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Abstract

Mountainous regions such as the Himalaya are severely affected by landslides.
Strategies to manage landslide hazard often rely on statistical landslide susceptibility
models that forecast the locations of future landslides. Susceptibility models are
typically space and/or time independent. However, recent observations suggest that
several processes (i.e., earthquake preconditioning, path dependency) are capable of
imparting transient controls on landslide occurrence that invalidate the assumption
of time-independence. Consequently, it is vital to improve understanding of
processes that influence landsliding through space and time, and to assess how these

affect typical landslide susceptibility approaches.

Therefore, this thesis aims to quantify the spatiotemporal characteristics,
distributions, and preconditioning of monsoon-triggered landslides in the Nepal
Himalaya, and how these factors influence regression-based susceptibility
modelling. This aim is achieved by developing a 30-year inventory of ~12,900
monsoon-triggered landslides, which is used to: 1) assess the overall characteristics
and distributions of monsoon-triggered landsides; 2) systematically quantify
spatiotemporal variations in landslide processes and distributions, and how this
influences landslide susceptibility modelling; 3) determine empirical relationships
between monsoon-strength and landsliding to determine how earthquake
preconditioning and cloud-outburst storms transiently perturb landslide rates in
Nepal, and 4) recommend a best-practice framework for modelling landslide

susceptibility in regions impacted by spatiotemporally varying landslide processes.

Spatiotemporal variations in landslide occurrence are found to relate to permafrost
degradation, path dependency, earthquake-preconditioning, and the occurrences of
storms. Such variation significantly compromises the applicability and accuracy of
regression-based susceptibility models, with models developed from specific regions
or time slices incapable of consistently predicting other landslide data. However,
susceptibility models developed using 6-8 years of landslide data offered consistently
reliable prediction. Overall, it is recommended that typical space-time independent
regression-based susceptibility models are avoided in dynamic mountainous regions
unless developed with 6-8 years of multi-temporal landslide data and/or specific

knowledge of any spatiotemporally varying landslide processes.
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Chapter 1 Introduction, aims and study

region

1.1 Motivation

A landslide can be defined as any downslope movement of earth material (Varnes
1958). Landslides are a globally occurring natural hazard that pose significant threats
to life and sustainable development (Petley 2012). According to the Centre for
Research on the Epidemiology of Disasters (CRED), landslides account for 17% of
all fatalities due to natural hazards (Sassa & Canuti 2009), with an estimated 56,000
landslide fatalities between 2004 and 2016 (Froude & Petley 2018). These human
losses are concentrated in Asia, particularly in countries along the Himalaya Arc
(Petley 2012), with India, Nepal and China experiencing the highest proportions of
reported landslide fatalities (Kirschbaum ez al 2010). The economic impact of
landslides is also severe, with global losses due to landslides of ~$20 billion per year
(Klose et al. 2016). This cost accounts for ~10% of the 2020 total global losses due to
natural hazards (Munich RE 2021), with the highest losses focused in developed
countries such as Japan, Italy and Canada (Sidle & Ochiai 2006). Furthermore, there
is growing evidence to show that landslide occurrences and impacts are increasing
owing to rapid global development and climate change (Crozier 2010; Huggel et al.
2012; Gariano & Guzzetti 2016; McAdoo et al. 2018), highlighting the current and

future need to manage and mitigate landslide impacts.
1.2 Research problems

Effective landslide management and mitigation requires the zonation of landslide
hazard, vulnerability, and risk. Such zonation typically involves the development of
landslide susceptibility models, which forecast the likely geographic locations of
future landslides (Guzzetti et al 2006). Landslide susceptibility models can be

developed using two main approaches: 1. physically based techniques (e.g. Goetz et
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al. 2011; Park et al 2019; Wang et al. 2019), which quantify landslide susceptibility
using empirical equations, or 2. statistical approaches (e.g. Baeza & Corominas 2001;
Lee et al. 2008; Aditian et al 2018; Reichenbach et al. 2018), which quantify landslide
susceptibility based on the locations of previous landslides. However, as physically
based techniques typically require vast quantities of empirical data, statistical
approaches are often the only viable method to assess landslide susceptibility across
regional to global scales, or in data-scarce locations. Statistical landslide
susceptibility modelling is thus very common (Reichenbach et al 2018), and a
fundamental component of many forms of landslide hazard analysis, risk
assessment, land use planning and early warning systems (e.g. Fell et al 2008; van

Westen et al. 2008; Palau et al. 2020).

As outlined by Pourghasemi et al (2018) and Reichenbach et al (2018), the most
commonly used statistical approach is logistic regression, which is a classification
algorithm used to predict binary outcomes (e.g. landslide presence and absence)
based on a given set of independent covariates (e.g. landslide predisposing factors
such as elevation, slope angle, geology etc., see section 1.4.3) (Lombardo et a/. 2020).
As such, there is a clear need to ensure that regression-based modelling is conducted
as accurately and reliably as possible, and to challenge any methodological
assumptions or limitations that this approach uses. Indeed, despite the pervasiveness
and importance of regression-type modelling, as outlined in the following sections,
there are several fundamental limitations and areas of uncertainty surrounding their

use.
1.2.1 Spatial applicability

Regression-based landslide susceptibility models are commonly applied across a
range of spatial scales (Cascini 2008), from individual slope units (e.g. Alvioli et al
2016; Amato ef al. 2019) to catchments (e.g. Romer & Ferentinou 2016) to nations
(e.g. Trigila et al. 2013) and even globally (e.g. Lin et al 2017). When conducting
regression-based susceptibility modelling, regardless of the scale, the method
requires that each independent covariate (landslide predisposing factor) is assigned

a single coefficient. This implicitly assumes that the influences of landslide
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predisposing factors are spatially homogenous, with coefficient values that reflect the
average predisposing factor influence across the entire study region, despite the fact
that landslide occurrence is often heterogeneous (e.g. Van Westen et al 1999;
Chalkias et al. 2014, 2020). In the case of slope units, catchments and other local scale
study region sizes, the assumption of spatial homogeneity in landslide predisposing
factor weightings is likely valid, as landslide-landscape interactions would not be
expected to change significantly through space. As such, regression-based models
developed at these scales should be localised enough to provide accurate results (e.g.
Pradhan 2010; Romer & Ferentinou 2016). However, when study regions are large
(e.g.,> 100 - 1000 km?), this is almost certainly not the case, with significant expected
heterogeneity in landscape-landslide processes (Yang et al 2019a, b). As such, typical
regression-based susceptibility methods applied at regional scales may be unreliable
and inaccurate at the local scale (e.g. Bueechi et al 2019), where the variability
between landslide occurrence and landslide predisposing factors differs from the
regional average (Yang et al. 2019b). Dealing with this problem is challenging (see
Chapter 6), but one solution could be to use geographically weighted (i.e. more
spatially dependent) regression (Wheeler & Paez 2010), whereby predisposing factor
coefficients are taken as variables related to spatial location (e.g. Erener & Diizgiin
2010, 2012; Chalkias et al 2014, 2020; Feuillet et al 2014). However, these
approaches require significant landslide data at all locations, and as this data
condition is rarely met, studies are often forced to rely on regional scale models that
cannot necessarily reflect local scale spatial variability (Yang e al 2019b). This raises
the question of how accurately such regional scale susceptibility models can be used
as prediction tools for local scale regions and for other geographic regions, and thus
how appropriate it is to undertake regional scale susceptibility modelling without

considering spatial heterogeneity.
1.2.2 Temporal applicability

Most regression-based statistical landslide susceptibility approaches utilize the
principals of uniformitarianism, with an assumption that, for a given region and
trigger type, the spatial distributions of past landslides will be sufficiently similar to

those of future landslides so as to facilitate basic prediction (Aleotti & Chowdhury,
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1999). However, it is well described that climatic, tectonic and anthropogenic
drivers, all of which can influence landslide susceptibility, can vary significantly over
long (> 1000 year) timescales (e.g. Molnar & England 1990; Kirchner et al 2001;
Rahaman et al. 2009; Syvitski & Kettner 2011; Larsen & Montgomery 2012; Bennett
et al 2016), thus invalidating the assumption of long-term landslide time
independency (Lombardo et al. 2020). Furthermore, there is now growing evidence
to suggest that landslide occurrence cannot be assumed to be stationary over short
(e.g. annual to decadal) time periods. The following sections describe two processes
that potentially challenge short-term time-independent regression-based landslide

susceptibility modelling: path dependency and earthquake preconditioning.
1.2.2.1 Path dependency

Path dependency describes how pre-existing landslides can impart a time-dependent
legacy effect that controls the occurrence and size of new landslides (Samia et a/
2017b; Temme et al. 2020). Specifically, this legacy effect causes new landslides to
have an increased likelihood of occurring within or overlapping the boundary of a
pre-existing landslide, with overlapping landslides having larger average areas and
roundness than landslides that do not occur across pre-existing landslides (Samia et
al. 2017b). Furthermore, it has now been shown that the inclusion of time-dependent
path dependency in landslide susceptibility models can significantly improve model
performance (Samia et a/ 2018; 2020). However, the wider applicability of using path
dependency in landslide susceptibility modelling remains uncertain, as path
dependency is yet to be rigorously tested in regions outside of Italy. As such,
quantifying whether landslides exhibit path dependent behaviour in other
geomorphic regions should be considered a vital area of future research with

important implications for landslide susceptibility modelling (Samia et al. 2017b).
1.2.2.2 Farthquake preconditioning

Earthquake preconditioning describes how landscape damage induced by large
magnitude (~> M, 6.0) earthquakes can transiently increase rates of subsequent
landslide occurrence. This concept was first introduced by Parker et a/, (2015), who

observed that landslide rates in New Zealand were elevated in regions affected by
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earlier earthquakes. Specifically, they found that the probability of 1968 M, 7.1
Inangahua earthquake coseismic landslides was highest in the regions that were
coincident with areas of high shaking during the 1929 M, 7.7 Buller earthquake.
Parker et al, (2015) suggest that this decadal scale increase in landside occurrence
was caused by the non-linear accumulation of brittle hillslope damage over multiple
episodes of seismicity. Such brittle damage can accumulate at the near-surface via
the cracking and dilation of hillslope mass, as well as through seismically induced
cyclical changes in hillslope stress distributions (Petley et al. 2005; Bagde & Petros

2009; Clarke & Burbank 2011; Nara et al. 2011).

Furthermore, earthquake preconditioning has also been observed over annual
timescales. For example, the 1999 M,, 7.6 ChiChi earthquake caused a 60% decrease
in the rainfall intensity required to trigger landslides in the subsequent 1 — 7 years
(Lin et al. 2008; Chen & Hawkins 2009). This transient change caused a factor of ten
increase in rainfall-triggered landslide occurrence immediately after the earthquake,
under otherwise uniform conditions, that decreased to pre-earthquake levels over
the following 5 — 7 years (Hovius et al. 2011; Marc et al. 2015). Similarly, the 2008
M, 7.9 Wenchuan earthquake temporarily caused the antecedent rainfall thresholds
for landslide initiation to fall from 300 mm to 100 mm (Tan 1996; Tang et al. 2015;
Zhang & Zhang 2017). Earthquake preconditioning has also been tentatively
observed following the 2005 M,, 7.6 Kashmir (Pakistan) earthquake (Zhang & Zhang
2017),the 2004 M,, 6.6 Niigata (Japan) earthquake, and the 2008 M,, 6.8 Iwate (Japan)
earthquake (Marc et al 2015). Most recently, a study by Marc et al. (2019) attempted
to quantify earthquake preconditioning in the Nepal Himalaya following the 2015
M, 7.8 Gorkha earthquake. They found that post-earthquake rates of monsoon-
triggered landslides during the 2015 monsoon season were increased by a factor of 4
- 8. However, in the absence of a longer-term empirical relationship between
monsoonal strength and landsliding, they were unable to fully quantify the timescale
of this preconditioning, as it was unclear whether the landside rates in 2016 - 2018
were elevated beyond that expected from the monsoon strength (Marc et al 2019).
Furthermore, Nepal is known to have been impacted by several other large

magnitude earthquakes in the past century, with notable > M, 6.0 events in 1934,
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1988 and 2011, and it remains unclear whether these events induced any long-term

damage similar to that observed in New Zealand.

