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Preface

This thesis is a contribution to a field of mathematics which, for the past hundred years or so,
has been known as semigroup theory. This first sentence already presents the reader with a
curious situation: certainly, no mathematician (or otherwise) would claim that the sentence
is a mathematical statement; and yet, simultaneously, its meaning could only be understood
by a mathematician, for nobody else (sound of mind) would be aware of what a “semigroup”
is. In this way we would reach the somewhat puzzling conclusion that the first sentence of
this (mathematical) thesis is a non-mathematical sentence, which nevertheless nobody but a
mathematician could understand. In light of this, I would like to revise my first sentence.

Before this revision, however, I wish to humanise the abstract topics which are treated within
these pages. In a very primitive form, the subject matter of this thesis has been around since
the Palaeolithic era. Consider the following situation, based on one considered by Lentin.1 Let
us suppose an ancient bead-maker has many coloured beads. They string together these beads
in many patterns, which are then assembled to larger necklaces. They may ask themselves the
question: I take three patterns. I repeat the first once, the second twice, and the third three
times, and then string them all together into one necklace in that order. Is there some pattern
which, when repeated four times, lets me form the same necklace? The answer turns out to be
“yes”; I have drawn out one such solution below, where the beads of a given pattern are kept
together by small pieces of string. The two rows, each considered as a whole, are identical.

r g g g r g g g r g g g r g g g

r g g g r g g g r g g g r g g g

Symbolically, if x, y, z represent the three patterns and x, yy, zzz represent the prescribed
repeating of these patterns, then one has a necklace xyyzzz. The question above asks: is there
some pattern of beads w such that xyyzzz is the same necklace as wwww? That is, can we
find some patterns x, y, z, w such that xyyzzz = wwww? Let r denote a red bead, and g a
green bead; let rg denote the pattern with a red bead followed by a green bead, and gr a green
followed by a red, etc. The above pictorial solution to our problem then becomes x = rgggr,
y = gggr, z = g, and w = rggg. The necklace becomes rgggrgggrgggrggg. This solution is
given symbolically below; the reader is invited to compare it to the pictorial solution.

x︷ ︸︸ ︷
rggg︸︷︷︸

w
︸︷︷︸

w

r

y︷︸︸︷
ggg︸︷︷︸

w

r

y︷ ︸︸ ︷
ggg r

z z z︷︸︸︷
ggg︸ ︷︷ ︸
w

This bead problem is an example of a question which belongs to the realm of combinatorial
semigroup theory. It is a difficult problem in full generality; giving a procedure for solving

1A. Lentin, “Équations dans les monoïdes libres”, Math. Sci. Humaines, 1970, 31: 5–16.
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10 Preface

“bead equations” was only accomplished in the 1980s, in a very long and incredibly intricate
paper.2 Human consciousness is a creative one, and excels at spotting patterns; for this reason
there seems to be no doubt that this kind of combinatorial thinking, of overlapping patterns and
of noticing possible subdivisions, would have been present in the minds of the bead-makers,
if only subconsciously. One finds this proto-combinatorial mindset present also in Antiquity.
Building on the ideas of atoms and the indivisible, as developed by Leucippus and Democritus
in the 5th century BCE, Lucretius (99–55 BCE) in his De rerum natura argued in favour of this
view by noting the divisibility of sentences into individual words; words into individual letters;
and finally the indivisibility of letters themselves.3 This thinking, of stringing letters together as
one strings beads together, which seems so very natural to us after centuries of being exposed
to it, is also combinatorial in nature. Indeed, it is precisely by virtue of this naturality that we
could in the first place imagine a bead to be represented by the letter r or g; had we not had
this implicit combinatorial mindset, we would when faced with the word rgggrgggrgggrggg
be utterly unable to understand the connection with beads, and only read the word as some
chant or guttural uttering.

Let us consider a slightly more abstract problem. Let us say our bead-maker could, at any
point, replace any two adjacent red beads by exactly three green beads anywhere inside any
necklace they have made. Conversely, any three adjacent green beads could be replaced with
two red beads. Symbolically, we impose that the equality rr = ggg hold. Given two necklaces,
one could ask: which necklaces can be transformed into one another? For example, the necklace
grrg could be transformed into the necklace ggggg, by replacing the interior red beads, and this
latter necklace could be transformed into the necklace ggrr, by replacing the right-most run of
green beads. Thus, grrg and ggrr are, in this sense, equivalent necklaces, even though there
is no single transformation that turns one into the other. It thus seems like there is something
non-trivial in telling necklaces apart. Is there a procedure by which, given two necklaces, one
can always tell if the necklaces are the same, or not? For example, are the necklaces rrgg and
ggrr the same? It may come as a surprise to the reader that the general problem of, given an
equality u = v of two patterns of red and green beads (e.g. rgrrg = rgg or gg = ggr), finding
a procedure for telling necklaces apart with respect to this form of equality, remains even today
an open problem! Indeed, I recently wrote an extensive survey whose subject matter is this
very problem, and the century-long history of attempts to solve it.4

In modern terminology, the first bead problem posed above is asking for solutions to the
Diophantine equation xy2z3 = w4 over a free monoid; the second is asking for a solution to
the word problem in the monoid Mon⟨r, g | r2 = g3⟩ and, more generally, for a solution to the
word problem in one-relation monoids Mon⟨r, g | u = v⟩. These are fundamental questions
about free monoids. To be clear, our bead-maker, through no fault of their own, would not
have been asking these more abstract questions about free monoids, nor would they have been
aware that these objects are what they were subconsciously studying. For this reason, and
somewhat regrettably, it would therefore not be terribly accurate to say that the first semigroup
theorists worked alongsidemammoth hunters. Instead, the theorywould lay dormant, awaiting
an appropriate level of mathematical maturity to be attained by humanity before it could be
treated. To put it mildly: this would take some time. In the words of Lentin: “adieu, monoïdes

2G. S. Makanin, “The problem of the solvability of equations in a free semigroup” (in Russian), Mat.
Sbornik 1977, 103(2): 147–236.

3Lucretius, De rerum natura, I, verses 823–826; II, verses 688–694; III, verses 1013–1018.
4C.-F. Nyberg-Brodda, “Theword problem for one-relationmonoids: a survey”, Semigroup Forum, 2021,

103:2, 297–355.
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libres, adieu pour des siècles!”5 It would not be until the early 20th century that a more general
and abstract framework would develop, allowing for proper investigations of free monoids and
quotients of the same. This framework is the realm of combinatorial semigroup theory.

Palaeolithic considerations completed, I am now able to present a revised, non-antinomic,
and meaningful first sentence: this thesis represents a contribution to combinatorial
semigroup theory. Even if one disregards our bead-maker as a stretch, this combinatorial
semigroup theory is older than the “ordinary”. By “ordinary”, I here mean that point of view
which studies semigroups from the point of view of their properties as abstract algebraic
objects, rather than from that which regards them as combinatorial objects. In other words,
ordinary (or perhaps “axiomatic”) semigroup theory is the area which studies (by means that I
shall not describe) the properties of collections of objects, and the means by which these
objects can be composed with one another to form another object of the collection. Thus,
adding integers is a semigroup-theoretic operation; as is composing functions; as is
composing beads to form necklaces. The advantage of studying such general and ubiquitous
operations from an abstract point of view is the general applicability of any results; the
drawback is that the innumerable disparate natures of the objects in question means that one
can rarely prove anything at all for the class of all semigroups. Thus, to approach semigroups
from this internal, axiomatic point of view, one must always begin with a restriction to some
interesting class. There is nothing particular about semigroup theory in this regard; quoting
M.-P. Schützenberger, “it is not the general notion of a group that is interesting; it is always a
very precise class of groups that we study. Lie groups are very special objects; they are
admirable due to their applications, but their properties teach me nothing about Coxeter
groups, and vice versa.”6 However, the approach via combinatorial semigroup theory is not
such a restriction. It represents a different perspective on semigroup theory. One might bear
in mind the words of Roger Lyndon, who describes combinatorial group theory as “just a state
of mind”7. From the point of view lent to us by this state of mind, certain semigroups which
by pure means of axiomatisation would seem entirely unnatural (for example, one-relation
semigroups) become natural; while, conversely, certain semigroups which are easy to
axiomatise (for example, von Neumann regular semigroups) seem rather difficult to approach.

It is, for this reason, not an intention of mine (or an opinion of mine) to state that the
approach to the subject of semigroup theory in this thesis, or indeed of combinatorial
semigroup theory in general, is superior to the ordinary. Rather, I wish to convey that once
this combinatorial perspective has been attained, the intricate world of semigroup theory
opens up to all areas of mathematics, and researchers from vastly different backgrounds
should find something they will (at the very least) recognise within. That is not to say that
anyone doing so shall find themselves one morning woken up, like Grigor Samsa, as a
monstrous semigroup theorist. Indeed, it grants the benefit of attacking a given problem with
a multitude of methods form a multitude of branches, each drawn from vast and disparate
fields; one may study the overlaps of words or their language-theoretic properties; describe
rewriting systems and their (co)homological properties; describe and study algebraic
structures graphically; investigate sequences of elementary transformations as topological
homotopy relations or decision-theoretically; simulate semigroups via finite automata; and

5A. Lentin, ibid., p. 6.
6A. Connes; A. Lichnerowicz; M.-P. Schützenberger, Triangle of thoughts, (Providence, RI: Amer. Math.

Soc., 2001), p. 30.
7R. Lyndon, “Problems in combinatorial group theory”, Ann. of Math. Stud. 111, 1987, 3–33, p. 3.



12 Preface

each such branch (and countless others), serving to understand some class of combinatorial
semigroups, itself branches indefinitely. What a remarkable world of endless discovery!

I have deliberately not given an explicit definition of combinatorial semigroup theory in
this preface. If one were to attempt such a definition, one ought to bear in mind that the first
appearance of the term combinatorial group theory was as the title of the (now famous) 1966
book by Magnus, Karrass & Solitar.8 The very first sentence of the book by Chandler & Magnus
on the history of that subject begins: “combinatorial group theory may be characterised as
the theory of groups which are given by generators and relations”.9 Perhaps, then, one could
add the prefix semi- to both occurrences of the word group in that sentence, and thereby have
obtained a characterisation of combinatorial semigroup theory? Again quoting Lyndon, “this
hardly does justice to the goals or methods of the subject”. It seems better to leave the area
implicitly defined; there is not yet any book published with the title Combinatorial Semigroup
Theory. On the other hand, there are many connections with the group-theoretic perspective
in this thesis. The “father of semigroup theory”, A. K. Sushkevič, wrote in his own Ph. D.
thesis (published 99 years ago!) that a problem about semigroups – or indeed monoids – would
be considered solved if it could be reduced to a problem about groups.10. This principle will
be applied consistently also in this thesis; for example, when reducing problems about special
monoids to their group of units in Chapter 3.

One part of the title of my thesis remains to be explained. The importance of the word
problem to combinatorial semigroup theory cannot be overstated. Indeed, the first paper
dealing whatsoever with combinatorial semigroup theory studies only this problem, in a form
that is remarkably similar to the modern formulation of the same; this is the 1914 paper by the
Norwegian mathematician A. Thue.11 This paper was the true genesis of combinatorial
semigroup theory, to borrow a turn of phrase from H. Wussing.12 It was published three years
after the appearance of a much more famous paper by M. Dehn13, which introduced the word
problem for groups, but unlike Dehn’s highly topological considerations the phrasing by Thue
is entirely combinatorial. Thue’s paper laid the groundwork for the theory of rewriting
systems (also called Thue systems) in an attempt to solve this problem. In 1942, M. Newman,
one of the many early British pioneers of semigroup theory who worked at Bletchley Park
during the war, published an article which properly set up the combinatorial foundations of
the theory of such systems, including a proof of a key lemma which today bears his name.14

Newman does not refer to Thue’s paper. It seems instead that the first to recognise the
importance of that paper was E. Post, when he in 1947 gave one of that magnificent year’s
proofs of the general unsolvability of the word problem for semigroups; Thue’s name appears
already in the title of the paper.15 Many have worked on these problems, and other related
problems since; far too many to recount here. We mention only that another famous member

8W. Magnus; A. Karrass; D. Solitar, Combinatorial group theory. Presentations of groups in terms of
generators and relations, (New York-London-Sydney: Interscience Publishers 1966).

9B. Chandler; W. Magnus, The history of combinatorial group theory (New York: Springer, 1982), p. 3.
10A. K. Sushkevič, The theory of operations as the general theory of groups, Ph. D. thesis, (Voronezh State

University, 1922). 80 pp. The quote is taken from §38.
11A. Thue, “Problem über Veränderungen von Zeichenreihen nach gegebenen Regeln”, Christiana [Oslo]

Videnskaps-selskabs Skrifter, I. Math. naturv. Klasse, 1914, 10.
12H. Wussing, Die Genesis des abstrakten Gruppenbegriffes. Ein Beitrag zur Entstehungsgeschichte der

abstrakten Gruppentheorie (Berlin: VEB, 1969).
13M. Dehn, “Über unendliche diskontinuierliche Gruppen”, Math. Ann. 1911, 71(1): 116–144.
14M. H. A. Newman, “On theories with a combinatorial definition of ‘equivalence”’, Ann. of Math. (2),

1942, 43: 223–243.
15E. Post, “Recursive unsolvability of a problem of Thue”, J. Symbolic Logic, 1947, 12: 1–11.
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of Bletchley Park, Alan Turing, proved in 1950 that the word problem is unsolvable for
cancellative semigroups.16 This would be his last paper on pure mathematics. To end this
informal discussion on the word problem, I would like to quote P. Hall, writing in 1958: “in
spite of, or perhaps because of, their relatively concrete and particular character, [word
problems] appear, to me at least, to offer an amiable alternative to the ever popular pursuit of
abstractions.”17 I have certainly found this to be the case.

Above all, I believe combinatorial semigroup theory is a very human subject. Certainly, the
methods, results, and proofs of this thesis will not appear particularly human (at times, theymay
even appear inhumane) to one not familiar with mathematics, or indeed the subject. However,
I believe that the fundamental questions of combinatorial semigroup theory could be explained
– as our favourite bead-maker has demonstrated with some of the problems – in a short time
to anyone interested. The simple human curiosity which posed such questions in the first place
is never far away.

Throughout this thesis, and especially in Chapter 1, there is an abundance of historical
references and connections. To be clear, this is not a thesis on the history of mathematics.
However, just as history is the accumulated experience of mankind, the history of
mathematics is the accumulated experience of mathematicians. It would be insufferably
arrogant not to take this experience into account. Mathematics, like philosophy, is virtually
inseparable from its history.18 For this reason, I have also made virtually no attempt to
perform such a separation. I will only make two further comments on the presence of history
of mathematics within this thesis. First, W. Magnus, one of the great pioneers of
combinatorial group theory, was in 1934 given the task of writing an article on general group
theory and its history. He consulted Emmy Noether, who gave him the following rather
laconic piece of advice: “First write down what you know. Then check the literature and
expand”.19 In writing this thesis, I have attempted to follow this advice. Finally, there are,
without a doubt, many anachronisms and minor inaccuracies as to the idea history of the
areas of mathematics presented within this thesis. But, quoting J. L. Borges, “reality is partial
to symmetries and slight anachronisms”.20

In many places, including this preface, the reader may already have noted that the presence
of footnotes and additional embellishments somewhat detracts from a perfectly streamlined
presentation of the material. There are two reasons for this. The first is related to the fact
that achieving a truly streamlined presentation is a very difficult task; and, as J. Jaynes puts it,
“poems are rafts clutched at by men drowning in inadequate minds”.21 I hope that such words
may aid in forgiving the addition of such “poems” which constitute this – rather (but hopefully
not all too) often – extraneous material. The second, more important, is that this is how the
material was first presented to me, as I read it, finding new papers; surprising links across
decades and centuries, countries and languages, hinting at a depth that I could not achieve by
a linear narrative. I can only hope that my excitement comes across in my writing!

C.-F. Nyberg-Brodda
September 30, 2021

16A. Turing, “The word problem in semi-groups with cancellation”, Ann. of Math., 1950, 52: 491–505.
17P. Hall, “Some word-problems”, J. London Math. Soc., 1958, 33: 482–496, p. 496.
18Quoting H. Edwards, “Read the masters!”, p. 108; in L. Steen,Mathematics tomorrow, (Springer, 1981).
19Chandler and Magnus, ibid., p. 75.
20J. L. Borges, Fictions; The South. p. 148.
21J. Jaynes, The origin of consciousness in the breakdown of the bicameral mind, (Houghton Mifflin,

Boston: 1976). Quote from p. 256.





Abstract

The subject matter of this thesis is combinatorial semigroup theory. It includes material, in
no particular order, from combinatorial and geometric group theory, formal language theory,
theoretical computer science, the history of mathematics, formal logic, model theory, graph
theory, and decidability theory.

In Chapter 1, we will give an overview of the mathematical background required to state the
results of the remaining chapters. The only originality therein lies in the exposition of special
monoids presented in §1.3, which unifies the approaches by several authors.

In Chapter 2, we introduce some general algebraic and language-theoretic constructions
which will be useful in subsequent chapters. As a corollary of these general methods, we
recover and generalise a recent result by Brough, Cain & Pfeiffer that the class of monoids
with context-free word problem is closed under taking free products.

In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and
completely classify this theory in terms of the group of units. As a result, we generalise the
Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992.

In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise
their language-theoretic properties. As a corollary, we deduce many new results for
one-relation monoids, including solving the rational subset membership problem for many
such monoids. We also prove, among many other results, that it is decidable whether a
one-relation monoid containing a non-trivial idempotent has context-free word problem.

In Chapter 5, we study context-free graphs, and connect the algebraic theory of special
monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric
aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth
rate of special monoids, and prove that a special monoid of intermediate growth is a group.
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Chapter 1

Background and Introduction

Synopsis

In this discursive and definition-heavy chapter we shall give the necessary
mathematical background for the reader to be able to approach and understand
the results and proofs of the following chapters, as well as appreciate the
broader picture into which they fit. None of the results presented in this chapter
should be considered as original. In §1.1 we first present the elements of
semigroup theory, and how it relates to groups and monoids. As part of this, we
present an introduction to some aspects of free monoids and free groups,
including combinatorics on words and the theory of presentations. We present
certain decision problems which will be of interest in this thesis, and certain
structural properties of monoids and groups which aid in solving such problems.
In §1.2 we present the elements of formal language theory and rewriting
systems. This includes an overview of studying the word problem of monoids as
a language-theoretic object. In §1.3, we give an overview of the classical theory
of special monoids, and provide a unification of the various approaches that
have been made to the subject. In §1.4 we give an overview of some aspects of
graph theory. This includes the notion of context-free graphs and Cayley graphs
of monoids and groups. We give an overview of the connection between formal
logic and graphs, and end the section with a brief incursion into geometric
group and semigroup theory. In §1.5, we give a case study of one of the most
fundamental objects of combinatorial group theory – one-relator groups. Finally,
in §1.6 we present a table containing referential material on various properties
and decision problems for different classes of groups.
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Common notation

Throughout this thesis, some notation and definitions will be fixed. The usual notation of set
theory will be adopted. In particular ∈ denotes set membership; ⊂ indicates proper inclusion;
and ⊆ inclusion. The empty set is denoted ∅. The set of natural numbers {0, 1, . . . , } will be
denoted N or ω. The set of integers, rational numbers, and real numbers will respectively be
denoted by Z,Q,R. The first infinite cardinal will be denoted by ℵ0. A countable set is one of
cardinality ≤ ℵ0. When considering a function f : A × B → C , then for every a ∈ A, b ∈ B,
and c ∈ C we will write f(a, b) = c rather than f((a, b)) = c. If R ⊆ X ×X is an equivalence
relation, then for x ∈ X we let [x]R denote the equivalence class of x, i.e. the set of elements
{y ∈ X | xRy}. A function f : A → B is formally a subset of A × B. We will assume the
reader is familiar with the notions of recursive and recursively enumerable sets and functions.

We shall later define groups; once we have done so, we shall assume that all standard notions
from group theory become immediately familiar to the reader (not manywill be necessary). IfG
is a group with a finite index subgroupH such thatH has a property P of groups (for example,
being free), then we say thatG is virtuallyP (for example, being virtually free). That is, a group
G being virtually free is synonymous to G being free-by-finite, i.e. there existing a short exact
sequence

1→ H → G→ K → 1

where H is a free group, and K is a finite group. The commutator [g, h] of two elements g, h
of a group G denotes the element ghg−1h−1. Let P be a property of groups preserved under
isomorphism. A group G is said to be residually P if for every non-trivial g ∈ G there exists a
homomorphism ϕg : G→ H to a groupH with property P such that ϕg(g) ̸= 1. Analogously,
for a monoid (semigroup) property P we define a monoid (semigroup)M to be residually P if
for any pairm,n ∈M withm ̸= n there exists a homomorphism ϕm,n : M → H to a monoid
(semigroup)H with property P such that ϕm,n(m) ̸= ϕm,n(n). We say that a groupG is linear
if it is a subgroup of GLn(F) for some n ≥ 1 and a field F.

Finally, the end of a proof is signified by □, and the end of an example is signified by△.

1.1 Semigroups, monoids, groups

The material herein is standard; we shall base the exposition given on Berstel & Perrin [54],
and include material from Ljapin [283], Clifford & Preston [112, 113], and Howie [222, 224].

A semigroup (S, ·) is a set S together with a binary operation · : S × S → S, called the
multiplication in S, such that · is associative, i.e. x · (y · z) = (x · y) · z. When speaking of a
semigroup (S, ·), we shall often (almost exclusively) refer only to S, the underlying set, when
speaking of the semigroup, keeping the binary operation implicit. We shall generally write
x · y simply as xy, and a simple induction yields that expressions such as xyzw have a definite
meaning, and we need never use parentheses.1 A monoid is a semigroup M in which there
exists an element 1 ∈ M , such that for all x ∈ M we have x · 1 = 1 · x = x. Such an element
is called an identity element ofM . An identity element is always unique.

IfM is a monoid with identity 1, thenm ∈ M is called left invertible (or a left unit) if there
exists some m′ ∈ M with m′m = 1. Symmetrically, we say that m ∈ M is right invertible
(or a right unit) if there exists some m′ ∈ M with mm′ = 1. In these cases, m′ is called a left

1This is what P. Hall calls “the paradox of the pointlessness of punctuation” [199, p. 485].
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(resp. right) inverse form. Note that left and right inverses are not, in general, unique. We say
thatm is invertible if it has both a left inversem′ and a right inversem′′, in which case an easy
exercise shows thatm′ = m′′. A group is a monoidM with identity 1 such that every x ∈M is
invertible. The (necessarily) unique inverse of x is then denoted x−1. Note that (x−1)−1 = x.

LetM be a monoid. If X,Y ⊆M , then by X · Y , or simply XY , we mean the set
XY = {xy | x ∈ X, y ∈ Y }.

This is an associative operation on subsets of M , so e.g. XY Z has a definite meaning for all
X,Y, Z ⊆ M . If x ∈ M , then for brevity we shall write xY resp. Y x rather than {x}Y
resp. Y {x}. If X ⊆ M , then we define X0 = {1} and recursively set Xn = XXn−1. If
X ⊆ M and X2 ⊆ X , then we say that X is closed under multiplication, and we say that X
is a subsemigroup ofM . If additionally 1 ∈ X , then we say that X is a submonoid ofM , and
we denote this byX ≤M . Note that a subsemigroupX of a monoidM can itself be a monoid
without being a submonoid ofM ; that is,X might have an identity without this element being
the identity of M . Such subsemigroups will not be called submonoids. The set of invertible
elements ofM forms a submonoid ofM , and is called the group of units ofM , denoted U(M).
If e ∈ M is such that e2 = e, then e is an idempotent of M . The set of idempotents of M is
denoted E(M). Note that 1 ∈ E(M). For each idempotent e ∈M , the set

eMe = {eme | m ∈M}
is a subsemigroup ofM , and is a monoid with e as its identity element; it is not hard to see that
it is the largest monoid contained inM with this property. The subsemigroup eMe is called the
localisation ofM at e. The group of units U(eMe) of eMe is a group whose identity element
is e. The maximal subgroups ofM is the set {U(eMe) | e ∈ E(M)}. In particular U(M) is a
maximal subgroup ofM .

We will call a congruence ϱ on a semigroup, monoid, or group M any equivalence relation
ϱ ⊆M ×M onM such that, for allm,m′ ∈M and all x ∈M , we have

mϱm′ =⇒ (mx)ϱ(m′x) and (xm)ϱ(xm′).

We define semigroup, monoid, and group homomorphisms in the standard way; in particular, if
φ : M → N is a monoid homomorphism for monoids M,N with identity elements 1M resp.
1N , then we require φ(1M ) = 1N . For a monoid homomorphism φ : M → N , the equivalence
relation ∼φ⊆ M ×M defined by x ∼φ y if and only if φ(x) = φ(y) is easily seen to be a
congruence. This congruence is called the kernel (sometimes nuclear congruence) of φ, and is
denoted kerφ. Conversely, if ϱ is a congruence onM , then the setM/ϱ of equivalence classes
of ϱ has a natural monoid structure inherited from M , and the map M → M/ϱ sending an
element to its equivalence class is a monoid homomorphism with kernel ϱ.

Let M be a monoid and X ⊆ M . The submonoid generated by X is denoted ⟨X⟩, and is
defined as the smallest submonoid of M containing X . Equivalently, it is the set of all finite
(including empty) products x1x2 · · ·xn, where xi ∈ X for every 1 ≤ i ≤ n. We will sometimes
write X∗ instead of ⟨X⟩. In particular, ∅∗ = ⟨∅⟩ = {1}. If ⟨X⟩ = M , then we say that X
generates M , or alternatively that it is a generating set for M . If there exists some X ⊆ M

such that |X| < ℵ0 and ⟨X⟩ = M , then we say that M is finitely generated (by X). If no
such X exists, then we say that M is non-finitely generated. We extend all above notions to
subsemigroups, disallowing empty products. That is, the subsemigroup generated by∅ is not a
well-defined object. For groups, we do need some further comments. IfM is a monoid andX ⊆
M consists entirely of invertible elements, then the subgroup generated by X is the smallest
subgroup ofM containingX . We shall usually denote the subgroup generated byX as ⟨X⟩gp.



20 1. Background and Introduction

Note that, ifX−1 denotes the set of inverses of elements fromX , we have ⟨X⟩gp = ⟨X∪X−1⟩.
We extend the usage of finitely generated subgroup or indeed finitely generated groups to this

context; however, note that a subgroup of a monoid is finitely generated (as a subgroup) if and
only if it is finitely generated as a submonoid. A group is also finitely generated as a group if and
only if it is finitely generated as a monoid. Thus, we may without ambiguity speak of finitely
generated groups. The benefit of defining finite generation as above is that a finitely generated
group means essentially the same to us as it does to an ordinary harmless group theorist.2

A left ideal of a semigroup (or monoid) S is a non-empty subset I ⊆ S such that SI ⊆ S.
Symmetrically, a right ideal is a subset I ⊆ S such that IS ⊆ S. A two-sided ideal, or simply
ideal, is one which is a left and right ideal. The ideal structure of semigroups and monoids
is rich.3 While, for the most part, we are not concerned with this structure, there are some
fundamental equivalence relations, known as Green’s relations, which are based on this ideal
structure. These relations will be primarily used for notational convenience. One could instead,
if so inclined, directly phrase these relations in terms of divisibility conditions on the elements.
Given a monoidM , we define four equivalence relations R,L ,J , and H , as follows:

mRm′ ⇐⇒ mM = m′M,

mLm′ ⇐⇒ Mm =Mm′,

mJm′ ⇐⇒ MmM =Mm′M,

mH m′ ⇐⇒ mRm′ and mLm′.

These relations were first introduced by J. Green in 1951 [174], and form the cornerstones
of large swathes of semigroup theory. Note that for semigroups one must (of course) append
an identity to the semigroup in order for the above relations to be equivalence relations. Now
for any monoid, we have R,L ⊆J , and it is not hard to show (see e.g. [54, Proposition 5.1])
that R ◦L = L ◦R, where ◦ denotes composition of binary relations. This relation R ◦L

is usually denoted D . We shall not need many non-trivial properties of Green’s relations.
Various restricted classes of monoids are of interest in this thesis (and beyond). A monoid

M is said to be left cancellative if for all x, y, z ∈ M , we have xy = xz implies y = z. We
symmetrically define right cancellative, and say thatM is cancellative if it is both left and right
cancellative. All groups are clearly cancellative. A monoidM is said to be regular if for every
x ∈M there exists some y ∈M such that xyx = x and yxy = y. Such a y is called an inverse
(or pseudo-inverse) for x. Note that it might not be the case that e.g. xy = 1. If a regular monoid
has unique inverses, thenM is said to be an inverse monoid. Overloading the notation −1, we
shall in inverse monoids denote the unique inverse of an element x by x−1, and note that this
terminology satisfies such identities as (xy)−1 = y−1x−1. However, this inverse need not be a
group inverse. Context will always make it clear which type of inverse is discussed.

We shall now describe in more detail some aspects of the theory of a certain class of
monoids, called free monoids. Studying free monoids from a combinatorial perspective is
known as combinatorics on words, for reasons that will soon become apparent.

2There are counterintuitive results for finitely generated semigroups, however, which indicate the
benefits of considering monoids rather than semigroups. The direct product M × N of two monoids
M,N is defined as the monoid with underlying set the Cartesian product of M and N , and the natural
associated multiplication. The direct product of two finitely generated groups is clearly finitely generated,
and similarly one can show that a direct product of two finitely generated monoids is finitely generated.
However, the direct product of two finitely generated semigroups need not be finitely generated [420].

3Note that any ring is a monoid with respect to multiplication; hence the study of monoid ideals
contains the study of ring ideals. However, there exist (easy examples of) monoids which cannot be
“extended” to become the multiplicative structure of a ring [223].
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1.1.1 Combinatorics on words

LetA be a finite set. ThenA is an alphabet. A word w overA is any finite sequence of elements
(a1, a2, . . . , an), where ai ∈ A for all 1 ≤ i ≤ n. The empty sequence is denoted ε or 1,
depending on the context, and is called the empty word. A sequence of length one is called
a letter . A word (a1, a2, . . . , an) will for brevity be written a1a2 · · · an. Thus we have A ⊆
A∗. The free semigroup A+ on A consists of all non-empty words over A, together with the
operation of word concatenation, i.e. the result of writing one word followed by the other.
This is clearly an associative operation. The free monoid A∗ on A consists of all words over
A, together with the same operation of word concatenation. The free monoid is also, at times,
denoted as A<ω . As sets, A∗ = A+ ∪{ε}. Equality in the free monoid or semigroup is denoted
≡, and is called graphical equality of words.4 We shall presently, in the theory of presentations,
see why this notation is useful. The length |w| of a word w ≡ a1a2 · · · an is the number of
letters n in w. Note that |ε| = 0, and it is the unique word with this property. To simplify
notation, words are sometimes written using exponents: for w ∈ A∗, define w0 := ε, w1 := w,
and wn+1 := wwn for n ≥ 1. The reverse wrev of a word w ≡ a1a2 · · · an is simply the word
anan−1 · · · a1. Note that εrev = ε, and that reversal is an anti-homomorphism, i.e. (uv)rev =

vrevurev for all words u, v ∈ A∗. For a set X ⊆ A∗, we set X rev = {xrev | x ∈ X}. For a fixed
total order <A of the finite set A, we define the short-lex order <s on the free monoid A∗ as
follows: for distinct u, v ∈ A∗, if |u| < |v|, then u <s v. If |u| = |v|, then if u ≡ a1a2 · · · ak
and v ≡ a′1a′2 · · · a′k where ai ∈ A for 1 ≤ i ≤ k, with k = |u| = |v|, then let j be the leftmost
index 1 ≤ j ≤ k such that ai and a′i differ. Then u <s v if and only if ai <A a′i. For example,
if A = {a, b} with a <A b, then aba <s abbab, and aaa <s aba. The shortlex order should be
familiar to anyone who can compare the size of numbers in the decimal system.

The free monoid is a more natural object than the free semigroup, especially when
regarded as a combinatorial object. One key reason for this is simple, and underpins much of
combinatorics: much like the empty union

⋃
∅ is ∅; like the empty sum of integers is defined

to be 0; and like the empty product of integers is defined to be 1; we have that the empty
product of words is defined to be ε. Hence in a free semigroup not every product is
well-defined (!). Doing combinatorial semigroup theory with free semigroups is thus not
entirely unlike doing combinatorics without 0. For this reason, free monoids will play a far
more prominent rôle in this thesis than their semigroup counterpart.

The free group on A requires some more work to define. The free group on ∅ is the free
monoid on∅, i.e. the trivial group. IfA ̸= ∅, then letA−1 be a set of symbols such that (i)A−1

is in bijective correspondence withA via a map −1; and (ii)A∩A−1 = ∅. A word overA∪A−1

is called freely reduced (or simply reduced) if it does not contain a subword of the form xx−1

or x−1x for some x ∈ A. The elements of the free group on A are the set of reduced words.
The free reduction of a word w ∈ (A ∪ A−1)∗ is an operation which is defined recursively as
follows: if w is reduced, then the free reduction of w is simply w itself. If w contains some
subword of the form xx−1 or x−1x for some x ∈ A, i.e. w ≡ w0xx

−1w1 or w ≡ w0x
−1xw1

for some w0, w1 ∈ (A ∪ A−1)∗, then the free reduction of w is defined as the free reduction
of the word w0w1. It is not hard to show that the free reduction of a word is uniquely defined
(regardless of the order in which the reductions are carried out) using elementary results from
rewriting systems. For example, the free reduction of the word xyyx−1xy−1xx−1 is xy. The
operation of the free group is reducing concatenation, which first concatenates the two freely

4Especially in older Soviet literature, graphical equality is usually denoted ≖.
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reduced words in question, and then freely reduces the resulting word. We say that a word is
cyclically reduced if it is reduced and is not of the form xwx−1 or x−1wx for any letter x ∈ A.
We shall denote by σa(w) the exponent sum of the letter a ∈ A in the word w (over A or over
A ∪ A−1). This is defined recursively as follows: if |w| = 0, then σa(w) := 0. If w ≡ a±1w′,
then σa(w) := σa(w

′) ± 1. If w ≡ b±1w′ for some other letter b, then σa(w) := σa(w
′). For

example, σa(aba−1ab−1) = 1, and σb(aba−1ab−1) = 0.
A word w ∈ A∗ is a prefix of w′ ∈ A∗ if there exists a word u ∈ A∗ such that w′ ≡ wu, and

it is a proper prefix if u is non-empty. The empty word is a proper prefix of every word except
itself. We define suffix and proper suffix entirely symmetrically. The word w ∈ A∗ is called a
subword (or factor) of w′ ∈ A∗ if there exist u, v ∈ A∗ such that w′ ≡ uwv, and it is called a
proper subword if u or v is non-empty. For example, ghm is a subword of arghmgog, but agmo is
not. Clearly every prefix and every suffix of a word is also a subword of that word. We say that
a word is self-overlap free (sometimes also called a bifix-free word or hypersimple word) if none
of its non-empty proper prefixes is also a suffix. For example, the word ababb is self-overlap
free, but the word xyzabcxyz is not.

Let A be an alphabet. A subset X ⊆ A∗ is called a code over A if for all n,m ≥ 1 and
x1, . . . , xn, x

′
1, . . . , x

′
m ∈ X , we have that the condition

x1x2 · · ·xn ≡ x′1x′2 · · ·x′m
implies that n = m and

xi ≡ x′i for i = 1, . . . , n.

In other words, a code is a subset of a free monoid which freely generates a free submonoid. In
particular, a code never contains the empty word 1. Any subset of a code is clearly a code, and
the empty set is a code. In fact, it is not hard to show that if X ⊆ A∗ with X ̸∈ {1}, then ⟨X⟩
is a free monoid if and only if X is a code.5

For any alphabetA, the setX = Ap for any p ≥ 1 is a code, called the uniform code of words
of length p. As in [54, Example 1.3], if A = {a, b} and X = {aa, baa, ba}, then X is a code. It
is surprisingly tricky to algorithmically check whether a finite set of words is a code; however,
it is decidable, and an explicit algorithm can be found in [54, I.3].6

We say that a code X ⊆ A∗ is a prefix code if no word in X is a proper suffix of another
element in X . Similarly, a code X ⊆ A∗ is a suffix code if no word in X is a proper prefix of
another element inX . For example, if α ∈ A+ is a self-overlap free word, then it is not hard to
show that α(A∗ \A∗αA∗) is a suffix code (see e.g. [264, Lemma 3.4]). ClearlyX is a prefix code
if and only if X rev is a suffix code. We say that a code X is a biprefix code if it is a prefix and a
suffix code. The sets X = {ab, aabb, aaabbb} and Y = {abba} are both biprefix codes, while
Y = {abba, bba} is not, as bba is a suffix of abba. We shall primarily be interested in biprefix
codes in this thesis, but the notion of prefix and suffix codes will be notationally useful when
discussing compression in Chapter 4. Note that a uniform code is clearly always a biprefix code,
and if X is a biprefix code, then Xp is again a biprefix code for any p ≥ 1. We say that a code
X is an infix code if no word from X is a proper factor of another word in X . We say that

5Any subgroup of a free group is itself a free group. This is a famous theorem from 1921 due to Nielsen
[376] (in the finitely generated case) and 1927 due to Schreier [426] (in general). The corresponding
statement is not true for submonoids of free monoids. That is, there are submonoids of free monoids
which are not free (!). Thus there are submonoids of a free monoid which cannot be generated by a code.

6One can extend the notion of codes from subsets of free monoids to subsets of general monoids. There
are, however, many easy examples even of matrix monoids in which the problem of deciding whether a
finite subset is a code is undecidable, cf. §1.1.4 and [259, 103, 55].
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a code X is overlap-free if no pair of words from X have a non-trivial overlap, i.e. no proper
non-empty prefix of any word is also a proper non-empty suffix of a word, and vice versa. Thus,
for example, neither {ab, bba} nor {abba} are overlap-free, but {ab, aabb} is overlap-free.

1.1.2 Presentations

For all their importance in the theory of codes, free monoids and semigroups will play an even
more central rôle in this thesis due to the theory of presentations. A monoid presentation is an
ordered pair (A,R), where A is a set and R ⊆ A∗ × A∗. The set A is called the generators
of the presentation, and the set R is called the set of defining relations of the presentation.
A semigroup presentation is an ordered pair (A,R), where A is a set and R ⊆ A+ × A+,
and otherwise the terminology is identical. A group presentation is an ordered pair (A,R),
where A is a set in bijective correspondence with a set A−1 such that A ∩ A−1 = ∅, and
R ⊆ (A∪A−1)∗×(A∪A−1)∗. Wewill generally denote a monoid presentation asMon⟨A | R⟩,
a semigroup presentation as Sgp⟨A | R⟩, and a group presentation as Gp⟨A | R⟩. Wewill denote
by ⟨A | R⟩ an arbitrary presentation, if no distinction is needed as to whether it is a semigroup,
monoid, or group presentation.

Presentations have a rich and long history, which we cannot go into at any depth here; we
do, however, mention briefly the fact that W. R. Hamilton [201] in a brief note in 1856 gave the
first ever presentation of a group (the alternating group A5) in his study of his remarkable and
fascinating icosian calculus, though he did not at all phrase it in the language of e.g. free groups.7

Instead, this was done by von Dyck [145] in 1882, who formalised the theory of presentations
(of groups), and gave presentations for the finite cyclic groups Cn and the dihedral groupsDn

for all n ≥ 1, as well as presentations for A4, S4, and A5. Writing down presentations for the
alternating groups An and the symmetric groups Sn for arbitrary n ≥ 1 would not be done
until 1896, by E. H. Moore [360].8

Returning to definitions, if ⟨A | R⟩ is a presentation (of any type), and if (u, v) is a defining
relation of the presentation, then we will generally write that u = v is a defining relation of
(A,R). We may also e.g. use the following two pieces of notation interchangeably:

⟨A | ui = vi (i ∈ I)⟩ ↔ ⟨A | {(ui, vi) | i ∈ I}⟩,
when I is some indexing set for the elements ofR. Let ⟨A | R⟩ be a presentation. IfA andR are
finite, then we say that the presentation is finite. If |A| ≤ ℵ0 andR is a recursively enumerable
set, then we say that ⟨A | R⟩ is a recursive presentation. Before continuing with the forthcoming
connection between semigroup/monoid/group presentations and semigroups/monoids/groups,
we emphasise the general fact that this thesis will almost exclusively concern itself with finite
presentations. We shall never consider cases when |A| > ℵ0.9

The key part of a presentation is the natural algebraic structure which one can associate to it.
Any presentation ⟨A | R⟩ induces an equivalence relation ϱR on the corresponding free object

7I thank J. Stillwell for bringing this fact to my attention.
8I thank J. East for bringing this fact to my attention.
9There are many good (?) reasons to be somewhat frightened of infinitely presented monoids and

groups, and of uncountable monoids and groups in general. For example, there exists, by Shelah [442],
a group of cardinality ℵ1 in which every proper subgroup is countable. The existence of such groups
was predicted by Kurosh [267]. Furthermore, assuming the continuum hypothesis, the group constructed
by Shelah does not admit any non-trivial topology as a topological group. The unnerved reader may be
assured that this thesis will not stray into questions regarding questions such as the continuumhypothesis,
and will only deal with the safety of the harmless countable.
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on A. First, let ∼R denote the relation
u ∼R v ⇐⇒ u ≡ u0ru1, v ≡ u0su1 and (r, s) ∈ R or (s, r) ∈ R.

If u ∼R v, then we say that u and v are related by a single elementary transformation. Let
ϱR denote the symmetric, transitive closure of the reflexive, transitive closure of ∼R. Then
ϱR is clearly a congruence on the free object on A, and is called the congruence induced by
R. Thus, given a presentation ⟨A | R⟩ of any type, if FA denotes the corresponding free
object on A then the quotient FA/ϱR has the structure of the same type as the presentation.
We then say that FA/ϱR is the object of that type defined by the presentation. For example,
the free commutative monoid N × N is isomorphic to the monoid defined by the presentation
Mon⟨a, b | ab = ba⟩, and the free abelian group Z × Z is isomorphic to the group defined by
the presentation Gp⟨a, b | ab = ba⟩. If u, v are two elements of FA andM = FA/ϱR, then we
will write u =M v (or u = v inM ) if uϱRv. We will say that u represents the elementm ∈M
if m = [u]ϱR

. The homomorphism associated with the quotient FA/ϱR will be denoted by
πR : FA → FA/ϱR, and is called the canonical homomorphism associated with the presentation
⟨A | R⟩. For example, a word u represents the identity element 1 if and only if πR(u) = 1 if
and only if uϱRε if and only if u =M 1.

Remark 1.1.1. Although monoids and semigroups are very similar, sometimes the contrast
between semigroup and monoid presentations becomes quite important. For example, the
monoid defined by the presentation Mon⟨a | a2 = a⟩ is certainly not a group, as an easy
induction proves that no non-empty word represents the identity element; indeed, this
monoid has exactly two elements {1, a}, with multiplication defined by setting 1 · 1 = 1 and
1 · a = a · 1 = a · a = a. In particular, a is not invertible. However, the semigroup defined by
the presentation Sgp⟨a | a2 = a⟩ has only one element a with multiplication defined by
a · a = a, and is a group with identity a.

Because of the above remark, semigroup presentations will not be used in this thesis; instead,
monoid and group presentations will hold centre stage. Further to this, we shall generally
not hold the distinction between a presentation and the algebraic object it defines in any high
regard. For example, we may speak of “the monoid Mon⟨A | R⟩” or ask “when does the group
G = Gp⟨A | R⟩ admit a monoid presentation with the same number of defining relations?”. We
shall extend the usage of terms for presentations to the object defined by them; for example, a
monoid (or group) will be said to be finitely presented if it is isomorphic to the monoid (group)
defined by a finite monoid (group) presentation.

As before, we shall almost exclusively deal with finitely presented monoids and groups
throughout this thesis. There are strong connections between monoid presentations and
group presentations. For example, a finitely presented group Gp⟨A | R⟩ is also finitely
presented as a monoid, by adding new generators A−1 and considering the monoid
presentation

Mon⟨A ∪A−1 | R ∪ {aa−1 = 1, a−1a = 1 | a ∈ A}⟩

which clearly defines a group isomorphic to Gp⟨A | R⟩. Note that ifM = Mon⟨A | R⟩ defines
a group, thenM = Gp⟨A | R⟩. In particular, if a group is finitely presented as a monoid, then
it is also finitely presented as a group.

There are many surprising results connecting group and monoids presentations. We cannot
mention them all, but we end by mentioning a short result, attributed by R. Book to C. Wrathall
[68]: if Mon⟨A | R⟩ is a free monoid, then Gp⟨A | R⟩ is a free group.
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1.1.3 Free products

Let S1 = Sgp⟨A1 | R1⟩ and S2 = Sgp⟨A2 | R2⟩ be two semigroups, where A1 and A2

are disjoint alphabets. We define the semigroup free product S1 ∗ S2 of S1 and S2 to be the
semigroup with the presentation Sgp⟨A1∪A2 | R1∪R2⟩. Semigroup free products may at first
glance appear quite unnatural to the combinatorial group theorist. For example, the semigroup
free product of two trivial semigroups (where the trivial semigroup is the unique semigroup
Sgp⟨e | e2 = e⟩ with one element) is infinite, and has non-trivial properties, see e.g. [453].
Furthermore, note that even if S1 and S2 are themselves monoids, their respective identity
elements will not be identity elements of S1 ∗ S2. The following is easy and standard to prove
by induction on the number of applications of defining relations, giving a “normal form lemma”
for semigroup free products.

Lemma 1.1.1. Let S1, S2 be two semigroups, generated by disjoint sets A1, A2, respectively. Let
Π = S1 ∗ S2 denote their semigroup free product. Then for u, v ∈ (A1 ∪ A2)

+ we have u =Π v

if and only if there exist unique u0, v0, u1, v1, . . . , un, vn such that

(1) u ≡ u0u1 · · ·un and v ≡ v0v1 · · · vn;
(2) ui, vi ∈ A+

X(i) and ui =SX(i)
vi for all i ≥ 0,

where X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1.

LetM1 = Mon⟨A1 | R1⟩ andM2 = Mon⟨A2 | R2⟩ be two monoids, where A1 and A2 are
disjoint alphabets. We define themonoid free productM1 ∗M2 ofM1 andM2 to be the monoid
with the presentation Mon⟨A1 ∪ A2 | R1 ∪ R2⟩. Thus the monoid free product identifies the
identity elements of the factors; that is, 1M1∗M2

= 1M1
= 1M2

, and we denote this identity
element simply as 1. In particular, the free product of two trivial monoids is itself trivial. Let
u ≡ u0u1 · · ·un be a word in (A1 ∪ A2)

∗ such that ui ∈ A∗
X(i) for all 0 ≤ i ≤ n, where

X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1. Clearly every word in
(A1∪A2)

∗ can bewritten in this form. We say that u is reduced if it is empty, or else ui ̸=MX(i)
1

for all 0 ≤ i ≤ n. In particular, a word u ≡ u0u1 · · ·un has at least one factor ui empty if and
only if u ≡ ε.

Proposition 1.1.2. LetM1,M2 be two monoids generated by disjoint sets A1, A2, respectively,
and let M1 ∗M2 denote their monoid free product. Then for every word u ∈ (A1 ∪ A2)

∗ there
exists u′ ∈ (A1 ∪A2)

∗ such that u′ =M1∗M2
u, and u′ is reduced.

Proof. To prove this proposition, we will assume temporarily that the reader is familiar with
the language and terminology of rewriting systems, see §1.2.2. Suppose u is non-empty, for
otherwise there is nothing to show. Write u ≡ u0u1 · · ·un uniquely, where the ui are from
alternating factors as above. Let IMi

= {(w → 1) | w ∈ IPMi

Ai
, |w| > 0} for i = 1, 2. The

rewriting system I = IM1 ∪ IM2 , a subset of (A1 ∪A2)
∗× (A1 ∪A2)

∗, is terminating (though
certainly not confluent in general) and it is clear that any word that is I-irreducible is reduced in
the above sense. Furthermore, I is (M1 ∗M2)-equivariant, as any word equal to 1 in a factor of
a monoid free product is also equal to 1 in the product. Thus u′ can be taken as any irreducible
descendant of u under I , and byM1 ∗M2-equivariance we have u′ =M1∗M2

u.

We say that any u′ as in the statement of Proposition 1.1.2 is a reduced form of u. Certainly,
this is not unique, in the sense that there may be many different words representing the same
word. However, there is one important form of uniqueness for reduced forms. Given a reduced
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word w′, we can uniquely factor it as w′
0w

′
1 · · ·w′

n, where the w′
i come alternatingly from A∗

1

and A∗
2, and none of the w′

i (with w′
i ∈ A∗

j , say) are such that w′
i =Mj

1 unless w′ ≡ ε, in
which case all w′ ≡ w′

0 ≡ ε. In particular, none of the w′
i are empty unless all of them are. We

call the factorisation w′
0w

′
1 · · ·w′

n the normal form of the reduced word w′. This normal form
of a fixed reduced form is unique. Furthermore, reduced forms are unique up to equality of the
representatives chosen for the alternating factors in their normal forms, in the following sense.

Lemma 1.1.3. Let M1,M2 be two finitely generated monoids, generated by finite disjoint sets
A1, A2, respectively. Let Π = M1 ∗M2 denote their monoid free product. Let u, v ∈ {A1, A2}∗.
Let u′ resp. v′ be reduced forms of u resp. v, with normal forms

u′ ≡ u0u1 · · ·um resp. v′ ≡ v0v1 · · · vn.
Then we have u =Π v if and only if

(1) n = m, and
(2) ui, vi ∈ A∗

X(i) and ui =MX(i)
vi for all 0 ≤ i ≤ n,

where X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1.

This lemma can be proved using e.g. van der Waerden’s trick, see [483]. From the above
lemma, one immediately deduces that the word problem in a monoid free product is decidable if
and only if the word problem is decidable in each of the factors. The language-theoretic aspects
of the word problem of a (semigroup or monoid) free product has not been extensively studied,
however; we shall revisit this theme in Chapter 2, and prove some rather general theorems. We
remark, finally, that we have adopted the excellent means of parametrisation in a free product
as above, i.e. using a functionX(j), from Brough, Cain & Pfeiffer [80]. We shall use this notion
in multiple places throughout this thesis, notably in Chapter 2.

1.1.4 Decision problems

While the theory of decision problems – and formally defining recursive and recursively
enumerable sets – is vast, we shall limit our scope in this thesis. We shall instead follow the
philosophy as presented by Lyndon & Schupp [298, p. 217]. They write: “many definitions [of
recursivity] have been given: Turing machines, formal systems, λ-computability, etc. All the
definitions proposed have been shown to be equivalent. The equivalence of these notions,
which are formally quite different, has led logicians to the belief that the precisely defined
concept of being recursive is an adequate formalisation of the intuitive notion of ‘effective’.
This philosophical position is called the “Church-Turing thesis”. In this thesis we shall accept
this philosophical position. However, doing so does not come without caveats: this position is
not a rigorous one.10 That is, this position is, in the words of Post [403, p. 105], in reality not
much more than a working hypothesis; and, quoting Post further, “to mask this identification
under a definition hides the fact that a fundamental discovery in the limitations of the
mathematicizing power of Homo Sapiens has been made and blinds us to the need of its
continual verification”. This assumption is left plainly written for the benefit of any future
Homo Sapiens (or otherwise), who will perhaps know more about the verification of which

10For discussions about the alternate view that the Church-Turing thesis is susceptible to being
rigorously proved or disproved (a view famously held by Gödel), the reader may consult e.g. [272, 343,
455, 456, 155, 132, 266, 441, 204, 193].
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Post speaks.11 We implore the reader to consult Uspenskii & Semenov [481] and the remarks
by Wittgenstein on how “Turing machines are humans who calculate” [495, §1096]; see [440].

Philosophical remarks aside, we shall not give a formal definition of the decision problems in
terms of Turing machines (or equivalents). Instead, the important data for each problem which
could be, if one would be so inclined, encoded into some such form, will for each relevant
decision problem be presented in the following order: (1) What is the input? (2) What is the
Question? (3) What is the Output? These data will always be finite. For example, the input
could take the form of a finite monoid presentation and a word over some finite alphabet; the
question could be whether the word represents the identity element of the monoid defined
by the monoid presentation; and the output could simply be the answer to this question. For
all decision problems presented in this section, the output will simply be the answer to the
question, and the output could take the form of a yes or a no.12 As before, a presentation
written as ⟨A | R⟩ rather than e.g. Mon⟨A | R⟩ below indicates that the problem is defined in
the same way for all types of presentations; the notation FA will in this case signify the free
object of the corresponding type. The presentation is not implicitly taken to be part of the
input. That is, on the next page of problems presented, we are not implicitly considering the
uniform variants of the problems.

Before presenting our list of decision problems, there are two undefined terms to explain.
First, a rational subset of a monoid is defined in §1.2. Second, an equation ϕ over a monoid
M = Mon⟨A | R⟩ is defined as follows. Let Ω be a set of variables, disjoint from A. A word
equation over M is a pair U = V , where U, V ∈ (A ∪ Ω)∗. A system of word equations is a
finite set of word equations. A solution to a system of word equations {Ui = Vi | i ∈ I} over
M is given by a homomorphism σ : (A ∪ Ω)∗ → M such that σ(Ui) =M σ(Vi) for all i ∈ I
and which fixes A. For example, the equation xaa = aby over M = Mon⟨a, b | ab = ba⟩
has a solution given by (for example) σ(x) = ba and σ(y) = aa. Equations over groups and
semigroups are defined analogously. We shall not study equations in any depth in this thesis.

11There are recent and serious objections to the Church-Turing thesis coming from the idea of supertasks
and hypercomputations. For example, Hogarth [210] shows that there are ways of computing non-Turing
computable problems by using special relativity. Consider the following situation. A mathematician (say,
Bob) is interested in a problemwhich is not decidable by a Turingmachine – say, the halting problem – and
leaves his poor graduate student to begin working on the problem. Bob then escapes in a rocket, begins
orbiting Earth, and proceeds to accelerate closer to the speed of light (though never exceeding it) while his
graduate student continues slavishly working on the problem, having promised to signal to Bob when the
work is complete (which of course will take infinitely long). Hogarth shows that there is a way for Bob to
accelerate to allow for infinite time to pass in the frame of reference of Bob’s student, while Bob himself
only experiences finitely much time passing in his own frame of reference. Thus, Bob will hear of the
results in a finite amount of time and return to Earth, having thus solved the halting problem in finite time.
There are similar solutions occurring in general relativity in orbits around rotating charged black holes,
resulting in a phenomenon known as Malament–Hogarth spacetime (see especially [152]). The realities
of the physical world which make such solutions impossible (e.g. the eventual heat-death of the universe,
or running out of rocket fuel) are no greater obstructions than the impossibility of actually constructing a
Turing machine – this requires arbitrarily large memory storage capabilities in the form of a tape which
can be made arbitrarily large, another physical impossibility. Furthermore, while the explicit reference
to a physical theory in the spacetime solution may at first appears as obvious grounds for dismissal, the
same objection would dismiss Turing machines, as Turing machines cannot exist in e.g. a finite universe.
Nevertheless, we shall remain grounded and leave the reader interested in tormenting their own graduate
students to further reading on non-Turing computability in e.g. [211, 202, 294, 123, 487, 329, 330].

12Some authors require more. For example, an appropriate output corresponding to the question “does
there exist a wordX such that Y ” might be yes, along with a wordX such that Y . As all our presentations
are finite, we are not concerned with finding such witnesses, as for all problems presented here, when the
answer is yes, there is a procedure for verifying this.
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The
Word Problem

forM = ⟨A | R⟩
—

Input : Two words u, v ∈ FA.

Question : Is u = v inM?

The
Conjugacy Problem

for G = Gp⟨A | R⟩
—

Input : Two words u, v ∈ FA.

Question : ∃x ∈ FA, xux−1 = v in G?

The
Identity Problem

forM = ⟨A | R⟩
—

Input : A word w ∈ FA.

Question : Is w = 1 inM?

The
Group Problem

forM = Mon⟨A | R⟩
—

Input : Mon⟨A | R⟩.

Question : IsM a group?

The
Left Divisibility Problem

forM = Mon⟨A | R⟩
—

Input : Words u, v ∈ FA.

Question : ∃w ∈ FA s.t. u = vw?

The
Right Divisibility Problem

forM = Mon⟨A | R⟩
—

Input : Words u, v ∈ FA.

Question : ∃w ∈ FA s.t. u = wv?

The
Subgroup Membership Problem

for G = Gp⟨A | R⟩
—

Input : Words u1, . . . , uk, w ∈ FA.

Question : Is πR(w) ∈ ⟨u1, . . . , uk⟩gp?

The
Submonoid Membership Problem

forM = ⟨A | R⟩
—

Input : Words u1, . . . , uk, w ∈ FA.

Question : Is πR(w) ∈ ⟨u1, . . . , uk⟩?

The
Rational Subset Membership Problem

forM = ⟨A | R⟩
—

Input : X ∈ Rat(FA), w ∈ FA.

Question : Is πR(w) ∈ πR(X)?

The
Diophantine Problem

forM = ⟨A | R⟩
—

Input : Equations {ϕi}ni=1 overM .

Question : ∃ solutions for {ϕi}i inM?
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Groups Special Monoids Monoids

Gp⟨A | ri = 1 (i ∈ I)⟩ Mon⟨A | ri = 1 (i ∈ I)⟩ Mon⟨A | ui = vi (i ∈ I)⟩

1 [301] [4] ?

2 ? ? ?

3 ? ? [337]

4 ? ?

5 ? ? [309]

6 ? ?

7 ? ? [477]

8 ? ?

9 ? ?

10 ? ?

11 ? ?

12 [73] ?

13 [73]

Table 1.1: A table showing how many defining relations suffices for undecidability of the word problem in groups,
special monoids, resp. monoids. Green, red, and blue each indicates decidability, undecidability, resp. unknown. Thus,
for example, it is known that there exists a 12-relator finitely presented groupwith undecidable word problem, the word
problem for 1-relation special monoids (such monoids shall be presented in §1.3) is decidable, and the word problem
for 1-relation monoids is (famously) open, see [388].

Most decision problems, including those just listed, are undecidable for finitely presented
objects in general – this is the harsh reality of combinatorial (semi)group theory. Indeed,
results such as Markov’s theorem [333, 334] and the Adian–Rabin theorem [2, 413]
demonstrate that “most” semigroup resp. group-theoretic properties cannot be algorithmically
recognised from a given presentation. For example, it is not decidable whether a given finitely
presented semigroup is commutative; or whether a given finitely presented group is trivial.

One of the few decidable properties of finitely presented groups is the rank of its
abelianisation. That is, given a presentation G = Gp⟨A | R⟩, one can compute its first
homology group H1(G,Z) ∼= G/[G,G]. The computation is simple: one simply adds all
commutators of generators, and then reduces the relations to a standard presentation an easy
analogue of the Smith Normal Form (see e.g. [306, §3.3, p.140]. This fundamental observation
was made already by Poincaré (using more primitive language), and can at times be used to
conclude that a group is infinite. For example, the group

G = Gp⟨a, b, c | a−1ba = c2, a−1ca = c, c−1a3c = 1⟩ yields

H1(G,Z) ∼= Gp⟨a, b, c | a−1ba = c2, a−1ca = c, c−1a3c = 1, [a, b] = [b, c] = [a, c] = 1⟩
∼= Gp⟨a, b, c | b = c2, c = c, a3 = 1, [a, b] = [b, c] = [a, c] = 1⟩
∼= Gp⟨a, c | a3 = 1, [a, c] = 1⟩ ∼= Z× C3.

Hence G is infinite. Obviously, there are finitely presented infinite groups with finite
abelianisation, and hence this technique cannot be used to decide in general whether a given
group is infinite or not – this latter problem is even undecidable by the Adian-Rabin theorem
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[2, 413]. It is also known that computing the second homology groupH2(G,Z) (also known as
the Schur multiplier) is, in general, an undecidable problem [164]. Thus the decidability of
computing the abelianisation of a group appears a lonely beacon in a vast sea of
undecidability.13

We finish this introduction to the decision problems of this thesis with a short discussion as
to the pedigree and idea history of them. All problems presented in the list on the earlier page
are decidable for free groups and monoids, and almost always trivially so.14 This is a common
theme, and highlights the combinatorial nature of such objects and, perhaps more importantly,
the combinatorial nature of the decision problems we consider herein. Indeed, problems such
as the membership problem grew out of Nielsen’s new proof of the Nielsen-Schreier theorem,
from which decidability of the subgroup membership problem in free groups falls out [377].

We wish to emphasise, which is not often done in the literature, the importance of
membership problems on the development of combinatorial (semi)group theory. Membership
problems can be tracked back to some of the earliest undecidability results in all of
combinatorial algebra; Markov [332] essentially proved, in modern language, that the
submonoid membership problem is undecidable in SL4(Z) in the same year he proved that
the word problem is undecidable in finitely presented semigroups. The first formal definition
of the membership problem would not appear until the work by K. A. Mikhailova
[345, 346, 347, 348], who defined the problem (which she called the occurrence problem) and
proved by an ingenious construction that the subgroup (and hence also submonoid)
membership problem is undecidable in the direct product F2 × F2 of two free groups.
Membership problems have also recently proved themselves to be key in understanding the
word problem of certain inverse monoids, see e.g [230, 141], as well as having many
fascinating cryptographic applications [499].

13However, abelianisation is a rather limited tool. For example, abelianisation cannot be used to tell knot
groups apart; it was this difficulty that prompted Reidemeister [416] to invent his celebratedmethod, today
known as the Reidemeister-Schreier method, which is an indispensable tool in the kit of a combinatorial
group theorist.

14The sole exception to this is the Diophantine problem, which is exceptionally difficult (by comparison
to other problems) in free groups and monoids. Makanin solved both these problems in two separate and
exceedingly intricate papers [310, 311]. Especially the case of free groups remains an active research area
(see [287, 126, 136]). See also [326, 327, 315, 316, 317, 318, 1, 319, 312, 313, 314, 328].
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1.2 Formal language theory

In this section, we shall give another perspective on combinatorics on words, and give an
overview of the various notions from formal language theory that will be required in the
following chapters. The definitions given herein are all standard, and can be found, with
minor modifications, in usual textbooks on the subject, e.g. [203, 217]. We will begin by
describing the notion of a class of languages, which shall be of central importance in
Chapters 2, 3, and 4. We then define and discuss rewriting systems, which are used throughout
this thesis. Finally, we discuss how the word problem of a monoid or a group can be encoded
into a formal language.

1.2.1 Classes of languages

We shall formalise the notion of alphabets and languages presently. To do this, we will extend
the definition given earlier, in §1.1.1. We note, however, that this formalism is, in a sense, a
proper extension of the former usage; that is, the two usages are consistent relative to one
another, and this latter extension only serves to make some aspects of the former slightly more
rigorous. We begin by fixing a countably infinite set Aω , which will be called our universal
set of symbols. Any commonly used symbol or English letter (such as a, b, c, . . . ,#, a1, a2, . . . )
will be assumed to be in Aω . In particular, every finite generating set of symbols encountered
throughout this thesis appears as a subset of Aω . Let Fin(Aω) denote the finite subsets of Aω .
We say that A is an alphabet if A ∈ Fin(Aω).

For an alphabetA, a language overA is any subset ofA∗.15 More generally, a language is any
subset of A∗

ω such that there exists an alphabet A ∈ Fin(Aω) with L ⊆ A∗. An element of a
language L is called a word. Given a language L ⊂ A∗

ω , let Alp(L) denote the minimal (with
respect to inclusion) element of Fin(Aω) such that L ⊆ Alp(L)∗. We say that Alp(L) is the
(minimal) alphabet of the language L. That is, Alp(L) is the set of symbols which occur in at
least one word from L. If L1 ⊆ A∗ and L2 ⊆ B∗ are two languages, then we shall denote by
L1L2 their concatenation in the free monoid (A∪B)∗, into which we naturally embed A∗ and
B∗. In particular L1L2 is a well-defined language; as is L1 ∪ L2 and L1 ∩ L2.

A context-free grammar Γ consists of three finite sets X,A,R and a symbol x0 ∈ X . The
set X is called the set of non-terminal symbols; the set A is the set of terminal symbols; the set
R ⊆ X × (X ∪ A)∗ is called the set of productions; and the symbol x0 ∈ X is called the start
symbol of Γ. Thus the set of productions consists of pairs (x,w), usually written x→ w, where
x ∈ X and w is some word containing a mix of terminal and non-terminal symbols. For two
words u, v ∈ (X ∪ A)∗, we will write u ⇒ v if there are: a rule (α → β) ∈ R and words
u1, u2 ∈ (X ∪ A)∗ such that u ≡ u1αu2 and v ≡ u1βu2. We define ⇒∗ to be the reflexive
transitive closure of⇒. For a context-free grammar Γ, we define the language of Γ to be

L(Γ) = {w ∈ A∗ | x0 ⇒∗ w}.
A language L ⊆ A∗ is context-free if there exists a context-free grammar Γ such that L = L(Γ).

15Is it philosophically defensible to call such a simple object as a subset ofA∗ by such a complex term as
language? Is the set {aghfj,#ag,R§g} really a language? We assert that it is, on the basis that language,
as used in the usual sense, is not a particularly well-defined notion. Indeed, quoting Wittgenstein, “man
possesses the ability to construct languages capable of expressing every sense, without having any idea
how each word has meaning or what its meaning is” [494, §4.002]. We find it easier to justify a broadly
inclusive definition of language to mean something understood, rather than unjustifiably restrict the
meaning of language to something not understood (or even not understandable).
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A class of languages is a set C ⊆ 2A
∗
ω of non-empty languages. Note that every language is a

countable set, but not every class of languages is countable. The class Creg of regular languages
is the smallest subset of 2A∗

ω containing∅, the singleton languages {a | a ∈ Aω}, and such that
if A,B ∈ Creg, then (1) A∗ ∈ Creg; (2) A ∪ B ∈ Creg; (3) AB ∈ Creg. The class Ccf denotes the
class of all context-free languages.16 We use the notation Crec and Cen for the class of recursive
resp. recursively enumerable languages. The regular languages are sometimes called the rational
languages. More generally, given a finitely generated monoidM , the class of rational subsets of
M is the least class Rat(M) of subsets ofM containing ∅, the singleton sets, and such that if
A,B ∈ Rat(M), then (1) A∗ ∈ Rat(M); (2) A∪B ∈ Rat(M); (3) AB ∈ Rat(M). Recall that
A∗ = ⟨A⟩ ≤ M . This definition coincides with the definition of regular languages when M
is a free monoid. An alternative characterisation (see [148]) of rational subsets will be useful:
let A be a finite generating set of M , and let π : A∗ → M be the associated homomorphism.
Then K is a rational subset of M if and only if there exists a regular language L ⊆ A∗ such
thatK = π(L).

Example 1.2.1. Let a be a symbol and let D be the language
{w | w ∈ {a, a−1}∗, σa(w) = 0, and σa(p) ≥ 0 for every prefix p of w}.

This is called the Dyck language, first studied by Chomsky & Schützenberger [109]17. ThenD ̸∈
Creg, but D ∈ Ccf . This is easy to prove once one is equipped with some closure properties of
these classes of languages (see the following page); indeed, ifDwere regular, thenD∩a∗(a−1)∗

would be regular, for Creg is closed under intersection with regular languages, but this language
is {an(a−1)n | n ≥ 0}, a language which is straightforward to show not be regular. The Dyck
language has many connections with combinatorics (via Catalan numbers, see e.g. [133]) and
algebra. For example, Jantzen [235] calls certain rewriting systems (see §1.2.2) Dyck systems
due to their similarity with the rewriting systems associated to free groups; these systems have
strong algebraic properties, see [115]. △

Example 1.2.2. Let G = Gp⟨A | R⟩ be finitely presented. Then the kernel of the natural
homomorphism ϱ : FA → G is a recursively enumerable language, i.e. lies in Crec. This was
first formally observed by Maltsev [324], and the properties were more carefully investigated
by Anı̄s̄ımov [17]. He proved that the kernel lies in Creg if and only if G is finite. He also
investigated the class of groups such that the kernel lies in Ccf , showed that this is independent
of choice of finite generating set and closed under free products, and furthermore that it does
not contain Zk . Muller & Schupp [362] then completely characterised this class: the kernel lies
in Ccf if and only if the group has a finitely generated free subgroup of finite index. We will
revisit this latter theorem, and extend it to broad classes of monoids, in Chapter 3. △

The class Cind of indexed languages is technical to define, and we shall only ever refer to
closure properties of this class, rather than to any aspect of its definition whatsoever. For this
reason, we refer the reader interested in the definition to [15].

16The class of context-free languages will occupy a special place in this thesis. We note that the class
of context-sensitive languages, on the other hand, while capable of encoding more complicated structures
(e.g. the prime numbers, see Brodda [78]), are less directly linked with the algebraic.

17One might ask why this language is called the Dyck language. A reasonable guess might be because
of its connection with free groups, given that the obvious generalisation to more symbols than just one
can be used to describe the kernel of the map from the free monoid on A ∪ A−1 to the free group on
A. Famously, von Dyck (at the time only Dyck, not yet ennobled) was the first to properly study free
groups in his 1882 and 1883 papers [145, 146]. However, von Dyck did not consider free monoids. I once
asked Noam Chomsky what the original reasoning regarding his and M.-P. Schützenberger’s naming of
the Dyck language was. His response was “I wish I could help, but I have no idea”.
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An arbitrary class of languages will in general not enjoy many interesting properties.18 We
introduce some closure properties to alleviate this. We say that a class C is closed under

– union, if for all L1, L2 ∈ C we have L1 ∪ L2 ∈ C.
– concatenation, if for all L1, L2 ∈ C we have L1L2 ∈ C.
– Kleene star, if for all L1 ∈ C we have L∗

1 ∈ C.
– homomorphism, if for all L1 ∈ C and homomorphisms

ϕ : Alp(L1)
∗ → B∗,

where B is some alphabet, we have ϕ(L1) ∈ C.
– inverse homomorphism, if for all L2 ∈ C and homomorphisms

ϕ : B∗ → Alp(L2)
∗,

where B is some alphabet, we ϕ−1(L2) ∈ C.
– intersection with regular languages, if for all L ∈ C and all regular languages
R ⊆ Alp(L)∗ we have L ∩R ∈ C.

– reversal, if for all L ∈ C, we have Lrev ∈ C.

