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Temporal instability of curved viscous fibers with a radial electric field
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1 Department of Mathematics and statistics, College of Science, Taif University,
P. O. Box 11099, Taif 21944, Saudi Arabia.

2 School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
∗Corresponding author: a.alshrif@tu.edu.sa

[Received on 11 February 2021]

[Received on 2 February 2022]

One-dimensional equations are derived for a rotating viscous slender liquid jet in a radial electric field
using asymptotic methods. The trajectory of the curved Newtonian liquid jets is found by solving the
nonlinear one-dimensional equations. The temporal instability of the steady solutions is analysed. It
was found that the electric force enhances the growth rate and increases its corresponding maximum
wavenumber.
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1. Introduction

The study of the trajectory and the breakup of liquid jets has a long history (see Eggers (1997, 2008)
for reviews), with many engineering and industrial applications. The linear theory of incompressible
inviscid liquid straight jets was derived analytically by Rayleigh (l878), who discovered that the surface
tension is responsible for the linear instability. Later, Weber (1931) extended the linear instability theory
of liquid jets by considering the effect of the viscosity. In particular, he found that the viscosity increases
the wavelength of the most unstable modes.

In the last decades many authors have also considered the stability of curved viscous liquid jets, by
performing experiments (e.g. Wong et al. (2004), Hawkins et al. (2010) and Partridge et al. (2005)) or
undertaking analytical studies (e.g. Yarin (1993), Wallwork (2002), Decent et al. (2002)). These studies
on instability of curved liquid jets have been extended by considering a variety of non-Newtonian fluids,
such as power law fluids or polymers (e.g. Divvela et al. (2017), Alsharif (2019), Taghavi and Larson
(2014), Alsharif et al. (2015), Noroozi et al.(2017) and Riahi (2017)). The study of curved liquid jets
which can be obtained by centrifugal jet spinning (CJS) (also called sometimes forcespinning FS) was in
part motivated by a variety of academic and engineering applications, such as as ink-jet printers Tomiat
et al. (1986), fuel spraying Jones et al. (1971), microencapsulation and electro-spinning Doshi et al.
(1993) and Shin et al. (2001). The production in the last decades of nanofibers for industrial applications
by applying electric fields has spanned new works which were interested in understanding the effect of
electric field on the trajectories of liquid jets and their stability (Reneker el al. (2000), Hohman et al.
(2001a, 2001b) and Yarin et al. (2001), Feng (2003)).

More recently, experiments have been performed by combining the effects of forcespinning with
electrospinning (e.g. Chang et al. (2014), Liao et al. (2011a), (2011), Dabirian et al. (2013), Hashemi
et al. (2018)). By combining these two techniques better-quality uniform nanofibers are obtained, by
removing the whipping instability observed when only the electrospinning was used on viscoelastic flu-
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ids. There are very few theoretical results on the combined effect of forcespinning with electrospinning
on Newtonian and non-Newtonian jets, and they are focussed on steady state results (e.g. Hashemi et
al. (2018), Riahi (2019)).

In this paper we investigate theoretically the combined effect of forcespinning and electrospinning
on viscous liquid jets. The trajectory and the temporal linear instability of slender curved viscous jets
on a radial electric field are studied by extending the works of Wallwork et al (2002), Părău et al. (2006,
2007). This provides useful information about regimes of physical parameters such as viscosity, rotation
rate, electric field strength, conductivity of the fluids where instabilities can be avoided or minimized.
Moreover, a better understanding of the forcespinning/electrospinning process will inform future stud-
ies of more applied problems, where non-Newtonian liquids will be considered and experimental and
theoretical results will be compared.

The governing equations and the dimensionless parameters are introduced in Section 2 and 3 (see
also Appendix). We use the asymptotic analysis of the slender jet to derive a set of one-dimensional
equations (Wallwork (2002), Decent et al. (2018)) in Section 4. In Section 5 we solve the steady
equations obtained and calculate the steady state solutions of viscous liquid jets in centrifugal spinning
with a radial electric field. Typical values of parameters used in some experiments are also presented in
this Section. By perturbing these steady solutions, we perform a temporal stability analysis in Section
6. We derive the dispersion relation and solve it to examine the behaviour of some parameters on the
linear instability of centrifugal jet spinning with electric field. The paper finishes with a discussion in
Section 7.

2. Problem Formulation

In order to evaluate the effect of the radial electric field on the viscous liquid jets during centrifugal
spinning, we assume that we have a cylindrical container which rotates with angular velocity Ω . The
cylinder’s axis is vertical and it rotates about its axis. There is a spinneret on a side of the rotating
container with a nozzle of radius a from which the jet emanates. We denote with s0 the distance between
the axis of the rotating cylinder to the nozzle. The cartesian coordinate system x,y,z rotates with the
container and the origin coincides with the nozzle of the spinneret. In this problem, we assume that the
x and z axises are normal and tangential to the surface of nozzle respectively (see Figure 1). As we are
interested in rapidly rotating jets, the effect of gravity is small, so we will neglect the gravity force in
this problem. In many experiments with viscoelastic jets there is a copper collector where the nanofibers
are collected, but we do not include it in our modelling.

In order to determine the position of the centreline of the curved liquid jet which moves in the plane
y = 0, we use the functions (x = X(s, t),z = Z(s, t)) , where s is the arc-length along the centreline of
the jet, and t is the time. To describe the flow, we use the curvilinear coordinate system (s,n,φ), which
are the tangential direction to the centreline of the liquid jet, and the radial and azimuthal coordinates
respectively (see Wallwork (2002) and Decent et al. (2002)).
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FIG. 1. Sketch of the flow. An electric potential is applied to the rotating container and the (copper) collector

The fluid governing equations can be written as

∇ ·u = 0,

ρ

(
∂u
∂ t

+u ·∇u
)
= ∇ · τ −2ω×u−ω× (ω× r),

τ = τ
F + τ

E,

τ
F =−pI+µ∇u+(∇u)T ). (2.1)

where u is the velocity in the form u = ues + ven +weφ , ρ is the density of the fluid, r is the position

vector of any particle, which is written as r =
s∫

0
es ds+ nen, n is the radial distance, µ is the viscosity

of the fluid, p is the fluid pressure, ω is the angular velocity of the container, τF is the fluids stress
tensor and τE is the Maxwell stress tensor (see Saville (1997)) which contains the contributions of the
electric field E = Eses +Enen +Eφ eφ . The liquid is assumed to be a leaky dielectric of finite electrical
conductivity K1 and ε1 is the fluids electrical permittivity. We also define ε2 to be the dielectric constant/
permittivity of the air and assume the air to be a perfect dielectric. The dimensional equations of motion
projected on our basis (es,en,eφ ) are given in Appendix, see (8.1)-(8.4).