Overall, the earthquake preconditioning concept suggests that landslide occurrence
is a product of time-dependent factors relating to historic damage accumulation, as
well as time-independent predisposing factors relating to geomorphology, climate
and human activity (Parker et al 2015). However, a detailed understanding of the
magnitudes and timescales of this process remain uncertain and poorly quantified
outside of New Zealand, Taiwan and China, thus representing a clear knowledge gap
with potentially important implications for the time-independent assumptions of

landslide susceptibility in other seismogenic regions.
1.2.3 Lack of long-term landslide data

A common problem when investigating both path dependency and earthquake
preconditioning is that large-scale, long-term landslide datasets are required to fully
quantify these processes. For example, the path dependency characteristics
quantified by Samia et a/ (2017) in Italy were derived from a 60-year multi-seasonal
inventory across a 78.9 km’ region. Similarly, the earthquake preconditioning results
for Taiwan involved a landslide dataset spanning several decades, with the shorter
(sub-decadal) landslide inventory used by Marc et al (2019) for Nepal not
sufficiently long to fully isolate earthquake landslide impacts from monsoonal
impacts. Furthermore, few, if any, studies have systematically quantified how
landslide spatial distributions vary through time. As highlighted by Samia et al
(2017), this is likely because long-term landslide data are uncommon and time-
consuming to develop (Brenning 2005; Reichenbach et a/. 2018). This lack of long-
term landslide datasets highlights that there is a clear and pressing need for more
long-term, multi-temporal landslide inventories to be published to facilitate new
research into the temporal nature of landslide characteristics, distributions, and

processes.
1.3 Aims and objectives

The aim of this thesis is to quantify the spatiotemporal characteristics,

preconditioning and susceptibility of monsoon-triggered landslides in Nepal.
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Specifically, this thesis will investigate how spatial and temporal changes in landslide
characteristics, distributions, and preconditioning impacts logistic regression-type
susceptibility approaches. The reason for using the logistic regression approach is
that as this method is the most commonly used in the landslide susceptibility
literature, it is particularly vital to assess and understand the limitations of this
approach, and challenge the spatial and temporal assumptions that this methodology
employs. Indeed, throughout this thesis, a variety of commonly used methods in the
landslide literature are applied in order to assess their appropriateness and to allow
for robust and unbiased comparison between this work and other studies. This aim
will largely be achieved via the development and analysis of a new long-term, multi-
temporal landslide inventory of Asia Summer Monsoon (ASM)-triggered landslides

in central-eastern Nepal. This will involve consideration of the following objectives:

1) To develop a 30-year inventory of monsoon-triggered landslides across central-
eastern Nepal. (Chapter 2). As well as being used throughout the thesis, this
inventory will be made public to provide an important resource for local hazard

managers and the wider geohazards/geoscience community.

2) To assess the overall (space and time independent) geometries, spatial
associations, sizes, spatial distributions, and susceptibility of ASM-triggered
landslides in Nepal (Chapter 2). This will be achieved using spatial statistics and
Binary Logistic Regression (BLR)-based susceptibility modelling. Specific questions
to be answered here include: what are the geometries, sizes, and overall spatial
distributions of these landslides? How do these events compare to other rainfall-
triggered and coseismic inventories for Nepal? What insights do these analyses
provide into landslide processes in the Himalaya and other similar geomorphic

regions?

The results from 1) and 2) are based solely on remotely sensed data with limited
consideration of potential heterogeneity across space and time. As such, objectives
3) - 5) expand upon the results of 2) using additional field data and further analysis

to investigate whether the characteristics and susceptibility of ASM-triggered
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landslides in Nepal are influenced by any spatially and/or temporally dependent

processes.

3) To use additional field data from two sub-regions with distinctly different
landscapes (Langtang Valley and the Arniko Highway) to provide further insight
into how landslide characteristics, processes and distributions vary through space
(Chapter 3). These field data will be used alongside a previously published regional
inventory of coseismic landslides (Roback ef al 2018) to assess how spatial
heterogeneity impacts BLR-type landslide susceptibility modelling. This will answer
questions such as: how well can susceptibility models developed from one region be
used to forecast or hindcast the other; how well do regional models forecast or
hindcast local regions; and thus, is it appropriate to undertake regional scale

susceptibility modelling without considering spatial heterogeneity?

Furthermore, as outlined in section 1.4.3, knowing what types of landslide have been
used to train a susceptibility model is vital for ensuring that any model outputs are
used appropriately and effectively for hazard management. As such, Chapter 3 also
provides detailed field-based qualitative descriptions of the types of landslide
included in both the remotely sensed and field derived landslide inventories used
throughout this thesis before discussing the implications of this for the use and

interpretation of the developed landslide susceptibility maps.

4) To quantify how ASM-triggered landslide processes and occurrence varies
through time (Chapter 4). Specific questions to answer here include: is landslide path
dependency occurring in Nepal and, if so, what are the characteristics of this process?
Do ASM-triggered landslide spatial distributions vary significantly through time,
particularly in response to extreme events? What are the impacts of any observed
temporal variation on the forecasting (or hindcasting) power of BLR susceptibility
modelling? Finally, if BLR modelling is impacted by temporal heterogeneity, can the
choice of landslide data used to train a model (i.e., event vs historical inventories)

influence the accuracy and consistency of susceptibility modelling?

5) To investigate how the rates and drivers of landsliding in the Himalaya vary

through time (Chapter 5). Specifically, by quantifying an empirical relationship
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between ASM-strength and landsliding, the relative landslide impacts of the ASM,
extreme rainfall, and earthquake preconditioning can be isolated and quantified.
This should allow identification of whether earthquake preconditioning is occurring
in the Himalaya and, if so, provide novel insight into its timescales, magnitudes, and

causes.

6) To discuss the overall results and implications of 1) - 5), alongside further
literature, in the context of the applicability of regression type landslide susceptibility
models (Chapter 6). Specifically, this will consider how spatial and temporal
heterogeneity impacts the use of logistic regression-type models, outline potential
solutions to reducing these impacts, and provide a framework to aid practitioners in
optimising their approach to landslide susceptibility in regions impacted by spatially

and temporally heterogeneous processes.

Completion of these objectives will provide novel information on landslide processes
in mountainous terrain and allow for a detailed evaluation of the major spatial and
temporal limitations of regression-based susceptibility modelling approaches. As
well as facilitating the improvement and advancement of landslide susceptibility
modelling in a country that (as described in section 1.4) is severely impacted by
landslides, this research will provide insight and practical suggestions to aid the
wider application and development of landslide susceptibility models in dynamic

mountainous regions.
1.4 Study region

The study region for this thesis is a ~45,000 km? portion of the central-eastern Nepal
Himalaya (Fig. 1.1). The following sections outline why this region has been selected,
followed by descriptions of its tectonic, geological, geomorphological and landslide

setting.
1.4.1 Why Nepal?

There are a number of reasons for selecting Nepal as the study area. First, Nepal is
severely impacted by landslides from a socio-economic perspective, with ~78

fatalities per year (Petley et a/ 2007) and landslide induced economic losses of ~$12
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Figure 1.1. Location of the study region.

million between 1971 and 2017 (Adhikari & Adhikary 2019; Shrestha 2019). As such,
an increased understanding of landslide processes and susceptibility in Nepal has the
potential to translate into policy and management strategies with highly tangible
benefits to local communities. Second, for the reasons outlined in section 1.4.3,
landslides in Nepal are extremely pervasive, with multiple landslide trigger events
occurring annually, including the Asia Summer Monsoon (ASM), storms, floods and
earthquakes (e.g. Dhital 2003; Cook et a/. 2018; Roback et al 2018; Marc et al. 2019).
It is thus an ideal location for a project with aims and objectives that relate to a
number of different processes. Indeed, a major objective of this project is to develop
a long-time series of multi-temporal landslide data. Nepal facilitates the
development of such an inventory, as it is annually impacted by the ASM from May

to September.

The specific region of central-eastern Nepal was selected for much of the same
reasoning as for selecting Nepal as a country. This region encompassed areas known
to have been impacted by specific events such as the Gorkha earthquake (Martha et
al. 2017; Roback et al. 2018), earlier earthquakes in 1934, 1988 and 2011 (USGS
2018b, a, d), outburst storms in 1993 and 2002 (Dhital 2003; Petley et a/. 2007), and
is well documented to be significantly affected by the Asia Summer Monsoon (Marc

et al. 2019). Indeed, specific catchments within this study region such as the Bhote
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Kosi have widely reported landslide impacts and vulnerabilities (e.g. Regmi et al.
2017; Tanoli et al 2017), making this a region that is particularly in need of an
improved understanding of landslide hazard and process. Furthermore, central-
eastern Nepal has a higher population and infrastructure density than western and
far-western Nepal, so has a generally higher vulnerability to landsliding and a need

for improved landslide hazard management and mitigation.

Finally, it should be noted that a small portion of China was initially included in the
study region (Fig 1.1). This was included to obtain a greater coverage of the Greater
and Tethyan Himalayas (see section 1.4.1), as most of Nepal occurs within the Lesser
and Sub Himalayas. However, as discussed in Chapter 2, no landslides ended up
being mapped in this region due to cloud and snow cover, so the Chinese portion of

the study region is often not included in later figures and/or analysis.

Consequently, it is a good region for conducting analysis that requires long-term
landslide data, such as characterising path dependency and quantifying temporal
variations in landslide spatial distributions. Third, as described below, the selected
study region is highly spatially heterogeneous in terms of its geology and
geomorphology, making it ideal for investigating how landslide processes vary across
diverse landscapes. Fourth, the seismogenic nature of Nepal make it well-placed to
study earthquake preconditioning over multiple timescales, which is a key aspect of
this project. Indeed, Nepal has been impacted by four large magnitude (> M, 6.0)
earthquakes over the past century, with events in 1934, 1988, 2011 and 2015 (USGS
2018a, b, ¢, d) Finally, as described in section 1.2.2, the Himalaya is a region that
remains understudied in relation to key processes such as path dependency and
earthquake preconditioning, so quantifying the characteristics of these processes in
this region will provide novel results that should further our understanding of how

these processes vary in different geological settings.
1.4.2 Tectonic, geological, and geomorphological setting

The Nepal Himalaya can be subdivided into four main tectonic units: the Tethyan
Himalaya; the Greater Himalaya; the Lesser Himalaya, and the Sub Himalaya (Fig

1.2). These units formed as a direct result of the Tibet-Himalaya orogeny that
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Figure 1.2. Nepal tectonic units and elevation profile, after DeCelles et al. (2004).

initiated at 40 — 65 Ma when the Indian plate began to collide with the Eurasian plate
(Yin & Harrison 2000; Yin 2006; Najman et al. 2010; Leech et a/. 2005). These units
are lithologically and geomorphologically distinct, which as described in section

1.4.3, leads to the occurrence of a variety of landslide predisposing factors.
1.4.2.1 Tethyan Himalaya

The Tethyan Himalaya is a 50 — 25 Ma fold-thrust belt composed of Proterozoic
(~1804 Ma) to late Eocene (~40 Ma) siliciclastic and carbonate rocks and widespread
outcrops of Cambrian granitic core complexes (DeCelles et al. 1998; Liu & Einsele
1999). These rocks compose the main Tethyan Himalaya Sequence (THS) (DeCelles
et al. 1998), which has a combined stratigraphic thickness of ~ 10 km and an along-
Himalaya-strike width of ~ 200 km (Robinson et al. 2001). The Tethyan Himalaya
is bound by the Indus-Yarlung suture zone to the north, which marks the initial
collision of India and Tibet, and the South Tibetan Detachment system (STD) to the
south. The STD is a system of low angle north-dipping normal faults that are thought
to be associated with the northward gravitational collapse of the THS alonga 15 - 30°
dipping lithological interface (Burg & Chen 1984; DeCelles et al 1998). The STD
places the late Cambrian to Lower Ordovician high-grade rocks of the THS above
the lower-grade rocks of the Greater Himalayan Complex (GHC) (Royden &

Burchfiel 1987). The STD is thought to have been active between 23-18 Ma (Hodges
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et al. 1996), although it may have been dynamic as early as 15-13 Ma (Godin et al.

2001), and is now a series of low-angle north-dipping faults.

Topographically, the Tethyan Himalaya extend northward from the high peaks of
the Himalaya, with average elevations of 5000 m (Lavé & Avouac 2001) and average
hillslope angles of 30 — 35°. Due to these high elevations, much of the Tethyan
Himalaya are impacted by glacial and paraglacial processes, with diverse landforms
such as active glaciers, moraines, alluvial fans, braided rivers, rock avalanches,
debris-flows, and sediment-mantled slopes. The processes of glacial erosion and
moraine / lake formation have largely obscured the geomorphic record of river
incision, with the main rivers transecting the Tethyan Himalaya cutting narrow and

steep N-S gorges (Lavé & Avouac 2001).
1.4.2.2 Greater Himalaya

The Greater Himalaya is composed of low to high-grade Neoproterozoic (~1800 Ma)
to Ordovician (~480 Ma) rocks that form an almost continuous belt along the strike
of the Himalaya (Parrish & Hodges 1996; DeCelles et al 2000). These rocks include
low-grade Precambrian to Palaeozoic paragneiss, orthogneiss, amphibolite, schist,
marble and metavolcanic protoliths (DeCelles et al 1998; Robinson et al 2001).
These rocks are often referred to as the Greater Himalayan Complex (GHC) and also
include outcrops of Miocene leucogranites in the upper portion of the sequence
(Searle et al. 1997). The Greater Himalaya is bound by the STD to the north and the
Main Central Thrust (MCT) to the south. The MCT was the main accommodator of
plate convergence from the early - middle Miocene (20 - 25 Ma) to the late Miocene
(12-10 Ma) (LeFort 1975; Coleman 1998; Godin et a/ 2001). However, it is widely
accepted that the MCT briefly reactivated from 5 - 3 Ma, causing further folding
(Schelling & Arita 1991; Catlos ef al. 2001; Takagi et al 2003; Vannay ef al. 2004).
The MCT currently exists as a 2 — 10 km deep shear zone (MacFarlane et al. 1992)
with a flat - ramp - flat geometry dipping at 30 — 60° north (Decelles et a/ 2001).
The MCT has displaced the Greater Himalaya southward relative to India,

juxtaposing the GHC against the sequences of the Lesser Himalaya.
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Geomorphologically, the Greater Himalaya extend from the northern boundary of
the Mahabharat Mountains to the southern boundary of the Tibetan plateau. The
elevations south of the Mahabharat Mountains initially decrease to 2000 m, before
increasing in a step-wise manner to peak elevations that exceed 7000 m (Lavé &
Avouac 2001). This higher region is characterised by a dense network of steeply
incised valleys and ridges, with average hillslope angles of ~35 °. There is a general
absence of preserved terrace levels in the Greater Himalaya, and a lack of space for
terraces to form, which is consistent with the expected high incision rates (Lavé &
Avouac 2001). Furthermore, hillslopes in this region are considered to be near the
critical slopes angles for mass movement, with a topography that largely evolves via

bedrock landsliding driven by fluvial incision (Burbank et al. 2012).
1.4.2.3 Lesser Himalaya

The Lesser Himalayan Zone (LHZ) is composed of Proterozoic (~1870 Ma) to
Palaeocene (~ 68 Ma) metasedimentary, metavolcanic and sedimentary rocks (Frank
et al. 1995; Upreti 1999). The LHZ sequences can be subdivided into two main
portions. The lower portion is composed of Proterozoic to Permian low-grade
metasedimentary, metavolcanic and sedimentary rocks that form a large hinterland
dipping duplex, and the upper portion is composed of Permian to Palacocene
metasedimentary and sedimentary rocks (DeCelles et a/. 1998). This sequence has a
total stratigraphic thickness of ~ 10 km, and is bounded by the MCT to the north
and the Main Boundary Thrust (MBT) to the south (Robinson ez a/ 2001). The MCT
places Precambrian — Cambrian medium-grade metasedimentary, metaplutonic,
and metavolcanic rocks over the upper portion of the LHZ. The MBT began to
accommodate convergence in 12 — 10 Ma, and juxtaposes the metasedimentary rocks
of the Lesser Himalaya in the northern hanging wall against the unmetamorphosed

Neogene foreland basin deposits of the Sub Himalaya in the footwall (Yin 2006).

