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Abstract
Prediction models for clinical outcomes can greatly help clinicians with early diagno-
sis, cost-effectivemanagement and primary prevention ofmanymedical conditions. In
conventional predictionmodels, predictors are typicallymeasured at a fixed time point,
either at baseline or at other time point of interest such as biomarker values measured
at the most recent follow-up. Dynamic prediction has emerged as a more appealing
prediction technique that takes account of longitudinal history of biomarkers for mak-
ing predictions. We compared prediction performance of two well-known approaches
for dynamic prediction, namely joint modelling and landmarking, using bootstrap sim-
ulation based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data with
repeat Mini-Mental State Examination (MMSE) scores as the longitudinal biomarker
and time-to-Alzheimer’s disease (AD) as the survival outcome. We assessed the per-
formance of both approaches in terms of extended definitions of discrimination and
calibration, namely dynamic area under the receiver operating characteristic curve
(dynAUC) and expected prediction error (PE).We focused on real data-based bootstrap
simulation in an attempt to be as impartial as possible to both methods as landmarking
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is a pragmatic approach which does not specify a statistical model for the longitu-
dinal markers, and therefore any comparison based on model based data simulation
may potentially be more advantageous to joint modelling approach. The dynAUC
and PE were compared at landmarks ts = 1.0, 1.5, 2.0 and 2.5 years and within a
2-year window from the landmark time points. The optimism corrected estimates of
dynAUC for joint modelling were slightly higher (1.26, 3.22, 2.76 and 0.12% higher
at the four landmark time points) than that of landmarking approach. Apart from the
final landmark point (at 2.5 years), dynamic prediction based on joint models has also
performed slightly better in terms of calibration. The expected prediction errors (PE)
for joint models were 0.70, 2.56 and 2.04% lower at the first three landmark time
points, respectively, compared to the landmarking approach. In general, joint mod-
elling approach has performed better than the landmarking approach in terms of both
discrimination (dynAUC) and calibration (PE), although the margin of gain in perfor-
mance by using joint models over landmarking was relatively small indicating that
landmarking approach was close enough, despite not having a precise statistical model
characterising the evolution of the longitudinal markers. Future comparative studies
should consider extended versions of joint modelling and landmarking approaches
which may overcome some of the limitations of the standard methods.

Keywords Joint modelling · Landmarking · Dynamic prediction · ADNI data

Mathematics Subject Classification 60G25: Prediction theory (aspects of stochastic
processes) · 62P10: Applications of statistics to biology and medical sciences ·
62N02: Estimation in survival analysis and censored data

1 Introduction

Prediction models for clinical outcomes can greatly aid clinicians with early diagno-
sis, cost-effective management and primary prevention of many medical conditions.
Clinical prediction models typically estimate risk scores of outcome of interest based
on various factors such as age, sex, ethnicity, body mass index (BMI), smoking habit
and genetic history [1]. Awell-known example is the QRISK®risk calculator, which is
a well-established cardiovascular disease (CVD) risk assessment tool in context of the
UK population [2]. This estimates the risk of developing CVD over the next 10 years
based on current measures of age, sex, ethnicity, smoking status, cholesterol, blood
pressure levels etc. Although these prediction models have been tremendously useful
for day-to-day clinical practice, most conventional risk models make use of predictors
measured at a single time point, e.g. at baseline or at the most recent hospital visit or
follow-up [3]. Predictors measured at a single time point do not reflect the changes
in longitudinal predictor profiles and the way these changes influence the risk of an
event. This is counter-intuitive to the way health professionals assess their patients’
health states by progressively updating a prognosis based on total history of available
information. Also, conventional prediction models are not well placed in terms of
exploiting the full potential of patient level longitudinal data available from modern
electronic health records systems.
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Dynamic prediction has recently emerged as an alternative and more appealing
prediction technique that can fully utilise the longitudinal changes in prediction vari-
ables [3].Dynamic prediction in time-to-event analysis is the computation of predictive
distribution at a certainmoment in time, given the history of event(s) and covariates [4].
The predictions can be updated as additional information gets collected from further
follow-up or visits and the access to updated risks may be very useful for making
clinical decisions such as may enable clinicians to gain better understanding of the
disease dynamics, and help making most optimal decision at the specific time point.