According to the Taylor-Melcher leaky dielectric theory (1969), the Gauss law in the bulk of the
fluid for the electric field E and the motion of surface charge Q on the liquid surface are the following
(see also Papageorgiou(2019) and Saville(1997))

∇ · (ε1E) = q, (2.2)
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∂Q
∂ t

+u ·∇sQ−Qn · (n ·∇)u = [K1E ·n]12, (2.3)

where q is free charge density in the fluid, ∇s is the surface gradient operator and n the (outward) normal
unit vector to the liquid jet. The position of the free surface is given by n = R(s,φ , t), so the outward
unit normal vector to the free surface, n, is

n =
1
Ξ

(
−∂R

∂ s
1
hs

es + en−
∂R
∂φ

1
R

eφ

)
,

where

Ξ =

(
1+

1
h2

s

(
∂R
∂ s

)2

+
1

R2

(
∂R
∂φ

)2
) 1

2

.

The equations (2.2)-(2.3) can be projected in our basis and are given in full in dimensional form in
Appendix (see (8.5)-(8.6)). From now on, we will consider here the non-dimensional form of all the
equations. In particular, the equations (8.1)-(8.6) are non-dimensionalised using the transformation
described in Uddin (2007). Consequently, the momentum equations and the continuity equation are
similar to Uddin (2007) differing only in the terms of constitutive equations and electric field terms. We
use the following scales

ū =
u
U

, v̄ =
v
U
, w̄ =

w
U
, n̄ =

n
a
, ε =

a
s0
, R̄ =

R
a
, Q̄ =

Q
ε2E0

Ē =
E
E0

, s̄ =
s
s0
, t̄ =

U
s0

t, p̄ =
p

ρU2 , X̄ =
X
s0
, Z̄ =

Z
s0
, q̄ =

s0

ε1E0
q,

(2.4)

where U is the jet’s exit speed in the rotating frame, s0 is the distance from rotating axis of the cylindrical
can containing the fluid to the nozzle of the spinneret, a is the radius of the nozzle, u,v,w are the
tangential, radial and azimuthal velocity components, Q is the surface charge on the liquid surface, ε is
the aspect ratio of the jet and E0 is a characteristic field strength (note for example that Hohman et al.
(2001) defines E0 to be

√
σ/(ε1− ε2)a, where σ is the isotropic surface tension). After dropping the

overbars, the governing dimensionless equations are the continuity equation

εn
∂u
∂ s

+hs

(
v+n

∂v
∂n

+
∂w
∂φ

)
+ εn(vcosφ −wsinφ)(XsZss−ZsXss) = 0,

(2.5)
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and the momentum equations

hs

(
ε

∂u
∂ t

+ ε(vcosφ −wsinφ)(ZstXs−XstZs)+ v
∂u
∂n

+
w
n

∂u
∂φ

)

+εu
∂u
∂ s

+ εu(vcosφ −wsinφ)(XsZss−ZsXss) =−ε
∂ p
∂ s

+

(
2ε

Rb
(vcosφ −wsinφ)+

ε

Rb2 ((X +1)Xs +ZZs)

)
hs

+
1

εRe

(
−nε3 cosφ(XsZsss−ZsXsss)

h2
s

(
∂u
∂ s

+ vcosφ(XsZss−ZsXss)

−wsinφ(XsZss−ZsXss)

)
+

ε2

hs

(
−u(XsZss−ZsXss)

2

+
∂ 2u
∂ s2 +2

∂v
∂ s

cosφ(XsZss−ZsXss)+ vcosφ(XsZsss−ZsXsss)−wsinφ(XsZsss−ZsXsss)

−2
∂w
∂ s

sinφ(XsZss−ZsXss)

)
+(1+2εncosφ(XsZss−ZsXss))

1
n

∂u
∂n

+hs
∂ 2u
∂n2 +

hs

n2
∂ 2u
∂φ 2 −

ε

n
∂u
∂φ

sinφ(XsZss−ZsXss)

)
+ εE f (β +1)Es

[
∂Es

∂ s

+hs

(
En

n
+

∂En

∂n

)
+ cosφ(XsZss−ZsXss)En +

hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
.

(2.6)



6 of 31

hs

(
ε

∂v
∂ t

+ εucosφ(XstZs−ZstXs)+ v
∂v
∂n

+
w
n

∂v
∂φ
− w2

n

)
+ εu

∂v
∂ s
−

εu2 cosφ(XsZss−XssZs) =−
∂ p
∂n

hs−
2ε

Rb
hsucosφ +

(
ε

Rb2 cosφ((X +1)Zs−ZXs + εncosφ)

)
hs +

1
Re

(
−ε2ncosφ(XsZsss−XsssZs)

h2
s

(
∂v
∂ s
− ucosφ(XsZss−XssZs)

)
+

ε

hs

(
− vcos2

φ (XsZss−XssZs)
2 +

∂ 2v
∂ s2 −2

∂u
∂ s

cosφ (XsZss−XssZs)−

ucosφ(XsZsss−XsssZs)+wsinφ cosφ(XsZss−XssZs)
2

)
+

(1+2εncosφ(XsZss−XssZs))
1

εn
∂v
∂n

+
hs

n
∂ 2v
∂n2 −

1
n
(

∂v
∂φ
−w)sinφ(XsZss−XssZs)+

hs

εn2 (
∂ 2v
∂φ 2 − v−2

∂w
∂φ

)

)
+ εE f (β +1)En

[
∂Es

∂ s
+hs

(
En

n
+

∂En

∂n

)
+ cosφ(XsZss−ZsXss)En

+
hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
, (2.7)
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hs