Our favourite classes of languages Creg and Ccf are closed under all the above operations;
this can be found proved in e.g. [217]. Note, however, that unlike Creg the class Ccf is not
closed under intersections (and hence also not under complementation). One way to prove
this is showing that every recursively enumerable language is the homomorphic image of some
intersection of two context-free languages [163].

A rational transduction ϱ from one finitely generated free monoid A∗ to another B∗ is a
rational binary relation, i.e. a rational subset of the monoid A∗ × B∗. The image ϱ(L) of a
language L ⊆ A∗ under ϱ is the set {b | ∃a ∈ L : (a, b) ∈ ϱ} ⊆ B∗. For w ∈ A∗ we
simply write ϱ(w) rather than ϱ({w}). We refer the reader to [144, §2.3] for further details; in
particular, the union or product of rational transductions is again a rational transduction, and if
ϱ is a rational transduction, then ϱ∗ := ⟨ϱ⟩ is, too. In fact, one can show that a class of languages
is closed under taking rational transductions if and only if it is closed under homomorphism,
inverse homomorphism, and intersection with regular languages [217].

Example 1.2.3. Let ϕ : A∗ → B∗ be any homomorphism for any alphabets A,B. We claim
that (the graph of) ϕ is a rational transduction. Indeed, we have

ϕ =

( ⋃
a∈A

(a, ϕ(a))

)∗

⊆ A∗ ×B∗.

Thus ϕ is a rational subset ofA∗×B∗, as it is of the formX∗ for a finite setX ⊆ A∗×B∗. △

Example 1.2.4. LetA be a finite alphabet, and let# be a symbol disjoint fromA. We consider
words in A∗#A∗. Let us say we want a rational transduction ϱ which when applied to an
arbitrary word in A∗#A∗ returns (the set containing) whichever word is to the left of the #-
symbol. More specifically, we want to have, for any language L ⊆ A∗#A∗, that

ϱ(L) = {u | ∃v ∈ A∗ : u#v ∈ L}. (1.2.1)
This can certainly not be performed by a simple homomorphism. Instead, we employ a rational
transduction. Our rational transduction will be a rational subset of the monoid

(A ∪ {#})∗ ×A∗.

18Let P be a property of classes of languages. If almost every class of languages would satisfy P , then
P cannot be interesting, much as the property of “having two eyes”, which almost every human satisfies,
is rather uninteresting. Thus, if P is an interesting property, then almost every class of languages does
not satisfy P ; so an arbitrary class of languages will almost certainly not satisfy any interesting property.
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We define ϱ to be the relation
ϱ =

( ⋃
a∈A

(a, a)
)∗ · (#, ε) · ( ⋃

a∈A

(a, ε)
)∗ ⊆ (A ∪ {#})∗ ×A∗.

From this description, it is clear that ϱ is a rational subset of (A ∪ {#})∗ ×A∗. Indeed, it is of
the form X∗Y Z∗, where X,Y, Z are finite subsets of (A ∪ {#})∗ × A∗. But we clearly also
have

ϱ = {(u, u) | u ∈ A∗}(#, ε){(v, ε) | v ∈ A∗} = {(u#v, u) | u, v ∈ A∗},

and so in particular ϱ(u#v) = {u} for any u, v ∈ A∗. Thus (1.2.1) is satisfied, and we have our
desired rational transduction. △

Most of our theorems will be stated for a special type of classes of languages. Such classes
of languages are called super-AFLs, and were introduced by Greibach [180]. We mention,
before giving any definitions, that the class of context-free languages (see [180]) and the class
of indexed languages (see [150]) are super-AFLs. The reader who is only interested in such
classes of languages may therefore substitute either of these classes whenever the word
“super-AFL” appears in the sequel, if they wish.

We follow Book, Jantzen & Wrathall [69] in the following definitions. Let A be an alphabet.
For each a ∈ A, let σ(a) be a language (over whichever alphabet one desires); for every x, y ∈
A∗ let σ(xy) = σ(x)σ(y); and for every L ⊆ A∗, let σ(L) =

⋃
w∈L σ(w). We then say that σ

is a substitution. For a class C of languages, if for every a ∈ A we have σ(a) ∈ C, then we say
that σ is a C-substitution.

Let A be an alphabet, and σ a substitution on A. For every a ∈ A, let Aa denote Alp(σ(a)),
i.e. the smallest finite alphabet such that σ(a) ⊆ A∗

a. Extend σ to A ∪ (
⋃

a∈AAa) by defining
σ(b) = {b} whenever b ∈ (

⋃
a∈AAa) \ A. For L ⊆ A∗, let σ1(L) = σ(L), and let

σn+1(L) = σ(σn(L)) for n ≥ 1. Let σ∞(L) =
⋃

n≥0 σ
n(L). Then we say that σ∞ is an

iterated substitution. If for every b ∈ A ∪ (
⋃

aAa) we have b ∈ σ(b), then we say that σ∞ is a
nested iterated substitution. We say that C is closed under nested iterated substitution if for
every C-substitution σ and every L ∈ C, we have that if σ∞ is a nested iterated substitution
then σ∞(L) ∈ C.

Definition 1.2.5. Let C be a class of languages. We say that C is a super-AFL if it is anAFL (i.e.
it is closed under homomorphism, inverse homomorphism, intersectionwith regular languages,
union, concatenation, and the Kleene star) and if it closed under nested iterated substitution.

Some examples are given below.

Example 1.2.6. We give some examples and non-examples of super-AFLs.

(1) The class of context-free languages Ccf is a super-AFL; it is well known to be an AFL,
and is closed under nested iterated substitution (see [265], [69, Theorem 2.2]).

(2) The class Cind of indexed languages is a super-AFL; it is anAFL, as proved by Aho [14],
and is closed under nested iterated substitution [150].

(3) The class Creg of regular languages is not a super-AFL, e.g. by Lemma 1.2.7 below. △

For more examples and generalisations, we refer the reader to the so-called hyper-AFLs
defined by Engelfriet [150], all of which are super-AFLs. We mention a useful property about
super-AFLs.

Lemma 1.2.7 ([180, Theorem 2.2]). Let C be a super-AFL. Then Ccf ⊆ C.
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We shall revisit super-AFLs in Chapter 2, and therein prove a characterisation of such
languages based entirely on rewriting systems (rather than substitutions). Throughout
Chapters 3 & 4, we will extensively make us of super-AFLs using this characterisation. Before
we can do any of this, however, we need to define rewriting systems, and give a brief overview
of some general results in this area.

1.2.2 Rewriting systems

The theory of rewriting systems gives nuance to the theory of presentations, and reveals some
of their combinatorial nature. We now give the basic definitions regarding these systems. We
refer the reader to the monographs by Jantzen [235] and Book & Otto [71] for a more thorough
background on this topic, including its history. A rewriting system T (also called a semi-Thue
system, named after the Norwegian mathematician A. Thue19 [475]) on an alphabetA is a subset
of A∗ × A∗. The elements of a rewriting system are called rules, and (ℓ, r) ∈ T will often be
written ℓ→ r.

At this point, before proceeding with definitions, we stop to address an issue of terminology.
S. I. Adian [10, p. 14] writes: “at the end of the previous century, some authors started to call
Thue systems ‘Word Rewriting Systems’ (shortly, WRS-systems). More recently, some other
authors working in computer science, are attempting to change this to ‘SRS-systems’ because,
for some unknown reason, they are now using (without any comment) the term ‘string’ instead
of the classical term ‘word.’ We do not think that this practice is reasonable.” We cannot agree
with Adian in this dismissal of the term string. The term string for denoting a formal sequence
of symbols, analogous to the termword, is present already in the 1918 book on symbolic logic by
C. I. Lewis [279]20, published only four years after Thue’s paper; furthermore, Thue himself (see
[475, 407]) considered transformations not of words but rather of Zeichenreihen (Ger. character-
row or character-string). Furthermore, E. Post – who certainly can be considered part of the
“classical” school of thought! – uses the term string, rather than word, already in 1943 ([404,
p. 197], see also [405]), four years before the publication of his proof of the undecidability of
the word problem for finitely presented semigroups [406] (which also favours string). We could
continue, but we think the point is clear: while we favour word over string in this thesis, there
is nothing at all unreasonable about either using the word string or the string word.

A rewriting system T induces a relation −→T on A∗ as follows: if u, v ∈ A∗, then u −→T v

if and only if there exist x, y ∈ A∗ and some rule (ℓ, r) ∈ T such that u ≡ xℓy and v ≡ xry.
The reflexive and transitive closure of −→T is denoted ∗−→T . We write u −→n

T v if there exists a
sequence u0, u1, · · · , un ∈ A∗ such that

u ≡ u0 −→T u1 −→T · · · −→T un−1 −→T un ≡ v.
The symmetric and transitive closure of ∗−→T is denoted ∗←→T . If (ℓ, r) ∈ T , then replacing an
occurrence of ℓ by r (or vice versa) in some word u ∈ A∗ is called an elementary transformation
in T . We urge the reader to see that this situation is entirely analogous to that of presentations.

A rewriting system T on A is called terminating (also sometimes called Noetherian) if there
exists no infinite chain u1 −→T u2 −→T · · · . The system is called length-reducing if |ℓ| > |r|

19The name Thue is pronounced [t0:]. That is, the e is silent. Unfortunately, this is not always adhered
to; the name is often transcribed into Russian as Tue, with pronunciation [t0E].

20Specifically, Lewis [279, p. 355] writes e.g. “Amathematical system is any set of strings of recognisable
marks in which some of the strings are taken initially and the remainder derived from these by operations
performed according to rules which are independent of any meaning assigned to the marks. That a system
should consist of ‘marks’ instead of sounds or odours is immaterial.”
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for all rules ℓ → r in T . It is called length-preserving if |ℓ| = |r| for all rules ℓ → r in T . The
system is called locally confluent if for all u, v, w ∈ A∗, we have u −→T v and u −→T w together
imply that there exists some z ∈ A∗ such that v ∗−→T z and w ∗−→T z. The system is called
confluent if for all u, v, w ∈ A∗, we have u ∗−→T v and u ∗−→T w together imply that there exists
some z ∈ A∗ such that v ∗−→T z and w ∗−→T z. If a rewriting system T is terminating and
confluent, then we say that T is complete (also sometimes called convergent). A word is w ∈ A∗

is irreducible (modulo T ) if it does not contain any subword that is a left-hand side of some rule
of T . The set of irreducible elements of T is denoted Irr(T ). If T is terminating, we can for
every word w ∈ A∗ find an element w′ ∈ Irr(T ) such that w ∗−→T w′ by “rewriting” w, i.e.
continuously removing any left-hand sides of rules we find as subwords of w until this cannot
be done any further. In a complete rewriting system, there exists a unique such w′. Hence any
complete rewriting system has unique normal forms for all elements.

We say that a rewriting system T is monadic if for all rules (ℓ, r) ∈ T we have |ℓ| > |r|,
ℓ is non-trivial, and r is either a single letter or ε. We say that T is =-monadic if for all rules
(ℓ, r) ∈ T we have |ℓ| ≥ |r|, ℓ is non-trivial, and r is either a single letter or ε. We say that T is
special if r ≡ ε and ℓ is non-empty for all rules (ℓ, r) ∈ T . Hence any special rewriting system
is monadic and=-monadic, and every monadic rewriting system is=-monadic. We remark that
the distinction between monadic and =-monadic is only a minor technicality.21 Indeed, from
an algebraic point of view, the presence of length-preserving rules in a monadic system simply
means identifying two generators in the monoid associated to the rewriting system, and Tietze
transformations makes this very straightforward.

For a class C of languages, we say that T is a C-rewriting system if for every distinct word r
appearing as a right-hand side of some rule in T , the languageLr = {ℓ | (ℓ, r) ∈ T} is in C. For
example, the rewriting system {((ab)n, ε) | n ≥ 1} is a special Creg-rewriting system on {a, b},
whereas the rewriting system {(anbn, a), (bnan, b) | n ≥ 1} is a monadic Ccf -rewriting system,
but not a monadic Creg-rewriting system. We will generally forego hyphenation in the case that
the class C has a standard English name, and speak of e.g. context-free rewriting systems rather
than Ccf -rewriting systems.

If u, v ∈ A∗ are such that u ∗−→T v, then we say that u is an ancestor of v modulo T , and v is a
descendant of u. For u ∈ A∗, the set of all ancestors of u modulo T is denoted ⟨u⟩T . Extending
this notation, for U ⊆ A∗ we let ⟨U⟩T =

⋃
u∈U ⟨u⟩T . If there is no v such that u −→T v, then

we say that u is irreducible modulo T . An irreducible element of an equivalence class is called a
normal form modulo T for the equivalence class. For all these concepts, as long as the rewriting
system in question is clear from context, we will generally suppress the “modulo T ”-notation
for brevity.

If T ⊆ A∗ × A∗ is a rewriting system, then ∗←→T is a congruence on A∗. Thus A∗/
∗←→T is

a well-defined monoid. This will be called the monoid associated with T . Clearly the monoid
associated with T is the same as – not just isomorphic to – the monoid defined by Mon⟨A | T ⟩.
If two words u, v ∈ A∗ are equal in A∗/

∗←→T , then we say that u = v modulo T . We say that
a monoidM admits the rewriting system T ⊆ A∗ × A∗ if it is isomorphic to A∗/

∗←→T . IfM
is a monoid generated by a finite set A, then we say that a rewriting system R ⊆ A∗ × A∗ is
M -equivariant if for every rule (ℓ → r) ∈ R, we have ℓ =M r. It is easy to see, by induction

21For example, we quote the survey article [66]: “the definition of monadic Thue system requires that
no rule in the system is length-preserving [...]. There are important differences between such systems
and those that do possess length-preserving rules (see [53, 69]). However, for monadic systems [...] the
restriction that no rule be length-preserving is made for technical convenience only”.
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on the number of rewriting steps, that if R isM -equivariant and u ∗←→R v, then u =M v. In
other words,R isM -equivariant if and only if ∗←→R⊆

∗←→M .

Example 1.2.8. We give some examples of rewriting systems and their connection with the
algebraic theory of certain groups and monoids.

(1) The monoid N× N admits the finite complete rewriting system on A = {a, b} with the
single rule ab → ba. The free group on A admits the finite special complete rewriting
system on A ∪ A−1 with the rules {aa−1 → ε, a−1a → ε | a ∈ A}. The infinite
cyclic group Z admits the finite complete rewriting system on the alphabet {a, b} with
the rules aba → ε, ab → ba. Many more examples for infinite and finite groups have
been presented by Le Chenadec [274, 275, 276], see also Bücken [84].

(2) An infinite group with an abelian subgroup of finite index admits a finite confluent
length-reducing rewriting system if and only if the group is isomorphic to Z or
isomorphic to the free product C2 ∗ C2 [135].

(3) The monoid Mon⟨a, b | aba = bab⟩ does not admit a finite complete rewriting system
T such that T is defined on an alphabet of only two letters; however, one can be find a
finite complete rewriting system for the monoid which is defined on a larger alphabet
[241]. It is a famous open problem whether every one-relation monoid (or indeed every
one-relator group) admits a finite complete rewriting system.

(4) The word problem is easily decidable in any monoid which admits a finite complete
rewriting system; however, the word problem can be of arbitrarily high complexity in a
monoid defined by a finite complete rewriting system, see [395] for the precise
statement. Furthermore, there exists a monoid M which admits a finite complete (and
length-reducing) rewriting system such that the submonoid membership problem is
undecidable forM , see [71, Corollary 5.2.2].

(5) Squier [460] proved that there exist finitely presented monoids with decidable word
problem that cannot be defined by any finite complete rewriting system. As part of this
proof, he showed that any monoid which admits a finite complete rewriting system
satisfies the homological finiteness property FP3 (see [460] for relevant definitions),
which was later extended to FP∞ [16]. Gray & Steinberg [171] recently showed that
every one-relation monoid also satisfies FP∞, thus lending credence to the conjecture
that such monoids admit finite complete rewriting systems (see [388]). △

Rewriting systems and classes of languages are closely interlinked. This theme will be
evident throughout this thesis. One of the many components of their intersection is the
algebraic structure of monoids. We will now present this important component, which will be
central in Chapters 3 and 4.

1.2.3 The word problem as a set

If G is a finitely generated group, with finite generating set A, then we mentioned in
Example 1.2.2 that Anı̄s̄ımov studied the properties of the formal language consisting of
elements in A ∪ A−1 which represent the identity element G. We formalise this here, and
generalise this to semigroups and monoids. Let G be a group with finite (group) generating
set A, with A−1 the set of inverses of the generators A. The language

{w | w ∈ (A ∪A−1)∗, w =G 1}
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is called the (group-theoretic) word problem for G. For a class of languages C, we say that G
has group-theoretic word problem in C (with respect to the generating set A) if the above set
is in C. It turns out that a good deal of algebraic information is encoded in this language. We
have already mentioned that Anı̄s̄ımov proved that G is a finite group if and only if the above
set is a regular language. Furthermore, we have the following remarkable theorem, commonly
simply referred to as the Muller-Schupp theorem.

Theorem (Muller & Schupp, 1983). LetG be a finitely generated group. ThenG has context-free
word problem if and only if G is virtually free.

On the other hand, letM be a monoid with a finite generating set A. Translating the above
definition of the word problem directly toM does not, in general, yield much insight into the
structure ofM . That is, the language

IPM
A = {w ∈ A∗ | w =M 1}

whichwewill call the identity problem ofM , does not containmuch algebraic information about
monoids (special monoids turn out to be exceptions to this, see Chapter 3, Corollary 3.4.3(3)).

Duncan & Gilman [144] instead introduced22 a different generalisation of the group-theoretic
word problem to all monoids. Theword problem ofM with respect toA is defined as the language

WPM
A := {u#vrev | u, v ∈ A∗, u =M v},

where # ∈ Aω \ A is a fixed symbol not in A.23 For a class of languages C, we say that M
has word problem in C if WPM

A ∈ C. If C is closed under inverse homomorphism, then one can
show that whether or notM has word problem in C does not depend on the finite generating
set chosen forM [144, Theorem 5.2]. Furthermore, if G is a group generated by a finite set A,
then G has group-theoretic word problem in C if and only if WPG

A ∈ C, see [144, Theorem 3].
That is, the word problem for monoids as defined above generalises the definition for groups.

Example 1.2.9. Let A be a finite non-empty alphabet, and A∗ the free monoid on A. Then
A∗ has context-free word problem. For given any two words u, v ∈ A∗, by definition we have
u =A∗ v if and only if u ≡ v, and thus

WPA∗

A = {u#vrev | u, v ∈ A∗, u =A∗ v} = {w#wrev | w ∈ A∗}.
This last language is well-known and easy to show to be context-free. Furthermore, this
language is certainly not regular, as can be easily verified (e.g. using the pumping lemma in
[217]). Thus free monoids are context-free, but not regular. △

The above Example 1.2.9 shows that the word problem for any finitely generated free monoid
is context-free. Thus we have the following useful consequence of Lemma 1.2.7.

Lemma 1.2.10. Let C be a super-AFL. Then for every finite alphabet A we have WPA∗

A ∈ C.

While free monoids are context-free, and all context-free groups are classified by the
Muller-Schupp theorem, the general problem of determining precisely which monoids have
context-free word problem seems exceptionally difficult, and is wide open in general (see [144,
Question 4]). We fully resolve this question for special monoids in Chapter 3. Before we can
do this, however, we need to define what a special monoid is.

22Although Duncan & Gilman initialised the study of this language-theoretic word problem for
monoids, the language in the definition was studied already by Book, Jantzen & Wrathall in 1982, see
[66, Corollary 3.8]. This observation does not appear in the literature on the word problem for monoids.

23The reader should regard the symbol # as entirely disjoint from A, and as carrying no information
other than purely as an “instruction” for the reader to turn on their head after reading it. In this manner,
it is comparable to what Turing [478] calls a symbol of the second kind; symbols from A would be of the
first kind.
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1.3 Special monoids

Let M = Mon⟨A | w1 = 1, w2 = 1, . . . , wi = 1, . . .⟩. Then M is called special. That is, a
monoid is special if it admits a presentation in which the right-hand side of every defining
relation is the empty word. In this section we shall give an overview of the classical treatment
of such monoids, and an overview of the main known results. This is in preparation for
Chapters 3 & 5, in which special monoids will be studied in depth. Special monoids were first
defined by G. S. Tseitin [477, p. 178], in his famous paper in which is demonstrated the
existence of a semigroup with undecidable word problem and only seven defining relations.
Tseitin called special monoids associative systems of a special form, but only used them as an
intermediate stage in the proof of his main result. The first in-depth study of special monoids
in their own right would instead be made by Adian [4], who stated several key results,
including the decidability of the word and divisibility problems whenM = Mon⟨A | w = 1⟩,
i.e. the one-relation case. The proofs would later appear in his famous monograph [6].
Makanin, a student of Adian’s, extended Adian’s results in his 1966 Ph.D. thesis. A rewriting
of these proofs and results were later made by Zhang and others in the early 1990s. In this
section, we shall give an overview of the treatment given by these authors.

Recall that the group of units U(M) is the maximal subgroup of M with respect to the
idempotent 1, i.e. the subgroup of M consisting of all invertible elements. Special monoids
have other maximal subgroups than U(M), in which the identity element is some other
idempotent; however, by a result of Malheiro all maximal subgroups of a special monoid are
isomorphic to its group of units [325] (though this result can already be deduced from a result
by McNaughton & Narendran [341, Theorem 5]). The importance of the group of units is one
of the idiosyncratic features of special monoids; we shall see, for example, that for
compressible monoids (in Chapter 4) this important rôle is instead played by the maximal
subgroups that are not the group of units.

LetM be a k-relation special monoid. We shall give an overview of the following classical
theorems from 1966 due to G. S. Makanin [309, 308]:

I. U(M) is a k-relator group.
II. There exists a pseudo-algorithm for computing a k-relator presentation for U(M).
III. The word and divisibility problems forM reduce to the word problem for U(M).

For II, by a pseudo-algorithm we mean a procedure which does not always output an answer,
but when it does, its output is always correct. We shall use the terms procedure and pseudo-
algorithm interchangeably. The proofs of the above statements first appeared in Makanin’s
Ph.D.24 thesis, written in Russian. After having a physical copy of this sent to me fromMoscow,
I produced an English translation of the thesis, which can be found online [387]. This material
does not appear anywhere else in the literature on special monoids. We shall in part follow
Makanin’s notation, and in part follow Zhang [502], who produced a rewriting of the proof in
terms of rewriting systems. This rewriting significantly compresses the statements of certain
results, and makes the results significantly easier to parse in isolation from one another.

24In the Soviet system, there are two academic degrees similar in naming to the Western Ph.D., namely
candidate and doctor. The former corresponds more or less directly to a Ph.D. degree, while the latter is
closer to a habilitation. Thus, formally speaking, the results on special monoids were proved in Makanin’s
candidate thesis.
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1.3.1 The invertible pieces

Wewill begin by treating the group of units of a special monoid. Thus, wewill discuss invertible
elements of special monoids. When doing so, there is a lemma of fundamental importance. This
lemma is an overwhelmingly simple statement, but underpins the arguments used throughout
this section, and indeed in the literature in general.25 We shall primarily use it implicitly, except
for a select few places; anything else would harm readability.

Fundamental Lemma. If the words xy and yz are invertible in a monoidM , then all three of
the words x, y, and z are invertible inM .

This kind of “overlap” argument forms the basis of a (surprising) number of results. We
will generally use it implicitly. As an application of a way that the fundamental lemma will be
used is in the following way: if a word x is a prefix of an invertible word u, and a suffix of an
invertible word v, then x is itself invertible.

We now return to special monoids. We shall in this section fix four special monoids, ordered
by difficulty, which shall be illustrating examples for the types of difficult behaviours that can
appear when computing the group of units:

• M1 = Mon⟨a, b, c, d | abcdab = 1⟩.
• M2 = Mon⟨a, b, c, d | abcdab = 1, acdcabdccddcabdcdacd = 1⟩.
• M3 = Mon⟨a, b, c | abc = 1, b = 1⟩.
• M4 = Mon⟨a, b, c, d | dba4cd = 1, a2 = 1⟩.

LetM = Mon⟨A | w1 = 1, w2 = 1, . . . , wk = 1⟩ be an arbitrary finitely presented special
monoid, which shall remain fixed throughout this section. The words w1, w2, . . . , wk will be
called the defining words of the monoid. Deviating slightly from Zhang’s definition into those
used implicitly by Adian and Makanin [6, 308], we say that an invertible word u ∈ A+ is
minimal if none of its non-empty proper prefixes is invertible. For clarity, we will use the words
minimal word,minimal invertible word, andminimal invertible factor interchangeably, swapping
between them depending on the context. The set of minimal words forms an overlap-free code,
and hence in particular also a biprefix code, as a subset of A∗.

Every defining word wi for 1 ≤ i ≤ k is an invertible word, as wi =M 1. We shall now see
that one can uniquely factorise every such word wi into minimal words, by the following
straightforward method. Of course, for every wi there exists some shortest non-empty
invertible prefix of wi; say wi ≡ w′

iw
′′
i , where w′

i is invertible, and no non-empty proper
prefix of w′

i is invertible. That is, w′
i is a minimal word. Of course, it could be the case that w′′

i

is empty, and that the entire word wi is the shortest non-empty invertible prefix of wi. In this
case, we end our factorisation. If not, then as wi and w′

i are invertible, so too – by the
Fundamental Lemma – is w′′

i . We may hence proceed to repeat the same process for w′′
i ,

factorising this into smaller and smaller words, and eventually end up with an empty word,
and have thus found a factorisation of wi into minimal words. As the set of minimal words is
a biprefix code, this is the unique way of factorising wi into minimal words, as factorisation
over a biprefix code is unique. Note that we have used no properties about the monoid M
itself here. Thus the above description is not an effective one; saying that one can factorise the
defining relation word wi into minimal invertible factors is simply a property of the fact that

25For example, it appears in Adian [6, Lemma 3], Makanin [308, Lemma 3], McNaughton & Narendran
[341, Lemma 2(2)], Nivat [378], Lallement [273], Perrin & Schupp [400, Lemme], Kobayashi [264,
Corollary 3.3], Zhang [502, Proposition 2.1(4)], and many others.
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wi is invertible. This factorisation cannot in general be computed, and requires a solution to
the word problem for the monoid.26

Thus, let us, for every 1 ≤ i ≤ k, uniquely factorise wi ≡ wi,1wi,2 · · ·wi,ℓi , where wi,j for
1 ≤ j ≤ ℓi is a minimal word. The set of all minimal words arising in this way shall be denoted
Λ, and called the set of presentation pieces ofM . That is,

Λ =

k⋃
i=1

ℓi⋃
j=1

{wi,j} ⊆ A∗.

Example 1.3.1. Computing the presentation pieces of a special monoid is a priori a non-trivial
task. Let us compute the presentation pieces of

M1 = Mon⟨a, b, c, d | abcdab = 1⟩.
As ab is a prefix of the defining word abcdab, ab is right invertible. Similarly, as ab is a suffix
of the same word, ab is also left invertible. Thus ab is a proper non-empty invertible prefix of
the defining word abcdab. Hence we find one factorisation of abcdab into invertible factors as
(ab)(cdab). Now, cdab is not minimal; since cdab and ab are invertible, so too is cd. Thus cdab
has a proper non-empty invertible prefix, so our factorisation is refined as (ab)(cd)(ab).

We claim that this factorisation is into minimal words. That is, we claim that neither a nor
c are invertible. Indeed, let R1 = {(ababcd, 1), (cdab, abcd)}. We claim that R1 is a complete
rewriting system which defines M1. First, R1 is terminating as, when any rule is applied to
a word, either the number of occurrences of ab in the word decreases or else an ab is strictly
moved farther left). Second, R1 is locally confluent, as the only two non-trivial overlaps of
rules (indicated by underlines) come from the words ababcdab resp. cdababcd; the first overlap
resolves to ab regardless of which rule is applied first, while the second rewrites to cd if one
first applies the rule (ababcd, 1), and otherwise

cdababcd −→R1
abcdabcd −→R1

ababcdcd −→R1
cd.

HenceR1 is terminating and locally confluent, so it is complete. On the other hand, to see that
R1 definesM1, we have

ababcd =M1 ababcd(abcdab) ≡ ab(abcdab)cdab =M1 abcdab =M1 1,

cdab =M1
(abcdab)cdab ≡ abcd(abcdab) =M1

abcd,

so ∗←→R1⊆
∗←→M1 . On the other hand, abcdab −→R1 ababcd −→R1 1, so ∗←→R1⊇

∗←→M1 . HenceR1

is a complete rewriting system which definesM1.
Checking that neither a nor c are invertible is now trivial. For if a were invertible, then it is

left invertible, so there is some w ∈ {a, b, c, d}∗ such that wa =M1
1, and hence wa ∗−→R1

1.
But no rule ofR1 ends in a, so this can never happen. Thus a is not invertible; checking that c
is not invertible is entirely analogous.

Thus, the factorisation of abcdab into minimal invertible factors is as (ab)(cd)(ab), and the
set of presentation pieces ofM1 is Λ = {ab, cd}. △

26This final remark is not strictly true. There are only finitely many elements of ∆, so for a fixed M
there certainly is a Turing machine which takes as input two words from ∆ and outputs yes if they are
equal, and otherwise no. The problem with this is twofold: (1) there is no reason to expect that there is a
uniform construction which starts with a presentation for a special monoid and outputs such a machine
(in fact, and as we shall expand on later, one can show that there is no such construction); and (2) we
have no reason to expect that we can recognise when we have such a Turing machine. This latter point
is reminiscent of the idea that there is a Turing machine which solves the Riemann hypothesis; either the
machine which always says yes is right, or the machine which always says no is right – we just do not
know which one, and at present we have no way of telling. Similarly, one can construct a finite set of
candidate Turing machines, each one of which outputs one of the (finitely many) possible factorisations
of the defining relation words into minimal invertible words; we just do not know which one is correct.
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We now introduce another set, of critical importance. We let∆ denote the set of all minimal
words δ ∈ A∗ such that there exists some wk,ℓ with δ =M wk,ℓ and |δ| ≤ |wk,ℓ|. The set ∆ is
called the set of invertible pieces of the presentation. It is clear that no elements of ∆ overlap
non-trivially, for if δ1, δ2 ∈ ∆ overlap non-trivially as δ1 ≡ uv and δ2 ≡ vw with |v| ≥ 1 and
|uw| ≥ 1, then v is both left and right invertible by the fundamental lemma. Hence if |w| ≥ 1,
then v a proper non-empty invertible prefix of δ2, which is a contradiction; or else if |u| ≥ 1,
then as uv and v are invertible, so too is u. Hence u is a proper non-empty invertible prefix of
δ1, which is again a contradiction. We conclude that no elements of∆ overlap non-trivially. In
particular,∆ is an overlap-free code and a biprefix code. Furthermore, note that ⟨∆⟩ = ⟨Λ⟩, as
subgroups ofM , and that Λ ⊆ ∆.

Remark. The set∆ as defined by Zhang has one minor difference to our own, being the set
of all minimal words δ such that there is some wk,ℓ with δ =M wk,ℓ, and |δ| ≤ maxi,j |wi,j |.
That is, the upper bound is global, rather than local to the specific piece that the minimal word
δ is congruent to. The only time this “global” bound is used by Zhang is in the proof of the
following proposition; thus we stress the point that by proving the following proposition by
using the definition of∆ as given in this thesis, we are showing that any of Zhang’s results can
be used verbatim (even though his definition of ∆ is slightly different).

Proposition 1.3.2 ([502, Prop 2.3]). Let x, y ∈ A∗ and let u, v ∈ ∆∗ such that u = v inM and
|u| ≥ |v|. If xuy ∈ ∆∗, then xvy ∈ ∆∗.

Proof. If x, y ∈ ∆∗, then xvy ∈ ∆∗.27 If x ̸∈ ∆∗, then by [502, Prop 2.2]28 there existE,F ∈ A+

such that x ∈ ∆∗E, y ∈ F∆∗, and EuF ∈ ∆. Since u = v inM , we have that29 EvF = EuF

in M . Since EuF ∈ ∆ and v ∈ ∆∗, none of the proper prefixes of EvF is invertible in M .
Thus EvF is minimal. As EuF ∈ ∆, there is some wi,j ∈ Λ such that EuF =M wi,j and
|EuF | ≤ |wi,j |. Hence EvF =M wi,j , and as30 |EvF | ≤ |EuF |, we have EvF ∈ ∆ by the
definition of ∆.

Thus the reader who may be accustomed to Zhang’s approach should now be convinced that
the two definitions of ∆ are commensurable. We shall now describe a way of computing ∆ in
certain circumstances, and for computing a presentation for the group of units ofM from ∆.

1.3.2 The group of units

We begin by making a rather important remark. The decision problem which takes as input
a finite presentation of a special monoid M and outputs a presentation for its group of units
U(M), is in general undecidable [367]. This might already dampen one’s spirits. However, we
shall in this section show that this problem is rather tractable in many cases, and that in some
special classes – e.g. in the one-relation case – the problem is decidable.

Now, note that it is possible for distinct pieces from ∆ (or even Λ) to represent the same
element of M . For example, if M = Mon⟨a, b, c | ac = 1, ca = 1, bc = 1⟩, then all of a, b
and c are invertible, so the minimal invertible pieces are ∆ = {a, b, c}, but as a is an inverse
of c, and b is an inverse of c, we must (by uniqueness of inverses) have a =M b. Far more

27Zhang misprints this as xyv ∈ ∆∗.
28The proof of this cited proposition only uses the fact that∆ is a biprefix code. In particular the global

upper bound is not used anywhere in the proof of that proposition.
29Zhang misprints this as Evf = EuF .
30It is here that the “global” bound is applied by Zhang. This ignores the fact that one can take the same

piece wi,j to bound the length of EuF as EvF , as EuF =M EvF .
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complicated examples can be constructed. To remedy this, we will now partition ∆ according
to which elements of∆ represent the same elements ofM . This partition of∆, i.e. the partition
of∆ induced by the equivalence relation =M , will be denoted∆1 ∪∆2 ∪ · · · ∪∆ν . Again, we
emphasise that this partition is not an effective one.

Let X = {x1, . . . , xν}, and let ϕ : ∆∗ → X∗ be the map induced by δ 7→ xi when δ ∈ ∆i.
This is a well-defined homomorphism, as ∆ is a biprefix code. Then one can show (see [502,
Theorem 3.7]) that

Gp⟨X | {ϕ(wi) = 1 (1 ≤ i ≤ k)}⟩

is a group presentation for the group of units U(M) of M . Thus, as promised, U(M) is a
k-relator group. This yields the first (I) of the classical results.

It should perhaps come as no surprise that the set ∆ is, in general, not effectively
constructible. One of the naïve approaches one might attempt for actually computing the set
∆ given a presentation is to successively find overlaps of the defining relations, then find
overlaps of the overlaps, etc. until no more overlaps can be found. Every such overlap will be
invertible by the Fundamental Lemma. This computation is made rigorous by the following
Overlap Algorithm, which takes as input a non-empty set of words W and outputs an
overlap-free code C(W ) which we shall call the overlap-free code generated byW .

The Overlap Algorithm

Input: A non-empty set of wordsW ⊆ A+.
Output: An overlap-free code C(W ) ⊆ A∗ such thatW ⊆ C(W )+.

1) Let C0 =W .
2) If some two words u, v ∈ C0 overlap non-trivially, i.e. we have u ≡ u0w and v ≡ wv0,

where w ∈ A+ and |u0v0| > ε, then let C1 be the set obtained by removing u, v from
C0 and adding those words of u0, v0 and w which are not empty.

3) Iterate step (2) with C1 instead of C0, and continue until no pair of words u, v can be
found. This yields a finite sequence C0, C1, . . . , CK of sets.

4) We have C(W ) = CK .

We will sometimes substitute C(w1, . . . , wk) for C({w1, . . . , wk}) in the interest of ease of
notation. It is clear from the definition that C(W ) is always a uniquely determined overlap-
free code; see Nivat [378] or Lallement [273] for the (easy) full details. We remark that step (4)
will eventually be reached after a finite number of steps, as every wordw ∈W has only a finite
number of prefixes and suffixes, and every prefix or suffix of w has strictly fewer prefixes resp.
suffixes than w does.

Example 1.3.3. Let W = C0 = {abcdab}. Then if u ≡ abcdab and v ≡ abcdab, we have
u ≡ u0w and v ≡ wv0 for u0 ≡ abcd, w ≡ ab, and v ≡ cdab. Thus we can take

C1 = {abcd, ab, cdab}.
Now if we take u ≡ abcd and v ≡ ab, we can take u0 ≡ ε, w ≡ ab, v0 ≡ cd, and find

C2 = {ab, cd, cdab}.
We take u ≡ cdab and v ≡ ab. Thus we can take u0 ≡ cd, w ≡ ab, and v ≡ ε, so

C3 = {ab, cd}.
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There are no non-trivial overlaps here; so C(W ) = C3 = {ab, cd}. △

Now, let M = Mon⟨A | w1 = 1, . . . , wk = 1⟩ be a special monoid. Then Makanin calls
the overlap-free code C(∪iwi) a set of C-words of the presentation, and in his notation this set
would be written – rather confusingly, given our notation above – as “∆[∪iwi]”. Nevertheless,
the use of ∆ for the invertible pieces has become standard enough in subsequent literature
that we shall maintain this. Now, if M = Mon⟨A | wi = 1 (1 ≤ i ≤ k)⟩, then we shall call
C(w1, . . . , wk) the overlap pieces ofM .

Definition 1.3.4 (The overlap group of a special monoid). Let M be the special monoid
Mon⟨A | wi = 1 (1 ≤ i ≤ k)⟩. Let Y be a set in bijective correspondence with C(∪iwi) via a
map ψ : C(∪iwi) → Y , which we extend to ψ : C(∪iwi)

∗ → Y ∗. Then the overlap group
O(M) is defined as the group with the presentation

O(M) = Gp⟨Y | ψ(wi) = 1 (1 ≤ i ≤ k)⟩.

It is easy to see, by definition ofC(∪iwi), thatO(M) is isomorphic to the monoid defined by
the monoid presentation with the same generators and defining relations, see [308, Lemma 8]
for the full details.

Clearly there is a surjection O(M) ↠ ⟨C(∪iwi)⟩M ≤ U(M), as every element of C(∪iwi)

is invertible and must thus be subject to any relation in U(M). Hence already O(M) gives
some information regarding subgroups of the group of units of M . In general, however, the
prescribed map is not injective (or indeed an isomorphism), i.e. O(M) ̸∼= U(M). In general,
we also have ∆ ̸= C(∪iwi) (and there is generally not even any inclusion in either direction).

Example 1.3.5. LetM3 = Mon⟨a, b, c | abcac = 1, b = 1⟩. Then C(abcac, b) = {abcac, b}.
Let Y = {y1, y2} be in bijective correspondence with C(abcac, b) via abcac 7→ y1 and b 7→ y2.
Then the overlap group

O(M3) = Gp⟨y1, y2 | y1 = 1, y2 = 1⟩ = Mon⟨y1, y2 | y1 = 1, y2 = 1⟩ ∼= 1

is trivial. Note that abcac =M3
acac. Hence (ac)2 = 1, and so ac is invertible. In fact, it is

not hard to show thatM3 is equivalent to the monoid defined by the finite complete rewriting
system with the two rules {(acac → 1), (b → 1)}, so ac ̸= 1. In particular, U(M) has a non-
trivial element of finite order, and soO(M3) ̸∼= U(M). In fact, using this rewriting system, one
easily shows that ∆ = {b, ac} whereas C(abcac, b) = {b, abcac}. △

In general, it turns out that there is no algorithm for computing the set∆ given a presentation
for M (we shall see this presently). On the other hand, in the one-relation case, something
remarkable happens. This result is attributed to Adian by Lallement [273, p. 372].31

Theorem (Adian, 1960). Let M = Mon⟨A | w = 1⟩ be a special one-relation monoid. Then
∆ = Λ = C(w). Furthermore, U(M) ∼= O(M).

We have seen an example of this theorem in practice already, if we combine Example 1.3.1
and Example 1.3.3. As an aside, Otto & Zhang [396, Theorem 4.3] have proved that ifM is given
by a finite complete special rewriting system (see §1.2.2), then also O(M) ∼= U(M).

31Adian did not deal explicitly with the one-relation case except as a very particular case at the end of
a long treatise. The treatise gives Makanin’s results in the particular case of “ℓ-homogeneous” k-relation
special monoids; namely special monoids in which all k relations have the same length ℓ, where ℓ ∈ N.
One-relation monoids are of course always ℓ-homogeneous for some ℓ. The proofs of these results in
the isolated one-relation case were later simplified by Zhang [505] using the Freiheitssatz for one-relator
groups, see §1.5.
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1.3.3 Makanin’s procedure

One can, in principle, from Zhang’s work extract an algorithm for computing a presentation
for U(M), which takes as input only a k-relation presentation for M , under the assumption
that the word problem for U(M) is decidable. However, this algorithm is not constructive, and
is certainly not implementable in practice. We shall instead give a practical procedure which
computes the group of units in many cases, and which is far more applicable. This procedure
takes as input a presentation for a special monoid, and is thus – in principle – something one
can use in practice. This was described very implicitly by Makanin in his Ph.D. thesis, and
we shall call it Makanin’s procedure. The procedure is described below. Note that in stating
the procedure, we temporarily forget the above definitions of M1,M2,M3, and M4 for ease
of notation. One feature of the procedure is that while it can take an arbitrary special monoid
as input, and often compute the group of units in a very efficient manner, it is generally not
sufficient that the group of units be (by some oracle) known to have decidable word problem in
order for the procedure to terminate. However, the procedure always produces explicit group
presentations for which one must solve the word problem, and if one can do this the finitely
many times one is asked to do so, then one finds a finite presentation for the group of units of
the input special monoid.

Makanin’s Procedure

Input: A k-relation special monoidM .
Output: If successful, a k-relator presentation for U(M).

1) Compute the overlap group O(M) = G0 = Gp⟨Y0 | R0⟩, with overlap pieces Λ0 and
associated bijection ψ0 : Λ0 → Y0.

2) Solve the word problem for G0. If this is not possible, then the procedure fails. If it is
possible, then enumerate all non-graphical equalities u =G0

v of words with u, v ∈ Y ∗
0

and such that |ψ−1
0 (u)| ≤ |ψ−1

0 (v)|, and such that ψ−1
0 (v) appears as a subword of

some relation word fromM .
3) For every λ ∈ Λ0, using the equalities in (2), obtain the finite set Sλ consisting of all

λ′ ∈ A∗ such that λ′ ≡ h1uh2 and λ ≡ h1vh2 for some h1, h2 ∈ A+ and u, v ∈ Y ∗
0

with u =G0
v. Note that λ ∈ Sλ.

4) For every λ ∈ Λ0, if there is some word λ′ ∈ Sλ with |λ′| < |λ|, then we replace every
occurrence of λ in the defining relations of M by λ′, resulting in a presentation of a
monoidM1. We haveM1

∼=M0 by [308, Lemma 12].
5) Compute the overlap-free code generated by

⋃
λ Sλ using the Overlap Algorithm,

and use these words to factor the defining relations of M1. Let Λ1 be the words
which actually appear in this factorisation, and let G1 be the group obtained from
this factorisation in the same way the overlap group is obtained from a factorisation
into overlap pieces.

6) Repeat the above steps forM1, obtaining groups G0, G1, G2, . . . , Gk, . . . . Eventually,
by [308, Theorem 2], this stabilises, i.e. for some K ≥ 0 we have Mk = Mk+1 and
Gk = Gk+1 (as presentations) for all k ≥ K .

7) We have U(M) ∼= GK .
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Example 1.3.6. Consider the example
M4 = Mon⟨a, b, c, d | dba4cd = 1, abca = 1, a2 = 1⟩.

Then the overlap pieces are given as
Λ4,0 = {d, a, bc, ba4c}

and so the overlap group forM4 is
G4,0 = Gp⟨y1, y2, y3, y4 | y1y4y1 = 1, y2y3y2 = 1, y22 = 1⟩.

Now we enter Step 2 of the procedure. It is not hard to solve the word problem in this group,
isomorphic to the free product Z ∗ C2. Thus inM4 we have the non-graphical equalities a4 =

a2, a3 = a, a2 = 1, bc = a2, and bc = a4. In particular, we have that
Λ4,0 ∋ b(a4)c = b(a2bc)c = b(bca2)c = b(abca)c = b(bcbc)c = b(a2)c = b(bc)c = bc,

inM4, and therefore in Step 3 we obtain the sets
Sd = {d},

Sa = {a},

Sbc = {bc},

Sba4c = {b(a4)c, b(a2bc)c, b(bca2)c, b(abca)c, b(bcbc)c, b(a2)c, b(bc)c, bc}.
Now performing Step 4, seeing that bc ∈ Sba4c is the representative of shortest length, we find
thatM4 =M4,0 is isomorphic to the monoid obtained by replacing all occurrences of the piece
ba4c by bc, i.e. to

M4,1 = Mon⟨a, b, c, d | dbcd = 1, abca = 1, a2 = 1⟩.
Continuing with Step 5, we perform the overlap algorithm on

⋃
λ∈Λ Sλ, which yields

C

(⋃
λ∈Λ

Sλ

)
= {d, a, bc, b(a4)c, b(a2bc)c, b(bca2)c, b(abca), b(bcbc)c, b(a2)c, b(bc)c}.

Now we can factor the defining relations of M4,1 over this biprefix code; this factorisation
becomes

M4,1 = Mon⟨a, b, c, d | (d)(bc)(d) = 1, (a)(bc)(a) = 1, (a)(a) = 1⟩,
Thus we have

Λ4,1 = {d, a, bc},

and so the presentation for G4,1 becomes
G4,1 = Gp⟨y1, y2, y3 | y1y3y1 = 1, y2y3y2 = 1, y22 = 1⟩.

As M4,1 is not given by the same presentation as M4,0, we have not yet stabilised, and so
perform the steps again. For Step (2), we find that the only non-trivial equality to consider is
a2 = bc, so

Sd = {d}

Sa = {a}

Sbc = {bc, aa}.
Now, the only non-trivial equality to consider is bc = aa, and as neither bc nor aa appear as
a proper subword of some other element of Λ4,1, nothing is done in Step (4). Furthermore,
C(
⋃

λ∈Λ Sλ) = {d, a, bc} = Λ4,1, so the process has terminated. ThusM4,1 =M4,2, and so
U(M4) ∼= G4,1 = Gp⟨y1, y2, y3 | y1y3y1 = 1, y2y3y2 = 1, y22 = 1⟩

∼= Gp⟨x, y | x2 = 1, y2 = 1⟩ ∼= C2 ∗ C2 = D∞,

the infinite dihedral group. △
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A remarkable feature of the one-relation case is that steps (2)–(6) of Makanin’s procedure are
unnecessary ifM has only a single defining relation. That this is unnecessary is a consequence
of the Freiheitssatz, see [505] for further details. Of course, skipping these steps in that case
simply consists of performing the overlap algorithm as presented by Adian. Note that the above
procedure is only an algorithm in the case that the word problem is decidable in all the groups
G0, G1, . . . , GK that one encounters. These are all k-relator groups, and the lengths of their
defining relations are all less than or equal tomaxi |wi|, giving an upper bound on the number
of steps taken by the procedure before terminating.

We remark that Makanin’s procedure also produces a “simple” presentation for any input
special monoidM , provided the solution of the word problems for the groups one encounters
along the way. For example, as noted, it detected the isomorphism

M4 = Mon⟨a, b, c, d | dba4cd = 1, abca = 1, a2 = 1⟩
∼= Mon⟨a, b, c, d | dbcd = 1, abca = 1, a2 = 1⟩.

This notion of “simple” presentation, i.e. one which (informally speaking) minimises the
presence of pieces appearing as subwords of other subwords, is quite closely connected to
what Makanin calls a distinguished32 presentation. However, this connection can only be
taken so far, as distinguished presentations are not always what we might call the “simplest”
presentation for a given monoid; for note that the relations abca = 1 and a2 = 1 together
imply bc = 1, and hence

M4
∼= Mon⟨a, b, c, d | d2 = 1, bc = 1, a2 = 1⟩ ∼= Mon⟨b, c | bc = 1⟩ ∗D∞.

This presentation is thus “simpler” than the one which was given by Makanin’s procedure.
Note that from this final presentation it becomes obvious that the group of units of M4 has
been correctly computed by Makanin’s procedure.

The next example shows that in many other situations the group of units can be computed
just as in the one-relator case, i.e. simply by considering the overlaps of words.

Example 1.3.7. Consider the example
M2 = Mon⟨a, b, c, d | abcdab = 1, acdcabdccddcabdcdacd = 1⟩.

Then the overlap pieces are given as
Λ2,0 = {ab, cd, acd, cabd, ccdd}

and so the overlap group forM2 is
G2,0 = Gp⟨y1, . . . , y5 | y1y2y1 = 1, y3y4y5y4y3 = 1⟩ ∼= F3.

That is, G2,0 is a free group on three generators. We can easily solve the word problem here.
The only overlap pieces containing other pieces as proper subwords are c(ab)d and c(cd)d.
However, ψ2,0(ab) = y1 is not equal any element w ∈ Y ∗ such that |ψ−1

2,0(w)| ≤ |ab|. Indeed,
the only possibility for this would be if ψ−1

2,0(w) is one of {ε, ab, cd}. If ε, then y1 = 1 in G2,0,
which is easily seen to not be the case; if cd, then ab = cd inM2,0, so y1 = y2 in G2,0, which
also not the case. Thus Sab = {ab}. An analogous argument shows that Scd = {cd}. Hence
Sλ = {λ} for every λ ∈ Λ2,0, and so Makanin’s procedure terminates, and we have that

U(M2) = Gp⟨y1, . . . , y5 | y1y2y1 = 1, y3y4y5y4y3 = 1⟩ ∼= F3.

This shows the simplicity of Makanin’s procedure in many cases. Without this procedure,
computing the group of units of M2 is not at all an obvious task (even given e.g. Zhang’s
paper). △

32Rather, this is my translation; the original Russian word is vybrannoj, which perhaps translates better
as selected, but this latter word is not easily used in mathematical writing.
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We will use some of Makanin’s ideas about the set of pieces. However, Makanin does not
explicitly define the set of pieces of a presentation. Instead, he defines the notion of c-words.
We give a brief overview of this in language adapted to this thesis. The original can be found
in [308]; in my English translation, this is [387, pp. 14–15]. He begins with any set into which
the left-hand sides wj of the defining relations wj = 1 can be factored into minimal invertible
factors33, and calls this set

C = {C1, C2, . . . , Cs}.

That is, every wj can be written as a product Cj1Cj2 · · ·Cjt ∈ C∗ of words from C . For our
purposes, we will take C = Λ. Let B = {β1, β2, . . . , βs} be in bijective correspondence with
C via the map induced by β : Cj 7→ βj , and extend this to an isomorphism β : C∗ → B∗. Let
G(C) be the group with the presentation

G(C) = Gp⟨β1, . . . , βs | β(w1) = 1, . . . , β(wk) = 1⟩.
Now, there is always a surjection G(C) ↠ U(M) induced by mapping βi ∈ B to ϕ(Ci) ∈ X .
Thus, if u, v ∈ ∆∗ are such that β(u) =G(C) β(v), then ϕ(u) =U(M) ϕ(v) (but the converse
does not always hold). If λ ∈ Λ, thenwe say that λ is obtained from itself by the piece-generating
operation, and inductively, we say:

(∗) Suppose that w ≡ h1δi,1δi,2 · · · δi,ph2 is obtained from λ by the piece-generating
operation, where p ≥ 0 and h1, h2 are non-empty, and δi,j ∈ ∆ for every such δi,j .
Suppose then that w′ ≡ h1δj,1δj,2 · · · δj,th2, with t ≥ 0, that |w′| ≤ |w|, and that
δi,1δi,2 · · · δi,p =M δj,1δj,2 · · · δj,t. Then w′ is also said to be obtained from λ by the
piece-generating operation.

Any word obtainable from a C-word (that is, a presentation piece) Ci by the
piece-generating operation will be called a ci-word. The set of all ci-words is called the
c-words of the presentation. Now, if w ∈ A∗ can be obtained from λ by the piece-generating
operation, then we denote this by w ∈ [λ]↓. It is easy to see that for any w ∈ [λ]↓, we have
that w is a minimal word, i.e. w ∈ M (see e.g. the second half of the proof of Lemma 3.2.4).
We have λ ∈ [λ]↓, and |w| ≤ |λ| for every w ∈ [λ]↓, so in particular for every λ ∈ Λ the set
[λ]↓ is finite. In general, for λ1, λ2 ∈ Λ we can have [λ1]↓ ∩ [λ2]

↓ ̸= ∅ even when λ1 ̸≡ λ2.
We remark the following useful fact: if λ ∈ Λ and δ ∈ ∆ are such that λ ≡ h1wh2 and
δ ≡ h1w

′h2, with h1, h2 ∈ A+ and w ∗−→S w′, then δ ∈ [λ]↓. The converse does not, in
general, hold.

We shall make use of the above terminology in Chapter 3. This completes the exposition of
the first two parts (I and II) of the classical results for special monoids.

1.3.4 Reducing decision problems

We now conclude our overview of the classical results by giving an overview of the fact that
the word and divisibility problems for a special monoid M reduce to the word problem for
U(M). The fundamental idea behind this reduction can be heuristically explained as follows:
suppose that we have a wordw containing r1 and r2 as subwords, where r1 = 1 and r2 = 1 are
some two defining relations of a special monoid. Suppose that these two occurrences have a

33Makanin begins in a more general situation by considering any biprefix code such that the defining
relations can be factored over this code; using this, he then gives a procedure which produces the minimal
invertible factors, under the assumption that the word problem in certain groups can be solved. This is of
course the basis for Makanin’s procedure.
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non-trivial overlap, say in the word s. Then we can writew ≡ w′r′1sr
′′
2w

′′, where r1 ≡ r′1s and
r2 ≡ sr′′2 . As s is a suffix of r1, it is left invertible, and as it is a prefix of r2, it is right invertible.
Hence any overlap of defining relations must be invertible: in particular, if we factor r1 and r2
(necessarily uniquely) into minimal invertible factors as r1 ≡ δ1δ2 · · · δκ and r2 ≡ δ′1δ

′
2 · · · δ′ℓ,

where δi, δ′j ∈ ∆ for all 1 ≤ i ≤ κ and 1 ≤ j ≤ ℓ, then we have
s ≡ δiδi+1 · · · δκδ′1δ′2 · · · δ′j ∈ ∆∗,

for some i, j ≥ 1. Hence, elementary transformations in a special monoid are controlled by
invertible words; more specifically, they are controlled bywords over∆∗. Given the importance
of resolving overlaps when solving the word problem in rewriting systems, this gives a heuristic
for why a reduction of the word problem to the group of units is at all possible.

A little more rigorously, and using the rephrasing of Adian &Makanin’s ideas done by Zhang
[501, 502], we define the rewriting system

S = S(M) := {(u, v) | u, v ∈ ∆∗ : u =M v and u >s v}.
Here >s denotes the shortlex ordering on A∗, as defined in §1.1.1, induced by (any) fixed
ordering of A. Although S is generally infinite, Zhang proved that this system is complete and
defines M [502, Proposition 3.2]. Thus, if one can effectively construct ∆ and decide
equalities of (necessarily invertible!) words over ∆∗ in M , then one can solve the word
problem forM by the following procedure: given two words u, v ∈ A∗, enumerate all finitely
many equalities of words w,w′ ∈ ∆∗ with max{|w|, |w′|} ≤ max{|u|, |v|}. Then, compute
the finite set of descendants of u resp. v under S(M) restricted to only the rules which
involve one of the finitely many equalities computed. Denote these sets of descendants T(u)
and T(v), respectively. Then u = v inM if and only if T(u)∩T(v) ̸= ∅. This is exactly, up to
being phrased in terms of rewriting systems, Theorem 3 in Makanin’s Ph.D. thesis. Lallement
[273] also describes this in the one-relation case. We have only described the reduction of the
word problem for M to the word problem for U(M). The reduction of the divisibility
problems to the same problem requires no new ideas, and so this reduction is omitted (it can
be found e.g. as [502, Theorem 5.3] or [308, Theorem 6]). In summary, we have:

Theorem (Makanin, 1966). Let M = Mon⟨A | w1 = 1, . . . , wk = 1⟩. Then the word and
divisibility problems forM reduce to the word problem for the k-relator group U(M).

One can in fact sharpen this result. Say that v ∈ A∗ is a maximal invertible factor of u ∈ A∗

if there exist x, y ∈ A∗ such that: (1) u ≡ xvy; (2) v is invertible; and (3) whenever x ≡ x1x2
and y ≡ y1y2 such that |x2y1| > 0, then x2vy1 is not invertible. We then have the following
quite explicit way of comparing words from A∗ inM , see Otto & Zhang [396, Theorem 5.2].

Lemma 1.3.8 (Otto & Zhang). LetM = Mon⟨A | w1 = 1, . . . , wk = 1⟩, and let u, v ∈ A∗ be
such that u =M v. Then we can factorise u and v as

u ≡ u0a1u1 · · · amum
v ≡ v0a1v1 · · · amvm

respectively, where for all 0 ≤ i ≤ m we have ai ∈ A and

(1) ui =M vi;
(2) ui is a maximal invertible factor of u.
(3) vi is a maximal invertible factor of v.

We note that some of the ui and vj may be empty. We end this section on special monoids
by describing some particularly pleasant features of one-relation special monoids. Magnus (see
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§1.5) proved that the word problem is decidable for any one-relator group Gp⟨A | w = 1⟩. We
hence have the following centrally important theorem, proved already by Adian [3].

Corollary (Adian, 1960). The word and divisibility problems for every special one-relator monoid
Mon⟨A | w = 1⟩ is decidable.

This completes the classical treatment of special monoids. Before finishing, there are other
results and papers on special monoids which bear mentioning. The earliest concern identities
in special monoids by Adian [5]. We refer the reader to e.g. the survey by Shevrin & Volkov
[443] or [88, Chapter II] for definitions and more information on identities. Adian’s results
were later used by e.g. Shneerson [444, 445]34 to completely classify the one-relation monoids
satisfying non-trivial identities; this allows a complete characterisation of which one-relation
monoids have decidable first-order theory, see [485]. Other sporadic work on special monoids
has also appeared, particularly by Kashintsev [245, 246, 247, 248, 249], which is mostly related to
embeddability and small cancellation results; we also refer the reader to [234, 67, 498, 503, 506]
as well as [23, 83] for some further details on string rewriting and special monoids.

1.4 Graphs and geometry

In this section, we shall present the elements of graph theory as we shall need it in the sequel,
particularly in Chapter 5. The following treatment follows [363] and [269] rather closely.

As before (cf. §1.2.1), an alphabet is a finite set of symbols. A labelled (directed) graph Γ

consists of a set V = V (Γ) of vertices, a label alphabet Σ, and a set E of (labelled) edges, where
E ⊆ V ×Σ×V . The cardinal of a graph is defined as the cardinal of its vertex set. For every edge
e ∈ E, the projection to the first coordinate is called the origin o(e) ∈ V of e, the projection to
the second coordinate is called the label ℓ(e) ∈ Σ of e, and the projection to the third coordinate
is called the terminus t(e) ∈ V of e. For σ ∈ Σ, let Eσ = E ∩ (V × {σ} × V ) be the set of
edges labelled by σ. This definition of edge does not allow for multiple edges sharing all of
origin, terminus, and label; but it does allow for two distinct edges sharing exactly two of the
properties. We say that the graph has bounded degree if there exists some K ≥ 0 such that for
every vertex v each of the sets {e | e ∈ E(Γ) with t(e) = v} and {e | e ∈ E(Γ) with o(e) = v}
has fewer thanK elements. Many of the graphs we shall consider will be rooted. This is a simple
notion: if Γ is a graph, then we root Γ by simply distinguishing a single vertex v ∈ V (Γ), and
call this the root of Γ. If Γ is a rooted graph, then 1Γ will denote its root.

A labelled undirected graph is defined much like a labelled directed graph, with the key
difference being that every edge is instead an ordered pair ({u, v}, σ) of edges and a label σ.
Finally, an unlabelled and undirected graph is simply one in which an edge is an unordered
pair of vertices {u, v}, while (slightly abusively) allowing for loops {u, u}. When Γ is a
labelled directed graph, we can associate to Γ the undirected and unlabelled graph

ud(Γ) :=
(
V,
⋃
σ∈Σ

{{u, v} | u ̸= v, (u, σ, v) ∈ Eσ or (v, σ, u) ∈ Eσ}

)
.

If Σ is the label alphabet of the labelled directed graph Γ, then we associate an alphabet Σ in
bijective correspondence with Σ, denoting this bijection by σ 7→ σ for all σ ∈ Σ, with Σ∩Σ =

∅. There is a natural directed and labelled graph obtained from ud(Γ) in the following way:
34These papers are not readily available, even in Russian. However, I have recently translated these

papers into English, and they will shortly be made available online by L. Shneerson. I thank L. Shneerson
and M. Volkov for their aid in providing copies of these papers and their interest in my work.
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for every undirected edge {u, v} of ud(Γ), we add two edges (u, σ, v) and (v, σ, u) whenever
(u, σ, v) is an edge of Γ. We denote the resulting labelled graph by lud(Γ). Note that if (u, σ, v)
is an edge ofE(Γ), then in lud(Γ) there is now both an edge (u, σ, v) and an edge (v, σ, u). Thus
lud(Γ) can be considered as a “symmetrised” version of Γ.. In particular lud(lud(Γ)) = lud(Γ).
Note also that lud(Γ) is (essentially) a graph in the sense as defined by Serre [439].

The connected components of a graph Γ is defined as the connected components of udΓ.
The tree-width of a graph Γ is the minimum width among all possible tree decompositions of Γ;
this is the same notion of tree decompositions as appears originally in [421]. The reader need
know nothing about tree-decompositions than what appears in the following sentence: a tree
has tree-width 1, and if a graph Γ has tree-width ≤ k, then any induced subgraph of Γ has
tree-width ≤ k. The reader may treat tree-width as a black box, as it is in this manner that we
shall use it.35

We will frequently reference walks in graphs; if p is a walk
u0

σ1−→ u1
σ2−→ · · · σn−−→ un

where ui
σi+1−−−→ ui+1 is meant to indicate that (ui, ui+1) ∈ Eσi+1 , for σi ∈ Σ for all 1 ≤ i ≤ n,

then we say that p has walk label ℓ(p) = σ1 · · ·σn ∈ Σ∗. If there is such a walk, then we write
p : u0

ℓ(p)−−→ un. Note, however, that there may be several distinct walks u0
ℓ(p)−−→ un, so this

notation is slightly abusive; we shall only use it when the existence of such a walk is the issue
treated, or when context makes the chosen walk clear. The length |p| of the walk p is the integer
n. If all vertices ui are pairwise distinct, except possibly u0 and un, then we say that p is a path,
and we will accordingly refer to its walk label as its path label. An undirected walk in Γ is a
walk in lud(Γ).

1.4.1 Ends of graphs

A useful notion in the study of the coarse geometry of a graph is that of ends. For this, we
follow [363]. Let Γ be a connected labelled graph of bounded degree. We will distinguish a
vertex 1 ∈ V (Γ) and say that 1 is the root of Γ. If v is any vertex of Γ, then we use |v|Γ to
denote the length of a shortest (undirected) walk from 1 to v in ud(Γ). By Γ(n) we mean the
subgraph of Γ consisting of all the vertices and edges which are connected to 1 by an undirected
walk of length less than n; in particular Γ(0) is empty, Γ(1) consists of 1, and Γ(2) consists of
1, its neighbours, and all edges connecting these vertices. As in the theory of ends in e.g. [118]
or [414], the connected components of Γ \ Γ(n) will be the central objects of study. If C is a
connected component of Γ \Γ(n), then we say that a frontier point of C is a vertex u of C such
that |u|udΓ = n. If v is a vertex of Γwith |v|udΓ = n, then we use Γ(v) to denote the component
of Γ \ Γ(n) which contains v. The set of frontier points of Γ(v) will be denoted by ∆(v); this
set is always finite (but possibly unbounded in v) as Γ has bounded degree. For example, in
the infinite grid of Figure 1.2, the number of frontier points of Γ(v) grows unboundedly as a
function of |v|, as the number of frontier points in Γ(v) grows as ∼ |v|2udΓ.

35In slightly more detail, the way in which shall use it is the following: starting with a monoidM with
a non-context-free Cayley graph Γ, we shall find inside it an induced subgraph Γ′, closely related to the
Cayley graph of a groupG withG ≤ M . AsG ≤ M , we will be able to conclude thatG is not a context-
free group; by deep theorems in geometric group theory, one can conclude that Γ′ does not have finite
tree-width. Therefore, via the black box, we conclude that Γ does not have finite tree-width. By certain
general theorems on graphs, this will allows us to conclude that Γ is not quasi-isometric to a tree. Note
that the method above is an instance of reducing a problem about monoids to a problem about groups;
Sushkevič would likely be pleased of this application of his principle.
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Figure 1.1: Left: A context-free graph Γ, with root 1 central and enlarged. Right: Two of the three end-isomorphism
classes of Γ, with frontier points marked in red. The third end-isomorphism class is represented by Γ(1), and is
isomorphic to Γ. Note that all edge labels are intentionally suppressed; it is assumed that all triangles have the same
labels, as do all single edges.

Let u, v ∈ V (Γ). An end-isomorphism between the two subgraphs Γ(u) and Γ(v) is a
mapping ψ between Γ(u) and Γ(v) such that

(1) ψ is a label-preserving graph isomorphism, and
(2) ψ maps ∆(u) onto ∆(v).

We will write Γ(u) ∼ Γ(v) if there exists some end-isomorphism ψ : Γ(u)→ Γ(v).

Definition 1.4.1. A connected labelled graph Γ of bounded degree is said to be context-free if
the set of end-isomorphism classes {Γ(v) | v ∈ V (Γ)}/ ∼ is finite. Furthermore, a labelled
graph Γ of bounded degree that is the union of finitely many connected graphs is said to be
context-free if all its connected components are context-free.

We now give one example together with a non-example of a context-free graph, to illustrate
some of the considerations of importance, as well as consolidate the definitions. The interested
reader may construct many more examples of both kinds without much difficulty.

Example 1.4.2 (A context-free graph). Let Γ be the graph obtained from the following
procedure: take a triangle graph, and attach a single edge to each of its vertices. To each of
these edges, attach an isomorphic copy of the original triangle, and repeat; the graph Γ is the
colimit of the sequence of graphs obtained. See Figure 1.1, in which the resulting graph is
drawn out without any edge labels. We note that this graph is very closely related to the
Cayley graph of the virtually free group Gp⟨a, b | a2 = b3 = 1⟩ ∼= C2 ∗ C3. △

Thus context-freeness captures the idea that if one traverses the graph from the identity,
travelling outwards, one eventually encounters graphs which one already has seen.

Example 1.4.3 (A graph which is not context-free). Let Γ be the infinite two-dimensional grid,
with two different types of edge labels; see Figure 1.2. The root 1 is the central enlarged vertex.
Some graphs Γ(n) are drawn out. In all of these graphs, the red vertices indicate vertices at
distancen from the root 1. ThenΓ is not a context-free graph, as the number of frontier points of
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Figure 1.2: An illustration of why the infinite two-dimensional grid is not a context-free graph. We remark that the
filled-in squares are purely to make the picture clear, and have no significance to the graph itself. Left: the graph Γ,
with root 1 in the center. Right: three complements of ends of Γ, showing that the number of frontier points of Γ\Γ(n)

grows unboundedly in n.

Γ\Γ(n) equals the number of vertices at distance n from 1. But this number grows quadratically,
and hence unboundedly, in n, so there cannot be only finitely many end-isomorphism classes
of ends of Γ; this is because any end-isomorphism must map the frontier points of one graph
in an end-isomorphism class bijectively onto the frontier points of another. We note that this
graph is isomorphic to the right Cayley graph of the group Gp⟨a, b | [a, b] = 1⟩ ∼= Z× Z with
the generating set {a, b}, which is not a virtually free group. △

Note that as the two graph-theoretic tools used above for defining context-free graphs –
namely connected components and distances – are used in the undirected sense, lud(Γ) is
context-free if and only if Γ is context-free.

We note that by [363, Corollary 2.7] a context-free graph remains context-free independent
of the choice of root; this result will often be implicitly assumed throughout. In particular, some
statements will be easier to state without explicitly rooting the graphs involved; the reader can
to such statements always add the sentence “independently of root chosen”. Furthermore, if we
speak of a context-free graph, then we implicitly assume this graph is labelled and has bounded
degree.

A final definition which occasionally is useful is that of a second-level subgraph of a
context-free graph, again following [363]. Let Γ be a context-free graph rooted at 1, and let
{Γ0,Γ1, . . . ,Γk} be a complete list of representatives of the end-isomorphism classes of Γ.
Assume without loss of generality that Γ0 = Γ(1). Let Γi be one of these representative
graphs, with ∆i as its set of frontier points. If the edges of Γi that are incident to some vertex
of ∆i are deleted, then there remains a finite union of connected subgraphs of Γi. These
subgraphs are called the second-level subgraphs of Γi. It may be the case that Γ0 is not the
second-level subgraph of any Γi. If this is the case, then we declare Γ0 to nevertheless be a
second-level subgraph. We note that for every Γi there exists some Γj such that Γi is a
second-level subgraph of Γj , and every second-level subgraph is isomorphic to some Γi (see
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[363, p. 57]). Thus the notion of second-level subgraphs formalises the notion of “seeing”
elements of {Γ0,Γ1, . . . ,Γk} as one travels in Γ outward from the root. We emphasise that a
context-free graph only has finitely many second-level subgraphs, and that these graphs
completely capture the structure of the original graph.

1.4.2 Pushdown automata and graphs

We will follow Muller & Schupp [363] more or less verbatim in their definition of a pushdown
automaton (henceforth abbreviated as pda) and of concepts related to this for the theory of the
ends of graphs. A pda is a 7-tupleM = (Q,A,Z, δ, q0, z0, Q̂) consisting of a finite set Q of
states, a finite input alphabet A, a finite stack alphabet Z , an initial state q0 ∈ Q, a start symbol
z0 ∈ Z ∪{ε}, a set of final states Q̂ ⊆ Q, and a transition function δ. We allow pdas to run even
when their stack is empty; hence δ is a mapping

δ : Q× (A ∪ {ε})× (Z ∪ {ε})→ Fin(Q× Z∗).