There are two approaches that are commonly used for dynamic prediction based
on longitudinally measured biomarkers [5]. They are: (i) joint models for longitudinal
and time-to-event data [6, 7], and (ii) landmarking in time-to-event analysis [8]. The
use of joint models for dynamic prediction is based on a formal and theoretically rig-
orous statistical framework that jointly characterises the evolution of the longitudinal
biomarkers and the time-to-event processes. The predictions using correctly specified
joint models are expected to be efficient [5], although their implementation generally
is computationally demanding, and requires specialised software [9, 10], that has not
yet been incorporated within the mainstream standard statistical software packages.

The landmarking approach of dynamic prediction does not specify a formal statis-
tical model for the longitudinal markers and therefore is based on a pragmatic rather
than a formal statistical model of the joint distribution of longitudinal markers and
the time-to-event process [4, 8]. Due to not providing a model-based continuum of
the predicted longitudinal markers, landmarking approach is generally less efficient
than joint modelling, and prediction can often be somewhat biased for intermittently
observed longitudinal markers resulting from relying on last observation carried for-
ward to impute unobserved values of the longitudinal biomarkers. The method is,
however, still popular due to ease of implementation as dynamic prediction based on
landmarking can be obtained using commonly used standard statistical software.

Comparison of predictive performance of joint modelling and landmarking
approaches has been recently explored in the statistical literature. Using various
functional forms of the association structure between a longitudinal marker and time-
to-event processes, Rizopoulos et al. [1] demonstrated that prediction accuracy of the
joint model is better than the landmarking approach. Suresh et al. [11] compared joint
modelling and landmarking approaches in context of a binary longitudinalmarker (rep-
resenting an illness-death model). The paper did not lead to a conclusion of whether
prediction by one approach is more accurate than the other, but, suggests that joint
modelling is likely to perform better when the stochastic process of the longitudinal
markers can be well characterised from the available data. When this is harder (e.g. in
case of sparse longitudinal data), or if there are many longitudinal markers, prediction
by landmarking may provide a good enough approximation.

Most of the comparisons in the literature are mainly based on model based data
simulations, meaning data are simulated according to specific statistical models. This
poses no problems for predictions based on joint models as they completely specify
a data generation mechanism. However, this may be problematic for the landmarking
approach as the method does not provide a complete data generation mechanisms for
the longitudinal process. Therefore, data generated according to joint models are likely
to be more favourable to prediction using joint models than that using landmarking
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approach. To overcome this issue, and to facilitate a fairer comparison of the two
methods, we consider real data for performance comparison using bootstrap simula-
tion. We use bootstrap simulation to correct for any potential “optimism” which often
results from evaluating model performance on the same data that are used to train the
model. The main motivation for bootstrap simulation-based comparison is to ensure
that the data generation mechanism does not depend on either of the underlying sta-
tistical models, so that the comparison is impartial to predictions based on both joint
modelling and landmarking approaches.

2 Methods

2.1 Dynamic Prediction via Joint Modelling

The basic principle of joint modelling for time-to-event and longitudinal data is to
couple a survival model for the time-to-event process with a suitable model for the
longitudinal process that will account for any interdependence between the two pro-
cesses [7]. Joint modelling fully specifies the joint distribution that characterises and
links the two models for the longitudinal marker process Y (t), and the time-to-event
process T by a statistical framework involving shared parameters to model the inter-
dependence [6, 7, 12]. Using notations similar to [7], we denote the observed value
of the longitudinal marker for subject i (i = 1, . . . , n) at time point t by yi (t), and
more specifically, the observed longitudinal marker for subject i at a specific occa-
sion ti j by yi (ti j ). The observed longitudinal marker process therefore is denoted by
yi j = {

yi (ti j ), j = 1, . . . , ni
}
. The longitudinal sub-model can be written as [1],

yi (t) = μi (t) + εi (t)

= x′
i (t)β + z′i (t)bi + εi (t), (1)

where xi (t) and zi (t) are the corresponding design vectors for the fixed-effects β

and random effects bi , respectively, with bi ∼ N (0, D). The corresponding random
error terms, εi (t), are assumed to be independent of the random effects with εi (t) ∼
N (0, σ 2) and cov[(εi (t), εi (t̃)] = 0 for t̃ �= t .