(
ε

∂w
∂ t

+ εusinφ(ZstXs−XstZs)+ v
∂w
∂n

+
w
n

∂w
∂φ
− vw

n

)
+ εu

∂w
∂ s

+

εu2 sinφ(XsZss−XssZs) =

(
− 1

n
∂ p
∂φ

hs +
2ε

Rb
usinφ +

ε

Rb2 sinφ(ZXs− (X +1)Zs−ncosφ)

)
hs +

1
Re

(
−ε2ncosφ(XsZsss−XsssZs)

h2
s

(
∂w
∂ s

+ usinφ(XsZss−XssZs)

)
+

ε

hs

(
−wsin2

φ (XsZss−XssZs)
2 +

∂ 2w
∂ s2 +2

∂u
∂ s

sinφ (XsZss−XssZs)+

usinφ(XsZsss−XsssZs)+ vsinφ cosφ(XsZss−XssZs)
2

)
+

(1+2εncosφ(XsZss−XssZs))
1

εn
∂w
∂n

+
hs

ε

∂ 2w
∂n2 −

1
ε
(

∂w
∂φ

+ v)sinφ(XsZss−XssZs)+

hs

εn2 (
∂ 2w
∂φ 2 −w+2

∂v
∂φ

)

)
+ εE f (β +1)Eφ

[
∂Es

∂ s
+hs

(
En

n
+

∂En

∂n

)

+cosφ(XsZss−ZsXss)En +
hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
, (2.8)

where hs = 1+ εncosφ(XsZss−XssZs), and Xs, Xss, Zs, Zss denote partial derivatives with respect to s.
The equations concerning the surface charge and the electric field (8.5) and (8.6) in dimensionless

form become

εn
∂Es

∂ s
+hs

(
∂ (nEn)

∂n
+

∂Eφ

∂φ

)
+ εn

(
En cosφ −Eφ sinφ

)
(XsZss−ZsXss) = εnhs q,

(2.9)
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∂Q
∂ t

+u
1
hs
· ∂Q

∂ s

[
1− 1

Ξ 2

(
ε

∂R
∂ s
· 1

hs

)2]
+

v
ε

∂Q
∂n

(1− 1
Ξ 2 )+

w
ε
· 1

n
· ∂Q

∂φ

[
1− 1

Ξ 2

(
∂R
∂φ
· 1

R

)2]

− Q
Ξ 2

{(
− ε

∂R
∂ s

)
· 1

h2
s

[(
− ε

∂R
∂ s

)
· 1

h2
s

(
∂u
∂ s

+

(
XsZss−XssZs

)(
ucosφ −usinφ

))

+
1
ε

∂u
∂n

+

(
− ∂R

∂φ

)
· 1

R
· 1

εn
· ∂u

∂φ

]
+

(
− ε

∂R
∂ s

)
· 1

h2
s

(
∂v
∂ s
−
(

XsZss−XssZs

)
ucosφ +

∂v
ε∂n

)

+

(
− ∂R

∂φ

)
· 1

R
· 1

εn

(
∂v
∂φ
−w
)
+

(
− ∂R

∂φ

)
· 1

R
·

[(
− ε

∂R
∂ s

)
· 1

h2
s

(
∂w
∂ s

+

(
XsZss−XssZs

)

usinφ +
∂w
ε∂n

)
+

(
− ∂R

∂φ

)
· 1

R
· 1

εn

(
∂w
∂φ

+ v
)]}

=
K̄
Ξ

(
−∂R

∂ s
Es +

En

ε
− 1

ε

∂R
∂φ

Eφ

R

)
. (2.10)

The governing equations for the fluid are similar to the ones found in Părău et al. (2007), but they
have extra terms related to the electric field. The equations (2.9) and (2.10) are the new ones related to
the electric field and surface charge. However, as mentioned in Papageorgiou (2019), for incompressible
fluid with constant ε1 and K1, all the electric charge will be depleted from bulk of the fluid and will move
to the jet surface, so we will assume q = 0 from now on. Then the equation (2.9) also implies that the
explicit electric terms from the equations (2.6)-(2.8) will disappear.

The dimensionless parameters in the problem are: the Rossby number Rb = U
s0Ω

, the Weber number

We = ρU2a
σ

, the Reynolds number Re = ρUs0
µ

, the dielectric constant ratio β = ε1
ε2
−1, the electric force

parameter E f =
ε2E2

0
ρU2 and the dimensionless conductivity of the fluid K̄ = K1a

Uε2
. We also find it useful to

introduce Ẽ f =
ε2E2

0 s0
ρU2a =

E f
ε
.

3. Boundary conditions

The normal stress condition at the free surface is

nT · τ ·n
∣∣∣∣1
2
= σκ,

where τ = τF + τE is the total stress tensor, σ is the isotropic surface tension and κ is the curvature of
the free surface. The components of the stress tensor τF in the curvilinear coordinate system used in this
problem are given in Appendix. After some algebra, it can be shown that the normal stress condition
becomes in non-dimensional form
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p− 2
Re

1
Ξ 2

(
ε

2
(

∂R
∂ s

)2 1
h3

s

(
∂u
∂ s

+(vcosφ − sinφ)(XsZss−ZsXss)

)

+
1
ε

∂v
∂n

+
1

ε R3

(
∂R
∂φ

)2 (
∂w
∂φ

+ v
)
− ε

hs

∂R
∂ s

(
1
hs

∂v
∂ s

+
1
ε

∂u
∂n
− u

hs
cosφ(XsZss−ZsXss)

)
+

ε

Rhs

∂R
∂ s

∂R
∂φ

(
1

ε R
∂u
∂φ

+
u
hs

sinφ(XsZss−ZsXss)+
1
hs

∂u
∂ s

)
− 1

ε R
∂R
∂φ

(
R

∂w
∂n
− w

R
+

1
R

∂v
∂φ

))

+
E f

2

{
Q2 +2(β +1)Q

(
1
Ξ

(
−∂R

∂ s
.

ε

hs
.Es +En−

∂R
∂φ

.
1
R
.Eφ

))
+β (β +1)

(
1
Ξ

(
−∂R

∂ s
.