Topographically, the Lesser Himalaya range from the northern boundary of the
Siwalik Hills to the northern boundary of the Mahabharat Mountains. This
encapsulates an elevation range of 1000 — 3500 m, with average elevations within the

Mahabharat Mountains of 2500 - 3500 m (Lavé & Avouac 2001). The Lesser
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Himalaya have prominent fill terraces that were deposited during the late Pleistocene

and subsequently incised (Lavé & Avouac 2001).
1.4.2.4 Sub Himalaya

The Sub Himalaya can be divided into the Siwalik Hills and the plains of the active
Indo-Gangetic Himalayan foreland basin. The Sub Himalaya are bound by the MBT
to the north and the Main Frontal Thrust to the south (MFT). The MFT began
accommodating convergence in the Late Pliocene, with continued uplift throughout
the Neogene and Quaternary resulting in significant erosion and deposition of
Himalayan sediments onto the Himalayan foreland basin (Yin 2006). This formed
the Siwalik Group, a geological unit composed of Neogene sediments that have a
stratigraphic thickness of 3.5 - 5.5 km (Robinson et a/ 2001) and are currently being
uplifted by the active MFT at ~6.9 £ mm/yr (Wesnousky et al., 1999; Avouac, 2003).
This uplift is juxtaposing the Siwalik Group against the overlying Quaternary
sediments of the active Himalayan foreland basin, which have been eroded from the

Himalayan orogeny and Indian Peninsula highlands (DeCelles ez a/ 1998; Yin 2006).

The geomorphology of the Sub Himalaya is highly dichotomous, with the lowlands
of the Indo-Gangetic Plain having elevations of just 0 — 50 m, and the Siwalik Hills
having elevations of 500 — 1000 m. The morphology of the Siwalik hills is dominated
by rows of gentle hills separated by narrow elongated piggyback basins (Lavé &
Avouac 2001). Fluvial terraces are pervasive across the Sub Himalaya. In the Indo-
Gangetic plains, aggrading alluvial systems are generally not incising into the
bedrock, however, along the MFT, incision is more intense as rivers compensate for

active thrusting and faulting (Lavé & Avouac 2001).
1.4.3 Landslide setting

Landslides occur due to the interplay between predisposing (or controlling) factors
that condition landscape susceptibility to failure, and the trigger events that actually
initiate failure. Landslides in Nepal vary greatly in type and scale, from entire
hillslope-scale failures, to minor rock falls and slumps, to debris flows and avalanches
(Fig. 1.3) (Shroder & Bishop 1998; Jones et al 2020). This heterogeneity in landslide

type and characteristics is a direct result of the varying predisposing factors and
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Figure 1.3. Schematic diagrams of the typical landslide types found in Nepal (USGS 2004a).
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trigger events that occur across the region. In the context of landslide susceptibility
modelling and associated hazard management, understanding landslide type is vital
for a number of reasons. First, if the final purpose of a susceptibility model/map is to
inform hazard management, then knowing what types of landslide were used to train
a susceptibility model is a fundamental requirement. For example, if a given
susceptibility model identifies a region of very high landslide susceptibility, then
hazard mangers may decide to install some form of mitigation strategy in that region.
However, the appropriate mitigation strategy will depend strongly on the type of
landslide that the region is susceptible too (i.e., what landslide types the model was
trained on). For example, the hazard management response to a model trained on
predominantly debris flow type landslides would likely be very different to the
response to a model trained on predominantly rockfall type landslides, so it is vital
that all susceptibility models have clear information on landslide type. Second, from
a geomorphological-understanding perspective, to correctly interpret the physical
meanings of susceptibility model outputs (e.g., regression coefficients) it is necessary
to have the context of landslide type. For example, certain topographic, geological,
or land use characteristics may be predisposed to rockfalls (e.g., steep cliffs, hard
bedrock, no vegetation), whilst other landscape characteristics may favour the
development of flows or slides. As such, subsequent chapters describe and discuss
not just the characteristics and distributions of the various landslide inventories
produced and used across this thesis, but also provide qualitative descriptions of the
types of landslides observed across the study region (see Chapter 3). To provide
appropriate context for these descriptions and results, the following section describes
the main predisposing and triggering factors that are likely to be influencing

landslide occurrence and type in Nepal.
1.4.3.1 Landslide predisposing factors

As outlined in section 1.4.2, the study region is heterogeneous in terms of its geology
and geomorphology. Consequently, this section will outline some of the key
predisposing factors that may be impacting landslides across the study region, and

that are analysed in later chapters (e.g. Chapter 2, sections 2.3.2, 2.4.4, and 2.6.4).
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Landscape topography can have major impacts on slope stability, with factors such
as elevation, hillslope angle and local relief commonly found to influence landslide
susceptibility (Reichenbach et al 2018). Indeed, elevation is known to have a strong
influence on orographic precipitation, with precipitation rates observed to increase
with altitude, thus causing higher elevation hillslopes to become saturated more
quickly relative to lower elevation hillslopes (Carrara et al 1978; Gallart & Clotet
1988; Bai et al 2014). Likewise, local relief, which is the variation in height over a
local area (e.g. the difference in height between the highest and lowest points within
a given locality), can control both orographic precipitation and set the limits on
maximum potential landslide runout and size (Valagussa et al 2019; Medwedeff et
al. 2020). Hillslope angle can also affect slope stability by controlling the rates and
directivity of overland flow, groundwater flow, percolation and saturation (Sidle &
Bogaard 2016), whilst also influencing downslope material-transport processes
(Roering et al. 1999). Furthermore, the distributions of hillslope angles in active
mountain regions suggests that landscapes have a critical threshold gradient at which
the likelihood of hillslope failure increases rapidly due to limitations in material
strength (Korup et al 2007). This defines the concept of excess topography, which is
a measure of rock volume above a landscapes critical threshold angle (Blothe et al.
2015), and thus a potential predisposing factor for describing portions of a landscape
with enhanced slope instability. As described in section 1.4.2, the different tectonic
units that comprise the study region vary significantly in terms of these topographic
factors, so understanding how the influences of these factors vary across the study

region will be a key focus of subsequent analysis (e.g. Chapter 2, section 2.7.2).

Other topographical controlling factors likely to be affecting landslides in the study
region are hillslope curvature, which is the second derivative of hillslope surface, and
hillslope aspect, which is the orientation of a hillslope surface. Hillslope curvature
can be considered in both profile and planform, where profile classifies curvature
parallel to the direction of steepest descent, and planform classifies curvature
perpendicular to the direction of steepest descent. Curvatures can be defined as slope
transitions that are concave, convex, or planar in form. Curvature influences

hillslope stability through its control on flow velocities draining across a landscape

41



surface (Kayastha 2012). A concave hillslope in both directions causes the downslope
focusing and convergence of surface and groundwater flows, resulting in an increase
in pore water pressure that creates conditions sensitive to failure (Chang et al. 2007).
Similarly, concave curvatures will focus the transport of material, potentially causing
greater accumulations of loose unconsolidated material that is more readily induced

to fail (Ohlmacher 2007).

The influence of hillslope aspect on slope stability is predominantly due to its control
on the variable exposure of hillslopes to sunlight (and thus temperature), wind and
precipitation (Rech et al 2001). This variable exposure controls the relative intensity
of rock breakdown via physical and chemical weathering, and thus the availability of
loose unconsolidated material (McFadden et al 2005; Meunier et al. 2008; Parker et
al. 2017). This impact on material properties will also affect vegetation cover and
land use, which as described later, will potentially affect soil strength and infiltration
rates (Wieczorek 1996). Furthermore, due to the directivity of rainfall, hillslope
aspect also controls which hillslopes get most rainfall during a given storm, thus
affecting subsurface moisture content and retention rates (Baeza & Corominas
2001). Hillslope aspect also impacts the triggering of coseismic landslides, as seismic
directivity causes wave amplification on hillslopes oriented perpendicularly to the
fault plane (Tibaldi et a/ 1995). Similarly, oblique seismic waves crossing hillslope
ridges can be asymmetrically amplified, causing hillslopes oriented away from the
direction of seismic wave propagation to be more greatly affected (Meunier et al

2008).

Another major landslide controlling factor is bedrock geology, which controls
fundamental hillslope strength. Generally, less indurated sedimentary rocks, such as
those in the Sub-Himalaya, are more susceptible to failure relative to highly
indurated igneous and metamorphic rocks such as those found in the Greater and
Tethyan Himalaya (Keefer 2002). This is because less indurated rocks will be more
fractured and porous, and thus allow greater rates of infiltration and permeation.
Similarly, structural features such as active and dormant faults allow increased
infiltration of groundwater, which can lead to weakening through geochemical

alteration (Warr & Cox 2001). Active fault structures can also increase susceptibility
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to landsliding through the reduction in rock-strength caused by past earthquakes

(Brune 2001; Kellogg 2001).

Hydrological factors can also play an important role in predisposing hillslope
stability. For example, stream networks with high Specific Stream Power (SSP) or
normalised steepness index (see Chapter 2, section 2.3.2.2 for details on these
factors), such as the channels in the Greater and Lesser Himalaya, will have higher
rates of incision and erosions. As such, landslides will have a higher percentage
likelihood of occurring in these locations due to fluvial undercutting of hillslopes

that increases shear stresses and removes lateral support (Korup 2004).

Another key set of landslide controlling factors are anthropogenic factors such as
land use change and road building, both of which can increase landscape
susceptibility to landsliding by disturbing the fragile hillslope equilibrium often
reached by long-term natural processes (Zhang & Liu 2010). For example, the
steepening, heightening, loading or undercutting of hillslopes, all of which occur
during road construction, can reduce the shear strength and increase the shear
stresses acting on a hillslope (Alexander 1992). This is likely a major problem in
Nepal, which has observed significant increases in road construction over the past
few decades (McAdoo et al. 2018). Likewise, anthropogenic activities relating to land
use, agriculture, and drainage can also influence landslide occurrence (Glade 2003).
For example, poorly designed and managed drainage, irrigation and cultivation
systems can increase infiltration rates and reduce soil cohesion, thus increasing poor
water pressures whilst reducing regolith shear strength (Alexander 1992). Irrigation
systems have also been observed to cause liquefaction-induced slope failure during
earthquakes (e.g. Watkinson & Hall 2019). Another major land use related process
that influences landsliding is deforestation. The roots of larger vegetation types can
reinforce hillslopes, whilst deep-rooted transpiration can increase stability through
the removal of water and subsequent reduction in poor water pressure (Sidle &
Bogaard 2016). As with road construction, these issues relating to irrigation and
cultivation are likely to be an issue across Nepal, with the country experiencing a
widespread and continued rise in the area of land dedicated to cropland (Paudel et

al 2016).
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Finally, as the study region includes hillslopes at high elevations, the presence of
permanent, transient, or degrading permafrost could also predispose landscapes to
failure. For example, the presence of permafrost can increase hillslope sheer strength
via ice-bonding between fractures (Mccoll 2012). Conversely, degrading permafrost
can reduce shear strength through the removal of ice-bonding and frost-cracking
processes (Matsuoka & Murton 2008), and has been linked to several landslide events

in other regions (e.g. Fischer et al 2012; Hilger et al. 2018).
1.4.3.2 Precipitation-triggered landslides

Precipitation is the most common trigger of landslides in Nepal (Upreti & Dhital
1996). The main precipitation event to impact the study region is the Asia Summer
Monsoon (ASM), though less frequent, but higher magnitude, cloud outburst storms
have also been recorded (Dhital 2003; Petley et al. 2007). Indeed, annual rainfall in
Nepal ranges from 1500 - 2500 mm/yr (Chalise & Khanal 2001), of which over 80%
falls during the monsoonal months of May/June — September (Dahal & Hasegawa
2008). However, the monsoonal precipitation is spatially heterogeneous, with
average precipitation rates of up to 160 mm in northwest Nepal compared with up
to 5500 mm in parts of central Nepal (Dahal & Hasegawa 2008). The Nepal monsoon
season is particularly prone to causing landslides, as much of the total rainfall is
deposited during short, intense periods. For example, up to 10% of the total yearly
monsoonal rainfall has been observed to fall in a single day, whilst 50% has been
observed to fall within periods as short as 10 days (Alford 1992). Furthermore,
rainfall in the Himalaya is strongly controlled by orographic effects. Consequently,
northern central Nepal, where the topography is extreme and elevations rise rapidly,
has the highest mean values of annual and 24-hour rainfall (Dahal & Hasegawa

2008).