To formulate the survival sub-model, we denote the true event time for the i th
subject by Ti and the corresponding observed event time by T ∗

i = min(Ti ,Ci ) where
Ci is the potential censoring time and δi = 1(Ti ≤ Ci ) is the event indicator. The
time-to-event sub-model relates μi (t) with event time Ti via

λi {t |Mi (t), wi } = lim�t↓0Pr {t < Ti ≤ t + �t |Ti > t,Mi (t), wi } /�t

= λ0(t) exp
{
γ ′wi + αμi (t)

}
, (2)

where Mi (t) = {μi (s), 0 ≤ s < t} represents the accumulated history of the true
unobserved longitudinal marker up to the time point t ,wi is a vector of baseline covari-
ates and λ0(·) is the baseline hazard function. The vector of regression coefficients
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γ represents the effects of the baseline covariates, and the parameter α quantifies the
effect of the underlying longitudinal marker.

Although the survival sub-model (2) looks similar to an extended Cox regression,
and the risk for an event at time t appears to depend only on the current value of
the longitudinal marker μi (t), the estimation of joint models depends on the whole
history of the longitudinalmarker,Mi (t). This is evident from the definition of survival
function for model (2) which can be expressed as

Si {t |Mi (t), wi } = Pr(Ti > t |Mi (t), wi )

= exp

(
−

∫ t

0
λ0(s) exp

{
γ ′wi + αμi (t)

}
ds

)
, (3)

and the fact that the survival function (3) is a part of the likelihood function for the
joint models [7].

The dynamic predictions of survival probabilities can be obtained after fitting a joint
model on a training sample Dn = {

T ∗
i , δi , wi , yi ; i = 1, . . . , n

}
. The probability of

survival of a person i at least up to a horizon, thor, given alive at ts (thor > ts) is
estimated by [7]

π̂i (thor|ts) = Pr(Ti > thor|Ti > ts,Yi (ts), wi , Dn; θ̂ ), (4)

where wi is a vector of baseline predictors, θ̂ is the vector of estimated parameters
of the joint model, and Yi (ts) = {yi (u) : 0 ≤ u < ts} is the observed accumulated
history of the longitudinal marker.

Various methods have been suggested for estimation of the parameters of the
joint model in the literature. We use the maximum likelihood approach suggested by
Rizopoulos [7], which is based on the conditional independence assumption, i.e. given
the random effects (bi ), the time-to-event process and the longitudinal marker process
are independent of each other. More precisely, this implies that the random effects
account for the covariance between the longitudinal and time-to-event processes as
well as the pairwise correlation between the repeated measurements of the longitudi-
nal marker. More detailed expressions for the likelihood function and the formula for
dynamic prediction given in Eq. (4) can be found in Rizopoulos [7].

2.2 Dynamic Prediction via Landmarking

Although joint modelling is a natural framework and one of most rigorous methods for
dynamic prediction, its implementation often involves hard computational procedures,
e.g. the likelihood construction requires numerical integration over multiple dimen-
sions, which can often be computationally intensive or even infeasible for more than
one longitudinal predictors. Dynamic prediction by landmarking is considered as a
more flexible and easier alternative. The idea of landmarking approach, introduced by
van Houwelingen [4], is to fit standard survival models on the subsample of subjects
at risk at the landmark time ts , and use this as a basis for dynamic prediction.
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Thedynamicpredictionvia landmarking canbeobtainedbypreselecting a landmark
time ts and subjects risk at ts from the original sample Dn , i.e. construct the adjusted
risk set at ts : R(ts) = {i : Ti > ts}, and then use standard survival model to predict
probability of survival up to a horizon, thor > ts . Typically, the standard Cox regression
models are used and can be written as

λi (t) = λ0(t) exp
{
γ ′wi + α ỹi (ts)