ε

hs
.Es +En−

∂R
∂φ

.
1
R
.Eφ

))2

+β
1(

1+
(

∂R
∂ s

ε

hs

)2
) (Es +

∂R
∂ s

ε

hs
En

)2

+β
1(

1+
(

∂R
∂φ

1
R

)2
) (∂R

∂φ

1
R

En +Eφ

)2
}

=
κ

We
,

(3.1)

where

κ =
1
hs

(
−ε

2 ∂

∂ s

(
1

Ξ hs

∂R
∂ s

)
+

1
n

∂

∂n

(
nhs

Ξ

)
− ∂

∂φ

(
hs

Ξ n2
∂R
∂φ

))
.

Ξ =

(
1+

ε2

h2
s

(
∂R
∂ s

)2

+
1

R2

(
∂R
∂φ

)2
) 1

2

.

The tangential stress conditions at the free surface are

ti
T · τF ·n

∣∣∣∣1
2
= QE · ti,

where ti are the tangent vectors i = 1,2.
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The first tangential stress condition is in non-dimensional form

(
1− ε

2
(

∂R
∂ s

)2 1
h2

s

)
1

Ξhs

{
ε

∂v
∂ s

+ hs
∂u
∂n
− εucosφ(XsZss−XssZs)

}
+

2
Ξhs

ε
∂R
∂ s

{
∂v
∂n
− ε

∂u
∂ s

1
hs
− ε

hs
(vcosφ −wsinφ)(XsZss−XssZs)

}
− 1

Ξ

∂R
∂φ

{
∂u
∂φ

+
ε

hs
usinφ(XsZss−XssZs)+

ε

hs

∂w
∂ s

+
ε

hs

(
∂w
∂n
− w

R
+

1
R

∂v
∂φ

)}
= ε

2Ẽ f ·Re ·Q
{

Es +
ε

hs

∂R
∂ s

En

}
,

(3.2)

and the second tangential stress condition is

(
1−
(

∂R
∂φ

)2 1
R2

)
1
Ξ

(
∂w
∂n
− w

R
+

1
R

∂v
∂φ

)
+

2
ΞR

∂R
∂φ

(
∂v
∂n
− 1

R

(
∂w
∂φ

+ v
))

− 1
Ξ

∂R
∂ s

ε

hs

{
1
R

∂u
∂φ

+
ε

hs
usinφ(XsZss−XssZs)+

ε

hs

∂w
∂ s

+
∂R
∂φ

1
R

(
ε

hs

∂v
∂ s

+
∂u
∂n
− ε

hs
ucosφ(XsZss−XssZs)

)}
= ε

2Ẽ f ·Re ·Q
{

1
R

∂R
∂φ

En +Eφ

}
. (3.3)

Another equation needed is the arc-length condition X2
s +Z2

s = 1.
The kinematic condition at the surface of the jet is

hs

(
ε

∂R
∂ t

+ cosφ(XtZs−XsZt)+
1
R

∂R
∂φ

sinφ(XtZs−XsZt)− v+
∂R
∂φ

w
R

)
+εu

∂R
∂ s
− ε

∂R
∂ s

(XtXs +ZtZs + εRcosφ(XsZss−ZsXss)) = 0. (3.4)

4. Asymptotic analysis and one-dimensional equations

Using asymptotic analysis we will derive the one-dimensional model equations for the curved liquid
jet. We assume the jet is slender ε � 1, and using the radial expansion method (see Eggers (1997) and
Hohman et al. (1984) with a different notation), we expand u,v,w and p in Taylor’s series on εn, and
X ,Z,R,Q,Es,En in an asymptotic series in ε . Here, the axial velocity component at the leading order
is supposed to be independent of φ , as we look for slender liquid jets with circular cross section at
leading order and where the velocity is parallel to the centreline at leading order. We also assume that
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the centreline is steady which was justified in Părău et al. (2007). Thus, we have

(u,v,w)(s,n,φ , t) = (u0,0,0)(s, t)+(ε n)(u1,v1,w1)(s,φ , t)+ ...

p(s,n,φ , t) = p0(s,φ , t)+(ε n)p1(s,φ , t)+ ...

(R,Q)(s,n,φ , t) = (R0,Q0)(s, t)+(ε)(R1,Q1)(s,φ , t)+ ...

(X ,Z)(s,n,φ , t) = (X0,Z0)(s)+(ε)(X1,Z1)(s)+ ...

(Es,En,Eφ )(s,n,φ , t) = (E0,0,0)(s, t)+(ε n)(Es1,En1,Eφ1)(s,φ , t)+ ...

For simplicity of notation, we drop the subscript for the centreline quantities and denote X0, Z0 as X , Z.
From the continuity equation, we obtain

O(εn) : u0s +2v1 +w1φ = 0, (4.1)

O(εn)2 : u1s +3v2 +w2φ +3v1 +
(
w1φ cosφ −w1 sinφ

)
(XsZss−XssZs) = 0. (4.2)

By solving the second tangential stress condition, we obtain

O(ε) : R3
0v1φ = 0, (4.3)

O(ε)2 : 3R2
0R1v1φ +R4

0(w2 + v2φ )−2R2
0R1φ w1φ = 0. (4.4)

It can be observed that v1φ = 0, and by differentiating (4.1), we obtain w1φφ = 0. Because w1 is periodic
in φ we must have w1 = w1(s, t). That leads to v1 =− u0s

2 and from (4.4) we obtain

w2 + v2φ = 0. (4.5)

From the electric equation (2.9), we get at leading order

E1n =−
1
2

∂E0

∂ s
. (4.6)

We now substitute this equation (4.6) into (2.10), and after some algebra using the kinematic condition
(3.4) at leading order ε , the surface charge density equation at leading order becomes

∂

∂ t

(
2R0Q0

)
+

∂

∂ s

(
2R0u0Q0 +R2

0K̄E0

)
= 0, (4.7)

Using the first tangential stress condition, it can be obtained that

O(ε) : u1 = u0 cosφ(XsZss−XssZs), (4.8)

O(ε)2 : u2 =
3
2

u0s
R0s

R0
+

u0ss

4
+

1
2R0

ReẼ f Q0E0. (4.9)

