0.069 140 1.134 0.478 140 0.901 0.713 

ENDOMETRIAL 
CANCER 

45 1.369 0.141 45 -1.108 0.529 45 -0.967 0.617 
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EPITHELIAL 
CELL 
SIGNALLING IN 
HELICOBATER 
PYLORI 
INFECTION 

51 1.892 0.011 51 1.832 0.018 51 2.088 0.001 

ERBB 
SIGNALING 
PATHWAY 

65 1.558 0.069 65 0.881 0.760 65 0.986 0.582 

ETHER LIPID 
METABOLISM 

17 -1.559 0.048 17 -1.321 0.351 17 -1.445 0.279 

FATTY ACID 
METABOLISM 

31 -1.648 0.027 31 -0.989 0.687 31 -0.996 0.569 

FC EPSILON R 
MEDIATED 
PHAGOCYTOSIS 

47 1.273 0.184 47 -1.180 0.454 47 -1.005 0.561 

FC GAMMA R 
MEDIATED 
PHAGOCYTOSIS 

62 1.635 0.059 62 -1.016 0.663 62 -1.053 0.586 

FOCAL 
ADHESION 

128 2.043 0.001 128 -1.371 0.344 128 1.218 0.293 

FRUCTOSE AND 
MANNOSE 
METABOLISM 

27 1.000 0.542 27 1.154 0.446 27 1.790 0.022 

GALACTOSE 
METABOLISM 

20 -1.015 0.572 20 -1.125 0.519 20 1.184 0.323 

GAP JUNCTION 49 1.860 0.013 49 -1.154 0.461 49 -0.765 0.893 

GLIOMA 47 1.194 0.263 47 0.958 0.643 47 0.916 0.699 

GLUTATHIONE 
METABOLISM 

35 -1.255 0.231 35 1.814 0.016 35 2.059 0.000 

GLYCEROLIPID 
METABOLISM 

27 -1.806 0.006 27 -1.436 0.242 27 -1.178 0.628 

GLYCEROPHOS
PHOLIPID 
METABOLISM 

49 -1.866 0.003 49 -1.501 0.181 49 -1.028 0.601 

GLYCINE 
SERINE AND 
THREONINE 
METABOLSIM 

26 -2.086 0.000 26 -1.757 0.027 26 -1.738 0.047 

GLYCOLYSIS 
GLUCONEOGEN
SIS 

41 -1.438 0.090 41 -1.683 0.054 41 -1.122 0.608 

GLYCOSAMINOG
LYCAN 
BIOSYNTHESIS 
CHONDROITIN 
SULFATE 

16 -0.834 0.842 16 -0.863 0.820 16 -0.838 0.787 

GLYCOSAMINOG
LYCAN 
BIOSYNTHESIS 
HEPARAN 
SULFATE 

16 0.903 0.711 16 -0.957 0.707 16 -0.874 0.762 

GLYCOSAMINOG
LYCAN 
DEGRADATION 

15 1.149 0.315 15 1.235 0.399 15 1.222 0.294 

GLYCOSPHINGO
LD 
BIOSYNTHESIS 
LACTO AND 
NEOLACTO 
SERIES 

16 -1.016 0.581 16 1.168 0.443 16 1.478 0.110 

GLYCOSPHOSP
HATIDYL 
INOSTIOL GPI 
ANCHOR 
BIOSYNTHESIS  

23 -0.449 0.999 23 -0.814 0.861 23 -1.057 0.609 
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GNRH 
SIGNALLING 
PATHWAY 