} ; ts ≤ t ≤ thor, (5)

where ỹi (ts) is the last observed value of the longitudinal marker, wi is the vector
of baseline covariates and the time origin is reset at the landmark: t − ts . Based on
the Cox regression model, the estimation of πi (thor|ts) by landmark analysis can be
obtained as

π̂ LM
i (thor|ts) = exp

[
−�̂0(thor) exp

{
γ̂ ′wi + α̂ ỹi (ts)

}]
, (6)

where �̂0(thor) is the estimate of baseline cumulative hazard. A commonly used choice
for the estimate of baseline cumulative hazard is the Breslow estimator given by

�̂0(thor) =
∑

i∈R(ts )

I (Ti ≤ thor)δi∑
l∈R(thor) exp

{
γ̂ ′wl + α̂ ỹl(ts)

} . (7)

2.3 Criteria for Comparison of Prediction Performance

As recommended for clinical prediction models [13], we assessed the performance of
both approaches for dynamic prediction in terms of discrimination and calibration.We
use their extended definitions in the context of dynamic prediction [1]. The estimation
of joint models, calculation of dynamic predictions, discrimination and calibration
were implemented using the R packages JM [9] and JMbayes [10].

2.3.1 Discrimination

Discrimination measures the ability of a prediction model to distinguish between
subjects with positive and negative outcomes (e.g. the presence and absence of demen-
tia) [13–15]. Discrimination measures for dynamic predictions are typically based on
an extended definition of the area under the receiver operating characteristic curve,
termed dynamic AUC (dynAUC). We use the definition of dynAUC based on the
principle that, at any given point, one would like a prediction tool that gives higher
predicted risk of event for subjects who are more likely to experience the event than
for subjects who are less likely to experience it [1, 16].

2.3.2 Calibration

Calibration measures the agreement between observed and predicted outcomes [17,
18]. Calibration assessment for time-to-event outcomes, typically based on compari-
son of observed Kaplan–Meier survival probabilities with average predictions across
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groups of patients, does not directly carry over to dynamic predictions from joint mod-
els as the aim and nature of predictions are different in the latter context. For dynamic
predictions from joint models, it is of interest to predict subject-specific conditional
risk of events at landmark times ts for a prediction window given survival and history
of longitudinal marker up to the landmark time ts [19]. Rizopoulos [1] proposed an
estimator of this calibration measure, termed expected prediction error (PE), which is
implemented in the R package JMbayes [10].

2.4 The ADNI Data

Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI
was launched in 2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. We used the longitudinal Mini-Mental State Examination
(MMSE) data from ADNI to conduct the bootstrap simulation study. In total 863 MCI
(mild cognitive impairment) participants aged 55–90 years at baseline were included.
The frequency and interval of follow-up visits varied over the course of the study, but
overall, participants were initially assessed every 6 months for the first two years (i.e.
at baseline, 6, 12, 18 and 24 months) and then on a yearly basis. The version of the
dataset we used has up to 12 follow-up visits and a maximum follow-up duration of
9 years. Of the 863 MCI subjects, 295 (34%) progressed to Alzheimer’s disease (AD)
during the follow-up period. The survival outcome of interest is the time to conver-
sion to AD from the MCI state, and the repeat MMSE scores are considered as the
time-varying exposure variable (or the longitudinal outcome in context the of joint
models). The analyses using both joint models and Cox regression considered several
baseline covariates including demographic (age, sex, education), behavioural (smok-
ing status, alcohol abuse), medical history (family history, body mass index (BMI),
blood pressure) and genetic marker (APOE4 genotype) for Alzheimer’s disease.

2.5 Results

TheMMSE profiles of the participants (converters and non-converters) of ADNI anal-
ysis sample are shown in Fig. 1. The plot has been stratified by the event status—the
right hand side panel shows theMMSE profiles of the participants who have converted
to AD, and the left hand side panel shows that of participants who have not developed
AD before the end of follow-up or death.

As can expected, the profile plot of MMSE scores suggests that, on average, the
participants who went on developing AD experienced deterioration of cognitive per-
formance at a much faster rate than those who did not convert to AD by the end of the
follow-up period or by the date of censoring (i.e. by the date of death or date lost to
follow-up).