By differentiating (4.5) with respect to φ we have

w2φ =−v2φφ , (4.10)
hence

v2φφ −3v2 = u1s +(3v1 cosφ −w1 sinφ)(XsZss−XssZs), (4.11)
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so when the expression for u1 and v1 are used, we obtain

v2φφ −3v2 =
(

u0(XsZsss−XsssZs)−
u0s

2
(XsZss−XssZs)

)
cosφ −w1 sinφ(XsZss−XssZs). (4.12)

But v2 and w2 are periodic solutions, hence

v2 =
1
4

(u0s

2
(XsZss−XssZs)−u0(XsZsss−XsssZs)

)
cosφ +

w1

4
sinφ(XsZss−XssZs), (4.13)

and

w2 =
1
4

(u0s

2
(XsZss−XssZs)−u0(XsZsss−XsssZs)

)
sinφ +

w1

4
cosφ(XsZss−XssZs). (4.14)

Based on the momentum equation in the radial direction, we get at leading order p0n = 0 and at order ε

p1 =
(

u2
0(XsZss−XssZs)− 2

Rb u0 +
(X+1)Zs−ZXs

Rb2

)
cosφ

− 1
Re

( 5
2 u0s(XsZss−XssZs)+u0s(XsZsss−XsssZs)

)
cosφ + 1

Re w1 sinφ(XsZss−XssZs). (4.15)

From the momentum equation in the azimuthal direction, we have at leading order, p0φ = 0. At the next
order in ε , we obtain the equation given above. At the leading order, the normal stress condition is given
by

p0 =−
u0s

Re
+

1
R0We

−E f
Q2

0
2
−E f

β

2
E2

0 , (4.16)

and we also have at order ε

p1 =
1

R0We

(
−

R1φφ +R1

R2
0

+ cosφ(XsZss−XssZs)

)
+

4v2

Re
. (4.17)

By substituting the expression for v2, we obtain

p1 =
1

R0We

(
−R1φφ+R1

R2
0

+ cosφ(XsZss−XssZs)
)
+

1
Re

( u0s
2 (XsZss−XssZs)−u0(XsZsss−XsssZs)

)
cosφ + w1

Re sinφ(XsZss−XssZs). (4.18)

If we substitute p1 from (4.15) in the previous equation, we obtain

(XsZss−XssZs)

(
u2

0−
3

Re
u0s−

1
WeR0

)
− 2

Rb
u0 +

(X +1)Zs−ZXs

Rb2 = 0.

(4.19)

The Navier-Stokes equation in the axial direction at order ε is

u0t +u0u0s =−p0s +
(X +1)Xs +ZZs

Rb2 +
1

Re

(
u0ss +4u2 +u2φφ

)
. (4.20)

After substituting the expressions for u2 and p0, the previous equation becomes

u0t +u0u0s =−
1

We

(
1

R0

)
s
+

(X +1)Xs +ZZs

Rb2

+
3

Re

(
u0ss +2u0s

R0s

R

)
+ Ẽ f

(
2

R0
Q0E0

)
+E f (Q0Q0s +βE0E0s) . (4.21)
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From the kinematic condition at order ε , we obtain

R0t +
u0s

2
R0 +u0R0s = 0. (4.22)

The last equation to close the systems is the arc-length condition

X2
s +Z2

s = 1. (4.23)

5. Steady State Solutions

By calculating steady state solutions and using the initial conditions at s = 0 R0(0) = 1 and u0(0) = 1,
we obtain R2

0u0 = 1 from the steady form of (4.22). Equations (4.21), (4.19) and (4.7) in steady form
are

u0u0s =−
1

2We
u0s√

u
+

(X +1)Xs +ZZs

Rb2

+
3

Re

(
u0ss−

u2
0s

u0

)
+ Ẽ f

(
2Q0E0

√
u0

)
+E f

(
Q0Q0s +βE0E0s

)
, (5.1)

(XsZss−XssZs)

(
u2

0−
3

Re
u0s−

√
u0

We

)
− 2

Rb
u0 +

(X +1)Zs−ZXs

Rb2 = 0,

(5.2)

2Q0
√

u0

K̄
+

E0

u0
= 1. (5.3)

It can be observed that when Q0 = E0 = 0, these equations reduce to the equations found in Părău et al.
(2007). We consider in this problem an external electric radial field E∞.

Hence, at a given point s on the jet centreline, by writing the electric radial field in polar coordinates
we obtain that the external electric field is

E∞ = E∞

(X +1)i+Zk
(X +1)2 +Z2 ,

where E∞ is a dimensionless parameter which describe the strength of the external electric field (see
also Hashemi et al. (2018) eq. 14). We can write a boundary integral equation for the electric field on
the surface of the jet as in Stone et al. (1999) eq. (2.4), for example. After projecting it on the tangential
direction we obtain at leading order an expression for E0(s) in the form:

E0− ln
(

1
χ

)[
β

2

(
E0

u0

)
ss
−
√

β

(
Q0√

u0

)
s

]
= E∞

(X +1)Xs +ZZs

(X +1)2 +Z2 , (5.4)

where χ is the aspect ratio of the jet, which can be taken here to be χ−1 = ε = a/s0 (see Hohman et
al. (2001a), Yarin et al. (2001) for more details on the derivation for the case of a uniform electric field
applied to axisymmetric jets and extensions to curved liquid jets). Feng (2002) has solved the steady
equations for an axismmetric liquid jet with an external uniform electric field instead of a radial one
by using an equation similar with (5.4). They found that various conditions at the nozzle R(0),E(0)
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etc. and at infinity have a strong influence on the results and some ad-hoc conditions were needed to
solve the system and to match the solutions to experimental results (see also Hohman et al. (2001a)).
Other authors (e.g. Spivak and Dzenis (1998)) have neglected the second term from the left hand side of
(5.4) for their work on axisymmetric jets under an uniform electric field. In this paper we follow their
approach, for simplicity, and we chose to neglect the second term on the left hand side (5.4). Hence we
will consider

E0(s) = E∞

(1+X)Xs +ZZs

(1+X)2 +Z2 . (5.5)

Thus, the equation (5.5) assumes that the electric field E0(s) is directly influenced just by the imposed
external radial electric field and in this paper we take a simplified approach by neglecting other terms
which appear due to other electrical interactions. The analysis of the full equation (5.4) and a com-
prehensive study of the potential errors introduced by our simplification will be investigated in a future
work.