61 1.612 0.067 61 -1.439 0.256 61 -1.041 0.586 

HEDGEHOG 
SIGNALLING 
PATHWAY 

25 1.240 0.210 25 -1.092 0.535 25 -1.054 0.600 

HEMATOPOIETIC 
CELL LINAGE  

28 -0.776 0.887 28 -1.173 0.459 28 0.943 0.646 

HISTIDINE 
METABOLISM 

19 -2.016 0.001 19 -1.670 0.052 19 -1.864 0.010 

HOMOLOGOUS 
RECOMBINATIO
N 

22 0.817 0.838 22 -1.223 0.438 22 -1.236 0.508 

HUNTINGTONS 
DISEASES 

137 -1.410 0.105 137 -0.527 0.995 137 1.180 0.324 

HYPERTROPHIC 
CARDIOMYOPAT
HY HCM 

38 1.342 0.145 38 1.391 0.343 38 1.437 0.133 

INOSITOL 
PHOSPHATE 
METABOLISM 

43 1.346 0.147 43 -1.287 0.355 43 -1.149 0.658 

INSULIN 
SIGNALING 
PATHWAY 

102 1.034 0.489 102 -1.108 0.538 102 -1.212 0.550 

JAK STAT 
SIGNALING 
PATHWAY 

76 1.590 0.066 76 1.319 0.347 76 1.363 0.202 

LEISHMANIA 
INFECTION 

32 1.018 0.514 32 1.266 0.367 32 1.598 0.074 

LEUKOCYTE 
TRANSENDOTHE
LIAL MIGRATION 

67 1.766 0.032 67 -0.963 0.716 67 1.260 0.268 

LONG TERM 
DEPRESSION 

33 1.538 0.073 33 -0.998 0.686 33 -0.857 0.767 

LONG TERM 
POTENTIATION 

38 1.671 0.058 38 -0.628 0.986 38 0.712 0.947 

LYSINE 
DEGRADATION 

36 -1.542 0.053 36 -1.814 0.026 36 -1.281 0.467 

LYSOSOME 98 1.243 0.211 98 1.020 0.611 98 1.162 0.347 

MAPK 
SIGNALING 
PATHWAY 

166 1.535 0.071 166 -1.080 0.552 166 1.302 0.245 

MELANOGENESI
S 

54 1.416 0.115 54 -1.364 0.340 54 -1.115 0.608 

MELANOMA 42 1.119 0.358 42 0.980 0.604 42 0.912 0.697 

METABOLISM OF 
XENOBIOTICS 
BY 
CYTOCHROME 
P450 

24 -1.623 0.031 24 1.734 0.041 24 1.802 0.021 

MISMATCH 
REPIAR 

21 0.729 0.927 21 -1.262 0.374 21 -1.013 0.607 

MTOR 
SIGNALING 
PATHWAY 

41 1.388 0.127 41 -0.756 0.895 41 0.623 0.977 

N GLYCAN 
BIOSYNTHESIS 

38 1.472 0.098 38 1.436 0.304 38 1.348 0.203 

NATURAL 
KILLER CELL 
MEDIATED 
CYTOTOXICITY 

64 1.105 0.378 64 1.035 0.589 64 1.299 0.237 

NEUROACTIVE 
LIGAND 
RECEPTOR 
INTERACTION 

35 0.832 0.831 35 1.106 0.515 35 1.225 0.295 

NEUROTROPHIN 
SIGNALING 
PATHWAY 

95 1.393 0.127 95 0.911 0.705 95 0.898 0.711 
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NITROGEN 
METABOLISM 