We interpret
δ(q, a, z) = {(q1, ζ1), . . . , (qm, ζm)}

for qi ∈ Q, a ∈ A, z ∈ Z , and every ζi ∈ Z∗ for 1 ≤ i ≤ m, as follows: when the pda is in state
q, reading the input symbol a, and with z the top symbol on its stack, then the machine can,
for any choice of i = 1, . . . ,m, change to state qi, replace z by ζi, and move the head reading
the input tape one square to the right. We will consider the symbols in ζi as being placed on
the stack from left to right; thus the rightmost symbol of ζi (or ζi itself if ζi ≡ ε) is the top of
the stack. If δ(q, a, z) is empty, then the machine halts.

We interpret
δ(q, a, ε) = {(q1, ζ1), . . . , (qm, ζm)}

as follows: when the pda is in state q, reading the input symbol a and the stack is empty, then
the machine can change state to qi and add ζi to the stack for a choice of i, 1 ≤ i ≤ m.

We interpret
δ(q, ε, z) = {(q1, ζ1), . . . , (qm, ζm)}

as follows: when the pda is in state q with z as the top symbol of the stack, then – independently
of the input symbol being scanned – the machine can change to state qi and replace z by ζi.
The input head is not moved. Such a transition ofM will be called an ε-move. We also allow
ε-moves when the stack is empty in the obvious way.

If (qi, ζi) ∈ δ(q, a, z), then we will write this graphically as q a,z 7→ζi−−−−→ qi. This gives rise to
the usual graphical interpretation of a pda as a finite machine with its states as the vertices, and
with its transitions the edges of the machine.

A total state36 of the pdaM is a pair (q, ζ) where q ∈ Q is the current state ofM, and
ζ ∈ Z∗ denotes the contents of the stack. We write (q, ζ) ⊢aM (q′, ζζ ′) if δ(q, a, z) contains
(q′, ζ ′), where z is the rightmost symbol of ζ (or ε if ζ is empty). We writeM ⊢∗ (q, ζ) if there
exists some word w ∈ A∗ such that whenM is started in its initial total state (q0, z0) with w
written on the input tape, it is possible forM to be in the total state (q, ζ) after reading w.

We define the graph Γ(M) of the pdaM as follows. The vertex set of Γ is
V = {(q, ζ) | q ∈ Q, ζ ∈ Z∗,M ⊢∗ (q, ζ)}

i.e. the set of possible total states thatM can reach (generally, this is an infinite set). If (q, ζ) and

36Total states are also called configurations by e.g. Gray, Silva & Szakáks [170].
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(q′, ζ ′) are possible total states ofM andM can go from (q, ζ) to (q′, ζ ′) in a single transition,
i.e. if (q, ζ) ⊢aM (q′, ζ ′), then there is an edge ewith label a from (q, ζ) to (q′, ζ ′). The following
theorem, which is [363, Theorem 2.6], yields the main reason for studying such graphs.

Theorem (Muller & Schupp). A graph Γ is context-free if and only if there exists some pdaM
such that Γ = Γ(M).

We shall find this characterisation of context-free graphs useful in Chapter 5.

1.4.3 Cayley graphs

Cayley graphs allow for a graphical representation of algebraic structures. As tools for studying
infinite groups, they were first properly applied by Burnside [87, p.426], and particularly by
Dehn [129], who used the termGruppenbild (Ger. picture of a group).37 The (right)monoid Cayley
graph ΓM (M,A) of a monoidM together with a generating set A forM is the labelled graph
with vertex setM and an edge m1

a−→ m2, i.e. (m1,m2) ∈ Ea, if and only if m1 · π(a) = m2

in M . Here π : A∗ → M denotes the natural homomorphism from the free monoid on A to
M . Note that there is a dependency on the homomorphism π chosen, but we shall assume that
this is fixed whenever we say that M is generated by A. The group Cayley graph ΓG(G,A)

of a group G with a generating set A for G is defined analogously, but with two additional
assumptions: that A be placed in involutive correspondence with an alphabet A−1 such that
A∩A−1 = ∅, and such that for every edge (u, v) ∈ Ea, there exists an edge (v, u) ∈ Ea−1 . In
particular, the label alphabet of ΓG(G,A) is A ⊔A−1, and π(a−1) = π(a)−1. For an overview
of material pertaining to Cayley graphs, particularly of general algebraic structures, we refer
the reader to [251, 284, 93]. The following theorem is fundamental, and was proved in the same
paper as context-free graphs were introduced.

Theorem (Muller & Schupp, 1985). A finitely generated group is virtually free if and only if
ΓG(G,A) is a context-free graph for some (any) choice of finite generating set A.

If M is a monoid with finite generating set A, then the strongly connected component in
ΓM (M,A) of the identity element is denoted R1, and, following Stephen [467], is called the
Schützenberger graph of 1. This will be an important object of study in Chapter 5. Of course, if
M is a group, then ΓM (M,A) = R1. The vertex set ofR1 is the set of right invertible elements
ofM , but R1 is not generally isomorphic to the right Cayley graph of the submonoid of right
units ofM . We shall revisit this theme in Chapter 5.

1.4.4 Logic of graphs

We shall assume some background frommodel theory and formal logic; all notions implicit here
can be found in e.g. [412, 331, 258]. We can consider a labelled graph as a formal logical structure
Γ with domain V (the vertex set of the graph) and a single relation, the edge relation. A first-
order predicate in a graph is a predicate which can involve vertices, the edge relation, equality,

37Dehn’s definition was not the one we present below. In fact, Dehn defined what is today usually
referred to as Stephen’s procedure – this observation does not appear to have been made anywhere in the
literature. The Gruppenbild of a finitely presented group is obtained by attaching loops of all defining
relations, including pairs aa−1 and a−1a for generators a, and folding together determinisable pairs. In
the group case, the resulting limit graph results in the usual Cayley graph – but in the general monoid
case, the same procedure only produces an induced subgraph of the full Cayley graph. Dehn’s procedure
is described in full by Chandler & Magnus [107, I.§5].
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quantifiers (∃,∀) over vertices, and their boolean combinations (¬,∧,∨,→). Amonadic second-
order predicate also allows quantification (both universal and existential) over sets of vertices;
if such quantification is only allowed over finite sets of vertices, then this is known as weak
monadic second-order predicates.

The first-order (monadic second-order) theory of a graph Γ is the collection of all first-order
(monadic second-order) predicates ϕ with no free variables such that Γ |= ϕ. We say that
the first-order (monadic second-order) theory of a graph is decidable if, given any first-order
(monadic second-order) predicate ϕ, there is an algorithmwhich decides whether or not Γ |= ϕ.
For more detailed background on these notions, see e.g. [363, 270]. A remarkable theorem due
to Muller & Schupp [363] is that any context-free graph has decidable monadic second-order
theory. The converse is certainly not true in general; for example, consider the graph Γ′ with
vertex set two disjoint copies ofN, where we denote the first copy as {0, 1, . . . } and the second
as {v1, v2, . . . , }. Let the root of Γ′ be 0. Let the label alphabet be a singleton {a} and the
edges of Γ′ be (n, a, n+ 1) whenever n ∈ N, and an edge ( 12n(n+ 1), a, vn). Thus Γ′ has the
appearance ofNwith a single strand of hair growing at every vertex of the form 1

2n(n+1). One
can show with little difficulty that this graph has decidable monadic second-order theory (see
[149] for much more general statements), but the graph is clearly not context-free: the distance
between the individual hairs grows as one moves farther away from the root of N.

Shifting our attention to (right) Cayley graphs, decidability of either the first-order or the
monadic second-order theory of the Cayley graph of a finitely generated monoidM does not
depend on the finite generating set chosen [270]. For this reason, we will generally omit
reference to finite generating set below. There is a number of connections between decision
problems for a given monoid M and different theories associated to the Cayley graph of M .
This is most apparent in the group case: the first-order theory of the Cayley graph of a group
is decidable if and only if the word problem for the group is decidable [269], and the monadic
second-order theory of the Cayley graph of a group is decidable if and only if the group is
virtually free [269, 363]. For monoids, by [270, Proposition 4], if the first-order theory of the
Cayley graph of a finitely generated monoid is decidable, then the monoid has decidable word
problem, but by [270, Proposition 5] there exists a monoid with word problem decidable even
in linear time, but the Cayley graph of which nonetheless has undecidable first-order theory.

Thus studying the monadic second-order theory of the Cayley graphs of monoids seems, in
general, a hopeless task; at least compared to the group case. On the other hand, in Chapter 5 we
shall almost completely characterise the special monoids whose Cayley graphs have decidable
monadic second order-theory.

1.4.5 Geometric (semi)group theory

Geometric methods in group and semigroup theory are vast in number, and the many results
in these areas cannot possibly be covered in any justice in this introduction. Instead, in this
section, we shall give a brief background on the importance and history of these methods, and
give shallow definitions of deep concepts that shall be used later in the thesis, while including
enough references to make expansion easy. Much of the exposition is taken from Howie [218].
See also the Notes on Literature for more detailed references.

Let (X, d) and (X ′, d′) be metric spaces. An isometry f : X → X ′ is a map such that
d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Clearly any isometry is a continuous and injective map. If f is surjective, then f−1 is also an
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isometry; we then say that (X, d) and (X ′, d′) are isometric – this is a “sameness” notion. A
coarser notion of “sameness” is provided by quasi-isometries. Let λ > κ ≥ 0 be real numbers.
Then a map f : X → X ′ is a (λ, κ)-quasi-isometry if

1

λ
d(x, y)− κ ≤ d′(f(x), f(y)) ≤ λd(x, y) + κ for all x, y ∈ X.

An isometry is a (1, 0)-quasi-isometry. A quasi-isometry f need not be continuous or injective.
If f is coarsely surjective, i.e. if every point in X ′ is a bounded distance from some point in
im(f), then there is a (λ′, κ′)-quasi-isometry f ′ : X ′ → X for some λ′, κ′.38 In this case, we
say that the metric spaces (X, d) and (X ′, d′) are quasi-isometric. A fundamental example of
quasi-isometric but not isometric spaces are (Zn, d) and (Rn, d) for n ≥ 1, with the Euclidean
metric d. There is an embedding Zn ↪→ Rn, which is an isometry, and while not surjective,
it is coarsely surjective. The map f : Rn → Zn defined by rounding every entry of the tuple
(x1, . . . , xn) ∈ Rn to the nearest integer is a (1, 12

√
n)-quasi-isometry.

The geometric realisation of a graph is defined, following Serre [439], as follows: let Γ be an
undirected and unlabelled graph. Form the topological space T which is the disjoint union of
V (Γ) and E(Γ) × [0, 1] ⊆ E(Γ) × R, where the topology on V (Γ) and E(Γ) is the discrete
topology. Let ς be the finest equivalence relation on T for which (e, 0)ςo(e) and (e, 1)ςt(e) for
e ∈ E(Γ). The quotient space T/ς is then the geometric realisation of Γ. We define a quasi-
isometry of undirected graphs to be a quasi-isometry of the geometric realisation of the graphs
in question. The distinction between a quasi-isometry of undirected graphs and general quasi-
isometries is important, but to prevent cumbersome notation, we omit writing this explicitly in
all places.

A geodesic segment of length ℓ in a metric space (X, d) from x to y is the image of an
isometric embedding i : [0, ℓ] → X with i(0) = x and i(ℓ) = y. We say that a metric space is
geodesic if there exist geodesic segments between all pairs of points (thus discrete metric
spaces are not geodesic). A triangle ∆(x, y, z) in X with vertices x, y, z is the union of the
three geodesic segments from x to y, y to z, and z to x, respectively. A geodesic metric space
(X, d) is hyperbolic if all its triangles are “thin”, i.e. if there exists a constant δ ≥ 0 such that
for all triangles ∆(x, y, z) in X , each edge of ∆ is contained in the δ-neighbourhood of the
union of the other two sides of ∆. Every tree is hyperbolic (take δ = 0), and the hyperbolic
plane H2 is hyperbolic – thankfully – e.g. by taking δ = 2 log 3. Crucially, if two geodesic
metric spaces (X, d) and (X ′, d′) are quasi-isometric, then one is hyperbolic if and only if the
other is.

We now turn to groups. LetG be a group generated by some finite setS of (group) generators.
Then every g ∈ G can be expressed as a word

g = xε11 x
ε2
2 · · ·xεnn

where xi ∈ S and εi = ±1 for all 1 ≤ i ≤ n. The number n here is of course the length
of the word in the free group on S. If g, h ∈ G then we define dS(g, h) to be the length of
the shortest word representing g−1h. It is not hard to verify that this is indeed a metric, and
this metric dS is called the word metric on G (with respect to S). One can show without much
difficulty that if S and T are two finite generating sets for a groupG, then (G, dS) and (G, dT )
are quasi-isometric. Thus we can speak of two finitely generated groups being quasi-isometric
without any ambiguity. For example, the group Z is quasi-isometric to Z× Cn for any n ≥ 1,
where Cn = Gp⟨a | an = 1⟩ is the cyclic group with n elements; a quasi-isometry is given, for
example, by mapping g ∈ Z to (g, 1) ∈ Z × Cn. The exact constants λ and κ witnessing that

38This statement uses the axiom of choice; it can thus be quite hard to actually construct f ′.
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this is a quasi-isometry depend on the generating set chosen, but if one chooses the standard
generating set {(1, 1), (0, a)}, then this map is in fact a (1, 0)-quasi-isometry, and the fact that
it is coarsely surjective is witnessed by the fact that an arbitrary element (g, aj) is at distance
j from (g, 1), as j ≤ n− 1, this distance is globally bounded.

Now, letG,S be as above, and consider the Cayley graph Γ(G,S), defined as in §1.4.3. Then
we can consider Γ(G,S) as a topological space in the usual way, and hence the geometric
realisation of Γ(G,S) into a geodesic metric space. The metric d(x, y) on this space is just
the length of the shortest path joining x to y. We leave as an exercise the observation that
(G, dS) and (Γ(G,S), d), with d the metric above, are quasi-isometric spaces. We say that G
is a hyperbolic group if Γ(G,S) is a hyperbolic space in the above sense. Finite groups, free
groups, and fundamental groups of compact 2-manifolds of genus g ≥ 2 are all hyperbolic, as
they are quasi-isometric toH2. The free abelian group Zn is hyperbolic if and only if n ≤ 1. An
important theorem (cf. [122, Theorem 2.3]) is that any hyperbolic group is finitely presented.

On the other hand, defining hyperbolic monoids is more difficult. Certainly, we could define a
hyperbolic monoidM , generated by a finite set S, to be one where the geometric realisation of
the right Cayley graph Γ(M,S) is hyperbolic; one can show that this property is independent
of choice of generating set. However, this property is incredibly weak in other senses: for
example, let G be any (!) finitely generated group. We define the monoid G0 to be the group
G together with an appended element 0 such that 00 = 0 and g0 = 0g = 0 for all g ∈ G.
Then it is easy to verify that G0 is hyperbolic. This means that this definition of hyperbolic
monoids is rather unstable, and many other definitions have been proposed to rectify this, cf.
especially [28]. There have also been extensions of the notions of quasi-isometries and actions
of monoids to this more general setting; we refer the interested reader to [165, 166]. We will
focus on one extension of hyperbolicity in particular, proposed by Duncan & Gilman [144],
which is especially pleasant in its link with the word problem.

Let M be a monoid finitely generated by A. Let #1,#2 be two new symbols. Then M is
word-hyperbolic if there exists a regular language L ⊆ A∗ such that

M(L) := {u#1v#2w
rev | u, v, w ∈ L, uv =M w}

is a context-free language. For groups the two notions of hyperbolicity can be shown to coincide
[144], but there exist examples of hyperbolic monoids which are not word-hyperbolic. We
remark that anymonoidwith context-freeword problem, in the sense presented earlier in §1.2.3,
clearly is word-hyperbolic. This is the monoid analogue of the fact that virtually free groups
are hyperbolic. We shall see in Chapter 3 that any special monoid with virtually free group of
units is word-hyperbolic.

This concludes our brief incursion into geometric group and semigroup theory; and with
this, we have defined all concepts and properties necessary to understand the statements of all
theorems and results in this thesis. The reader only interested in this new material may
proceed directly to Chapter 2; the reader interested in understanding one-relator groups and,
more generally, getting a (discursive) overview of the results known for various classes of
groups regarding decision problems, finiteness properties, and much more, may remain in this
chapter and carry on reading.
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1.5 Case study: one-relator groups

The following section is slightly different in nature than the previous few. We will not need
many theorems about one-relator groups in the sequel. Instead, the collection of results and
historical material in this section are collected because of the striking way that one-relator
groups have played – and continue to play – a central rôle in the development of combinatorial
group theory. Some properties in this section (e.g. residual finiteness), which are of no further
direct relevance to this thesis, are defined in §1.6.

A one-relator group is one which can be defined by a presentation Gp⟨A | w = 1⟩. All free
groups are one-relator groups. One-relator groups have a special place in the theory of
combinatorial group theory, and they occupy a special place in this thesis, as we shall see
throughout. We shall here give a short overview of some of the important ideas in the area,
and what is known about certain properties of one-relator groups.

The study of one-relator groups started in the latter part of the 19th century in the theory
of functions of a complex variable, and is intricately linked especially with groups G of real
linear fractional transformations of the upper half complex plane. Such groups G are called
Fuchsian groups, and are subgroups of PSL2(R). On the other hand, related to such functions
is the study of the fundamental groups of 2-manifolds, also known as surface groups, which are
one-relator groups. This was all joined together by Dehn [129, 131] whose geometric intuition
proved crucial; he immediately realised the importance of the word problem for understanding
the fundamental group of a surface, and the general combinatorial framework in which this
takes place led him to conjecture that certain subgroups of one-relator groups are free. When
his student Magnus was tasked with proving this, this resulted in the first, and arguably one
of the most important, result for one-relator groups: the Freiheitssatz (Ger. freedom or freeness
theorem).

Theorem (Dehn & Magnus’39 Freiheitssatz40 ). Let G = Gp⟨A | w = 1⟩, where w is cyclically
reduced. Suppose that the letter a ∈ A appears in w (either as a or a−1). Then the subgroup of G
generated by A \ {a} is free and freely generated by this set.

The Freiheitssatz can be seen as a partial extension of the Nielsen-Schreier theorem for free
groups, and indicates that one-relator groups are, in a rather weak sense, “nearly free”, in that
the only relations that hold in the group are strongly dependent on the presence of the
defining relation. In fact, one-relator groups contain an abundance of free subgroups, as the
Tits alternative is true for one-relator groups, i.e. a subgroup of a one-relator group is either
solvable or contains a free subgroup of rank two [244].41 Short proofs, and extensions, of the
theorem can also be found in e.g. [306, 298, 429, 307, 194, 153]. Using the Freiheitssatz, Magnus
proved the following remarkable theorem two years later [301].

Theorem (Magnus). Let G = Gp⟨A | w = 1⟩. Then G has decidable word problem.

39The importance of Max Dehn and his student Wilhelm Magnus to the development of combinatorial
group theory cannot be overstated. We content ourselves by noting that there are essentially two
textbooks on the subject: the book by Magnus, Karrass & Solitar [306] and the book by Lyndon & Schupp
[298]. The first is dedicated to Dehn; the second to Magnus.

40The Freiheitssatz is usually ascribed solely to Magnus, as he published the first proof of it [300].
However, Chandler & Magnus [107, p. 114] clearly indicate that the theorem was well understood by
Dehn via geometric intuition for a decade prior to Magnus’ combinatorial proof.

41In fact, a one-relator group contains a non-abelian free group unless it is isomorphic to BS(1,m) or
is cyclic [490].
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As part proving this theorem, Magnus established a separate decidability result related to
the subgroup membership problem, which we state for completeness and because of this
connection. Let G = Gp⟨A | w = 1⟩, and let X ⊆ A ∪ A−1. The subgroup ⟨X⟩gp ≤ G is said
to be a Magnus subgroup of G. Note that the Freiheitssatz tells us that any proper Magnus
subgroup of a one-relator group is free.

Theorem (Magnus). Let G = Gp⟨A | w = 1⟩. Then membership in any Magnus subgroup of G
is decidable.42,43

We shall mention a result which is important throughout the remainder of this section.
Magnus [302] proved the general result that if an n-generator k-relator group can be
generated by n − k elements, then it is freely generated by these elements. In particular if a
one-relator group has a generating set with fewer than its original number of generators, then
it is free. Thus all one-relator presentations of a given one-relator group have the same
number of generators. We remark that it is decidable whether a one-relator group
Gp⟨A | w = 1⟩ is free; it is free if and only if the cyclically reduced word w is trivial or a
primitive word in the free group on A, see [298, Prop 5.10]. Here a primitive word is one that
can be an element of some basis of the free group; this can be algorithmically checked with
Whitehead’s algorithm [488].

The theory of one-relator groups divides into two parts: the torsion-free and the torsion case,
respectively. Note that a group is said to have torsion if it has non-trivial elements of finite
order. A classical theorem (see [306, Theorem 4.12, p. 266]), which follows from the Freiheitssatz,
shows that a one-relator group Gp⟨A | w = 1⟩ has torsion if and only if the word w is a proper
power of another word. Thus Gp⟨a, b | (abba)2 = 1⟩ has torsion, but the group Gp⟨a, t |
[a, tat−1] = 1⟩ is torsion-free. Although it may appear as if the presence of torsion elements
would be a complicating factor, the opposite is true. One-relator groups with torsion have many
structural properties which distinguish them from the torsion-free counterparts. The first major
theorem demonstrating this was, without a doubt, the following, proved by B. B. Newman [372]
in his Ph.D. thesis.

Theorem (The B. B. Newman Spelling Theorem). Let G = Gp⟨A | wn = 1⟩ with w cyclically
reduced and n > 1. Suppose that two words u, v ∈ (A ∪ A−1)∗ define the same element, where
u is a reduced word containing a ∈ A non-trivially and v does not contain a. Then u contains a
subword which is identical with a subword of wn or w−n of length greater than (n− 1)/n times
the length of wn.

I have described the historical context in which this theorem arose, along with the story of
who the man behind the theorem was [384]. The theorem has subsequently been strengthened
by a number of authors, see especially Gurevich [194], Brodskij [79], and Howie [220, 219]. The
theorem implies, in the modern framework of geometric group theory, that one-relator groups
with torsion are hyperbolic. For the purposes of studying groups from the point of view of
decision problems, the following corollary is arguably the most important.

42This theorem has at times been misunderstood. The term generalised word problem or extended word
problem (erweiterten Identitätsproblem) has been used to describe the problem in the statement of the
theorem, but it has also been used to describe the subgroup membership problem, which is much harder,
and remains open. This has led to some incorrect statements in the literature; for example, Stillwell [469]
claims that Magnus solved the subgroup membership problem for one-relator groups.

43The problem of deciding membership in a subgroup generated by a subset of the generating set is
also decidable for groups which satisfy the C′(1/6)-small cancellation condition [179].
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Corollary (B. B. Newman). Let G = Gp⟨A | wn = 1⟩ with n > 1. Then G has decidable
conjugacy problem.

When n > 2, Pride [411] gave a significantly shorter proof of the same theorem. It is
striking that nearly a century after Magnus’ solution to the word problem for one-relator
groups, the conjugacy problem remains open for torsion-free one-relator groups.44 Another
important reason for the structural strength of the torsion case is the presence of a malnormal
subgroup structure. A subgroup H ≤ G is said to be malnormal45 if for all g ∈ G \H we have
gHg−1 ∩H = 1. Free factors are malnormal in a free product; and B. B. Newman proved (see
[372, Lemma 2.3.1]) the remarkable theorem that Magnus subgroups are malnormal in
one-relator groups with torsion. Using the Magnus-Moldavanskii breakdown procedure (see
[298, II.§6] and [357, 339]46), this allows for powerful results to be proved by induction. For
example, this malnormality is crucial in applying Wise’s Malnormal Quasiconvex Hierarchy
Theorem (see [492, Theorem 11.2]) to one-relator groups with torsion. This allowed Wise to
resolve an old conjecture due to Baumslag [34], as follows:

Theorem (Wise). Let G = Gp⟨A | wn = 1⟩ with n > 1. Then G is residually finite.

Note in particular that this implies that any one-relator group with torsion is Hopfian and
that its automorphism group is finitely generated.47 These statements had already been proved
by Pride [410] in the two-generator case. The above methods have little hope for extending to
all one-relator groups, as Magnus subgroups need not be malnormal in torsion-free one-relator
groups. Hence, the geometric methods employed by Wise cannot, in general, be applied in this
case. The best one can say in this direction is a result due to Bagherzadeh [24], who proved that
if G is a one-relator group,H is a Magnus subgroup of G, and g ∈ G \H , then gHg−1 ∩H is
cyclic. Louder &Wilton [293] have recently extended the geometric methods for studying one-
relator groups with torsion, and proved that they are coherent, i.e. that every finitely generated
subgroup is finitely presented. This result is important in recent work by Gray & Ruskuč [169]
on the structure of the group of units of one-relator special inverse monoids. It is an important
open problem whether all torsion-free one-relator groups are coherent.

We now mention some results regarding the subgroup structure of one-relator groups. This
is more difficult than it might at first appear. First of all, although subgroups of free groups are
themselves free, it is certainly not the case that subgroups of one-relator groups are themselves
always one-relator groups. In fact, as mentioned above, it is not even known whether finitely
generated subgroups of one-relator groups are always finitely presented. Few general results
are known about the subgroups of one-relator groups. Perhaps the strongest is that the finitely
presented normal subgroups of one-relator groups are classified; they are either free or of finite
index [60, 38]. General results of this form are far and few in between. We mention some.
Although the abelian subgroups of torsion-free one-relator groups are easy to determine (by

44In some places, claims have appeared that the conjugacy problem for torsion-free one-relator groups
has been proved decidable, see e.g [350, p. 37]. This is based on a sketch of a proof [237], and which was
never completed. The sketch proof uses detailed small cancellation theory to study the problem, but the
general consensus (e.g. at the wow workshop held at the University of East Anglia in 2018) is that the
proof is incomplete and that the problem remains open.

45Malnormal subgroups were introduced and named by B. Baumslag in his Ph.D. thesis [29].
46I thank D. Moldavanskii for providing me a copy of his paper.
47Neither of these properties hold, in general, for torsion-free one-relator groups. Indeed, studying the

automorphism groups of one-relator groups is a difficult task. Collins and Levin [119] proved that the
automorphism group of a Baumslag-Solitar group need not be finitely generated. Even the special case of
the automorphism group of Gp⟨a, b | [am, bn] = 1⟩ is difficult, see Tieudjo & Moldavanskii [476].
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a result on cohomological dimension due to Lyndon [297]) the corresponding problem was
curiously harder in the torsion case. The abelian and solvable subgroups of one-relator groups
with torsion were finally classified by B. B. Newman [373]. In the same paper, centralisers of
elements in one-relator groups with torsion were also proved to always be cyclic; this result is
key in the recent breakthrough result by Minasyan & Zalesskii [355] that one-relator groups
with torsion are conjugacy separable. Many fascinating basic problems about understanding
subgroups of one-relator groups remain, especially in the torsion-free case: for example, it
is an open problem whether a one-relator group can contain a non-abelian simple subgroup.
Furthermore, the lower central series of the Baumslag-Solitar group BS(m,n) = Gp⟨a, b |
bamb−1 = an⟩ was only very recently studied (cf. Bardakov [25].48 The structure of the lower
central series of general one-relator group currently seems far out of reach.

Associated to the subgroup structure is the subgroup membership problem, and more
generally the submonoid membership problem. The subgroup membership problem remains
open both in the torsion-free and torsion cases, and appears quite far out of reach of current
methods. Some particular cases have been studied; for example, Bezverknij [57, 58] solved the
problem in certain one-relator groups, including the Baumslag-Solitar groups BS(m,n).
However, in 2020, Gray [168] gave the first known example of a one-relator group with
undecidable submonoid membership problem. This group is defined as

GB := Gp⟨a, b | [a, bab−1] = 1⟩.
The proof is easy, and goes via embedding the right-angled Artin group A(P4) into GB by an
HNN-extension. This group has some remarkable properties, and has appeared in the
literature on many occasions in the past. We mention a few of these fascinating properties,
none of which were pointed out in [168]. In 1984, it was shown by Brunner, Burns & Solitar
[82] that GB is not subgroup separable. Burns, Karrass & Solitar [86] give GB as the first
example of a free-by-cyclic group that is not subgroup separable. Moreover, Gersten [160]
prove that GB is the fundamental group of a CAT(0) 2-complex, and some of its geometric
properties are studied. Niblo & Wise [375] show that GB virtually embeds in A(P4). Thus GB

and A(P4) share essentially all algorithmic properties. In particular GB has decidable
subgroup membership problem, in spite of it not being subgroup separable. Finally, Button
[89] proved that GB is a large group, in the sense that it virtually surjects a non-abelian free
group; very few two-generator one-relator groups are known to have this property.49 In
particular, every countable group embeds in some quotient of GB , as every large group has
this property [371]. For comparison, Baumslag & Pride [32] conjectured that all one-relator
groups with torsion are large, which was proved shortly thereafter by Stöhr [470]. Note that
as Z2 ∼= ⟨a, bab−1⟩ < GB , it follows that GB cannot be hyperbolic. This raises the following
question.

Question 1.5.1. Does there exist a hyperbolic one-relator group with undecidable submonoid
membership problem?

We end on a note on the problem of different presentations for the same one-relator group.
We shall investigate this briefly in the context of special monoids in Chapter 3. Note that if
ϕ is an automorphism of the free group FA, then Gp⟨A | w = 1⟩ is obviously isomorphic to
Gp⟨A | ϕ(w) = 1⟩. Let r be a positive integer and G be an r-generator group. Two generating

48I thank V. G. Bardakov for providing me with a copy of this paper.
49Any n-generator one-relator group for n > 2 is large, by a celebrated result due to B. Baumslag &

Pride [31]. Note that not every n-generator one-relator group surjects F2 [463].
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r-tuples
g = (g1, g2, . . . , gr) and g′ = (g′1, g

′
2, . . . , g

′
r)

are said to be Nielsen equivalent if there is an automorphism
xi 7→ Yi(x1, x2, . . . , xr), i = 1, 2, . . . , r

of the free group on x1, x2, . . . , xr such that g′i = Yi(g1, g2, . . . , gr) for i = 1, 2, . . . , r. The
r-tuples g and g′ are said to lie in the same T -system if there is an automorphism ϱ of G such
that g′ is Nielsen equivalent to ϱ(g). This notion of T -systems is important for classifying
the different presentations a one-relator group might have. The importance comes from the
following theorem: suppose that

Gp⟨x1, x2, . . . , xr | R = 1⟩
is a presentation of the group G associated to the r-tuple g, i.e. such that the kernel of the
homomorphism xi 7→ gi for i = 1, 2, . . . , r is the normal subgroup of the free group Fr on
x1, . . . , xr generated by R. Then it is not hard to see (see e.g. [409]) that g′ is in the same T -
system as g if and only if there is an automorphismϕ ofFr such that Gp⟨x1, . . . , xr | ϕ(R) = 1⟩
is a presentation ofG associated with g′. Of course, there may a priori be other presentations of
G associated with g′. However, in the one-relator case, the conjugacy theorem for one-relator
groups (see [306, Theorem 4.11] states that if g,g′ as above are in the same T -system, and if

Gp⟨x1, x2, . . . , xr | S = 1⟩
is a presentation associated to g′, then S is a cyclic conjugate of ϕ(R)±1 for some
automorphism ϕ of Fr . If one knows that a certain one-relator group G has only a single
T -system of generating r-tuples, for example, then this can be used to detect whether a
one-relator group is isomorphic to G or not. Indeed, this is how Pride [410] solves the
isomorphism problem for two-generator one-relator groups with torsion: such groups
essentially only have a single T -system.

In fact, Magnus [306, p. 401] conjectured that every one-relator group only has a single T -
system. However, this turned out to be false. Zieschang [507] and McCool & Pietrowski [338]
provided the first counterexamples. In fact, Brunner [81] showed that Gp⟨x, y | xxy

= x2⟩
has infinitely many T -systems. To this effect, we present a striking theorem due to Pride [408],
which we believe has received far less attention than it deserves.

Theorem 1.5.2 (Pride). Let w1 ≡ x31x−1
2 x−2

1 x2 and w2 ≡ x1[x−1
1 , x2]

2. Then the groups

Gp⟨x1, x2 | wn
1 = 1⟩ and Gp⟨x1, x2 | wn

2 = 1⟩
are isomorphic if and only if n = 1, in which case the group has infinitely many T -systems.

This is a striking counterexample to the converse of the following theorem due to Magnus,
Karrass & Solitar [306, Corollary 4.13.1]: let n > 1. If Gp⟨A | wn

1 = 1⟩ is isomorphic to
Gp⟨A | wn

2 = 1⟩, then Gp⟨A | w1 = 1⟩ is isomorphic to Gp⟨A | w2 = 1⟩.
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1.6 A table of properties

This section consists only of one object, together with some explanations of relevant terms. This
object is a table of various classes of groups and their properties, especially centred on various
finiteness properties and decision problems. The aim of the section is to provide a concise
overview and collation to aid in referencing. Throughout, all objects are finitely presented.

We give somemissing definitions and references necessary to understand some entries of the
table. Recall the definition of a residually finite group from the very beginning of the chapter.
Any finitely presented residually finite group has decidable word problem [340, 361]. For a
stronger property than residual finiteness, we say that a group G is subgroup separable (or l.
e. rf, i.e. locally extended residually finite) if for every finitely generated subgroup H and for
every g ∈ G \ H , there is a finite quotient of G in which g has non-trivial image but H has
trivial image. Any subgroup separable group is residually finite. By analogy with the proof
of decidability of the word problem for finitely presented residually finite groups, any finitely
presented subgroup separable group has decidable subgroup membership problem. A recent
notion of separability is conjugacy separability, which we do not define here, see [354].

A groupG isHowson if the intersection of any two finitely generated subgroups ofG is again
finitely generated. It is Hopfian if it is not isomorphic to any proper quotient of itself. A raag is
a right-angled Artin group, which is defined as follows: let Γ be an undirected graph. Then the
raag with the underlying graph Γ is the group with generators V (Γ), and defining relations
[u, v] = 1 whenever u, v ∈ E(Γ). Because of the importance of raags in modern geometric
group theory (see e.g. [196, 492, 493]), we have opted to include these in our table. For an
introduction, see [397, 108, 257]. A C ′( 16 )-group (also known historically as a sixth group) is a
group satisfying the small cancellation condition C ′( 16 ). We refer the reader to Schupp [428] for
definitions. Such groups were introduced by Tartakovskiı̆ [473, 472, 474], and studied in depth
by Greendlinger [178, 176, 177, 179]. An n-manifold group is a group that is the fundamental
group of some compact n-manifold. Any finitely presented group appears as a 4-manifold
group, as first observed by Dehn. See [20] for a survey of 3-manifolds, and [469] for information
on 2-manifolds (also known as surface groups). The braid group Bn is Artin’s braid group on n
strands, see [304]. Automatic groups are too technical to define here; see [151].

A green box indicates that the given class of groups has the property, or that the property is
closed under whichever operation is indicated; a red box indicates that it does not; a blue box
indicates that it is an open problem, or that the problem has not yet been explored anywhere in
the literature (and does not appear to have an immediate answer). In many cases, a reference is
given inside a box, which indicates the first (to the best of the author’s knowledge) appearance
of a proof of the claim in the literature, or the first proof of a theorem which directly implies the
result. For example, Poincaré [402] was the first to prove the fundamental theorem of finitely
generated abelian groups, which immediately implies that all abelian groups are coherent. In
those boxes where no reference is given, the proof is trivial. The non-obvious abbreviations
in the table are as follows: sgmp, smmp, rsmp – whether an object from this class always has
decidable subgroup, submonoid, resp. rational subset membership problem50; Droms raag –
a raag whose underlying graph has no induced subgraph isomorphic to the path or cycle on
four vertices; stable – whether the property is preserved by the operation in question.

50We emphasise that we do not require there to be a uniform procedure for solving the problem for the
entire class, only that for every object in the class, we can find an algorithm which solves the problem for
the object. For example, there is no algorithm which solves the word problem for all finite groups [457]!
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Linear Coherent Howson Hopfian Res. Fin. l. e. rf Conj. Sep. Word Pr. Conj. Pr. sgmp smmp rsmp Dio. Pr.

Free groups [260] [376] [225] [376] [426] [197] [465] [426] [376] [376] [48] [48] [311]

Abelian groups [458] [402] [402] [321] [321] [402] [321] [402] [190] [190]

Nilpotent groups [21] [207] [207] [207] [207] [323] [63] [322] [63] [323] [424] [423] [422]

Polycyclic groups [21] [207] [207] [323] [323] [323] [417] [207] [417] [323] ? [423] [422]

Solvable groups [36] [61] [358] [127] [36] [36] [253] [253] [253] [253] [253] [253] [422]

Simple groups [431] [85] [271] [432] [415] [415] [415] [432]

Braid groups Bn [62] [59] [320] [303] [303] [59] ? [19] [158] [320] [59] [59] ?

2-manifold/surface groups [401] [232] [175] [33] [33] [434] [335] [131] [131] [434] ? ? [126]

3-manifold groups ? [433] [233] [399] [399] [86] [200] [399] [200] [156] ? ? ?

4-manifold groups [129] [129] [129] [129] [129] [129] [129] [129] [129] [129] [129] [129] [129]

C ′(16)-groups [13] [419] [454] [435] [13] [419] [356] [474] [178] [419] [419] [419] [126]

Hyperbolic groups [240] [419] [233] [435] ? [419] ? [188] [188] [419] [419] [419] [126]

Automatic groups [491] [347] [233] [491] [491] [491] [491] [151] ? [419] [419] [419] ?

raags [226] [40] F2 × Z [226] [226] [347] [354] [282] [347] [347] [347] [138]

Droms raags [226] [142] F2 × Z [226] [226] [344] [354] [282] [239] [288] [288] [138]

BS(m,n) [41] [56] [242] [41] [41] [41] [41] [301] [18] [57] ? ? ?

BS(1, n) [41] [56] [242] [41] [41] [496] [359] [301] [18] [57] [92] [92] [252]

1-relator groups [41] ? [242] [41] [41] [41] [41] [301] ? ? [168] [168] ?

1-relator groups w. torsion [493] [293] ? [493] [493] ? [355] [301] [372] ? ? ? [126]

2-relator groups [206] [347] [358] [206] [206] [206] [206] ? ? [347] [347] [347] ?

Subgroup stable? [41] [434] [335] [120] [120]

Fin. ext. stable? [426] [208] [99] [434] [336] [120] [190] ? [190] ?

Free prod. stable? [486] [243] [30] [134] [173] [425] [465] [465] [346] ? [238] [102]

Direct prod. stable? [461] [358] [124] [347] [347] [347] [347] ?
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Chapter 2

Alternating and Free Products

Synopsis

In this chapter, we first prove a new characterisation of super-AFLs, which is
based entirely on monadic rewriting systems. The remainder of the chapter is
concerned with two notions: free and alternating products. Using the latter, we
study the former. The latter is an original notion, and captures the informal idea
of interweaving two languages, each of whose structure is similar to the word
problem of a finitely generated monoid. We will prove that an alternating
product of two languages inherits certain properties from its factors
(Corollary 2.2.7). We also introduce a notion of the (I1, I2)-ancestor LI1,I2 of a
language L, where I1, I2 are arbitrary rewriting systems, and demonstrate that,
under certain conditions on the rewriting systems, this operation preserves
language-theoretic properties of L (Theorem 2.2.14). We then demonstrate that
the word problem of a semigroup free product of two semigroups can be
obtained as an alternating product of the word problem of the semigroups
(Lemma 2.3.1). This allows us to show that if the class of languages C is a
super-AFL, then the class of semigroups with word problem in C is closed under
taking semigroup free products. Similarly, we subsequently demonstrate that,
for suitably chosen rewriting systems I1, I2, the word problem of a monoid free
product of two monoids can be obtained as an (I1, I2)-ancestor of an alternating
product of the word problems of the factors (Lemma 2.3.5). From this, we
conclude that if C is a super-AFL, then the class of monoids with word problem
in C is closed under monoid free products. This result, and the aforementioned
result for semigroup free products, generalises recent results by Brough, Cain &
Pfeiffer, who proved these results when C is the class Ccf of context-free
languages. This chapter is based on the forthcoming article [385].
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Let C be a class of languages. Recall from §1.2.1 that C is a super-AFL if it is an AFL (i.e. it
is closed under homomorphism, inverse homomorphism, intersection with regular languages,
union, concatenation, and the Kleene star) and if it closed under nested iterated substitution.
We will now introduce an original notion, which is related to substitution. Using this, we shall
see that there is an equivalent definition of super-AFL which uses rewriting systems, rather
than substitutions. This will prove useful in Chapters 3 and 4.

2.1 Super-AFLs and monadic ancestors

Let C be a class of languages. We say that a rewriting system R ⊆ A∗ × A∗ is C-ancestry
preserving if for every L ∈ C with L ⊆ A∗, we have ⟨L⟩R ∈ C.

Definition 2.1.1. A class of languages C has the monadic ancestor property if every monadic
C-rewriting system is C-ancestry preserving.

Monadic ancestors and nested iterated substitutions have a superficial resemblance. We
will presently show a straightforward proposition (namely Proposition 2.1.3), which connects
the monadic ancestor property with the somewhat complicated notion of nested iterated
substitutions. Before this, we need a slightly technical, but straightforward to prove, lemma,
concerning monadic rewriting systems.

Lemma 2.1.2. Let R(m) ⊆ A∗ × A∗ be a monadic rewriting system. Let A1 ⊆ A, and let

R(1) ⊆ A∗ × A∗ be the rewriting system with rules {(ε, a) | a ∈ A1}. Let R = R(1) ∪ R(m).

Then for any L ⊆ A∗, we have ⟨L⟩R = ⟨⟨L⟩R(m)⟩R(1) .

Proof. For ease of notation, we denote −→R(1) by −→(1); we denote −→R(m) by −→(m); and −→R

by −→(∪). The notation is extended to ∗−→(1),
∗−→(m),

∗−→(∪), etc.
Let u,w ∈ A∗ be such that w ∈ ⟨u⟩R. Then w ∗−→(∪) u, so w −→k

(∪) u for some k ≥ 0. It
suffices to show that there is some v ∈ A∗ such that w ∗−→(1) v

∗−→(m) u. We prove this claim
by induction on k. The case k = 0 is trivial, for then we can take v ≡ w(≡ u). Suppose k > 0

and let u0, u1, . . . , uk ∈ A∗ be such that

w ≡ u0 −→(∪) u1 −→(∪) · · · −→(∪) uk−1 −→(∪) uk ≡ u. (2.1.1)

By the inductive hypothesis, there exists v1 ∈ A∗ such thatu1
∗−→(1) v1

∗−→(m) u. If the rewriting
u0 −→(∪) u1 in (2.1.1) is a rewriting u0 −→(1) u1, then we may take v ≡ v1. Suppose, then, that
u0 −→(m) u1. Let (s, aj) ∈ R(m) be the rule applied to rewrite u0 −→(m) u1, where aj ∈ A∪{ε}
and s ∈ A∗ is non-empty. Write u1 ≡ a1a2 · · · aj−1ajaj+1 · · · an for some n ≥ 0 (where n = 0

means u1 ≡ ε) and ai ∈ A for 1 ≤ i ≤ n, i ̸= j. Then u0 ≡ a1a2 · · · aj−1saj+1 · · · an. Now,
as u1

∗−→(1) v1, we have that

v1 ≡ s1a1s2a2 · · · sjajsj+1 · · · snansn+1

where the si are such that ε ∗−→(1) si for 1 ≤ i ≤ n+ 1. Let

v′1 ≡ s1a1s2a2 · · · sjssj+1 · · · snansn+1.

Then v′1 −→(m) v1 by using the rule (s, aj), so v′1
∗−→(m) u. Furthermore, as ε ∗−→(1) si for every

1 ≤ i ≤ n+ 1, we have u0
∗−→(1) v

′
1. That is, w

∗−→(1) v
′
1

∗−→(m) u, so we can take v ≡ v′1.
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We can now proceed with the main proposition of this section.

Proposition 2.1.3. Let C be an AFL. Then C is closed under nested iterated substitution if and

only if it has the monadic ancestor property.

Proof. The proof of the forward implication is the same, mutatis mutandis, as the proof of [69,
Theorem 2.2]. For the reverse, suppose C has the monadic ancestor property. Let σ be a C-
substitution such that σ∞ is a nested iterated substitution on the alphabet A, and let for every
a ∈ A the language Aa be as earlier. Let L ⊆ A∗ be such that L ∈ C. We must show that
σ∞(L) ∈ C. Let Σ = A ∪ (

⋃
a∈AAa), and define a rewriting system Rσ ⊆ Σ∗ × Σ∗ as the

system
Rσ =

⋃
a∈Σ

⋃
w∈σ(a)

{(w, a)}. (2.1.2)

This is not, in general, a monadic system, as there can be rules of the form (ε, a) inRσ . Partition
Rσ as R(1)

σ ∪ R(m)
σ , where R(1)

σ is the set of all rules of the form (ε, a) for some a ∈ Σ, and
R(m)

σ = Rσ − R(1)
σ . Then R(m)

σ is a monadic rewriting system. Furthermore, R(m)
σ is a C-

rewriting system, as for any a ∈ Σ the language of left-hand sides of rules with right-hand side
a is σ(a) for every a ∈ Σ, and σ(a) ∈ C as σ is a C-substitution. LetΣ1 ⊆ Σ be the set of letters
{a | (ε, a) ∈ R(1)

σ }.
Let τ ⊆ Σ∗ × Σ∗ be defined by τ =

⋃
a∈Σ1

((a, ε)∗ ∪ (a, a)∗). Then τ is a rational
transduction. Furthermore, for any language K ⊆ Σ∗, it is easy to see that ⟨K⟩R(1)

σ
= τ(K).

That is, informally speaking, any ancestor of a word w under R(1)
σ can be obtained from w by

deleting some number of letters from Σ1.
We claim ⟨L⟩Rσ

= σ∞(L). This would complete the proof; indeed, by Lemma 2.1.2, we have
⟨L⟩Rσ

= ⟨⟨L⟩R(m)
σ
⟩R(1)

σ
. Hence

⟨L⟩Rσ
= ⟨⟨L⟩R(m)

σ
⟩R(1)

σ
= τ⟨L⟩R(m)

σ
. (2.1.3)

AsR(m)
σ is a monadic C-rewriting system, and C has the monadic ancestor property, it follows

that ⟨L⟩R(m)
σ
∈ C. As C is an AFL, it is closed under rational transduction, so the right-hand

side, and thereby also the left-hand side ⟨L⟩Rσ , of (2.1.3) is in C. We prove the claimed equality.
(⊆) If w ∈ ⟨L⟩Rσ

, there exists u ∈ L and n ≥ 0 such that w −→n
Rσ

u. We prove that there
exists k ≥ 1 such that w ∈ σk(L) by induction on this n. This would prove w ∈ σ∞(L). If
n = 0, then w ≡ u, and as σ∞ is nested we have L ⊆ σ(L) ⊆ σ∞(L), and we are done.
Assume n > 0. Then there exists w′ ∈ ⟨u⟩Rσ

such that w −→Rσ
w′ −→n−1

Rσ
u. By the inductive

hypothesis there exist k′ ≥ 1 such that w′ ∈ σk′
(L). As w −→Rσ

w′, there is a rule (r, s) ∈ Rσ

such that w ≡ w0rw1 and w′ ≡ w0sw1. But from (2.1.2), we have s ∈ Σ and r ∈ σ(s). Hence

w ≡ w0rw1 ∈ w0σ(s)w1 ⊆ σ(w0)σ(s)σ(w1) = σ(w0sw1) = σ(w′) ⊆ σ(σk′
(L)).

Note that the inclusion {x} ⊆ σ(x) for x ∈ A∗ follows from the fact that σ∞ is nested. As
σ(σk′

(L)) = σk′+1(L), we can take k = k′ + 1.
(⊇) Suppose w ∈ σ∞(L). Then there exists n ≥ 0 such that w ∈ σn(L). We prove

w ∈ ⟨L⟩Rσ
by induction on this n. If n = 0, then (by our convention), w ∈ L, so there is

nothing to show. Assume n > 0. Then there exists some u ∈ σn−1(L) such that w ∈ σ(u).
By the inductive hypothesis u ∈ ⟨L⟩Rσ

. Write u ≡ a1a2 · · · ak , where k ≥ 1 and ai ∈ A for
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1 ≤ i ≤ k. Then σ(u) = σ(a1)σ(a2) · · ·σ(ak). Hence w ≡ w1w2 · · ·wk for some wi ∈ σ(ai)
for 1 ≤ i ≤ k. In particular, (wi, ai) ∈ Rσ for every 1 ≤ i ≤ k. Hence we find

w ≡ w1w2 · · ·wk
∗−→Rσ a1a2 · · · ak ≡ u,

so w ∈ ⟨u⟩Rσ
⊆ ⟨⟨L⟩Rσ

⟩Rσ
= ⟨L⟩Rσ

, which is what was to be shown.

We have an immediate corollary, as the class Ccf is a super-AFL.

Corollary. The class Ccf of context-free languages has the monadic ancestor property.

Furthermore, we have an equivalent definition for a super-AFL: a super-AFL is an AFL

which has the monadic ancestor property. This is a far more directly combinatorial definition
of super-AFLs. We shall in the sequel exclusively use this definition; no mention of nested
iterated substitutions will henceforth be made in this thesis.

2.2 Alternating products

We shall in this section describe an operation on certain languages, which mimics the operation
of the free product of monoids. Throughout this section, we will fix an alphabetA and let# be
a symbol disjoint from A.

Definition 2.2.1. Let L ⊆ A∗#A∗. We say that L is concatenation-closed (with respect to#) if

u1#v1 ∈ L and u2#v2 ∈ L =⇒ u1u2#v2v1 ∈ L.

Note the order of the concatenation to the right of the # symbol. A typical example of a
concatenation-closed language is the word problem for a finitely generated monoid.

Example 2.2.2. Let L = {u#v | u, v ∈ {a, b}∗ | σa(u) = σa(v), σb(u) = σb(v)}, and
consider two elements u1#v1, u2#v2 ∈ L, where u1, u2, v1, v2 ∈ {a, b}∗ satisfy the given
condition. In particular

σa(u1u2) = σa(u1) + σa(u2) = σa(v1) + σa(v2) = σa(v1v2) = σa(v2v1)

and hence u1u2#v2v1 ∈ L. Thus L is concatenation-closed. Note that L is really the word
problem of the free commutative monoid N× N = Mon⟨a, b | ab = ba⟩.

Example 2.2.3. LetM be a finitely generated monoid with finite generating set A. If u1#v1
and u2#v2 are inWPM

A , then u1 =M vrev1 and u2 =M vrev2 . Thus

u1u2 =M vrev1 vrev2 ≡ (v2v1)
rev

from which it follows that

u1u2#((v2v1)
rev)rev ≡ u1u2#v2v1 ∈WPM

A .

Hence WPM
A is concatenation-closed.

Given two languages in A∗#A∗, we will introduce a new and quite general operation for
combining them into a single language.
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Definition 2.2.4 (Alternating product). Let L1, L2 ⊆ A∗#A∗ be concatenation-closed
languages. Then the alternating product of L1 and L2, denoted L1 ⋆ L2, is defined as the
language consisting of all words of the form u1u2 · · ·uk#vk · · · v2v1, such that for all i ≥ 1

we have that ui#vi ∈ LX(i), where the parametrisation X is such that X(2j) = 1 and
X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1.

Note that L1 ⋆ L2 ⊆ A∗#A∗. Note also that L1 ⋆ L2 = L2 ⋆ L1. Informally, L1 ⋆ L2 is
obtained from L1 and L2 by alternatingly writing terms from either language; the condition
of the two languages being concatenation-closed, as we shall see, ensures that this alternating
process does not break down if one chooses towrite two terms from the same language after one
another. We remark that the notation ⋆ is slightly abusive, as it suppresses any mention of the
symbol #, which is central to the definition; but this is always clear from context. Alternating
products are modelled on the free product, as the following example suggests.

Example 2.2.5. Let L1 = {an#an | n ≥ 0} and L2 = {bn#bn | n ≥ 0}. Then

L1 ⋆ L2 = {an1bn2 · · · ank#ank · · · bn2an1 | k ≥ 0, n1, n2, . . . , nk−1 ≥ 1, nk ≥ 0}

= {w#wrev | w ∈ {a, b}∗}

= WP
{a,b}∗

{a,b} .

Clearly, L1 = WP
{a}∗

{a} and L2 = WP
{b}∗

{b} . More generally, if A,B are disjoint alphabets and if
L1 = WPA∗

A and L2 = WPB∗

B , then L1 ⋆L2 = WPA∗∗B∗

A∪B , whereA∗ ∗B∗ = (A∪B)∗ denotes
the monoid free product of the two free monoids A∗ and B∗. △

Proposition 2.2.6. Let C be a class of languages with the monadic ancestor property containing

all singleton languages, and which is closed under union. Let L1, L2 ⊆ A∗#A∗ be concatenation-

closed languages. Then L1, L2 ∈ C =⇒ L1 ⋆ L2 ∈ C.

Proof. For i = 1, 2, let Ri = {(w → #) | w ∈ Li}. Then by assumption, Ri is a monadic
C-rewriting system. As C is closed under union, R := R1 ∪ R2 is also a monadic C-rewriting
system. As C has the monadic ancestor property and# ∈ C, the language L = ⟨#⟩R is also in
C. We will show that L = (L1 ⋆ L2) ∪ {#}.

(⊆). Suppose w ∈ (L1 ⋆ L2) ∪ {#}. Clearly # ∈ L, so suppose w ∈ L1 ⋆ L2. Write
w ≡ u1u2 · · ·uk#vk · · · v2v1 where ui#vi ∈ LX(i), and whereX(2j) = 1 andX(2j+1) = 2,
or else X(2j) = 2 and X(2j + 1) = 1. We will prove that w ∈ L by induction on k. If k = 0,
then w ≡ #, and there is nothing to show. Suppose that k > 0, and that the claim is true
for all alternating products which can be written using fewer than k alternating factors. As
uk#vk ∈ LX(k), we have (uk#vk → #) ∈ RX(k) ⊆ R. In particular

w ≡ u1u2 · · ·uk#vk · · · v2v1 −→R u1u2 · · ·uk−1#vk−1 · · · v2v1.

By the inductive hypothesis the right-hand side u1u2 · · ·uk−1#vk−1 · · · v2v1 lies in ⟨#⟩R.
Hence we also have w ∈ ⟨#⟩R = L, which is what was to be shown.

(⊇). Suppose w ∈ L. Then w ∗−→R #. We will prove by induction on the number of steps k
in this rewriting that w ∈ (L1 ⋆ L2) ∪ {#}. If k = 0, then w ≡ #, and we are done. Suppose
that k > 0 and that the claim is true for all words which rewrite in fewer than k steps. As
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w −→k
R #, we can find some word w′ ∈ A∗#A∗ such that

w −→R w′ −→k−1
R #.

By the inductive hypothesis, w′ ∈ (L1 ⋆ L2) ∪ {#}. Thus we can write

w′ ≡ u1u2 · · ·un#vn · · · v2v1,

where either all ui, vi are empty, or else ui#vi ∈ LX(i) whereX(2j) = 1 andX(2j +1) = 2,
or elseX(2j) = 2 andX(2j+1) = 1. Let (u′#v′ → #) be the rule ofR by which we rewrite
w −→R w′. As # is disjoint from A, w′ contains exactly one occurrence of #, namely the one
specified above. Thus

w ≡ u1u2 · · ·un(u′#v′)vn · · · v2v1.

As (u′#v′ → #) ∈ R, either u′#v′ ∈ LX(n+1) or u′#v′ ∈ LX(n). In the former case, the
above expression for w is clearly an alternating product, so w ∈ L1 ⋆ L2. In the latter case, as
LX(n) is concatenation-closed, we have that

un#vn, u
′#v′ ∈ LX(n) =⇒ unu

′#v′vn ∈ LX(n)

and hence w ∈ L1 ⋆ L2. As w was arbitrary, we conclude L ⊆ (L1 ⋆ L2) ∪ {#}.
Hence we have proved that L = (L1 ⋆L2)∪{#}. Now as observed earlier, L ∈ C, and hence

if# ∈ L1 ⋆ L2, then L = L1 ⋆ L2, and we are done. On the other hand, if# ̸∈ L1 ⋆ L2, then it
follows that

L1 ⋆ L2 = L \ {#} = L ∩ (A∗#A∗ \ {#}) = L ∩
(
(A∗#A+) ∪ (A+#A∗)

)
,

and as C is closed under intersection with regular languages, we thereby conclude from L ∈ C
that L1 ⋆ L2 ∈ C, as desired.

As super-AFLs have all the necessary closure properties to apply Proposition 2.2.6 (by
definition, or by Proposition 2.1.3), we conclude:

Corollary 2.2.7. Let C be a super-AFL. Let A be an alphabet, and # a symbol not in A. Let

L1, L2 ⊆ A∗#A∗ be concatenation-closed languages. Then L1, L2 ∈ C =⇒ L1 ⋆ L2 ∈ C.

This corollary will prove very useful; alternating products model semigroup free products,
and we shall use them to good effect presently. Before this, we shall introduce another tool of
a slightly more technical nature, which will be used in order to model monoid free products.

2.2.1 Ancestors

In some special cases, e.g. Example 2.2.5, the alternating product can be used to model the
monoid free product, much the same as it models the semigroup free product. However, this
example does not generalise very far. Indeed, if M,N are two monoids generated by two
(disjoint) finite sets A,B, respectively, then in general WPM∗N

A∪B ̸= WPM
A ⋆WPN

B . The reason
for this is quite simple: there may be non-empty words inM orN representing the identity of
M (resp. N ), which thus – by the definition of the monoid free product – represents the
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identity ofM ∗N . Concretely, we can take

M = Mon⟨a | a2 = 1⟩, and

N = Mon⟨b | b2 = 1⟩,

in which caseM ∗N = Mon⟨a, b | a2 = 1, b2 = 1⟩. But now we have

bab2a =M∗N b

and so

bab2a#b ∈WPM∗N
{a,b}

despite the fact that bab2a#b ̸∈WPM
{a} ⋆WPN

{b}. In particular, we have, unlike for semigroup
free products, that

WPM∗N
{a,b} ̸= WPM

{a} ⋆WPN
{b} .

The problem is plainly that we may insert words equal to 1 wherever we please.
We will now remedy the above situation, by a general operation involving C-ancestry

preserving rewriting systems. The main idea is the following: for a language L ⊆ A∗#A∗ and
two rewriting systems I ′, I ′′, the language LI′,I′′ , which we will presently define, will be
obtained by taking ancestors under I ′ to the left-hand side of the # in L, and ancestors under
I ′′ to the right-hand side of the #. Of course, in full generality, operations which only deal
with one side of the# in such a language are not particularly well-behaved. For example, take
reversal; given the language {w#wrev | w ∈ A∗} of palindromes – the prototypical
context-free language – if one were to reverse only on one side of the # in the language, one
would find the language {w#w | w ∈ A∗} which is not context-free, which can be seen by
applying the pumping lemma to the word anbn#anbn (the language is, however,
context-sensitive). On the other hand, we shall prove (Lemma 2.2.13) that, as long as the
rewriting systems I ′, I ′′ are well-behaved, the language LI′,I′′ is, too, with respect to
preserving the class of a given language. We now make this formal.

Definition 2.2.8. Let I ′, I ′′ ⊆ A∗ × A∗ be rewriting systems. Let L ⊆ A∗#A∗. Then we
define the language

LI′,I′′
= {w1#w2 | ∃u#v ∈ L such that w1 ∈ ⟨u⟩I′ , w2 ∈ ⟨v⟩I′′},

and call this the (I ′, I ′′)-ancestor of L.

This definition is an interpretation in the language of rewriting systems of the possibility of
the left-hand side and the right-hand side of the letter # to be altered independently of one
another inside a language L ⊆ A∗#A∗. We give an example to clarify what we mean.

Example 2.2.9. Let A = {a, b, c}, let L = {a#a}, and

I ′ = {(bn → a) | n ≥ 1}, I ′′ = {(cn → a) | n ≥ 1}.

Then we find

LI′,I′′
= {bn1#cn2 | n1, n2 ≥ 1} ∪ {bn1#a | n1 ≥ 1} ∪ {a#cn2 | n2 ≥ 1} ∪ {a#a}.

Thus we have e.g. a#cc, bbb#c ∈ LI′,I′′ . This means that there is no need for the rewritings
performed by I ′ and I ′′ to be “synchronised” with one another. △
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The reader more comfortable with rewriting, rather than taking ancestors, may of course
rewrite the above definition to the equivalent

LI′,I′′
= {w1#w2 | ∃u#v ∈ L such that w1

∗−→I′ u,w2
∗−→I′′ v}.

Our main goal is to prove a general preservation property of taking ancestors. We will first
prove aweak form of preservation, inwhich certain alphabets (A1 andA2) are disjoint. This will
then be extended to the general case (i.e. Lemma 2.2.13), in which no assumption on disjointness
will be needed. The proof of the general case will require the special case as a basis.

Lemma 2.2.10. Let C be a class of languages. Let R1 ⊆ A∗
1 × A∗

1 and R2 ⊆ A∗
2 × A∗

2 be two

rewriting systems with A1 ∩ A2 = ∅. If R1 and R2 are C-ancestry preserving, then for every

language L ⊆ A∗
1#A

∗
2 we have L ∈ C =⇒ LR1,R2 ∈ C.

Proof. We claim that LR1,R2 = ⟨⟨L⟩R2
⟩R1

(and indeed ⟨⟨L⟩R1
⟩R2

). To prove this, first a word
w1#w2 is in LR1,R2 if and only if there exists u#v ∈ L such that w1

∗−→R1
u and w2

∗−→R2
v.

As A1 and A2 are disjoint, andR1 ⊆ A∗
1 ×A∗

1 andR2 ⊆ A∗
2 ×A∗

2, it follows that

w1#w2 ∈ LR1,R2 ⇐⇒ ∃u#v ∈ L :

w1#w2
∗−→R1 u#w2, and

u#w2
∗−→R2 u#v

⇐⇒ ∃u#v ∈ L : w1#w2
∗−→R1

u#w2
∗−→R2

u#v

⇐⇒ w1#w2 ∈ ⟨⟨L⟩R2
⟩R1

.

Thus LR1,R2 = ⟨⟨L⟩R2
⟩R1

. As R2 is C-ancestry preserving, we have ⟨L⟩R2
∈ C. As R1 is

C-ancestry preserving, thus also LR1,R2 = ⟨⟨L⟩R2⟩R1 ∈ C.

Example 2.2.11. Let A = {b, c, b′, c′}, and let R1 = {(b′ → b)} and R2 = {(c′ → c)}. Let
L = {b#c}. Then

LR1,R2 = {b′#c′, b′#c, b#c′, b#c},

⟨⟨L⟩R2
⟩R1

= ⟨{b#c′, b#c}⟩R1
= {b′#c′, b′#c, b#c′, b#c}.

This gives an example of the proof of the lemma, taking A1 = {b, b′} and A2 = {c, c′}.

Before we can prove the key property of (I ′, I ′′)-ancestors, we introduce a convenient
“alphabet–changing” procedure for languages in A∗#A∗. Let L ⊆ A∗#A∗. Let Aℓ, Ar be two
new alphabets in bijective correspondence with A via maps a 7→ aℓ and a 7→ ar . Extend this
to homomorphisms φℓ : A

∗ → A∗
ℓ and φr : A

∗ → A∗
r . For convenience, for u ∈ A∗ we will

denote φℓ(u) (resp. φr(u)) as uℓ (resp. ur). We set εℓ ≡ εr ≡ ε. For a rewriting system
R ⊆ A∗ ×A∗, we will extend this notation to letRℓ denote the system

Rℓ := {(sℓ → tℓ) | (s→ t) ∈ R},

andRr is defined entirely analogously. The following is more or less obvious.

Lemma 2.2.12. Let C be a class of languages closed under homomorphism. If R is C-ancestry
preserving, then so too areRℓ andRr .

Proof. We suppress the alphabets over which the rewriting systems are written for notational
convenience. Let L ∈ C. Then, as R is C-ancestry preserving, we have that ⟨L⟩R ∈ C. Recall
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that φℓ : A
∗ → A∗

ℓ is an isomorphism of free monoids; in particular, we have

usv −→R utv,

if and only if
φℓ(usv) ≡ φℓ(u)sℓφℓ(v) −→Rℓ

φℓ(u)tℓφℓ(v) ≡ φℓ(utv),

and hence we conclude, by induction on the number of rewritings, that

⟨L⟩Rℓ
= φℓ(⟨L⟩R).

As ⟨L⟩R ∈ C and C is closed under homomorphisms, we conclude that ⟨L⟩Rℓ
∈ C. As L was

arbitrary,Rℓ is C-ancestry preserving. The proof forRr is entirely analogous.

To generalise Lemma 2.2.10 to arbitrary languages LI′,I′′ for less restrictive rewriting
systems I ′, I ′′, we will consider the alphabets Aℓ, Ar defined above and introduce a relation

µℓ,r ⊆ (A ∪ {#})∗ × (Aℓ ∪Ar ∪ {#})∗

defined as

µℓ,r =

(⋃
a∈A

(a, aℓ)

)∗

(#,#)

(⋃
a∈A

(a, ar)

)∗

.

Note the implicit dependency on A (and even #) in the definition of µℓ,r ; indeed, we might
more accurately denote it as µA

ℓ,r or even µA,#
ℓ,r , but this would quickly (as we shall soon see)

become monstrously cumbersome. We therefore simply write µℓ,r for this map (the alphabet
A and the symbol # will always be clear from context. Now, µℓ,r is clearly (compare with
Example 1.2.4) a rational subset of (A ∪ {#})∗ × (Aℓ ∪ Ar ∪ {#})∗. Indeed, it is of the form
X∗xY ∗, where x is the singleton {(#,#)} and X,Y are the finite sets above. Therefore µℓ,r

is a rational transduction.
When applied to a language in A∗#A∗, this transduction has the effect of changing the

alphabet to the left of the # to Aℓ, and the alphabet to the right of the # to Ar (compare with
Example 1.2.4). For example,

µℓ,r(abc#cc) = {aℓbℓcℓ#crcr},

µℓ,r({an#an | n ≥ 0}) = {anℓ#anr | n ≥ 0}.

Analogously, there is a transduction, which we will for obvious reasons denote by µ−1
ℓ,r , which

when applied to a language in A∗
ℓ#A

∗
r has the effect of removing the r and ℓ-symbols on each

letter. Note thatµℓ,r is bijective on subsets ofA∗×A∗ andµ−1
ℓ,r is bijective on subsets ofA∗

ℓ#A
∗
r .

The rational transductions µℓ,r and µ−1
ℓ,r will be key in generalising Lemma 2.2.10 to the

following lemma, which reveals the strength of (I ′, I ′′)-ancestors.

Lemma 2.2.13. Let C be a class of languages closed under rational transductions. Let

L ⊆ A∗#A∗, and let I ′, I ′′ ⊆ A∗ × A∗ be rewriting systems. If I ′ and I ′′ are C-ancestry
preserving, then

L ∈ C =⇒ LI′,I′′
∈ C.

Proof. Define the language

L1 := µ−1
ℓ,r

((
µℓ,r(L)

)I′
ℓ,I

′′
r

)
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with the transductions µℓ,r, µ
−1
ℓ,r (and the alphabets Aℓ, Ar) defined as above. We claim that

L1 = LI′,I′′
.

This would complete the proof, in view of the following argument: first, µℓ,r(L) ⊆ A∗
ℓ#A

∗
r , and

furthermore, as L ∈ C and C is closed under rational transductions, we have that µℓ,r(L) ∈ C.
As I ′, I ′′ are C-ancestry preserving, so too are I ′ℓ and I ′′r by Lemma 2.2.12. Hence, asAℓ∩Ar =

∅, and µℓ,r(L) ⊆ A∗
ℓ#A

∗
r , we have by Lemma 2.2.10 that µℓ,r(L)

I′
ℓ,I

′′
r ∈ C. Finally, by another

application of the closure of C under rational transductions, this time µ−1
ℓ,r , we have L1 ∈ C.

First, note that by the definition of (I ′, I ′′)-ancestors, we have

w1#w2 ∈ LI′,I′′
⇐⇒ ∃u#v ∈ L s.t.

w1
∗−→I′ u, and

w2
∗−→I′′ v.

Now, as µℓ,r is bijective on subsets of A∗ ×A∗, and µℓ,r(u#v) = {uℓ#vℓ}, we have

∃u#v ∈ L s.t.

w1
∗−→I′ u

w2
∗−→I′′ v

⇐⇒ ∃uℓ#vr ∈ µℓ,r(L) s.t.

w1
∗−→I′ φ−1

ℓ (uℓ)

w2
∗−→I′′ φ−1

r (vr).

As in the proof of Lemma 2.2.12, as φℓ, φr are isomorphisms of free monoids, we find

∃uℓ#vr ∈ µℓ,r(L) s.t.

w1
∗−→I′ φ−1

ℓ (uℓ)

w2
∗−→I′′ φ−1

r (vr).
⇐⇒ ∃uℓ#vr ∈ µℓ,r(L) s.t.

φℓ(w1)
∗−→I′

ℓ
uℓ

φr(w2)
∗−→I′′

r
vr.

But now this right-most condition is equivalent, by the definition of (I ′ℓ, I ′′r )-ancestors, to
φℓ(w1)#φr(w2) ∈ (µℓ,r(L))

I′
ℓ,I

′′
r . As φℓ(w1)#φr(w2) ≡ µℓ,r(w1#w2), thus we have found,

by combining all biconditionals above, that

w1#w2 ∈ LI′,I′′
⇐⇒ µℓ,r(w1#w2) ∈ (µℓ,r(L))

I′
ℓ,I

′′
r .

As µℓ,r is bijective on subsets of A∗#A∗, it follows that

w1#w2 ∈ LI′,I′′
⇐⇒ w1#w2 ∈ µ−1

ℓ,r

(
(µℓ,r(L))

I′
ℓ,I

′′
r

)
= L1,

which is to say: LI′,I′′
= L1.

Of course, as all monadic C-rewriting systems are C-ancestry preserving whenever C has the
monadic ancestor property, we have proved the following.

Theorem 2.2.14. Let C be a super-AFL. Let L ⊆ A∗#A∗ be a language, and let I ′, I ′′ be

monadic C-rewriting systems. Then L ∈ C =⇒ LI′,I′′ ∈ C.