The system of non-linear differential equations (4.23), (5.1)-(5.3) and (5.5) with the initial conditions
X = Z =Q0 =E0s = Zs = 0, and u0 =E0 =Xs = 1 at s= 0 can be solved using a finite difference scheme.
This method based on Newton’s method to solve nonlinear equations was applied by Părău et al. (2007)
to solve the above equations in the absence of any electric field. They also compared their results with
the Runge-Kutta method for the inviscid one and the results appeared identical for the steady centreline
and radius of the jet.

It is worth discussing the range of parameters used in experiments, even though they are performed
with viscoelastic fluids while our model here is for a viscous fluid. For example, Liao et al. (2011) has
performed experiments to produce polylactic acid (PLA) nanofibers while Liao et al. (2011a) and Chang
et al. (2014) has produced polyacrylonitrile (PAN) nanofibers. The viscosity µ of the solutions used
in their experiments was in the range 19cP to 300cP, the surface tension σ was between 25mN/m and
40mN/m, the density ρ was varying between 0.97g/mL and 1.56g/mL. The flow rate of the solution
poured on the rotating container was between 0.25mL/h to 1mL/h and the exit velocity U was estimated
to be around 100mL/hcm2. The voltage was chosen to be between 10kV and 30kV , the conductivity K1
of the solution was between 0.1µS and 1µS. The container containing the solutions has a diameter of
6cm which, together with the attached a syringe/spinneret, gives an estimation of s0 between 5cm and
8cm. The cylinder was rotating at 1800rpm which gives Ω = 188rads/s. The collector had a diameter
of 40cm or 50cm. The nanofibers obtained have diameters between 200nm and 5000nm. The initial
radius a of the jet at the spinneret was between 0.1mm and 2.5mm

The non-dimensional quantities given for the experiments are estimated to be in the following
ranges: ε ≈ 0.002..0.05, Re ≈ 0.2..50, We ≈ 0.15..30, Rb ≈ 10−3..100 . We also estimate β to be
in the range 1..3. The other parameters E f , K̄ can also be, in principle, calculated.

The trajectory of viscous curved jets are displayed in Figs. 2, 3 and 4 for different values of E f ,
E∞ and Rb respectively. From these figures it can be noted that when we decrease these dimensionless
numbers the jet coils more, which means that the rotation rate and the electric field have affected the
trajectory of the jet. This was also observed in experiments with non-Newtonian fluids (see Liao et
al. (2011a)) where they noted that the curvature radius increases with the external electric field. We
also plotted the radius along the the jet for three values of E∞ and E f , and we observe that when we
increase E∞ and E f , the jet radius reduces (see Figs. 5 and 6)). Liao et al. (2011a) have also noted that
the diameter of nanofibers produced decreases when the electric field is increased in their experiments,
which means that the jet radius is decreasing as s increases. On Fig. 7, it can be seen that the surface
charge increases more for high rotation rates along the jet, while the electric field decreases (see Fig.8).
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FIG. 2. Jet trajectory in the xz plane for different values of electric force parameter E f . The other parameters are We = 10, Ē f = 2,
5 and 7, Rb = 1, K̄ = 10, E∞ = 5 and β = 40.
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FIG. 3. Jet trajectory in the xz plane for different values of the external electric field E∞. The other parameters are We = 10,
Ē f = 2, Rb = 1, K̄ = 10, E f = 0.2 and β = 40.
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FIG. 4. Jet trajectory in the xz plane for different values of the Rossby number Rb. The other parameters are We = 10, E f = 0.2,
K̄ = 0.1, Ē f = 2, E∞ = 5 and β = 40.
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FIG. 5. Jet radius versus arc length for different values of the external electric field E∞. The other parameters are We = 10, Rb = 1,
Ē f = 2, K̄ = 0.1, E f = 0.2 and β = 40.
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FIG. 6. Jet radius versus arc length for different values of electric force parameter E f . The other parameters are We = 10, Rb = 1,
Ē f = 2, 7 and 20, K̄ = 0.1, E∞ = 2 and β = 40.
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FIG. 7. Surface charge versus arc length for different values of the Rossby number Rb. The other parameters are We= 10, K̄ = 0.1,
E f = 200, β = 40, Ē f = 2000 and E∞ = 0.5.
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FIG. 8. Electric field versus arc length for different values of the Rossby number Rb. The other parameters are We = 10, K̄ = 0.1,
E f = 200, Ē f = 2000, β = 40 and E∞ = 0.5.

6. Temporal Instability Analysis

By considering small travelling wave modes about the steady state solutions of (4.23)-(5.5), which are
solved in the previous section, we assume small perturbations as given by

(u,R,E,Q) = (u0,R0,E0,Q0)(s)+δ (û, R̂, Ê, Q̂)exp(iks̄+ω t̄), (6.1)

where s̄ = s/ε and t̄ = t/ε are small length and time scales, k = k(s) and ω = ω(s) are the wavenumber
and frequency of the disturbances, and δ is a small constant which is 0 < δ < ε2 (see Uddin (2007)).
Replacing the leading order pressure term in equation (4.21) with the full curvature expression is neces-
sary to avoid instability of wave modes with zero wavelength (see Eggers (1997)).

u0t +u0u0s =−
1

We

(
1

R0(1+R2
0s)

1/2 −
ε2R0ss

(1+R2
0s)

3/2

)
s
+

(X +1)Xs +ZZs

Rb2

+
3

Re

(
u0ss +2u0s

R0s

R

)
+ Ẽ f

(
2
R

Q0E0

)
+E f (Q0Q0s +βE0E0s) . (6.2)

The perturbation expansions (6.1) are now substituted into the equations (6.2), (4.22), (4.7) and (5.5),
and we obtain the eigenvalue relation at leading order(

ω + iku0

)3

+

(
3k2

R̄e + K̄√
β

)(
ω + iku0

)2

−
(

k2R0
2We

(
1

R2
0
− k2

)
− 3k2 K̄

R̄e
√

β
− E f k2 Q2

0
2 +E f k2 β E2

0

)(
ω + iku0

)
−
(

k2R0K̄
2We
√

β

(
1

R2
0
− k2

)
+

R0 E f k2 K̄ Q2
0

2
√

β
+E f k2 K̄

√
β E2

0

)
= 0, (6.3)

where we have redefined R̄e = εRe (see Alsharif et al. (2015) for a detailed discussion). We can notice
that when there is no electric field in the problem, which means that K̄ = Q0 = E0 = 0, the eigenvalue
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relation (6.3) becomes the eigenvalue relationship for Newtonian liquid jets that was found by Decent
et al.(2009). In order to examine the behaviour of viscous curved fibers with an electric field, we use
the dispersion relation (6.3). We note the large number of parameters in the equation which affect the
mechanisms of the linear instability of this viscous curved fibres with the electric field, so we will keep
some of them constant to simplify the analysis.