Despite the pervasiveness of precipitation-triggered landslides, there has been
relatively little research into rainfall thresholds for Nepal. One of the earliest studies
was by Caine & Mool (1982) in the Kolpu Khola catchment of central Nepal. They
found that the daily rainfall threshold required for failure was 100 mm and that

landslide frequencies at this threshold increased into the monsoon season,

44



presumably due to higher groundwater levels and saturation. Further research was
completed by Dahal et al (2006) who found that debris flows and slides were
triggered when the 24 hr cumulative rainfall exceeded 260 mm, but that shallower
flows could be triggered by cumulative rainfall as low as 230 mm over the same time
period. Similarly, Khanal & Watanabe (2005) found that landslides in the Syangja
district of western Nepal occurred when daily rainfall exceeded 230 mm. Gabet et al.
(2004) found that, for the Khudi catchment of central Nepal (Annapurna Range),
cumulative rainfall must exceed 528 mm, plus a minimum daily rainfall of at least 9
mm. More recently, Dahal & Hasegawa (2008) attempted to calculate the empirical
relationships between rainfall intensity, duration and landsliding using 193 landslide
events that occurred between 1951 and 2006. They found that for durations < 10
hours, rainfall intensity of 12 mm/hr is necessary to trigger landslides, whilst an
average of < 2 mm/hr is sufficient if durations exceed 100 hours. Furthermore, they
found that intensities of < 1 mm/hr can trigger landslides if maintained for over a

month, which is common during the monsoon season.

Precipitation-triggered landslides in the study region tend to be small (< 1000 m?),
shallow (0.5 - 2 m thick) rock falls and slides (e.g. Fig. 1.3 a - ¢; USGS 2004) (Thapa
& Dhital 2000; Khanal & Watanabe 2005). These smaller failures are typically caused
by abrupt increases in pore water pressure along the soil-bedrock contact due to
short duration, high intensity rainfall. However, larger landslides can also be
triggered by rainfall. For example, multiple debris flows (e.g. Fig. 1.3f) were reported
following a severe outburst storm in 1993 (Thapa & Dhital 2000; Dhital 2003).
Likewise, larger landslides caused by progressive failure across multiple rainfall
cycles are also observed. An example of such a large-scale progressive failure is the
2014 Jure landslide that occurred along the Arniko Highway, ~80 km east of
Kathmandu (Fig. 1.4). This was one of the single most deadly landslides in Nepal’s
history, causing 156 fatalities and destroying dozens of buildings (Van Der Geest &
Schindler 2016). This landslide also dammed the Sunkoshi River, which was
breached 37 days later, causing severe flooding to areas more than 30 km
downstream (Shrestha & Nakagawa 2016). The Jure landslide occurred on the 2™

August (mid monsoon season), with a total width of 900 m wide, a height of 1500, a
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Figure 1.4. Jure landslide example: a) photograph showing the landslide scar and upper
deposits taken in April 2018. b) aerial view of the landslide from 0.3 m ESRI/Maxar

Imagery. ¢) approximate location of the Jure landslide within Nepal.

maximum depth of 200 m and a volume of ~6 x10° m’ (Yagi et a/. 2020) (Fig. 1.4b).
However, despite failing catastrophically in 2014 following several days of rainfall
totalling 140 mm, this event was not just attributable to the 2014 monsoon season,

but a result of progressive slope deformation since 2004 (Yagi et al 2020).
1.4.3.3 Coseismic landslides

Coseismic landslides in the study region are also common owing to Nepal’s
seismogenic setting. As outlined in section 1.4.2, Nepal is located across a region that
is actively accommodating the convergence between the Indian and Eurasian plates.
As such, large magnitude, shallow and deep-seated, strike-slip and megathrust
earthquakes are common (Mukul ef al 2014; Elliott et al 2016). Such large
magnitude earthquakes are well described to be major triggers of landslides, as strong

46



ground motion accelerations alter hillslope equilibrium and cause landscape sheer
strengths to be temporarily exceeded (Newmark 1965; Von Specht et al 2019).
Indeed, landslide densities have also been shown to broadly scale with peak ground
acceleration (PGA). For example, Hovius ef al (2011) and Meunier et al. (2008)
found that landslides triggered by the Northridge, Chi Chi, Chuetsu and Iwate-
Miyagi earthquakes correlate with changes in PGA. Similarly Dai e a/. (2011) found
that for the 2008 Wenchuan earthquake, landslide point density values increased
with PGA, reaching a maximum at 1.0 — 1.2 g, whilst landslide area density values

reached a peak at 0.8 - 1.0 g.

The most recent example of a major landslide-triggering earthquake in the study
region was the April 2015 M,, 7.8 Gorkha earthquake that triggered 24,915 landslides
covering a total area of over 87 km* with an estimated total volume of 0.12 - 1.1 km’
(Roback et al 2018) (Fig. 1.5). Of these landslides, ~75% were rockfalls or topples
(e.g. Fig. 1.3 ¢ — d) with areas < 1000 m* (Tiwari et al 2017), though some debris
flows and debris avalanches were also reported (e.g. Fig. 1.3 e - f) (Jones et al. 2020).
In terms of the overall sizes of the Gorkha coseismic landslides, as described in
Chapter 2 (section 2.4.3), landslide area-frequency distributions can be described
using power-law scaling exponents (e.g. Guzzetti ef a/ 2002; Malamud et al. 2004).
The Gorkha coseismic landslides had a power-law scaling exponent of
approximately -2.5 (Roback et al 2018), a value that is slightly higher than the
exponents calculated for similar earthquake events such as Northridge, California (-
2.39), Chi Chi, Taiwan (-2.3) and Wenchuan, China (-2.19) (Frattini & Crosta 2013).
This suggests that the Gorkha earthquake triggered relatively few large area
landslides, a suggestion that is corroborated by field observations (Collins & Jibson
2015; Roback et al 2018). As expected, the largest failures were typically found to

occur within the fault rupture zone where PGA was greatest (Tiwari et al. 2017).

The controls on the spatial distributions of the Gorkha coseismic landslides have also
been comprehensively assessed (e.g. Martha et al 2017; Roback et al 2018).
Landslide densities were found to increase from E-W, most likely as a result of fault
rupture directivity, and from the Lesser to Greater Himalaya, most likely due to the

greater pervasiveness of steep slopes and higher mean annual rainfall. Coseismic
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Figure 1.5. Locations of the Gorkha 2015 coseismic landslides mapped by Roback et al.
(2018).

landslide densities were also generally greatest within crystalline bedrock sequences,
though there are no clear reported relationships with any individual lithological
units. Overall, the analysis by Roback et a/. (2018) suggests that there was no single
clear control on landslide occurrence, but that it was instead a combination of
proximity to the deepest part of the fault rupture, steep slopes (> 40°) and high mean
annual precipitation (> 1500 mm). The 2015 coseismic landslides were also found to
have very high levels of river channel connectivity, with over 50% of landslide debris
deposited directly into stream channels. Connectivity was found to be highest for
larger landslides in the Higher Himalaya, whilst the largest area failures were found

to have the longest runout distances.
1.4.3.4 Current status of landslide hazard management in Nepal

Before 2015, landslide hazard management in Nepal was largely undertaken
according to the relatively outdated Natural Disaster Relief Act (1982) and the 2009
National strategy for Disaster Risk Management (Gaire et al 2015). This saw
landslide risk being managed across a multitude of technical departments and
government ministries, with little communication with local governments,

insufficient resources and expertise (e.g., lacking updated susceptibility maps), and
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thus a very ad hoc, reactive, approach to landslide hazard management (Oven et al.

2021).

Since 2015, the Nepal Government initiated a more proactive approach to landslide
hazard, with the Department of Geology and Mines undertaking detailed geohazard
assessments across 455 locations in 15 districts using technical support from the
United Nations Office for Project Services (UNOPS) and the National
Reconstruction Authority (Oven et al 2021). This assessment classified local regions
into three groups, Category 1 (safe), Category 2 (at risk) and Category 3 (unsafe), for
the purposes of post-earthquake reconstruction and preparedness planning.
However, this classification has been criticised as being too ‘static’ and not properly
considering the evolving nature of landslide hazard (Kincey et al 2021; Oven et al.
2021). It also remains unclear the degree to which landslide susceptibility maps are
being used across the country. During a visit to Nepal in April 2018, the Department
of Geology and Mines was visited to see what susceptibility resources they had
available. It was evident that they had very few maps available, with those that were
available seemingly based on outdated landslide inventories. This suggests that the
various literature publications on updated landslide susceptibility across Nepal have
not permeated through to use within the relevant government ministries. One reason
for this could be due to limited technical resources and capacity. It was unclear
during our visit exactly what technical resources were available to the relevant
stakeholders, or whether they had the expertise to develop the types of susceptibility
model typically presented in the literature. Overall, it is therefore evident that
improved susceptibility maps (particularly those that are not time independent)
could be used to assist current strategies used to implement landslide management
planning and preparedness, though with the caveat that undertaking this could be

limited by technical resources and capacity.
1.5 Conclusion

Overall, this thesis aims to investigate the spatiotemporal characteristics,
preconditioning and susceptibility of monsoon-triggered landslides in Nepal.

Chapter 2 will describe the methodologies used to obtain the ASM-triggered
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landslide inventory and other predisposing factor data used throughout this thesis
before presenting an overall analysis of the inventory characteristics, distributions,
and susceptibility. Chapter 3 will then use additional field data and a comprehensive
coseismic inventory to consider some of the spatial issues associated with landslide
processes, with a focus on the comparison between landslide occurrences in the two
distinctly different geomorphological regions of Langtang Valley and the Arniko
Highway. Chapter 4 will quantify the characteristics of landslide path dependency,
the temporal variation in ASM-triggered landslide spatial distributions, and the
implications of this variation for logistic regression-based landslide susceptibility
modelling. Chapter 5 will then consider how ASM-triggered landslide rates in Nepal
have changed through time, with a focus on the characteristics and causes of
earthquake preconditioning. Finally, Chapter 6 will summarise the overall
conclusions from this thesis before discussing these in the context of landslide
susceptibility modelling and recommending a framework for best practice when
conducting susceptibility modelling in regions with spatiotemporally varying

landslide processes.
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Chapter 2 Landslide inventory development,

analysis, and susceptibility modelling

2.1 Introduction

The overall aim of this thesis is to provide insight into the spatiotemporal
characteristics, preconditioning and susceptibility of landslide occurrences in active
mountainous regions. Landslide occurrences are typically caused by complex
interactions between a trigger event, such as an earthquake or rainfall, and
predisposing factors that control latent hillslope stability (Reichenbach et a/. 2018;
see Chapter 1, section 1.4.3). Any investigation into landslide occurrence thus
requires data on past landslides and the triggering and predisposing factors that
influenced those landslides. The rarity of long-term landslide data often limits efforts
to better understand landslide occurrences (e.g. Chapter 1, section 1.2.3). However,
thanks to a growing archive of freely available satellite imagery, developing long-
term landslide inventories is becoming ever more feasible. A central objective of this
thesis is to develop a 30-year multi-seasonal inventory of Asia Summer Monsoon
(ASM)-triggered landslides across the central-eastern Nepal Himalaya. From this
point forward, this inventory will be referred to as the “ASM-inventory”. The ASM-
inventory will be one of the primary outputs of this project and is the dataset on

which the analyses in this and all subsequent chapters are based.

The aim of this chapter is to describe the key methodologies used to develop and
analyse the ASM-inventory and to present a preliminary analysis of the inventory
characteristics and susceptibility. Since many of the methodologies presented in this
chapter are also used in subsequent chapters, this chapter will be referenced

throughout the thesis.
The specific objectives of this chapter are as follows:

1. To describe the methodologies used to develop the ASM-inventory.
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2. To describe the methodologies used to obtain triggering and predisposing
factor data.

3. To outline the main methodologies used to analyse and assess the overall
ASM-inventory characteristics and distributions. This includes the
methodologies used to assess landslide spatial associations, geometry, size,
and spatial distributions.

4. To outline the general methodologies used in Chapters 2, 3 and 4 for
developing Binary Logistic Regression (BLR)-based landslide susceptibility
models.