We are now ready to apply the theory of (I ′, I ′′)-ancestors to monoid free products. We shall
also revisit and pay tribute to these ancestors, aswell as alternating products, in Chapter 4, when
dealing with weakly compressible monoids.
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2.3 Free products

In this section, we will extensively describe the language-theoretic properties of free products.
We begin by considering the word problem – as a language – for the semigroup free product
of two semigroups. We shall see that the alternating product of the word problems ofM and
N then completely captures the structure of the semigroup free product of M and N . To
capture the structure of the monoid free product, a similar idea forms the basic layer, but we
will additionally need ancestors to fully describe the language theoretic properties of such
products.

2.3.1 Semigroup free products

All the hard work to describe the language theory of semigroup free products has already been
carried out in the previous sections, in the theory of alternating products. To see this, we will
begin by translating the algebraic structure of semigroup free products into language-theoretic
terms.

Lemma 2.3.1. Let S1, S2 be two semigroups, generated by some finite disjoint sets A1 resp. A2.

Let S1 ∗ S2 denote their semigroup free product. Then

WPS1∗S2

A1∪A2
= WPS1

A1
⋆WPS2

A2

Proof. First, we note that WPS1

A1
and WPS2

A2
are both concatenation-closed, so the language

WPS1

A1
⋆WPS2

A2
is well-defined. Now an arbitrary word w ≡ u#vrev from (A1 ∪ A2)

+ is in
WPS1∗S2

A1∪A2
if and only if u =S1∗S2 v, so by Lemma 1.1.1, we have that there exist unique

factorisations

u ≡ u0u1 · · ·un

v ≡ v0v1 · · · vn

such that ui, vi ∈ A+
X(i) and ui =SX(i)

vi for all i ≥ 0, where X(2j) = 1 and X(2j + 1) = 2,
or else X(2j) = 2 and X(2j + 1) = 1. But this means

w ≡ u0u1 · · ·un#(v1v2 · · · vn)rev ≡ u0u1 · · ·un#vrevn · · · vrev2 vrev1 .

As ui =SX(i)
vi for all i ≥ 0, we have that ui#(vi)

rev ∈ WP
SX(i)

AX(i)
for all i ≥ 0. We conclude,

by definition of the alternating product, that this is equivalent to w ∈ WPS1

A1
⋆WPS2

A2
, as was

to be shown.

Hence, as taking alternating products preserve language-theoretic properties of the
languages by Corollary 2.2.7, we conclude the following.

Theorem 2.3.2. Let C be a super-AFL. Then the class of semigroups with word problem in C is
closed under taking (semigroup) free products.

As the class Ccf of context-free languages is a super-AFL, we conclude the following from
Theorem 2.3.2; this result was originally proved using very different methods (pushdown
automata) by Brough, Cain & Pfeiffer [80].
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Corollary (Brough, Cain & Pfeiffer, 2019). The class of semigroups with context-free word

problem is closed under taking semigroup free products.

Of course, we obtain the following corollary, as the class Cind of indexed languages is also a
super-AFL which is closed under reversal.

Corollary 2.3.3. The class of semigroups with indexed word problem is closed under taking

semigroup free products.

As far as the author is aware, this statement has not previously appeared in the literature. We
are now ready to turn towards monoid free products, which shall require the use of ancestors.

2.3.2 Monoid free products

The identification of the identity elements of the factors in the monoid free product of two
monoids means that we have little reason to conclude that the word problem of a monoid free
product is the alternating product of its factors’ word problems; indeed, it is not too hard to
see that this is true if and only if no non-trivial word is equal to 1 in the respective factors
(for example if both sides of all defining relations are non-empty). To resolve this, we use the
alternating product with insertions. The insertions in the product M1 ∗M2 of two monoids
M1,M2 generated by A1, A2 will come from the sets IPM1

A1
and IPM2

A2
. Recall the definition

IPM
A = {w ∈ A∗ | w =M 1}

of the identity problem ofM (see §1.2.3). We first need two quick properties.

Lemma 2.3.4. Let C be a class of languages closed under homomorphism and intersection with

regular languages. LetM be a monoid, finitely generated by A, withWPM
A ∈ C. Then IPM

A ∈ C.

Proof. Note that WPM
A ∩A∗# is the language

L = {w# | w ∈ A∗, w =M 1}.

This language is in C as C is closed under intersection with regular languages. Let φ : (A ∪
{#})∗ → (A∪{#})∗ be the homomorphism defined by a 7→ a and# 7→ ε. Thenφ(L) = IPM

A ,
so as C is closed under homomorphism, the result follows.

As we shall mention it in the course of the subsequent proof, recall that if a monoid M is
generated by a finite set A, then a rewriting system R with R ⊆ A∗ × A∗ is said to be M -

equivariant if ∗←→R⊆
∗←→M . We are now ready to state the key lemma for monoid free products.

Lemma 2.3.5. LetM1,M2 be two monoids generated by the finite sets A1, A2, respectively. Let

M1 ∗M2 denote their monoid free product. Let

I ′ = {(w → 1) | w ∈ IPM1

A1
∪ IPM2

A2
} ⊆ (A1 ∪A2)

∗,

I ′′ = {(wrev → 1) | w ∈ IPM1

A1
∪ IPM2

A2
} ⊆ (A1 ∪A2)

∗.

Then we have

WPM1∗M2

A1∪A2
=
(
WPM1

A1
⋆WPM2

A2

)I′,I′′

.
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Proof. We first note thatWPM1

A1
andWPM2

A2
are both concatenation-closed. Hence the product

WPM1

A1
⋆WPM2

A2
is well-defined. We now prove the claimed equality.

(⊇) Choose an arbitrary word w1#w
rev
2 ∈

(
WPM1

A1
⋆WPM2

A2

)I′,I′′

. Then, there exists by
definition of (I ′, I ′′)-ancestors some u#vrev ∈ WPM1

A1
⋆WPM2

A2
such that w1

∗−→I′ u and
wrev

2
∗−→I′′ vrev. We claim that we have w1 =M1∗M2

u and w2 =M1∗M2
v.

For the first claim, as I ′ isM1-equivariant andM2-equivariant, it is alsoM1∗M2-equivariant,
as ∗←→Mi⊆

∗←→M1∗M2 for i = 1, 2. Hence, as w1
∗−→I′ u, we have w1 =M1∗M2 u, as required. For

the second claim, we could use an analogous argument, or write it out in full; we opt for the
latter. The proof is by induction on the number k of rewriting steps in wrev

2
∗−→I′′ vrev. If k = 0,

then wrev
2 ≡ vrev and there is nothing to show, for then w2 ≡ v. Assume wrev

2 −→k
I′′ vrev with

k > 0, and assume the claim holds for all rewritings of length shorter than k. Then there is some
y2 ∈ A∗ such that wrev

2 −→I′′ y2 −→k−1
I′′ vrev, and some w′

2, w
′′
2 ∈ A∗ such that wrev

2 ≡ w′
2sw

′′
2

and y2 ≡ w′
2w

′′
2 , where (s → 1) is a rule in I ′′. Now srev =M1

1 or srev =M2
1; in either case

srev =M1∗M2
1 and so

w2 ≡ (wrev
2 )rev ≡ (w′

2sw
′′
2 )

rev ≡ (w′′
2 )

revsrev(w′
2)

rev

=M1∗M2
(w′′

2 )
rev(w′

2)
rev ≡ (w′

2w
′′
2 )

rev ≡ yrev2 .

By the inductive hypothesis, as y2 −→k−1
I′′ vrev we have yrev2 =M1∗M2 v. Thus we have our claim

proved; that is, w2 =M1∗M2 v.
Thus we have w1 =M1∗M2 u and w2 =M1∗M2 v. As u#vrev ∈ WPM1

A1
⋆WPM2

A2
, we have,

exactly as in the proof of Lemma 2.3.1, that u#vrev ∈ WPM1∗M2

A1∪A2
. In particular, u =M1∗M2

v.
Hence w1 =M1∗M2

w2, i.e. w1#w
rev
2 ∈WPM1∗M2

A1∪A2
. As w1#w

rev
2 was arbitrary, this completes

the proof of the inclusion.
(⊆)Now supposew ∈WPM1∗M2

A1∪A2
. This implies thatw ≡ u#vrev for some u, v ∈ (A1∪A2)

∗

with u =M1∗M2 v. Let u′, v′ be any reduced forms of u, v, respectively, which we can by
Proposition 1.1.2 choose to be such that u ∈ ⟨u′⟩I′ and v ∈ ⟨v′⟩I′ . Let u′ ≡ u0u1 · · ·um and
v′ ≡ v0v1 · · · vn be the normal forms of the reduced words u′ and v′. By Lemma 1.1.3, we have
u =M1∗M2

v if and only if n = m, and ui, vi ∈ A∗
X(i) with ui =MX(i)

vi for all 0 ≤ i ≤ n,
where X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1. Hence, as
ui =MX(i)

vi for all i ≥ 0, we have that ui#(vi)
rev ∈WP

MX(i)

AX(i)
for all i ≥ 0. Furthermore, we

clearly have

u′#(v′)rev ≡ u0u1 · · ·un#(v1v2 · · · vn)rev ≡ u0u1 · · ·un#vrevn · · · vrev2 vrev1 .

We thereby conclude, by definition of the alternating product, that

u′#(v′)rev ∈WPM1

A1
⋆WPM2

A2
.

Now, u ∈ ⟨u′⟩I′ and v ∈ ⟨v′⟩I′ . From the latter, we have vrev ∈ ⟨(v′)rev⟩I′′ . Thus, by definition
of (I ′, I ′′)-ancestors, we conclude that u#vrev ∈

(
WPM1

A1
⋆WPM2

A2

)I′,I′′

. As the word w ≡
u#vrev was arbitrary, we have proved the inclusion, as required.

Combining the knowledge we gained of (I ′, I ′′)-ancestors from earlier, we can hence state
the following theorem.
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Theorem 2.3.6. Let C be a super-AFL closed under reversal. Then the class of monoids with word

problem in C is closed under taking monoid free products.

Proof. Note that as C is closed under inverse homomorphism, there is no ambiguity in speaking
of a monoid with word problem in C by [209, Proposition 8]. IfM1,M2 are two monoids with
word problem in C, generated by disjoint finite sets A1 resp. A2, then by Lemma 2.3.4 we have
that IPM1

A1
, IPM2

A2
∈ C. Let I ′ = IPM1

A1
and I ′′ = IPM2

A2
. Then I ′, I ′′ are monadic C-rewriting

systems by Lemma 2.3.4 and the closure of C under reversal. By Corollary 2.2.7, asM1 andM2

both have word problem in C, and C is a super-AFL, we have

WPM1

A1
⋆WPM2

A2
∈ C.

Hence, by Theorem 2.2.14, we have(
WPM1

A1
⋆WPM2

A2

)I′,I′′

∈ C.

But by Lemma 2.3.5, this language is WPM1∗M2

A1∪A2
, and we are done.

Again, as in the semigroup case, we recover the following result, originally due to Brough,
Cain & Pfeiffer [80], as a direct corollary of Theorem 2.3.6.

Corollary (Brough, Cain & Pfeiffer). The class of monoids with context-free word problem is

closed under taking monoid free products.

We remark that although this result (and the semigroup analogue) was proved already by
the named authors, these authors used entirely different methods specific to context-free
languages (namely, they constructed explicit pushdown automata). The authors also only
provided a sketch proof in the case of the monoid free product case, which is (as we have
seen) significantly more complicated than the semigroup case. Now, the class of deterministic

context-free languages is not an AFL (see [203] for a definition). Therefore, the methods in
this chapter – which rely on e.g. the monadic ancestor property – are not directly useful for
making progress towards resolving the conjecture of Brough, Cain & Pfeiffer [80] on whether
the class of deterministic context-free monoids is closed under free products. For this latter
question, we strongly suspect the answer is negative. On the other hand, we have:

Corollary 2.3.7. The class of monoids with indexed word problem is closed under taking monoid

free products.

Indeed, as every group admits a (special) monoid presentation; and as the monoid free
product of two such special monoid presentations coincides with the usual group-theoretic
free product of the two groups; and as a group has language-theoretic word problem (in the
above sense) in a class C closed under inverse homomorphism if and only if its identity
problem is in C; we conclude the following purely group-theoretic result.

Corollary 2.3.8. The class of groups with indexed word problem is closed under free products.

It is an open problem whether there exist groups with indexed word problem which are not
context-free (see e.g. [162]). It is, however, known that groups with indexed word problems
have decidable rational subset membership problem by a result of Lisovik (see [238,
Corollary 3.6]).



Chapter 3

TheWord Problem for Special Monoids

Synopsis

This chapter deals with special monoids, and studies the word problem (in the
sense of Duncan & Gilman) for such monoids. In §3.1, we give an overview of
the ideas involved in such a study via the example of the bicyclic monoid. In
§3.2, we carry out a careful study of invertible words in a special monoid,
including manipulating the presentations involved to gain control over the
invertible pieces. In §3.3, we use this control to language-theoretically describe
equalities between words representing invertible elements. In §3.4, we use this
description together with a normal form lemma to completely understand the
language-theoretic word problem of a special monoid modulo the same
properties of its group of units. This results in a reduction theorem: for an
appropriately restricted class of languages C, a finitely presented special monoid
has word problem in C if and only if its group of units has word problem in C
(Theorem 3.4.1). In §3.5, we study the context-free case in detail. As a corollary,
we find as a very particular case a full generalisation of the famous
Muller-Schupp theorem; namely, a finitely presented special monoid has
context-free word problem if and only if its group of units is virtually free
(Theorem 3.5.1). We also discuss applications to the rational subset membership
problem. In §3.6, we end with some open problems. This chapter is based on the
pre-print [383]. This chapter answers broad generalisations of questions posed
by Zhang in 1992, and by Book & Otto in 1993.
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The goal of this chapter is to investigate the following question.

Question. Let C be a class of languages. What is the algebraic structure of a special monoid with

word problem in C?

In order for this Question to be well-posed, we assume that C is closed under inverse
homomorphisms (as in §1.2.3). Prior to the work contained in this thesis, this question did not
directly appear anywhere in the literature on special monoids; however, we note that the
word problem of the bicyclic monoid Mon⟨b, c | bc = 1⟩ is mentioned to be context-free by
Brough, Cain, & Pfeiffer [80]. Book, Jantzen & Wrathall [69] proved that any monoid
admitting a complete monadic context-free rewriting system has context-free word problem
(Cain & Maltcev [95] later independently rediscovered this result). These methods, however,
are sporadic at best in their application to special monoids, and we now therefore initiate the
first systematic investigation of this problem.

Without developing any machinery, it is possible to answer the above question completely
in the case that C is the class Creg of regular languages. First, by the analogue of Anı̄s̄ımov’s
theorem, a monoid M has regular word problem if and only if M is finite (§1.2.3). It follows
directly fromwork by Adian on identities that a special monoid is finite if and only if it is a finite
group [3].51 See also [341, Theorem 6] for a proof of this using rewriting techniques. Hence we
have the following easy classification of special monoids with regular word problem.

Proposition. LetM = Mon⟨A | wi = 1 (1 ≤ i ≤ p)⟩ be a special monoid. ThenM has regular

word problem if and only ifM is a finite group.

This result has essentially been observed already by Bucher [83, Theorem 3.9], though using
significantly more words. Our ultimate goal is to provide a language-theoretic result mirroring
Makanin’s reduction of the word problem forM to the same problem for U(M). In particular,
we wish to prove that, for a class of languages C, we have:

M has word problem in C ⇐⇒ U(M) has word problem in C. (∗)

In full generality, this is not possible. Let C = Creg, the regular languages. The bicyclic monoid
B = Mon⟨b, c | bc = 1⟩ has trivial group of units U(B). Thus the word problem for U(B)

is regular by Anı̄s̄ımov’s theorem. If the above equivalence (∗) were to hold for Creg, then by
the above proposition the bicyclic monoid would have to be a finite group – and, being neither
finite nor a group, this is a lot to demand of it. Thus the above equivalence cannot hold for Creg.

We will thus need to provide certain restrictions on C to ensure that the equivalence (∗) does
hold. This includes certain closure properties. Specifically, we will show that if C is a super-
AFL closed under reversal, then (∗) holds for every special monoidM . The picture painted is
that if (∗) is true for a class C, then C should be “context-free-like”. This is because – as we shall
discover – the word problem ofM is built up in a “context-free way” from the word problem
of U(M). This is the language-theoretic interpretation of the geometric idea that the Cayley
graph ofM is built up in a “tree-like way” from the Cayley graph of U(M) (see Chapter 5).

51Specifically, Adian proved that a special monoid satisfies a non-trivial identity (see e.g. [443] for a
definition) if and only if it is isomorphic to N, the bicyclic monoid, or a group; and every finite special
monoid satisfies the identity xn = 1 for some n ≥ 1.
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3.1 Warm-up: the bicyclic monoid

LetM = Mon⟨A | w1 = 1, w2 = 1, . . . , wk = 1⟩. Then recall from §1.3 thatM is called special,
and that its group of units is denoted U(M). By the results in that section, the word problem –
as a decision problem – forM reduces to the same problem forU(M). This reduction, however,
is in general non-trivial. We give an example of this via the bicyclic monoid B, leading us into
the difficulties that one might face along the way.

Let B = Mon⟨b, c | bc = 1⟩ be the bicyclic monoid.52 The group of units of B is the
trivial group – but there is still non-triviality involved in comparing words in B. Worse still,
even comparing whether two invertible words represent the same element is non-trivial! For
example, the words bncn and bc represent the same element for any choice of n ≥ 0; indeed,
as can be observed by using the complete rewriting system {bc → ε}, a word w ∈ {b, c}∗

represents the identity element in B if and only if it is an element of the Dyck language (see
Example 1.2.1)

{w | w ∈ {b, c}∗, σb(w) = σc(w), and σb(p) ≤ σc(p) for every prefix p of w}.

This language is not regular, but it is context-free. Thus even though the group of unitsU(B) is
trivial, there is some “unfolding” in moving from the invertible elements of B to the invertible
words. If we are to describe the equality of words in B (in order to describe the word problem
of B), we must handle this. We give an overview of the general way this is handled in this
simple case, but using only one particular property of the bicyclic monoid (we shall specify this
property presently). The reader may instead choose their favourite special monoidM , compute
the set∆ for it, and everywhere below substituteM forB, singing along with their own lyrics.

To control the invertible words in B, note that ∆ = {bc} by the overlap algorithm. Let
X = {x1}, and let ϕ : ∆∗ → X∗ be the usual surjective homomorphism. Every invertible
word is equal in B to a word over ∆∗, as ⟨∆⟩ = U(B). Thus, using the completeness of
Zhang’s rewriting system S(B), if w ∈ {b, c}∗ is invertible, then there is an irreducible word
in∆∗ in its equivalence class modulo S(B). Thus there existsW ∈ ∆∗ such that w ∗−→S(B) W .
In our case, no word in ∆ contains another piece as a subword. Thus, by induction on the
length of the rewriting w ∗−→S(B) W , one can show (Lemma 3.2.20) that w is the ancestor of
some element of ∆∗ under the rewriting system R = {V → ε | V ∈ ∆∗}. In our case,
R = {(bc)n → ε | n ≥ 0}. That step was the difficult reduction – now we are almost done:
suppose that U(B) has word problem (with respect to the generating setX , say) in the class of
languages C, closed under inverse homomorphism. Then U(B) has word problem with respect

52The bicyclic monoid admits only a single one-relation monoid presentation (up to renaming
generators) – namely Mon⟨b, c | bc = 1⟩. This was likely first proved by Shneerson [445]; the proof
is not very long, but uses the Freiheitssatz for one-relation monoids and Adian’s theory of (left/right)
cycle-free presentations. Cain & Maltcev [94] independently rediscovered this result, and give a different
(but less elementary) proof of the same fact. There are many natural questions along this line, which
would be quite interesting to investigate, but which we have no space for herein; for example, are there
any other special one-relation monoids which admit only a single special one-relation presentation? For
every k, is there a special k-relation monoid admitting only one special k-relation monoid presentation?
How many special inverse monoid presentations does the bicyclic monoid admit (at least three; note that
B ∼= Inv⟨b, c | bc = 1⟩, Inv⟨a | aa−1 = 1⟩, and Inv⟨a, b | abb = 1⟩)?
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to the generating set ∆ in C. Thus the language of words representing 1 in U(B) is in C – so
R is a C-rewriting system! But w is an ancestor under R of the word ε. Hence, as every such
ancestor is invertible, if C is a class of languages with the monadic ancestor property, then it
follows that the language of invertible words (as w was arbitrary) is also in C.53

The only limiting assumption we used about the bicyclic monoid above is that no piece
appeared as a subword of another piece. In the more general case, some legwork is necessary
to reach the conclusion that the language of invertible words is in C. Suppose that we have the
monoidM = Mon⟨a, b, c | a(bac)a = 1⟩. Then ∆ = {a, bac} by the overlap algorithm. One
can show that a ̸=M bac, either by constructing a finite complete rewriting system forM , or by
appealing to the general (but non-trivial) fact that in a special one-relation monoidM ′, no two
distinct words from ∆ are equal in M ′ (see §1.3 or indeed [505]). In either case, we partition
∆ = ∆1 ∪∆2 = {a} ∪ {bac}, let X = {x1, x2} and finally let ϕ(a) = x1 and ϕ(bac) = x2.
Now there is a “piece in a piece”, as a appears as a subword of bac. This complicates matters:
unlike for the bicyclic monoid, there is no longer any reason to expect that every invertible
word is the ancestor under a special rewriting system of a word in ∆∗. For example, let

Π = Mon⟨α, β, γ, δ | αβ2γ = 1, βδ2 = 1, δ2β = 1, β3 = 1⟩.

Then β, δ, αβγ,∈ ∆ by Makanin’s procedure. As both β2 and δ2 are inverses of β, we must
have β2 =Π δ2. Thus αδ2γ is an invertible word; it is equal in Π to αβ2γ, which equals 1. But
how could we, by removing subwords equal to 1, possibly rewrite αδ2γ to an element of ∆?
Indeed, it is not hard to show (e.g. by constructing a finite complete rewriting system for Π)
that none of the subwords of αδ2γ, other than the entire word itself, is equal to 1! Of course,
we would like to perform the rewriting δ2 −→ β2, but this is not a rule which could be a part of
either a special or a monadic system, and there is little reason to expect that ancestors under
such rewritings should preserve any language-theoretic properties.

We will remedy the situation in the following way. LetM = Mon⟨A | wi = 1 (i ∈ I)⟩ be
an arbitrary finitely presented special monoid with pieces ∆. Let w be an invertible word as
before, and let w ∗−→S(M) W , whereW ∈ ∆∗. Then the rewriting can take place inside one of
the pieces inW . However, if one can manipulate the presentation – and∆ – to ensure that the
only pieces appearing inside pieces have length 1 – that is, such that

δ1, δ2 ∈ ∆ and δ1 is a proper subword of δ2 =⇒ |δ1| = 1,

thenw can be shown, by another induction, to be the ancestor ofW under a monadic rewriting
system. For if one would need to apply some rule (r, s) of S(M), then either |s| ≤ 1, or else one
can reduce the number of steps in the rewriting by one – this is made precise in Lemma 3.2.20.
It follows that the rewriting system

R∆ = {W → δ |W ∈ ∆∗, δ ∈ ∆ ∪ {ε}, |δ| = 1,W =M δ}

is such that w is the ancestor underR∆ of some element of∆∗. But if C is a class of languages
closed under union, then R∆ is a monadic C-rewriting system if U(M) has word problem

53In the case of the bicyclic monoid, we can use this to conclude that the Dyck language is a context-free
language by taking C = Ccf . Note that Creg does not have the monadic ancestor property, so although
the word problem for U(B) = 1 is a regular language, it does not follow that the language of invertible
words is a regular language!



3. The Word Problem for Special Monoids 85

in C (with respect to ∆). Thus we can proceed as above, and conclude that the language of
invertible words inM is also in C; the dependency on specific generating set and∆ is removed
by additionally assuming C is closed under inverse homomorphism.

Many details remain; for example, we formalise the study of “equality of invertible words”
by introducing forM , generated by A, the invertible word problem

InvPM
A := {u#vrev | u, v ∈ A∗, such that u =M v and u, v are invertible}.

For a sufficiently restricted class of languages C, we prove that this language is in C if and only
if U(M) has word problem in C. This connects invertible words with the group of units. The
final step is then a very easy one: using the normal form lemma (Lemma 1.3.8) one shows more
or less directly thatM has word problem in C if and only if InvPM

A is in C. This completes the
overview of the theorem.

We will in the next section begin with detailing the changes to the presentations needed to
ensure that the “piece in a piece” difficulties can be resolved. We shall also see in Chapter 5 that
pieces appearing inside pieces is a recurring theme for complicating matters in special monoids.
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3.2 Invertible elements

Throughout this section, if not explicitly mentioned otherwise, we let

M = Mon⟨A | w1 = 1, w2 = 1, . . . , wk = 1⟩

be a fixed special monoid. Let∆ be the set of invertible pieces ofM , and let ϕ : ∆∗ → X∗ be the
usual homomorphism. We know well (see §1.3) that the set∆ of pieces generates the invertible
elements, in the sense that for every invertible word w ∈ A∗ there exists someW ∈ ∆∗ such
that w =M W . However, as we have seen many times, it need not be true that an invertible
word is an element of∆∗. In other words, if π : A∗ →M is the usual homomorphism, then in
general

π(w) ∈ π(∆∗) ≠⇒ w ∈ ∆∗. (∗)

In fact, it is straightforward to see that the implication (∗) holds if and only if every element of
∆ is a single letter, i.e. if and only ifM is a free product of a free monoid by a group. Indeed,
the “if” part is trivial. For the “only if” direction, one only needs observe that if some piece has
length greater than 1, then one can repeatedly insert some word equal to 1 into this piece and
obtain infinitely many minimal words (using an easy minimality argument), all of which are
pairwise graphically distinct, all of which are invertible, but of which only finitely many are
in ∆. For example, in the bicyclic monoid Mon⟨b, c | bc = 1⟩ we have ∆ = {bc}, whereas if
n ≥ 2, we have bncn ̸∈ {bc}∗, but obviously bncn =M 1 is invertible. The aim of this section is
to obtain a deeper understanding of the relationship between the invertible elements and ∆∗.

3.2.1 Generalised pieces

Wewill begin the journey towards understanding invertible elements with the following simple
lemma, which gives some insight into the relationship between invertible words and pieces.

Lemma 3.2.1. If w ∈ A∗ is invertible and non-empty, then w contains a piece as a subword.

Proof. Asw is invertible, there is a wordw′ ∈ A∗ such thatww′ =M 1. As the rewriting system
S = S(M) is complete, and the empty word is irreducible modulo S, we have ww′ ∗−→S 1. We
may assume without loss of generality thatw′ is irreducible modulo S. We add a formal marker
| signifying the boundary of the words w|w′ for clarity. As w′ is irreducible, when rewriting
w|w′ ∗−→S 1 we find that (as S ⊆ ∆∗ ×∆∗) the first application of a rule (s1, s2) ∈ S must be
such that s1 either straddles the boundary of |, or else is a subword of w (as w′ is irreducible).
As s1 ̸≡ ε, in the latter case we are done, as then w contains s1 as a subword (and hence also
a piece as a subword). In the former case, no single piece in s1 can straddle the boundary |, as
then it would have a left invertible prefix (as this prefix would be a suffix of the invertible word
w). Thus the boundary | splits s1 as s1 ≡ s′1|s′′1 with s′1, s′′1 ∈ ∆∗ and s′1 a subword of w; this
subword s′1 is non-empty as w′ is irreducible. Thus w contains a piece as a subword.

The above lemma is of limited use in practice, and does not shed much light on what an
arbitrary invertible word looks like. To understand such words, we will define a new approach.
We now define a new set ∆ of words, being the set of all invertible words w ∈ A∗ such that:
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(1) There exists someW ∈ ∆ such that w ∗−→S W .
(2) No proper non-empty prefix of w is invertible.

We call ∆ the closure of ∆. We note that ∆ ⊆ ∆, and that condition (2) is easily seen to
be equivalent to “no proper non-empty suffix of w is invertible”, which will occasionally be
useful.54 Evidently, just as∆ is a biprefix code, so too is∆ is a biprefix code (as a subset of A∗).
Furthermore, any element of ∆∗ is clearly invertible.

Example 3.2.2. Let B = Mon⟨b, c | bc = 1⟩. Then ∆ = {bc}. As B is defined by the finite
complete rewriting system R with the single rule (bc → 1), and since this rule is an element
of S(B) as bc ∈ ∆, we have that for a word w ∈ A∗ condition (1) in the definition of ∆ is
equivalent to: w ∗−→R bc. Of course, the word bcbc is such that bcbc ∗−→R bc, but this does not
satisfy condition (2). Hence bcbc ̸∈ ∆ (but note that bcbc ∈ ∆∗ ⊆ ∆

∗). The word bbcc, on the
other hand, is such that bbcc ∗−→R bc, and none of its proper non-empty prefixes is invertible.
Hence bbcc ∈ ∆. Indeed,∆ can be seen to be precisely the context-free language b⟨ε⟩Rc. △

The following lemma is straightforward to prove, and its proof is entirely analogous to the
proof of [502, Proposition 2.1], whose proof we follow directly.

Lemma 3.2.3. Let x, y, z ∈ A∗. Then:

(1) xy, x ∈ ∆
∗
imply y ∈ ∆

∗
.

(2) yz, z ∈ ∆
∗
imply y ∈ ∆

∗
.

(3) Suppose that xy ∈ ∆
∗
. If either x or y is invertible, then x ∈ ∆

∗
and y ∈ ∆

∗
.

(4) Suppose that xy ∈ ∆
∗
and yz ∈ ∆

∗
. Then x, y, z ∈ ∆

∗
.

Proof. Both statements (1) and (2) follow from the fact that ∆ is a biprefix code. For (3),
suppose x is invertible, and let xy ≡ x1x2 · · ·xm with xi ∈ ∆ where 1 ≤ i ≤ m. Then
x ≡ x1x2 · · ·xℓ−1E, where E is a prefix of xℓ for some ℓ ≤ m. Let xℓ ≡ EF , where F ∈ A∗.
As x and xℓ ≡ EF are invertible, it follows that E is invertible (by the Fundamental Lemma).
As xℓ ∈ ∆, we must have that either E is empty, or else E is all of xℓ. In either case, x ∈ ∆

∗.
Thus by (1) also y ∈ ∆

∗. Symmetrically, the results hold when y is invertible.55 For (4), as we
have xy ∈ ∆

∗ and yz ∈ ∆
∗, we have that xy and yz are invertible. Hence y is invertible, and

so by (3) we have x, y, z ∈ ∆
∗.

Thus, by (4), the overlap-style arguments one can make for ∆ can also be performed for
∆. We shall use the above lemma, and particularly case (4), implicitly throughout. The key
property regarding∆ is that just as any element of ∆∗ is invertible, the converse is also true.

Lemma 3.2.4. A word w ∈ A∗ is invertible if and only if w ∈ ∆
∗
.

Proof. Any element of ∆∗ is clearly invertible. For the converse, assume w ∈ A∗ is invertible.
By [502, Lemma 3.4] there exists some least n ≥ 0 and a D ∈ ∆∗ such that w ∗−→

n

S D. We will
54For, if w has an invertible prefix w′, then writing w ≡ w′w′′, we find that w′′ is also invertible by the

Fundamental Lemma. The symmetric argument holds.
55This case is misprinted by Zhang [502, p. 497] as “Symmetrically, the results hold when v is invertible”.
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prove the claim by induction on n. The base case n = 0 is clear, for then w ≡ D ∈ ∆∗ ⊆ ∆
∗.

Assume that the claim is true for some n ≥ 0, and let w be such that w ∗−→
n+1

S D. Then there
exists some w1 ∈ A∗ such that w −→S w1 and w1

∗−→
n

S D. As w =M w1, the word w1 is
invertible and by the inductive hypothesis w1 ∈ ∆

∗. Write w1 ≡ δ0δ1 · · · δk where δi ∈ ∆ for
0 ≤ i ≤ k. As w −→S w1, there exists some (ℓ, r) ∈ S and words u, v ∈ A∗ such that w ≡ uℓv
and w1 ≡ urv. We subdivide into two cases, depending on whether r contains as a subword
one of the δi or not.

In the first case, we assume the fixed subword r of w1 contains some δi, where 0 ≤ i ≤ k,
as a subword. Then, as ∆ is a biprefix code and r ∈ ∆∗ ⊆ ∆

∗, we must have that w1 ≡ ErF ,
where E,F ∈ ∆

∗. Hence w ≡ EℓF , and as ℓ ∈ ∆∗, we have w ∈ ∆
∗. In the second case, this

fixed subword r does not contain any δi as a subword. We deal with two separate subcases,
depending on whether r is empty or not.

First, if r ≡ ε, then there exists 0 ≤ i ≤ k we can write u ≡ δ0 · · · δi−1δ
′
i and v ≡

δ
′′
i δi+1 · · · δk , where δ

′
i, δ

′′
i ∈ A∗ are such that δ′iδ

′′
i ≡ δi; and such that

w ≡ uℓv ≡ δ0 · · · δi−1(δ
′
iℓδ

′′
i )δi+1 · · · δk. (3.2.1)

Assume |δ′i| · |δ
′′
i | = 0, i.e. at least one of δ′i, δ

′′
i is empty. If δ′i ≡ ε, then δ′′i ≡ δi ∈ ∆,

and as ℓ ∈ ∆
∗, we have w ∈ ∆

∗ by (3.2.1). The case δ′′i ≡ ε is entirely symmetrical. Thus
assume instead that |δ′i| · |δ

′′
i | > 0. We claim that no non-empty prefix of δ′iℓδ

′′
i is invertible,

i.e. this word is minimal. By minimality of δ′iδ
′′
i ∈ ∆, no proper non-empty prefix or suffix of

this word is invertible; thus if some prefix of δ′iℓδ
′′
i were invertible, then it is of the form δ

′
iℓ1,

where ℓ1 ∈ A+ is some non-empty proper prefix of ℓ. Thus ℓ1 is left invertible, being a suffix
of the invertible δ′iℓ1, but also right invertible, being a prefix of ℓ. It follows that ℓ1 is invertible.
As δ′iℓ1 is invertible, thus δ′i is invertible, which contradicts the minimality of δi ≡ δ

′
iδ

′′
i as

|δ′′i | > 0. It follows that δ′iℓδ
′′
i is minimal. As δ′iℓδ

′′
i it is clearly invertible, being equal inM to

δ
′
iδ

′′
i ∈ ∆ by virtue of ℓ =M 1, we have that δ′iℓδ

′′
i ∈ ∆. By (3.2.1), we have w ∈ ∆

∗.
The case r ̸≡ ε uses very similar reasoning. Assume instead that r ̸≡ ε. Then there are two

subcases, depending on whether r straddles the boundary of δiδi+1 for some i ≥ 0, or whether
r appears entirely as a subword of δi for some i ≥ 0. In the first case we can write δi ≡ δ

′
iδ

′′
i

and δi+1 ≡ δ
′
i+1δ

′′
i+1 such that r ≡ δ

′′
i δ

′
i+1, where δ

′
i, δ

′′
i+1 ∈ A+ and δ′′i , δ

′
i+1 ∈ A∗. As δ′′i is

a suffix of the invertible word δi, it is left invertible. Furthermore, as a prefix of the invertible
word r, it is right invertible; consequently, δ′′i is invertible. As δi ∈ ∆, we necessarily have
δ
′′
i ≡ ε. Symmetrically, we have δ′i+1 ≡ ε, and so r ≡ ε, a contradiction. In the second case,
we can write δi ≡ δ

′
irδ

′′
i for some δ′i, δ

′′
i ∈ A∗. As r is invertible and non-empty, and δi ∈ ∆,

we necessarily have that δ′i, δ
′′
i ∈ A+. We wish to show that δ′iℓδ

′′
i ∈ ∆, which would establish

the claim. Now δ
′
iℓδ

′′
i −→S δ

′
irδ

′′
i ∈ ∆, and hence it suffices to show that no non-empty proper

prefix of δ′iℓδ
′′
i is invertible. As δi ∈ ∆ and |δ′′i | > 0, no non-empty prefix of δ′i is invertible.

Assume that δ′iℓ′ is invertible, where ℓ ≡ ℓ′ℓ′′ for some ℓ′, ℓ′′ ∈ A∗. Then ℓ′ is left invertible,
being a suffix of δ′iℓ′, and also right invertible, being a prefix of the invertible word ℓ. Thus ℓ′ is
invertible; hence as δ′iℓ′ is invertible we also have that δ′i is invertible, a contradiction. Hence
no non-empty prefix of δ′iℓ is invertible. Assume, finally, that there is a proper prefix p ∈ A∗ of
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δ
′′
i such that δ′iℓp is invertible. Then δ

′
irp is also invertible, being congruent to δ′iℓp. But then

δ
′
irp is an invertible non-empty proper prefix of δ′irδ

′′
i ∈ ∆, a contradiction. This completes

the subcase when r ̸≡ ε.

Proposition 3.2.5. ∆ is the set of minimal words ofM .

Proof. Clearly, if M denotes the set of minimal words, then M∗ is the set of invertible words
ofM , so M∗ = ∆

∗ by Lemma 3.2.4. As M and ∆ are both biprefix codes, we thus necessarily
have ∆ = M.

We remark that this is a non-trivial equality. Of course, the equality suggests that we could
have chosen to define ∆ as the set of minimal words, and instead proved that a word w is
minimal if and only if no proper non-empty prefix of w is invertible and there is some piece
δ ∈ ∆withw ∗−→S δ. In either case, we will not use the characterisation from the above equality
directly, but we will instead use the explicit control over∆ in terms of∆ given by the definition
of∆. We also remark that there is some similarity between Lemma 3.2.4 and [308, Lemma 19],
a similarity discovered after the above proof was written.

Now, while the rewriting system S has rules in ∆∗ ×∆∗, it is not necessarily the case that
if the left-hand of a rule is in ∆, then the right-hand side is also in ∆. This is demonstrated by
the following example.

Example 3.2.6. Let M = Mon⟨a, b, c, p | (abc)2 = 1, (abc)p2 = 1, p2(abc) = 1⟩. Then
abc and p are invertible; one checks (using e.g. a finite complete rewriting system) that ∆ =

{p, abc}. Now, as both abc and p2 are inverses of abc, it follows that abc =M p2. Now p2 ∈ ∆∗

and p2 ̸∈ ∆, yet we have the rule abc −→S p
2 as |abc| > |p2| (and, of course, this is regardless

of the ordering fixed on A = {a, b, c, p}). Thus the rule (abc, p2) ∈ S(M) is an element of
∆ × ∆2, and so rewriting using S(M) can increase the “∆-length” of a word in ∆∗ (i.e. the
number of factors from ∆ needed to write the word). △

In spite of this example, the following proposition has two purposes; it first indicates the
kinds of arguments which become frequent when dealing with∆; and second, it demonstrates
that the type of behaviour indicated by Example 3.2.6 is rather controlled, in the (informal) sense
that if a word in ∆ rewrites to an element from ∆∗, then this rewriting is in fact a rewriting
into an element of ∆, followed by a rewriting of this element into the prescribed element of
∆∗.

Proposition 3.2.7. Suppose u ∈ ∆ and v ∈ ∆
∗
are such that u −→S v. Then the following holds:

if v ̸∈ ∆, then v ∈ ∆∗ and u ∈ ∆. Consequently, if u ∗−→S W where u ∈ ∆ andW ∈ ∆∗, then

there areW0, . . . ,Wλ ∈ ∆ and a piece δ ∈ ∆ such that

u ≡W0 −→S W1 −→S · · · −→S Wλ −→S δ
∗−→S W.

Proof. Suppose u ≡ h1s1h2 and v ≡ h1s2h2, where (s1, s2) ∈ S(M) and h1, h2 ∈ A∗. We
know that s1, s2 ∈ ∆∗, and as S(M) is ordered by length we know s1 ̸≡ ε.

For the first part, suppose that v ̸∈ ∆. Then as v ∈ ∆
∗, we can write v ≡ t1t2 · · · tµ uniquely,

where µ ≥ 2 and ti ∈ ∆ for all 1 ≤ i ≤ µ. Now if t1 is a prefix of h1, then some non-empty
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prefix of h1 is invertible, and hence a non-empty proper (as s1 ̸≡ ε) prefix of u is invertible,
which contradicts u ∈ ∆. Thus t1 contains h1 as a proper prefix. Symmetrically, tµ contains
h2 as a proper suffix.

Write s1 ≡ δ1 · · · δk for δi ∈ ∆, 1 ≤ i ≤ k. Then, as µ ≥ 2, some prefix of s1 must be equal
to a suffix of t1, i.e. t1 ≡ h1δ1 · · · δ′j , where δj ≡ δ′jδ

′′
j for some 1 ≤ j ≤ k and |δ′j | > 0. But

then δ′j is left invertible, being a suffix of t1, and hence must be all of δj , as no proper prefix of
a piece is left invertible. Thus t1 ≡ h1δ1 · · · δj . As t1 and δ1 · · · δj are both invertible, so too
is h1. As u ∈ ∆ has no invertible non-empty proper prefix, thus necessarily h1 ≡ ε. Entirely
symmetrically, one proves tµ ≡ δℓ · · · δkh2 for some j < ℓ ≤ k, and thus h2 ≡ ε. Hence
v ≡ s2 ∈ ∆∗, as needed. Furthermore, u ≡ s1 ∈ ∆∗, and as u ∈ ∆we necessarily have u ∈ ∆,
as needed.

The final claim is an easy proof by induction on the number of steps λ in the rewriting
u

∗−→S W . The base case λ = 0 is clear, for then u ≡ W , and consequentlyW ∈ ∆. Thus we
can take δ ≡ W . Suppose that for some λ > 0 the claim is true for all such rewritings which
take less than µ steps, and let u ∈ ∆ andW ∈ ∆∗ be such that u ∗−→S W in µ steps. Then there
exist wordsW0,W1, · · · ,Wλ ∈ A∗ such that

u ≡W0 −→S W1 −→S · · · −→S Wλ ≡W.

As all of theWi are invertible, thusWi ∈ ∆
∗ for all 0 ≤ i ≤ λ by Lemma 3.2.4. NowW0 −→S W1

is a rewriting such thatW0 ∈ ∆ andW1 ∈ ∆
∗. IfW1 ∈ ∆, then asW1

∗−→S W in µ − 1 < µ

steps, the claim follows by the inductive hypothesis. Assume then thatW1 ̸∈ ∆. Then by the
first part,W1 ∈ ∆∗ andW0 ∈ ∆. Hence we can take δ ≡W0.

The above lemma quite clearly captures the idea that the elements of ∆ are “generalised
pieces”. Indeed, it shows that any element of ∆ can be rewritten to an element of ∆ by only
passing through other elements of ∆ (rather than ∆

∗). Note, however, that a given element of
∆may be able to be rewritten to many distinct elements of∆, as the following example shows.

Example 3.2.8. LetM = Mon⟨a, b, c, p, q | abc = 1, apc = 1, p = 1, b = 1⟩. Then one can
easily see that ∆ = {p, b, ac, abc, apc}, e.g. by using a finite complete rewriting system for
M . Of course, among these pieces, we have plenty of equalities; for example, abc =M apc.
Furthermore, we have abpc ∈ ∆ \∆, as abpc has no proper non-empty invertible prefix, and
abpc =M ac is invertible. Thus there is some non-trivial rewriting of abpc to an element of∆.
As p =M b =M 1, we have (p → 1), (b → 1) ∈ S(M). Depending on which of these two
rules we apply to abpc, we find either abpc −→S apc or abpc −→S abc. However, apc ̸≡ abc

(obviously). Thus, rewriting an element of ∆ to an element of ∆ does not always result in a
unique element from ∆. △

Hence, an element of∆ can intuitively be seen as an element of∆with the “interior” altered.

3.2.2 Controlling the pieces

Throughout this section, fix a special monoid M = Mon⟨A | w1 = 1, . . . , wk = 1⟩. For
w ∈ A∗, let RepMA (w) ⊆ A∗ denote the set of representative words of w, i.e. the set of words
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u ∈ A∗ such that w =M u. We will investigate when certain properties of the group of units of
a special monoid guarantee certain properties of the set of representatives of invertible words
in the monoid. Let δ ∈ ∆ be a piece. If δ ≡ h1wh2 for some non-trivial h1, h2 ∈ A+ and a
product of piecesw ∈ ∆+, then we say thatw is a subpiece (of δ). If |w| = 1, then we say thatw
is a small subpiece. We will say that a special monoid presentation satisfies the small subpiece

condition if all subpieces of pieces are small. In other words, the small subpiece condition states:
if δ ∈ ∆ and w ∈ ∆∗ are such that w is a proper subword of δ, then |w| = 1 (and w ∈ ∆). We
emphasise that a subpiece of a piece need not be a piece, but can be a product of several pieces.

Example 3.2.9. We give an example and a non-example of special monoids satisfying the small
subpiece condition.

(1) Let M = Mon⟨a, b, c | abc = 1, b = 1⟩. Then one can easily show that the pieces are
∆ = {abc, ac, b}. ThusM satisfies the small subpiece condition.

(2) LetM ′ = Mon⟨a, b, c | ab2c = 1, b = 1⟩. Then one can, using a finite complete rewriting
system, easily see that ∆ = {ab2c, abc, ac, b}. Then b2 is a non-small subpiece of ab2c.
ThusM ′ does not satisfy the small subpiece condition.

In general, to determine given a special monoid presentationwhether or not it satisfies the small
subpiece condition seems likely to be an undecidable problem, as it appears that one needs to
first compute the set ∆. △

The goal of this section is to prove the following statement:

Proposition 3.2.10. Every finitely presented special monoid admits a presentation satisfying the

small subpiece condition.

Before proving this, we state a useful lemma, proved by Makanin [308, Lemma 12].

Lemma 3.2.11 ([308, Lemma 12]). LetM be a special monoid given by the finite presentation

M = Mon⟨A | w1 = 1, . . . , wk = 1⟩.

with presentation pieces Λ. Fix some 1 ≤ i ≤ k, and let wi ≡ λ1λ2 · · ·λℓ with λj ∈ Λ for

1 ≤ j ≤ ℓ. Suppose that δ ∈ ∆ is such that δ ∈ [λp]
↓ for some fixed 1 ≤ p ≤ ℓ. Let w′

i ≡
λ1λ2 · · ·λp−1δλp+1 · · ·λℓ, and let

M ′ = Mon⟨A | w1 = 1, . . . , w′
i = 1, . . . , wk = 1⟩.

Then M ∼= M ′ via the identity map, i.e. the presentations define the same congruence on A∗.

Furthermore, the factorisation in M ′ of the defining word w′
i into minimal invertible factors is

obtained by replacing λp with δ in the factors of the factorisation of wi, and the factorisation of

the defining word wj (j ̸= i, 1 ≤ j ≤ k) is identical to its factorisation inM .

The full proof can be found in Makanin’s thesis, though using rather different language; it
is rather lengthy, but uses the following key idea: if λp =M δ via the generating operation,
then there is a sequence of elementary transformations which transforms λp into δ, such that
at no point does any elementary transformation actually involve deleting or inserting relation
words which contain λp or δ as a subword. Thus, if two pieces are equal based on their “internal



92 3. The Word Problem for Special Monoids

structure” (as δ and λp are in the statement of the lemma), then they are equal because of the
equalities which hold between the other pieces, and so we may freely swap λp for δ.

Example 3.2.12. LetM = Mon⟨a, b, c | abc = 1, b = 1⟩. Then U(M) = 1, and the pieces are
given by∆ = {abc, ac, b}, which can be verified using e.g. a finite complete rewriting system.
Now ac is a c-word corresponding to the presentation piece abc. Thus we can replace abc by
ac in the presentation, and see that

M ∼=M ′ = Mon⟨a, b, c | ac = 1, b = 1⟩,

which is obviously true. △

We will now give an example for how Makanin’s lemma can be applied to remove large
subpieces. The idea in the example is the same as the general ideawhichwill be used in the proof
of Proposition 3.2.10. One crucial idea is the following. If we add a relation u = v to a special
monoid, then in general this cannot be replaced with some special relation(s) – equivalently,
quotients of special monoids need not themselves be special monoids. On the other hand, if
it happens that u or v is invertible in the special monoid, then the resulting quotient by the
relation u = v is special! For, if x is a word representing the inverse of, say, u, then the relation
u = v is equivalent to the relations vx = xv = 1.

Example 3.2.13. Let M = Mon⟨a, b | abaabbab = 1⟩. By Adian’s algorithm, the defining
word factors into invertible pieces as (ab)(aabb)(ab), so ∆ = Λ = {ab, aabb}. Thus ab ∈ ∆+

is a large subpiece of aabb ∈ ∆. We will replace this large subpiece ab by a small subpiece p.
Let p be any new symbol, and introduce the defining relation p = ab to the presentation via

a Tietze transformation, giving Mon⟨a, b, p | abaabbab = 1, p = ab⟩. It is clear that aabb · ab is
an inverse of ab, so from p =M3

ab it thus follows thatM3 is isomorphic to

Mon⟨a, b, p | abaabbab = 1, p = ab, p(aabb · ab) = 1, (aabb · ab)p = 1⟩.

As the fact that both p and ab are inverses of aabbab follows from the two added relations, the
relation p = ab follows from these relations; thus we can remove p = ab, and find thatM3 is
isomorphic to the special monoid

Mon⟨a, b | (ab)(aabb)(ab) = 1, p(aabb)(ab) = 1, (aabb)(ab)p = 1⟩. (3.2.2)

It is clear that each of p, aabb, apb, and ab is a minimal invertible piece of this presentation. As
p =M3

ab, we have that the piece apc is obtained from aabb by the piece-generating operation.
Thus, byMakanin’s Lemma, wemay replace aabc by apc in (3.2.2) without changing themonoid
defined by it. Thus

M3
∼= Mon⟨a, b, p | (ab)(apb)(ab) = 1, p(apb)(ab) = 1, (apb)(ab)p = 1⟩.

For this new presentation, ∆ = Λ = {p, ab, apb}, so it satisfies the small subpiece condition.

Example 3.2.14. LetM = Mon⟨a, b | abaaabbbab = 1, aabbaabb = 1⟩. We do not expand on
all the details involved. The reader is invited to verify that every step is as expected. We find
that the defining relations factor into minimal invertible pieces as

(ab)(aaabbb)(ab) resp. (aabb)(aabb)
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and hence Λ = {ab, aabb, aaabbb}. There is thus a horrifying amount of pieces appearing
inside pieces. By introducing a generator p = ab, which we change into two relations
p(aaabbb)(ab) = 1 and (aaabbb)(ab)p = 1, we may replace aaabbb by its c-word aapbb, and
thus find the presentation

M ′ = Mon⟨a, b, p | abaapbbab = 1, apbapb = 1, paapbbab = 1, aapbbabp = 1⟩

withM ∼=M ′. Now the defining relations factor into minimal invertible pieces as

(ab)(aapbb)(ab), (apb)(apb), (p)(aapbb)(ab), (aapbb)(ab)(p)

and thus the presentation pieces of this presentation forM is

Λ′ = {p, ab, apb, aapbb}.

Now we have apb appearing as a subword of another piece aapbb, so we introduce q = apb,
and as (apb)2 = 1, we replace this relation by qapb = 1, apbq = 1. We then replace aapbb by
the piece aqb corresponding to it, finding

M ′′ = Mon⟨a, b, p, q | abaqbab = 1, apbapb = 1, paqbab = 1, aqbabp = 1, qapb = 1, apbq = 1⟩

withM ′′ ∼=M ′ ∼=M . The relations factor as

(ab)(aqb)(ab), (apb)(apb), (p)(aqb)(ab), (aqb)(ab)(p), (q)(apb), (apb)(q)

and hence
Λ′′ = {p, q, ab, apb, aqb}.

Notice that ∑
λ∈Λ

(|λ| − 1) = (2− 1) + (4− 1) + (6− 1) = 9,∑
λ′∈Λ′

(|λ′| − 1) = (1− 1) + (2− 1) + (3− 1) + (5− 1) = 7,

and finally ∑
λ′′∈Λ′′

(|λ′′| − 1) = (1− 1) + (1− 1) + (2− 1) + (3− 1) + (3− 1) = 5.

As 9 > 7 > 5, we see that
∑

λ∈Λ(|λ|−1) strictly decreases when performing the above process;
thus, this seems to be a good indicator for ensuring that the above process will always terminate
(as this sum is always a positive integer). We shall see, in the proof of Proposition 3.2.10, that
it indeed always decreases when performing the above procedure. △

We now generalise the above examples to the general case. First, for any set S ⊆ A∗, we let
ω(S) denote the natural number

∑
s∈S(|s| − 1). If S = Λ, where Λ is the set of presentation

pieces of M , then in a loose sense ω(Λ) is a measure of the “complexity” of the pieces of the
presentation – we remark that M is right cancellative if and only if ω(Λ) = 0 by a result of
Benois [49]. We shall, in the subsequent proof of Proposition 3.2.10, use several operations on
the presentation for M , each of which reduces or does not increase ω(Λ). In particular, if a
presentation with presentation pieces Λ does not satisfy the small subpiece condition, we will
show that we find a new presentation with presentation pieces Λ′ such that ω(Λ′) < ω(Λ).
The proof will then be complete by induction.

Before we can realise the above idea in practice, we remark that it is not difficult to construct
special monoids in which no presentation piece has a large subpiece, but there is some piece
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with a large subpiece. We begin with a lemma to remedy this, by showing that we can always
find a presentation where large subpieces are “brought to light” in the presentation pieces.

Lemma 3.2.15. LetM have presentation piecesΛ. ThenM admits a special monoid presentation,

with presentation piecesΛ′, such that either this presentation satisfies the small subpiece condition;

or else there is a presentation piece λ ∈ Λ′ containing a large subpiece, and ω(Λ′) ≤ ω(Λ).

Proof. If the given presentation forM satisfies the small subpiece condition, then we are done,
so suppose that it does not. Let δ ∈ ∆ and w ∈ ∆+ be such that w is a large subpiece of δ. If
δ ∈ Λ, then we are done. If δ ̸∈ Λ, then there is some λ0 ∈ Λ such that δ =M λ0. Fix such a
λ0. Then there are words u0, u1, . . . , un ∈ A∗ and a sequence

δ ≡ u0 ←→M u1 ←→M · · · ←→M un−1 ←→M un ≡ λ0. (3.2.3)

In the rewriting (3.2.3), suppose (without loss of generality, by symmetry) that the first letter of
δ is affected (in the sense of Novikov [381, I.§1] and Adian [6]) before the last letter is. Suppose
the first time, if any, this happens is in the rewriting ui −→M ui+1. Then ui ≡ v0δ

′v1, where
v0 =M v1 =M 1 and δ′ =M δ. The rewriting ui −→M ui+1 affects the first letter of δ′ (which
is the same as the first letter of δ) by deleting a defining relation wj (1 ≤ j ≤ k), and therefore
must, by minimality of δ′, and invertibility of v0, v1, be such that δ′ is one of the minimal
invertible pieces in the factorisation of this wj ; thus δ′ ∈ Λ.

We conclude that for our chosen δ, we can find a piece λ ∈ Λ such that δ =M λ, and there
is a rewriting δ ∗←→M λ which does not affect the first or last letter of δ. Indeed, we can take
λ ≡ δ′ as above if the first letter of δ is affected in (3.2.3); otherwise, we can take λ ≡ λ0.
In either case, pick the longest λ with the given property. Then there exist h1, h2 ∈ A+ with
δ ≡ h1wh2 and λ ≡ h1w

′h2 with w =M w′. Thus there is some W ∈ A∗ with w ∗−→S W

and w′ ∗−→S W . Hence |w| ≥ |W | and |w′| ≥ |W |. As λ was chosen longest, we also have
|w| ≤ |w′| (for otherwise δ ̸∈ ∆).

Now, if |w′| = |W |, then also |w| = |W |. Thus the sequences of rules

(s1,1, s1,2), (s2,1, s2,2), . . . , (sm,1, sm,2) ∈ S

(s′1,1, s
′
1,2), (s

′
2,1, s

′
2,2), . . . , (s

′
ℓ,1, s

′
ℓ,2) ∈ S

transforming w ∗−→S W resp. w′ ∗−→S W satisfies |si,1| = |si,2| resp. |s′j,1| = |s′j,2| for all
1 ≤ i ≤ m resp. 1 ≤ j ≤ ℓ. Thus, by composing the sequence of rules rewriting w′ toW with
the reverse of the sequence of rules rewriting w toW , we find a sequence of applications of the
piece-generating operation rewriting h1w′h2 to h1wh2. In other words, h1wh2 ∈ [h1w

′h2]
↓,

i.e. δ ∈ [λ]↓. By Makanin’s Lemma, we may everywhere replace λ by δ without changing the
presentation; in the resulting presentation, whose presentation pieces will be denoted Λ′, we
have δ ∈ Λ′, and δ contains a large subpiece. As |δ| = |λ′|, we have ω(Λ′) = ω(Λ), and we are
done.

Suppose instead that |w′| > |W |. We have δ′ :≡ h1Wh2 ∈ [λ]↓. By Makanin’s Lemma,
we may everywhere replace λ with δ′ in the given presentation for M without changing the
monoidM . Let Λ′ be the new presentation pieces of this presentation. Then, as λ was chosen
longest and |δ′| < |λ|, we have ω(Λ′) < ω(Λ), as Λ′ = (Λ − {λ}) ∪ {δ′} by the second part
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of Makanin’s Lemma. We may thus repeat the above proof for the new presentation, and are
done by induction.

Proof of Proposition 3.2.10. Suppose M has presentation pieces Λ0. Then M admits a
presentation

Mon⟨A | w1 = 1, w2 = 1, . . . , wk = 1⟩ (3.2.4)

satisfying the conclusions of Lemma 3.2.15, with presentation piecesΛ resp. pieces∆, and such
that ω(Λ) ≤ ω(Λ0). If (3.2.4) satisfies the small subpiece condition, we are done, so assume the
second part of Lemma 3.2.15 holds, and let λ ∈ Λ be a presentation piece such that w ∈ ∆+ is
a large subpiece of λ. Write λ ≡ h1wh2 with h1, h2 ∈ A+. Introduce a new symbol p, disjoint
from A, and add by way of Tietze transformation the relation p = w to the presentation (3.2.4).
The resulting presentation is not special. However, asw is invertible, there exists somew′ ∈ Λ+

such that ww′ =M w′w =M 1. Hence also pw′ =M w′p =M 1. We add these relations to the
presentation. As inverses in a group are unique, and as p and w are both invertible words, we
find the relation p = w redundant. We remove it by a Tietze transformation, resulting in a new
special presentation:

M ′ = Mon⟨A ∪ {p} | w1 = 1, . . . , wk = 1, pw′ = 1, w′p = 1⟩. (3.2.5)

Now the map induced by a 7→ a for all a ∈ A extends to an isomorphism fromM toM ′. Thus
the factorisation of w′ and the wi, for 1 ≤ i ≤ k, into minimal invertible pieces is the same in
M ′ as inM . Clearly, p is invertible. It follows that the set Λ′ of presentation pieces of (3.2.5) is
precisely Λ′ = Λ ∪ {p}.

From the presentation piece λ ≡ h1wh2 ∈ Λ ⊂ Λ′ in M ′ we can by the piece-generating
operation obtain the piece δ := h1ph2, as p, w′ ∈ (Λ′)∗ satisfy p =M ′ w and |p| < |w|. That
is, δ ∈ [λ]↓. By Makanin’s Lemma, we can thus in the factorisations of the defining words in
(3.2.5) replace λ by without changing the monoid. Let w′

i denote the word obtained by this
replacement from wi (for 1 ≤ i ≤ k), and w′′ the word from w′. We find a new presentation

M ′′ = Mon⟨A ∪ {p} | w′
1 = 1, . . . , w′

k = 1, pw′′ = 1, w′′p = 1⟩. (3.2.6)

Let Λ′′ denote the presentation pieces of (3.2.6). As |p| = 1 and |w| > 1, it follows that
δ := h1ph2 satisfies |δ| < |λ|. By the second part of Makanin’s Lemma, δ ∈ Λ′′, and the other
presentation pieces of (3.2.6) are presentation pieces of (3.2.5), i.e. in Λ′. Thus ω(Λ′′) < ω(Λ′).
In particular, we find

ω(Λ′′) < ω(Λ′) =
∑

λ′∈Λ∪{p}

(|λ′| − 1) = (1− 1) +
∑
λ′∈Λ

(|λ′| − 1) = ω(Λ).

Thus, repeating the above proof starting with the presentation (3.2.6), either (3.2.6) satisfies the
small subpiece condition, or else we obtain a presentation M ′′′ with presentation pieces Λ′′′

satisfying ω(Λ′′′) < ω(Λ′′), etc. We conclude by induction on ω that there is some n ≥ 0 and a
presentationM (n) with pieces ∆(n) such that no piece δ ∈ ∆(n) has a large subpiece; that is,
M (n) satisfies the small subpiece condition, and definesM .

Example 3.2.16. Consider the special monoidM with presentation

Mon⟨a, b, c | aabbacc = 1, abacab = 1⟩.
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Applying Makanin’s procedure (see §1.3), we find the overlap group, and find that none of the
overlap pieces are equal to some shorter word. Thus we factor the relation words as

Mon⟨a, b, c | (aabbacc) = 1, (ab)(ac)(ab) = 1⟩,

and thus easily find that U(M) ∼= Z and ∆ = {aabbacc, ab, ac}. Evidently, the piece aabbacc
contains ab and ac as maximal invertible proper subwords. The inverse for ab in M can be
represented by acab (or indeed abac, as abac =M acab). Thus, by adding a new generator p and
a relation p = ab, we can make this relation redundant by adding the two relations p(acab) = 1

and (acab)p = 1. HenceM is isomorphic to the monoid defined by the presentation

Mon⟨a, b, c, p | (aabbacc) = 1, (ab)(ac)(ab) = 1, p(ab)(ac) = 1, (ab)(ac)p = 1⟩,

which has pieces∆′ = {aabbacc, apbacc, ab, ac, p}. Now by Lemma 3.2.11, as p =M abwemay
everywhere replace a(ab)bacc by a(p)baccwithout changing themonoid; thusM is isomorphic
to the monoid presented by

Mon⟨a, b, c, p | (apbacc) = 1, (ab)(ac)(ab) = 1, p(ab)(ac) = 1, (ab)(ac)p = 1⟩.

In this presentation, aabbacc is no longer a piece, as apbacc is the longest piece in its congruence
class which appears in some relator of the presentation, and |aabbacc| > |apbacc|. Hence the
pieces of this presentation are {p, ab, ac, apbacc}. If we now introduce the generator q and the
relation q = ac, we can take as inverse of ac the word abab; then everywhere replace the piece
apbacc by apbqc, which leaves us with the presentation

Mon⟨a, b, c, p, q |(apbqc) = 1, (ab)(ac)(ab) = 1,

(p)(ab)(ac) = 1, (ab)(ac)(p) = 1,

(q)(ab)(ab) = 1, (ab)(ab)(q) = 1⟩.

The pieces of this presentation can now be checked, again, with Makanin’s procedure to be
∆ = {p, q, ab, ac, apbqc}. This presentation satisfies the conclusions of the lemma. △

Example 3.2.17. Consider the special monoidM with presentation

Mon⟨a, b, c | aaabccc = 1, aabccabcaabcc = 1⟩.

Using Makanin’s algorithm, we factor the relators into pieces as

Mon⟨a, b, c | (aaabccc) = 1, (aabcc)(abc)(aabcc) = 1⟩.

Evidently, the piece aaabccc contains both aabcc and abc as subwords. We choose w ≡ aabcc,
as this is maximal. Let p be a new symbol and add the relation p = aabcc, giving

Mon⟨a, b, c, p | (aaabccc) = 1, (aabcc)(abc)(aabcc) = 1, p = aabcc⟩.

Now aabcc has an inverse (abc)(aabcc), and so adding the relations

p(abc)(aabcc) = 1 and (abc)(aabcc)p = 1

we see that p = aabcc is now redundant, and henceM admits the presentation

Mon⟨a, b, c, p |(aaabccc) = 1, (aabcc)(abc)(aabcc) = 1,

(p)(abc)(aabcc) = 1, (abc)(aabcc)(p) = 1⟩.

Now we have that the piece aaabccc ≡ a(aabcc)c =M apc, and hence by Lemma 3.2.11 we
may replace aaabccc by apc in the above presentation without changing the monoid presented
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by it. HenceM is isomorphic to the monoid defined by the presentation

Mon⟨a, b, c, p |(apc) = 1, (aabcc)(abc)(aabcc) = 1,

p(abc)(aabcc) = 1, (abc)(aabcc)p = 1⟩.

By carrying out the same procedure again, this time choosing the maximal word w ≡ abc,
which appears in the piece aabcc, choosing the letter q to replace it, adding the necessary
invertibility conditions and replacing aabcc by aqc we obtain the presentation

Mon⟨a, b, c, p |(apc) = 1, (aqc)(abc)(aqc) = 1,

(p)(abc)(aqc) = 1, (abc)(aqc)(p) = 1,

(q)(aqc)(aqc) = 1, (aqc)(aqc)(q) = 1⟩

which definesM , and in which all invertible subwords of any piece have length 1. △

The fact that all pieces appearing inside pieces can be forced to have length 1 bodes well for
applications of monadic rewriting systems, as we shall see in the sequel.56

3.2.3 Representatives of pieces

Recall thatX is a set in bijective correspondence of cardinality the size ν of the partition of∆ as
∆1∪∆2∪· · ·∪∆ν into pieces equal to each other inM , and that ϕ : ∆∗ → X∗ is the canonical
surjective homomorphism. For a word w ∈ ∆∗, we define the language of∆-representatives of
w as the set

Rep∆M
A (w) := {v ∈ ∆∗ | v =M w} = ϕ−1

(
Rep

U(M)
X (ϕ(w))

)
. (3.2.7)

The following easy proposition is immediate by definition of Rep∆M
A (w).

Proposition 3.2.18. Let M be a finitely presented special monoid with finite generating set A,

with ∆ and X as usual. Let C be a class of languages closed under homomorphism and inverse

homomorphism. Then for all w ∈ ∆∗ we have

Rep∆M
A (w) ∈ C ⇐⇒ Rep

U(M)
X (ϕ(w)) ∈ C.

Proof. ( =⇒ ) Suppose Rep∆M
A (w) ∈ C. As ϕ is surjective, ϕ ◦ ϕ−1 is well-defined on all

subsets of X∗, and is the identity function on such subsets. Thus

Rep
U(M)
X (ϕ(w)) = (ϕ ◦ ϕ−1)

(
Rep

U(M)
X (ϕ(w))

)
= ϕ

(
ϕ−1

(
Rep

U(M)
X (ϕ(w))

))
:= ϕ

(
Rep∆M

A (w)
)

and the final term is in C as C is closed under homomorphism.
( ⇐= ) Suppose that RepU(M)

X (ϕ(w)) ∈ C. As RepU(M)
X (ϕ(w)) = ϕ−1

(
Rep∆M

A (w)
)
, it

follows that RepU(M)
X (ϕ(w)) ∈ C as C is closed under inverse homomorphism.

56However, the above changing of presentations is not the only path towards proving the below
theorems. If no manipulation of presentations were to be carried out, the proof works the same, up to
reducing the problem to questions about a rewriting system in which the right-hand sides are all single
elements from some biprefix code, and the left-hand sides are all words over this code (rather than a
monadic rewriting system). It seems very conceivable that one could easily develop enough theory for
such rewriting systems – which behave very much like generalised monadic rewriting systems – to prove
any statements we might need. We have chosen this more conventional path, instead.
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For example, in the bicyclic monoid B = Mon⟨b, c | bc = 1⟩, with ∆ = {bc}, X = {x1},
and U(B) = Mon⟨x1 | x1 = 1⟩, we have

Rep∆B
{b,c}(1) = ϕ−1

(
Rep

U(B)
X (ϕ(1))

)
= ϕ−1 (x∗1) = (bc)∗.

Thus Rep∆B
{b,c}(1) is regular, as U(B) is a group with regular word problem.

The idea of this section is as follows. We will describe the language of representatives
RepMA (δ) of a given piece δ ∈ ∆ as the set of ancestors of Rep∆M

A (δ) under a certain
monadic rewriting system, which in turn is controlled by the group of units U(M). Because
Rep∆M

A (δ) can be understood in terms of U(M) by (3.2.7), this gives an understanding of
RepMA (δ) in terms of U(M).

We will define the rewriting system

R∆ =
⋃

p∈∆∪{ε}
|p|≤1

{
(Wp → p) |Wp ∈ Rep∆M

A (p)
}
. (3.2.8)

In general, this is an infinite rewriting system. Furthermore, it is not in general a complete
rewriting system. However, it has the following desirable property: let C be a class of languages
closed under inverse homomorphism such that U(M) has word problem in C. Then for every
p ∈ ∆∪ {ε} with |p| ≤ 1 (i.e. for every right-hand side inR∆), the language Rep∆M

A (p) is in
C, as RepU(M)

X (ϕ(p)) ∈ C. ThusR∆ is a monadic C-rewriting system.

Example 3.2.19. Consider the monoid Mon⟨b, c | abc = 1, b2 = 1⟩, with pieces readily57

computed by Makanin’s procedure as ∆ = {abc, b}. Now the rules

(b2k+1 → b), (k ≥ 0)

are all elements ofR∆, for {b2k+1 | k ≥ 0} ⊆ Rep∆M
A (b). In fact, by considering all equalities

in the group of units

U(M) ∼= O(M) ∼= Mon⟨b1, b2 | b1 = 1, b22 = 1⟩

with the isomorphism induced by abc 7→ b1 and b 7→ b2, we can see that the full setRep∆M
A (b)

is given by ⟨{b2k+1 | k ≥ 0}⟩I1 , where we define I1 = {(abc)+ → ε, b2 → ε}. We note also
that I1 ⊆ R∆. △

Before proving the lemma, we shall give understanding of why we need to prove it, some
reasons to believe it might be true, and a simple case of when it is true. First, note that in
groups, due to the presence of overwhelming symmetry it is sufficient to understand the words
equal to 1 in order to understand the words equal to any given word. In monoids, this is not
necessarily true.58 On the other hand, in special monoids, we shall see that there is a similar
kind of symmetry among words equal to a given piece, and that understanding the set of words
equal to a single fixed piece δ ∈ ∆ gives full control over which invertible words are equal with
one another (Theorem 3.3.2).

57We have C(abc, b) = {abc, b}. In the (finite!) overlap groupO(M) ∼= Gp⟨b1, b2 | b1 = 1, b22 = 1⟩ it
is easy to solve the word problem. One lifts this to words over the overlap pieces in M using ϕ, and sees
that abc, being the only overlap piece containing another overlap piece (in this case, b), is not equal to a
word ah1c with h1 ∈ ∆∗ and |h1| < |b| inM , and so∆ = {abc, b} by Makanin’s procedure.