By solving (6.3) to find ω while assuming k to be real, we find regions of instability where Re(ω)>
0. It is also of interest to find the maximum growth rate given by Re(ωmax). A number of results are
presented below for a range of parameters.

We show the relationship between the growth rate Re(ω), and the wavenumber k for different values
of the electric force parameter E f , and we notice that when we increase this non-dimensionless parame-
ter, the growth rate increases (see Fig. 9). In Fig. 10, an increase in the dielectric constant ratio β leads
to an increase in the growth rate and an increase in the range of unstable wavenumbers. The growth rate
is also increasing when the Reynolds number is increased (see Fig. 11), but in that case the range of
unstable wavenumbers does not change.

In Figs. 12 and 13, we have plotted the relationship between the maximum growth rate and different
values of the electric force parameter E f and the dielectric constant ratio β . From these graphs, we can
see that by increasing β and E f the maximum growth rate also increases. In Fig. 14, we can observe that
an increase in the rotation rates (corresponding to Rb decreasing) leads to an increase in the maximum
growth rate. In Figs. 15 and 16, we observe that by increasing the conductivity of the fluid K̄ and the
Reynolds number R̄e, the maximum growth rate increases.

In the process of producing nanofibers is important to remove or minimize the beads developing on
them. They correspond to instabilities, so it is important to find the best value for the parameters to
avoid the instability or to reduce the maximum growth rate. We should also mention that (6.3) can be
solved to find k for a given ω purely imaginary, which will be related to the spatial instability problem
(see, for example, Decent et al. (2009) for curved viscous liquid jets).

7. Conclusion

In this study, the trajectory of a viscous liquid jet in centrifugal spinning under the influence of a radial
electric field has been determined. It was shown that by decreasing the electric force parameter E f and
the rotation rate Rb the jet coils more, showing that the rotation rate and the electric field are affecting
the trajectory of the jet. It is also shown that the surface charge increases more for high rotation rates
along the jet, while the electric field decreases the jet radius. The temporal instability of a charged
viscous liquid jet in centrifugal spinning has also been discussed. Moreover, we derived the dispersion
relation needed to study the effects of the dimensionless parameters on the charged liquid curved jet. It
has been found that increasing the dielectric constant ratio β leads to an increase in the growth rate. It
is also observed that when we increase the conductivity of the fluid K̄ and the Reynolds number R̄e, the
maximum growth rate increases.

The main industrial application of combining forcespinning and electrospinning is in the produc-
tion of nanofibers from a variety of viscoelastic jets. However, the present study concentrates on the
combined effect of centrifugal spinning and electrospinning on the trajectories and stability of liquid
jets by considering the simpler case of Newtonian fluids. The results obtained here will be useful in
future studies where concrete non-Newtonian liquid jets used in industrial applications and experiments
to produce nanofibers will be investigated theoretically and numerically. In that case, for example, beads
due to instability have been observed in experiments (e.g. Chang et al (2014)) and it is of interest to find
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FIG. 9. Re(ω) versus k for different values of the electric force parameter E f . The other parameters are R̄e = 30, We = 10, K̄ = 5,
and β = 0.01.
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FIG. 10. Re(ω) versus k for different values of the dielectric constant ratio β . The other parameters are R̄e = 30, We = 10, K̄ = 5,
and E f = 0.2.
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FIG. 11. Re(ω) versus k for different values of the Reynolds number R̄e. The other parameters are E f = 0.2, We = 10, K̄ = 5, and
β = 0.01.
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FIG. 12. Re(ωmax) versus E f for different values of the dielectric constant ratio β . At the nozzle R0 = E0 = 1 and Q0 = 0, and the
other parameters are R̄e = 30, We = 10 and K̄ = 0.1.
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FIG. 13. Re(ωmax) versus β for different values of electric field E f . At the nozzle R0 = E0 = 1 and Q0 = 0, and the other
parameters are R̄e = 30, We = 10 and K̄ = 0.1.
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FIG. 14. Re(ωmax) versus s for different values of the Rossby number Rb. The other parameters are R̄e = 30, We = 10, K̄ = 0.1,
β = 0.1 and E f = 0.2.
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FIG. 15. Re(ωmax) versus s for different values of the conductivity of the fluid K̄. The other parameters are R̄e = 30, We = 10,
β = 0.2, Rb = 1 and E f = 0.2.
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FIG. 16. Re(ωmax) versus s for different values of the Reynolds number R̄e. The other parameters are We = 10, K̄ = 0.1, β = 0.2,
Rb = 1 and E f = 0.2.
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the regimes of parameters needed to avoid them.
The effect of surfactants on an electrospinning viscous liquid jet will also be examined for the future

work, extending the methods developed by Alsharif and Uddin (2015) for a rotating non-Newtonian jet,
but without an electric force. Another potential avenue of research is the study of spatial instability of
curved liquid jets under the influence of centrifugal spinning and electrospinning.
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8. Appendix

Projecting the equations of motion (2.1) on our basis (es,en,eφ ) we obtain

∂u
∂ s

+hs

(
v+n

∂v
∂n

+
∂w
∂φ

)
+n(vcosφ −wsinφ)(XsZss−ZsXss) = 0,

(8.1)
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hs

(
∂u
∂ t

+(vcosφ −wsinφ)(ZstXs−XstZs)+ v
∂u
∂n

+
w
n

∂u
∂φ

)
+u

∂u
∂ s

+

u(vcosφ −wsinφ)(XsZss−ZsXss) =−
1
ρ

∂ p
∂ s

+

(
2Ω(vcosφ −wsinφ)+Ω

2((X + s0)Xs +ZZs)