5. To present the results from the methodologies outlined in objectives 3) and
4) as applied to the entire ASM-inventory. Specifically, this will quantify the
overall (largely space and time independent) geometries, spatial
associations, sizes, spatial distributions, and susceptibility of the landslides
within the ASM-inventory.

6. Finally, this chapter will discuss the results of objective 5) within the context
of the wider literature, with a focus on the processes controlling monsoon-
triggered landslide characteristics in Nepal and how these compare to
coseismic landslides across the same region. The landslide susceptibility
model developed here will also be compared to published models already
developed for the region before discussing the potential limitations of typical
susceptibility approaches and how these will be investigated in subsequent

chapters.
2.2 Methods: landslide inventory development

A landslide inventory is a database that typically contains information on landslide
location, size, trigger event, type and state (Reichenbach et al 2018). Where the
trigger event is the process that initiated landslide movement and state is the current
activity level (e.g., stable, active, reactivated) of a landslide that has already occurred.
The following sections outline the methodologies used to develop the ASM-triggered

landslide inventory used throughout this thesis.
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2.2.1 Inventory type

There are three main types of landslide inventory: event, seasonal and historical
(Guzzetti et al 2012). An event inventory contains landslide data from a single
discrete triggering event such as a typhoon or earthquake (e.g. Roback ez al. 2018). A
seasonal inventory contains all landslides that have occurred within a defined time
interval such as a monsoon season (e.g. Fiorucci et al. 2011), and a historic inventory
contains all landslides visible in a given region, likely associated with a range of
unidentified or undated triggering events (e.g. Jaiswal eta/ 2011; Martha et al 2012).
The former two inventory types can be considered as ‘multi-temporal’ if they include
information on multiple events or seasons. In this thesis, the aim was to develop a
long-term (30-year) multi-seasonal inventory of landslides triggered in 29 separate

Asia Summer Monsoon seasons.
2.2.2 Study region and inventory scale

Landslide inventories are commonly developed over a wide range of study region
sizes and spatial scales (Guzzetti et al 2012). The appropriate spatial scale is
determined by the size of the study area and the application for which mapping is
being undertaken (Table 2.1; Fell et al. 2008). In this thesis, the aim was to develop
an inventory over a large (~45,000 km®) region of central-eastern Nepal (see Fig. 1.1)
for the purpose of assessing landslide characteristics, distributions, and
susceptibility. This required that the ASM-inventory was developed at the moderate-
to large-scale (Table 2.1). Moderate-scale landslide inventories are typically
developed using optical satellite or aerial imagery with a spatial resolution of at least
30 x 30 m (e.g. Duman et al, 2005). Such moderate-scale inventories are unlikely to
have been fully corroborated with detailed fieldwork, and will likely not include

information on the smallest landslides.
2.2.3 Landslide mapping procedure

Landslide inventories are developed via the mapping of landslides. Landslides can be
mapped using both field and remote sensing methods. Field mapping of landslides
involves going into the field and physically recording all landslides evident in the

landscape (e.g. Jones et al. 2020). Remote sensing methodologies involve mapping
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Scale Application Typical study area size

Small (< 1:100,000) Preliminary assessments of landslide hazard for informing broad policy / general public. > 10,000 km®

Medium (1:25,000 - Landslide susceptibility, vulnerability, risk zoning for regional development purposes.

1:100,000) Assessing large-medium size and regional level landslide processes, characteristics and 1000 - 10,000 km®

distributions.

Landslide susceptibility, vulnerability, risk zoning for local development purposes, Risk zoning
Large (> 1:25,000) for major engineering projects and for site-specific projects. Detailed investigations into 10 - 1000 km®
smaller, hillslope specific landslide processes, characteristics and distributions

Table 2.1. Typical landslide inventory scales, and their appropriate applications and study

region sizes, as defined by Fell et al. (2008).

landslides visible in remotely sourced data such as aerial photographs, surface
morphology models or optical satellite imagery (Reichenbach et al 2018). It is a
common misconception that field mapping is more accurate than remote mapping
(Guzzetti et al. 2012). In reality, field mapping is often hampered by local perspective
(i.e. not being able to fully see large or complex landsides from the ground) and cover
by vegetation or human activity that makes landslide boundaries difficult to trace
(e.g. Santangelo et al 2010). Consequently, field mapping is usually only employed
to conduct detailed investigations of single landslides or groups of landslides that
have important anthropogenic implications (e.g. Jones et al 2020), to validate
limited portions of remotely-developed inventories (e.g. Rabby & Li 2019), or to map
regions where remote imagery is unavailable or of poor quality (e.g. Van Den
Eeckhaut et al 2007b). Fieldwork can also be expensive, time consuming and

logistically challenging, particularly in high-mountain regions with extreme terrain.

As outlined previously, this ASM-inventory was intended to be a multi-temporal
inventory of landslides triggered during 29 separate monsoon-seasons and mapped
across a large 45,000 km” region at a moderate resolution of at least 30 x 30 m. These
spatial and temporal resolution requirements limited the methodologies that could
be employed to map the landslides. The study region size, extremity of the terrain,
and lack of temporal information made field mapping inappropriate. Furthermore,
there are very few remote sensing products that cover central-eastern Nepal at the
required spatial and temporal scales. For example, whilst aerial photography does

cover Kathmandu valley across multiple time periods, the majority of the country is
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only covered by a single aerial photograph survey from the 1990s. Furthermore, there
is no available high-resolution LiIDAR data to allow accurate mapping from surface
morphology. Consequently, the only viable method of developing the ASM-
inventory was with satellite data, and the only freely available satellite product to
cover central-eastern Nepal at a minimum of 30 x 30 m spatial resolution across a

30-year period was Landsat (Woodcock et al 2008).

The Landsat satellite programme is a joint NASA/USGS project that freely provides
the longest continuously acquired space-based archive of the Earth’s surface
(Woodcock et al 2008). Landsat satellites 1/2/3 cover the period of 1972 to 1983.
These satellites had a maximum temporal resolution of 18 days and a maximum
spatial resolution of 40 m, but were found to have intermittent spatial coverage over
Nepal. Landsat satellites 4/5 cover the period 1982 — 2011, have a maximum
temporal resolution of 16 days and a maximum spatial resolution of 30 m. In Nepal,
they provide good spatial coverage from 1987, making them ideal for mapping
medium-large landslides since 1988. Landsat 7 was launched in 1999. It has 30 m
multispectral bands, a 15 m panchromatic band and a temporal resolution of 16 days.
However, in 2003, this satellite suffered a Scan Line Corrector (SCL) failure that
reduced the data coverage of each image by 22 - 35% (Alexandridis et al 2013),
rendering the imagery less effective for accurate landslide mapping after 2003.
Landsat 8 was launched in 2013. Like Landsat 7, this also had 30 m multispectral

bands, a 15 m panchromatic band and a temporal resolution of 16 days.

As such, the ASM-inventory was mapped exclusively with Landsat 4/5/7/8 imagery,
which allowed the mapping of landslides from 1988 to 2018. Figure 2.1 shows a
schematic of the general workflow used to map the landslides that form the ASM-
inventory. This workflow is divided into three sections: imagery acquisition, imagery

processing and landslide mapping, as described in the following sections.
2.2.3.1 Imagery acquisition

To map landslides in a given time slice (monsoon season), it is necessary to have
imagery taken both before and after that time slice. The two images can then be

compared to identify any new landslide features that have occurred in that time-
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Landslide mapping

Figure 2.1. Generalised worktlow for landslide mapping procedure used in this thesis.

period (i.e. any landslides that are visible in the post imagery that were not visible in
the pre imagery). In this case, the ASM-inventory includes a separate time slice for
every monsoon-season between 1988 and 2018, excluding 2011 and 2012 which
could not be mapped due to the Landsat 7 scan-line errors. As the Nepal monsoon
season runs from ~ May to September, pre- and post-season imagery needed to be
obtained in the October — April period preceding and following each monsoon
season. Landsat imagery from the required time periods were obtained for the entire
study region from the USGS Earth Explorer platform
(https://earthexplorer.usgs.gov/). This platform allows the user to define a required

period and study region extent, as well as to filter out imagery with high cloud cover.
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The study region (see Fig. 1.1) encompassed four Landsat tiles, so four pairs of
images were required to fully map each monsoon season. For optimal mapping,
images with < 10% cloud cover were required. Unfortunately, the nature of Nepal’s
climate meant that this severely limited the available imagery. Ideally, pre- and post-
images would have been obtained as close to the start/end of a monsoon-season as
possible to ensure that each time slice was the same length. However, owing to the
high levels of cloud cover, pre- and post-imagery for a given monsoon season could
have been dated any time between the April and October before/after that season.
This meant that the pairs of images for each monsoon period will have encompassed
the target monsoon season plus a varying number of non-monsoon months either
side. This was an unavoidable limitation of the available satellite data, and the
potential impacts of this have been fully evaluated for all analysis where this may
affect the results (e.g. Chapter 5, section 5.2.2.1). Another consequence of the limited
available imagery is that the post-imagery used to map one time slice typically had
to be used as the pre-imagery for the next time slice. As such, the ASM-inventory is

continuous across the 30-years mapped.

In total, ~144 Landsat satellite images were obtained from Earth Explorer. Table 2.2
outlines which Landsat satellites were used to map each monsoon-season, whilst
Data File 1 (available here) is a polygon shapefile of the inventory that includes the

specific dates of the pre- and post-images used to map each individual landslide.
2.2.3.2 Imagery processing

The landslides that occurred within each given period were mapped by identifying
landslides that were visible in the post imagery, but not the pre imagery. When
landslides occur, they typically change the landcover of a landscape, thus modifying
the optical properties of the land surface (Guzzetti et al. 2012). The differences in
spectral signals produced by different land covers can be captured by passive
(optical) sensors, thus providing imagery from which landslides can be identified
and mapped. Optical satellites such as Landsat are typically multispectral, i.e. they
capture reflectance values at several specific bands of the spectral range, including

blue, green, red, and near infrared light. These different bands can be combined in
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different combinations to create false colour composite images such as NDVT that
enhance different parts of the visible or infrared spectrum relative to others. This is
particularly useful in landslide mapping as it can allow bare-earth reflectivity to be

enhanced relative to vegetation reflectively, thus “highlighting” landslides and other

Total number Number reactivated/ .
Year Satellites used
mapped events remobilised events
1988 551 98 Landsat 4/5
1989 361 55 Landsat 4/5
1990 282 75 Landsat 4/5
1991 185 43 Landsat 4/5
1992 206 54 Landsat 4/5
1993 688 66 Landsat 4/5
1994 239 36 Landsat 4/5
1995 329 46 Landsat 4/5
1996 349 106 Landsat 4/5
1997 248 45 Landsat 4/5
1998 270 58 Landsat 4/5
1999 369 57 Landsat 4/5
2000 474 106 Landsat 7
2001 570 132 Landsat 7
2002 1334 275 Landsat 7
2003 296 43 Landsat 7
2004 563 97 Landsat 4/5
2005 149 33 Landsat 4/5
2006 197 37 Landsat 4/5
2007 211 39 Landsat 4/5
2008 216 44 Landsat 4/5
2009 175 39 Landsat 4/5
2010 310 73 Landsat 4/5
2013 423 64 Landsat 8
2014 498 114 Landsat 8
2015 1318 358 Landsat 8
2016 882 296 Landsat 8
2017 744 186 Landsat 8
2018 401 85 Landsat 8
TOTAL 12838 2760

Table 2.2. Summary of total number and number of reactivated/remobilised landslides

mapped in each inventory time slices, and the satellite products used to map each time slice.
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bare-earth features that have appeared within the landscape between two images.
Optical satellites such as Landsat 7/8 also include panchromatic sensors that
combine the information from the three visible bands (blue, green, red) instead of
partitioning them into different spectra. As panchromatic sensors collect more solar
radiation per pixel, they typically have higher resolutions than their multispectral
counterparts. This is useful, as panchromatic and multispectral bands can be
combined using pan-sharpening techniques, whereby the separate blue, green and
red multispectral bands are merged with the higher resolution panchromatic band
in order to produce a colour composite with the spatial and spectral properties of

both input types.

As such, for all acquired imagery, false colour RGB images were compiled with the
red band set to the Near Infrared multispectral band, and the green and blue bands
kept to the green and blue multispectral bands. This band combination was used
because it strongly highlighted the reflectivity difference between vegetated areas and
bare earth. In addition, for the Landsat 7 and 8 imagery, the ArcGIS image analysis
pan-sharpening tools were used to enhance the 30 m multispectral bands with the 15

m panchromatic bands to produce 15 m resolution colour composites.
2.2.3.3 Landslide mapping

Once all of the necessary imagery was acquired and processed, landslide mapping
was conducted manually within the ArcGIS platform. Manual landslide mapping
involves using expert knowledge to delineate landslides based on the reflectivity and
morphology of features within the imagery. This approach is relatively time
consuming and potentially subjective in that it is always influenced by the experience
of the mapper, but is advantageous in that all landslides are individually checked.
Manual mapping was chosen over automatic or semi-automatic mapping because
whilst AT (Artificial Intelligence) landslide mapping algorithms are ever improving,
ensuring that they do not including erroneous or inaccurate landslide polygons
remains challenging (e.g. Yagi et al, 2009). Indeed, Valagussa et al. (2019) estimated
that 30% of an automatically produced landslide inventory for the Iwate-Miyagi

Nairiku, Japan, earthquake event were unreliable. Furthermore, automatic landslide
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mapping methods regularly suffer from the problem of amalgamation, where the
runout of several landslides have become contiguous, and thus the algorithm maps
them as one polygon, rather than several (e.g. Marc & Hovius, 2015). As such, it was

decided that more accurate mapping would be achieved with a manual approach.