58For example, in Mon⟨a, b | abaab = a⟩ only the empty word is equal to 1, but this is a very
complicated one-relation monoid; the decidability of its word problem was even an open problem for
some time [221].
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Now, for an example to illustrate the forthcoming lemma, let B = Mon⟨b, c | bc = 1⟩ be
the (old faithful) bicyclic monoid. Let A = {b, c} for ease of notation. We have that ∆ = {bc},
and this presentation satisfies the conclusions of Proposition 3.2.10. What are the elements of
RepBA(ε)? That is, what words in {b, c}∗ are equal to 1? Certainly any word in ∆∗ = (bc)∗

is equal to 1. Thus (bc)∗ is the set of words over the pieces which equal 1; in other words
Rep∆B

A(ε) = (bc)∗. Thus R∆ has as rules ((bc)n → ε) for all n ≥ 1. Now, RepBA(bc)
has more elements than just those from Rep∆B

A(bc). For example, any number of insertions
of bc in any place will yield another element of RepBA(bc), such as b(b(bc)c)c, even though
bbbccc ̸∈ Rep∆B

A(bc). And yet, we notice that bbbccc ∗−→R∆ bc, by removing precisely these
insertions. Lemma 3.2.20 below will tell us that all words in RepBA(bc) can be obtained in
precisely this way, by monadically rewriting down to an element of∆∗ using induction on the
“depth” of the insertions.

In the more general case, we cannot simply remove the defining relations from inside pieces.
For example, in

Π = Mon⟨p, q, b, c, d, e | (pq)b(pq) = 1, (pq)c(pq) = 1, b2 = 1, dxe = 1, x = 1⟩,

we can check that∆ = {x, b, c, pq, de, dxe}, and that b =Π c. Let A = {p, q, b, c, d, e, x}. Note
that this presentation satisfies the small subpiece condition. Now

dxe =Π d(pqcpq)e =Π d(p(bcbc)qcpq)e

as bc =Π 1. Hence d(p(bcbc)qcpq)e ∈ RepΠA(dxe). There is no way to go from d(p(bcbc)qcpq)e

to dxe by simply removing defining relations, as d(p(bcbc)qcpq)e does not contain any defining
relation as a subword! However, we can first remove bcbc ∈ ∆∗ and replace it with the empty
word, as bcbc ∈ Rep∆Π

A(ε); and then replace pqcpq by x, as pqcpq ∈ Rep∆Π
A(x). Hence,

performing these steps backwards, we have

d(p(bcbc)qcpq)e −→R∆
d(pqcpq)e −→R∆

dxe

as desired.
The key point to proving that can be done in general for an arbitrary special monoidM (with

A,∆, etc. as usual) satisfying the conditions of Proposition 3.2.10 is the following. If w is an
invertible word, then w ∗−→S(M) δ1δ2 · · · δµ. Now overlap arguments imply that applying a rule
from S(M) in reverse to δ1δ2 · · · δµ has exactly one of the following two effects: (1) either a
subword δλδλ+1 · · · δλ′ is replaced by some other word from∆∗, leaving us again with a word
from∆∗; or else (2) a word from∆∗ entirely contained inside one of the δi is replaced by a word
from ∆∗. In case (1), we can shorten the rewriting and apply induction; and in (2), our control
on the presentation gives that this is a monadic rewriting step, as any word from ∆∗ inside
δi must be a single letter! We then proceed by induction, and thereby show that all rewriting
steps in ∗−→S(M) can be replaced by rewriting steps in ∗−→R∆ . We now give the actual proof in
detail.59

Before finally showing the key technical lemma (Lemma 3.2.20), we introduce some useful

59The interested and diligent reader will find that some ideas of the proof presented below bear some
resemblance to ideas given in the proofs of [309, Lemma 20 & Lemma 21]. This was discovered by the
author some time after proving the below lemma. We also wish to emphasise that the language used in
these aforementioned proofs is very different from the one given below.
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terminology. For any word in ∆
∗, we can obtain a word in ∆∗ by successively removing left-

hand sides of rules in S(M), replacing them by their corresponding right-hand sides. We will
consider this process in reverse, attributing the terminology of this idea to Cain &Maltcev [96].
First, let u ∈ ∆∗ and factorise u ≡ δ1δ2 · · · δn uniquely, where δi ∈ ∆ for 1 ≤ i ≤ n. Then
every non-empty subword of u of the form δjδj+1 · · · δℓ for 1 ≤ j ≤ ℓ ≤ n is called a depth-0
inserted word. Inductively, for µ ≥ 0, we define a depth-(µ + 1) insertion as follows: if (1) a
right-hand side s2 of a rule (s1 → s2) ∈ S(M) appearing as a proper non-prefix, non-suffix
subword of some depth-µ inserted word D, with D ∈ ∆∗, is replaced by s1, then we call that
occurrence of s1 a depth-(µ + 1) inserted word, and the reversed rewriting (s2 → s1) is then
called a depth-(µ + 1) insertion; but (2) if instead the specified occurrence of s2 is a depth-µ
inserted wordD ∈ ∆∗, or if s2 ≡ ε and does not satisfy the condition in (1), then the word s1 is
a depth-µ inserted word. The reversed rewriting (s2 → s1) is then called a depth-µ insertion.

We give a concrete example. If ∆ = {d, b, abc}, and (for simplicity) we have the rewriting
system T with the rules {dbd→ b, abc→ ε}, then an ancestor of theword u ≡ (abc)(abc)(b) ∈
∆∗ modulo T might look like:

u′ ≡ (adbdc)(abababccc)(dababccdbdd) ≡ (adbdc︸ ︷︷ ︸
depth 0

)(ab ab

depth 2︷︸︸︷
abc c︸ ︷︷ ︸

depth 1

c)(dab

depth 1︷︸︸︷
abc cdbdd︸ ︷︷ ︸
depth 0

).

Thus, the word abc in the middle of the word u′ is a depth-2 inserted word, and the rewriting of
the leftmost term abdbc to abc is via the reverse of a depth-0 insertion (b→ dbd). Now, just as
in [96, Example 4.2], it is clear by definition of insertions (using no properties of the rewriting
systems involved) that since u′ ∗−→T u, we can perform this rewriting by first rewriting the
depth-2 insertions in reverse, then the depth-1 insertions in reverse, and finally have a depth-0
inserted word in ∆∗, which is then rewritten to u.

Lemma 3.2.20. Let M be a finitely presented special monoid, with finite generating set A and

minimal invertible pieces ∆. If the presentation forM satisfies the small subpiece condition, then

for every δ ∈ ∆ we have RepMA (δ) = ⟨Rep∆M
A (δ)⟩R∆ .

Proof. Let us assume thatM is given by the presentation

Mon⟨A | w1 = 1, w2 = 1, . . . , wk = 1⟩ (3.2.9)

with pieces∆, satisfying the small subpiece condition. We will prove that for this presentation
RepMA (δ) = ⟨Rep∆M

A (δ)⟩R∆
.

(⊇) Let w ∈ Rep∆M
A (δ) and w′ ∈ A∗ be arbitrary words such that w′ ∈ ⟨w⟩R∆

, i.e.
w′ ∗−→R∆

w. Now, for every rule (Wp, p) ∈ R∆, we have by definition that p =M Wp. Thus,
by induction on the number of rules applied in rewriting w′ to w, we have w′ =M w. As
w =M δ, we have w′ ∈ RepMA (δ).

(⊆) Let w ∈ RepMA (δ). Then w =M δ, so w is invertible. In particular, w ∈ ∆
∗ by

Lemma 3.2.4, and there is some u ∈ ∆∗ such that w ∗−→S u. By the earlier reasoning, we can
thus obtain w from u by first performing all depth-0 insertions, then all depth-1 insertions,
etc. until after performing a finite number insertions we obtain w. Let µ ≥ 0 be the highest
depth of any such insertion performed.

We claim that w ∈ ⟨Rep∆M
A (u)⟩R∆ by induction on this µ. The base case µ = 0 is clear,
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for then w ∈ ∆∗. As for every rule (s1 → s2) ∈ S(M) we have s1 =M s2, it follows by
induction on the number of rules applied in rewriting w ∗−→S u that w =M u. As w ∈ ∆∗,
we have w ∈ Rep∆M

A (u) ⊆ ⟨Rep∆M
A (u)⟩R∆

. Assume, then, for induction that the claim is
true for some µ ≥ 0, and that w requires depth-(µ+ 1) insertions (but no higher). In the fixed
rewriting w ∗−→S u, let u′ ∈ A∗ be such that w −→S u′

∗−→S u. Then the rewriting w −→S u′

is by replacing the depth-(µ + 1) inserted word s1 ∈ ∆∗ in w with the word s2, where s2 is
a proper non-prefix non-suffix subword of either (I) a depth-(µ + 1) word Q ∈ ∆∗, or (II) a
depth-µ inserted piece Q ∈ ∆; and where (s1 → s2) ∈ S(M) is the specified rule.

In case (I), write Q ≡ Q0s2Q1, where necessarily Q0, Q1 ∈ ∆∗. As Q is a depth-(µ + 1)

inserted word in u′, the word u′ can be obtained from some word u′′ ∈ A∗ by replacing a
depth-(µ + 1) or a depth-µ inserted word s3 ∈ ∆∗ in u′′ with Q. That is, there is some rule
(Q→ s3) ∈ S(M), which rewrites u′ −→S u

′′. But as Q0s1Q1 =M Q0s2Q1 ≡ Q =M s3, and
|Q0s1Q2| ≥ |Q0s2Q1| = |Q| ≥ |s3|, we have (Q0s1Q1 → s3) ∈ S(M). Hence, we can obtain
u already from u′′ by performing the insertion of replacing s3 by s1, i.e. u −→S u

′′ by the rule
(Q0s1Q1 → s3), thus reducing the rewriting w ∗−→S u by one step; we may thus by another
induction assume without loss of generality that w is obtained from u′ as in case (II).

Thus, assume case (II), i.e. Q ∈ ∆ is a depth-µ inserted word in u′, and s2 appears as a
proper non-suffix non-prefix subword of the piece Q. As the presentation satisfies the small
subpiece condition, it follows from s2 ∈ ∆∗ that the subpiece s2 satisfies |s2| ≤ 1. Hence also
s2 ∈ ∆∪{ε}. As s1 =M s2 and s1 ∈ ∆∗, we have s1 ∈ Rep∆M

A (s2). Hence, (s1 → s2) ∈ R∆.
Thus, w can be rewritten to u′ in a single application of a rule from R∆, and so, by repeating
the same step for all depth-(µ + 1) insertions, we find that there is a word w′ ∈ A∗ such that
(1)w ∗−→R∆

w′; and (2)w′ can be obtained from the word uwith at most depth-µ insertions. By
the inductive hypothesis, thus w′ ∈ ⟨u⟩R∆ , and hence also w ∈ ⟨u⟩R∆ . Now u ∈ Rep∆M

A (δ),
as u ∈ ∆∗ and u =M δ, and so we conclude that w ∈ ⟨Rep∆M

A (δ)⟩R∆ , which is what was to
be shown.

Remark 3.2.1. The depth of inserted words appearing in the proof of the above lemma is closely
associated to the depth of vertices of the Schützenberger graphR1. We shall present this theory
in full detail in Chapter 5. More specifically, and assuming some familiarity with the notions in
that chapter, if w is an invertible word, and w′ is a depth-λ inserted word, then for every prefix
w0w

′ of w, we have that the depth of the vertex π(w0w
′) inR1 is≤ λ. As mentioned, Makanin

defines a set closely related to our∆ as the set of d-words of a special monoid; for such words,
say w, he defines the rank of w, and this is, with some minor modifications and translated,
essentially the largest λ such that w contains a depth-λ inserted word, see [309, Definition 16,
Definition 18].

We have now described all the words equal to a single piece δ as the set of monadic
ancestors of the set of∆-representatives of δ. This is a large part of the “context-free” increase
in complexity of equality of words over ∆ vs. the equality of invertible words which we
described earlier in the chapter. Using the above lemma we can thus easily conclude the
following, which can be interpreted as saying “if the set of ∆-representatives of pieces can be
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described using a class of languages C, and C is well-behaved under taking monadic ancestors,
then the set of all representatives of pieces can be described using C”.

Theorem 3.2.21. LetM be a finitely presented special monoid, generated by a finite set A, with

group of units U(M) generated by some finite set X . Let C be a super-AFL. Then M admits a

special presentation with pieces such that:

WP
U(M)
X ∈ C =⇒ RepMA (δ) ∈ C for all δ ∈ ∆,

with ∆ the pieces of the presentation.

Proof. By Proposition 3.2.10,M admits a presentation satisfying the small subpiece condition.
LetM be given by such a presentation, with A,∆, etc. as usual. Suppose that WP

U(M)
X ∈ C.

Then by Proposition 3.2.18, for all p ∈ ∆ ∪ {ε} with |p| ≤ 1 we have Rep∆M
A (p) ∈ C. As C is

closed under finite unions, by the definition ofR∆ we have thatR∆ is a C-=-monadic rewriting
system. By Lemma 3.2.20, we have RepMA (δ) = ⟨Rep∆M

A (δ)⟩R∆
for all δ ∈ ∆. As C has the

monadic ancestor property and Rep∆M
A (δ) ∈ C, thus also RepMA (δ) ∈ C for all δ ∈ ∆.

Now that we have described the manner in which one passes from the group of units to
the invertible elements – and, more importantly, described this language-theoretically – we are
poised to use these in order to describe when invertible elements are equal to one another. This
is, compared to the rather involved manipulations in the above section, rather straightforward,
albeit technical at times.



3. The Word Problem for Special Monoids 103

3.3 The invertible word problem

The Adian-Makanin-Zhang theory of special monoids tells us that understanding equality of
invertible words is crucial to understanding equality of all words. We thus pose the following
natural question:

When are two invertible words equal in a special monoidM?

This is a non-trivial question; but we shall answer it here. Of course, some rôle must be played
by the group of units; but in principle the structure of invertible words could be significantly
more difficult than the structure of the group of units. We shall uncover that,
language-theoretically, the structure of equality of invertible words is essentially that of the
structure of equality of elements from U(M), but with either side of the equality recursively
iterated some finite number of steps via pieces appearing as subwords of other pieces.
Fortunately, we have a tool for dealing with recursive statements, as we have seen before: the
monadic ancestor property. This will be applied in a very similar way to passing from
elements of U(M) to representatives RepMA (δ) of single pieces in the proof of Theorem 3.2.21.

Motivated by the word problemWPM
A forM , we define the set InvPM

A , called the invertible
word problem ofM with respect to A, as

InvPM
A := {w1#w

rev
2 | w1, w2 ∈ A∗ invertible, w1 =M w2} = WPM

A ∩(∆
∗
#(∆

rev
)∗)

and note that the last equality is a direct consequence of Lemma 3.2.4.
Whatmakes this languageworthy of study? TheNormal Form Lemma (Lemma 1.3.8) directly

informs us that to understand when two words are equal, we must understand an “alternating
product” (in the sense of Chapter 2) of a free monoid and InvPM

A . But to understand such an
alternating product, it suffices to understand equality of invertiblewords (as long as themonadic
ancestor property is involved), as freemonoids arewell-behaved. The following lemma captures
this idea, though without using the involved language of the alternating products introduced
in Chapter 2.

Lemma 3.3.1. Let C be a super-AFL. Then InvPM
A ∈ C =⇒ WPM

A ∈ C.

Proof. The reader familiar with the alternating products introduced in Chapter 2 will find this
lemma obvious. We give a direct proof instead. The idea of the proof is to from InvPM

A construct
a C-monadic rewriting systemR, with the property that ⟨#⟩R = WPM

A . As C has the monadic
ancestor property, the result will follow.

The rules of the rewriting systemR, over the alphabet A ∪ {#}, will be

{u#vrev → # | u#vrev ∈ InvPM
A } ∪ {ai#ai → # | ai ∈ A}.

That R is a C-=-monadic rewriting system is clear; the language of left-hand sides in
{u#vrev → # | u#vrev ∈ InvPM

A } is precisely InvPM
A , and hence in C, and the language of

left-hand sides in {ai#ai → # | ai ∈ A} is a finite language (asM is finitely generated), and
hence in C. Thus, as C is closed under unions, R is indeed a C-rewriting system, and it is of
course =-monadic.

We will now show that ⟨#⟩R = WPM
A .
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(⊆) Suppose that w ∈ ⟨#⟩R. Then there exist some minimal k ≥ 0 such that there exists wi

for i = 0, 1, . . . , k with

w ≡ w0 −→R w1 −→R · · · −→R wk−1 −→R wk ≡ #.

We prove by induction on k that w ∈ WPM
A . The base case k = 0 is trivial, for then w ≡ #

and # ∈ WPM
A follows from the equality 1 =M 1. Suppose that the claim is true for some

n ≥ 0, and let w be as above with k = n + 1. Then w1 rewrites to # in k = n steps, and by
the induction hypothesis we have w1 ∈WPM

A . Hence we can write w1 ≡ w′
1#(w′′

1 )
rev, where

w′
1 =M w′′

1 . Suppose that the rule r ∈ R is such that w rewrites to w1 by applying the rule r
somewhere inside w. Then r = (u#vrev → #) with u#vrev ∈ InvPM

A or u ≡ v ≡ ai for some
ai ∈ A. As w1 contains exactly one occurrence of #, we must have that

w ≡ w0 ≡ w′
1(u#v

rev)(w′′
1 )

rev ≡ w′
1u#(w′′

1v)
rev.

Thus to show that w ∈WPM
A , it suffices to show that w′

1u =M w′′
1v. But as u#vrev ∈ InvPM

A

or u ≡ v ≡ ai, we have u =M v. As w′
1 =M w′′

1 , we hence have w′
1u =M w′′

1u =M w′′
1v and

the result follows.
(⊇) Suppose that w ∈WPM

A . Then w ≡ u#vrev for some u, v ∈ A∗, with u =M v. Hence,
by Lemma 1.3.8, we can factorise u and v as

u ≡ u0a1u1 · · · amum

v ≡ v0a1v1 · · · amvm

respectively, where for all 0 ≤ i ≤ m we have ai ∈ A, ui =M vi, and ui (resp. vi) is a maximal
invertible factor of u (resp. v). As ui, vi are invertible, ui#vrevi ∈ InvPM

A for all 0 ≤ i ≤ m.
Now

w ≡ u0a1u1 · · · amum#(v0a1v1 · · · amvm)rev

≡ u0a1u1 · · · amum#vrevm am · · · a1vrev0 .

But now clearly w ∈ ⟨#⟩R, for u0#vrev0 ∈ InvPM
A implies (u0#vrev0 → #) ∈ R and hence

u0#v
rev
0 ∈ ⟨#⟩R. Furthermore, we have (a1#a1 → #) ∈ R, and hence u0a1#a1vrev0 ∈ ⟨#⟩R.

By this alternating process, we find that

# ∈ ⟨#⟩R

(u0#v
rev
0 ) ∈ ⟨#⟩R

u0(a1#a1)v
rev
0 ∈ ⟨#⟩R

u0a1(u1#v
rev
1 )a1v

rev
0 ∈ ⟨#⟩R

...

w ≡ u0a1u1 · · · am(um#vrevm )am · · · a1vrev0 ∈ ⟨#⟩R

Hence w ∈ ⟨#⟩R, as desired. This completes the proof of Lemma 3.3.1.

Thus we wish to understand InvPM
A in terms of U(M), for if we understand it well

enough, then we understand WPM
A in terms of U(M). We will now use our understanding of

the representative words of pieces and the properties of generalised pieces ∆ to present a full
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characterisation of InvPM
A in terms of the word problem for U(M). The reader will note that

there is an assumption made on the presentation of the special monoid; it seems likely that
the statement of this theorem holds true for all special monoids with no assumption on the
presentation, but as we do not need this, we do not pursue it.

Theorem 3.3.2. Let C be a super-AFL closed under reversal. LetM be a finitely presented special

monoid. Then M admits a finite special monoid presentation with generating set A, and with

pieces ∆ and associated set X , such that:

WP
U(M)
X ∈ C ⇐⇒ InvPM

A ∈ C.

Proof. Let M be a special monoid. Then as all assumptions about C in the statement of
Theorem 3.2.21 hold, it follows that M admits a presentation, with pieces ∆ (and X,ϕ as
usual) satisfying the conclusions of Theorem 3.2.21. We assume M is given by this
presentation. In particular, we haveWP

U(M)
X ∈ C =⇒ RepMA (δ) ∈ C for all δ ∈ ∆.

( ⇐= ) Assume that InvPM
A ∈ C. For notational brevity, write ∆r := ∆rev. We begin

by noting that as ∆ is a biprefix code, so too is ∆r .60 Now, •rev acts involutively on ∆, so in
particular the map ϕr : ∆r → X defined by δrev 7→ ϕ(δ) is well-defined. As ∆r is a biprefix
code, we can hence extend ϕr to a homomorphism (denoted by the same symbol) ϕr : ∆∗

r →
X∗. Note that ϕr = ϕ ◦ •rev and hence ϕr is also surjective. Now, as ∆ and ∆r are both
finite sets, it follows that ∆∗#∆∗

r is a regular language. Hence, as C is closed under rational
transductions, and thus in particular closed under intersection with regular languages, thus
K := InvPM

A ∩(∆∗#∆∗
r) satisfiesK ∈ C.

Now we are almost done. Note that ∆ is a finite generating set for U(M). We claim that
WP

U(M)
∆ = K . This would complete the proof, since C is closed under inverse homomorphism,

and hence by [209, Proposition 8.2(a)] it would follow that WP
U(M)
X ∈ C. First, if w ∈ K ,

then w ≡ u#vrev for some u, v ∈ ∆∗, as w ∈ ∆#∆∗
r . Furthermore, u =M v, as u#vrev ∈

InvPM
A . Hence also u =U(M) v. Thus, by definition, w ≡ u#vrev ∈ WP

U(M)
∆ . It follows

that K ⊆ WP
U(M)
∆ . If instead w ∈ WP

U(M)
∆ , then w ≡ u#vrev for some u, v ∈ ∆∗ such

that u =U(M) v. In particular u#vrev ∈ ∆∗#∆∗
r . Also, u =U(M) v if and only if u =M v,

and as u, v ∈ ∆∗ ⊆ ∆
∗, it follows that u#vrev ∈ InvPM

A . Hence w ≡ u#vrev ∈ K , and so
K = WP

U(M)
∆ .

( =⇒ ) Assume that WP
U(M)
X ∈ C. For every δ ∈ ∆, let ♡δ, ♡̃δ be new symbols. Let

♡∆ = {♡δ | δ ∈ ∆} and ♡̃∆ = {♡̃δ | δ ∈ ∆}. We will require that ♡∆ ∩ ♡̃∆ = ∅,
which of course loses us no generality. Let Rδ be the rewriting system on the (finite) alphabet
A ∪ ♡∆ ∪ ♡̃∆ with the rules

Rδ :=
⋃
δ∈∆

{(w,♡δ) | w ∈ RepMA (δ)}.

Informally, Rδ is the rewriting system which can replace any word w ∈ A∗ with the property
that w =M δ for some δ ∈ ∆ by the single symbol ♡δ . Note, however, that there may be
many such choices of δ and hence many choices of ♡δ to rewrite a given w into. Now, note

60We have that ∆r is a suffix code, as if u, v ∈ ∆r are such that u ≡ wv for some w ∈ A+, then
urev ≡ vrevwrev. As u, v ∈ ∆r , we have urev, vrev ∈ ∆, and as wrev is non-trivial this contradicts the fact
that ∆ is a prefix code. Symmetrically, we prove∆r is a prefix code, as∆ is a suffix code.
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that Rδ is a =-monadic rewriting system. Further, for every δ ∈ ∆ we have RepMA (δ) ∈ C by
Theorem 3.2.21. Hence, as C is closed under finite unions and∆ is finite, it follows that the set
of left-hand sides

⋃
δ∈∆ RepMA (δ) is in C. ThusRδ is a C-=-monadic rewriting system. LetRrev

δ

be the rewriting system on the (finite) alphabet A ∪ ♡∆ ∪ ♡̃∆

Rrev
δ :=

⋃
δ∈∆

{(wrev, ♡̃δ | w ∈ RepMA (δ)}.

Then, as C is closed under reversal, Rrev
δ is – for precisely the same reasons as Rδ – a C-=-

monadic rewriting system. As C is closed under finite unions, Rδ ∪ Rrev
δ is a C-=-monadic

rewriting system.
Define the homomorphism

ϱ : (♡∆ ∪ ♡̃∆ ∪ {#})∗ → (X ∪ {#})∗

as the homomorphism induced by ♡δ, ♡̃δ 7→ ϕ(δ) ≡ bδ , # 7→ # for all ♡δ ∈ ♡∆ and
♡̃δ ∈ ♡̃∆. Let now

T = ϱ−1
(
WP

U(M)
X

)
∩ ♡∗

∆#♡̃∗
∆.

As WP
U(M)
X ∈ C, and C is closed under intersection with regular languages and inverse

homomorphisms, it follows that T ∈ C. Now, as C has the monadic ancestor property, and
Rδ ∪Rrev

δ is a C-=-monadic we have that ⟨T ⟩Rδ∪Rrev
δ
∈ C. We claim that

InvPM
A = ⟨T ⟩Rδ∪Rrev

δ
∩A∗#A∗.

(⊆) Assume that w ∈ InvPM
A . Then there exist w1, w2 ∈ ∆

∗ such that w ≡ w1#w
rev
2 , and

w1 =M w2. Write w1 ≡ ϑ0ϑ1 · · ·ϑn and w2 ≡ ϑ′0ϑ
′
1 · · ·ϑ′m where ϑi, ϑ′j ∈ ∆. Now by

definition of ∆, for each ϑi there exists some δi ∈ ∆ such that ϑi =M δi. Analogously, for
each ϑ′j there exists some δ′j ∈ ∆ such that ϑ′j =M δ′j . Hence

δ0δ1 · · · δn =M w1 =M w2 =M δ′0δ
′
1 · · · δ′m.

This implies that
ϕ(δ0δ1 · · · δn) =U(M) ϕ(δ

′
0δ

′
1 · · · δ′m),

and so it follows that

bδ0bδ1 · · · bδn#(bδ′0bδ′1 · · · bδ′m)rev ≡ ϕ(δ0δ1 · · · δn)#ϕ(δ′0δ′1 · · · δ′m)rev ∈WP
U(M)
X .

Now letW ≡ ♡δ0♡δ1 · · · ♡δn#(♡̃δ′0
♡̃δ′1
· · · ♡̃δ′m

)rev. Then

W ∈ ♡∗
∆#♡̃∗

∆ ⊂ (♡∆ ∪ ♡̃∆ ∪ {#})∗.

Thus, applying ϱ toW , we find

ϱ (W ) ≡ ϕ(δ0)ϕ(δ1) · · ·ϕ(δn)#ϕ(δ′m) · · ·ϕ(δ′1)ϕ(δ′0)

≡ ϕ(δ0δ1 · · · δn)#ϕ(δ′0δ′1 · · · δ′m)rev

≡ bδ0bδ1 · · · bδn#(bδ′0bδ′1 · · · bδ′m)rev.

Hence as bδ0bδ1 · · · bδn#(bδ′0bδ′1 · · · bδ′m)rev ∈WP
U(M)
X , it follows that

W ∈ ϱ−1(WP
U(M)
X ) ∩ ♡∗

∆#♡̃∗
∆ = T.

Now we are nearly finished. We claim that we can rewrite w ≡ w1#w
rev
2 intoW , i.e. that

w ≡ ϑ0ϑ1 · · ·ϑn#(ϑ′0ϑ
′
1 · · ·ϑ′m)rev

∗−→Rδ∪Rrev
δ
W.
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From this follows w ∈ ⟨T ⟩Rδ∪Rrev
δ
. Note that as ϑi =M δi, we have that (ϑi,♡δi) ∈ Rδ , for all

0 ≤ i ≤ n. Analogously, as ϑ′j =M δ′j , we have that ((ϑ′j)rev, ♡̃δ′j
) ∈ Rrev

δ for all 0 ≤ j ≤ m.
Hence

w ≡ w1#w
rev
2 ≡ ϑ0ϑ1 · · ·ϑn#(ϑ′0ϑ

′
1 · · ·ϑ′m)rev

≡ ϑ0ϑ1 · · ·ϑn#(ϑ′m)rev(ϑ′m−1)
rev · · · (ϑ′1)rev

−→Rδ∪Rrev
δ
♡δ0ϑ1 · · ·ϑn#(ϑ′m)rev(ϑ′m−1)

rev · · · (ϑ′1)rev

−→Rδ∪Rrev
δ
♡δ0♡δ1 · · ·ϑn#(ϑ′m)rev(ϑ′m−1)

rev · · · (ϑ′1)rev

−→Rδ∪Rrev
δ
· · ·

−→Rδ∪Rrev
δ
♡δ0♡δ1 · · · ♡δn#(ϑ′m)rev(ϑ′m−1)

rev · · · (ϑ′1)rev

−→Rδ∪Rrev
δ
♡δ0♡δ1 · · · ♡δn#♡̃δ′m

(ϑ′m−1)
rev · · · (ϑ′1)rev

−→Rδ∪Rrev
δ
♡δm♡δ1 · · · ♡δn#♡̃δ′m

♡̃δ′m−1
· · · (ϑ′1)rev

−→Rδ∪Rrev
δ
· · ·

−→Rδ∪Rrev
δ
♡δm♡δ1 · · · ♡δn#♡̃δ′m

♡̃δ′m−1
· · · ♡̃δ′0

−→Rδ∪Rrev
δ
♡δm♡δ1 · · · ♡δn#(♡̃δ′0

♡̃δ′1
· · · ♡̃δ′m

)rev ≡W.

Thus we have proved that w ≡ w1#w
rev
2 ∈ ⟨T ⟩Rδ∪Rrev

δ
. As w ∈ InvPM

A , we also have a fortiori
that w ∈ A∗#A∗. Hence, as w was arbitrary, it follows that InvPM

A ⊆ ⟨T ⟩Rδ∪Rrev
δ
∩A∗#A∗.

(⊇) Letw ∈ ⟨T ⟩Rδ∪Rrev
δ
∩A∗#A∗. Then in particular,w ∈ ⟨T ⟩Rδ∪Rrev

δ
, so there existsW ∈ T

such that w ∗−→Rδ∪Rrev
δ
W . As W ∈ T , on the one hand we have that W ∈ ϱ−1(WP

U(M)
X ).

Thus there must exist bi, b′j ∈ X with (0 ≤ i ≤ n, 0 ≤ j ≤ m) such that

W ≡ ϱ(b0b1 · · · bn#b′mb′m−1 · · · b′0) ≡ ϱ(b0b1 · · · bn)#ϱ(b′mb′m−1 · · · b′0),

with b0b1 · · · bn =U(M) b
′
0b

′
1 · · · b′m. What is the pre-image under ϱ of the word b0b1 · · · bn? As

ϱ is length-preserving, it is precisely those words h0h1 · · ·hn with hi ∈ ♡∆ ∪ ♡̃∆ such that
ϱ(hi) ≡ bi. But

ϱ(hi) ≡ bi ⇐⇒ hi ∈ {♡δ, ♡̃δ | ϕ(δ) = bi}.

The analogous statement is, of course, also true for b′0b′1 · · · b′m. Hence, it follows that there
exist hi, h′m ∈ ♡∆ ∪ ♡̃∆ such that

W ≡ h0h1 · · ·hn#(h′mh
′
m−1 · · ·h0).

But as W ∈ T , we also have that W ∈ ♡∗
∆#♡̃∗

∆. Hence hi ∈ ♡∆, and h′j ∈ ♡̃∆, for all
0 ≤ i ≤ n and 0 ≤ j ≤ m. For 0 ≤ i ≤ n, let δi ∈ ∆ be the piece such that hi ≡ ♡δi ,
and analogously for 0 ≤ j ≤ m let δ′j ∈ ∆ be the piece such that hj ≡ ♡̃δj . In particular
ϕ(δi) ≡ bi, and ϕ(δ′j) ≡ b′j . Then we can write

W ≡ ♡δ0♡δ1 · · · ♡δn#♡̃δ′m
♡δ′m−1

· · · ♡̃δ′0
,

Note that as b0b1 · · · bn =U(M) b′0b
′
1 · · · b′m, we also have that δ0δ1 · · · δn =M δ′0δ

′
1 · · · δ′m.

Before proceeding with the proof, we first require the following lemma.

Lemma 3.3.3. Any ancestor ofW under Rδ ∪Rrev
δ has the form

α0α1 · · ·αn#α
′
mα

′
m−1 · · ·α′

0

where, for 0 ≤ i ≤ n and 0 ≤ j ≤ m, we have that αi is either (1) ♡δi , or else (2) wδi , where
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wδi ∈ RepMA (δi); and similarly α′
j is either (1) ♡̃δ′j

, or else (2) wrev
δ′j
, where wδ′j

∈ RepMA (δ′j).

Proof. The proof is, of course, by induction on the number of rewriting steps. Let u ∈ A∗ be
such that u ∗−→Rδ∪Rrev

δ
W in λ ≥ 0 steps. If λ = 0, i.e. u ≡W , then the claim is obviously true,

asW is already of the desired form. Suppose that for some λ > 0 the claim is true for all words
which can be rewritten in < λ steps. As u −→λ

Rδ∪Rrev
δ
W , there exists some u′ ∈ A∗ such that

u −→Rδ∪Rrev
δ
u′ −→λ−1

Rδ∪Rrev
δ
W.

By the inductive hypothesis, we can write

u′ ≡ α0α1 · · ·αn#α
′
mα

′
m−1 · · ·α′

0

where the αi, α
′
j are as specified above. The only right-hand sides of rules from Rδ ∪ Rrev

δ

in u′ are now the αi (resp. α′
j ) which are of the form ♡δi (resp. ♡̃δ′j

). Then the rewriting
u −→Rδ∪Rrev

δ
u′ was either via a rule which replaced a word β by some specific αk ≡ ♡δk for

some 0 ≤ k ≤ n; or else via a rule which replaced a word β by some specific α′
k ≡ ♡̃δ′k

for
some 0 ≤ k ≤ n. In the first case, β ∈ RepMA (δk), as the only rules of Rδ ∪ Rrev

δ are of this
form; thus

u ≡ α0α1 · · ·αk−1βαk+1 · · ·αn#α
′
mα

′
m−1 · · ·α′

0

which is of the specified form, and we are done by induction. In the second case,
βrev ∈ RepMA (δ′k), and it follows that

u ≡ α0α1 · · ·αn#α
′
mα

′
m−1 · · ·α′

k+1β
revα′

k−1 · · ·α′
0

which is, of course, also of the specified form. This completes the proof of the lemma.

We are now nearly done. We know thatw ∗−→Rδ∪Rrev
δ
W , and thatw ∈ A∗#A∗. We conclude

by Lemma 3.3.3 that we can write

u ≡ wδ0wδ1 · · ·wδn#w
rev
δ′m
wrev

δ′m−1
· · ·wrev

δ′0

≡ wδ0wδ1 · · ·wδn#(wδ′0
wδ′1
· · ·wδ′m

)rev

where wδi ∈ RepMA (δi) and wδj ∈ RepMA (δ′j) for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. Thus, with the
same indexing, wδi =M δi and wδj =M δ′j . Hence

wδ0wδ1 · · ·wδn =M δ0δ1 · · · δn

=M δ′0δ
′
1 · · · δ′m

=M wδ′0
wδ′1
· · ·wδ′m .

Hence, as all wδi and wδ′j
are invertible, being equal to δi ∈ ∆ resp. δ′j ∈ ∆, it follows –

at last! – that w ∈ InvPM
A . As w ∈ ⟨T ⟩Rδ∪Rrev

δ
∩ A∗#A∗ was arbitrary, we conclude that

⟨T ⟩Rδ∪Rrev
δ
∩A∗#A∗ ⊆ InvPM

A , and hence that

InvPM
A = ⟨T ⟩Rδ∪Rrev

δ
∩A∗#A∗ ∈ C,

as required. This completes the proof of Theorem 3.3.2.

Remark 3.3.1. The proof of Theorem 3.3.2 relies on the presence of the symbol# “of the second
kind” (see §1.2.3) withinWPM

A to separate which pieces are written backwards, and which are
not.
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Example 3.3.4. The following classes of languages are all closed under finite unions,
intersection with regular languages, inverse homomorphisms, and reversal: Creg, Ccf , the class
of indexed languages, the class of context-sensitive languages, and Cen. On the other hand, the
class Cdcf of deterministic context-free languages is not closed under reversal. △

Example 3.3.5. Consider the bicyclic monoid M = Mon⟨b, c | bc = 1⟩. Then ∆ = {bc},
and U(M) ∼= 1. Hence RepM{b,c}(bc) = [bc]M = [1]M is the set of all words equal in M
to the identity element. This is the Dyck language on b and c, which is well-known to be
context-free. As U(M) is trivial, it has context-free word problem. As we shall see in the
following section, Ccf has the monadic ancestor property. Hence it follows from Theorem 3.3.2
that InvPM

{b,c} ∈ Ccf . △

Example 3.3.6. Consider M = Mon⟨a, b, c | abc = 1, b2 = 1⟩. Then ∆ = {abc, b}; let
X = {x1, x2} and ϕ(abc) = x1, ϕ(b) = x2. Let G := U(M) = Mon⟨x1, x2 | x1 = 1, x22 = 1⟩.
Then

Rδ = {w → ♡abc | w ∈ A∗, w =M abc} ∪ {w → ♡b | w ∈ A∗, w =M b}.

In particular, the rule ab17c → ♡abc is in Rδ . The system Rrev
δ is similarly defined; we have

that b2cb3a→ ♡̃abc is a rule in Rrev
δ , as ab3cb2 =M abc.

Now as G ∼= C2 is a finite group, it has context-free word problem. Furthermore, as this
presentation satisfies the small subpiece condition, it follows by Theorem 3.2.21 that
RepMA (abc) is context-free; and that RepMA (b) is context-free. Hence Rδ is a context-free
rewriting system, as is Rrev

δ . It just remains – essentially – to show that any invertible word
can be obtained as an ancestor by using the context-free system Rδ ∪ Rrev

δ . In general, one
would need to prove this as in the above proof of Theorem 3.3.2, but in this case we can see
this in an easier manner. For if w is invertible, then as the monadic finite rewriting system
with the two rules (abc → 1), (b2 → 1), is easily seen to be complete61, and as the only two
irreducible invertible words are 1 and b, it follows that w rewrites under this system either to
1 or to b. As w was arbitrary, it follows that the set of invertible words is the set of ancestors
under a finite monadic rewriting system of a finite set; and hence is context-free. △

Thus, we conclude that if we understand the structure of U(M), then we understand the
structure of InvPM

A . In one sense, this means that we can state that we completely understand
the invertible elements of special monoids. However, the dependency on the presentation
having certain properties for Theorem 3.3.2 to be true – which, as mentioned, is not an issue,
given that every special monoid M admits a presentation of the desired form by
Proposition 3.2.10 together with Lemma 3.2.20 – is nevertheless rather unsightly. We
therefore pose the following natural question.

Question 3.3.7. Let C be a super-AFL. LetM be a special monoid, with pieces ∆ and associated

set X . Is it always the case that

WP
U(M)
X ∈ C ⇐⇒ InvPM

A ∈ C?
61The only overlap of left-hand sides of rules is bb → 1 with itself when applied to the word bbb; but

either way, this word rewrites to b. As the system is length-reducing, it is terminating; as it is locally
confluent and terminating, it is complete.
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The author conjectures a positive answer to this question. If C is additionally closed under
intersection (which, for example, the class Ccf of context-free languages is not, despite being a
super-AFL) then the answer may be somewhat simplified by the fact that
InvPM

A = WPM
A ∩(∆

∗
#∆

∗
) and the fact that WPM

A ∈ C if and only if U(M) has word
problem in C

We remark that the conjecture can be shown to be true (i.e. the question has an affirmative
answer) for many classes of special monoids (and conjecturally for all special monoids, see
Theorem 5.5.4) when C = Ccf , by using the results from Chapter 5. We do not expand much
on this, as this is far beyond our current scope, leaving the (very) interested reader to pursue
this on their own. We will assume the notation and terminology of pushdown automata and
related material directly from [363]. The rough outline is as follows. If U(M) is context-free,
then in many classes (and conjecturally in all, see Claim (∗) in Theorem 5.5.4) there exists a
finite deterministic pushdown automaton P such that the right Cayley graph ΓM (M,A) is
the graph Γ(P) of P . If w ∈ A∗ represents the element m ∈ M , and (qm, zm) is the total
state corresponding to m, then we may easily modify P to accept the input word u ∈ A∗

if and only if the modified automaton is in the state q0 and the stack contains the word zm.
Thus u is accepted if and only if w =M u. This is a direct adaptation of the easy direction
of [363, Theorem 2.9], i.e. that if M is a group and has a context-free Cayley graph, then
the set62 RepMA (1) is context-free. Thus one can show by geometric means that if U(M) is
a context-free group, then RepMA (w) is a context-free language for all w ∈ A∗. As this is
irrespective of the presentation by whichM is given, one bypasses the need to use Makanin’s
techniques for manipulating the presentation; one can thus with little difficulty, going through
the statements and proofs, conclude that InvPM

A and WPM
A are both context-free languages if

U(M) is a context-free group, regardless of the presentation by whichM is given, as long as
the hypothesis of benignity in Theorem 5.5.4 holds. Thus the above question has an affirmative
answer for the class C = Ccf if Claim (∗) of Chapter 5 holds. One can say more, but we are not
– at present – particularly interested in doing so, and leave this to the interested reader.

In any case, we have now understood the step from WP
U(M)
X to InvPM

A . As we have also
understood the step from InvPM

A toWPM
A we are now essentially done, and all that remains is

to write the theorem out.

62Recall that if M is a group, then the set RepM
A (1) is commonly called “the word problem for the

groupM” in the literature, which is quite confusing. To be clear: it is the set of elements representing the
identity in M .
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3.4 The word problem

In this section, we will again utilise the extraordinary properties of monadic rewriting
systems to show that the word problem and the invertible word problem for a given special
monoid are intricately connected. In particular, we will completely describe when two words
are equal in a special monoidM , modulo the abstract properties of U(M). This is entirely in
line with Sushkevič’s principle of reducing semigroup-theoretic problems to group-theoretic
problems. Combining all of the above results, we arrive at the following full description of
WPM

A modulo the word problem for U(M). We emphasise that although some results used
(e.g. Theorem 3.3.2) depend on the presentation forM , this final theorem does not – whether
or not WPM

A is in a class of languages closed under inverse homomorphism does not depend
on the presentation.

Theorem 3.4.1. LetM be a finitely presented special monoid. Let C be a super-AFL closed under

reversal. ThenM has word problem in C if and only if U(M) has word problem in C.

Proof. ( =⇒ ) AsM is finitely presented we have that U(M) is finitely generated (see §1.3). If
M has word problem in C, then by [209, Proposition 8(a)] any finitely generated submonoid of
M has word problem in C. Hence U(M) has word problem in C.

(⇐= ) By Theorem 3.2.21,M admits a special monoid presentation with generating set A′

which satisfies the conclusions of Theorem 3.2.21. LetX ′ be the finite generating set for U(M)

obtained from this presentation. Then as U(M) has word problem in C (with respect to X), it
follows that since C is closed under inverse homomorphisms we also have WP

U(M)
X′ ∈ C by

[209, Proposition 8(b)]. Hence, by Theorem 3.3.2 we have that InvPM
A′ ∈ C. By Lemma 3.3.1,

we thus have that WPM
A′ ∈ C. By another application of [209, Proposition 8(b)] we also have

WPM
A ∈ C.

Remark 3.4.1. If U(M) has regular word problem, thenM will not generally have regular word
problem. This is due to Proposition 3, i.e. a special monoid has regular word problem if and
only if it is a finite group. Of course, the failure comes from the fact that the class Creg of regular
languages does not have the monadic ancestor property, and is hence not a super-AFL; indeed,
any super-AFL contains Ccf . Hence the assumption on C to have the monadic ancestor property
cannot be significantly weakened in any obvious way.

Thus we have proved the main result of this chapter. We will now describe some
corollaries. For our first corollary, which informally says that the “group-theoretic word
problem” and “Duncan-Gilman word problem” have the same language-theoretic properties
for special monoids, we will first require the following simple lemma. The lemma will also
have a convenient corollary regarding the rational subset membership problem.

Lemma 3.4.2. LetM be a monoid generated by some finite setA, with associated homomorphism

π : A∗ → M . Let C be a class of languages such that C is closed under rational transductions.

SupposeM has word problem in C. Then for every rational subset R ⊆M , we have π−1(R) ∈ C.
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Proof. LetR ⊆M be a rational subset, given to us as a regular languageK ⊆ A∗ with π(K) =

R, and let w ∈ A∗. AsK is regular, so isKrev and hence also A∗#Krev, being a concatenation
of three regular languages. As K is regular, so is Krev. As WPM

A ∈ C, and C is closed under
intersection with regular languages, we hence have that

L = WPM
A ∩(A∗#Krev) ∈ C.

Let A′ be an alphabet disjoint from A ∪ {#}, and in bijective correspondence with a via a
map a 7→ a′ for all a ∈ A. Let ϱ1 : (A ∪ A′ ∪ {#})∗ → A∗ be the homomorphism defined
by a 7→ a, a′ 7→ a, and # 7→ #, for all a ∈ A and a′ ∈ A′. Define the homomorphism
ϱ2 : A

∗#(A′)∗ → A∗ by a 7→ a, # 7→ ε, and a′ 7→ ε for all a ∈ A and a′ ∈ A′.
We claim that

π−1(R) = ϱ2(ϱ
−1
1 (L) ∩A∗#(A′)∗).

As C is closed under rational transductions, from this claim it would follow that π−1(R) ∈ C,
as desired.

(⊆) Let w ∈ π−1(R). Then π(w) ∈ R. As π(K) = R, there exists some u ∈ K such that
w =M u. Thus w#urev ∈WPM

A . As w ∈ A∗, we have that w#urev ∈ A∗#Krev, and hence

w#urev ∈WPM
A ∩(A∗#Krev) = L.

Write u ≡ a1a2 · · · ap for some (not necessarily distinct) generators ai ∈ A (1 ≤ i ≤ p). Let
u′ ≡ a′1a′2 · · · a′p, where now a′i ∈ A′ (1 ≤ i ≤ p). Now we have

ϱ1(w#(u′)rev) ≡ ϱ1(w#(a′1a
′
2 · · · a′p)rev) = w#ϱ′1(a

′
1a

′
2 · · · a′p)rev)

= w#ϱ′1(a
′
p)ϱ

′
1(a

′
p−1) · · · ϱ′1(a′1)

= w#apap−1 · · · a1

≡ w#urev ∈ L.

Hence w#(u′)rev ∈ ϱ−1
1 (L). Clearly w#(u′)rev ∈ A∗#(A′)∗. Hence

w#(u′)rev ∈ ϱ−1
1 (L) ∩ (A∗#(A′)∗).

We claim that ϱ2(w#(u′)rev) = w. Indeed,

ϱ2(w#(a′1a
′
2 · · · a′p)rev) = wϱ2(#)ϱ2(a

′
p)ϱ2(a

′
p−1) · · · ϱ2(a′2)ϱ2(a′1)

= w · ε · ε · · · · · ε ≡ w.

Thus w ∈ ϱ2(ϱ−1
1 (L) ∩ (A∗#(A′)∗)). As w was arbitrary, it follows that

π−1(R) ⊆ ϱ2(ϱ−1
1 (L) ∩ (A∗#(A′)∗))

as desired.
(⊇) Suppose that w ∈ ϱ2(ϱ

−1
1 (L) ∩ (A∗#(A′)∗)). By definition, there hence exists some

w′ ∈ ϱ−1
1 (L) ∩ (A∗#(A′)∗) such that w = ϱ2(w

′). Thus there exists w′′ ∈ L such that
w′′ = ϱ1(w

′). As w′′ ∈ L, it follows that w′′ ∈WPM
A and w′′ ∈ A∗#Krev. From w′′ ∈WPM

A ,
we find that w′′ ≡ u#vrev for some u, v ∈ A∗ such that u =M v. From w′′ ∈ A∗#Krev we
additionally have that vrev ∈ Krev, i.e. v ∈ K .

Now from the above structure of w′′, and the fact that w′′ = ϱ1(w
′), we can deduce quite

a bit about the structure of w′. Suppose u ≡ a1a2 · · · ap and v ≡ b1b2 · · · bq for some (not
necessarily distinct) ai, bj ∈ A, with 1 ≤ i ≤ p and 1 ≤ j ≤ q. As ϱ−1

1 (#) = {#}, i.e. the
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only symbol which maps to # is #, it necessarily follows that

w′ ∈ ϱ−1
1 (u)#ϱ−1

1 (vrev)

i.e. that
w′ ∈ ϱ−1

1 (a1a2 · · · ap)#ϱ−1
1 (bqbq−1 · · · b1).

But as both ϱ−1
1 (a1a2 · · · ap) and ϱ−1

1 (bqbq−1 are subsets of (A ∪ A′)∗, and furthermore that
w′ ∈ A∗#(A′)∗, we must have that

ϱ−1
1 (a1a2 · · · ap) ⊆ A∗,

ϱ−1
1 (bqbq−1 · · · b1) ⊆ (A′)∗

and as ϱ1 restricts to a bijection on A∗ (resp. (A′)∗) it follows that

ϱ−1
1 (a1a2 · · · ap) = {a1a2 · · · ap},

ϱ−1
1 (bqbq−1 · · · b1) = {b′qb′q−1 · · · b′1}.

In particular
w′ ∈ {a1a2 · · · ap}#{b′qb′q−1 · · · b′1},

i.e. w′ ≡ a1a2 · · · ap#b′qb′q−1 · · · b′1. If we denote v′ ≡ b′1b′2 · · · b′q , then w′ ≡ u#(v′)rev.
Now w = ϱ2(w

′). Thus

w = ϱ2(a1a2 · · · ap#b′qb′q−1 · · · b′1)

= ϱ2(a1)ϱ2(a2) · · · ϱ2(ap)ϱ2(#)ϱ2(b
′
q)ϱ2(b

′
q−1) · · · ϱ2(b′1)

= a1a2 · · · ap · ε · ε · ·ε ≡ u.

Hence our arbitrary word w is, in fact, a word u ∈ A∗ such that there exists v ∈ K with
u =M v. That is, π(u) ∈ π(K) = R. Hence w ≡ u ∈ π−1(R), which is what was to be shown,
and which completes the proof of the entire lemma.

Now, recall that for groups, to talk about e.g. a “context-free” or “regular” group, it is
sufficient to talk about the class of words representing a single element of the group – or
indeed just the identity element. That is, to understand equality of words in a group G, it is
sufficient to consider the set

{w | w =G 1}

of words equal to 1 (where for clarity any reference to a specific generating set is deliberately
suppressed). Recall that, in the literature, this set is often referred to as “the word problem”
of the group G. The main reason for this is that two words u, v satisfy u =G v if and only if
uv−1 =G 1, so the set is a recursive language if and only if the word problem (as a decision
problem) is decidable for G.

On the other hand, for general monoids, the set of words equal to the identity is hopelessly
terrible at describing equality of words. For example, in Mon⟨a, b | abaab = a⟩, only the empty
word is equal to the identity (!), and yet the problem of whether this particular monoid has
decidable word problem was, for some time, an open problem [221]. However, the following
corollary shows that for special monoids, we do not fall into such dangers: one need only
consider the “group-theoretic word problem”, i.e. the set of words equal to 1. This holds true



114 3. The Word Problem for Special Monoids

for the same classes of languages as the main theorem (Theorem 3.4.1), and can be regarded as
a corollary of the same.

Corollary 3.4.3. LetM be a finitely presented special monoid with finite generating set A, and

let C be a super-AFL closed under reversal. Then the following are equivalent:

(1) M has word problem in C.
(2) For every word w ∈ A∗,RepMA (w) ∈ C.
(3) RepMA (1) := {w | w =M 1, w ∈ A∗} ∈ C.

Proof. (1) =⇒ (2) SupposeWPM
A ∈ C. Then for all w ∈ A∗ the set RepMA (w) = π−1({π(w)})

is the pre-image of a rational (even finite) subset ofM . Hence, by Lemma 3.4.2, it follows that
RepMA (w) ∈ C.

(2) =⇒ (3) Obvious.
(3) =⇒ (1) Suppose RepMA (1) ∈ C. Then, as C is closed under rational transductions, it is in

particular closed under intersection with regular languages. Hence RepMA (1)∩∆∗ ∈ C, where
∆ is the (finite) set of pieces of the given presentation. Let X,ϕ be as usual. As C is closed
under homomorphism (being closed under rational transductions), the set

ϕ(RepMA (1) ∩∆∗) = ϕ ({w ∈ ∆∗ | w =M 1})

= {w ∈ X∗ | w =U(M) 1}

is also in C. ButU(M) is a group; thus it has word problem in C if and only if the set of words
in X∗ equal to the identity element is in C. This is the statement of [144, Theorem 5.3]. Hence
U(M) has word problem in C. By Theorem 3.4.1 thusM also has word problem in C.

Corollary 3.4.3 tells us something rather beautiful: special monoids and groups behave very
similarly from a formal language theoretic point of view. In particular, the two definitions of
“the word problem” for general monoids – which are known to coincide in the case of groups
– are also equivalent for special monoids. Thus, while we may speak of monoids as being
“generalised groups”, the above shows that the (a?) first step in generalising groups is perhaps
most naturally taken by passing through the special monoids. We shall see this theme repeated
in Chapter 5, when some geometric aspects of special monoids will be shown to be similar to
those of groups.

We will now turn from general classes C to specific classes. As mentioned in §1.2, the class
Cind of indexed languages is a super-AFL, and is closed under reversal (see e.g. [15]). Thus:

Theorem 3.4.4. LetM be a finitely presented special monoid. ThenM has indexed word problem

if and only if the group of units U(M) has indexed word problem.

We now elaborate our discussion from this class to the class Ccf of context-free language.
This allows us, in particular, to write down a generalisation of the Muller-Schupp theorem to
special monoids, and to investigate some concrete decision problems.
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3.5 Context-free special monoids

We shall begin by recalling that Ccf has the monadic ancestor property (see e.g. §1.2 or
Chapter 2). Furthermore, as mentioned in §1.2, Ccf is closed under finite unions, rational
transductions, and reversal; and obviously every finite language is context-free. Thus, as we
have recalled before, Ccf is a super-AFL closed under reversal, and so we can apply
Theorem 3.4.1 with C = Ccf . The following theorem for groups has already been mentioned in
§1.2; we restate it for completeness.

Theorem (Muller & Schupp, 1983). LetG be a finitely generated group. ThenG has context-free

word problem if and only if G is virtually free.

As a finitely presented special monoid has finitely generated group of units, we can combine
this with Theorem 3.4.1 in order to obtain a full algebraic characterisation of the special monoids
with context-free word problem.

Theorem 3.5.1. Let M be a finitely presented special monoid. Then M has context-free word

problem if and only if the group of units U(M) ofM is virtually free.

Every group is a special monoid. Thus the Muller-Schupp theorem is a special case of
Theorem 3.5.1; indeed, if M is a group, then of course U(M) = M and we obtain the
statement of the Muller-Schupp theorem, as any context-free group is finitely presented. This
gives a complete and algebraic characterisation of the finitely presented special monoids with
context-free word problem. In 2004, Duncan & Gilman asked for a characterisation of
monoids with context-free word problem [144, Question 4]. To this end, Hoffmann, Holt,
Owens & Thomas [209] write “the depth of the Muller-Schupp result and its reliance on the
geometrical structure of Cayley graphs of groups suggests that a generalization to semigroups
could be very hard to obtain”. The above Theorem 3.4.1 is nevertheless such a generalisation
of the Muller-Schupp theorem, free from reliance on any geometric structure. See Chapter 5
for the geometric aspects of special monoids.

We make a remark about some curious behaviour: a context-free special monoid need not
be finitely presentable. For example, the monoid

M = Mon⟨a, b, c | abic = 1 (i ≥ 1)⟩

is not finitely presentable63, but the rewriting system with rules {abic→ 1 | i ≥ 1} is context-
free (even regular), monadic, and complete, and hence M has context-free word problem by
[69, Corollary 3.8]. Thus:

Proposition 3.5.2. There exist (fin. gen.) non-finitely related context-free special monoids.

This is one of few results distinguishing special monoids from groups. It would be
interesting to investigate what the structure of finitely generated context-free monoids are,

63If it were, then only finitely many of the relations on the same alphabet would suffice to define the
monoid (this result is essentially due to B. H. Neumann [39, III.Theorem 12]). Let R be such a finite set
of relations, and let n be the largest i such that abic ∈ R. Then as R is clearly a complete rewriting
system, as no rules overlap, it would follow that abn+1c

∗−→R 1, which is impossible, as abn+1c contains
no subword of the form abic for 1 ≤ i ≤ n, i.e. abn+1c is irreducible modR.
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beyond the full characterisation given in the finitely presented case. One initial approach
might be to understand the relation between the group of units and such a monoid M . For
example, the minimal invertible pieces of Mon⟨a, b, c | abic = 1 (i ≥ 1)⟩ can be checked
elementarily to be ∆ = {abic | i ≥ 1}, which is an infinite set; thus at first glance, one might
expect the group of units to be non-finitely generated. However, as all pieces are equal to 1,
the group of units U(M) is trivial, and hence finitely generated (by a different generating set).
The monoid

Π2 = Mon⟨a, b, c | (abic)2 = 1 (i ≥ 1)⟩

on the other hand, has a non-trivial group of units. Furthermore, this group of units is not
finitely generated, despite the fact that Π2 has context-free word problem. This answered a
question of Brough, Cain & Pfeiffer of whether the group of units of a context-free monoid is
always finitely generated. We refer the reader to Nyberg-Brodda [386] for the proofs of these
facts, where this example is studied in depth.

The assumption of finite presentability in Theorem 3.5.1 is necessary, as the following
example demonstrates.

Example 3.5.3 (A finitely generated, not context-free, special monoid with context-free group
of units). Let M = Mon⟨a, b, c, d | abicjd = 1 (i, j ≥ 2, j = i2)⟩, and let A = {a, b, c, d}.
Then the rewriting system R ⊆ A∗ × A∗ with the rules {(abicjd → 1) | i, j ≥ 2, j = i2} is
quick to check is complete; it is locally confluent, as none of the rules overlap with one another,
and as it is obviously terminating, the system is complete by Newman’s lemma. Thus, as ε is
irreducible modulo this system, we have that RepMA (1) = ⟨ε⟩R. We claim that this is not a
context-free language. Indeed, it is clear that as applying every rule of R to a word w reduces
the number of occurrences of the letter a in w by one, we have

RepMA (1) ∩ ab∗c∗d = {abicjd | i, j ≥ 2, j = i2}

but the right-hand side is well-known to not be a context-free language, which can easily be
checked using e.g. the pumping lemma. Thus, as Ccf is closed under intersection with regular
languages, we have that RepMA (1) cannot be a context-free language. By Corollary 3.4.3, as
RepMA (1) is not context-free, we hence have thatM does not have context-free word problem.
On the other hand, using the complete rewriting systemR, it is easy to check that abkcℓ is not
invertible for any k, ℓ ≥ 0. It follows that the factorisation into minimal invertible pieces of the
defining word abicjd is necessarily as (abicjd). Thus the minimal invertible pieces ofM are all
equal to 1, and hence U(M) = ⟨λ⟩M = 1, soM has trivial (and therefore context-free) group
of units. △

Now, the study of monoids in which the congruence class of every word is a context-free
language has received some deal of attention; see e.g. [235]. For this reason, we write out the
following corollary of Theorem 3.4.3 and Theorem 3.4.1, using the language of rewriting.

Theorem 3.5.4. Let T ⊆ A∗ × A∗ be a finite special rewriting system on a finite alphabet A.

Then the congruence class [w] ∗←→T
of every wordw ∈ A∗ is context-free if and only if the maximal

group congruence TG contained in T is such that A∗/TG is a virtually free group.
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This answers a question posed in 1992 by Zhang [502, Problem 1] in the positive. This
question was also asked by Book & Otto [71] in 1993. We finish with a note on
word-hyperbolicity. It is not difficult to show (see e.g. [95]) that any monoid with context-free
word problem is word-hyperbolic (in the sense of Duncan & Gilman [144]). Hence, we have
the following corollary.

Corollary 3.5.5. LetM be a finitely presented special monoid such that the group of units U(M)

is virtually free. ThenM is word-hyperbolic.

The author conjectures that a much stronger connection is true; this will be expanded on
in future work. If this connection holds true, then it would yield an affirmative answer to the
following question.

Question 3.5.6. LetM be a finitely presented special monoid such that its group of units U(M)

is a hyperbolic group. IsM word-hyperbolic?

This question was posed by Garreta & Gray [157], who showed that a finitely presented
special monoid with hyperbolic group of units is itself hyperbolic (in the undirected sense, see
§1.4). However, the properties of being hyperbolic and word-hyperbolic, while equivalent for
groups, are in general independent of one another for monoids.

3.5.1 Some decision problems

We mention some decision problems for context-free special monoids, and related concepts.
The first one is straightforward using known results in combinatorial group theory.

Theorem 3.5.7. It is decidable whether a one-relator special monoid Mon⟨A | w = 1⟩ has
context-free word problem.

Proof. LetM = Mon⟨A | w = 1⟩. By Theorem 3.5.1, it suffices to decide whether the group of
units U(M) is virtually free. By using Adian’s overlap algorithm (as in [6]), we can compute a
presentation U(M) = Gp⟨X | v = 1⟩ for the group of units ofM . But it is well-known that
it is decidable whether a one-relator group is virtually free or not; namely, U(M) is virtually
free if and only if the word v is a power of a primitive word in the free group on X . This can
be decided using Whitehead’s algorithm (see Theorem 4.3.6 for a detailed proof).

In 1992, Zhang [502, Problem 3] asked if it is decidable whether a one-rule special rewriting
system is context-free, in the sense that the congruence class of every word is a context-free
language. The above Corollary 3.4.3 and Theorem 3.5.7 thus show that the answer to this
question is affirmative.

For two words u, v ∈ A∗, to solve the word problem Zhang [502] provides an algorithm
which is exponential in f(|u| + |v|), where f is the complexity of the word problem of the
group of units.64 Thus for context-free special monoids his approach gives decidability which is

64As mentioned in §1.3, this solution to the word problem is not in general constructive if one considers
the presentation as part of the input.
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exponential in |u|+ |v|, as hyperbolic groups have decidable word problem in linear time. We
can improve this to a polynomial bound.

Theorem 3.5.8. LetM be a finitely presented special monoid, generated byA, with virtually free

group of units. Then the word problem with input u, v ∈ A∗ is decidable in O(n2.3728639)-time,

where n = |u|+ |v|.

Proof. LetΓ be a context-free grammar generating theword problem for the groupU(M). Then
by Theorem3.5.1, it follows that there exists a context-free grammar ΓM generating WPM

A ; in
fact, one can check that all the steps in the proof are even effective (though this is not required
for the current proof). Thus the word problem for M has time complexity at most the time
complexity of the membership problem for L(ΓM ). If n = |u| + |v| denotes the length of
the input, then the problem of membership in the language of a context-free grammar is well-
known, by a result of Valiant [482], to be reducible to the problem of the multiplication of
n×n-matrices with entries in F2, for which the best algorithm is currently O(n2.3728639), due
to Le Gall [277], see also Williams [489].

Asmentioned earlier, any context-freemonoid is word-hyperbolic and it is known that word-
hyperbolic semigroups have word problem decidable in polynomial time; however, unlike for
the case of hyperbolic groups (in which the word problem is decidable in linear time) no upper
bound on the degree of the polynomial is known to exist; the best current known algorithm
cannot give better thanO(n5 log n), see [98]. Note that word-hyperbolic groups arewell-known
to have word problem decidable in linear time. Matrix multiplication cannot be faster than
O(n2), and is the conjectured best time. Thus, the following conjecture seems natural.

Conjecture 3.5.9. LetM be a finitely presented special monoid with virtually free (resp. word-

hyperbolic) group of units. Then the word problem with input u, v ∈ A∗ is decidable in O(n2)-

time, where n = |u|+ |v|.

Finally, the following broad conjecture, which currently seems out of reach, presents itself
naturally; it is closely related to the above.

Conjecture 3.5.10. LetM be a finitely presented special monoid. Suppose the word problem for

the group of units ofM is decidable inO(f(n)). Then there exists a polynomial g(n) such that the

word problem forM is decidable in O(g(f(n)). In particular, if the word problem for the group of

units is in PTIME, then the word problem forM is in PTIME.

Now, the rational subset membership problem (see §1.1.4) for groups has been relatively
well-studied; see especially the recent survey by Lohrey [285]. For monoids, however, it does
not appear to have been studied in any great depth, which is affirmed by Lohrey.65 We begin by
noting that the word problem for anymonoid is equivalent to decidingmembership in singleton
subsets of the monoid, and such sets are rational subsets. Hence the word problem reduces
to the rational subset membership problem. The latter is certainly much harder in general,

65The survey dedicates 19 pages of material on the problem for groups, and yet a single paragraph
summarises all then known material on the problem for monoids (ibid. §12).
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as decidability of the rational subset membership problem clearly implies decidability of the
divisibility problems. We first prove a general theorem, of independent interest.

Theorem 3.5.11. Let M be a finitely generated monoid. If M has context-free word problem,

then the rational subset membership problem forM is decidable.

Proof. Suppose M is generated by the finite set A. Let R ⊆ M be a rational subset, given to
us as a regular language K ⊆ A∗ with π(K) = R, and let w ∈ A∗. We wish to decide if
π(w) ∈ R. Let L = WPM

A . We may suppose we are given a context-free grammar generating
L. Then, given any rational transduction ϱ, one can effectively compute a context-free grammar
whose language is precisely ϱ(L), see e.g. [217]. Now by Lemma 3.4.2 we have that π−1(R) is a
rational transduction of L. Thus, we can effectively compute a context-free grammar Γ whose
language is π−1(R). Now π(w) ∈ R if and only if w ∈ π−1(R), if and only if w ∈ L(Γ). But
the membership problem in context-free languages is uniformly decidable, using e.g. the cyk
algorithm (see e.g. Younger [500]). Thus there is an algorithm which takes as input K and w,
produces Γ, and decides if w ∈ L(Γ), i.e. decides if π(w) ∈ π(K). In other words, the rational
subset membership problem is decidable.

This generalises the fact that virtually free groups have decidable rational subset membership
problem. We now have the following, by combining Theorem 3.5.1 and Theorem 3.5.11.

Corollary 3.5.12. Let M be a finitely presented special monoid. If the group of units U(M) is

virtually free, then the rational subset membership problem forM is decidable.

This corollary broadly generalises the result by Kambites-Render [418] that the rational
subset membership problem is decidable in the case of the bicyclic monoid Mon⟨b, c | bc = 1⟩,
for which the group of units is trivial (and hence certainly virtually free). We also remark that
Kambites, Silva & Steinberg [238, Corollary 3.5] show that virtually free groups have
decidable rational subset membership problem via (rather different) language-theoretic
methods. We remark that we can also obtain Corollary 3.5.12 using the monadic second-order
logic of graphs, see Chapter 5 (specifically Corollary 5.5.8).

Note that decidability of the rational subset membership problem clearly implies decidability
of the word problem for any finitely generated monoidM ; for u, v ∈ A∗, we have u =M v if
and only if u ∈ {v}. On the other hand, whereas decidability of the submonoid membership
problem implies decidability of the word problem for groups (as this latter problem is equivalent
to deciding membership in the trivial submonoid), there is in general no obvious reduction of
the word problem to the submonoid membership problem. However, for special monoids, one
has the easy following result, which we only write out as it does not appear to have been
observed anywhere in the literature.

Theorem 3.5.13. Let M be a finitely presented special monoid. If the submonoid membership

problem forM is decidable, then the word problem forM is decidable.

Proof. As M has decidable submonoid membership problem, so too does its group of units
U(M). Thus U(M), being a group, has decidable word problem; and hence,M has decidable
word problem by Makanin’s theorem.
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In line with such reduction-style results, we finally turn towards the decidability of the
Diophantine problem for special monoids. We do not have much do say on this topic. Garreta
& Gray [157] posed the following reduction-style question.

Question 3.5.14. Let M be a special monoid such that its group of units U(M) has decidable

Diophantine problem. DoesM have decidable Diophantine problem?

We remark that Makanin [309] claimed to have solved a simplified version of this problem
in a bulletin article; however, no proof was ever published, despite the fact that all other claims
in the bulletin article were proved in his subsequent Ph.D. thesis [308].66 For this reason, we
should consider the above question as open. Diekert & Lohrey [137], by a quick reduction to the
decidability of Presburger arithmetic, proved that the first-order theory of the bicyclic monoid
Mon⟨b, c | bc = 1⟩ is decidable. In particular, this implies decidability of the Diophantine
problem for the bicyclic monoid. Gray & Garreta ask whether the Diophantine problem is
decidable for the next easiest special monoid Mon⟨a, b, c | abc = 1⟩, which has trivial group of
units. We suspect the Diophantine problem for the monoids Mon⟨a, b | anb = 1⟩ where n ≥ 1

is decidable; this seems easier than the example by Gray & Garreta, as the submonoid of right
units is here free of rank 1, rather than of rank 2.

In the general case it is in any case clear that new techniques will be needed, rather than
passing via the first-order theory. We remark that while it is tempting to wish to deduce the
property of decidability of the Diophantine problem for Mon⟨b, c | bc = 1⟩ from the fact that
the bicyclic monoid is defined by a finite complete special rewriting system, this cannot be
done; Otto [394] has shown that there exists a monoidM defined by a finite complete special
rewriting system such that the Diophantine problem forM is undecidable.

66No trace of a proof of the claim can be found in any of his other publications either, despite the fact
that his (arguably) most famous works were concerned with solving the Diophantine problem in free
monoids and free groups. Makanin passed away in 2017, so whatever solution he may have had, if any,
will remain a mystery.
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3.6 Some open problems

By [273, Theorem 1.2] any one-relation special monoid not isomorphic to the free product of a
group and a free monoid contains a submonoid isomorphic to the bicyclic monoid. However,
the proof does not rely on any particular properties of one-relation monoids, but rather only on
properties of invertible pieces – Lallement simply was not aware of the possibility of extending
the notion of invertible pieces to general special monoids. We include a proof modelled entirely
on Lallement’s.