16 -1.160 0.343 16 -1.663 0.051 16 -1.468 0.304 

NOD LIKE 
RECEPTOR 
SIGNALING 
PATHWAY 

35 1.349 0.147 35 1.282 0.351 35 1.401 0.167 

NON SMALL 
CELL LUNG 
CANCER 

45 1.157 0.306 45 -0.927 0.755 45 -1.010 0.586 

NOTCH 
SIGNALING 
PATHWAY 

38 0.899 0.712 38 -1.022 0.662 38 -0.895 0.730 

NUCLEOTIDE 
EXCISION 
REPAIR 

41 0.836 0.834 41 -0.982 0.680 41 0.869 0.756 

ONE CARBON 
POOL BY 
FOLATE 

16 -1.466 0.079 16 1.321 0.364 16 1.722 0.026 

OOCYTE 
MEIOSIS 

79 1.593 0.068 79 -1.287 0.344 79 -1.349 0.406 

OXIDATIVE 
PHOSPHORYLAT
ION 

90 -1.382 0.115 90 0.744 0.925 90 1.821 0.020 

P53 SIGNALING 
PATHWAY 

58 -1.171 0.338 58 -1.041 0.625 58 -1.053 0.572 

PANCREATIC 
CANCER 

57 1.034 0.495 57 0.992 0.601 57 1.104 0.407 

PARKINSONS 
DISEASE 

89 -1.702 0.019 89 -0.777 0.888 89 1.449 0.132 

PATHOGENIC 
ESCHERICHIA 
COLI INFECTION 

38 1.443 0.101 38 1.217 0.422 38 1.489 0.110 

PATHWAYS IN 
CANCER 

220 1.464 0.096 220 -0.944 0.727 220 -0.913 0.706 

PENTOSE 
PHOSPHATE 
PATHWAY 

20 -0.713 0.948 20 1.091 0.538 20 1.582 0.080 

PEROXISOME 62 -1.456 0.082 62 -1.164 0.468 62 -1.138 0.637 

PHOSPHATIDYLI
NOSTIOL 
SIGNALING 
SYSTEM 

54 1.463 0.094 54 -1.212 0.440 54 -1.239 0.529 

PORPHRYIN 
AND 
CHOLOROPHYLL 
METABOLISM 

23 -1.484 0.075 23 1.079 0.525 23 1.270 0.259 

PPAR 
SIGNALING 
PATHWAY 

46 -1.524 0.059 46 -1.162 0.464 46 -1.089 0.545 

PRIMARY 
IMMUNODEFICIE
NCY 

15 -1.562 0.049 15 1.183 0.438 15 1.099 0.404 

PRION 
DISEASES 

22 1.527 0.073 22 1.636 0.084 22 1.775 0.023 

PROGESTERON
E MEDIATED 
OOCYTE 
MATURATION 

64 1.322 0.155 64 -1.348 0.357 64 -1.094 0.582 

PROPANOATE 
METABOLISM 

27 -1.512 0.062 27 -1.115 0.532 27 -1.426 0.260 

PROSTATE 
CANCER 

72 1.491 0.092 72 -0.835 0.831 72 1.101 0.405 

PROTEASOME 35 -0.891 0.810 35 1.935 0.009 35 2.204 0.000 

PROTEIN 
EXPORT 

22 1.566 0.068 22 1.862 0.015 22 1.502 0.103 

PURINE 
METABOLISM 

98 -1.387 0.114 98 1.012 0.617 98 1.287 0.239 
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PYRIMIDINE 
METABOLISM 