To generate the inventory, a polygon feature dataset was first created for each time
slice (monsoon season) within the inventory. For each time slice, landslides were
then identified by direct visual comparison of the pre- and post-imagery (e.g., Figs.
2.2a - ¢), delineated as polygons, and stored in the feature dataset for that time slice.
Identifying which features in the imagery were landslides required several layers of
decision making. These are outlined below and shown visually in a decision tree in

Appendix A.

The first step in identifying a landslide is to locate new, fresh, bare-earth features that
appear between the pre- and post-imagery, i.e., to find the locations where earth
material has been disturbed. Typically, in the Himalayas, this will be visible as a
change from vegetation to fresh bare-earth, or from weathered bare-earth to fresh
bare-earth. As outlined in the previous section, the satellite imagery were processed
to enhance the visibility of bare-earth relative to vegetation. As such, it was
fundamentally easiest to see fresh bare-earth features that had replaced vegetation.
Consequently, it is possible that some fresh bare-earth features that occurred over
weathered bare earth or other material such as snow may have been missed. Indeed,
very few landslides were observed in the most northern parts of the study region
where there were high amounts of permanent snow and ice. This suggests that either
far fewer landslides occur in snow and ice (e.g., due to processes such as frost
bonding or glacial buttressing; see Chapter 3) or that the landslides that did occur in
these regions were simply very difficult to observe (e.g., because movement beneath
the snow does not fully dislodge the snow on the ground, surface). It should therefore
be noted that landslides in snow-covered regions may have been missed, and
therefore that subsequent susceptibility analyses may underestimate landslide

susceptibility on these snow-covered regions.
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Figure 2.2. Example false colour RGB pre- and post-monsoon season Landsat satellite
Imagery used to map landslides. a) pre-imagery. b) post-imagery. c¢) resulting mapped
landslides.

61



Once bare-earth features had been located, it was necessary to decide which features
were rainfall-triggered landslides and which were features due to other processes
(e.g., coseismic landslides or anthropogenic features). Before outlining how rainfall-
triggered landslides and other processes were distinguished, it should be noted that
all features composed of less than ~6 pixels were discounted for being too small to

confirm what that feature likely was.

To avoid erroneously mapping coseismic landslides, all time slices known to have
experienced earthquakes > M,, 6.0 were identified. Between 1988 and 2018, three >
M,, 6.0 earthquakes occurred within or near the study region. The 1988 M,, 6.6 Bihar
earthquake, the 2011 M, 6.6 Sikkim earthquake and the 2015 M, 7.8 Gorkha
earthquake. As the 2011 and 2012 monsoon-seasons were un-mappable (due to the
Landsat 7 scanline errors) there were no time slices that corresponded to the Sikkim
earthquake. However, the 12/08/1988 Bihar earthquake occurred within the 1988
monsoon-season time slice, and the 25/04/2015 Gorkha earthquake and associated
aftershocks (including the M,, 7.3 event on the 12/05/2015) occurred within the 2015
monsoon-season time slice. To avoid erroneously mapping coseismic events in
2015, the comprehensive inventory of coseismic landslides published by Roback et
al. (2018) was used. Any new landslides visible in the 2015 time slice imagery that
were not included in the Roback inventory were assumed to have been triggered by
the subsequent monsoon. Avoiding erroneous mapping of coseismic events was
more challenging in 1988 as there are no published coseismic inventories for this
event. This earthquake occurred to the south of the study region in the Terai region,
where the topography is flat and generally less prone to landsliding. As quantified by
Densmore & Hovius (2000), coseismic landslides are typically triggered near
ridgelines, high on hillslopes, whereas rainfall-triggered landslides are more likely
than coseismic landslides to occur at lower hillslope positions. As such, for the 1988
time slice, the portion of the study region that observed > 0.1 g isoseismals during
the 1988 earthquake, as defined by the USGS (USGS 2018a), was extracted. Then,
within that region, the slope-position of observed new landslides was used to
determine whether they were coseismic or monsoon-triggered, i.e., ridgeline-

initiating landslides were interpreted to be coseismic, and all others were interpreted
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to be monsoon-triggered. Furthermore, in some select cases, local knowledge was
used to distinguish between earthquake and rainfall-triggered landslides. For
example, in the Arniko and Langtang regions where fieldwork was conducted (see
Chapter 3), local people often remembered when a given landslide occurred and

were able to confirm whether or not it had been triggered by the Gorkha earthquake.

To avoid erroneously mapping anthropogenic features such as cut-and-fill
occurrences, road-associated mass-wasting, and deforestation, landslide shape and
position were assessed. For shape, landslides typically have a longer downslope axis
and shorter width axis. They also tend to have source zones, narrower runout zones,
and then splayed or fan-shaped deposition zones. In contrast, anthropogenic
features such as deforestations and areas of cut-and-fill tend to be more cuboid in
shape and occur on flatter ground or stepped terraces (e.g., Appendix B). As such,
features that were cuboid and/or occurring on flatter terrace areas were assumed to
be anthropogenic and so not mapped. In terms of road-associated mass-wasting, a
common construction practice in Nepal is to tip material excavated for road-
construction onto hillslopes. These road-tips can look very similar to landslides, but
typically occur simultaneously with the occurrence of a new road or track (e.g.
Appendix B). As such, any features splaying or connected to a new road were also

discounted from the inventory.

Once a feature had been identified as a rainfall-triggered landslide, the final landslide
polygon boundary was drawn to include the combined scar and runout zones, as
these were indistinguishable at the spatial resolution of the imagery. In addition, all
identified landslides were classified as being spatially independent of any previous
failures (e.g., Fig. 2.3a - ¢), or as being reactivated or remobilised, with the latter being
defined in cases where alandslide appeared to intersect or initiate from the boundary
of a pre-existing landslide scar (e.g. Fig 2.3d - f). Unfortunately, the resolution of the
imagery made it challenging to distinguish between reactivations (i.e., the failure of
new material that initiates from or intersects with the scar of a previous landside)
and remobilisations (i.e., the movement of material that had already failed or been

disturbed by a previous landslide), so the two were grouped together. Finally, where
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Figure 2.3, Examples of fresh and reactivated landslides in false RGB Landsat satellite
imagery. a) and d) show pre-monsoon season imagery with pre-existing landslides. b) and
e) show post-monsoon season imagery with a clear fresh failure and several reactivated or
remobilised failures respectively. ¢) and 1) show the new features from b) and e) delineated

as yellow polygons.

possible (i.e. where imagery resolution and landslide size allowed), care was taken to
avoid amalgamating collocated landslides. This was achieved by assessing whether a
given bare-earth feature had multiple distinct higher source zones, and then splitting

a given amalgamation between those source zones.

In total, 12,838 monsoon-triggered landslides were initially mapped across 29

monsoon-season time slices between 1988 and 2018, excluding 2011 and 2012 (Fig.
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2.4; Table 2.2). As mentioned above, Data File 1 (available here) is a freely available
polygon shapefile that includes the locations, satellite information, and basic

geometries (perimeters and areas) of all 12,838 landslides in the inventory.
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Figure 2.4. Locations of all 12,838 mapped landslide polygons in the ASM-inventory. Insets

show smaller scale view of delineated polygons in two subregions.

2.3 Methods: obtaining triggering and predisposing factor data

To understand the spatial and temporal controls on landslide occurrence, it is
necessary to obtain data for the event(s) that triggered those landslides and for those
factors likely to have predisposed the landscape to failure. The following sections
outline the methods and properties of the main triggering and predisposing data

used throughout this thesis.

2.3.1 Trigger event data collection

The ASM-inventory includes landslides that are assumed to have been triggered
during the monsoon-season. This is assumed because even though each time slice of
the inventory includes some non-monsoon months, over 90% of rainfall-triggered

landslides in Nepal are known to occur during the monsoon season (May -
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September) (Petley et al 2007; Stanley et al. 2020) when Nepal experiences >80% of
its yearly rainfall (Dahal & Hasegawa 2008). As such, information on monsoon

season precipitation for the study region from 1988 — 2018 were required.

There are two main sources of precipitation data: gauge-based instruments and
satellites. The main advantage of gauge-based instruments is that these measure
accumulated rainfall directly at the Earth’s surface (Kidd 2001). It is estimated that
there are a total of 150,000 - 250,000 rain gauge instruments across the globe,
although many of these have not operated continuously or concurrently
(Strangeways 2006; Kidd et al 2017). These instrument data have been used to
develop multiple global precipitation products, as shown in Table 2.3 (Sun et al

2018).

Perhaps the most comprehensive of these instrument-derived datasets is that
established by the Global Precipitation Climatology Centre (GPCC), who obtain
primary data from National Meteorological Agencies (NMAs) as well as from the
global networks of the Climate Research Unit (CRU; 11,800 stations), the Food and
Agricultural Organisation (FAQO; 13,500 stations) and the National Centres for
Environmental Information (GHCN2 and GHVN daily; 34,800 stations) (Sun et al.
2018). In total, the GPCC product integrates over 85,000 stations worldwide, with
full coverage from 1901 at a spatial resolution of 0.5° by 0.5° (Rudolph et al 2011).
However, the major drawback of instrument derived datasets such as GPCC is that
they are dependent on the spatial distributions of the instrumentation, which can be
highly irregular (Sun et al. 2018). For example, in Nepal, the GPCC full dataset uses
just 280 gauges across the entire country (Miiller & Thompson 2013). Furthermore,
gauge instruments, particularly those in extreme rural areas, frequently get damaged
and can have large sources of error from wind, evaporation, site location and
instrument error (Michelson 2004). As such, it was decided that purely gauge-based

rainfall products were not sufficiently accurate for use in this project.

The main advantage of satellite-derived precipitation datasets is that they provide
global, homogenous precipitation measurements (Sun et al 2018). There are

multiple methods that are used to derive precipitation data from different satellite
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Data set Resolution Frequency Coverage Period Source Reference
The CRU of the University (Harris et al,, 2014;
CRU 0.5°x 0.5% Monthy Global land 1901 - 2015 )
of East Anglia New et al., 2000)
National Climatic
GHCN-M 5% 5 Monthly Global land 1900 - present (Peterson & Vose, 1997)
Data Centre
0.5°x0.5°
GPCC 10° X LO° Monthly  Global land 1901 - 2013 GPCC (Rudolf et al., 2009)
2.5°x 2.5°
GPCC-daily 1.0°x 1.0° Daily Global land 1988 - 2013 GPCC (Schamm et al., 2014)
05 x 05" 1948 - 2012 (0.5%)
PRECL 1.0°x 1.0° Monthly Global land ) - NCEP/NOAA (Chen et al., 2002)
: ) 1948 - present
257x25°
UDEL 0.5°x 0.5° Monthly Global land 1900 - 2014 University of Delaware (Willmott & Matsuura, 1995)
CPC-Global 0.5°x 0.5" Daily Global land 1979 - 2005 CPC (Xie et al., 2010)

Table 2.3. Summary of global gauge-based precipitation products, from Sun et al. (2018),

see Sun et al. (2018) for references.

Data set Adjusted Res Freq. Coverage Period Data source Algorithm Reference
- 1979 - GPIL, OPL, SSM/I scattering,
GPCP GPCC, GHON 25° Monthly Global I N (Adler et al., 2003)
present SSM/I emission, TOVS
1996 - . . (Huffman &Bolvin,
GPCP 1dd GPCC, GHCN 107 Daily Global SSM/I-TMPL 'TOVS
present 2013)
GPCP_PEN_v2.2 GPCC, GHCN 2.5° 5-daily Global 1979-2014  OPL SSM/L, GPL MSU (Xie et al., 2003)
1970 GPL OPL SSM/I scattering, (Kie et al, 2003;
CMAP GPCC, GHON 2.5° Monthly Global SSM/I emission, MSU, wie etal, SO0
present ) . Xie & Arkin, 1997)
NCEP-NCAR
2006 -
CPC-Global GTS, COOP, NMAs 0.5° Daily Global land GTS, COOP, NMAs (Xie et al., 2010)
present
TMI, TRMM, Combined
. 3 1998 - Instrument, SSM/I, SSMIS,  Probability (Huffman et al.,
LIRMM 3B43 GpcC 0.25" Monthly 50°S - 50°N ¢ . .
present AMSR-E, AMSU-B, MHS, matching 2007)
GEO-IR
TML TRMM, Combined
1998 - Instrument, SSM/IL, SSMIS,  Probability (Huffman et al.,
TRMM 3B42 x 0.25° 3 hr /daily 50°S - 50°N - o .
present AMSR-E, AMSU-B, MHS, matching 2007)
GEO-IR
TMI, AMSR-E, AMSR-E,
SSM/L, multifunctional
e . Kaliman filter
GSMaP X 0.1° 1 hr / daily 60°S-60°N  2002-2012 transport satellites (MTSAT), el (Ushio et al., 2009)
model
METEOSAT-7/8
GOES 11/12
Meteosat, GOES, GMS,
SSM/1 Artificial . .
2003 - (Sorooshian et al.,
PERSIANN-CCS X 0.04° 30min/3,6hr 60°S - 60°N polar, near polar Neural
present o 2000)
precipitation Networks
radar, TMI, AMSR
GOES 8, GOES 10, GMS-5,
Artificial
. . i 1983 - Metsat-6 and Metsat-7, . -
PERSIANN-CDR GPCP 0.25° 3, 6hr/daily 60°S - 60°N Neural (Ashouri etal., 2015)
present TRMM, NOAA 15, 16, 17,
Networks
DMSP F13, F14, F15
TMI, SSM/T, AMSR-E,
. ) 2002 - Propagation
CMORPH x 0.25°/8 km 30min /3 hr/daily 60°S - 60°N AMSU-B, R (Joyce et al,, 2004)
present N & Morphing
Meteosat, GOES, MTSAT
GMI, AMSR-2, SSMIS,
2015 - Madaras, MHS, Advanced (Hou et al., 2008,
GPM X 0.1° 30min /3 hr/daily 60°8 - 60°N . . IMERG
present Technology Microwave 2014)
Sounder
1979 CPC, GPCC, CMORPH,
MSWEP CPC, GPCC 0.1°70.5" 3 hr/ daily Global ! ¢ GSMaP-MVK, TMPA (Becketal,, 2017)
presen

ERA-Interim, JRA-55

Table 2.4. Summary of global satellite-derived precipitation products, from Sun et al.