Lemma 3.6.1. If the special monoidM = Mon⟨A | wi = 1 (1 ≤ i ≤ p)⟩ is not isomorphic to a

free product of a free monoid and a group, thenM contains a submonoid isomorphic to the bicyclic

monoid.

Proof. IfM is not isomorphic to a free product of a free monoid and a group, then there exists
some w ∈ ∆ such that |w| > 1. Write w ≡ w1w2 for some non-empty w1, w2 ∈ A+. As w
is invertible, there exists some w′ such that ww′ =M 1. Let u ≡ w2w

′. Then w1u =M 1. If
uw1 =M 1, then w2w

′w1 =M 1 whence w1 would be invertible, contradicting the minimality
ofw. Thus uw1 ̸=M 1. By [112, Lemma 1.31], ⟨u,w1⟩ is isomorphic to the bicyclic monoid.

The following conjecture thus becomes natural.

Conjecture 3.6.2. LetM = Mon⟨A | wi = 1 (1 ≤ i ≤ p)⟩ be a special monoid. ThenM has

deterministic context-free word problem if and only if it is isomorphic to the free product G ∗ F of

a context-free group G by a free monoid F .

Brough, Cain, and Pfeiffer [80] conjectured that the bicyclic monoid does not have
deterministic context-free word problem, which was recently answered in the affirmative by
Kambites (unpublished). The forward implication of Conjecture 3.6.2 is equivalent to this
conjecture by Lemma 3.6.1, as the class of monoids with deterministic context-free word
problem is closed under taking finitely generated submonoids; hence the forward implication
of Conjecture 3.6.2 is true. Furthermore, whereas the class of monoids with context-free word
problem is closed under free products, it is not known whether the class of deterministic

context-free word problem is, see [80, Question 6.2]. Hence Conjecture 3.6.2 is closely related
to the conjecture that the class of monoids with deterministic context-free word problem is
closed under free products.

One might reasonably ask to what extent the theorems of this chapter (e.g. Theorem 3.4.1)
apply to classes beyond super-AFLs. A natural target might at first seem the class of
context-sensitive languages Ccs. This class contains but is significantly larger than Ccf , and has
many applications throughout various branches of mathematics; for example, there is a
context-sensitive grammar which generates the language {ap | p is prime}, whereas this
language is certainly not context-free [78]. However, Ccs is not a super-AFL, as it is not closed
under homomorphism. Other techniques would need to be developed to approach this class.

There are many questions remaining open for special monoids, particularly pertaining to
their presentations. We have presented some of these throughout this thesis. We end with a
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few more. These are related to the number of presentations a given special monoid admits. The
bicyclic monoid admits exactly one one-relation monoid presentation, namely the usual one
Mon⟨b, c | bc = 1⟩. This was proved by Shneerson [444]67 and independently rediscovered by
Cain & Maltcev [94, Proposition 22]. More generally, if M = Mon⟨A | w = 1⟩, then if M
admits another one-relation presentation Mon⟨B | u = v⟩, it is obviously the case that this
presentation is special. But there is some flexibility. For example, ifM = Mon⟨a, b | aba = 1⟩,
thenM ∼= Z, via the isomorphism induced by a 7→ 1 and b 7→ −2. But for all i ≥ 1, we have
that

Mon⟨a, b | aibai = 1⟩ ∼= Z

via the isomorphism a 7→ 1 and b 7→ −2i. Thus M admits infinitely many distinct special
one-relation presentations. More generally, ifM = Mon⟨a1, . . . , an | w = 1⟩ is a group, then
M admits a presentation of the form

Mon⟨a1, . . . , an | a1a2 · · · anw′an · · · a2a1 = 1⟩,

for some word w′, see e.g. the manipulations made by Perrin & Schupp [400]. Now asM is a
group,M is also isomorphic to

Gp⟨a1, . . . , an | a1a2 · · · anw′an · · · a2a1 = 1⟩.

Let φ be the automorphism of the free group on {a1, . . . , an} defined by ai 7→ ai for 1 ≤ i < n

and an 7→ ana1. Then for k ≥ 1, we have

φk(a1a2 · · · anw′an · · · a2a1) = a1a2 · · · anak1φ(w′)ana
k
1an−1 · · · a2a1.

As φ is an automorphism of the free group on the generators a1, . . . , an, we have that φk is
also such an automorphism; hence it follows that

M ∼=Mk := Gp⟨a1, . . . , an | a1a2 · · · an−1ana
k
1φ(w

′)ana
k
1an−1 · · · a2a1 = 1⟩.

We now prove the following easy lemma, which shows that the above presentations also give
rise to monoid presentations for M . In similarity to the naming of der Freiheitssatz for one-
relator groups, we might call this lemma der Gruppenhilfssatz – the “group lemma” – for special
monoids.

Lemma 3.6.3. Let M = Mon⟨a1, a2, . . . , an | w1 = 1, . . . , wk = 1⟩. If the generators

a1, . . . , an−1 are invertible and an appears in some defining relation wi, thenM is a group.

Proof. Let ∆ = {δ1, . . . , δm} be the set of minimal invertible pieces of M . As an appears in
some wi, it appears in some δj . Consider the left-most occurrence of an in δj , and
correspondingly write δj ≡ δ′janδ

′′
j for some δ′j , δ′′j ∈ {a1, . . . , an}∗. Now as an is the

left-most occurrence of an in δj , we have that δ′j does not contain an, and hence it is
invertible. Being a proper prefix of the piece δj , it thus follows that δ′j is empty. Hence δj
begins with an, and so an is right invertible. By considering the right-most occurrence of an
in δj , it follows symmetrically that δj ends with an, and so an is left invertible. Hence an is
invertible, andM is a group.

67I recently translated this and another paper into English; I wish to thank Lev Shneerson and Mikhail
Volkov for providing me copies of the originals.
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As a special case, we mention that if Π = Mon⟨a, b | r = 1⟩ is such that a and b both appear
in r, then inΠ the letter a is invertible if and only if b is invertible. Note now that, for all k ≥ 1,
in the monoids given by the presentations

M ′
k := Mon⟨a1, . . . , an | a1a2 · · · an−1ana

k
1φ(w

′)ana
k
1an−1 · · · a2a1 = 1⟩

the generators a1, . . . , an−1 are all invertible. Thus an is also invertible by theGruppenhilfssatz.
HenceM ′

k is a group, and soM ′
k
∼=Mk

∼=M . All the presentationsM ′
k are obviously distinct

(as the length of the defining relation is strictly increasing as k increases). Thus we have proved:
ifM is a one-relation special monoid which is a group, thenM admits infinitely many distinct
one-relation special monoid presentations. Hence, we have two extremes: the bicyclic monoid
(which has a single special one-relation presentation), and positive one-relator groups (which
have infinitely many). We remark that there is nothing particular about the one-relation case
– indeed, an easy modification shows that k-relation special monoids which are groups also
admit infinitely many distinct k-relation special monoid presentations. Thus we ask: what can
happen in the middle?

Question 3.6.4. Let n > 1. Does there exist a special k-relation monoid which admits exactly n

distinct special k-relation monoid presentations?

The answer to the question appears to the author as almost certainly negative, but a direct
proof appears difficult. Adian’s overlap algorithm might yield some insight in the one-relation
case when attempting to answer the question above.

Throughout this chapter, we have seen the importance of – and headaches caused by – pieces
appearing as subwords of other pieces. We shall find these headaches repeated in Chapter 5. The
fact that pieces in pieces cause difficulties does not seem to appear anywhere in the literature
on special monoids. Garreta & Gray [157] appear to be the first to have indirectly recognised
that the case in which no piece appears as a subword of another piece is easier; their theorems
in [157] include this condition on the presentation.68 However, no elaboration is made on the
topic, nor is any discussion included on whether this condition can always be satisfied.

Question 3.6.5. Does every special monoid admit a presentation with pieces∆ in which no piece

appears as a subword of another piece (that is, in which ∆ is an infix code)?

It is clear from the definition of the piece-generating operation in §1.3 that ∆ is an infix
code if and only if Λ is an infix code. That is, if there is a piece inside a piece, then there is a
witness for this in the factorisation of some defining relation. We will say that a presentation
in which ∆ is an infix code is an infix presentation. Thus the above question asks: does every
special monoid admit an infix presentation? We conjecture that the answer to this question
is negative; and yet the question resists direct efforts to attack it. One of the difficulties in
approaching this question is that the property of pieces appearing as subwords of other pieces
is not a particularly algebraic property – that is, when passing from words to elements of a
monoid, the subtleties of pieces appearing as subwords of other pieces are “smoothed out”. We
present the only result in this direction.

68They call this condition (C1), see e.g. their Theorem A.
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Proposition 3.6.6. Any special monoid with trivial group of units admits an infix presentation.

Proof. The result is almost immediate if one uses Lemma 3.2.11, but we instead present an
elementary approach. Suppose thatM = Mon⟨A | w1 = 1, . . . , wk = 1⟩ is such that U(M) =

1. Let∆,Λ be the pieces resp. presentation pieces of this presentation. If some wi is a product
δ1 · · · δn of pieces δj ∈ Λ and n > 1, then, as U(M) = 1, it follows that δj =M 1 for
1 ≤ j ≤ n. Thus we may replace wi by the n special relations δ1 = 1, δ2 = 1, . . . , δn = 1

without changing the monoid, i.e. M is still defined by the resulting presentation. Doing this
to all defining relations, we obtain a presentation

M ′ = Mon⟨A | δ1 = 1, . . . , δκ = 1⟩

where δi ∈ Λ for all 1 ≤ i ≤ κ, and κ ≥ 0. Now, the pieces resp. presentation pieces ofM ′ are
identical with the corresponding sets forM . Furthermore, for all pieces δ ∈ ∆ \ Λ, as δ =M 1

we have δ =M ′ 1, and so we can add the relation δ = 1 to the presentation above. Doing this
for every δ ∈ ∆ \ Λ, we obtain a presentation

M ′′ = Mon⟨A | δ1 = 1, . . . , δκ′ = 1⟩

for which the pieces ∆′′ and presentation pieces Λ′′ coincide. If ∆′′ is not an infix code, then
there is some δi, δj ∈ Λ such that δi ≡ h1δjh2 and h1, h2 are non-trivial. By a sequence of
Tietze transformations, we may replace δi by h1h2 without changing the monoid, as δj =M ′′ 1

follows from U(M ′′) = U(M ′) = U(M) = 1. We can of course only repeat this step finitely
many times, at which point no pieces appear inside pieces; the resulting presentation will thus
be an infix presentation.

Example 3.6.7. Let M = Mon⟨a, b, c | abc = 1, b = 1⟩. Then it follows from Makanin’s
procedure that U(M) = 1, and the pieces are given by ∆ = {abc, ac, b}. Then M ∼= M ′ =

Mon⟨a, b, c | ac = 1, b = 1⟩, with pieces ∆′ = {ac, b}, an infix code. △

A candidate for a special monoid which seems unlikely to admit an infix presentation is
Mon⟨a, b | abaabbab = 1⟩. The pieces of this presentation are obviously ∆ = {ab, aabb}, and
the group of units is infinite cyclic. There seems nothing particular about the one-relation case
with regards to the question of infix presentations.



Chapter 4

Weakly Compressible Monoids

Synopsis

This chapter will study another class of monoids defined by a combinatorial
condition on their presentations. This class – of weakly compressible monoids –
and the methods used in studying them, first discovered by Lallement and Adian
& Oganesian, form an important part of the theory of one-relation monoids.
Associated to any weakly compressible monoid M is a compressed monoid
L(M). It is known that decidability of the word problem forM is equivalent to
that for L(M). Here, we prove that also the language-theoretic properties ofM
and L(M) are closely related. In particular, we will prove that if C is a
super-AFL, then M has word problem in C if and only if L(M) has word
problem in C (Theorem 4.2.14). From this, we deduce several corollaries of
importance to the theory of one-relation monoids. Specifically, we solve the
rational subset membership problem for many classes of one-relation monoids
(Corollary 4.3.5), and show that given a one-relation monoid M containing a
non-trivial idempotent, it is decidable whether or not M has context-free word
problem. Several of the proofs involve the alternating products and ancestors of
Chapter 2. This chapter is primarily based on work in the preprint [382], and
contains material included in a recent survey of the word problem for
one-relation monoids [388].
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4.1 Weak compression

In this section, we shall give the necessary background of weak compression as we shall need it.
The exposition given here is original, but is composed of an amalgamation of the approaches by
several authors; in particular, the papers by Lallement [273], Adian & Oganesian [12], Zhang
[504], Kobayashi [264], Gray & Steinberg [172], as well as in §3.1 of the survey [388]. The
exposition below combines aspects from several of these sources, and has been designed to be
maximally amenable to language-theoretic analysis.

Let A be an alphabet. We say that a pair (u, v) of words is sealed by the word w ∈ A+ if
u, v ∈ wA∗∩A∗w. If a pair is sealed by some word, then it is easy to see that it is also sealed by
some unique self-overlap free word α. For example, the pair (xyxpxyx, xyxqxyx) is sealed by
xyx, but it is also sealed by the self-overlap free word x; and the pair (ababab, abab) is sealed
by abab, but is also sealed by the self-overlap free word ab. We will consider finitely presented
monoids for which there exists some self-overlap free word α such that all defining relations
ui = vi are such that (ui, vi) is sealed by α. Such monoids are called weakly compressible. A
monoid which is not weakly compressible is called incompressible.

Example 4.1.1. We give some examples and non-examples of weakly compressible monoids.

(1) Mon⟨x, y | xyxyx = xyx, xyxxxyx = x⟩ is weakly compressible with α ≡ x.
(2) Mon⟨a, b | abab = ab, abaabaab = ab⟩ is weakly compressible with α ≡ ab.
(3) Mon⟨p, q | pqq = q, qpp = p⟩ is incompressible.
(4) Mon⟨b, c | bc = 1⟩ is incompressible.

Any special monoid is incompressible (by default). Checking whether a given monoid is
weakly compressible is thus straightforward and decidable. We remark that, of course, it is
not the monoids themselves which are weakly compressible (or incompressible), but rather
their presentations. This is similar to the fact that the definition of a special monoid is really a
definition about presentations rather than monoids. For the remainder of this section, we will
fix a finitely presented weakly compressible monoid M = Mon⟨A | ui = vi (i ∈ I)⟩, with
α ∈ A+ the unique self-overlap free word sealing all defining relations. We will assume that
|A| > 1; otherwiseM is just a finite monoid, and all results herein are vacuously true.

4.1.1 Conjugators and the left monoid

A word w ∈ A∗ is called a left α-conjugator if w ∈ αA∗. Let Σ∗(α) be the set of left α-
conjugators which contain exactly one occurrence of α. That is, Σ∗(α) = α(A∗ \A∗αA∗), and
hence Σ∗(α) is a regular language. Furthermore, Σ∗(α)

+ is the set of all left α-conjugators,
and Σ∗(α) is easily seen to be a suffix code, see e.g. [264, Lemma 3.4].69

69One may more generally define left α-conjugators in the same way even when α is not self-overlap
free (Zhang [504] denote this set as SL(α)). This language still turns out to be generated by a suffix code,
which can be shown, with more work, to also be a regular language. This is the general approach taken by
Lallement [273] and Zhang [504]. In principle their treatment can be translated into language-theoretic
terms, but this is significantly more convoluted, and, as we shall see, it turns out to be no more general
than the self-overlap free case for language-theoretic purposes.
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Now, as Σ∗(α) is regular, it is countable. Indeed, it is not hard to see (as |A| > 1) that it
has cardinality ℵ0. Write Σ∗(α) = {w1, w2, . . . , }, and fix a countably infinite set of symbols
Γ∗(α) = {γw1 , γw2 , . . . , }, in bijective correspondence with Σ∗(α) via the map

ϕ : Σ∗(α)→ Γ∗(α)

wi 7→ γwi .

As Σ∗(α) is a (suffix) code, we can extend the map ϕ to an isomorphism (of free monoids)
ϕ∗ : Σ∗(α)

∗ → Γ∗(α)
∗. For ease of notation we write ϕ rather than ϕ∗ for this map, too.

Example 4.1.2. If we takeA = {x, y}, then considering the self-overlap free word α := x, we
have that the set of left x-conjugators is

αA∗ = x{x, y}∗ = {x, xy, xx, xyx, xyy, xyxx, xyxy, . . . }

which is generated by the suffix code

Σ∗(x) = {x, xy, xyy, . . . } = {xyi | i ≥ 0}.

Now any word in x{x, y}∗ can be uniquely factored into a product of elements from Σ∗(x); for
example, we have

xxyxyxyxyxyyx ≡ (x)(xy)(xy)(xy)(xy)(xyy)(x).

Now, we can fix a set of symbols Γ∗(x) = {γx, γxy, γxy2 , . . . } in bijective correspondence with
Σ∗(x) via the bijection ϕ defined by xyi 7→ γxyi . Thus, continuing the above example, we have

ϕ(xxyxyxyxyxyyx) ≡ ϕ
(
(x)(xy)(xy)(xy)(xy)(xyy)(x)

)
≡ γxγ4xyγxyyγx.

Thus computing the map ϕ is not particularly difficult. △

Note that the above discussion only uses (1) the alphabet A; and (2) a self-overlap free word
α. Thus, in particular we have not yet made any (direct) reference to the defining relations of
the monoidM . We do this now. Every defining relation (ui, vi) ofM is sealed by α, and so in
particular we have ui, vi ∈ A∗α. Hence we can first distinguish the right-most appearance of
the self-overlap free wordα in ui resp. vi, denoting this as ui ≡ u′i α resp. vi ≡ v′i α (here the
box is only used as a notational device). As ui, vi ∈ αA∗, it follows that u′i, v′i ∈ αA∗ ∪{ε}. As
Σ∗(α) is a suffix code generating αA∗, any word in αA∗ has a unique factorisation into words
from Σ∗(α). Thus we may uniquely factor these words u′i, v′i into (possibly empty) products of
elements from Σ∗(α). This yields a factorisation

ui ≡ wi,1wi,2 · · ·wi,ki
α

vi ≡ w′
i,1w

′
i,2 · · ·w′

i,ni
α

where wi,j , w
′
i,j ∈ Σ∗(α). We remark that this factorisation can be trivial, i.e. we could have

e.g. ui ≡ α . Any word wi,j or w′
i,j arising in a factorisation of the above form is called a left

piece ofM , and the set of all left pieces ofM is denoted Σ(α). We let Γ(α) := ϕ(Σ(α)) be the
set of symbols from Γ∗(α) corresponding to these left pieces.

For clarity, we remark on the distinction between Σ(α) and Σ∗(α). As M is finitely
presented, we have that Σ(α) is finite (and hence also Γ(α) is finite). On the other hand, as
|A| > 1, we have that Σ∗(α) (and hence also Γ∗(α)) is countably infinite.
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Example 4.1.3. LetM1 = Mon⟨x, y | xyxyyx = xyyyx⟩ = Mon⟨x, y | u = v⟩. The defining
relation is sealed by α ≡ x, and hence Σ∗(α) = Σ∗(x) = {xyi | i ≥ 0}. We can factor

u ≡ xyxyyx ≡ (xy)(xyy) x

v ≡ xyyyx ≡ (xyyy) x

and hence Σ(x) = {xy, xyy, xyyy} and Γ(x) = {γxy, γxyy, γxyyy}. △

Example 4.1.4. Let M2 = Mon⟨x, y | xyyxxxyxxyyxxxy = xy⟩. The defining relation is
sealed by α ≡ xy. Thus we find Σ∗(α) = Σ∗(xy) to be given by

Σ∗(xy) = {xyw | w ∈ {x, y}∗ does not contain xy} = xy ({x, y}∗ \ {x, y}∗xy{x, y}∗) .

We can uniquely factor the words in the defining relation over this suffix code as

xyyxxxyxxyyxxxy ≡ (xyyxx)(xyx)(xyyxx) xy

xy ≡ xy .

Thus Σ(xy) = {xyx, xyyxx} are the left pieces of the presentation. △

From the factorisation of the defining relations into left pieces, we define a new presentation

L∗(M) := Mon⟨Γ∗(α) | ϕ(wi,1wi,2 · · ·wi,ki) = ϕ(w′
i,1w

′
i,2 · · ·w′

i,ni
), i ∈ I⟩,

which we shall call the extended left monoid of M . Note that in general, this is an infinitely
generated monoid. We call the submonoid of L∗(M) generated by Γ(α) the left monoid ofM ,
and denote this L(M). Clearly L(M) has the same defining relations as L∗(M), as all relations
of L∗(M) are words over Γ(α). That is,

L(M) := Mon⟨Γ(α) | ϕ(wi,1wi,2 · · ·wi,ki
) = ϕ(w′

i,1w
′
i,2 · · ·w′

i,ni
), i ∈ I⟩,

and L∗(M) ∼= F ∗ L(M), where F is a free monoid of countably infinite rank (here ∗ is the
monoid free product). AsM is finitely presented, so is L(M). We remark that the sum of the
lengths of the defining words ofL(M) is strictly less than the same sum forM . Therefore, there
is a uniquely defined incompressible monoid L(L(· · · (L(M)) · · · )) associated to any weakly
incompressible monoidM .

Example 4.1.5. We continue with the monoid M1 from Example 4.1.3. By the given
factorisation of the relation, we have that the extended left monoid is given by

L∗(M1) = Mon⟨γxyi (i ≥ 1) | γxyγxyy = γxyyy⟩,

and accordingly, the left monoid is given by

L(M1) = Mon⟨γxy, γxyy, γxyyy | γxyγxyy = γxyyy⟩ ∼= Mon⟨x1, x2, x3 | x1x2 = x3⟩.

This monoid is easy to understand: it is the free monoid on two free generators. △

Example 4.1.6. We continue with the monoid M2 from Example 4.1.4. By the given
factorisation of the relation, we have that the extended left monoid is given by

L∗(M2) = Mon⟨Γ∗(xy) | γxyyxxγxyxγxyyxx = 1⟩,

and accordingly, the left monoid is given by

L(M2) = Mon⟨γxyyxx, γxyx | γxyyxxγxyxγxyyxx = 1⟩ ∼= Mon⟨a, b | aba = 1⟩.

In this final presentation, we may observe that the map induced by a 7→ −1 and b 7→ 2 is an
isomorphism Mon⟨a, b | aba = 1⟩ → Z, and hence L(M2) ∼= Z. △
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4.1.2 Normal form results

We present the classical results of Lallement [273] and Adian & Oganesian [12]. We begin with
an easy observation. Given any word u not containing α (i.e. a word u ∈ A∗ \ A∗αA∗), it is
not possible to apply any defining relation to u, as both sides of every defining relation ofM
contain α as a subword. Similarly, if a word does contain α, then any word equal to it inM also
contains α as a subword, by induction on the number of elementary transformations. Hence:

Lemma 4.1.7. If u ∈ A∗ \A∗αA∗ and v ∈ A∗, then u =M v if and only if u ≡ v. In particular,

if two words are equal inM , then one contains α as a subword if and only if the other does.

Given any word containing α, we can always factor it uniquely into three parts as follows: a
prefix with no occurrence ofα; followed by a word inαA∗∩A∗α; and lastly followed by a suffix
with no occurrence of α. That is, if u ∈ A∗αA∗, then there exist unique u′, u′′ ∈ A∗ \A∗αA∗

and u† ∈ αA∗ ∩A∗α such that u ≡ u′u†u′′. We call this factorisation the canonical form of u.
We call u† the α-part of u. The following is then easy to prove (see [12, Theorem 3]).

Lemma 4.1.8 (Adian & Oganesian). Let u, v ∈ A∗αA∗, with canonical forms u ≡ u′u†u′′ and

v ≡ v′v†v′′, respectively. Then u =M v if and only if u′ ≡ v′, u′′ ≡ v′′, and u† =M v†.

Now, given the α-part u†, we have u† ∈ αA∗ ∩A∗α and hence u† ∈ Σ∗(α)
∗α. Write

u† ≡ u0u1 · · ·un α

uniquely, where ui ∈ Σ∗(α) for 1 ≤ i ≤ n. We can thus apply the previously constructed map
ϕ : Σ∗(α)

∗ → Γ∗(α)
∗ to u0u1 · · ·un, which we write as

ϕ(u0u1 · · ·un) = γu0
γu1
· · · γun

,

where ϕ(ui) = γui
∈ Γ∗(α) for 1 ≤ i ≤ n. We call γu0

γu1
· · · γun

the γ-part of u. Note that
the γ-part of u can be empty. This is the case if and only if u ≡ α.

Example 4.1.9. Let M = Mon⟨x, y | xyxyx = xyx⟩. Then M is weakly compressible with
α ≡ x. Let u ≡ yyyxyyxyxyy. We can write the canonical form of u as (yyy)(xyyxyx)(yy),
i.e. u′ ≡ yyy, u† ≡ xyyxyx, and u′′ ≡ yy. The x-part of u is u†, and if we write A = {x, y},
then u† ∈ xA∗ ∩A∗x. Note that u† ≡ (xyy)(xy) x , so the γ-part of u is γxyyγxy . △

Lallement [273, Lemmas 3.1, 3.2] and Adian & Oganesian [12, Theorem 3] proved that the
properties in L∗(M) of the γ-part of a word controls the properties of the word.

Theorem 4.1.10 (Lallement, Adian & Oganesian). Let u, v ∈ A∗αA∗ have canonical forms

u′u†u′′ and v′v†v′′, respectively. If the γ-parts of u and v are γ0γ1 · · · γn and γ′0γ
′
1 · · · γ′m,

respectively, then

u =M v ⇐⇒


u′ ≡ v′, and

γ0γ1 · · · γn = γ′0γ
′
1 · · · γ′m in L∗(M), and

u′′ ≡ v′′.

See [502, Proposition 4.1] for a proof of the above using rewriting systems. As L∗(M) ∼=
F∗L(M), an immediate corollary of Theorem 4.1.10 is that theword problem forM is decidable
if and only if it is decidable for L(M). In the remainder of this chapter, we now study the
language-theoretic properties of weak compression using these normal form results.
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4.2 Language-theoretic compression

As in the previous section, we will throughout the remainder fix a finitely presented weakly
compressible monoid M = Mon⟨A | ui = vi (i ∈ I)⟩, with |A| > 1 and with the self-
overlap free word α ∈ A+ sealing all defining relations. The overall aim of this section is to
reduce the language-theoretic properties of M to L(M), and vice versa. In other words, we
will deduce properties of WPM

A from properties of WP
L(M)
Γ(α) , and vice versa We will generally

phrase the statements of the results of this section in terms of super-AFLs. For some results,
this assumption will be unduly strong, and only some of the properties of super-AFLs will
be needed. However, when assembling the many statements, we will require the union of all
these assumptions; this union will be the definition of a super-AFL. To write out the exact
assumptions on the classes of languages in every result, which are of very limited interest on
their own, would hence merely serve as a source of confusion.

One of the desired reductions is not difficult to show; namely, we can show that if M has
word problem in some (sufficiently restrictive) class of languages, then so too does L(M). For
the proof of this direction, we will consider Σ(α), rather than Γ(α), as a generating set for
L(M). By [209, Proposition 8(b)], L(M) has word problem in a class of languages, closed under
inverse homomorphism, with respect to one finite generating set if and only if it does with
respect to any finite generating set. In particular, if πΓ : Γ(α)∗ → L(M) denotes the surjective
homomorphism associated to the generating set Γ(α), then we can define πΣ : Σ(α)∗ → L(M)

by πΣ = πΓ ◦ ϕ, and note that this is also surjective, as ϕ is an isomorphism, so Σ(α) can be
taken as a finite generating set for L(M). Note that for all w1, w2 ∈ Σ(α)∗,

w1α =M w2α ⇐⇒ πΣ(w1) = πΣ(w2).

The key idea for the following theorem is that WP
L(M)
Σ(α) behaves very similarly to WPM

A

intersected with a regular language.

Theorem 4.2.1. LetM be a weakly compressible monoid, and let L(M) be its left monoid. Let C
be a super-AFL. IfM has word problem in C, then L(M) has word problem in C.

Proof. Let A be the finite generating set forM , and let α be the self-overlap free word sealing
all defining relations of M . For ease of notation, in this proof we will write Σ1 = Σ(α) and
Γ1 = Γ(α) (we shall return to this notation in the sequel). Let φ#,α be the homomorphism

φ#,α : (A ∪ {#})∗ → (A ∪ {#})∗

defined by φ#,α(#) = α#αrev and φ#,α(a) = a for a ∈ A. We have

φ#,α

(
WP

L(M)
Σ1

)
:= {φ#,α(w1#w

rev
2 ) | w1, w2 ∈ Σ∗

1, πΣ(w1) = πΣ(w2)}

= {w1(α#α
rev)wrev

2 | w1, w2 ∈ Σ∗
1, πΣ(w1) = πΣ(w2)}

= {w1α#(w2α)
rev | w1, w2 ∈ Σ∗

1, πΣ(w1) = πΣ(w2)}

= {w1α#(w2α)
rev | w1, w2 ∈ Σ∗

1, w1α =M w2α}

= {u#vrev | u, v ∈ Σ∗
1α, u =M v}

= WPM
A ∩

(
Σ∗

1α#(αrevΣrev
1 )∗

)
,
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where the antepenultimate (and the only slightly non-trivial) equality follows from the
aforementioned fact that w1α =M w2α ⇐⇒ πΣ(w1) = πΣ(w2). Note that, for every
w ∈ A∗#A∗ containing only a single #, we have that the homomorphism φ#,α is injective,
in the sense that

φ−1
#,α ◦ φ#,α(w) = {w}.

Hence, more generally, for languages L ⊆ (A ∪ {#})∗ with L ⊆ A∗#A∗, we have

φ−1
#,α ◦ φ#,α(L) = L.

Thus, as WP
L(M)
Σ1

⊆ A∗#A∗, we have from the above that

WP
L(M)
Σ1

= φ−1
#,α ◦ φ#,α

(
WP

L(M)
Σ1

)
= φ−1

#,α

(
WPM

A ∩
(
Σ∗

1α#(αrevΣrev
1 )∗

))
.

Now assumeM has word problem in C. As C is closed under inverse homomorphism,M has
word problem in C with respect to any finite generating set, soWPM

A ∈ C. As C is closed under
intersection with regular languages and inverse homomorphism, it follows that the right-hand
side of the above equality is in C. Thus alsoWP

L(M)
Σ1

∈ C, soL(M) has word problem in C.

Having proved one (and the easy) direction of themain theorem, we now turn toward proving
the converse. This will require more technical tools; in particular, we will make use of the
ancestors and alternating products of Chapter 2.

4.2.1 Initial reductions

We begin with a language-theoretic interpretation of the earlier observation (Lemma 4.1.7)
regarding equality inM .

Lemma 4.2.2. The language WPM
A is a union WP[α]MA ∪W−

α of two disjoint languages

WP[α]MA := {w1#w
rev
2 | w1, w2 ∈ A∗αA∗ such that w1 =M w2}

W−
α := {w#wrev | w ∈ A∗ \A∗αA∗}.

Proof. Let w1, w2 ∈ A∗ be arbitrary, and suppose w1#w
rev
2 ∈ WPM

A . This is equivalent to
w1 =M w2. Ifw1 does not containα, then by Lemma 4.1.7w1 =M w2 is equivalent tow1 ≡ w2.
Hence in this case w1 =M w2 is equivalent to w1#w

rev
2 ∈ W−

α . On the other hand, if w1

does contain α, then so does w2 by another application of Lemma 4.1.7, as w1 =M w2. Thus
w1#w

rev
2 ∈WP[α]MA . The two cases are disjoint; thus also the languages.

The second of the two languages,W−
α , appearing in the statement of Lemma 4.2.2 is very easy

to describe in language-theoretic terms; it is just the intersection of the context-free language
{w#wrev | w ∈ A∗}, which isWPA∗

A , with the regular language (A\A∗αA∗)#(A\A∗αA∗)rev.
ThusW−

α is a context-free language. As every super-AFL contains every context-free language
by Lemma 1.2.7, and as every super-AFL is closed under union, we conclude:

Lemma 4.2.3. Let C be a super-AFL. ThenWP[α]MA ∈ C =⇒ WPM
A ∈ C.

Proof. Any super-AFL is closed under finite unions, and as noted above W−
α ∈ C. Hence

WP[α]MA ∈ C implies thatW−
α ∪WP[α]MA ∈ C, and this union is WPM

A by Lemma 4.2.2.
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Hence we have made a small amount of progress: we have reduced the properties of WPM
A

to those of WP[α]MA . We shall now reduce the properties of WP[α]MA to those of a language
WP[α⊓α]MA , whose properties are then in turn easily reducible to the properties ofWP

L(M)
Γ(α) .

This will yield our main reduction theorem.
We give an informal overview of the idea. The languageWP[α]MA encodes equality of words

overA∗αA∗. Equality of words overA∗αA∗ can then easily be understood in terms of equality
of words over αA∗ ∩ A∗α by using canonical forms. But by Theorem 4.1.10 equality of words
over αA∗ ∩ A∗α corresponds in a very natural way to equality of words in L∗(M). It thus
suffices to understand equality of words in L∗(M) – although this is an infinitely generated
monoid, it has the structure of a (monoid) free product F ∗ L(M) of an infinitely generated
free monoid by L(M), where the free monoid corresponds directly to words over the suffix
code Σ∗(α) \ Σ(α). This means that although we cannot speak of “WP

L∗(M)
Γ∗(α)

” (as L∗(M) is
not finitely generated!), we can speak of properties of an alternating product (from §2.2) of (1)
the “word problem” of graphically equal words over Σ∗(α) \ Σ(α) and (2) WP

L(M)
Γ(α) . We then,

similarly to howwe dispatched of arbitrary insertions inmonoid free products in Chapter 2, will
see that an ancestor of this alternating product is equal toWP[α⊓α]MA . Using the properties of
alternating products and ancestors proved in §2.2, this will complete our reduction toWP

L(M)
Γ(α) .

We now prove this formally.
We first show how to use canonical forms to reduce the language-theoretic properties of

WP[α]MA to those of equalities of words over αA∗ ∩A∗α. Let

WP[α ⊓ α]MA := {w1#w
rev
2 | w1, w2 ∈ αA∗ ∩A∗α such that w1 =M w2}.

We pronounce this set as the αα-word problem ofM . Note that

WP[α ⊓ α]MA ⊂WP[α]MA ⊂WPM
A .

The setWP[α⊓α]MA encodes equalities of words over αA∗∩A∗α. We give a concrete example
below, showing that the idea behind WP[α ⊓ α]MA is not complicated.

Example 4.2.4. Let M = Mon⟨x, y | xyxxyyxy = xy⟩. Let A = {x, y}. Then M is
compressible with respect to α = xy. We factor the defining relation as

(xyx)(xyy) xy = xy

where the box is, as always, only for clarity. Thus we find the bicyclic monoid

L(M) = Mon⟨γxyx, γxyy | γxyxγxyy = 1⟩ ∼= Mon⟨γ1, γ2 | γ1γ2 = 1⟩.

Now WP[α ⊓ α]MA encodes equalities of words in αA∗ ∩A∗α. For example, as

γ1γ1γ2 =L(M) γ1,

we have that
(xyx)(xyx)(xyy) xy =M (xyx) xy .

But now (xyx)(xyx)(xyy)(xy) and (xyx)(xy) are both in xyA∗ ∩A∗xy, so we have

xyxxyxxyyxy#(xyxxy)rev ∈WP[α ⊓ α]MA .

Thus, if one were to peek into the set WP[α ⊓ α]MA , with no awareness of any reversal or
monoids, one would be able to find the word xyxxyxxyyxy#yxxyx in there. △
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We now define the rewriting system

Rα =

{
(w1#w

rev
2 → #)

∣∣∣∣ w1#w
rev
2 ∈WP[α ⊓ α]MA ∪WPA∗

A

}
.

Then Rα is a monadic rewriting system. This is not a particularly complicated system;
informally, taking ancestors in this system does not “break equality” inM , in the sense of the
equalities encoded by WPM

A . Formally, we have:

Lemma 4.2.5. If w ∈ ⟨WPA∗

A ⟩Rα
then w ≡ u#vrev for some u, v ∈ A∗ with u =M v.

Proof. The proof is, of course, by induction on the number k ≥ 0 of Rα-rewritings required
to rewrite w to an element of WPA∗

A . If k = 0, then w ∈ WPA∗

A , in which case w ≡ u#urev

for some u ∈ A∗, so the statement is true in this case. Suppose the statement is true for some
κ ≥ 0, and suppose k = κ+ 1. Then there exists some w′ ∈ ⟨WPA∗

A ⟩Rα
such that

w −→Rα
w′

and w′ rewrites in κ steps of Rα to some element of WPA∗

A . By the inductive hypothesis,
w′ ≡ u0#v

rev
0 for some u0, v0 ∈ A∗ with u0 =M v0. As w′ only contains # in a single place,

andw −→Rα
w′, it follows thatw ≡ u0(w1#w

rev
2 )vrev0 wherew1#w

rev
2 ∈WP[α⊓α]MA ∪WPA∗

A .
In particular w1 =M w2. Hence u0w1 =M v0w2, and as u0w1#w

rev
2 vrev0 ≡ u0w1#(v0w2)

rev,
we can take u ≡ u0w1 and v ≡ v0w2, and we are done by induction.

Using this lemma, together with the normal form lemma, we are without much difficulty able
to prove the following reduction; this uses no alternating products or ancestors, but relies only
on interpreting the fact that for a word u ∈ A∗αA∗ with canonical form u′u†u′′, the crucial
part for understanding how u behaves in terms of equality is u†.

Lemma 4.2.6. Let C be a super-AFL. ThenWP[α ⊓ α]MA ∈ C =⇒ WP[α]MA ∈ C.

Proof. Indeed, we claim that

WP[α]MA = ⟨WPA∗

A ⟩Rα ∩
(
A∗αA∗#A∗αrevA∗).

This would yield the conclusion, for as C is a super-AFL, we haveWPA∗

A ∈ C by Lemma 1.2.10.
AsWP[α⊓α]MA ∈ C, we have thatRα is a C-monadic rewriting system, as the set of left-hand
sides of # in Rα is WP[α ⊓ α]MA ∪ WPA∗

A , and C is closed under finite unions. As C is a
super-AFL, it has the monadic ancestor property by Proposition 2.1.3, and so ⟨WPA∗

A ⟩Rα
∈ C.

Finally, as C is a super-AFL, it is closed under intersections with regular languages; thus, if we
can establish the above equality, we can conclude WP[α]MA ∈ C. Let us do so.

(⊇) Let w ∈ ⟨WPA∗

A ⟩Rα ∩
(
A∗αA∗#A∗αrevA∗) be arbitrary. As w ∈ ⟨WPA∗

A ⟩Rα , by
Lemma 4.2.5, we have that w ≡ u#vrev for some u, v ∈ A∗ with u =M v. As we also have
w ∈

(
A∗αA∗#A∗αrevA∗), it follows that u, v ∈ A∗αA∗. Hence w is of the form u#vrev for

two words u, v, equal inM , which both contain α. By definition, hence w ∈WP[α]MA , and as
w was arbitrary, we are done.

(⊆) Suppose w ∈ WP[α]MA . Then w ≡ u#vrev for some u, v ∈ A∗αA∗ with u =M v.
Let u ≡ u′u†u′′ and v ≡ v′v†v′′ be the canonical forms of the respective words. Then by
Lemma 4.1.8, as u =M v we have u′ ≡ v′, u′′ ≡ v′′, and u† =M v†. Hence

u′#(v′)rev, u′′#(v′′)rev ∈WPA∗

A ,



134 4. Weakly Compressible Monoids

and as u†, v† ∈ αA∗ ∩A∗α we have u†#(v†)rev ∈WP[α ⊓ α]MA . Hence the three rules(
u′#(v′)rev → #

)
,(

(u′′)#(v′′)rev → #
)
, and(

u†#(v†)rev → #
)

are all inRα. Hence:

w ≡ u#vrev ≡ u′u†u′′#(v′v†v′′)rev ≡ u′u†u′′#(v′′)rev(v†)rev(v′)rev

−→Rα u
′u†#(v†)rev(v′)rev

−→Rα u
′#(v′)rev

−→Rα
# ∈WPA∗

A

and so w ∈ ⟨WPA∗

A ⟩Rα
. As u and v both contain α, we also have that

w ≡ u#vrev ∈
(
A∗αA∗#A∗αrevA∗).

We conclude that w ∈ ⟨WPA∗

A ⟩Rα ∩
(
A∗αA∗#A∗αrevA∗). As w was arbitrary, have thus

showed that WP[α]MA ⊆ ⟨WPA∗

A ⟩Rα ∩
(
A∗αA∗#A∗αrevA∗). Hence also equality holds.

Thus, we have reduced understandingWP[α]MA to understanding the languageWP[α⊓α]MA .
We will now show thatWP[α⊓α]MA has the structure of an alternating product, together with
some ancestry, in the sense of §2.2.

4.2.2 Utilising alternating products

We will, for ease of writing, introduce the following notation:

Σ1 := Σ(α),

Σ2 := Σ∗(α) \ Σ(α).

Obviously Σ1 ∩ Σ2 = ∅. Let Γi = ϕ(Σi) for i = 1, 2, in which case Γ1 ∩ Γ2 = ∅. We also
have ϕ(Σ∗

i ) = ϕ(Σi)
∗ = Γ∗

i as Σi is a suffix code (i = 1, 2). The following two statements are
essentially just rephrasings of Theorem 4.1.10 into more directly usable forms for our purposes.

Lemma 4.2.7. Let u, v ∈ Σ∗
1. Then uα =M vα if and only if ϕ(u) =L(M) ϕ(v).

Proof. Note that uα =M vα if and only if ϕ(u) =L∗(M) ϕ(v) by Theorem 4.1.10. As
ϕ(u), ϕ(v) ∈ Γ∗

1, ϕ(u) =L∗(M) ϕ(v) is equivalent to ϕ(u) and ϕ(v) being equal in the
submonoid of L∗(M) generated by Γ1; and that submonoid is L(M).

Symmetrically, we also have the following easy lemma.

Lemma 4.2.8. Let u, v ∈ Σ∗
2. Then uα =M vα if and only if u ≡ v.

Proof. Note that uα =M vα if and only if ϕ(u) =L∗(M) ϕ(v) by Theorem 4.1.10. But
ϕ(u), ϕ(v) ∈ Γ∗

2, and no defining relations of L∗(M) involve letters from Γ2. Therefore
ϕ(u) =L∗(M) ϕ(v) if and only if ϕ(u) ≡ ϕ(v). As ϕ is an isomorphism of free monoids, this is
equivalent to u ≡ v.
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As mentioned earlier, L∗(M) has the structure of a monoid free product L(M) ∗ F , where
L(M) is generated by Γ1 and F is generated by Γ2. For ease of stating the theorems below, let

M1 := ⟨Γ1⟩L∗(M) = L(M),

M2 := ⟨Γ2⟩L∗(M) = F .

Let u ≡ u0u1 · · ·un ∈ (Γ1 ∪ Γ2)
∗ be arbitrary, where ui ∈ Γ∗

X(i) for all 0 ≤ i ≤ n with
X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1; and recall further
that we say that u is reduced if it is empty or else ui ̸= 1 inMX(i) for all 0 ≤ i ≤ n; and that
furthermore every word admits a reduced form.

We now extend the notion of reduced words to words in (Σ1 ∪ Σ2)
∗, by a very similar

definition. Let u ∈ (Σ1 ∪ Σ2)
∗ be arbitrary, factorised uniquely as u ≡ u0u1 · · ·un where

ui ∈ Σ∗
X(i) for all 0 ≤ i ≤ n with X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and

X(2j+1) = 1. We say that u is reduced if u ≡ α or u ≡ ε; or if uiα ̸= α inM for all 0 ≤ i ≤ n.
We remark that the case u ≡ ε will be important.

We will seek to expressWP[α⊓α]MA as an alternating product of languages, with ancestors
from two rewriting systems. We will first introduce the rewriting systems that we will use for
this purpose. Let

Iα = {(wα→ α) | w ∈ Σ+
1 : wα =M α},

I revα = {((wα)rev → αrev) | w ∈ Σ+
1 : wα =M α}.

Before proceeding to some non-trivial properties of Iα and I revα , we show that Iα is useful
for discussing reduced words, in the following sense:

Lemma 4.2.9. Let u ∈ (Σ1 ∪ Σ2)
∗ be arbitrary, factorised uniquely as u ≡ u0u1 · · ·un where

ui ∈ Σ∗
X(i) for all 0 ≤ i ≤ n with X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and

X(2j + 1) = 1. Then u is reduced if and only if it is irreducible modulo Iα.

Proof. By definition, u ≡ u0u1 · · ·un is reduced if and only if it none of the ui are such that
uiα =M α. But this latter condition is equivalent to not having ϕ(ui) =L∗(M) 1, which is
equivalent to ϕ(ui) =L(M) 1 and ui ∈ Σ∗

1. Hence have that u is reduced if and only if none of
its factors ui (with 0 ≤ i ≤ n) are such that uiα =M α and ui ∈ Σ∗

1. Thus u ≡ u0u1 · · ·un is
reduced if and only if it is irreducible modulo Iα.

We say that u′ is a reduced form of u as above if (1) u ∗−→Iα u′; and (2) u′ is irreducible
modulo Iα. In particular, every word u ∈ (Σ1 ∪ Σ2)

∗ has a reduced form (though this is
generally not unique). Furthermore, as Iα isM -equivariant (i.e. ∗←→Iα⊆

∗←→M ), it follows that if
u′ is any reduced form of u, then u′ =M u. Given a reduced word u′, we can uniquely factor
it as u′0u′1 · · ·u′n, where the u′i come alternatingly from Σ∗

1 and Σ∗
2. We call the factorisation

u′0u
′
1 · · ·u′n the normal form of the reduced word w′.
The following normal form lemma is essentially a direct restatement of the usual normal form

lemma for monoid free products (Lemma 1.1.3); there is an important distinction, however, in
(2), as the equality there is inM , rather than the free factors of L∗(M).
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Lemma 4.2.10. Let u, v ∈ Σ∗(α)
∗. Let u′ resp. v′ be any reduced forms of u resp. v, with normal

forms

u′ ≡ u′0u′1 · · ·u′m
v′ ≡ v′0v′1 · · · v′n.

Then we have uα =M vα if and only if

(1) n = m, and

(2) u′i, v
′
i ∈ Σ∗

X(i) and u
′
iα =M v′iα for all 0 ≤ i ≤ n,

where X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1.

Proof. As u′ ∈ (Σ1 ∪ Σ2)
∗, we have that ϕ(u′) ∈ (Γ1 ∪ Γ2)

∗. We claim that

ϕ(u′0)ϕ(u
′
1) · · ·ϕ(u′m)

is reduced with respect to the free product L(M) ∗ F = M1 ∗M2, i.e. ϕ(u′i) ̸= 1 in M1 (if
ϕ(u′i) ∈ Γ∗

1) resp. M2 (if ϕ(u′i) ∈ Γ∗
2). But this is immediate; ϕ(u′i) = 1 inM1 (orM2) if and

only if u′iα =M α by Theorem 4.1.10, and u′ is reduced, so this latter equality never holds.
Therefore ϕ(u′0)ϕ(u′1) · · ·ϕ(u′m) is a reduced form of ϕ(u′), and this factorisation is the normal
form of ϕ(u′). Entirely symmetrically, ϕ(v′0)ϕ(v′1) · · ·ϕ(v′n) is a reduced form of ϕ(v′), and this
factorisation is the normal form of ϕ(v′).

Now uα =M vα if and only if u′α =M v′α, which is equivalent to ϕ(u′) =M ϕ(v′) by
Theorem 4.1.10. Thus, by the normal form theorem for monoid free products (Lemma 1.1.3), we
have (1) n = m; (2) ϕ(u′i), ϕ(v′i) ∈ Γ∗

X(i), and ϕ(u′i) =MX(i)
ϕ(v′i) for every 1 ≤ i ≤ n; where

X(2j) = 1 and X(2j + 1) = 2, or else X(2j) = 2 and X(2j + 1) = 1. As ϕ(u′i) ∈ Γ∗
X(i) if

and only if u′i ∈ Σ∗
X(i), and ϕ(u′i) =MX(i)

ϕ(v′i) if and only if u′iα =M v′iα, the lemma now
follows.

We are almost prepared with the setup; the following lemma will prove very important.

Lemma 4.2.11. Let C be a super-AFL closed under reversal. Suppose L(M) has word problem

in C. Then Iα and I revα are C-ancestry preserving.

Proof. We begin with an informal note on the idea of the slightly technical proof in the case of
Iα. Note that Iα is “almost monadic”, in the sense that (1)α is self-overlap free; and (2) the right-
hand side of every rule in Iα is α. Furthermore, if it were monadic, it would be a C-rewriting
system, as the set of left-hand sides of α is essentially (a transduction of) IPL(M)

Γ1
, which is in

C by the fact that L(M) has word problem in C and Lemma 2.3.4. By the monadic ancestor
property of C, the result would follow. This “almost monadicity” of Iα can be malleated via a
transduction to show that Iα is C-ancestry preserving.

Let L ∈ C be arbitrary. To prove that Iα is C-ancestry preserving it suffices (by the fact that
L is arbitrary), to show that ⟨L⟩Iα ∈ C. First, let I+α be the set of left-hand sides of rules in Iα.
We claim I+α ∈ C. Indeed, w ∈ Σ∗

1 is such that wα =M α if and only if ϕ(w) =L(M) 1 by
Lemma 4.2.7. That is,

I+α =
(
ϕ−1(IP

L(M)
Γ1

)α
)
\ {α} =

(
ϕ−1(IP

L(M)
Γ1

)α
)
∩ Σ+

1
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As C is a super-AFL, C is closed under rational transductions, as well as intersection and
concatenation with regular languages. It follows that I+α ∈ C.

Let now ♢ be a new symbol. SetA♢ = A∪{♢}, and define a homomorphism φ♢ : A
∗
♢ → A∗

by a 7→ a for all a ∈ A, and ♢ 7→ α. Define a new rewriting system

I♢α := {(W → ♢) |W ∈ φ−1
♢ (I+α ) ∩

(
A∗

♢ \A∗
♢αA

∗
♢

)
}.

Clearly I♢α is a monadic rewriting system. Furthermore the language of all left-hand sides of ♢
in I♢α is, of course, the intersection φ−1

♢ (I+α )∩
(
A∗

♢ \A∗
♢αA

∗
♢

)
. Since I+α ∈ C, as shown earlier,

and C is a super-AFL, and hence closed under inverse homomorphism and intersection with
regular languages, it follows that the language of all left-hand sides of ♢ is in C. Thus I♢α is a
monadic C-rewriting system.

Now, as α is self-overlap free, reasoning (as we have done many times) by suffix codes, we
have that for any word u ∈ A∗αA∗, i.e. for any word u containing α, we can uniquely factor u
as u ≡ u0αu1α · · ·αuk , with ui ∈ A∗ \ A∗αA∗ not containing α for every 1 ≤ i ≤ k. Thus
we have

φ−1
♢ (u0αu1α · · ·αuk) ∩

(
A∗

♢ \A∗
♢αA

∗
♢

)
= {u0♢u1♢ · · ·♢uk}.

That is, there is exactly one word in A∗
♢ which (1) does not contain α; and (2) maps to

u0αu1α · · ·αuk under φ♢; that word is u0♢u1♢ · · ·♢uk .70 Denote this word by u♢. Of course,
if u does not contain α, then u′ ≡ u is the unique word in A∗

♢ such that φ♢(u
′) = u. In this

case, we set u♢ ≡ u. Thus u♢ is now defined for all words u ∈ A∗. Let L♢ be the set
{w♢ | w ∈ L}. Then, by the above argument,

L♢ = φ−1
♢ (L) ∩

(
A∗

♢ \A∗
♢αA

∗
♢

)
so in particular L♢ ∈ C, as C is closed under rational transductions.

We now claim that
⟨L⟩Iα = φ♢(⟨L♢⟩I♢

α
).

This would complete the proof, by the following argument: L♢ ∈ C, and I♢α is a monadic C-
rewriting system. Thus, as C is a super-AFL, C has the monadic ancestor property, and so it
follows that ⟨L♢⟩I♢

α
∈ C. As C is a super-AFL, it is closed under homomorphisms; therefore

φ♢(⟨L♢⟩I♢
α
) ∈ C. Thus, if the equality holds, we have ⟨L⟩Iα ∈ C, which is what we needed to

show. We now prove the desired equality.
The equality would follow if we can prove: if w ∈ A∗, u ∈ L are arbitrary, then we have

w
∗−→Iα u if and only ifw♢

∗−→I♢
α
u♢. To show this it suffices to show that (xα→ α) ∈ Iα if and

only if ((xα)♢ → ♢) ∈ I♢α . This is almost obvious, but we write out the proof for completeness.
Let (xα → α) ∈ Iα be an arbitrary rule. Note that x ∈ Σ∗

1, so x ∈ αA∗. We factor,
uniquely, xα ≡ αx0α · · ·αxmα such that for every 0 ≤ i ≤ m, xi does not contain α. Then
(xα)♢ ≡ ♢x0♢ · · ·♢xm♢, so (xα)♢ ∈ A∗

♢ \A∗
♢αA

∗
♢. Furthermore, as

φ♢((xα)♢) ≡ φ♢(♢x0♢ · · ·♢xm♢) = αx0α · · ·αxmα ≡ xα ∈ I+α ,

70The corresponding statement is not true if α is not self-overlap free. For example, if α ≡ xyx, then
φ♢(xy♢) = φ♢(♢yx) = xyxyx. This is perhaps the most direct appearance of the difficulties mentioned
in the introduction regarding studying the language-theoretic aspects of compressing with respect to
arbitrary words.
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we hence have that (xα)♢ ∈ φ−1
♢ (I+α ), and we conclude

(xα)♢ ∈ φ−1
♢ (I+α ) ∩ (A∗

♢ \A∗
♢αA

∗
♢).

Thus, if (xα→ α) ∈ Iα, then ((xα)♢ → ♢) ∈ I♢α . To prove the converse, we simply note that if
((xα)♢ → ♢) ∈ I♢α , then (φ♢((xα)♢)→ φ♢(♢)) ∈ Iα; but φ♢(♢) = α and φ♢((xα)♢) = xα.
Thus (xα→ α) ∈ Iα. This completes the proof of the claim; hence Iα is C-ancestry preserving.

The case for I revα is a close copy of the proof for Iα, and we do not write it out; the only two
non-trivial observations to make is that α is self-overlap free if and only if αrev is; and that Σrev

2

is a prefix code rather than a suffix code (factorisation is still unique).

We are making good progress towards understanding WP[α ⊓ α]MA , as we shall soon
discover. Some more steps are needed. Let PΣ2

= {w#wrev | w ∈ Σ∗
2}. The P here stands for

“palindrome”, as every word in the language is a palindrome. We note that

WPM
A ∩Σ∗

2#(Σrev
2 )∗ = {w1#w

rev
2 | w1, w2 ∈ Σ∗

2, w1 =M w2}

= {w1#w
rev
2 | w1, w2 ∈ Σ∗

2, w1 ≡ w2}

= {w#wrev | w ∈ Σ∗
2}

= PΣ2 ,

where the second (and only non-trivial) equality is by Lemma 4.2.8. Thus PΣ2 can be seen,
informally speaking, as encoding equality of words overΣ∗

2, much asWP
L(M)
Σ1

encodes equality
of words over Σ∗

1. Note that PΣ2
is a context-free language, being the intersection of the word

problem of the free monoidWPA∗

A with the regular language Σ∗
2 ∩ (Σrev

2 )∗.
The remaining material left to show before we can conclude the main theorem is rather

technical. An informal overview of the idea is as follows: by Lemma 4.2.10 equality in M
behaves much like a monoid free product of words over Σ∗

1 and Σ∗
2, with identity α. Thus, it

behaves like an alternating product of “equalities of words over Σ∗
1” and “equalities of words

over Σ∗
2”, with insertions of words equal to α possible at any place one spots an α. But

equalities of words over Σ∗
1 are entirely described by WP

L(M)
Σ1

; and equalities of words over
Σ∗

2 are entirely described by PΣ2
; and insertions of words equal to α are captured by the

rewriting system Iα. All these steps are thus, by now, well understood and well behaved; so it
remains only to assemble them.

We now present the above argument formally, which is the final assembly step. Recall the
definition of Iα and I revα from earlier as

Iα = {(wα→ α) | w ∈ Σ∗
1 : wα =M α},

I revα = {((wα)rev → αrev) | w ∈ Σ∗
1 : wα =M α}.

Let φ#,α be the homomorphism sending # to α#αrev. We define the language Lα as the
(Iα, I

rev
α )-ancestor of the image under φ#,α of the alternating product of WP

L(M)
Σ1

by PΣ2 .
That is, we set

Lα =
(
φ#,α

(
WP

L(M)
Σ1

⋆PΣ2

))Iα,Irev
α

.

First, note thatLα ⊆ A∗#A∗. The following lemma is immediate by the properties of the terms
involved in defining Lα, and some previous lemmas.
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Lemma 4.2.12. Let C be a super-AFL. ThenWP
L(M)
Σ1

∈ C =⇒ Lα ∈ C.

Proof. First, note that PΣ2 ∈ C, as PΣ2 is a context-free language, being equal to the
intersection WPA∗

A ∩ (Σ∗
2 ∩ (Σrev

2 )∗), and every context-free language is an element of every
super-AFL by Lemma 1.2.7. Furthermore, PΣ2

is clearly concatenation-closed, as if
w1#w

rev
1 , w2#w

rev
2 ∈ PΣ2

, then

w1w2#w
rev
2 wrev

1 ≡ w1w2#(w1w2)
rev

is in PΣ2
. Now, as WP

L(M)
Σ1

∈ C by assumption, and WP
L(M)
Σ1

is concatenation-closed, it
follows by Corollary 2.2.7 that WP

L(M)
Σ1

⋆PΣ2
∈ C. As C is closed under homomorphism,

φ#,α

(
WP

L(M)
Σ1

⋆PΣ2

)
∈ C.

By Lemma 4.2.11, the rewriting systems Iα, Irevα are C-ancestry preserving. Hence, by
Lemma 2.2.13, we finally have that(

φ#,α

(
WP

L(M)
Σ1

⋆PΣ2

))Iα,Irev
α

∈ C,

and this is precisely what was to be shown.

Having deduced the properties of Lα, we are ready to reveal its true identity.

Lemma 4.2.13. WP[α ⊓ α]MA = Lα.

Proof. We prove the claim one inclusion at a time.
(⊆) Suppose u#vrev ∈WP[α ⊓ α]MA is arbitrary. Then u, v ∈ αA∗ ∩A∗α and u =M v. We

factor u and v as words over (Σ1 ∪ Σ2)
∗α as

u ≡ u0u1 · · ·umα,

v ≡ v0v1 · · · vnα,

where ui, vj ∈ Σ∗
1 ∪ Σ∗

2 for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Let u′, v′ be any irreducible
descendant of u resp. v under Iα. Then u ∗−→Iα u′ and v ∗−→Iα v′, so vrev ∗−→Irev

α
(v′)rev.

Furthermore, as Iα isM -equivariant, we have u =M u′ and v =M v′.
An easy induction on the number of rules applied shows that u′, v′ ∈ αA∗∩A∗α. We factor

u′ and v′ uniquely over (Σ1 ∪ Σ2)
∗ as

u′ ≡ u′0u′1 · · ·u′sα,

v′ ≡ v′0v′1 · · · v′tα,

such that u′i, v′j ∈ Σ∗
1 ∪ Σ∗

2 for all 0 ≤ i ≤ s and 0 ≤ j ≤ t, and such that none of the u′i for
0 ≤ i ≤ s (resp. v′j for 0 ≤ j ≤ t) are empty unless all of them are. By Lemma 4.2.9, as u′

and v′ are irreducible modulo Iα, both u′ and v′ are reduced, so these factorisations are normal
forms for u′ and v′.

Now u =M v, so u′ =M u =M v =M v′. That is

u′0u
′
1 · · ·u′s α =M v′0v

′
1 · · · v′t α ,

where the boxedα is only used to aid in seeing how to apply the normal form lemma. Indeed, by
that lemma, i.e. Lemma 4.2.10, it follows that (1) s = t, and (2) u′i, v′i ∈ Σ∗

X(i) and u′iα =M v′iα

for all 0 ≤ i ≤ s; whereX(2j) = 1 andX(2j+1) = 2, or elseX(2j) = 2 andX(2j+1) = 1.
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Note that for those i such that X(i) = 1, we have that u′iα =M v′iα implies u′i =L(M) v
′
i

when Σ1 is, as before, considered as a generating set for L(M). That is, for those i such that
X(i) = 1, we have u′i#(v′i)

rev ∈WP
L(M)
Σ1

. On the other hand, for those i such that X(i) = 2,
we have that u′iα =M v′iα implies u′i ≡ v′i by Lemma 4.2.8, as u′i, v′i ∈ Σ∗

2. In other words, for
those i such that X(i) = 2, we have u′i#(v′i)

rev ∈ PΣ2
.

Thus, by the definition of the alternating product, we have

(u′0u
′
1 · · ·u′s)#(v′0v

′
1 · · · v′t)rev ∈WP

L(M)
Σ1

⋆ PΣ2
.

Applying φ#,α, we hence have

(u′0u
′
1 · · ·u′s)(α#αrev)(v′0v

′
1 · · · v′t)rev ∈ φ#,α

(
WP

L(M)
Σ1

⋆ PΣ2

)
which is to say

(u′0u
′
1 · · ·u′sα)#(v′0v

′
1 · · · v′tα)rev ∈ φ#,α

(
WP

L(M)
Σ1

⋆ PΣ2

)
Now, as mentioned earlier, we have u ∗−→Iα u

′ and vrev ∗−→Irev
α

(v′)rev, i.e.

u
∗−→Iα u

′
0u

′
1 · · ·u′sα, and

vrev
∗−→Irev

α
(v′0v

′
1 · · · v′tα)rev.

It follows by definition of (Iα, Irevα )-ancestors that we hence have

u#vrev ∈
(
φ#,α

(
WP

L(M)
Σ1

⋆ PΣ2

))Iα,Irev
α

= Lα

which proves the forward inclusion, as u#vrev was arbitrary.
(⊇) Let u#v ∈ Lα be arbitrary. We will prove that (1) we have u, vrev ∈ αA∗ ∩ A∗α; and

(2) that u =M vrev. We would then be able to conclude that u#v ∈ WP[α ⊓ α]MA , and hence
we would have the required inclusion. For ease of notation, we will abbreviateW1 = WP

L(M)
Σ1

andW2 = PΣ2
.

As u#v is in Lα, there exists some u′#v′ ∈ W1 ⋆W2 such that

u
∗−→Iα u

′α,

v
∗−→Irev

α
αrevv′,

where we have used the fact that φ#,α(u
′#v′) = (u′α)#(αrevv′). As Iα isM -equivariant, it

follows that u =M u′α. Similarly, as v ∗−→Irev
α
αrevv′ implies that

vrev
∗−→Iα (v′)revα

we can conclude that vrev =M (v′)revα. Thus

u =M u′α, (v′)revα =M vrev,

and so to show u =M vrev we must only show the missing equality u′α =M (v′)revα.
Now, as u′, v′ are in WP

L(M)
Σ1

⋆ PΣ2
, we can write

u′#v′ ≡ u0u1 · · ·un#vn · · · v1v0

such that ui#vi ∈ WX(i) for all 0 ≤ i ≤ n, where X(2j) = 1 and X(2j + 1) = 2, or else
X(2j) = 2 and X(2j + 1) = 1. If X(i) = 1, then ui#vi ∈ W1 = WP

L(M)
Σ1

, so ui =L(M) v
rev
i

and ui, vrevi ∈ Σ∗
1. On the other hand, if X(i) = 2, then ui#vi ∈ W1 = PΣ2

, and so ui ≡ vrevi

and ui, vrevi ∈ Σ∗
2. Thus, we conclude uiα =M vrevi α for all 0 ≤ i ≤ n,



4. Weakly Compressible Monoids 141

Hence we conclude

u′α ≡ u0u1 · · ·unα =M vrev0 vrev1 · · · vrevn α ≡ (vn · · · v1v0)revα ≡ (v′)revα,

which was the missing equality; we conclude u =M vrev.
It remains to show that u, vrev ∈ αA∗ ∩ A∗α. As u0, vrev0 ∈ Σ∗

X(i) ⊂ αA∗, it follows
that u′, (v′)rev ∈ αA∗. Furthermore, as every rule (ℓ → α) in Iα is such that ℓ ∈ A∗α, we
conclude from u

∗−→Iα u′α that u ∈ A∗α. Similarly, we conclude from v
∗−→Irev

α
αrevv′ that

vrev
∗−→Iα (v′)revα, and hence also that vrev ∈ A∗α. Thus we have proved

u, vrev ∈ αA∗ ∩A∗α,

and u =M vrev. Thus u#v ∈WP[α ⊓ α]MA , and we are done.

With this, we are ready to assemble the main theorem.

4.2.3 Main theorem

The proof of the main theorem now requires no additional information than the results proved
in the previous section. We write out the steps in detail.

Theorem 4.2.14. LetM be a weakly compressible monoid, and let L(M) be its left monoid. Let

C be a super-AFL closed under reversal. ThenM has word problem in C if and only if L(M) does.

Proof. ( =⇒ ). This is the statement of Theorem 4.2.1.
( ⇐= ). If L(M) has word problem in C, then by Lemma 4.2.12 we have Lα ∈ C. By

Lemma 4.2.13, Lα = WP[α ⊓ α]MA , so WP[α ⊓ α]MA ∈ C. By Lemma 4.2.6, it follows that
WP[α]MA ∈ C, and hence, by Lemma 4.2.3, we conclude WPM

A ∈ C.

Thus we have proved the main theorem of this chapter. By iterating compression until we
arrive at an incompressible monoid, this hence gives a complete characterisation of the word
problem of weakly compressible monoids in terms of the word problem of incompressible
monoids. Recalling that the classes of context-free and indexed languages are super-AFLs
closed under reversal, we find:

Corollary 4.2.15. Let M be a weakly compressible monoid, and let L(M) be its left monoid.

ThenM has context-free (resp. indexed) word problem if and only if L(M) has context-free (resp.

indexed) word problem.

Thus, if we turn our attention to context-free monoids, in order to completely characterise
the compressiblemonoidswith context-freeword problem, it suffices to completely characterise
which incompressible monoids do. However, this latter problem seems currently vastly out of
reach. Certainly some examples are easy to construct.

Example 4.2.16. Let M = Mon⟨a1, a2, . . . , an | aβ1

1 a
β2

2 · · · aβn
n = ak⟩ be a one-relation

monoid with n > 1, such that 1 ≤ k ≤ n and βi ≥ 1 for all 1 ≤ i ≤ n. Then M is
incompressible, for at most one of the first or the last letters of each side of the defining relation
can be the same. The finite rewriting system with the single rule (aβ1

1 a
β2

2 · · · aβn
n → ak) is
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complete andmonadic, as aβ1

1 a
β2

2 · · · aβn
n has no self-overlap. Thus by [66, Corollary 3.8],M has

context-free word problem. Some concrete examples of these types of incompressible monoids
with context-free word problem are given below.

(1) Mon⟨a, b | ab = b⟩.
(2) Mon⟨a, b, c | aabbcc = b⟩.

Some concrete examples of compressible monoids which compress to the examples above (in
order), as well as the self-overlap free word α with respect to which it compresses, are given
below. Thus the below monoids have context-free word problem by Corollary 4.2.15:

(1) Mon⟨x, y | xyxyyxy = xyyxy⟩ with α = xy.
(2) Mon⟨x, y | xyxyxxxyyxyyx = xx⟩ with α = x.

We note that the compressible monoids in these examples are both 2-generated, whether or
not they compress to a 2-generated monoid. Having more generators often makes it easier to
devise a finite complete rewriting system defining the monoid, which means showing that such
monoids are context-free occasionally becomes simplified. △

We give an application of the above result to the rational subset membership problem. The
rational subset membership problem for groups has been relatively well-studied. We have
already seen that having context-free word problem implies having a decidable rational subset
membership problem (Theorem 3.5.11). Thus we have the following corollary.

Corollary 4.2.17. Let M be a weakly compressible monoid, and let L(M) be the left monoid

associated to M . If L(M) has context-free word problem, then the rational subset membership

problem forM is decidable.

Recall that for general monoids there is no obvious reduction of the word problem to the
submonoid membership problem, although there is one for groups (obvious) and special
monoids (Theorem 3.5.13). The following becomes natural.

Question 4.2.18. Let M be a weakly compressible monoid. If M has decidable submonoid

membership problem, is the word problem decidable for M? If L(M) has decidable submonoid

membership problem, doesM have decidable submonoid membership problem?

We conjecture that the former of the two questions can be answered negatively, and that the
latter can be answered positively. The reason for our pessimism in the first question is that there
is no reason to expect decidability of the word problem to reduce to the submonoid membership
problem for general monoids; and the class of weakly compressible monoids behaves more or
less as the class of general monoids. The second question, on the other hand, asks nothing
about decidability in such a class, giving rise to some optimism. We will now turn our attention
to a very particular case of weakly compressible monoids.
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4.3 Subspecial monoids

One particular type of weakly compressible monoid occurs in the one-relation case. A one-
relation monoid Mon⟨A | u = v⟩, with |u| ≥ |v|, is called subspecial if it is special or if
u ∈ vA∗ ∩ A∗v. We begin with a brief overview of the general theory of subspecial monoids,
and refer the reader to the article by Gray & Steinberg [172] for a full algebraic investigation of
as well as recent topological results on subspecial monoids.

The interest in subspecial monoids originated with the following theorem, proved by
Lallement [273], which completely characterises the one-relation monoids M with a
non-trivial idempotent, i.e. an elementm ∈M withm2 = m, butm ̸= 1.

Theorem (Lallement). LetM = Mon⟨A | u = v⟩ be a one-relation monoid with |u| > |v| > 0.

ThenM has a non-trivial idempotent if and only ifM is subspecial.

Note that if |u| = |v| then it is already clear that Mon⟨A | u = v⟩ does not have any non-
trivial idempotent. Furthermore, if |v| = 0, then it is not hard to see that the special monoid
M = Mon⟨A | u = 1⟩ has a non-trivial idempotent unless every invertible piece of M is a
letter (recall this terminology from Chapter 3). This is easily decided by using Adian’s overlap
algorithm [3]. Thus, we conclude that it is decidable whether a one-relation monoid has a
non-trivial idempotent.

Given any subspecial one-relation monoid Mon⟨A | u = v⟩ where u ∈ vA∗ ∩ A∗v, it is
clear that v seals (u, v). What is perhaps not as immediately clear is that such a presentation is
weakly compressible, for v may not be self-overlap free. With some afterthought, however, one
finds a self-overlap free word which seals (u, v). With further thought, it is also rather clear
that the resulting compressed monoid is itself subspecial. We illustrate this with an example.