72 -1.649 0.029 72 1.007 0.604 72 1.029 0.525 

PYRUVATE 
METABOLISM 

30 -1.730 0.015 30 -1.408 0.281 30 -1.444 0.248 

REGULATION OF 
ACTIN 
CYTOSKELETON 

136 1.990 0.005 136 -1.192 0.438 136 0.959 0.619 

REGULATION OF 
AUTOPHAGY 

18 1.471 0.095 18 1.282 0.367 18 0.804 0.872 

RENAL CELL 
CARCINOMA 

56 1.754 0.031 56 1.247 0.389 56 1.211 0.299 

RETINOL 
METABOLSIM 

18 -2.027 0.000 18 -0.837 0.840 18 -0.750 0.898 

RIBOSOME 77 -2.479 0.000 77 -0.813 0.852 77 1.706 0.030 

RIG I LIKE 
RECEPTROR 
SIGNALING 
PATHWAY 

44 -0.847 0.833 44 1.379 0.315 44 1.254 0.269 

RNA 
DEGRADATION 

54 1.316 0.158 54 0.813 0.853 54 1.031 0.528 

RNA 
POLYMERASE 

24 -1.213 0.278 24 0.951 0.647 24 1.360 0.198 

SELNOAMINO 
ACID 
METABOLISM 

19 -1.402 0.107 19 -0.890 0.817 19 1.028 0.520 

SMALL CELL 
LUNG CANCER 

69 1.479 0.097 69 1.008 0.613 69 0.960 0.624 

SNARE 
INTERACTIONS 
IN VESICULAR 
TRANSPORT 

33 1.078 0.415 33 0.665 0.959 33 0.684 0.959 

SPHINGOLIPID 
METABOLISM 

30 1.407 0.119 30 1.198 0.435 30 0.775 0.897 

SPLICEOSOME  115 0.954 0.613 115 1.072 0.528 115 1.311 0.238 

STARCH AND 
SUCROSE 
METABOLISM 

23 0.822 0.840 23 1.084 0.526 23 1.290 0.239 

STEROID 
BIOSYNTHESIS 

15 -1.141 0.357 15 -1.453 0.248 15 -1.456 0.290 

STEROID 
HORMONE 
BIOSYNTHESIS 

20 -1.169 0.334 20 1.393 0.373 20 1.524 0.102 

SYSTEMIC 
LUPUS 
ERYTHEMATOS
US 

54 -1.109 0.400 54 -2.293 0.000 54 -1.249 0.530 

T CELL 
RECEPTOR 
SIGNALING 
PATHWAY 

67 1.331 0.151 67 1.164 0.437 67 1.443 0.132 

TGF BETA 
SIGNALING 
PATHWAY 

57 1.566 0.071 57 1.195 0.425 57 1.316 0.239 

THYROID 
CANCER 

24 0.975 0.591 24 0.727 0.929 24 0.893 0.713 

TIGHT 
JUNCTION 

90 1.720 0.041 90 -1.193 0.447 90 1.134 0.384 

TOLL LIKE 
RECEPTOR 
SIGNALING 
PATHWAY 

57 1.668 0.054 57 1.366 0.296 57 1.756 0.023 

TRYPTOPHAN 
METABOLISM 

26 -2.066 0.000 26 -1.344 0.347 26 -1.128 0.616 

TYPE II 
DIBAETES 
MELLITUS 

26 -0.805 0.868 26 -1.107 0.520 26 -1.106 0.610 

TYROSINE 
METABOLISM 

23 -1.873 0.004 23 0.831 0.835 23 1.302 0.240 
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UBIQUITIN 
MEDIATED 
PROTEOLYSIS 

121 1.593 0.073 121 -0.792 0.875 121 -1.018 0.609 

VALINE LEUCINE 
AND 
ISOLECUINE 
DEGRADATION 

41 -1.697 0.019 41 -1.623 0.063 41 -1.593 0.192 

VASCULAR 
SMOOTH 
MUSCLE 
CONTRACTION 

55 1.556 0.066 55 -1.338 0.342 55 -1.012 0.595 

VASOPRESSIN 
REGULATED 
WATER 
REABSORPTION 

30 0.960 0.608 30 -1.222 0.426 30 -0.708 0.926 

VEGF 
SIGNALING 
PATHWAY 

47 1.305 0.165 47 -0.959 0.712 47 0.961 0.630 

VIBRIO 
CHOLERAE 
INFECTION 

38 1.454 0.097 38 1.052 0.564 38 1.770 0.022 

VIRAL 
MYOCARDITIS 

36 0.712 0.931 36 0.799 0.863 36 1.151 0.360 

WNT SIGNALING 
PATHWAY 

97 1.342 0.147 97 -1.203 0.448 97 -1.006 0.571 

 

This figure is regarding the data in chapter 5 
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Figure S2. SF interfering with glycolysis in the basal glucose environment. HepG2 cells 

were treated with 10 µM SF for 24 h in basal (5.5 mM). Data files were generated from Wave 

software through the Seahorse Glycolysis Stress Test Report Generator. Values were then 

imported into GraphPad Prism and a t-test between DMSO vs Sulforphane was carried out. All 

values are expressed as mean ± SEM from three biological replicates. Samples were 

normalized to protein.  

This figure is regarding the data in chapter 5 

 

Figure S3. Figure 5.6 Untargeted metabolomics reveals SF interfering with glycolysis.  

HepG2 cells were treated with 10 µM SF for 24 h in basal glucose (5.5 mM) or high glucose (25 

mM). After 24 h metabolites were extracted and quantified using GC-MS.  C) Readings from the 

pyruvate and lactate from the heatmap were extracted and plotted into a bar plot. All values are 

expressed as mean ± SD from three biological replicates. 2-ANOVA was carried as the two 

factors are the treatment and glucose levels. Pyruvate: basal glucose DMSO vs basal 

glucose SF p=0.047 and high glucose DMSO vs high glucose SF p=0.31. Lactate: basal 

glucose DMSO vs basal glucose SF p=0.017 and high glucose DMSO vs high glucose SF 

p=0.21 
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This figure is regarding the data in chapter 5 

 

Figure S4. LC-MS analysis reveals SF does not affect methionine extracellular levels. 

HepG2 cells were treated with 10 µM SF for 24 h in basal (5.5 mM) and high glucose (25 mM). 

After 24 h metabolites were extracted and quantified using the LC-MS TripleQuad 6490 Agilent 

DMSO BG vs SF BG p=0.31, DMSO BG vs DMSO HG p=0.042, and DMSO HG vs SF HG 

p=0.99.  

 

 