(2018), see Sun et al. (2018) for references.
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sensors (see Sun et al, (2018) and the references therein for more details), resulting
in various satellite-derived precipitation products that are available for use.
However, few of these have the spatial (< 0.25° by 0.25°) and temporal (1988 - 2018)
resolutions required for this project (Table 2.4; Sun et al., 2018). As can be seen from
Table 2.4, one of the few freely available products to meet this specification was the

PERSIANN-CDR product.
2.3.1.1 PERSIANN-CDR

The PERSIANN Climate Data Record (CDR) has a spatial resolution of 0.25° by
0.25°, temporal resolutions of 3 hours, 6 hours, 1 day and 1 month, covers latitudes
60°S - 60° N, and covers the period 1983 - present (Ashouri e al. 2015). This record
was developed by applying the PERSIANN algorithm on GridSat-B1 IR satellite data.
This algorithm was trained using hourly stage IV precipitation data from the
National Centres for Environmental Prediction (NCEP) and then adjusted using the
Global Precipitation Climatology Project (GPCP) monthly gauge and satellite-based
dataset (Ashouri et al 2015). The PERSIANN-CDR product is now a widely used
product that has been well evaluated in the literature (e.g. Nguyen et a/ 2020 and
references therein). Indeed, PERSIANN-CDR was found to perform excellently
when evaluated against 1400 ground-stations at capturing the spatial and temporal
patterns of rainfall in the monsoon-regions of eastern China (Miao et a/. 2015), and
outperformed the TMPA (TRMM Multi-satellite Precipitation Analysis) dataset in
its ability to capture the overall characteristics of Hurricane Catrina (Nguyen et a/.
2020). Furthermore, the PERSTANN-CDR product was found to have lower monthly
mean variance when compared to other satellite derived products, showing
particularly small variance with the GPCP1DD product (Huffman et a/ 2001; Gehne
et al. 2016). Similarly, despite being slightly outperformed by other products, the
PERSIANN-CDR dataset was capable of capturing inter-annual monsoon
precipitation in Pakistan, with high (0.8) R* values when compared to in-situ data
(Ullah et al. 2019). However, it should be noted that the PERSTANN-CDR product
has some limitations. First, it is reported to have a tendency to under-predict values
of extreme precipitation (Miao et al 2015). Second, as with all satellite derived

products, it remains unclear how well orographic effects are captured (Adam et al
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2006). However, a benefit of the PERSTANN-CDR product is that it is designed
specifically for use in longer-term studies (Ashouri et a/ 2015) and is considered one
of the most temporally homogenous products. As such, unlike other satellite
products whose methodologies could introduce temporal variance, any errors in the
PERSIANN-CDR product introduced by orographic effects should be more

systematic through time, which is important for a long-term study such as this.

Monthly PERSIANN-CDR data were acquired from the Centre for

Hydrometeorology =~ and  Remote  Sensing  (CHRS) data  portal:

https://chrsdata.eng.uci.edu/ (Nguyen et al 2019). The study region was composed
of 85 PERSIANN-CDR grids that intersected the mapping area. For each grid,
standard GIS raster tools were used to calculate the total, peak (e.g. Fig. 2.5a) and
mean (Fig 2.5b) monthly precipitation totals across the study region for each

MONsooN season.
2.3.2 Predisposing factor data collection

To understand landslide occurrence, it is also necessary to obtain data for
predisposing factors that may influence latent slope stability. As outlined in Chapter
1 (section 1.4.3.1), there are a number of predisposing factors that might be expected
to control landslide occurrence across the study region. Specifically, this thesis
considers the 14 factors described in Chapter 1, section 1.4.3.1. These are: elevation,
hillslope angle, aspect, planform and profile curvature, local relief, excess
topography, Specific Stream Power (SSP), channel normalised steepness index (kx),
distance to channels, distance to roads, bedrock geology, land use and Permafrost
Index (PFI). These 14 factors were selected for several reasons. First, they are all
factors with commonly observed and gynomorphically explainable controls on
landsliding (Reichenbach et al 2018). As such, using these factors allow the controls
and distributions of the landslides in the ASM-inventory to be robustly compared to
landslide data from other regions and studies, and allows a thorough assessment of
the wider usefulness of including these factors in susceptibility modelling in Nepal.
Second, these were all factors for which sufficient data were obtainable. Indeed, as

outlined by Reichenbach et al (2018), there are some two dozen predisposing factor
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Figure 2.5. PERSIANN-CDR precipitation data examples for a) peak monthly monsoon

period (May - September) rainfall from 2002, and b) mean total monthly rainfall for the

period 1988 - 2018.

classes used within the literature for susceptibility modelling. However, not all of
these could be included in this case due to a lack of data. For example, geotechnical
and geo-structural factors relating to soil characteristics, hydrogeological
parameters, and structural geology (e.g., fault locations, discontinuity densities and
geometries) are commonly used in the literature, but could not be used in this case
as these data do not exist across Nepal. The following sections will now describe the

relevant data collection methodologies for each of the factors used in this study.
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2.3.2.1 Topographic data

Topographic factors including elevation, local relief, hillslope angle, curvature,
aspect, and excess topography were obtained from the ALOS World 3D - 30 m
(AW3D30) version 2.1 global Digital Surface Model (DSM). This is a freely available
DSM developed by the Japan Aerospace Exploration Agency (JAXA) that has a
horizontal resolution of 1x1 arc seconds (approx. 30 x 30 m mesh) and a target height
accuracy of 5 m. The relevant tiles were downloaded, mosaicked, and cropped to the
extent of the study region using standard ArcGIS tools (Fig. 2.6a). Rasters of slope,
aspect, planform and profile curvature, and local relief were then derived from the
cropped DEM using the ArcGIS spatial toolbox (Figs. 2.6b - f). Local relief defines
the relative elevation change within a local area. This was calculated using standard
ArcGIS tools, whereby for each cell in the study region the difference between the
highest and lowest elevations within a 1 km radius was obtained Excess topography,
which is a measure of the total volume of rock mass above a specified threshold
hillslope angle (Blothe et al 2015), was extracted from the DSM for threshold angles
of 20 - 45° using the “excesstopography” function in the Matlab TopoToolbox

(Schwanghart & Scherler 2014) (Fig. 2.6g).
2.3.2.2 Hydrological data

The ALOS DSM was also used to derive three hydrological factors; distance to river
channels, near channel ki,, and near channel Specific Stream Power (SSP). First, the
TopoToolbox “STREAMobj” function was used to extract the stream channel
network across the study region for a threshold upstream area of 1 km*. Euclidean
distances to these channels, with a 30 m buffer, were then extracted for every
landslide and cell within the study region using standard ArcGIS distance tools (Fig.
2.6h). Second, the normalised steepness index (ks,) for those channels was extracted
using the TopoToolbox “k,” function (Fig. 2.6i). Finally, the Specific Stream Power
of those channels (Fig. 2.6j), which is total stream power per unit channel width, was
calculated using Equation 2.1:

_ P9
w

0

Equation 2.1. Specific Steam Power

71



28°N-

27°N—

0 25 50 100 Kilometers
(S —— |

Elevation (m)

[ 8800 N
e A
T
85°E

28°N

27°N-]

0 25 50 100 Kilometers
| EPIRE EE—.

88°E

28°N—]

27°N

I Flat 00 E sw
NN~ N sE B w
[ NE s I NW
Aspect

A

0 25 50 100 Kilometers
| SRR S

T
85°E

28°N—

27°N-

0 25 50 100 Kilometers
| S .

Profile Curvature
243

. 373

T
85°E

28°N—]

27°N-]

Planform Curvature

285 N

0 25 50 100 Kilometers
| S S )

0 25 50 100 Kilometers
| B .

28°N-

27°N-]

0 25 50

100 Kilometers

Excess
Topography (m3)
= 7600 N

.o A

J
85°E

28°N—]

27°N—]

Distance to
Channels (m)

2840
0

0 25 50 100 Kilometers
| S S )

72




0 25 50 100 Kilometers

0 25 50 100 Kilometers

28°N— £

Near Near channel
channel k| SSP (W/m)
[ 389215 77,800 N
27°N 279N
o 50
T
85°E 85‘°E 86|"E
Kk [ Schist [ Dolomite Shale I Marble | Land use Forest WM Bare earth / sparse

Quarizite M Undifferentiated
0 Phyllite B Granite, basic, gneiss

I Quaternary Sandstone
/ Conglomerate

B Cropland [ Water Shrub/grassland
B Artificial [ Permanent snowfice

28°N—

~
27°N-1o 25 50 100 Kilometers 27°N—{o 25 50 100 Kilometers

| PR P | P -
T T T T y
85°F 86°F 85°F 86°E 87°F 88°E
m PFI 0 25 50 100 Kilometers
- [ none I 0.25-05 | IR I ——
o B o0-025 N 05-075
0.75-1.0
28°N Ta 28°N
N ¥
Distance
to roads (m)
26300
2°NHo0 25 50 100 Kilometers 27°N l 0
| PSR |
T T T T T
85°E 86°E 87°E 88°E 85°E

Where p is the density of water (1000 kg/m’), g is acceleration due to gravity (9.81
m/s?), S is the energy gradient, or channel slope (derived from the DSM using
standard ArcGIS tools in units of m/m), Q is channel discharge (derived from the
DSM using standard hydrological ArcGIS tools in units of m’/s), and W is channel
width (calculated as a function of discharge according to the scaling relationships of

Craddock et al. (2007) in units of m).
2.3.2.3 Regional geology data

Like many developing countries with extreme, highly inaccessible terrain, Nepal

lacks any high-resolution geological data. The Nepal Department of Mines and
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Geology hold 1:250,000 regional scale maps of the main lithologies mapped across
the country. These maps were digitised to a raster file from high-resolution scans

using ArcGIS georeferencing and topology tools (Fig. 2.6k).
2.3.2.4 Landcover data

Nepal does not have accurate field-validated landcover maps. As such, data on
landcover across Nepal had to be acquired from a global satellite data product. The
product selected was the ESA-GlobCover 2009 dataset, which was developed using
data from the 300 m MERIS sensor on board the ENVISAT satellite. The 2009
Landcover product, released on 21/12/2010, was created using automatic and
regionally tuned classifications of the global MERIS FR (MEdium Resolution
Imaging Spectrometer Full Resolution) mosaics acquired throughout 2009. In total,
22 landcover classes are identified following the definitions of the United Nations
(UN) Land Cover Classification System (LCCS) (Bontemps et al. 2011). However, in
this thesis, the initial 22 landcover classes are simplified into 7 broad classes (Fig.
2.61). The original map projection of this product is a Plate-Carree WGS84 ellipsoid,

and has an estimated overall accuracy of 73% (Defourny et al. 2009).
2.3.2.5 Permafrost data

Permafrost is defined as sub-surface material with a temperature of < 0°C for at least
two consecutive years (ACGR, 1988). As outlined in Chapter 1 (sections 1.4.2 and
1.4.3), permafrost is pervasive in the Greater and Tethyan Himalaya, and potentially
capable of influencing landslide occurrence. However, field-validated permafrost
data are extremely sparse, so models of permafrost extent are difficult to calibrate
and validate (Gruber 2012). As such, this project makes use of a global model
developed by Gruber (2012), which estimates permafrost extent via a global
permafrost zonation index (Fig. 2.6m). This permafrost zonation index, which has a
spatial resolution of 500 x 500 m, has values between 0.01 and 1, where a value of 1
suggests that permafrost will be present under all conditions, and a value of 0.01
suggests that permafrost will be present under ideal meteorological conditions only.
This index is quantified as a function of Mean Annual Air Temperature (MAAT)

combined with the stochastically modelled influences of snow cover, solar radiation,
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subsurface properties, and vegetation. The MAAT data are based on the CRU
(Climate Research Unit) TS 2.0 product (Mitchell et a/ 2003), whilst topographic
data used are from SRTM30. It is important to note that this model should not be
considered as a representation of reliable ground truth, though it does compare
favourably with the older, and still widely used, International Permafrost Association
(IPA) map (Heginbottom & Dubreuil 1993; Brown et al 1997). It also gives a much
more consistent zonation and consideration of error, as it includes a ‘fringe area’ that

maps the maximum plausible extension of the permafrost region.
2.3.2.6 Distance to roads

Road data across the study region were obtained from the Open Street Map
(Humanitarian Data Exchange 2020). All primary, secondary and trunk roads were
extracted from this dataset, and the Euclidean distances to these roads, with a 30 m
buffer, calculated using standard ArcGIS distance tools for every landside and cell

within the study region (Fig. 2.6n).
2.3.2.7 Issues with temporal variation

Of the factors described above, most can be considered as stationary through time.
For example, geology and other topographical factors are unlikely to have changed
considerably with respect to the data resolution across the 30-year time period.
However, three of the factors (land use, PFI and distance to roads) will have observed
some temporal variation. Unfortunately, in all of these cases, annual data for those
factors did not exist for the entire mapped period, and self-compilation of these data
was considered outside of the scope of this thesis. As such, when interpreting any
results pertaining to these factors, it is important to consider that these factors will
be most accurate in the years close to when the data were obtained (2009 for land
use, 2012 for PFI and 2017 for road distance), and may be inaccurate in the years

significantly before or after.