Example 4.3.1. LetM = Mon⟨x, y | xyxxyxxxyxxyxyx = xyx⟩. Then the reader may at a
glance note that xyx seals this defining relation. Thus x also seals this defining relation, as x is
a prefix and a suffix of xyx. Compressing this monoid with respect to α := x, we thus obtain

L(M) = Mon⟨γε, γy | γyγεγyγεγεγyγεγyγy = γy⟩ ∼= Mon⟨a, b | babaababb = b⟩.

But now this monoid is itself subspecial, and hence weakly compressible, this time with respect
to α := b. Compressing this, we obtain the special monoid

L(L(M)) ∼= Mon⟨γε, γa, γa2 | γaγa2γaγε = 1⟩ ∼= Mon⟨a, b, c | abac = 1⟩.

ByAdian’s algorithm, this specialmonoid has trivial group of units, and hence byCorollary 3.5.1
it follows that L(L(M)) has context-free word problem. This can also be witnessed by the fact
that the rewriting system with the single rule (abac → ε) is complete, monadic, and defines
L(L(M)), which implies that its word problem is context-free [66, Corollary 3.8]. In either
case, it follows by Corollary 4.2.15 that L(M) has context-free word problem, and hence, by
another application of the same corollary, thatM has context-free word problem. △

The following is essentially a restatement of [264, Lemma 5.4] and is implicitly used in [12];
the reader is directed to the former reference for a full proof.
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Proposition. Suppose that the one-relation monoidM = Mon⟨A | u = v⟩ is a subspecial, but

not special, monoid. Then there exists some self-overlap free word α ∈ A+ which seals (u, v), so

M is weakly compressible. Furthermore, L(M) is itself subspecial.

Hence for every (non-special) subspecial monoid M there exists some special monoid
obtained by first compressing M , then compressing L(M), etc. until one obtains an
incompressible and special monoid. This process, which is effective, is guaranteed to
terminate, as the defining relation in a compressed monoid has total length shorter than that
of the original monoid. Furthermore, this incompressible monoid is unique by [172,
Corollary 4.3]. We denote the special monoid obtained by iteratively compressing M in this
manner by Ls(M), and call it the left special monoid of M . If M is special itself, we set
Ls(M) := M . We remark that Ls(M) is always a one-relation special monoid. In particular,
Ls(M) has decidable word problem, as its group of units is a one-relator group, see [3]. As
weak compression reduces decidability of the word problem to the compressed monoid by
Theorem 4.1.10, it follows by repeated application of the same lemma that any subspecial
one-relation monoid has decidable word problem.

4.3.1 The word problem for subspecial monoids

By the earlier discussion and the definition of the left special monoid of a subspecial monoid,
together with repeated application of Theorem 4.2.14, we find the following reduction of the
word problem for subspecial monoids to the special case.

Theorem 4.3.2. Let C be a super-AFL. LetM be a subspecial one-relation monoid. ThenM has

word problem in C if and only if Ls(M) has word problem in C.

We shall nowmake this theorem algebraic in nature, and omit anymention of the compressed
monoid Ls(M). Recall that in Chapter 3, it was shown that if C is a super-AFL closed under
reversal, then any finitely presented special monoid has word problem in C if and only if its
group of units has word problem in C. We can utilise this result, together with some structural
results on themaximal subgroups of subspecial monoids, due to Gray& Steinberg, and of special
monoids, due to Malheiro, to obtain an algebraic variation of Theorem 4.3.2 which does not
mention compression.

Corollary 4.3.3. Let C be a super-AFL closed under reversal. LetM be a subspecial one-relation

monoid. Then M has word problem in C if and only if all of its maximal subgroups have word

problem in C.

Proof. Let M = Mon⟨A | u = v⟩ be a subspecial one-relation monoid, with |u| ≥ |v|, and
u ∈ vA∗∩A∗v. Recall that by Theorem 3.4.1, if C is as in the statement of the present theorem,
then if Π is any special monoid, it follows that Π has word problem in C if and only if its group
of units U(Π) has word problem in C.

First, the maximal subgroups of a special monoid are all isomorphic to its group of units
[325, Theorem 4.6], and hence if v ≡ ε, i.e. ifM is special, then the result follows. Thus assume
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v ̸≡ ε. Then by [172, Lemma 5.2], the maximal subgroups ofM are all isomorphic to the group
of units of Ls(M), with the exception of the group of units ofM , which is trivial.

( =⇒ ) The maximal subgroups of M are all finitely presented, being isomorphic to the
group of units of a finitely presented special monoid, which is always finitely presented [309].
Thus, as C is closed under inverse homomorphism, the property ofM having word problem in
C is inherited by finitely generated submonoids of M by [209, Proposition 8(b)]. Hence if M
has word problem in C, then all its maximal subgroups have word problem in C.

(⇐= ) As the maximal subgroups ofM all have word problem in C, in particular the group
of units of Ls(M) has word problem in C. As C is a super-AFL closed under reversal, it follows
by Theorem 3.4.1 that Ls(M) also has word problem in C. By Theorem 4.3.2, M has word
problem in C.

As we did in §3.5, we will now make our results specific to the context-free case.

4.3.2 Context-free subspecial monoids

As the class of context-free languages is a class which satisfies all the conditions to apply the
above corollary, i.e. Ccf is a super-AFL closed under reversal, we immediately have the
following, by combining Corollary 4.3.3 with the Muller-Schupp theorem.

Theorem 4.3.4. A subspecial one-relation monoid has context-free word problem if and only if

all of its maximal subgroups are virtually free.

Remark 4.3.1. By [172, Lemma 5.2], all non-trivial maximal subgroups of a subspecial monoid
are pairwise isomorphic.

This gives a complete and completely algebraic characterisation of subspecial monoids with
context-free word problem, completely and algebraically answering for the class of subspecial
monoids the question from 2004 of Duncan & Gilman on the structure of monoids with a
context-free word problem [144, Question 4]. We mention that as all special monoids are
subspecial, Theorem 4.3.4 generalises Theorem 3.5.1 for the class of one-relation monoids.

The following result is little more than a restatement of Corollary 4.2.17 in the setting of
subspecial monoids, when combined with Theorem 4.3.4.

Corollary 4.3.5. Let M be a subspecial one-relation monoid such that all of its non-trivial

maximal subgroups are virtually free. Then M has decidable rational subset membership

problem.

We finish the chapter with two algorithmic results.

Theorem 4.3.6. Given a presentationMon⟨A | u = v⟩ of a subspecial monoidM , it is decidable

whether or not the word problem ofM is context-free.

Proof. Given a presentation Mon⟨A | u = v⟩ as input, a presentation for Ls(M) is effectively
computable, as a single step of compression is of course easily computable. Then Ls(M) is a
one-relation special monoid, given by some special presentation Mon⟨Γ | w = 1⟩. Thus, the
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group of units U = U(Ls(M)) is a one-relator group (see §1.3). Furthermore, we can
effectively compute a presentation for this group by Adian’s algorithm. As all non-trivial
maximal subgroups of M are isomorphic to U by [172, Lemma 5.2], it follows by
Theorem 4.3.4 thatM has context-free word problem if and only if U is virtually free.

Thus as U(Ls(M)) is a positive one-relator group (i.e. a one-relator group Gp⟨A | w = 1⟩
where w ∈ A∗), in the sense of Baumslag [35], to complete the proof it suffices to exhibit an
algorithm for deciding if an arbitrary positive one-relator group is virtually free, given a positive
one-relator presentation as input. We show a stronger claim, namely: there exists an algorithm
for deciding if an arbitrary one-relator group is virtually free, given a one-relator presentation
for this group as input. This result is well-known, but a direct reference is hard to come by.

Let H = Gp⟨A | w = 1⟩ be a one-relator group. Assume without loss of generality that
w is cyclically reduced. Then H has torsion if and only if w is graphically a proper power uk

of some cyclically reduced word u which is not a proper power, for some k > 1, see [154].
Thus it is decidable, by checking all possible decompositions of w for one of this form, whether
H is torsion-free or not. A torsion-free group is virtually free if and only if it is free [462]. A
one-relator group given by a presentation Gp⟨A | w = 1⟩ is free if and only if w is empty or
a primitive element of FA, where FA denotes the free group on A, see [488, Theorem 4]. By
Whitehead’s algorithm, it is decidable whether an element of a finitely generated free group is
primitive [488]. Hence if H is torsion-free it is decidable whether H is free. Assume instead
that H has torsion. Then we can uniquely decompose w ≡ uk as above. Now H is virtually
free if and only if u is a primitive element in FA by [154, Theorem 3]. Thus, if H has torsion,
it is again decidable whether or not it is virtually free. Hence it is decidable whether a given
one-relator group is virtually free, given a one-relator presentation for this group.

Corollary 4.3.7. LetM = Mon⟨A | u = v⟩ be a one-relation monoid containing a non-trivial

idempotent. Then it is decidable whetherM has context-free word problem.

Proof. By Lallement’s theorem and the subsequent discussion,M has a non-trivial idempotent
if and only if (1) |u| > |v| > 0 andM is subspecial; or (2)M is special, and not every invertible
piece of M is a letter, i.e. there is some piece of length greater than 1. It is easy to check
directly whether we are in case (1). If not, then M is a special monoid. By using Adian’s
overlap algorithm we can check whether every invertible piece of M is a letter, and thereby
check whether we are in case (2). To decide ifM has context-free word problem, we thus first
decide which case we are in. If we are in case (1), then it can be decided whether or not M
has context-free word problem by Theorem 4.3.6. On the other hand, if we are in case (2), then
asM is special (and in particular subspecial), we can also decide whetherM has context-free
word problem by another application of Theorem 4.3.6.

Recall that Zhang [502, Problem 3] asked in 1992 if it is decidable whether a special
one-relation monoid has context-free word problem. We answered this question affirmatively
in Chapter 3 as Theorem 3.5.7. As any special one-relation monoid M contains a non-trivial
idempotent whenever M is not a free product of a group by a free monoid, it follows that
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Corollary 4.3.7 answers a generalisation of Zhang’s problem affirmatively.
We remark that, in general, it is not decidable whether a weakly compressible monoid has

context-free word problem. The argument is easy. Let G be any finitely presented group,
given by a presentation Gp⟨A | ri = 1 (i ∈ I)⟩. Then G admits some finite special monoid
presentation Mon⟨B | r′i = 1 (i ∈ I)⟩ by introducing a new set A−1 of formal inverse
symbols a−1 for every generator a ∈ A, and setting B = A ∪ A−1; the relations ri can then
be rewritten over B in the obvious way. Let x be a symbol not in B, and let
ϑx : B

∗ → (B ∪ {x})∗ be the function which sends any word w ∈ B∗ to the same word, but
in which each letter bi has been replaced by xbi. For example, ϑx(bcd) = (xb)(xc)(xd). Let
now

M = Mon⟨B ∪ {x} | ϑx(r′i)x = x⟩.

ThenM is weakly compressible with respect to x, andL(M) ∼= G. Thus, by Theorem 4.2.14,M
has context-free word problem if and only ifG has context-free word problem. ButG is context-
free if and only if it is virtually free, and it is undecidable in general whether an arbitrary finitely
presented group is virtually free; being virtually free is a Markov property, so this latter claim
follows by the Adian-Rabin theorem [2, 413]. The result follows.

This final result paints a broader (albeit informal) picture: the property of being weakly
compressible is not powerful on its own; indeed, any exotic and rowdy behaviour whatsoever
can be exhibited in a rather straightforward manner in a weakly compressible monoid. Instead,
the advantage of weakly compressible monoids comes from their transient behaviour, in the
following sense: if one studies a general monoidM , and by some manner of investigation finds
oneself reducing a problem about M to a problem about a weakly compressible monoid M ′,
then there is a good chance that one can reduce the original problem to some problem for the
compressed monoid L(M ′). At the very least, this is true for language theoretic and some
decision theoretic problems (as we have just seen). It would be interesting to study what other
problems this adage is applicable to.





Chapter 5

Context-free Graphs and Special Monoids

Synopsis

In this chapter, we will discuss graph-theoretic constructions and their relation
to monoids. In particular, we will be interested in how the underlying algebraic
structure of a special monoid is reflected in its right Cayley graph. In §5.1, we
will describe a rather general tree-like construction for constructing new
context-free graphs from a given context-free graph. We will then, in §5.2, study
the submonoid of right units of special monoids, and gain qualitative
information on the properties of the embedding of this submonoid. In §5.3, we
will introduce the Schützenberger graph of the units U of a special monoid, which
is a graph-theoretic representation of the embedding of the group of units into a
special monoid. In §5.4, we will use the aforementioned results to construct the
Schützenberger graph of 1 for special monoids; this is divided into two parts. In
the first part, which deals with the simple class of no-folding special monoids, all
details of the proof are written out in full (§5.4.1). In the second part, which deals
with special monoids in general, we introduce a notion of a benign special
monoid. We show that no-folding special monoids are benign. We claim that all
special monoids are benign, and provide a sketch proof of this claim (§5.4.2). In
§5.5, we show that the right Cayley graph of a benign special monoid M is a
context-free graph if and only if the group of units U(M) ofM is virtually free
(Theorem 5.5.4). This also gives a classification of when the monadic
second-order logic of the right Cayley graph of a special monoid is decidable. As
a corollary, we deduce that if M is benign and U(M) is virtually free, then M
has decidable rational subset membership problem (Corollary 5.5.8). This gives
an entirely different proof of the same statement (Corollary 3.5.12) from
Chapter 3, which has no assumption of benignity. Finally, we discuss further
directions, including growth rate. We characterise the special monoids with
subexponential growth, and prove that a special monoid with intermediate
growth is a group.
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5.1 Trees of copies

For ease of notation, throughout this section all graphs will be labelled with alphabet A. Let
Γ be a connected labelled graph rooted at 1 with bounded degree. Let R = {Γ0,Γ1, . . . } be
a (necessarily at most countable) set of representatives of the end-isomorphism classes of Γ.
We will require (which loses no generality) that Γ(1) ∼ Γi if and only if i = 0. For every i
appearing in this list, let∆i be the set of frontier points of Γi, and let F (Γ) = ∪i∆i, where the
union is taken over all i appearing in the earlier list. We assume 1 is the representative for Γ0,
so 1 ∈ F (Γ). For example, in Figure 5.1, we can take F (Γ) as a set of four vertices: the root 1,
together with the three vertices around any triangle other than the central one. Then, for every
v ∈ V (Γ) there is some v′ ∈ F (Γ) such that there is an end-isomorphism Φ: Γ(v) → Γ(v′)

with Φ(v) = Φ(v′). That is, F (Γ) is a set of representatives of frontier points of the ends of
Γ. In particular, as every representative Γi of an end of Γ has finitely many frontier points, we
conclude that F (Γ) can (and will) always be chosen to be finite if Γ is context-free.

Figure 5.1: For the graph Γ to the left in this figure, we may take F (Γ) as the root 1 (the central vertex of Γ) together
with the three red vertices whose locations and end-isomorphism classes are indicated to the right. See Figure 1.1 for
a detailed caption of this figure.

We remark that whenwewill in the sequel write e.g. “letΓ be a graph, thenF (Γ)...” is slightly
abusive; of course, for a given graph Γ, we can pick whichever set of representatives of end-
isomorphism classes we want, and each such set could yield a different F (Γ). A more correct
notation, which would yield a uniquely determined set, would beFΓ0,Γ1,...,(Γ) orFR(Γ), where
R is a fixed set of representatives. We shall not use this. Indeed, the particular choice made will
either not be important (up to it being e.g. finite), or else it will be clear from the context.

For any subset S ⊆ F (Γ), we will now define a graph Tree(Γ, S), and will show that if Γ
is a context-free graph then so too is Tree(Γ, S), for any (non-trivial) choice of S. We first
give some intuition. Informally, the graph Tree(Γ, S) will capture the idea of “a tree of copies
of Γ”, where the “copying” or “branching” of the tree takes place only on vertices which are
end-equivalent to a vertex of S. If one were to “branch” at completely arbitrary places in Γ and
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thus construct a tree of copies, then it seems likely that the resulting graph could be highly
non-context-free, even if Γ itself was chosen to be context-free. However, the condition that
we only “branch” at vertices which are end-equivalent to a vertex from S, which is necessarily
a finite set if Γ is context-free, means that the resulting tree of copies will only have finitely
many different types of “branching behaviours”, which gives some initial justification for the
claim that this tree of copies should be a context-free graph.

We now make this formal. Fix some S ⊆ F (Γ) with 1 ̸∈ S. By definition of F (Γ), every
vertex v ∈ V (Γ) is such that there exists a unique i and a vertex f ∈ ∆i ⊆ F together with an
end-isomorphism ψ : Γ(v) → Γi with ψ(v) = f . In particular, there exists a set VS ⊆ V (Γ)

which is the collection of all v ∈ V (Γ) with an end-isomorphism such that ψ(v) ∈ S. That
is, VS is the equivalence class under end-isomorphism of the finite set S. We remark that if Γ
is context-free and infinite, then whereas S is necessarily finite, the set VS will in general be
infinite, unless S = ∅. Furthermore, 1 ̸∈ VS by our specification that Γ(1) ∼ Γi if and only if
i = 0, and the fact that a vertex of Γ is the frontier point of at most one Γi.

We inductively define graphs Treen(Γ, S) and associated distinguished sets of vertices Vn ⊆
V (Treen(Γ, S)). Define Tree0(Γ, S) := Γ, and V0 := VS . Assume that for some n ≥ 0 the
graphs Treek(Γ, S) and the sets Vk have been defined for 0 ≤ k ≤ n. Then Treen+1(Γ, S)

is defined as the graph obtained from attaching a copy Γv of Γ to every vertex v ∈ Vn inside
Treen(Γ, S), identifying the root of Γv with v. The root of Treen−1(Γ, S) is defined as the
root of Treen(Γ, S). Denote by Vv,S the copy of the subset VS inside V (Γv). Then we define

Vn+1 :=
⋃

v∈Vn

Vv,S ⊆ V (Treen+1(Γ, S)).

In other words, Vn+1 is defined by taking the union of all the newly added copies of V0. Note
that the graphs

Tree0(Γ, S) ⊆ Tree1(Γ, S) ⊆ · · · ⊆ Treek(Γ, S) ⊆ · · ·

form a directed system, and in particular their directed colimit (in the category of rooted,
directed, labelled graphs) exists. If S is non-empty, then the inclusions are strict.

Definition 5.1.1. For a graph Γ and a set S ⊆ F (Γ) of vertices of Γ, we define the tree of copies
of Γ with respect to S as

Tree(Γ, S) := lim−→
i

Treei(Γ, S) =
⋃
i≥0

Treei(Γ, S).

The set
⋃

i Vi is called the set of branch points of Tree(Γ, S).

An example of Tree(Γ, S) for when Γ is a triangle-shaped graph and S consisting of the two
non-root vertices is shown in Figure 5.2; an example with the same Γ but S consisting of only
a single vertex is shown in Figure 5.3.

Note that if we were to permit 1 ∈ S, then Tree(Γ, S) would in general not have bounded
degree, as we would then in the above definitions have that 1 ∈ Vn for all n ≥ 0, and infinitely
many copies of Γ will be attached to 1. However, without this restriction, it is easy to see that
Tree(Γ, S) has bounded degree. Thus, to restrict ourselves to this latter case, we will call a
subset S of F (Γ) a set of attachment points (of Γ) if we have 1 ̸∈ S. We note again that if Γ is
context-free, then S can be chosen to be a finite set, as F (Γ) can be. Hence if Γ is a context-free
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Figure 5.2: A triangle graph Γ (left), and a tree of copies of Γ (right). The set S of attachment points consists of two
frontier points (onto which copies are attached), and are marked as red vertices. It is clear that the tree of copies is
context-free, having only two distinct end-spaces; that of the root vertex, and the union of two such spaces, connected
by an edge. For all i ≥ 0, the set Vi (considered as a subset of Tree(Γ, S)) consists of the 2i+1 vertices in the ith
“layer” of the figure, as indicated by the rounded rectangles.

V0

V1

V2

1

a b

c
a b

c
a b

ca b

c

. . .

Figure 5.3: A triangle graph Γ (left), and a tree of copies Tree(Γ, S) of Γ (right). The set S of attachment points
consists of a single frontier point (onto which copies are attached), which is marked as a red vertex. It is clear that the
tree of copies is a context-free graph, having only two distinct end-spaces; namely Γ(1), and one isomorphic to Γ(1)
with a vertex adjoined and an edge labelled by c going out from 1 to this vertex. For all i > 0, the set Vi (considered
as a subset of Tree(Γ, S)) consists of the 2i+1 vertices at the ith “layer” of the figure, as indicated by the rounded
rectangles.

graph, then Tree(Γ, S) can be encoded by a finite amount of information, viz. the ends of Γ
together with S. In fact, we will show that in this setting, Tree(Γ, S) is actually a context-free
graph. Before this, we make a simple observation about Tree(Γ, S).

Proposition 5.1.2. Let Γ be a graph, and S ⊆ F (Γ) a set of attachment points. Then the set of

vertices of Tree(Γ, S) is in bijective correspondence with the set of finite tuples

(u0, u1, . . . , uk)

where ui ∈ V0 for 0 ≤ i < k; and where uk ∈ V (Γ) \ {1} if k > 0, or else uk ∈ V (Γ).

Furthermore, for two vertices u,w ∈ Tree(Γ, S) with corresponding tuples (u0, u1, . . . , uk) and

(w0, w1, . . . , wn), respectively, there is an edge u a−→ w if and only if one of the following holds:

(1) n = k, ui = wi for all 0 ≤ i ≤ k − 1, and (uk
a−→ wn) ∈ E(Γ); or

(2) n = k + 1, ui = wi for all 0 ≤ i ≤ k − 1, uk ∈ V0, and (1
a−→ wn) ∈ E(Γ).

Proof. Let v ∈ Tree(Γ, S). Then there exists a minimal k ≥ 0 such that v ∈ V (Treek(Γ, S)).
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Figure 5.4: A tree of copies of a square graph, with branch points everywhere except the root vertex (the only vertex of
degree 2). This graph is context-free (regardless of edge labels) as it has two distinct end-spaces; that of the root, and
that of either of the two vertices at distance 1 from the root. Both of these repeat infinitely often.

Hence, we will for all k ≥ 0 define a bijection ϕk from the set of vertices of Treek(Γ, S) to the
set of tuples of the above form of length at most k. This bijection will then extend to a bijection
ϕ from the set of vertices of Tree(Γ, S) of the desired form when taking the directed colimit.

If k = 0, then v ∈ V (Tree0(Γ)); this set is in bijective correspondence with V (Γ) by
definition, and we will define ϕ0 to be this bijection.

Assume, for strong induction, that ϕk is defined for all 0 ≤ k ≤ n for some n ≥ 0. Let
v ∈ Tree(Γ, S) be such that v ∈ V (Treen+1(Γ, S)) with n + 1 minimal. Since n + 1 is
minimal and 1 ̸∈ S, we have that there exists a unique un ∈ Vn such that v ∈ Γun

, and
furthermore since Γun

is a copy of Γ, there exists a vertex v′ ∈ V (Γ) uniquely determined by
v ∈ V (Γun

). By strong induction, we can find a unique n-tuple ϕn(un) representing un. We
then define ϕn+1(v) := (ϕn(un), v

′). In this resulting tuple, the first n entries will be chosen
as elements of V0, and the final will be any element of V (Γ), as needed. This completes the
claim concerning the vertices by induction.

Now, for the edges, it is clear that the only possible adjacent vertices are either such that
they belong to the same added copy of Γ; or one is an element of Vn for some n ≥ 0, and the
other is connected to the root of the copy of Γ attached to the former. But clearly, the first case
happens if and only if criterion (1) of the statement of the proposition holds; the second case
happens if and only if criterion (2) holds. This completes the proof.

Example 5.1.3. The above proposition gives an interpretation of Tree(Γ, S) as a “free” graph
with basisΓ; of course, the setS plays an important rôle in the construction, so this analogy only
works in full if VS is all of V (Γ)\{1}. For example, if Γ is a graph with three vertices {1, v1, v2}
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and two edges (1 a1−→ v1) and (1
a2−→ v2), then letting S = {v1, v2} we find that Tree(Γ, S) is

isomorphic to the right Cayley graph of the free monoid {a1, a2}∗ with generating set {a1, a2}.
The isomorphism is given by (vi1 , vi2 , . . . , vin) 7→ ai1ai2 · · · ain , where ij ∈ {1, 2} for all
1 ≤ j ≤ n. Under this isomorphism, the set Vk corresponds to the 2k+1 words over {a1, a2}
of length ≤ k + 1.

Indeed, we can generalise this to arbitrary free monoids as follows. Let A be a finite set,
enumerated as A = {a1, a2, . . . , an}. Consider the graph Γ below:

1

v0 v1

. . .

vn−1 vn

a1
a2 an−1

an

As Γ is finite, it is context-free. If we set

{Γ0,Γ1, . . . ,Γn,Γn+1} = {Γ(1),Γ(v0),Γ(v1), · · · ,Γ(vn)}

i.e. such that Γi = Γ(vi−1) for 1 ≤ i ≤ n + 1, then, with this choice, F (Γ) = V (Γ), as vi
is a frontier point of Γi+1, and 1 is (obviously) a frontier point of Γ(1). Thus F (Γ) is a set of
representatives of frontier points. Let S = {v1, . . . , vn}. Then S is a set of attachment points,
and the graph Tree(Γ, S) will be the infinite n-regular graph

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

1

. . .
a1

a2 an−1
an

...
...

...
...

(vn, vn)(v2, vn)(v1, v1)

(v1) (v2) (vn)

(v2, vn, vn) (vn, vn, vn)(v1, v1, v1)

where the edge labels and directions repeat in each layer as in the first layer. We have placed
labels adjacent to some vertices to indicate the tuple associated to themby Proposition 5.1.2. △

Because of this proposition, wewill often consider this above prescribed bijection as invisible,
i.e. we will say that vertices of Tree(Γ, S) with S ̸= ∅ are equal to a tuple of elements of the
above prescribed form. A natural definition in light of the proposition is the following.

Definition 5.1.4. The depth function d : V (Tree(Γ, S))→ N is defined for v ∈ V (Tree(Γ, S))
as follows: if (u0, u1, . . . , uk) is the tuple associated to v by Proposition 5.1.2, then d(v) := k.

Alternatively, d(v) is the least integer n such that v ∈ V (Treen(Γ, S)). We note that the
edge case, and indeed the base cases for many inductive arguments on the depth, that d(u) = 0

for all u ∈ V (Γ), where we canonically identify u with the 1-tuple (u). In particular, d(1) = 0.
We are now ready to show the proposition which is the main reason for using trees of copies.
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Proposition 5.1.5. If Γ is context-free and S is a set of attachment points, then Tree(Γ, S) is
context-free.

Proof. Assume that Γ is context-free. Wemay then without loss of generality assume S is finite.
If S is empty, then Tree(Γ, S) = Tree(Γ,∅) = Γ, and there is nothing to show. Hence, assume
thatS is non-empty. Since 1 ̸∈ S, it is clear that Tree(Γ, S) has bounded degree, as every vertex
has a copy of Γ attached at most once. For ease of notation, we will denote T := Tree(Γ, S)
and, for every k ≥ 0, let Tk := Treek(Γ, S). We will now show that for any v ∈ V (T ) there
exists v′ ∈ V (T0) such that T (v) ∼ T (v′).

To establish this claim, let v ∈ V (Tree(Γ, S)) be any vertex. Let n = d(v). If n = 0, then we
may take v′ = v, and there is nothing to show. Hence, assume that n > 0. By Proposition 5.1.2,
there exists a unique tuple (u0, u1, . . . , un) with ui ∈ V0 for 0 ≤ i < n, and un ∈ V (Γ). We
claim that we can take v′ = un.

First, note that v belongs to a copy Γun−1 of Γ with a labelled graph isomorphism
ϕ : Γun−1 → Γ taking v to un, where ϕ is simply the identity mapping. This isomorphism
hence extends to an end-isomorphism ϕ′ : Γun−1(v) → Γ(un). Since all walks in Tree(Γ, S)
from 1 to vertices w ∈ V (Γun−1

) must pass through un−1, applying Proposition 5.1.2 to such
w, the tuple corresponding to w must be (u0, u1, . . . , un−1, wn) for some wn ∈ V (Γ). In
particular, if u′ denotes the vertex corresponding to (u0, u1, . . . , un−1), then

|w|Tree(Γ,S) = |u′|Tree(Γ,S) + |wn|Γ.

In particular, our end-isomorphism ϕ′ can be extended to an end-isomorphism ϕ′′ between the
embedded Γun−1

(v) and Γ(un) inside the graph Tree(Γ, S), where Γ is now identified with
the canonically embedded copy of Γ inside Tree(Γ, S), i.e. Γ1.

We now extend this end-isomorphism one final time. If ws is a vertex of the embedded
Γun−1(v) such that Γun−1(ws) is end-isomorphic to Γun−1(x) for a vertex x ∈ ϕ−1(VS), then
Γ(ϕ′′(ws)) is end-isomorphic to Γ(x′) for some x′ ∈ VS , as S is a set of representatives of
frontier points. This is a key step. In particular, the second-level subgraphs of ws and ϕ′′(ws)

are isomorphic in T , as a copy of Γ is attached to both vertices, and ϕ′′ is an end-isomorphism.
If ws is instead such that Γun−1

(ws) is end-isomorphic to Γun−1
(x) for a vertex x ̸∈ ϕ−1(VS),

then again the second-level subgraphs of ws and ϕ′′(ws) are isomorphic in T . Thus ϕ′′ extends
to an end-isomorphism ϕ∗ : T (v)→ T (un), and since certainly un ∈ T0, we have our claim.

To show the proposition it now suffices, as T0 = Γ is context-free, to show that if
u, v ∈ V (T0), then T (u) ∼ T (v). But this follows from a near-identical argument to the final
extension of the end-isomorphism above, as we only need to show that the end-isomorphism
sends elements of S to S, and elements not in S to elements not in S. Thus every vertex in T
has an end-isomorphism representative in T0, and there are only finitely many
end-isomorphism classes of such vertices; hence T is context-free.

We remark that this result could also be obtained by directly constructing a pushdown
automaton for Tree(Γ, S) from a pushdown automaton defining the graph Γ, by adding
certain new transitions to, informally speaking, the states corresponding to the vertices of VS .
We will revisit this idea in the proof of Lemma 5.4.7, so do not expand on it here.
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Corollary 5.1.6. Let Γ be a finite graph, and let S be any set of vertices with 1 ̸∈ S. Then

Tree(Γ, S) is context-free.

Proof. The only verification needed is that S is a set of attachment points; indeed, if V (Γ) =

{1, v1, . . . , vn}, then we can take as representatives of the end-isomorphism classes of Γ the
set {Γ(1),Γ(v1), . . . ,Γ(vn)}.71 As vi is a frontier point of Γ(vi), we have that F (Γ), being the
union of all frontier points of our choice of representatives, is all of V (Γ). Thus S ⊆ F (Γ) and
1 ̸∈ S; so S is a set of attachment points.

The tree of copies construction can be used to describe free algebraic structures, as we have
hinted at in Example 5.1.3. The following corollary of Proposition 5.1.5 is nearly trivial to
verify directly without using trees of copies, but it makes for a neat first application of the
construction.

Corollary 5.1.7. Let A be a finite set, and let A∗ be the free monoid on A. Then the right Cayley

graph ΓM (A∗, A) of A∗ is context-free.

Proof. As seen in Example 5.1.3, ΓM (A∗, A) is isomorphic to Tree(Γ, S) where Γ is a finite
graph, and where S is a set of attachment points. By Proposition 5.1.5, ΓM (A∗, A) is context-
free (indeed, it has exactly two end-isomorphism classes!).

Having understood these rather general constructions, we shall now begin an investigation
into the structure of the right Cayley graphs of special monoids. It will turn out that in some
cases, for a special monoidM , this can be realised as a tree of copies of a graph which is itself
a tree of copies of a graph U; and this latter graph U will be context-free if the group of units
ofM is a context-free group. This will reveal much geometric structure of special monoids.

71Of course, this set of representatives will likely contain some redundancies; for example, in
Example 5.1.3 all n of the Γ(vi) so chosen were pairwise end-isomorphic! We have not, however, at
any stage demanded of our representatives that they be unique, and hence this is no cause for concern.
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5.2 The right units of a special monoid

LetM = Mon⟨A | wi = 1(i ∈ I)⟩ be an arbitrary finitely presented special monoid. Recall that
U(M) denotes the group of units ofM . We will let Ur(M) denote the submonoid consisting of
all right invertible elements ofM . Let ∆ be, as usual, the set of minimal invertible pieces, and
let I be the set of non-empty prefixes of elements of∆. In particular∆ ⊆ I . We set Ic = I \I2.
Then Ic is a suffix code, i.e. Ic ∩ IcA+ = ∅.72 Note that∆ ⊆ Ic. Set Π = Ic \∆. Then Π is the
set of proper prefixes of pieces which are not a product of two (or more) prefixes. We will at
times make use of the following lemma, which we have essentially already mentioned in §1.3
as Proposition 1.3.2.

Lemma 5.2.1 (See [502, Proposition 2.3]). Let x, y ∈ A∗, and let u, v ∈ ∆∗ such that u ∗−→S v.

If xuy ∈ ∆∗, then xvy ∈ ∆∗.

We can use this to deduce the following lemma.

Lemma 5.2.2. Suppose ξ ∈ Π has a proper suffix equal to some y′ with y′ ∈ I∗ and y′ ∈ Irr(S).

Then there exists ξ′ ∈ Π such that ξ′ ≡ xy′ with x ∈ A∗.

Proof. Suppose ξ ≡ xy with y =M y′, and with x ∈ A+. Then y ∗−→S(M) y
′, as y′ ∈ Irr(S).

Let z ∈ A+ be such that ξz ∈ ∆. Then xyz ∈ ∆. By Lemma 5.2.1, as xyz ∈ ∆, we have
xy′z ∈ ∆∗. But it is easy to verify that xy′z has no proper non-empty invertible prefix, as xyz
does not; thus xy′z ∈ ∆. Hence ξ′ ≡ xy′ ∈ Π.

As a corollary, we find the following, as subwords of irreducible words are irreducible.

Lemma 5.2.3. Suppose ξ ∈ Π is irreducible and has a proper suffix equal to some y′ with y′ ∈ I∗.
Then ξ ≡ xy′ for some x ∈ A∗.

Let I0 = Irr(S) ∩ Ic. By [502, Lemma 4.1], for every right invertible word u ∈ A∗, there
exists an element v ∈ I∗0 with u =M v. Partition ∆ = ∆1 ∪∆2 ∪ · · · ∪∆κ, where δ1, δ2 ∈ ∆

are in the same set of the partition if and only if δ1 =M δ2. By [502, Lemma 4.2], for every
1 ≤ i ≤ κ, either there exists exactly one word in I0 ∩∆i, or else δ =M 1 for every δ ∈ ∆i.73

We then denote by ∆0 the set I0 ∩∆; if δ, δ′ ∈ ∆0, then δ =M δ′ if and only if δ ≡ δ′. Note
further that for every δ ∈ ∆0, we have δ ̸=M 1. Let Π0 = I0 \∆0. Then Π0 = Π ∩ Irr(S), so
Π0 consists of the irreducible proper non-empty prefixes of words from ∆.

Example 5.2.4. LetM = Mon⟨a, c, β, p, q | (pq)2 = 1, βpq = pqβ = 1, aβpc = 1⟩. Then as
β is an inverse of pq, it follows that β =M pq. It is not hard, e.g. by using a finite complete

72This condition of being a suffix code is misprinted in Zhang [502]; he states that a set of wordsX is a
suffix code if and only ifX∩XA∗ = ∅, which is absurd; for any set of wordsX , we haveX∩XA∗ = X .

73Note that [502, Lemma 4.2] by Zhang is false as stated. Indeed, in the proof of the same, Zhang states
“from the definition of ∆i, ∆i is closed under the induction ∗−→S” [502, p. 502], which is only true if
no word in ∆i is equal to 1. Indeed his statement fails even for the easy case of the bicyclic monoid
Mon⟨b, c | bc = 1⟩, where ∆ = ∆1 = {bc}. Clearly ∆1 is not closed under ∗−→S , as bc ∗−→S 1. Our
formulation is correct, as the remainder of Zhang’s proof is unaffected.
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rewriting system forM , to find

∆ = {β, pq, aβpc}, whence

I = {β, p, a, aβ, pq, aβp, aβpc}.

We can partition the pieces, as usual, into equivalence classes with respect to ∗←→M as

∆ = ∆1 ∪∆2 = {β, pq} ∪ {aβpc}.

Now Ic = I \ I2 = {β, p, a, pq, aβpc}; there is a rule pq ∗−→S β, so I0 = {β, p, a, aβpc}. Then
∆1 ∩ I0 = {β} and∆2 ∩ I0 = aβpc. Thus we find

∆0 = ∆ ∩ I0 = {β, aβpc},

Π0 = I0 \∆0 = {p, a}.

Thus, provided a solution to the word problem, finding ∆0,Π0, and I0 is not difficult. △

Now by [502, Lemma 4.1], every right invertible word inM is equal to some element from
(∆0 ∪Π0)

∗ = I∗0 . Hence, let u ∈ I∗0 be arbitrary. Then we can uniquely factorise

u ≡ u0ξ0u1ξ1 · · ·ukξk

where ui ∈ ∆∗
0 for every 0 ≤ i ≤ k, and ξi ∈ Π0 for 0 ≤ i < k, and ξk ∈ Π0∪{ε}. We say that

this factorisation u ≡ u0ξ0u1ξ1 · · ·ukξk is a normal form for the word u. Normal forms are not
unique (as there can be many different representations of e.g. each ui). However, they are close
to being unique, in the following sense; the statement of the proposition a restatement of [502,
Proposition 4.3 & Theorem 4.4].

Proposition 5.2.5. Let u ≡ u0ξ0u1ξ1 · · ·ukξk and u′ ≡ u′0ξ
′
0u

′
1ξ

′
1 · · ·u′nξ′n be normal forms.

Then u =M u′ if and only if n = k, ui =M u′i, and ξi ≡ ξ′i for every 0 ≤ i ≤ k.

Note the graphical equality between the ξi, rather than equality inM . One consequence of
this proposition is that given a right invertible word u ∈ A∗, and given two words u′, u′′ ∈ I∗0
representing u, we have that u′ and u′′ have the same length as an alternating product of words
from ∆0 and Π0.

Definition 5.2.6 (Depth of a right invertible word). The depth d(u) of a right invertible word
u ∈ A∗ is the unique k such that u =M u0ξ0 · · ·ukξk for some u0ξ0 · · ·ukξk ∈ I∗0 .

Note that ifM is a group, then d(u) = 0 for every u ∈ A∗. As the depth of a word as defined
above is the same for all words equal to each other inM , and as every right invertible element
ofM has a normal form, we may also extend the depth function to d : Ur(M)→ N and speak
of the depth of a right invertible element, which shall be convenient.

Stated otherwise, the depth d(u) of the right invertible u ∈ A∗ is the smallest k such that u
can be written as a product u0ξ0 · · ·ukξk where ui ∈ ∆∗ and ξi ∈ Π. Note that – quite unlike
the case of a normal form! – while in certain easy cases (such as the case when I2 ∩ I = ∅,
which we shall call the no-folding case presently) there is only one k such that u can be written
as a product u0ξ0 · · ·ukξk where ui ∈ ∆∗ and ξi ∈ Π∗. However, this is not always the case;
there may be many representations of different lengths even of a given word u ∈ I∗.
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Example 5.2.7. Let M = Mon⟨a, b | aab = 1⟩. Then ∆ = {aab}, I = {a, aa, aab}. In
particular U(M) ∼= 1. We have ∆0 = ∅ and I0 = {a}. Then a2 is right invertible, but we can
write is as

a2 ≡ (ε)(a)(ε)(a) ≡ u0ξ0u1ξ1

a2 ≡ (ε)(a2) ≡ u′0ξ′0
i.e. where u0 ≡ u1 ≡ u′0 ≡ ε ∈ ∆∗

0, ξ0 ≡ ξ1 ≡ a, and ξ′0 ≡ aa. The first form is a normal form,
whereas the second is not (as ξ′0 has a proper suffix in I); therefore d(a2) = 1. △

To deal with this potential increase in complextiy which can result from writing a word in
I∗ as a word over I∗0 , we shall, informally speaking, bound this increase; or, stated otherwise,
we shall introduce a bound on how long a representation of a given normal form can be in
terms of the length of that normal form. We define the prefix complexity constant Ω ofM to be
maxp∈Π |p|.

Example 5.2.8. LetM = Mon⟨a, b, c | babcb = 1⟩. Then∆ = {b, abc} and I = {b, a, ab, abc},
so Π = {a, ab} and Ω = maxp∈Π |p| = max{|a|, |ab|} = 2. △

The reason for the name complexity constant are the following two results.

Lemma 5.2.9. Let u ≡ u0ξ0 · · ·ukξk ∈ I∗0 , and let a ∈ A. Let k′ = max(0, k − Ω). If ua is

right invertible, then a normal form of ua is

(u0ξ0 · · ·uk′−1ξk′−1)u
′

where u′ ∈ I∗0 is a normal form of uk′ξk′ · · ·ukξka. Note that d(u′) ≤ Ω.

Proof. As ua is right invertible, we can rewrite it to an element of I∗0 using S. We may assume
without loss of generality that u is irreducible modulo S. Suppose then that ua ∗−→S w for some
w ∈ I∗0 . If a is not irreducible mod S, then either there exists some letter b ∈ A such that b is
irreducible mod S and a =M b, or else a =M 1. In the latter case, u =M ua, in which case the
statement is vacuously true.

Thus, assume a is irreducible. As u and a are irreducible, it follows by [505, Theorem 2.2(2)]
that either ua ≡ w, or else ua −→S w. If ua ≡ w, then ua ∈ I∗0 . Thus we can uniquely
factor ua into words from I0 from the left; it is then clear that either ukξka ∈ ∆∗

0, or else
ξka ∈ Π0. In either case, the claim clearly holds. Suppose instead that ua −→S w, say via an
application of the rule (ℓ, r) ∈ S. As u and a are irreducible, the specified occurrence of ℓ in ua
must straddle the boundary between u and a; thus, we must have ua ≡ vℓ for some v ∈ A∗.
Suppose ℓ ≡ ℓ0ℓ1 · · · ℓs for some s ≥ 0 with ℓi ∈ ∆ for all 0 ≤ i ≤ s. Consider the specified
occurrence of ℓ0 in ua. As ∆ is a biprefix code, we must have ℓ0 ≡ ξiui+1 · · ·ujξj for some
0 ≤ i ≤ j ≤ k, or else ℓ0 ≡ ℓ ≡ ξiui+1ξi+1 · · ·ukξka. The former case is impossible, as then
ξj is a proper suffix of the invertible word ℓ0, and hence left invertible; but ξj is right invertible,
so it is invertible, a contradiction to ξj ∈ Π0.

Thus we have the latter case, i.e. ℓ0 ≡ ξiui+1ξi+1 · · ·ukξka. Now ℓ0 ∈ ∆, so |ℓ0| ≤ Ω + 1.
As |ξj | ≥ 1 for all 0 ≤ j ≤ k, we hence have

Ω+ 1 ≥ |ℓ0| ≥
k∑

j=i

|ξk| ≥
k∑

j=i

1 = k − i+ 1.
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Hence k − i ≤ Ω, so i ≥ k − Ω. As i ≥ 0, we have i ≥ k′. Hence, we have

w ≡ u0ξ0u1ξ1 · · ·uk′−1ξk′−1(uk′ξk′ · · ·ui−1ξi−1r) ∈ I∗0 .

Now, factoring w from the left over the suffix code I0, we hence find that a normal form for w
begins with u0ξ0u1ξ1 · · ·uk′−1ξk′−1 and ends with a normal form for uk′ξk′ · · ·ui−1ξi−1r; as
we have

uk′ξk′ · · ·ui−1ξi−1r =M uk′ξk′ · · ·ui−1ξi−1ℓ ≡ uk′ξk′ · · ·ukξka

this is what was to be shown.

Thus, informally speaking, given a normal form u ∈ I∗0 , then to understand ua for a single
letter a ∈ A, it suffices to understand what right multiplication by a does to the last Ω
components of the alternating product. This gives a significant degree of uniformity to the
right invertible elements, which we shall exploit when describing the Schützenberger graph of
1. The following proposition is not distantly related.

Proposition 5.2.10. Let u ≡ u0ζ0u1ζ1 · · ·ukζk with ui ∈ ∆∗ and ζi ∈ Π for 0 ≤ i ≤ k, except
ζk ∈ {ε} ∪Π. Then u has depth less than (k + 1)Ω.

Proof. The proof is by induction on k. Suppose k = 0, and u ≡ u0ζ0. Suppose the depth of u
is d(u) = n, and let v0ξ0v1ξ1 · · · vnξn be a normal form for u. It follows that u0 =M v0, and so

ζ0 =M ξ0v1ξ1 · · · vnξn.

As v0ξ0v1ξ1 · · · vnξn is a normal form, then it is obvious that the maximal invertible factors of
this word are precisely the vi for 0 ≤ i ≤ n, together with the non-prefix non-suffix maximal
invertible subwords of the ξi. It follows by the normal form lemma that ζ0 contains a subword
graphically equal to the first letter (and the last letter) of ξi for every 0 ≤ i ≤ n, and these
subwords are pairwise non-overlapping. As each of the ξi is non-empty, we have |ξi| ≥ 1, so

n+ 1 = (n+ 1) · 1 ≤
n∑

i=0

|ξi| ≤ |ζ0| ≤ max
p∈Π
|p| = Ω,

and we have n ≤ (0+1)Ω, as desired. Suppose for induction that the claim is true for all values
of k less than ℓ for some ℓ > 0, and suppose we have k = ℓ. Let v ≡ v0ξ0v1ξ1 · · · vnξn be a
normal form for u. Clearly, if

v′ ≡ v′0ξ′0 · · · v′n′ξ′n′

is a normal form for u0ζ0 · · ·uk−1ζk−1 and ζk−1 ̸≡ ε, and

v′′ ≡ v′′0 ξ′′0 · · · v′′n′′ξ′n′′

is a normal form for ukζk , then v′v′′ is a normal form for u. Hence n = n′+n′′. By the inductive
hypothesis, n′ ≤ kΩ and n′′ ≤ Ω. Thus n ≤ (k + 1)Ω, and we are done by induction.

In particular, given some u ≡ u0 ∈ ∆∗, there is no product of the form v ≡ v0ζ0v1ζ1 · · · vnζn
with ui ∈ ∆∗ and ζj ∈ Π with n > Ω such that u =M v. This can be viewed as a type of
distortion measure for the embedding of the group of units inside M . In particular, the map
which maps an element of U(M) to its normal form is a quasi-isometric embedding of U(M)

intoM . We shall now seek to understand the graphical representation of the group of units.
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5.3 The Schützenberger graph of the units

Throughout this section, fix a finitely presented special monoidM = Mon⟨A | wi = 1(i ∈ I)⟩.
We will make some minor modifications to our notation used in e.g. Chapter 3, for reasons that
will become clear. First, let π : A∗ → M denote the canonical surjective homomorphism. Let
B = {βδ1 , βδ2 , . . . } be a (finite) set of symbols in bijective correspondence with the set of
pieces ∆ ofM via the bijection ϕB : δi 7→ βδi . For a relation word wi, define the relations

Bc(wi) = {(W = 1) |W is a cyclic permutation of ϕB(wi)}.

Thus, for the easy example of M = Mon⟨a, b | abca = 1⟩, we have, by Adian’s algorithm,
∆ = {a, bc}, and if B = {βa, βbc}, then Bc(abca) = {βaβaβbc, βaβbcβa, βbcβaβa}. Let
UB(M) denote the monoid defined by the monoid presentation

Mon⟨B | {βδi = βδj whenever δi =M δj for some 1 ≤ i < j} ∪
⋃
i∈I

Bc(wi)⟩.

It follows from §1.3 that UB(M) ∼= U(M). We note that we can easily change the above
monoid presentation to a special monoid presentation, as every βδi is invertible in UB(M). Let
ΓM (UB(M), B) denote the right monoid Cayley graph ofU(M)with respect to the generating
set B, and let ΓG(UB(M), B) denote the group Cayley graph of U(M) with respect to the
(group) generating set B. These two graphs are very closely related. Indeed, recall that the
graph lud(Γ) is obtained from the labelled graph Γ by replacing every edge u a−→ v by the two
edges u a−→ v and v ā−→ u, where a ∈ A for the label alphabet A of Γ, and A is a set in bijective
correspondence with A via a 7→ a and with A ∩ A = ∅. We have the following general and
essentially obvious claim, by identifying every label a with the label a−1:

Proposition 5.3.1. Let G be a group generated as a monoid by the set A. Then there is an

isomorphism of labelled, rooted graphs lud(ΓM (G,A)) ∼= ΓG(G,A).

We shall now work towards defining a new graph U from the monoid Cayley graph
ΓM (UB(M), B), and we will do so in a way to ensure the existence of a properly
discontinuous and co-compact action of U(M) on U. By a straightforward application of the
Svarc̆-Milnor lemma, we will thus be able to conclude that the graph U is quasi-isometric to
the Cayley graph of U(M) (as undirected graphs). Along the way, we will also capture many
of the algebraic properties of U(M) in the algebraic properties of U. This graph U will be
called the Schützenberger graph of the units of M , for reasons that will become clear.

Starting withΓM (UB(M), B), we first replace every edge labelled βδ for δ ∈ ∆ by a directed
path of length n = |δ| with path label δ, as indicated below (the reason for the relative sizes of
the vertices shall be made clear presently):

u vβδ

· · ·

(δ ≡ a1a2 · · · an)
u v

a1 a2 an−1 an
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We denote the resulting graph U0, root it at the vertex 1 naturally corresponding to 1, and
note that its labelling alphabet is now A. For example, if M = Mon⟨a, b | (ab)3 = 1⟩, then
UB(M) = Mon⟨βab | β3

ab = 1⟩, and the graphs ΓM (UB(M), B) resp. U0 for this example are:

1

βab β2
ab

βab

βab

βab
resp.

1
a

b

a b

a

b

Some subset of the vertices of U0 will have been present already in ΓM (UB(M), B) – we call
this subset the locally invertible vertices. In the above example of the monoidM = Mon⟨a, b |
(ab)3 = 1⟩, the three enlarged vertices are the locally invertible vertices. Every vertex of U0

is locally invertible if and only if every piece in ∆ has length 1, i.e. if and only if M is a free
product of a free monoid by a group. For every vertex v of U0, there exists a unique locally
invertible vertex ṽ such that v is reachable from ṽ by a path with path label in Π = I \ ∆.
This follows directly from the fact that no non-empty prefix of an element of ∆ appears as a
proper prefix of another element of ∆. We then write i(v) := ṽ, letting i : V (U0) → V (U0)

denote the function which, on input v ∈ V (U0), returns the locally invertible vertex associated

to v. Note that the prescribed path from i(v) to v is unique; that is, if one considers (slightly
informally) the image of the out-neighbourhood of a single vertex of ΓM (UB(M), B) in U0,
then the resulting graph is a directed tree rooted at the image of the chosen vertex, and every
other vertex in this tree can be reached by a unique path from the root.74

Recall that Π is the set of non-empty prefixes of elements from ∆. Denote by Πε the set
Π ∪ {ε}. Let similarly ∆ε denote ∆ ∪ {ε}. Then the set of vertices of U0 is in bijective
correspondence with the set of all triples

(m, ξ, δ) ∈ U(M)×Πε ×∆ε,

with the property that ξ is a proper prefix of δ, via the bijection: a vertex v of U0 is mapped to
the triple (im(v), ξ, δ), where im(v) is the vertex of ΓM (UB(M), B) corresponding uniquely
to the locally invertible vertex i(v); and ξ is the path label of the unique path from i(v) to v;
and δ is either ε, if i(v) = v, or else is the unique piece which, when subdivided, gave rise to
the path of which the path from i(v) to v is an initial segment. The locally invertible vertices
are then precisely those associated to triples of the form (m, ε, ε). We will henceforth not make
a distinction between a vertex and the triple associated to it. We remark that the information
contained in ξ and δ cannot be condensed into just providing ξ, as ξ may be a prefix of many
different pieces. We refer the reader to Figure 5.5 for an example of this bijection.

As U(M) acts vertex-transitively on ΓM (UB(M), B), it clearly acts also on U0 via the
action m.(m′, ξ, δ) = (mm′, ξ, δ). This action is vertex-transitive on the locally invertible
vertices. We will now define an equivalence relation ∼M on U0. This equivalence relation

74Such a graph is called an arborescence by Tutte [480].
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(1, ε, ε)

(1, a, abc) (1, ab, abc)

(1, a, ac)

a

b

c

a c

bac

babc

Figure 5.5: Left: The Cayley graph ΓM (UB(M), B) when M = Mon⟨a, b, c | abc = 1, ac = 1⟩. Right: U0 of the
same example.

will, informally speaking, capture the fact that some vertices of U0 represent “the same
elements of M”; indeed, one may initially note that the locally invertible vertices can be
considered as representing distinct elements of U(M). We define ∼M on the vertices of U0 by

(m1, ξ, ξ
′) ∼M (m2, ζ, ζ

′) ⇐⇒ m1 · π(ξ) = m2 · π(ζ)

Note, for example, that in Figure 5.5, we have that the vertices labelled by (1, a, abc) and
(1, a, ac) satisfy (1, a, abc) ∼M (1, a, ac).

It turns out that ∼M -equivalence is highly controlled and is uniform throughout U0. In
order to apply rewriting techniques to demonstrate this, we will introduce a piece of notation
for the vertices of U0. If u = (m1, ξ, δ) ∈ V (U0), then let u0 ∈ ∆∗ be any word over the
(presentation) pieces such that π(u0) = m1. We then say that a literal form of u is the triple
(u0, ξ, δ). Of course, literal forms are not unique (there are, in general, infinitely many words
over ∆∗ representing a given invertible element). Note that any literal form of a vertex is
an element of A∗ × A∗ × A∗, whereas the vertices of U0 are elements of M × A∗ × A∗. If
u, v ∈ V (U0) have literal forms (u0, ξ, δ) and (v0, ζ, δ

′), respectively, then we have that

u ∼M v ⇐⇒ u0ξ =M v0ζ.

The following proposition shows that to consider∼M -equivalence of two triples is to consider
equality in U(M) and equality of the second element of the triples inM . In particular, as we
shall see, the third element of the triple becomes entirely redundant in the context of ∼M .

Proposition 5.3.2. Let u, v ∈ V (U0) with u = (m1, ξ, δ1) and v = (m2, ζ, δ2). Then

u ∼M v ⇐⇒ m1 = m2 and ξ =M ζ

In particular, if u and v are distinct vertices such that u ∼M v, then neither u nor v are locally

invertible.

Proof. Let u, v have literal forms (u0, ξ, δ1) and (v0, ζ, δ2), respectively. We will begin by
proving the biconditional.

( ⇐= ) If m1 = m2, then u0 =M v0. Consequently if also ξ =M ζ , then we must have
u0ξ =M v0ζ . Hence u ∼M v.

( =⇒ ) We make use of the normal form lemma, i.e. Lemma 1.3.8. Assume for the
contrapositive that u0 ̸=M v0 or ξ ̸=M ζ , and assume for contradiction that u0ξ =M v0ζ . Let
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1

Figure 5.6: A portion of the graph U′ for the monoid M = Mon⟨a, b, c | a(bc)a = 1⟩. Note that U(M) ∼= Z.
In the graph, horizontal movement corresponds to reading bc, whereas vertical and diagonal movement corresponds
to reading a. The gray and enlarged vertices are the locally invertible vertices, and the small vertical dashes are the
non-locally invertible vertices.

v−1
0 be any word representing the inverse of m2 in M . Then v−1

0 u0ξ =M ζ . Now no
non-empty maximal invertible factor of v−1

0 u0ξ can overlap with ξ, as otherwise some
non-empty prefix of ξ would be left invertible and hence also invertible, contradicting the
minimality of elements of ∆. Hence any factorisation of u0ξ into maximal invertible factors
must contain v−1

0 u0 as the first maximal invertible factor. Analogously, any factorisation of ζ
must begin with an empty maximal invertible factor. Thus, by the normal form lemma, we
have that v−1

0 u0 =M 1, i.e. u0 =M v0. Hence, by our assumption, we must have had that
ξ ̸=M ζ . But

ξ =M 1 · ξ = v−1
0 u0ξ =M v−1

0 v0ζ =M ζ,

a contradiction. This proves the biconditional.
We now prove the particular consequence. Let u, v be two distinct vertices with u ∼M v. If

one of u and v is locally invertible, say (without loss of generality) u, then ξ ≡ ε, so ξ =M 1.
Thus ζ =M 1 by the above biconditional. In particular ζ is invertible. As ζ is a proper prefix
of δ2 and as δ2 is a minimal word or empty, it follows that ζ is necessarily empty; hence v is
locally invertible. By symmetry, u is locally invertible if and only if v is. Suppose then that u
and v are distinct and u ∼M v; if either of the two were locally invertible, then both would be,
in which case u = (m1, ε, ε) = (m2, ε, ε) = v, which is a contradiction to the fact that u and
v are distinct. Thus neither of u, v are locally invertible.

We set U′ := U0/ ∼M . The vertices of U′ are thus equivalence classes under ∼M of pairs
(m, ξ) for m ∈ U(M) and ξ ∈ Πε (proper prefixes of pieces), where we have an equivalence
(m1, ξ) ∼M (m2, ζ) if and only ifm1π(ξ) = m2π(ζ), which by Proposition 5.3.2 is equivalent
to m1 = m2 and π(ξ) = π(ζ). We will denote vertices of U′ using the notation [m, ξ] :=

[(m, ξ)]∼M
for notational brevity. Again, as in the case of U0, to enable the use of rewriting

techniques, we will define a literal form of a vertex [m, ξ] to be an expression of the form [u0; ξ],
where u0 ∈ ∆∗ is any word such that π(u0) = m. The use of a semicolon in writing the pair
[u0; ξ] is to emphasise that it is not the same object as [m, ξ]. Indeed, note that u0 ∈ ∆∗ ⊆ A∗

whilem ∈ U(M) ⊆M .
Under stronger assumptions on the presentations involved, the graph U′ would already be

an induced subgraph of the Cayley graph of M via the map [m, ξ] 7→ m · π(ξ).75 In general,

75This happens, for example, if the set of proper non-empty prefixesΠ of pieces forms a code as a subset
of A∗. This is the “no-folding case”.
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however, certain edges will be “missing”, in the sense that although the aforementioned map
is injective, it need not be faithful.76 The goal of this subsection is then to describe what edges
are “missing” from U′ in this sense, and that these are evenly distributed across U′. In fact, this
description is rather simple, and follows from the normal form lemma.

Proposition 5.3.3. Let u0, v0 ∈ A∗ be invertible, and ξ, ζ be proper prefixes of pieces. Let a ∈ A
be a letter. Then (u0ξ) · a =M v0ζ if and only if exactly one of the following occurs:

(1) ζ ≡ ε, there is some piece δ ∈ ∆ such that ξ · a =M δ, and u0 · δ =M v0.

(2) ζ ̸≡ ε, ξ · a =M ζ , and u0 =M v0.

Proof. (⇐= ) In either case (1) or (2), it is clear that (u0ξ) · a =M v0ζ .
( =⇒ )We know that we have the equality

u0ξa =M v0ζ

and, seeking to use the normal form lemma (Lemma 1.3.8), we will first detect the maximal
invertible factors. The left-most maximal invertible factor in the right-hand side is v0, as if this
invertible factor were to extend into ζ , then some prefix p of ζ will be a suffix of an invertible
factor. If this prefix p were empty, then ζ ≡ ε, and we have that both sides are invertible;
thus we are in case (1) above after observing that an overlap argument yields that ξ · a cannot
possibly be congruent to a product of more than one piece. Now, if this prefix p were instead
non-empty, then by another overlap argument we have a contradiction. Thus, in this case, the
left-most maximal invertible factor of the right-hand side must be v0. As a consequence, ζ is
not invertible, and in particular ζ ̸≡ ε; as ζ is a non-empty prefix of a piece, it follows that
v0ζ is not invertible, so neither is u0ξa. Applying the same argument to u0ξa, we see that u0
must thus be the left-most maximal invertible factor of u0ξa, using the fact that u0ξa is not
invertible. By the normal form lemma, we hence have u0 =M v0 and ξ · a =M ζ , and we are
in case (2).

Definition 5.3.4. [The Schützenberger graph of the units] We define U = (V (U), E(U)) to
be the (labelled, directed) graph obtained from U′ in the following way: if there exist prefixes
ξ, ζ ∈ Πε and a ∈ A such that ξ · a =M ζ , then for all m ∈ U(M) we add an edge [m, ξ] a−→
[m, ζ] if one does not already exist. We call U the Schützenberger graph of the units of M .

Note that such an edge as is added to U′ in the above definition exists for some m ∈ U(M),
if and only if it exists for anym ∈ U(M), by case (2) of Proposition 5.3.3, and is hence added in
all these cases. Furthermore, if ξ and ζ are both empty, then a is congruent to a piece δ. Hence,
as a is a single letter we have a ∈ ∆, so as u0 · a =M v0 it follows that there is already an edge

76We remark that such behaviour ultimately comes down to being a consequence of the fact that
whereas ∆Π ∩ Π = ∅ by overlaps, it might happen that Π∆ ∩ Π ̸= ∅. That is, there can be pieces
appearing as proper subwords of other pieces; this situation, which caused such difficulties in Chapter 3,
again rears its ugly head. It would seem that most of the difficulties arising for special monoids is caused
by this behaviour, which reiterates just how tantalising is the lack of any counterexample to the possibility
that every special monoid admits a presentation with no pieces appearing as proper subwords of other
pieces. If there were no such counterexample, then all proofs in this chapter regarding special monoids
would be quite significantly simplified.
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1

Figure 5.7: An example of the missing edges added by Definition 5.3.4. This particular example comes from the monoid
M = Mon⟨a, b, c, d | b(abc)b = 1, bd = 1⟩. Horizontal movement corresponds to reading abc, whereas vertical and
diagonal movement both correspond to reading b. The added red edges correspond to reading d. We note that we have
omitted adding the loops corresponding to bd = 1 to each locally invertible vertex for ease of drawing.

[u0; ξ]
a−→ [v0; ζ]. Thus the added edges always either originate in or terminate in a non-locally

invertible vertex. We illustrate this in Figure 5.7.
For the following proposition, we recall the definition of R1 as the connected component

of the identity element in ΓM (M,A), and that a graph homomorphism ϕ : G → H is faithful
if ϕ(G) is an induced subgraph of H . Note that a faithful injective graph homomorphism is
equivalent to a full injective graph homomorphism, i.e. an injective graph homomorphism in
which ϕ(u) is adjacent to ϕ(v) if and only if u is adjacent to v. Furthermore, we recall that Π
is the set of proper prefixes of elements of ∆, and that Πε = Π ∪ {ε}.

Proposition 5.3.5. The map

ϕ : V (U)→ {m · π(ξ) |m ∈ U(M), ξ ∈ Πε} ⊆ V (R1)

[m, ξ] 7→ m · π(ξ)

extends to a faithful injective labelled graph homomorphism ϕ : U ↪→ R1. In other words, U

is isomorphic to the subgraph of R1 induced on the set of vertices of the form m · π(ξ), where
m ∈ U(M) and ξ ∈ Πε.

Proof. We set V0 := {m · π(ξ) |m ∈ U(M), ξ ∈ Πε}. It is clear that ϕ is injective on the set
of vertices, by definition of U′ as a quotient of U0 modulo ∼M -equivalence; for, ϕ([m, ξ]) =

ϕ([n, ζ]) impliesm · π(ξ) =M n · π(ζ), which is saying (m, ξ) ∼M (n, ζ), i.e. [m, ξ] = [n, ζ].
We first show ϕ is injective on the set of edges. Let u = [m1, ξ] and v = [m2, ζ] be arbitrary

vertices of U. If e = (u, a, v) is an edge of U then we will show that there is an edge inR1 from
ϕ(u) to ϕ(v) labelled by a, i.e. that ϕ(u) · π(a) = ϕ(v). Hence assume e = (u, a, v) is an edge
of U. Suppose u and v have literal forms [u0; ξ] and [v0; ζ], respectively. Then by definition
ϕ(u) = π(u0ξ) and ϕ(v) = π(v0ζ). Since e is an edge of U we must have that either ξ and ζ
are prefixes of some piece such that ξa ≡ ζ , in which case u0 =M v0, or a is the final letter of
a piece ξa, in which case v0 =M u0ξ · a. In either case, we have

u0ξ · a =M v0ζ

whence ϕ(u) · π(a) = ϕ(v), and we conclude that ϕ is an injective graph homomorphism.
To see that it is faithful, it suffices to note that if π(u0ξ)

a−→ π(v0ζ) is an edge of R1, then
we are in exactly one of the cases (1) or (2) of Proposition 5.3.3. In case (1), then the edge
[m1, ξ]

a−→ [m2, ζ] is clearly present in U′ by construction of U′ from U0, and hence is also an
edge of U. In case (2), we have that [m1, ξ]

a−→ [m2, ζ] is an edge added to U by Definition 5.3.4.
Thus, in both cases ϕ is faithful, and hence ϕ has all the desired properties.

As a convention, we will henceforth refer to elements of V (U) by specifying literal forms
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[u0; ξ], where u0 ∈ ∆∗ and ξ ∈ Πε. The construction of U guarantees that this specifies
precisely as much information as a pair [m, ξ], where m ∈ U(M). We will now turn towards
studying the properties of U as a graph with respect to the properties of the group of units
U(M). In particular, we will see that the context-freeness of U is closely connected to that of
U(M).

We will investigate the context-free properties of U. To begin, we will use the strong
symmetry exhibited by U with regards to the group action; this will allow us to borrow results
from group theory and apply them to this monoid setting. The group U(M) acts properly
discontinuously and transitively via left multiplication on ΓM (UB(M), B), and this action, as
we have already noted, hence extends to a properly discontinuous action of U(M) on U0.
Explicitly, this action is defined for m ∈ U(M) by setting m.[m′, ξ] = [mm′, ξ] for
[m′, ξ] ∈ V (U). As (m′, ξ′) ∼M (m′′, ξ′′) only if m′ =M m′′, in which case by the second
part of Proposition 5.3.2 this identification commutes with the action of U(M); and since the
addition of edges to U done by Definition 5.3.4 also commutes with this action by the
discussion following Definition 5.3.4, we hence have that the above action is a well-defined,
properly discontinuous action of U(M) on U. By considering the associated undirected and
unlabelled graphs ud(U) and ud(ΓM (UB(M), B)), we hence obtain the following by the
Svarc̆-Milnor lemma.

Lemma 5.3.6. There exists a quasi-isometry ud(ΓM (UB(M), B))
∼−→ ud(U). That is, the group

of units ofM is quasi-isometric to U.

If R(M) denotes the submonoid of right invertible elements ofM , then the lemma above is
well worth comparing with the following due to Garreta & Gray [157]; this sheds some light
on the rôle played by U in the context ofM .

Lemma 5.3.7 ([157]). There exists a quasi-isometry ud(ΓM (R(M), I0))
∼−→ ud(R1). That is,

the submonoid of right units ofM is quasi-isometric to R1.

We can now state the central theorem about the graph U. If U were replaced with the right
Cayley graph of a group, then the equivalence is already well-known. On the other hand, there
is generally no reason to expect that some similar statement need be true for general right
Cayley graphs of monoids.

Theorem 5.3.8. Let M be a finitely presented special monoid, with group of units U(M). Let

ΓM (UB(M), B) denote the right Cayley graph of UB(M) ∼= U(M), and let U be the

Schützenberger graph of the units ofM . Then the following are equivalent:

(1) U(M) is virtually free.

(2) ΓM (UB(M), B) is a context-free graph.

(3) ud(ΓM (UB(M), B)) is quasi-isometric to a tree.

(4) ud(U) is quasi-isometric to a tree.

(5) ud(U) has finite tree-width.
(6) U is a context-free graph.
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Proof. Let M = Mon⟨A | Ri = 1 (i ∈ I)⟩ be a finitely presented special monoid. We begin
by noting that it follows from e.g. [502] that the group of units of a finitely presented special
monoid is finitely generated, so we will throughout the proof assume that U(M) is finitely
generated.

(1 ⇐⇒ 2) A finitely generated group G is virtually free if and only if ΓG(G,S) is a
context-free graph for some (any) finite set S which generates G as a group; this is precisely
the statement of Theorem 2.9 of [363]. Thus, when additionallyS generatesG as amonoid, then
by Proposition 5.3.1, ΓG(G,S) is context-free if and only if ΓM (G,S) is context-free. Since B
generates U(M) as a monoid, we are done.

(1 ⇐⇒ 3)Agroup is virtually free if and only if its group Cayley graphwith respect to (any)
finite generating set is quasi-isometric to a tree; the forward implication is obvious, and the
converse is well-known, e.g. as Theorem 7.19 of [161]. Clearly, the undirected monoid Cayley
graph of a group is quasi-isometric to its group Cayley graph, and we have the equivalence.77

(3 =⇒ 4) Immediate by Lemma 5.3.6.
(4 =⇒ 5) We begin with a well-known proposition, which will serve as a black box: let Γ

and Γ′ be graphs such that Γ has finite tree-width and such that the degrees of Γ and Γ′ are both
bounded by some constant d. Then Proposition 5.17 of [139] says that if Γ′ is quasi-isometric to
Γ, then Γ′ has finite tree-width too. Hence if ud(U) is quasi-isometric to a tree, then as ud(U)
has bounded degree by finiteness of ∆, and as trees clearly have finite tree-width, we may use
the aforementioned proposition to conclude that ud(U) has finite tree-width.

(5 =⇒ 3) Assume that ud(U) has finite tree-width. Then as ud(U) has bounded degree and
is quasi-isometric to ud(ΓM (UB(M), B)), we have that ud(ΓM (UB(M), B)) also has finite
tree-width, again by the aforementioned Proposition. But ud(ΓM (UB(M), B)) is a vertex-
transitive connected graph of bounded degree. Hence by Theorem 3.10 of [269] we have that
ΓM (UB(M), B)) is context-free.