The predicted survival probabilities based on Cox regression model at several given
MMSE levels are displayed in Fig. 2.

The plot of survival probabilities byMMSE levels (Fig. 2) clearly indicates that the
global cognitive performance measured by MMSE scores has a substantial impact on
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Fig. 1 MMSE profiles of the ADNI sample stratified by event status
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Fig. 2 Predicted survival probabilities based on Cox regression model

the development of AD. People with smaller MMSE scores (poorer cognitive perfor-
mance) appear more susceptible to develop AD. The evidence shown in Figs. 1 and 2
along with the statistically significant association observed (α̂ = −0.19, p < 0.001,
95%CI: −0.22 to −0.17) between the longitudinal MMSE scores and development
of AD from the estimated joint model (full results given in “Appendix”) indicate that
repeat cognitive performance measured by MMSE scale plays an important role in
predicting the risk of developing Alzheimer’s disease.

2.6 Optimism Corrected Performance Estimates

Asweexplained in Introduction section, themainmotivation of this study is to compare
performance of dynamic prediction via joint models and landmarking using bootstrap
simulation as model-based simulation of data is likely to favour predictions based on
jointmodels.Weuse bootstrap simulation to ensure that the data generationmechanism
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does not depend on either of the underlying statistical models, so that the comparison
is impartial to predictions based on both joint models and landmarking approaches. As
is typically done for evaluating predictionmodels, we compare themethods in terms of
discrimination and calibration, but using extended definitions of these criteria suitable
for dynamic predictions, namely dynAUC and PE, respectively. We generate B = 500
bootstrap samples from the ADNI sample described earlier in the methods section. A
total of 500 bootstrap replications estimated the relevant parameters with reasonably
high precision. For example, the standard deviations of the dynAUC estimates over the
500 replicates for the joint modelling and landmarking approaches were very small
(0.017 and 0.018) which were 50 and 45 folds smaller than the corresponding means,
respectively. We then use optimism corrected estimates of dynAUC and PE to account
for any potential “optimism” which often results from evaluating model performance
on the same data that are used to fit the model.

We estimated the optimism corrected dynAUC and PE by following the the algo-
rithm suggested in Steyerberg [20]. Specifically, steps for estimating dynAUC are
given below.

(a) calculate dynAUC on original data, dynAUCorig
(b) take B bootstrap samples and then calculate dynAUCb,boot; b = 1, . . . , B.
(c) calculate dynAUCb,orig; b = 1, . . . , B:

(i) by fitting models to each bootstrap sample, and
(ii) using them to calculate performance on the original data

(d) calculate the estimate of optimism:

O = (1/B)

B∑

b=1

{
dynAUCb,boot − dynAUCb,orig

}

(e) calculate the optimism corrected estimate of dynAUC as: dynAUCorig − O .

The same steps apply to calculation of optimism corrected PE.
We summarised simulation results obtained from 500 bootstrap samples from the

ADNI data in Table 1 and Fig. 3. The dynAUC and PE were compared at landmarks
ts = 1.0, 1.5, 2.0 and 2.5 and within a 2-year window from the landmark time points,
i.e. the time horizon corresponding to each landmark time point was set at thor = ts+2.
The results fromTable 1 andFig. 3 imply that the values of dynAUC for jointmodelling
approach are slightly higher than that of landmarking. In terms of discrimination
(dynAUC), the performance of joint model has been found to be 1.26, 3.22, 2.76 and
0.12% better at the four landmark time points 1.0, 1.5, 2.0 and 2.5 years, respectively.
Apart from the final landmark point (at 2.5 years), dynamic prediction based on joint
models has also performed somewhat better in terms of calibration. The expected
prediction errors (PE) for jointmodelswere 0.70, 2.56 and 2.04% lower at the first three
landmark time points 1.0, 1.5 and 2.0 years, respectively, compared to the landmarking
approach.