In the case of PFI, any temporal changes are unlikely to have had a significant impact
on the PFI classifications. It is estimated that the lower limit of permafrost extent
(LLP) shifted no more than 100 - 300 m between 1973 and 1991, before remaining

relatively stable until at least 2004 (Fukui et al. 2007). Furthermore, the current rate
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of change of permafrost extent is estimated to be ~ 1.3 - 2.6 m / year, with a
maximum expected potential increase in the LLP of 188 m between 2009 and 2039
(Chauhan & Thakuri, 2017). These studies show that whilst permafrost extent is
likely changing in response to climate change, the rate of change is small relative to
the 500 x 500 m resolution of the PFI data used here, with even the maximum

expected changes for the next 20 years below the resolution of the dataset.

Similarly, whilst the land use of the study region has changed across the past 30-
years, much of this change has been an increase in urban development (Paudel ez al.
2016) where landslides do not tend to occur, with less change observed in the higher
mountains where most landslides do occur. Furthermore, even if there have been
changes in the land use within the higher Himalaya, unless these changes are
occurring over extensive regional scales, they would not change the overall
designations of this 300 x 300 m dataset. Finally, for distance to major roads, it is true
that road locations will have changed throughout the 30-year period considered here,
with road building initiatives increasing road density, particularly the density of
small informal rural roads, across Nepal (McAdoo et al 2018). However, as outlined
in section 2.3.3.6, the “distance to roads” factor was based solely on the positions of
large trunk, primary and secondary roads in 2017. These larger roads were used
exclusively as these types of infrastructure were more likely to have existed for the
entirety of the mapped period. For example, construction of the Arniko highway
trunk road began in 1961 (Murton 2017; Ao et al. 2020). However, it is still possible
that some of the primary and secondary roads included in the dataset did not exist
in the early part of the time period. As such, the distance to roads metric can only be
confidently considered as a topographic metric of “distance to road position in

20177,
2.4 Methods: analysis of inventory characteristics and distributions

The following sections describe the methodologies used to assess the characteristics
and distributions of the ASM-inventory in terms of landslide path dependency,
geometry, size, and spatial distributions. Note, Data File 2 is a point inventory (.txt

file; available here) showing all of the key information extracted using the subsequent
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methodologies for each of the individual 12838 landslides in the inventory. The
methodologies for size and spatial distribution analysis are used again in subsequent

chapters.
2.4.1 Landslide path dependency

Landslide path dependency is a concept introduced by Samia et a/ (2017a, b) that
describes how existing landslides can have alegacy effect that influences the locations
of future landslides (Samia et al 2020). Specifically, it describes how future landslides
have a transiently increased likelihood of occurring within or across an existing
landslide. Such path dependent landslides, termed here as spatially associated
landslides, are also expected to have different geometric, size, and spatial
characteristics to non-path dependent, or spatially unassociated, landslides (Samia
et al. 2017b). This study considers both aspects of path dependency. In Chapter 4,
which considers the temporal aspects of landslide occurrence, the metrics proposed
by Samia et al (2017b) (see Chapter 4, section 4.2.1) are used to quantify whether the
landslides in the ASM-inventory are actually influenced by path dependency (i.e.
whether new landslides overlap with existing landslides more than would be
expected if their distributions were random). However, this chapter considers
whether spatially associated landslides have different geometric, size, and spatial
distributions compared to spatially unassociated landslides. To do this, landslides in
the inventory are classified into three types: 1) spatially associated (within), which
are those landslides that occur fully inside a previous landslide; 2) spatially associated
(partial), which are those landslides that occur partially within (i.e. cross the
boundary of) a previous landslide, and 3) spatially unassociated, which are those that
occur completely outside of a previous landslide (e.g. Fig. 2.7a - ). These types were
defined using the ArcGIS “Select by Location” tool, which identifies all landslides
that were fully within or intersecting a landslide polygon from a previous time slice
within the last 30 years. All landslides not occurring within or intersecting a previous
landslide were classified as being spatially unassociated. Finally, it should be noted
that path dependency determination has previously been shown to be dependent on
the spatial and temporal resolution of the landslide data used to assess it. For

example, Roberts e al (2021) find that the rates and magnitudes of path dependency
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Figure 2.7, Examples of landslide path dependency types.

metrics are sensitive to inventory length, study region size and the size/type of
landslides mapped. As such, all path dependency results presented and discussed
throughout this thesis should be considered in the context of the characteristics and
spatial and temporal resolutions of the ASM-inventory (i.e., annual 30-year temporal
resolution, 15-30 m spatial resolution, 45,000 km* study, and inclusion of only recent

rainfall-triggered landslides without larger scale relict failures).
2.4.2 Landslide geometry

Landslide geometries and shapes are known to vary significantly between trigger-
types, landslide types and geomorphic settings (e.g., Taylor et a/ 2018) and across
landslides of different path dependency types (e.g., Samia et al 2017b). Here,
landslides geometries within the ASM-inventory are quantified according to two
metrics: Aspect Ratios (AR) and roundness. In essence, both metrics allow a basic
quantification of landslide shape, which as outlined in the section below can provide
useful insight into landslide type in the absence of field validated landslide
observations. The aspect ratio essentially defines the degree of landslide elongation,
i.e., whether a landslide is round (ratio of 1) or tending towards “long and thin” (a

high aspect ratio). Similarly, as outlined in the sections below, roundness is a basic
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measure of landslide shape that defines how close to perfectly round a landslide is
(e.g., Samia et al 2017b). It should also be noted that other methods do exist for
quantifying landslide shape. For example, Taylor et al (2018) present an updated
methodology for assessing landlside shape using various assumptions of landslide
ellipticity. However, the method used by Taylor et al (2018) is more time-
consuming to undertake and, as it is a newer methodology, has been less commonly
applied to other landslide datasets. Consequently, as the geometric analysis forms
only a minor part of this project, it was decided that the more time-efficient and
commonly used AR and roundness methods were more appropriate, as these allow
a quick and unbiased comparison of our data to other data sets in the literature.
However, given the extensive nature of the ASM-inventory, it is acknowledged that
assessing the geometries using other methods such as that presented by Taylor et al.

(2018) would be an interesting area of future study.
2.4.2.1 Aspect Ratio (AR)

In the literature, 2-D landslide shape is commonly described by the landslide aspect
ratio (length/width) (e.g., Parise & Jibson 2000; Tian et al 2017, 2020; Roback et al
2018, Taylor et al, 2018). To obtain landslide lengths and widths, the ArcGIS Pro
Minimum Bounding Geometry tool was used to fit convex hulls (the smallest convex
polygon that encloses a given feature) to each landslide polygon. The widths (shortest
distance between two vertices of the convex hull) and lengths (longest distance
between two vertices of the convex hull) were then extracted, and the ARs calculated.
Then, following the example of Tian et al (2020) each landslide was classified into
one of three geomorphic types: AR1 (L/W < 2), AR2 (2 < L/W < 4) and AR3 (L/W >
4) (e.g., Fig. 2.8a - ¢). Type AR1 represents isometric landslides with short run-outs,
likely dominated by slumps and rotational slides, whilst Type AR2 represents more
longitudinal landslides with moderate run-outs, likely dominated by translational
slides and soil slips (Parise & Jibson 2000). Type AR3 represents elongated long-
runout landslides that are likely dominated by flows. It should be noted that this
method always assumes that the longest axis is downslope, and thus that the AR can

never be less than one. Consequently, this method does not account for “short-fat”
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Figure 2.8, Examples of landslide Aspect Ratio (AR) types, where ARI has L/W =< 2, AR2

has L/W =2 -4, and AR3 has L/W > 4.

landslides which have along-axis perpendicular to the slope. However, by comparing
how the orientation of the long-axis compares to the aspect of the hillslope on which
it occurs, it is possible to assess how many of such “short-fat” landslides are in the
inventory. It is found that 99.4% of the landslides have a long-axis orientated within
75° of the hillslope aspect, and of the 0.6% that do not, only 37 landslides had an
AR>2, i.e., had along-axis significantly longer than the short-axis and not orientated
downslope. As such, this methodology sufficiently accounts for the vast majority of

landslides.
2.4.2.2 Roundness

Roundness is a basic measure of shape introduced by Samia et a/ (2017b) that
quantifies important differences between landslide geometries without making
assumptions about underlying landslide shape. Samia et al (2017b) define roundness

as:
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theoretical circular perimeter

Roundness = -
actually measured perimeter

Equation 2.2. Roundness.

Where, the theoretical circular perimeter is the perimeter a landslide would have had

it if was perfectly round with the same area (AL):

. . . A
Theoretical circular perimeter = 2n (?L)

Equation 2.3. Theoretical Circular Perimeter.

A value of one would indicate that a landslide was perfectly round, whereas values
approaching zero represents increasingly elongate, or long-runout, landslides.
Roundness values were calculated using Equations 2.2 and 2.3 from the areas and

perimeters obtained for each landslide using standard GIS geometry tools.
2.4.3 Landslide size

Landslide size distributions are typically characterised according to the probability

density function of landslide areas p(Ar) (Malamud et al 2004b):

1 9N

p(4,) =

Equation 2.4. Probability density function oflandslide area.

Where Nir is the total number of landslides in the inventory, A is landslide area,
and 8N is the number of landslides with areas between A; and A, + §A;. Landslide
area probability density functions typically exhibit power-law decay with
exponential roll-over at smaller landslide areas that can be modelled by a three-

parameter inverse-gamma distribution, as defined by:

paf il = [T [(5) " e [ 25

x+ n? x+ n?

Equation 2.5. Three-parameter inverse-gamma distribution.

Where a controls the exponent of the three-parameter inverse-gamma power law
(i.e., the steepness of the right tail of the power-law), n controls the steepness, or
bend, of the left-side tail of the distribution , and A controls the position of the
rollover (Malamud et a/. 2004a, b; Taylor et al. 2018). The position of the rollover,

which represents the size of the most frequent landslides, is typically used as a way
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of comparing the completeness of different inventories as it indicates the landslide
area below which the three-parameter inverse-gamma distribution decay observed
for medium and larger landslides no longer applies. The exponent of the three-
parameter inverse-gamma distribution describes the rate at which the probability of
getting proportionally larger landslides decreases. A larger exponent indicates that
the probability of getting larger events is decreasing quickly, and thus that
proportionally larger landslides are contributing less to each inventory. Conversely,
a smaller exponent indicates that the probability of getting larger events is decreasing
more slowly, and thus that larger landslides are contributing more to each inventory
(Van Den Eeckhaut et a/ 2007a; Borgomeo et al. 2014). Finally, n can be physically
understood as describing the likelihood of getting smaller landslides, with a higher
value of n equating to a ‘heavier tail’ (i.e., the left-hand tail dies off more slowly),
where the likelihood of getting smaller landslides is decreasing more slowly (Taylor

etal 2018).

Here, the LANDSTAT/LAMPRE software (version 10; Rossi & Malamud 2014) is
used to fit the three-parameter inverse-gamma distribution (Malamud et a/ 2004a;
Equation 2.5) to the probability density functions of the entire ASM-inventory, as
well as to eight subsets of the inventory. These subsets were types AR1, AR2, AR3,
spatially associated (partial) and spatially unassociated, as well as for landslides sub
divided by the tectonic unit in which they occurred; the Sub-Himalaya, Lesser
Himalaya, Greater Himalaya and Tethyan Himalaya. This software uses Maximum
Likelihood Estimation (MLE) to optimise the parameters of the probability density
function and a bootstrapped (here with 1000 simulations) Kolmogorov-Smirnov (K-
S) test to estimate parameter uncertainty and overall goodness of fit of the inventory
data to the fitted distribution. This goodness of fit is given by the p- and D-values of
each case. If the p-value is > 0.01, then the null hypothesis that the actual data can be
well fitted with a three-parameter inverse-gamma distribution cannot be rejected,
whilst the D-value represents that largest distance between the actual data and the
fitted three-parameter inverse gamma distribution. This approach was found to

require approximately 200 landslides in a given dataset to obtain a robust fit.
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2.4.4 Landslide spatial distributions

Quantifying the controls and characteristics of l