(5 ⇐⇒ 6) By Theorem 3.10 of [269], if Γ is a connected graph of bounded degree such that
Aut(Γ) has only finitely many orbits on Γ, then ud(Γ) having finite tree-width is equivalent
to Γ being context-free. Hence it suffices to show that U has only finitely many orbits under
automorphism, as U is connected and has bounded degree since ∆ is finite. But a co-compact
(and hence co-finite) action of U(M) by automorphisms on U was constructed earlier when
proving Lemma 5.3.6, and we are done.

Structurally, U has a rather close connection with H1, the Green’s H -class of the identity
element. First, note that H1 = U(M), and thus taking the subgraph of ΓM (M,A) induced
on H1 will in general produce a disconnected graph. To remedy this, for a word w ∈ A∗, let
Γw denote the subgraph of ΓM (M,A) induced on the set of vertices {π(w′) | ∃w′′ ∈ A∗, w ≡
w′w′′}. For example, if v ∈ A∗ is a word with π(v) = 1, then Γv is a walk from 1 to 1, visiting
a number of H -classes inside the R-class of 1. For a right invertible word v ∈ A∗, let Hv

(note that this is distinct from Hv) denote the set of all H -classes visited by Γv . Then, by a
77It may be noted that any context-free graph is quasi-isometric to a tree, i.e. we always have the

implication (6 =⇒ 4); this statement appears at the end of the proof of Lemma 8.4 of [106]. Thus, we
also have (6 =⇒ 5) for any graph with bounded degree.
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standard application of Green’s Lemma via the left action of U(M) on R1, it follows that U is
isomorphic to

⋃
δ∈∆Hδ . We note further that∆ is a finite set, and that

⋃
δ∈∆Hδ

∼=
⋃|∆|

i=1 H1,
yielding another proof of Lemma 5.3.6. Of course, this proof does not give any insight into the
structure of U, which we shall need presently.

We now give one more lemma regarding U which shall come in handy.

Lemma 5.3.9. For all w1, w2 ∈ V (U) we have

U(w1) ∼ U(w2) =⇒ (w1 locally invertible ⇐⇒ w2 locally invertible)

In particular any set F = F (U) consisting of representatives of all frontier points of U can be

written as a union IF ∪ NF of the locally invertible and not locally invertible representatives,

respectively, with IF ∩NF = ∅.

Proof. Assume that U(w1) ∼ U(w2). Assume that w1 is locally invertible and that w2 is not
locally invertible. Then in ud(U(w2)) there is a set of undirected non-trivial paths from w2 to a
locally invertible vertex passing through no other locally invertible vertices. Choose one such
path. This path will be labelled either by a suffix s of a piece, or by the involution of a prefix
p of a piece, denoted p̄. In either case, since w2 is not locally invertible, s or p, respectively,
will be proper. Since U(w1) ∼ U(w2), this same path can be found from w2 in ud(U(w2)). But
in the first case, s will now be readable from a locally invertible vertex and hence a prefix of a
piece; thus s is invertible, and since it is a proper suffix of a piece we have a contradiction. In
the second case, p̄ will be readable from a locally invertible vertex, and hence p is also a suffix
of a piece; thus p is invertible, and since it is a proper prefix of a piece we have a contradiction.
Thus w2 must be locally invertible. By symmetry, we have the claim.

Let now N be the set of all non-locally invertible vertices of U, and let I be the set of all
locally invertible vertices of U. Of course, N ∩ I = ∅. Then there exists by Lemma 5.3.9 a
set of representatives S ⊆ NF ⊂ F (U) such that VS = N . Fix such a set S, and call it N(U).
Of course, if every vertex is locally invertible, i.e. ifM is a free product of a free monoid by a
group, thenN(U) = ∅. We shall be interested in the graph Tree(U, N(U)) in certain situations.
This completes our description of U. Using this graph, which captures a great deal of graphical
information regarding the group of units ofM , we will now turn to a description of the right
units.
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5.4 The Schützenberger graph of 1

We will now describe the Schützenberger graph of 1 of a special monoid M . Recall that this
graph R1 is the subgraph of the right Cayley graph of M induced on the right invertible
elements. We shall begin by describing it in a very easy case; namely, the “no-folding case”. It
turns out that in this case R1 is isomorphic to a tree of copies of U. In other words, the fact
that there is an isomorphism Ur(M) ∼= U(M) ∗ F for some finitely generated free monoid F
is translated without any difficulty into graph-theoretic language. On the other hand, in the
more general case, which we shall deal with after the no-folding case, this translation is
harder. In part, this is because whereas the abstract generators of (say) the free monoid F are
entirely disjoint from those of U(M) in the above isomorphism, this is not the case when
passing to the graph-theoretic interpretation; indeed, in the Cayley graph, the abstract
generators of U(M) are instead translated to words in∆, and the abstract generators of F are
translated to prefixes of words from ∆. Thus there can be a significant amount of “overlap”
between these words. Some of this was dealt with in the construction of U; we now,
informally speaking, deal with the rest.

5.4.1 The no-folding case

Suppose I ∩ I2 = ∅. Then we say that M satisfies the no-folding condition. That is, if M
satisfies this condition, then no non-empty prefix of any piece appears as a proper subword of
any prefix. For example, the bicyclic monoid Mon⟨b, c | (bc) = 1⟩ and the rather simple monoid
Mon⟨a, b, c, d | (ab)(cd)(ab) = 1⟩ both satisfy the no-folding condition, but neither Mon⟨a, b |
(aab) = 1⟩ nor Mon⟨a, b | (b)(abc)(b) = 1⟩ satisfies the condition. Here the parentheses are
used to indicate the factorisation of the defining relations into minimal invertible pieces, as
provided by Adian’s overlap algorithm. We shall see that the no-folding condition makes it
exceptionally easy to prove various graphs (including the right Cayley graphs) related to M
are context-free. We shall, in this section, deal with this case in great detail, before extending
it to the general case by using pushdown automata. Indeed, this section can be regarded as a
“warm-up” for the general case.

Lemma 5.4.1. Suppose the no-folding condition holds for the special monoidM . Then no proper

subword of any piece is a piece. That is,M is given by an infix presentation.

Proof. Suppose not, and let δ1, δ2 ∈ ∆ are such that δ1 ≡ h1δ2h2, with h1, h2 ∈ A+. Then
h1, h1δ2 ∈ I . As δ2 ∈ I , this means h1δ2 ∈ I ∩ I2. This is a contradiction.

It is very easy to understand the structure of the Schützenberger graph of 1 in the no-folding
case. We write out the following lemma in a very explicit form, to ensure the reader that the
behaviour of “right multiplication by a single letter” is easily understood; in fact, we shall see
that it is so easily understood as to be simulatable into the graph of a pushdown automaton,
whose total states correspond to the normal forms.
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Lemma 5.4.2. Suppose the no-folding condition holds. Suppose u ∈ I∗c is a normal form

u ≡ u0ξ0u1ξ1 · · ·ukξk.

If u · a is right invertible for some letter a ∈ A, then exactly one of the following is true:

(i) ξka ∈ Π,

(ii) ξka ∈ ∆,

(iii) a ∈ Π, or

(iv) a ∈ ∆.

In case (i), the word

u0ξ0u1ξ1 · · ·ukξ′k,

where ξ′k ≡ ξka ∈ Π, is a normal form for ua; in case (ii) the word

u0ξ0u1ξ1 · · ·u′k,

where u′k ≡ ukξka ∈ ∆∗, is a normal form for ua; in case (iii) the word

u0ξ0u1ξ1 · · ·ukξkuk+1ξk+1,

where uk+1 ≡ ε, ξk+1 ≡ a, is a normal form for ua; and in case (iv) the word

u0ξ0u1ξ1 · · ·ukξkuk+1,

where uk+1 ≡ a, is a normal form for ua.

Proof. It is easy to see that I ∩ I2 = ∅ and∆ ∩Π = ∅ imply that the four cases are mutually
exclusive. We will factorise

u0ξ0u1ξ1 · · ·ukξka

into maximal invertible factors. Suppose that the maximal invertible factor which includes uk
as a subword were to be of the form

uiξiui+1ξi+1 · · ·uk−1ξk−1ukw
′

where 0 ≤ i < k and w′ is some prefix of ξka. However, as I ∩ I2 = ∅, it follows easily that
if uvw is invertible and v is invertible, then u and w are also invertible. Hence it follows that
uiξi is invertible, so ξi ≡ ε; a contradiction, as then

u0ξ0u1ξ1 · · ·uiui+1ξi+1 · · ·ukξk

would be normal form for u with depth k − 1. Thus there is no such i. Hence the maximal
invertible factor which includes uk as a subword is of the form ukw

′, where w′ is some prefix
of ξka. In particular w′ is invertible. As ξk has no non-empty invertible prefix, we either have
(a) w′ ≡ ξka is invertible; or (b) w′ ≡ ε.

Suppose we are in case (a). Then ξka
∗−→S u for some u ∈ ∆∗. Then as no non-empty

subword of ξk is invertible, and ξk contains no piece as a subword and is hence irreducible
modulo S, any application of a rule to ξkamust involve the entire word at once; hence ξka ∈ ∆.

Suppose we are in case (b). We then factorise ξka into maximal invertible factors. As ξk has
no invertible suffix, since the given factorisation of u is a normal form, we must have that any
maximal invertible subword of ξka containing a is a itself. But using S(M) one immediately
sees that any invertible letter is in ∆. Thus a ∈ ∆, and we are in case (iv). If no maximal



172 5. Context-free Graphs and Special Monoids

invertible subword of ξka contains a, then a is not invertible. Thus, when we find the normal
form for ua by factorising from the left, we find that either a ∈ Π, or else ξka ∈ Π. This is case
(iii) resp. (i).

From this lemma, we immediately deduce the following structural result.

Theorem 5.4.3. Suppose I ∩ I2 = ∅. Let u0ξ0u1ξ1 · · ·ukξk and v0ζ0v1ζ1 · · · vnζn be any

normal forms of right invertible elements inM . Then there is an edge

u0ξ0u1ξ1 · · ·ukξk
a−→ v0ζ0v1ζ1 · · · vnζn

if and only if one of the following holds:

(1) n = k, uiξi =M viζi for all 0 ≤ i ≤ k − 1, and ukξk · a =M vnζn; or

(2) n = k + 1, uiξi =M viζi for all 0 ≤ i ≤ k − 1, ξk ̸≡ ε, and a ≡ vnζn.

Proof. The reverse implication is immediate; for the forward implication, we apply Lemma 5.4.2
and notice that case (1) corresponds to cases (i) and (ii), and case (2) corresponds to cases (iii)
and (iv).

Hence, we immediately deduce the following by Proposition 5.1.2.

Corollary 5.4.4. Suppose I ∩ I2 = ∅. Then R1
∼= Tree(U, N(U)).

As a corollary, in the no-folding case, we have that if U is context-free, then so too is R1 by
Proposition 5.1.5. We shall now give an interpretation of this in terms of pushdown automata,
which will subsequently be the general approach used in the general case.

Suppose U(M) is virtually free, and let U be the graph constructed from the right Cayley
graph of U(M) as before. Then U is a context-free graph with label alphabet A. LetM =

M(U) = (Q,A,Z, δ, q0, z0, Q̂) be a pda such that Γ(M) ∼= U. Indeed, such a pda always
exists by the main theorem (Theorem 2.6) of [363]. We will make some assumptions onM,
which are easy to see do not lose us any generality:

(1) We will assume that no transition ofM changes the length of the stack by more than
one, cf. e.g. [363, Lemma 2.4(i)]).

(2) We will assume thatM never empties its stack except for when it is in the total state
(q0, ε), cf. e.g. [363, Lemma 2.4(ii)]).

(3) We will assume there is a distinguished symbol σ ∈ Z such that every transition from
q0 is of the form q0

a,ε7→σ−−−−→ q for some a ∈ A and q ∈ Q. Note that (2) ensures that this
means that every transition into q0 is of the form q

b,σ 7→ε−−−−→ q0 for some b ∈ A, q ∈ Q.
(4) Most importantly, we will assume that the set of statesQ is partitioned into two disjoint

setsQ = QI ∪QN such that every locally invertible vertex v of U corresponds to a total
state of the form (qI , ζ) with qI ∈ QI , and every non-locally invertible vertex v′ of U
corresponds to a total state of the form (qN , ζ

′) with qN ∈ QN .

Of course, for arbitrary partitions of the set of vertices of U, one can easily construct
examples which makes the analogous statement of (4) false. However, Lemma 5.3.9 guarantees
that for this particular choice of partition this is possible; and, as conditions (1)–(3) can always
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be satisfied for any given machine with only very basic modifications, the conditions can
easily be made simultaneously satisfied. One obvious consequence is also the following.

Lemma 5.4.5. IfM ⊢∗ (q, ζ), then ζ ≡ σζ ′ for some ζ ′ ∈ Z∗ or else ζ ≡ ε and q = q0.

We shall call QI resp. QN the locally invertible resp. the non-locally invertible states ofM.
Note that as a corollary of (1), (2), and (3), we have that all edges going out from the initial state
are of the form q0

a,x7→xz−−−−−→ q for some a ∈ A, x, z ∈ Z ∪ {ε}, and q ∈ Q, and all edges going
into the initial state are of the form q

a,x7→ε−−−−→ q0 for some a ∈ A, x ∈ Z ∪ {ε}, and q ∈ Q.
Furthermore, from (1) and (2) it follows that, in fact, we may assume without loss of generality
that all edges going out from the initial state are of the form q0

a,ε 7→z−−−−→ q, for edges of any other
form will never be utilised.

We will now describe an extension operation E1 onM and obtain a new pda E1(M). This
pda will completely describe the right invertible elements of M . First, for every non-locally
invertible state q ∈ QN , we add a new symbol zq to the stack alphabet. We then perform the
following two operations:

(1) For every non-locally invertible state q ∈ QN , and for every edge q0
a,ε 7→z−−−−→ q′, where

a ∈ A, z ∈ Z , and q′ ∈ Q, we add an edge q a,ε7→zq−−−−−→ q′.
(2) For every non-locally invertible state q ∈ QN , and for every edge q′ a,x7→ε−−−−→ q0, where

a ∈ A, x ∈ Z ∪ {ε}, and q′ ∈ Q, we add an edge q′ a,zq 7→ε−−−−−→ q.

This gives a new pdaE1(M). We call this pda the first expansion ofM. Let Zq =
⋃

q∈QN
zq

be the new symbols added, which, together with Z , forms the stack alphabet of E1(M). The
following lemma is then immediate by induction on the number of transitions.

Lemma 5.4.6. If ζ ∈ Z∗, then E1(M) ⊢∗ (q, ζ) if and only ifM ⊢∗ (q, ζ). Furthermore, for

ζ1, ζ2 ∈ Z∗, we have (q1, ζ1) ⊢∗E1(M) (q2, ζ2) if and only if (q1, ζ1) ⊢∗M (q2, ζ2).

Thus the set of total states of E1(M) contains the set of total states ofM, and furthermore
the subgraph of Γ(E1(M)) induced on the total states ofM is isomorphic to Γ(M); but this
latter graph is – by definition – isomorphic to U. We will let [q0, ζ], for q0 ∈ Q and ζ ∈
Z∗, denote the vertex of U corresponding, under this isomorphism, to the total state (q0, ζ) of
E1(M).

Lemma 5.4.7. Suppose I ∩ I2 = ∅. Then Γ(E1(M)) ∼= Tree(U, N(U)).

Proof. Let (q0, ζ) be some total state ofE1(M). Then as ζ ∈ (Z∪Zq)
∗, andZ∩Zq = ∅, either

ζ ∈ Z∗, or else we can point out the last occurrence in ζ of a symbol fromZq , say as ζ ≡ ζ0znζ1,
where ζ0 ∈ (Z ∪ Zq)

∗, ζ1 ∈ Z∗, and zn ∈ Zq corresponding to the non-locally invertible state
qn ∈ QN . We define a map φ : Γ(E1(M))→ Tree(U, N(U)) inductively defined as:

φ(q, ζ) =

([q, ζ]), if ζ ∈ Z∗

φ(qn, ζ0) · ([q, σζ1]) otherwise,
where · denotes concatenation of sequences. We will prove by induction on k ≥ 0 that
Treek(U, N(U)) is isomorphic to subgraph of Γ(E1(M)) induced on the set of total states
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whose stack contains at most k occurrences of symbols from Zq , via the above map. By
passing to direct limits, this will yield a proof of the lemma. Let, for ease of notation, Sk

denote the set of total states of E1(M) whose stack contains at most k occurrences of
symbols from Zq .

If k = 0, then

Sk : = {(q, ζ) | (q, ζ) is a total state of E1(M), ζ ∈ Z∗}

= {(q, ζ) | (q, ζ) is a total state ofM, ζ ∈ Z∗}

by Lemma 5.4.6. But this latter set is, by definition, V (Γ(M)). As, again by definition, Γ(M)

is is isomorphic to U via the map (q, ζ) 7→ [q, ζ], we are done.
Suppose k > 0 and that the claim is true for all 0 ≤ i < k. Let v ∈ V (Treek(U, N(U))) \

V (Treek−1(U, N(U))), letUv denote the unique copy ofUwhich v is a vertex of, and let vk−1 ∈
V (Treek−1(U, N(U)))∩Vk−1 be the branch point onto which Uv is attached. Now v ̸= 1Uv , as
otherwise v ∈ V (Treek−1(U, N(U))). Therefore, we have v = (v0, v1, . . . , vk−1, vk), where
vi ∈ VN(U) for 0 ≤ i < k and vk ∈ V (U) \ {1U}. Let (q, ζ) be the (uniquely determined)
total state of Γ(M) corresponding to vk , i.e. (q, ζ) = φ−1(vk) and [q, ζ] = vk . Then, by our
assumption, it follows from vk ̸= 1U that ζ ̸≡ ε and q ̸= q0. Furthermore, of course ζ ∈ Z∗.
Now as (q, ζ) is a total state ofM, we haveM ⊢∗ (q, ζ), so there is a sequence of transitions

(q0, ε)
a0,ε 7→σ−−−−−→ (q1, z) −→ · · · −→ · · · (qj , yj)

am,wj 7→w′
j−−−−−−−→ (q, ζ), (5.4.1)

of minimal length, where the ai,wi 7→w′
i−−−−−−→ denotes arbitrary transitions inM, yi ∈ Z∗ for 0 ≤

i ≤ j, and σ ∈ Z is the distinguished single stack symbol from our assumptions on the pda.
Furthermore, by our assumption on the pda, every yi begins with the letter σ ∈ Z , as otherwise
the stack would have been emptied, and we would have thus revisited (q0, ε), contradicting the
minimality of the sequence. Write yi ≡ σy′i for every 0 ≤ i ≤ j, and ζ ≡ σζi.

Now as (v0, v1, . . . , vk−1) is a vertex of Treek−1(U, N(U)) it follows by the inductive
hypothesis that φ−1(v0, v1, . . . , vk−1) is a uniquely defined total state in Sk−1. Let (q′, ξ)
denote this total state, where q′ ∈ Q and ξ ∈ (Z ∪ Zn)

∗. As vk−1 is an attachment point, i.e.
vk−1 ∈ VN(U), we have q′ ∈ QN . Hence, by replacing the first transition in the above
sequence (5.4.1) by one of the edges added in the first operation of the definition of E1(M),
we find the following sequence of transitions in E1(M):

(q′, ξ)
a0,ε 7→zq′−−−−−−→ (q1, ξz

′
q) −→ · · · −→ · · · (qj , ξzq′y′j)

am,wj 7→w′
j−−−−−−−→ (q, ξzq′ζ

′). (5.4.2)

In particular, again by the inductive hypothesis, we have E1(M) ⊢∗ (q, ξzq′ζ
′. As all our

choices were uniquely determined, the total state (q, ξzq′ζ
′) is uniquely determined by v.

Furthermore, the distinguished occurrence of the letter zq′ in ξzq′ζ ′ is the rightmost such
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occurrence, as ζ ′ ∈ Z∗. But we have

v = (v0, v1, . . . , vk) = (v0, v1, . . . , vk−1) · (vk)

= φ(q′, ξ) · (vk)

= φ(q′, ξ) · ([q, ζ])

= φ(q′, ξ) · ([q, σζ ′])

:= φ(q, ξzq′ζ
′).

Thus φ is a bijection on the vertices of Treen(U, N(U)); using this bijection, it is immediately
clear that by considering adjacencies in U and Tree(U, N(U)), and using Lemma 5.4.6 that for
any two total states (p0, ξ0), (p1, ξ1) of Γ(E1(M)), we have (p0, ξ0) ⊢aE1(M) (p1, ξ1) if and
only if φ(p0, ξ0)

a−→ φ(p1, ξ1) in Tree(U, N(U)). Thus φ extends to a graph isomorphism, and
we are done.

Example 5.4.8. LetM = Mon⟨b, c | bc = 1⟩. Then ∆ = {bc} and I = {b, bc}, so I ∩ I2 = ∅
and henceM satisfies the no-folding condition. Now U consists of two vertices [1, ε] and [1, b],
with an edge [1, ε] b−→ [1, b] and an edge [1, b] c−→ [1, ε]. Thus a pdaM such that Γ(M) ∼= U is
easily constructed; indeed, one can informally speaking simply take the states to be the vertices
of U, and the transitions to correspond to the edges. Formally, we can takeM to be the pda:

q0 q1

b, ε 7→ σ

c, σ 7→ ε

(5.4.3)

As we are only considering total states, we have not specified the final states of the pda, as these
are not relevant. Clearly the total states ofM are

T (M) = {(q0, ε), (q1, σ)},

and as the only transitions are (q0, ε) ⊢bM (q1, σ) and (q1, σ) ⊢cM (q0, ε), it follows that
Γ(M) ∼= U via the isomorphism given by (q0, ε) 7→ [1, ε] and (q1, σ) 7→ [1, b].

Note that the non-locally invertible states are QN = {q1}, and the invertible states QI =

{q0}. The first expansion E1(M) ofM is thus:

q0 q1

b, ε 7→ σ

c, σ 7→ ε

b, ε 7→ zq1

c, zq1 7→ ε

(5.4.4)

Now the total states of the first expansion ofM is easily seen to be

T (E1(M)) = {(q0, ε), (q1, σziq1) | i ≥ 0},

and the graph Γ(E1(M)) of E1(M) is
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(q0, ε) (q1, σ) (q1, σzq1) (q1, σz
2
q1) (q1, σz

3
q1) · · ·

b

c

b

c

b

c

b

c

This is clearly isomorphic to the Schützenberger graph R1 of the bicyclic monoid, which is
the subgraph of the right Cayley graph of the bicyclic monoid induced on the set of vertices
{π(bi) | i ≥ 0}. △

Example 5.4.9. LetM = Mon⟨a, b, c, d, e, f | abc = 1, def = 1⟩. Then ∆ = {abc, def} and
U(M) = 1. We have that I ∩ I2 = ∅, so M satisfies the no-folding condition. Then U is a
graph consisting of two triangles, one of whose boundary is labelled by abc, and the other by
def . The only locally invertible vertex in this graph is the shared vertex, i.e. the root 1. We
have that Tree(U, N(U)) ∼= R1, asM satisfies the no-folding condition. A pda whose graph is
isomorphic to R1 is obtained as the first expansion of the following pda:

q0

q1

q2

q3

q4

a, ε 7→ σ

b, σ 7→ σ

c, σ 7→ ε

a, ε 7→ σ

b, σ 7→ σ

c, σ 7→ ε

(5.4.5)

The non-locally invertible states of this pda are QN = {q1, q2, q3, q4}. Drawing the numerous
edges resulting from the first expansion of the above pda would obscure the idea. The graph
R1 is shown, rather stylised, in Figure 5.8. △

Figure 5.8: The (context-free) Schützenberger graph of 1 (with 1 being the central vertex)R1 of the special monoidM
defined by the presentation Mon⟨a, b, c, d, e, f | abc = 1, def = 1⟩. The blue triangle corresponds to reading abc,
and the red to def . The graph U is isomorphic to the graph with one red and one blue triangle attached to the root.
We have R1

∼= Tree(U, N(U)).

Thus we have an automata-theoretic proof that R1 is a context-free graph whenever U is
a context-free graph, provided that M satisfies the no-folding condition. We will now use
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the “bounded behaviour” described earlier to give a sketch proof that an automata-theoretic
approach works in the general case, too.

5.4.2 The general case

For a fixed special monoidM , with no assumption on the presentation other than that it is finite,
we shall now describe a pushdown automaton whose graph isR1 when U(M) is virtually free.
This will be the graphical interpretation of Proposition 5.2.10. For a pdaM, we will let T (M)

denote the set of possible total states ofM.

Definition 5.4.10. We say that a (presentation of a) special monoid M is benign if the
following statement holds for M : if U(M) is context-free, then there exist a pda
P = (Q,A′, Z, δP , q0, z0, Q̂) and a bijection

ϱR : I∗0/π → T (P),

such that for every u ≡ u0ξ0 · · ·ukξk ∈ I∗0 and v ≡ v0ζ0 · · · vnζn ∈ I∗0 , where ui, vj ∈ ∆∗
0

and ξi, ζj ∈ Π0, for every 0 ≤ i ≤ k and 0 ≤ j ≤ n, except ξk, ζn ∈ Π0 ∪ {ε}; and for every
a ∈ A, we have

u0ξ0 · · ·ukξk · a =M v0ζ0 · · · vnζn ⇐⇒ ϱR(π(u)) ⊢aP ϱR(π(v)). (5.4.6)

In particular, R1
∼= Γ(P).

Thus, roughly speaking, a benign special monoid is one which does not hinder context-free
behaviour of the group of units from being “blown up” to a context-free structure on R1.

Theorem 5.4.11. IfM satisfies the no-folding condition, thenM is benign.

Proof. IfU(M) is not context-free, thenM is vacuously benign. Assume thatU(M) is context-
free. Then we may take P to be the pda E1(M) constructed in Lemma 5.4.7.

In fact, we claim that all (finitely presented) special monoids are benign; at present, we are
only able to provide a sketch proof of this claim.

Claim (∗). Every special monoid is benign.

Proof sketch of Claim (∗). If U(M) is not context-free, then M is vacuously benign. Assume
that U(M) is context-free. Let u, v be as above. Recall that Ω = maxp∈Π |p|. Let
k′ = max(0, k − Ω) and n′ = max(0, n− Ω+ 1). Then it follows from Lemma 5.2.9 that

u0ξ0u1ξ1 · · ·ukξk · a =M v0ζ0v1ζ1 · · · vnζn

⇐⇒

u0ξ0u1ξ1 · · ·uk′−1ξk′−1 =M v0ζ0v1ζ1 · · · vn′−1ζn′−1 and (5.4.7)

uk′ξk′uk′+1ξk′+1 · · ·ukξk · a =M vn′ζn′vn′+1ζn′+1 · · · vnζn. (5.4.8)

Thus, if ϱR satisfies (5.4.6) on normal forms from I∗0 with max(k, n) ≤ Ω, i.e. when (5.4.7) is
vacuously true, then we can extend ϱR to satisfy (5.4.6) for all normal forms in I∗0 .
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For any w ∈ I∗0 , let R(w) ⊆ I∗ be a maximal, with respect to set inclusion, set of words
satisfying the following: (1) for every w′ ∈ R(w), we can write w′ ≡ w′

0p
′
0 · · ·w′

t′pt′ for some
w′

i ∈ ∆∗, and p′i ∈ Π for all 0 ≤ i ≤ t′, except possibly p′t′ ∈ Πε; and that furthermore (2)
w′ =M w for every w′ ∈ R(w); and (3) for every distinct w′, w′′ ∈ R(w)with t′ = t′′, we have
w′

i ̸=M w′′
i and p′i ̸≡ p′′i for every 0 ≤ i ≤ t′ = t′′. By Proposition 5.2.10, for every w′ ∈ R(w),

we have d(w′) ≤ (d(w) + 1)Ω. Furthermore, it follows directly from [502, Proposition 4.3 &
Theorem 4.4] that there are at most Ωd(w) words in R(w), and that by maximality we have
w′ ∈ I∗ is such that w′ =M w if and only if w′ ∈ R(w). Thus R(w) is a finite and complete
set of representatives for w as alternating products of words in ∆∗ and Π.

Now every word w′ ≡ w′
0p

′
0w

′
1p

′
1 · · ·w′

tp
′
t ∈ R(w) uniquely determines a vertex of

Tree(U, N(U)); namely the vertex ([w′
0; p

′
0], [w

′
1; p

′
1], . . . , [w

′
k; p

′
k]). Property (3) now

guarantees that, for two distinct w′, w′′ ∈ R(w), the resulting vertices remain. Let R′(w) be
the collection of vertices obtained this way. Using this, we can prove the following.

Lemma 5.4.12. There exists a surjection Tree(U, N(U)) → R1. Furthermore, the preimage of

any element of R1 under this surjection is finite.

Proof. For ease of notation, let TU = Tree(U, N(U)). There is a natural map ϕ : TU → R1

given as follows. Let (û0, û1, . . . , ûk) ∈ V (TU) be an arbitrary element of V (TU), where
ûi ∈ N for every 0 ≤ i < k and ûi ∈ V (U), using the bijection given by Proposition 5.1.2.
As ûi ∈ N for every 0 ≤ i < k, we can write ûi = [mi, ξi] with mi ∈ U(M) and ξi ∈ Π for
0 ≤ i < k and ξk ∈ Πε. For every 0 ≤ i ≤ k, let [ui; ξi] be a literal form of [mi, ξi], where
ui ∈ ∆∗. We then set

τ(û0, û1, . . . , ûk) := π(u0ξ0u1ξ1 · · ·ukξk).

This map is well-defined, as π(ui) = mi for all 0 ≤ i ≤ k independently of literal form chosen.
Now, every right invertible element ofM , and therefore every vertex of R1, is equal to some
word from I∗ = (∆ ∪Π) by [501, Lemma 4.1]; thus every such element is equal to some word
of the form u0ξ0u1ξ1 · · ·unξn, where ui ∈ ∆∗ and ξi ∈ Π∗. It follows that τ is surjective. Now,
given an elementm ∈ R1, represented by an elementw ∈ I∗0 , it follows by maximality ofR(w)
that R′(w) is precisely the set of pre-images ofm under τ ; and |R′(w)| ≤ Ω · d(w) <∞.

As U(M) is context-free, so too is U. Hence, it is easy to construct a pda U ′ whose graph is
TΩ(Ω+1)(U, N(U)). Note that R′(w) consists precisely of those vertices x of
TΩ(Ω+1)(U, N(U)) for which there is a walk from 1 to x with walk label w. Now, let as above
u′ ≡ uk′ξk′uk′+1ξk′+1 · · ·ukξk and v′ ≡ vn′ζn′vn′+1ζn′+1 · · · vnζn. We first wish to bound
the depth of any word from I∗ equal to u′. Note that as u′ is a normal form, we have
d(u′) = k − k′ + 1 ≤ Ω. Hence, if u′′ ∈ I∗ is such that u′′ =M u′, we have by
Proposition 5.2.10 that d(u′′) ≤ Ω(Ω + 1). Furthermore, u′′ ∈ R(u′), and
|R(u′)| ≤ Ω2(Ω + 1). It follows by Lemma 5.4.12 that there is an edge from π(u′) to π(v′) in
R1 labelled by a if and only if there is an edge from some u′′ ∈ R′(u′) to some v′′ ∈ R′(v′) in
Tree(U, N(U)) labelled by a. But as, for every such u′′ and v′′ we have d(u′′) ≤ Ω(Ω + 1)

and d(v′′) ≤ Ω(Ω + 1), as d(u′) ≤ Ω(Ω + 1) and d(v′) ≤ Ω(Ω + 1), there is hence such an
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edge in Tree(U, N(U)) if and only if there is such an edge in TΩ(Ω+1)(U, N(U)). Hence, the
presence of an edge (in R1) labelled by a from π(u′) to π(v′) is entirely determined by the
structure of the graph TΩ(Ω+1)(U, N(U)), and this structure is entirely determined by a pda.
Thus, by a suitable encoding of this structure into a pda, we can construct a pda X whose set
of total states is in bijective correspondence with the set of pairwise non-equal (inM ) normal
forms in I∗0 – that is, V (R1) – and where for every (qi, zi), (q

′
i, z

′
i) ∈ T (X ), we have that the

pda transitions from (qi, zi) to (q′i, z
′
i) after reading a ∈ A (i.e. (qi, zi) ⊢aX (q′i, z

′
i)) if and only

if there is an edge labelled by a from the vertex ofR1 corresponding to (qi, zi) to the vertex of
R1 corresponding to (q′i, z

′
i). But this is precisely what we needed; indeed, we can take ϱR to

be the inverse of this bijection.
This completes the proof sketch of Claim (∗).

In either case, we certainly have the following; indeed, we can regard the above sketch
proof of Claim (∗) as a sketch proof of the following theorem with the assumption of
benignity dropped.

Theorem 5.4.13. LetM be a finitely presented benign special monoid. If U(M) is virtually free,

then R1 is a context-free graph.

Proof. ( ⇐= ) Assume U(M) is virtually free. Then U(M) is context-free, so by definition
of benignity, we may construct a pushdown automaton P from U such that Γ(P) ∼= R1. The
result follows.

( =⇒ ) Assume that R1 is context-free. SinceM is finitely presented, so is U(M) by [309,
Theorem 5]. Therefore, by theMuller-Schupp theorem, it suffices to show thatU(M) is context-
free. By [398, Proposition 25] the automorphism group Aut(R1) of R1 as a labelled graph is
virtually free, as R1 is deterministic, and context-free by assumption. Furthermore, by [468,
Theorem 3], the automorphism group ofR1 is isomorphic to the Schützenberger group of H1.
As H1 is a group H -class, the Schützenberger group of H1 is hence isomorphic to H1 itself
[430, 112]. Since H1 = U(M), we have that U(M) ∼= Aut(R1) is a context-free group; hence
it is virtually free by the Muller-Schupp theorem.

Remark 5.4.1. Note that in the forward claim of the above result, the assumption that M is
benign is not used. Furthermore, in the forward claim the assumption that M be finitely
presented is only used to make the results easier to state, as we are only generally interested
in the finitely presented case. However, [398, Proposition 25] actually proves that the
automorphism group of any deterministic context-free graph is context-free. Hence we
always have the implication (R1 context-free =⇒ U(M) context-free), even dropping the
assumptions of benignity and finite presentability. In fact, there are many cases when R1 is a
context-free graph even when M is not finitely presented; e.g. for
M = Mon⟨a, b, c | abic = 1 i ≥ 1⟩. Then R1 of M is a context-free graph, and U(M) is
therefore context-free (indeed U(M) = 1). The key to this fact is that while the submonoid of
right units ofM is not finitely presented (it is isomorphic to a free monoid of countable rank),
it is generated by {a, ab, ab2, . . . , abi, . . . , }, and the subgraph of the right Cayley graph ofM
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Figure 5.9: The Schützenberger graph of 1 (with edge labels suppressed) for the special monoid in Example 5.4.15. This
representation is not entirely accurate, as, say, the vertical copy of U in the upper centre continues “behind” the central
strip infinitely far (but remains distinct from the copy in the lower centre). The reader might imagine that any copy of
U except the central one is folded in half along the line to which it is attached to the previous copy. We note that U is
embedded inside R1 as the central horizontal strip; these are the vertices of depth 0.

induced on this set is easily described: it consists of the infinite binary tree with labels a and b,
with a single edge labelled a entering the root. This is clearly a context-free graph – it has
only two end-spaces. We remark on the similarity between this situation and the situation
posed in Chapter 4 in dealing with an infinitely generated free monoid by regarding it as a
formal language over a finite alphabet.

As a finitely generated group is context-free with respect to any finite generating set, and as
the group of units of M is independent of the generating set of M , we additionally have the
following corollary.

Corollary 5.4.14. Assume Claim (∗). Let M be a special monoid, and let A,B be two finite

generating sets forM . Then R1(A) is a context-free graph if and only if R1(B) is context-free.

In particular, assuming Claim (∗), for any finitely presented special monoidM we may with
impunity say thatR1 ofM is a context-free graph or that it is not, without regard to the finite
generating set chosen. We end this section with an example of a context-free Schützenberger
graph of a special monoid which does not satisfy the no-folding condition.

Example 5.4.15. Let M = Mon⟨a, b, c | b(abc)b = 1⟩. Then ∆ = {b, abc}, and we have
U(M) ∼= Z. Then R1 is shown in Figure 5.9. △

Wewill now perform a far easier construction; namely, we shall useR1 to construct the right
Cayley graph ofM in a treelike manner, using results due to Gray & Steinberg.
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5.5 The right Cayley graph of special monoids

For the entirety of this section, let M = Mon⟨A | Ri = 1 (i ∈ I)⟩ denote a fixed finitely
presented special monoid. This section concerns the building of the full monoid right Cayley
graph ofM from the Schützenberger graph of 1, and relies on the structural theorems of [171].
Letm ∈M be an arbitrary element ofM . Let T ⊆ A∗ be the set of words irreducible mod S(T )
with no right invertible suffix; the notation T suggests that T is a form of transversal of the
R-classes ofM , which we will see below. By [171, Proposition 3.7], we can then uniquely write
m = [m0]m

′ wherem0 ∈ T andm′ ∈ R(M). The following appears as [171, Corollary 3.12].

Theorem 5.5.1 (Gray & Steinberg ’18). Let m ∈ M . Then there is an isomorphism of labelled

graphs R1 → Rm sending 1 to [m0]. If Γm is the induced subgraph of ΓM (M,A) consisting

of all vertices accessible from m, then Γm is isomorphic to ΓM (M,A) as labelled graphs via an

isomorphism taking 1 to [m0].

This is already a great deal of structural information about ΓM (M,A)moduloR1. However,
for context-freeness, it does not give a whole lot; it is easy to construct an example of a graph
whose strongly connected components are all pairwise isomorphic and context-free, and all Γm

(retaining the notation from the above theorem) are isomorphic, and yet the resulting graph is
not context-free. Thus we need more structure. We say that an edge of a digraph enters a strong
component C of the graph if its initial vertex is not in C and its terminal vertex is in C . Dually,
we say that an edge leaves if its terminal vertex is not in C , and its initial vertex is in C . The
following is [171, Proposition 3.13].

Proposition 5.5.2 ([171]). Letm ∈ π(T ) \ {1} (som = [m0]). Then ifm0 ≡ x · a with a ∈ A,
we have [x] >R m, and [a] ̸∈ Ur , and [x] −→a m is the unique edge entering Rm.

This is a great deal more information. The final piece of the puzzle comes from the
information of how ΓM (M,A) is built up from R1. First, recall that R1 is the strongly
connected component of the identity element in ΓM (M,A), or equivalently the subgraph of
ΓM (M,A) induced on the set of right invertible elements R1. Let Γ be the directed graph
obtained from ΓM (M,A) by collapsing each strongly connected component (and its internal
edges) to a point. The vertex set of Γ is M/R, and there is an edge (m, a) from the R-class
Rm ofm to the R-class Rma ofma ifm ∈M,a ∈ A, and Rm ̸= Rma. The following is [171,
Theorem 3.14].

Theorem 5.5.3 ([171]). The graph Γ is isomorphic as a digraph to the Hasse diagram ofM/R

ordered by ≥R . This graph is a regular rooted tree with root R1.

The tree in the above theorem can be of infinite degree. Armed with these results, we now
just need one more lemma before we can prove the main theorem. First, note that R1 is an
induced subgraph of ΓM (M,A). However, since R1 need not be a regular graph in general,
there are inside ΓM (M,A) some edges leaving R1. In principle, if this leaving were not in
any way controlled, it might be the case that no end-isomorphism inside R1 will extend to
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one between the same vertices inside ΓM (M,A). On the other hand, if we do know that it is
controlled, in the sense that such end-isomorphisms always do extend, then Proposition 5.5.2
together with Theorem 5.5.3 and Theorem 5.5.1 easily combine to show that ΓM (M,A) is a
context-free graph. For, ifm ∈M , then by Theorem 5.5.3 we have that ΓM (M,A)(m) consists
only of vertices n ∈ M with n ≤R m, and by Proposition 5.5.2 together with Theorem 5.5.1,
we must hence have that ΓM (M,A)(m) ∼ ΓM (M,A)(m′), where m = [m0]m

′ as above.
Hence, since each end-isomorphism between vertices inside R1 extends to one between the
same vertices in ΓM (M,A), we therefore would have that there are only finitely many end-
isomorphism classes of vertices in ΓM (M,A).

But it is an easy matter to describe the edges ofR1 which leaveR1 using a pda; indeed, the
pda P constructed in §5.4.2 with T (P) ∼= R1 was constructed using a full description, via a
pda X , of which edges are not leaving. Thus, let R′

1 be the graph constructed in the following
manner: if there is a vertex m ∈ V (R1) and an a ∈ A such that there is an edge m a−→ m′

leaving R1, where m′ ∈ M , then attach this single edge (a “strand of hair”) to m. Do this for
every vertex ofR1. The resulting graph is denotedR′

1; considering V (R1) as a subset of V (R′
1)

the subgraph of R′
1 induced on V (R1) is, of course, just R1. Furthermore, for every a ∈ A,

in R′
1 every vertex in V (R1) has exactly one edge labelled by a going out. Let H ⊆ V (R′

1)

denote the set of newly added vertices (the “ends of the hairs”). Using an entirely analogous
procedure as in §5.4, it is now straightforward to construct a pda P ′ and a bijection

ϱR′ : V (R′
1)→ T (P ′)

such that for every v1, v2 ∈ V (R′
1), we have that v1

a−→ v2 is an edge in R′
1 if and only if

ϱR′(v1) ⊢aP′ ϱR(v2). ThusR′
1 is a context-free graph, and it is not hard to see that there exists

a set S of representatives of frontier points in R′
1 such that VS = H. By construction and

Theorem 5.5.3, we now have that the right Cayley graph ofM is isomorphic to a tree of copies
of R′

1, where the branch points are the “ends of hairs” H; that is, ΓM (M,A) ∼= Tree(R′
1,H).

Thus, ifU(M) is context-free, thenU is context-free, and so too isR1 andR′
1 by Theorem 5.4.13

resp. the above discussion. Hence, by Proposition 5.1.5, we have that Tree(R′
1,H) is context-

free. This yields the main theorem of this chapter:

Theorem 5.5.4. Let M = Mon⟨A | wi = 1 (i ∈ I)⟩ be a finitely presented benign special

monoid. Then the Cayley graph ΓM (M,A) is context-free if and only if U(M) is virtually free.

Proof. Afinitely generated group is context-free if and only if it is virtually free; thus the reverse
direction of the theorem is proved above. If ΓM (M,A) is, on the other hand, assumed context-
free, then, as discussed in the proof of Theorem 5.3.8, it follows that ΓM (M,A) has finite tree-
width. Thus R1, being an induced subgraph of ΓM (M,A), also has finite tree-width; and
thus U, being an induced subgraph of R1 by Theorem 5.3.5, also has finite tree-width. By
Theorem 5.3.8, this is equivalent to U(M) being virtually free, and we are done.

As any context-free graph is quasi-isometric to a tree by [106, Lemma 8.4], we have the
following corollary, of independent interest.
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Corollary 5.5.5. Let M = Mon⟨A | wi = 1 (i ∈ I)⟩ be a finitely presented benign special

monoid. Then the right Cayley graph of M is quasi-isometric to a tree (as undirected graphs) if

and only if U(M) is virtually free.

Proof. As noted above, if U(M) is virtually free, then ΓM (M,A) is context-free, and hence
quasi-isometric to a tree, cf. [106, Lemma 8.4]. On the other hand, if ΓM (M,A) is quasi-
isometric to a tree, then sinceM has uniformly bounded degree, it follows that ΓM (M,A) has
finite tree-width, as discussed in the proof of Theorem 5.3.8. The proof now proceeds just as
the proof of Theorem 5.5.4, and we find that U(M) is virtually free.

This corollary could also be proved by noting that Lemma 5.3.7 reduces the problem of
classifying whenR1 is quasi-isometric to a tree to the problem of classifying when the Cayley
graph of F ∗G is quasi-isometric to a tree, where F is a finitely generated free monoid and G
is a group. This free product should be relatively straightforward to approach directly to show
that this is equivalent to having G be virtually free; the result would then follow by, following
Gray-Steinberg, building the Cayley graph ofM in a tree-like way from R1.

5.5.1 Logic of Cayley graphs

We will use the understanding of the right Cayley graph of a special monoid to deduce some
theorems regarding the logic of such graphs. Logically, we can consider a labelled graph as a
formal logical structure Γ with domain V (the vertex set of the graph) and a single relation,
the edge relation. A predicate of first-order logic in a graph involves vertices, the edge
relation, equality, quantifiers (∃,∀), and their boolean combinations (¬,∧,∨,→). Monadic
second-order logic also allows quantification (both universal and existential) over subsets of
the vertices; if such quantification is only allowed over finite subsets, then this is known as
weak monadic second-order logic.

The first-order (monadic second-order) theory of a graph Γ is the collection of all first-order
(monadic second-order) predicates ϕ with no free variables such that Γ |= ϕ. We say that
the first-order (monadic second-order) theory of a graph is decidable if, given any first-order
(monadic second-order) predicate ϕ, there is an algorithmwhich decides whether or not Γ |= ϕ.
For more detailed background on these notions, we refer the reader to e.g. [363, 270, 427].

Decidability of either the first-order or the monadic second-order theory of the Cayley graph
of a finitely generated monoidM does not depend on the finite generating set chosen [270]. For
this reason, we will generally omit reference to finite generating set below. There is a number of
connections between decision problems for a given monoidM and different theories associated
to the Cayley graph ofM . This is most apparent in the group case: the first-order theory of the
Cayley graph of a group is decidable if and only if the word problem for the group is decidable
[269], and the monadic second-order theory of the Cayley graph of a group is decidable if and
only if the group is virtually free [269, 363].

However, the same need not be true for monoids in general; we only have implications in
one direction. By [270, Proposition 4], if the first-order theory of the Cayley graph of a finitely
generated monoid is decidable, then the monoid has decidable word problem, but by [270,
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Proposition 5] there exists a monoid with word problem decidable even in linear time, but the
Cayley graph of which nonetheless has undecidable first-order theory. One of the main
consequences of Theorem 5.5.4 is the following, which lends credence to the adage that
special monoids are, in many respects, very similarly behaved to groups.

Theorem 5.5.6. Let M = Mon⟨A | Ri = 1 (i ∈ I)⟩ be a finitely presented benign special

monoid. Then the right Cayley graph ofM has decidable monadic second order theory if and only

if the Cayley graph of the group of units ofM has decidable monadic second order theory.

Proof. (⇐= ) The Cayley graph of a group has decidable monadic second order theory if and
only if the group is virtually free [269, 363]. Thus U(M) is virtually free; by Theorem 5.5.4
ΓM (M,A) is context-free. By [363, Theorem 4.4], the monadic second-order theory of
ΓM (M,A) is hence decidable.

( =⇒ ) Note that R1 is the connected component of the root of ΓM (M,A), and so R1 is
MSO-interpretable in ΓM (M,A) (see [270] for this notion); hence if ΓM (M,A) has decidable
monadic second order-theory, so too does R1 (cf. [270, p. 3]). On the other hand, by
Proposition 5.3.5, U is the subgraph of R1 induced on precisely the set of vertices v for which
there exists a walk from 1R1

to v with label in∆∗Π. Thus we easily see that the structure U is
MSO-interpretable in R1, and so if R1 has decidable monadic second order-theory, so too
does U. It follows that U has decidable monadic second-order theory; as U(M) acts almost
transitively on U, it follows by [268, Theorem 3.1], that U is context-free, and so by
Theorem 5.3.8 we have that U(M) is context-free. Hence, by the Muller-Schupp theorem, the
Cayley graph of U(M) is context-free, and so has decidable monadic second-order theory by
[363, Theorem 4.4].

The question of characterising in general which monoids have a right Cayley graph with
decidable monadic second order theory was posed by Kuske & Lohrey in [270]. While the fully
general case remains (wide) open, the above theorem completely answers this question in the
(benign) special case. One application of the above theorem is to the rational subsetmembership
problem. The following proposition has not appeared explicitly in the literature (to the best of
the author’s knowledge), but the proof is similar to that of [286, Theorem 17].

Proposition 5.5.7. LetM be amonoid generated by a finite setA. If the Cayley graphΓM (M,A)

has decidable monadic second-order theory, then M has decidable rational subset membership

problem.

Proof. Let L ⊆ A∗ be a regular language. Let reachL(x, y) be the predicate with variables
x, y ∈ M denoting whether the vertex y can be reached from x by some sequence of edges
Eσ1

, . . . , Eσn
such that Eσi

is an edge labelled by σi ∈ A, and σ1 · · ·σn ∈ L. Clearly, for a
word w ∈ A∗, we have that π(w) ∈ π(L) if and only if ΓM (M,A) |= reachL(1, π(w)). Thus,
to establish the claim, it suffices to show that reachL(x, y) is a monadic second-order predicate.
In fact, it is even a weak monadic second-order predicate; this can be shown (see e.g. [427]) by
induction on the operations of a regular expression for L.



5. Context-free Graphs and Special Monoids 185

Remark 5.5.1. We do not require the full monadic second-order logic in the above proposition.
The fragment, called FO(Reg) in [427], consisting of first-order logic together with the
reachability predicates reachL(x, y), is obviously sufficient; that it is not all of monadic
second-order logic is not as obvious.

Of course, an immediate corollary of the above is the following.

Corollary 5.5.8. Let M = Mon⟨A | Ri = 1 (i ∈ I)⟩ be a finitely presented benign special

monoid with virtually free group of units. Then the rational subset membership problem forM is

decidable.

Recall that we have already obtained this corollary without the assumption of benignity via
the vastly different methods in Chapter 3, namely as Corollary 3.5.12.
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5.6 Some questions and miscellany

There are many natural questions that arise in the study of the geometry of special monoids.
Perhaps the most natural is the following.

Question 5.6.1. LetM be a (finitely presented) special monoid with context-free word problem.

DoesM have a context-free right Cayley graph? Conversely, ifM has a context-free right Cayley

graph, doesM have context-free word problem?

We make three remarks: (1) there is no dependency on the finite generating set chosen for
a finitely presented special monoid to have context-free word problem; (2) assuming all special
monoids are benign, there is no dependency on the finite generating set chosen for a finitely
presented special monoid to have a context-free right Cayley graph; and (3) for groups, the
answer to the question is positive, as proved by Muller & Schupp [362, 363].

Other connections between context-free right Cayley graphs and other forms of geometry
are abundant; for example, Khukhro [254] has very recently proved that, for a group G, being
finitely generated virtually free is equivalent to the Cayley graph being minor excluded, i.e. to
there existing some finite graph which is not a minor of the Cayley graph ofG. Is the analogous
statement also true for special monoids? That is, ifM is a special monoid, is the right Cayley
graph of M minor excluded if and only if U(M) is virtually free? This seems like a difficult
question.

Recall for a special monoid M , it follows from §5.3 that the right Cayley graph of U(M)

embeds quasi-isometrically in the right Cayley graph ofM . The following becomes natural.

Question 5.6.2. Is there a natural notion of quasi-isometry for special monoids, which is stronger

than the usual undirected one? In particular, develop a notion of quasi-convexity for submonoids

of special monoids.

There is also a strong notion of quasi-convexity for this submonoid, in that – informally
speaking – the geodesics between elements ofU(M) in the right Cayley graph ofM will almost
always pass entirely within U; if they do not, then the length of the geodesic outside U will be
bounded by Ω, the length of the longest piece ofM . Any natural notion of quasi-convexity of
submonoids of special monoids would thus be one in whichU(M) is a quasi-convex submonoid
of M . Similarly, the right units Ur(M) should also be quasi-convex in M , by the results of
Gray & Steinberg [171].

Another idea for future work comes from the fact that there are many natural notions of
“ends” for groups and monoids; we have studied one in particular in this chapter. Other notions
are similarly important, however, and while most coincide for groups, this need not be true for
monoids in general; we refer the reader to [231, 256]. Studying these notions of ends for special
monoids should be quite tractable. Using a notion of ends based on ends of digraphs introduced
by [508], Craik et al [125] proved that a left cancellative monoid has either 0, 1, 2, or≥ ℵ0 such
ends. This mirrors the situation that a group either has 0, 1, 2 or 2ℵ0 ends. It should not be
difficult to use Theorem 5.6.8 to prove that any special monoid has either 0, 1, 2,ℵ0, or 2ℵ0



5. Context-free Graphs and Special Monoids 187

ends (in this specific sense), and that, unless it is the bicyclic monoid, a group, or N, it has 2ℵ0

ends. We leave this for future work, or the interested reader.

5.6.1 Self-avoiding walks

The following short section is based on a small observation, which we present below as
Theorem 5.6.4. It would be interesting to investigate it further. LetM be a monoid with finite
generating set A. We say that a word w ∈ A∗ is self-avoiding if for all distinct prefixes p, q of
w, we have p ̸=M q. Of course, a word is self-avoiding if and only if it is the label of a (unique)
walk starting in 1 of the right Cayley graph of M with label alphabet A, and such that the
walk does not visit the same vertex twice.

Example 5.6.3. LetM = Mon⟨b, c | bc = 1⟩. The only self-avoiding words are those of the
form cibj for some i, j ≥ 0. For example, ccbcc is not self-avoiding, as ccbc =M cc. △

We let θM : N→ N denote the function such that θM (n) is the number of self-avoidingwords
of length n inM (we suppress the reference to generating set chosen). Of course, θM (0) = 1.
We are interested in the generating function of the sequence θM (0), θM (1), . . . . In general, this
seems like a very difficult question. It turns out that for special one-relation monoids, quite a
lot can be said already.

Theorem 5.6.4. Let M = Mon⟨A | w = 1⟩ be a special one-relation monoid such that the

group of units U(M) is trivial. Then
∑

n≥0 θM (n)xn is a rational function, i.e. a quotient of two

polynomials P (x)/Q(x). Moreover, these polynomials can be effectively computed from w.

Proof. It follows by Adian’s overlap algorithm that the U(M) is trivial if and only if w is self-
overlap free. Thus the rewriting systemRwith the single rule (w → 1) is complete and defines
M . Let u ∈ A∗, with u ≡ a0a1 · · · ak for ai ∈ A.

We claim that u is self-avoiding if and only if it is irreducible moduloR. On the one hand, if u
is not irreducible moduloR, then u ≡ u′wu′′, for some u′, u′′ ∈ A∗, so in particular u′w =M u′

and u is not self-avoiding. Conversely, if u is not self-avoiding, then for some 1 ≤ i < j ≤ k

we have
a1a2 · · · ai =M a1a2 · · · aj .

As R is confluent and defines M , it follows that there is some word x ∈ A∗ such that
a1a2 · · · ai

∗−→R x and a1a2 · · · aj
∗−→R x. Thus either a1a2 · · · ai or a1a2 · · · aj is reducible

modulo R, or else a1a2 · · · ai ≡ a1a2 · · · aj . The latter is impossible, as i < j. In the former
case, a1a2 · · · aj must be reducible as i < j, so in particular u is reducible. This completes the
proof of the claim.

Now u is irreducible modulo R if and only if u does not contain w as a subword, i.e. if and
only if u ∈ A∗ \ A∗wA∗. This latter set is a regular language; and it is well-known that the
generating function for the number of words of length n in a regular language is a rational
function, effectively computable from a regular expression for the language (see [464, §4.7]).
This generating function is hence precisely the generating function for θM .



188 5. Context-free Graphs and Special Monoids

Example 5.6.5. LetM = Mon⟨a, b | ababb = 1⟩. Then U(M) = 1, and it is not hard to see
that θM satisfies the recurrence relation with θM (n) = 2n for n < 5 and

θM (n) = 2θM (n− 1)− θM (n− 5)

for n ≥ 5. In particular, we find
∞∑

n=0

θM (n)xn =
1

1− 2x+ x5
,

which is a rational function, as predicted by the theorem. △

We do not know much about self-avoiding words for special monoids. Investigating this
question would be a rather interesting mix of enumerative combinatorics and techniques of
combinatorial semigroup theory (as the proof of the above theorem demonstrates), and suitable
for an introductory project in combinatorial semigroup theory. For example, for the special
monoidM = Mon⟨a, b | aba = 1⟩ ∼= Z, we have that θM (n) grows roughly linearly (as can be
expected from considering the Cayley graph), and finding an explicit recursion for this function
would be rather a nice exercise.

Question 5.6.6. What is the generating function for the number of self-avoiding words in the

special monoidM = Mon⟨a, b, c | babcb = 1⟩? Is it rational?

Note that forM as in the above question, we haveU(M) ∼= Z. Unlike for the earlier example
of Z, however, the function θM (n) clearly grows exponentially. We make the following bold
conjecture, with little concrete support, except some minor experimental results.

Conjecture 5.6.7. Let M be a (one-relation) special monoid. Then the generating function for

θM (n) is a rational function of some polynomial transform of θU(M)(n).

The interest in this conjecture would come primarily from the recent interest in self-avoiding
words for groups, which has some curious links to e.g. amenability, see [185, 186], and also
[227, 228, 280, 281, 195]

5.6.2 Growth functions of special monoids

LetM be a monoid with finite generating set A. The length function ℓA : M → N ofM with
respect to A is defined as follows: ℓA(m) is the smallest length of a word in the elements of
A representing m. This is closely related to the word metric discussed in §1.4.5. The growth

function γMA : M → N is defined as

γMA (n) = |{m ∈M | ℓA(m) ≤ n}|.

The function γ := γMA is said to have exponential growth if there exist constants c > 1 and
K > 0 so that γMA (n) ≥ Kcn for all n ≥ 1. Otherwise, we say that γ is subexponential. Note
that as M is finitely generated it is clear that γMA grows at most exponentially.78 We say that
γ grows (at most) polynomially if there exist constants d, L > 0 such that γMA (n) ≤ Lnd for

78Informally speaking, this is because the addition of relations inM means γ := γM
A grows slower than

γA∗
A , which is clearly exponential. Formally, as for allm,n ∈ M , we have ℓA(mn) ≤ ℓA(m) + ℓA(n), it

follows that γ(m+ n) ≤ γ(m)γ(n), so γ(n) ≤ γ(1)n = cn.
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all n ≥ 1. We analogously define linear growth. A function which grows subexponentially,
but is not of polynomial growth, is said to have intermediate growth. Two growth functions γ
and λ are asymptotically equivalent if there exist constants P,Q such that λ(n) ≤ γ(Pn) and
γ(n) ≤ λ(Qn) for all n ≥ 1.

Importantly, if A,B are two finite generating sets for a monoid M , then γMA and γMB are
equivalent (see e.g. [187]). Thus, we may speak e.g. of a monoid with polynomial growth.
Growth functions were introduced by Milnor [352, 353]. Early work by Bass [26] and
Guivarc’h [192] connected growth with algebraic properties; Gromov [187] subsequently
proved his famous theorem that a finitely generated group has polynomial growth if and only
if it is virtually nilpotent. See especially [229]. Bergman [27] showed that an infinite finitely
generated monoid cannot have sublinear growth. Bell & Zelmanov [47] recently characterised
which functions can appear as the growth function of some semigroup. Kobayashi [263] used
growth rate crucially to prove that there exists a finitely presented monoid with decidable
word problem, but which does not admit any regular complete rewriting system. For further
papers on growth, see [446, 369, 447, 448, 449, 451, 147, 370, 450, 452]. We prove the following
rather quick and pleasant result.

Theorem 5.6.8. LetM be a finitely presented special monoid with subexponential growth. Then

M is either the bicyclic monoid, N, or a group.

Proof. The submonoid of right units of M is isomorphic to Fr ∗ U(M), where Fr is the free
monoid of finite rank |Π0| = r ≥ 0. If r = 0, then |Π0| = 0 implies that every piece is a letter;
hence M is itself isomorphic to a free product of a free monoid Fm by a group G. If m = 0,
then M = G is a group. Now, if m > 1, then M cannot have subexponential growth, as it
would contain the free monoid F2, which has exponential growth. Suppose m = 1. If G has
some element of infinite order, then G is infinite and contains a submonoid isomorphic to N,
soM contains a submonoid isomorphic to N ∗ N ∼= F2, and soM has exponential growth, a
contradiction. On the other hand, if every element of G has finite order, then G contains some
element of order 1 ≤ n ≤ ∞, so it contains as a submonoid the monoid N ∗ Cn for the finite
cyclic group Cn. If n > 1, then one readily checks that N ∗ Cn has exponential growth; for
example, N ∗C2 is easily seen to grow (in k) as φk , where φ = 1+

√
5

2 is the golden ratio.79 Thus
necessarily n = 1 for every element of finite order n inG, soG is trivial. ThusM ∼= N if r = 0.

On the other hand, if r > 0, then necessarily r = 1, as otherwiseM contains the free monoid
F2 as a submonoid. If U(M) is non-trivial, then by the same argument as above, it follows that
M , containingN∗U(M), must have exponential growth; thusU(M) = 1. Wemay thus assume
without loss of generality that M is given by an infix presentation, i.e. no piece is contained
within another piece, by Proposition 3.6.6. Let ∆ be the pieces of the presentation ofM . Now
|Π0| = r = 1, so there is one prefix of pieces which is irreducible modulo S(M); if this prefix

79Let N ∗ C2 = Mon⟨a, b | b2 = 1⟩. Then the growth function γ(k) counts the number of words Sk

of length k of as and bs which contains no two consecutive bs. Any element of Sk either starts with a or
b. Every word in the former is obtained by concatenating a with some word from Sk−1. For every word
in the latter, the b must be succeeded by an a, at which point any word from Sk−2 can be appended. All
words in Sk appear in this way. Hence γ(k) = γ(k−1)+γ(k−2) for k ≥ 2. Note that γ(0) = |S0| = 1,
and γ(1) = |S1| = {a, b} = 2. Thus γ(k) = Fk ∼ φk , where Fk is the kth Fibonacci number.
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had length > 1 then its first letter would be irreducible, and so that letter would also be in Π0,
a contradiction. Thus, suppose Π0 = {a}, where a ∈ A.

As no piece contains any piece as a subword, it follows that no proper prefix of a piece
contains any piece as a subword. Thus every proper prefix of every piece is irreducible modulo
S(M). Hence every proper prefix of every piece is a power of a. The pieces of M are thus
ai1a1, a

i2a2, . . . , a
inan, where ij ≥ 0 and aj ∈ A for all 1 ≤ j ≤ n. By an entirely symmetric

argument, reasoning instead using the left units of M , it follows that every proper suffix of
every piece is a power of some letter b ∈ A. the pieces of M are hence, written in the same
order as above, graphically equal to b1bk1 , b2b

k2 , . . . , bnb
kn , where kj ≥ 0 and bj ∈ A for all

1 ≤ j ≤ n. For a fixed 1 ≤ j ≤ n, the only way this is possible is if either (1) bj ≡ aj1 ,
bkj ≡ aj , and a ̸≡ b, or else (2) aij ≡ bkj ≡ ε and aj ≡ bj . It follows that for every δ ∈ ∆, we
have (i) δ ≡ ab; or else (ii) δ ≡ a ≡ b.

If at least one piece is of the form (ii), then all pieces are, and as a ≡ b =M 1, these generators
may be removed by Tietze transformations, leaving a presentation with no invertible pieces;
that is, if A′ = A \ {a, b}, thenM ∼= Mon⟨A′ | ∅⟩. AsM has subexponential growth, we must
have |A′| < 2 in order to avoid containing a free submonoid of rank 2, so either A′ = ∅ and
M is the trivial group, or else |A′| = 1 andM ∼= N.

If no piece is of the form (ii), then all pieces are of the form δ ≡ ab, i.e. ∆ = {ab}. Thus

M ∼= Mon⟨A | (ab)n1 = 1, (ab)n2 = 1, . . . , (ab)nℓ = 1⟩

where n1, n2, . . . , nℓ ≥ 1. Letting d = gcd(n1, n2, . . . , nℓ) ≥ 1, we find that

M ∼= Mon⟨A | (ab)d = 1⟩

is a one-relationmonoid. Now it follows fromAdian’s theorem on the group of units of a special
one-relation monoid that U(M) ∼= Cd, a finite cyclic group. As U(M) ∼= 1, thus d = 1, so

M ∼= Mon⟨A | ab = 1⟩ ∼= Mon⟨A′ | ∅⟩ ∗Mon⟨a, b | ab = 1⟩.

where A′ ≡ A \ {a, b}. If now |A′| > 0, thenM contains a submonoid isomorphic to N ∗ N.
Thus |A′| = 0, soM ∼= Mon⟨a, b | ab = 1⟩ is isomorphic to the bicyclic monoid.

Thus, as finite monoids have subexponential growth, we recover as, a corollary of
Theorem 5.6.8, Adian’s theorem: a special monoid is finite if and only if it is a finite group.

We end with a connection to a famous open problem. For some time, it was an open
problem (posed in 1968 by Milnor [351]) whether there exist finitely generated groups with
intermediate growth. Examples of such groups where proved to exist in 1984 by Grigorchuk
[182] (see also [184, 183]). It remains an open problem whether there exist finitely presented

groups with intermediate growth; the most common conjecture appears to be that such
groups do not exist, see e.g. [181, Conjecture 11.3]. Whether or not this is the case, the
following immediate corollary of Theorem 5.6.8 shows that special monoids are rather tame.

Corollary 5.6.9. Any finitely presented special monoid with intermediate growth is a group.

Hence, if one is interested in hunting for finitely presented special monoidswith intermediate
growth, then one might as well become a group theorist. We are in no position to speak about
such matters; and whereof we cannot speak, thereof we must be silent [494, Proposition 7].



Notes on Literature

As will be clear from reading the bibliography, many references have been used as part of the
writing of this thesis. However, the usage of some references has been indirectly, rather than
directly; this means that, were this not addressed, many relevant references would be excluded
(through no fault of their own) from the bibliography. In this section, we address this issue.

For general semigroup theory, we have already mentioned the referential works by Ljapin,
Clifford & Preston, and others. We mention a fewmore. The reader will no doubt find Higgins’s
book [205] useful in practice, particularly if they are interested in geometric semigroup theory
(a subject only tangentially mentioned in this thesis). To this end, the monograph by Guba &
Sapir [191] is an excellent starting point, as is the Ph. D. thesis of Kilibarda [255] (these ideas
were treated implicitly already by Adian [7]). For a delightful and extraordinarily deep dive
into combinatorics on words, one has the books by Lothaire [289, 290, 291, 292].

The reader interested in general decision problems for groups may consult two excellent
pieces of literature byMiller: the rather terse monograph [349], and the pleasantly readable and
accessible survey [350]. The readermay also find the survey by Vazhenin [484] veryworthwhile
consulting, and indeed the short [8]. The survey by Adian & Durnev [11] is excellent and treats
a broad range of topics in-depth (though there are some number of omissions and inaccuracies
in this survey, and the quality of the English translation suffers). We also refer the reader to
the monograph by Bokut [65] as well as Bokut & Kukin [64] for slightly different perspectives
on algorithmic problems in algebra. See also [198, 364, 72]. On a more philosophical note, the
reader interested in the very early history of computability and the human attitude towards it,
we cannot recommend Berkeley’s 1949 remarkable book [52] higher. The reader who found
the (sizable) footnote in §1.1.4 enjoyable may also enjoy the articles [459, 46, 45, 117, 42, 43, 44],
which connect physical systems (e.g. ones arising in Newtonian mechanics) with decidability.

For an introduction to many of the topics in the theory of rewriting systems, we cannot
recommend higher the monograph by Book & Otto [71], which is very readable for anyone
with even a modicum of interest in the subject. The monograph by Jantzen [235] is also
recommended, especially for connections with formal language theory via e.g. ancestors and
descendants (not entirely unrelated to the work done in Chapter 2 of this present thesis).
However, Jantzen’s style is, at times, terse. We have, in this thesis, only made some

191
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connections between rewriting systems and formal language theory. This area on its own is
vast, having seen its inception sometime in the 1970s, and cannot be adequately summarised
in a few articles. We give some pointers. One particularly early and influential article by
Benois [48] recognised the decidability of the rational subset membership problem for free
groups via formal language theory. Other important early, and highly readable, articles
include [116, 379, 380, 90, 91, 114]. For more specialised techniques of rewriting (e.g. via
simulating Turing machines), we refer the reader to begin with [22, 51, 50, 66, 70, 68, 71, 101,
104, 105, 110, 111, 235, 342, 299, 368, 365, 366, 389, 390, 391, 396, 392, 393, 436, 437, 438]. We
also refer the reader to the beautiful articles by Adian [9, 10].

Regarding the geometric notions in §1.4, we have only discussed a rather particular notion
of ends of monoids. For other notions of ends of monoids and semigroups, and related topics,
we refer the reader primarily to [140, 508, 231, 251, 165, 167, 166, 256, 125, 97] as well as [250,
§2.4]. Standard references on geometric group theory include the books by Bridson & Haefliger
[77] and the monograph by Gromov [188]. A particularly inviting reference is Gromov [189].
Other standard references include the memoir by Bowditch [74], the book by de la Harpe [128],
and the recent monograph by Druţu & Kapovich [143]. We can also recommend the reader to
consult [159, 100, 76, 75]. We refer the brave reader to the monograph by Wise [493].

If the reader is interested in the history of combinatorial group theory, then they will
delight in learning of the existence of a monograph dedicated to this precise topic – the 1982
masterpiece by Chandler & Magnus [107]. Lyndon [296] has also written an elegant and
philosophising survey of combinatorial group theory. For a more general history of group
theory, the reader may consult the at times rather esoteric book by Wussing [497]. Kleiner
[262] also gives an exquisite account of the history of group theory, although the reader is
directed to read Wussing first, in order to gain a slightly broader view of the subject; for
example, Kleiner does not deal with semigroups in any depth, and repeats Clifford & Preston’s
mistake to identify de Séguier’s demi-groupes with semi-groupes. The lectures by Klein [261],
which includes the development of group theory, are also invaluable. A more indirect
reference is the collection of Mathematical Reviews on infinite groups collated by Baumslag
[37], which gives a rather naked presentation of combinatorial group theory.

The reader interested in the history of semigroup theory will, by contrast, be somewhat
disappointed. There is onemajor historical account of the development of algebraic semigroups,
published only a few years ago; this is the book byHollings [214], which deals (roughly) with the
twentieth century up to 1970. The reader is also referred to [213, 215, 216] for further reading,
and, as mentioned in the preface, [212] for a detailed overview of the history of semigroups.
These sources present a fairly complete picture; however, they lack a detailed study of the
epistemological grounds of generalisations of groups (or indeed other objects) and the initial
motivations for these generalisations, which – from a certain point of view – can be seen as the
true foundation of semigroup theory. This thesis is not the place for this latter discussion.

We remark, finally, that every letter in the English alphabet appears as the first letter of at
least one reference. The author thanks A. Yamamura for sending him an email when only the
letter Y remained, and thereby indirectly and unknowingly helping to resolve this matter.
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