Overall, it appears the joint modelling approach has performed slightly better than
landmarking in terms of both discrimination and calibration in context of dynamic
prediction, although the magnitude of difference was very small.
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Fig. 3 The dynAUC and PE for joint modelling and landmarking at different landmark time points

3 Discussion and Conclusion

With the advent of richer patient level longitudinal biomarker data available from
modern electronic health records systems, dynamic risk prediction of clinical out-
comes has recently emerged as an appealing prediction technique due to its ability
to utilise the full history as well as the temporal changes in prediction variables. The
prediction is dynamic in the sense that the predicted risk can be updated as additional
information become available from further follow-up visits whichmay help healthcare
professionals making most optimal decision at the specific point in time.

In this article, we have compared prediction performance of two well-known
approaches for dynamic prediction, namely joint modelling and landmarking, of sur-
vival probabilities using bootstrap simulation. Unlike other comparative studies of
the two methods in the literature, we focused on real data-based bootstrap simulation
using the ADNI data in an attempt to be as impartial as possible to both methods. This
is motivated by the fact that while joint model is based on a proper statistical frame-
work and provides a complete data generationmechanism, landmarking is a pragmatic
approach which does not specify a statistical model for the distribution of longitudinal
markers, and therefore, any comparison based on model based data simulation may
potentially be more advantageous to joint modelling approach.

Based on optimism corrected estimates of prediction performance in terms of dis-
crimination (dynAUC) and calibration (expected prediction error, PE) in predicting
Alzheimer’s disease, in general, joint modelling approach has been found to have
performed better than the landmarking approach. Although this finding is consistent
with previous comparative studies in the literature e.g. [1], the margin of gain in per-
formance by using joint models over landmarking was relatively small (highest gains
in dynAUC and PE were 3.2% and 2.6%, respectively). Overall, the findings from
our analysis suggest that joint modelling have performed little better, but landmarking
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approach was close enough, despite not having a precise statistical model character-
ising the evolution of the longitudinal markers.

The above conclusion echoes that from another comparative study by Suresh et
al. [11] in context of a binary longitudinal marker suggesting that joint modelling is
likely to perform better when the evolution of the longitudinal markers can be well
characterised statistically. When model misspecification is a concern, prediction by
landmarking may provide a good enough approximation.

In the current work, we have considered only the standard form of joint models and
the landmarking approach. In the joint model, a quadratic function of time was used to
characterise the longitudinal MMSE scores within a linear mixed model, and for the
landmarking approach any missing MMSE scores corresponding to the time points of
interest were approximated via last observation carried forward (LOCF)which is often
considered as the main source of bias in landmarking approach. Several extensions
of landmarking have been considered in the literature which may potentially improve
prediction performance [8]. It may be sensible for future comparative studies to con-
sider extended landmarking approaches as well recent extensions of joint models [21]
which may overcome some of the limitations of standard methods.
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Appendix: Estimated Parameters of Joint Model on ADNI Data

Longitudinal Process Event Process
Number of Observations: 4366 Number of Events:

295 (34.2%)
Number of subjects: 863
Coefficients:
Longitudinal Process

Value Std.Err 2.5% 97.5% P
Intercept 27.5328 0.0014 27.41 27.65 <0.001
time -0.5252 0.0010 -0.61 -0.44 <0.001
timeˆ2 -0.0582 0.0008 -0.07 -0.04 <0.001

Event Process
Value Std.Err 2.5% 97.5% P

age 0.0071 0.0008 -0.0059 0.0188 0.296
sex 0.1986 0.0172 -0.0869 0.4599 0.124
edu -0.0055 0.0022 -0.0404 0.0305 0.759
alcohol 0.6872 0.0350 0.1175 1.2139 0.023
smoking -0.0484 0.0152 -0.2958 0.1908 0.687
sys-bp 0.0052 0.0006 -0.0021 0.0137 0.174
dia-bp -0.0070 0.0010 -0.0211 0.0074 0.349
APOE4 0.4030 0.0126 0.2244 0.5815 <0.001
famhis -0.2195 0.0113 -0.4257 -0.0112 0.044
bmi -0.0085 0.0018 -0.0350 0.0175 0.521
mmse(t) -0.1923 0.0013 -0.2175 -0.1692 <0.001
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