)
hs

+
µ

ρ

(
−ncosφ(XsZsss−ZsXsss)

h2
s

(
∂u
∂ s

+ vcosφ(XsZss−ZsXss)

−wsinφ(XsZss−ZsXss)

)
+

1
hs

(
−u(XsZss−ZsXss)

2 +
∂ 2u
∂ s2

+2
∂v
∂ s

cosφ(XsZss−ZsXss)+ vcosφ(XsZsss−ZsXsss)−wsinφ(XsZsss−ZsXsss)

−2
∂w
∂ s

sinφ(XsZss−ZsXss)

)
+(1+2ncosφ(XsZss−ZsXss))

1
n

∂u
∂n

+hs
∂ 2u
∂n2 +

hs

n2
∂ 2u
∂φ 2 −

1
n

∂u
∂φ

sinφ(XsZss−ZsXss)

)
+

ε1Es

ρ

[
∂Es

∂ s
+hs

(
En

n
+

∂En

∂n

)

+ cosφ(XsZss−ZsXss)En +
hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
.

(8.2)
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hs

(
∂v
∂ t

+ucosφ(XstZs−ZstXs)+ v
∂v
∂n

+
w
n

∂v
∂φ
− w2

n

)
+u

∂v
∂ s

−u2 cosφ(XsZss−XssZs) =−
1
ρ

∂ p
∂n

hs−2Ωhsucosφ

+(Ω 2 cosφ((X + s0)Zs−ZXs +ncosφ))hs

+
µ

ρ

(
−ncosφ(XsZsss−XsssZs)

h2
s

(
∂v
∂ s
− ucosφ(XsZss−XssZs)

)

+
1
hs

(
− vcos2

φ (XsZss−XssZs)
2 +

∂ 2v
∂ s2 −2

∂u
∂ s

cosφ (XsZss−XssZs)

−ucosφ(XsZsss−XsssZs)+wsinφ cosφ(XsZss−XssZs)
2

)

+(1+2ncosφ(XsZss−XssZs))
1
n

∂v
∂n

+ hs
∂ 2v
∂n2 −

1
n
(

∂v
∂φ
−w)sinφ(XsZss−XssZs)+

hs

n2 (
∂ 2v
∂φ 2 − v−2

∂w
∂φ

)

)
+

ε1En

ρ

[
∂Es

∂ s
+hs

(
En

n
+

∂En

∂n

)
+ cosφ(XsZss−ZsXss)En

+
hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
, (8.3)
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hs

(
∂w
∂ t

+usinφ(ZstXs−XstZs)+ v
∂w
∂n

+
w
n

∂w
∂φ
− vw

n

)
+u

∂w
∂ s

+

u2 sinφ(XsZss−XssZs) =

(
− 1

ρ

1
n

∂ p
∂φ

hs +2Ωusinφ +

Ω
2 sinφ(ZXs− (X + s0)Zs−ncosφ)

)
hs +

µ

ρ

(
−ncosφ(XsZsss−XsssZs)

h2
s

(
∂w
∂ s

+ usinφ(XsZss−XssZs)

)
+

1
hs

(
−wsin2

φ (XsZss−XssZs)
2 +

∂ 2w
∂ s2 +2

∂u
∂ s

sinφ (XsZss−XssZs)+

usinφ(XsZsss−XsssZs)+ vsinφ cosφ(XsZss−XssZs)
2

)
+

(1+2ncosφ(XsZss−XssZs))
1
n

∂w
∂n

+ hs
∂ 2w
∂n2 − (

∂w
∂φ

+ v)sinφ(XsZss−XssZs)+

hs

n2 (
∂ 2w
∂φ 2 −w+2

∂v
∂φ

)

)
+

ε1Eφ

ρ

[
∂Es

∂ s
+hs

(
En

n
+

∂En

∂n

)
+ cosφ(XsZss−ZsXss)En

+
hs

n
∂Eφ

∂φ
−Eφ sinφ(XsZss−ZsXss)

]
, (8.4)

where hs = 1+ncosφ(XsZss−XssZs).
After some algebra, the equations on our basis for the Gauss law and for the surface charge (2.2)-

(2.3) are given by

1
nhs

{
n

∂Es

∂ s
+hs

(
∂ (nEn)

∂n
+

∂Eφ

∂φ

)
+n
(
En cosφ −Eφ sinφ

)
(XsZss−ZsXss)

}
=

q
ε1
, ,

(8.5)
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∂Q
∂ t

+u
1
hs
· ∂Q

∂ s

[
1− 1

Ξ 2

(
∂R
∂ s
· 1

hs

)2]
+ v

∂Q
∂n

(1− 1
Ξ 2 )+w · 1

n
· ∂Q

∂φ

[
1− 1

Ξ2

(
∂R
∂φ
· 1

R

)2]

− Q
Ξ 2

{(
− ∂R

∂ s

)
· 1

h2
s

[(
− ∂R

∂ s

)
· 1

h2
s

(
∂u
∂ s

+

(
XsZss−XssZs

)(
ucosφ −usinφ

))

+
∂u
∂n

+

(
− ∂R

∂φ

)
· 1

R
· 1

n
· ∂u

∂φ

]
+

(
− ∂R

∂ s

)
· 1

h2
s

(
∂v
∂ s
−
(

XsZss−XssZs

)
ucosφ +

∂v
∂n

)

+

(
− ∂R

∂φ

)
· 1

R
· 1

n

(
∂v
∂φ
−w
)
+

(
− ∂R

∂φ

)
· 1

R
·

[(
− ∂R

∂ s

)
· 1

h2
s

(
∂w
∂ s

+

(
XsZss−XssZs

)

usinφ +
∂w
∂n

+

(
− ∂R

∂φ

)
· 1

R
· 1

n

(
∂w
∂φ

+ v
)]}

=

[
K1 E ·n

]1

2
. (8.6)

We can write the components of the stress tensor τF in the curvilinear coordinate system as follows
(see Wallwork (2002))

τ
F
11 =

1
h1

∂u1

∂ξ1
+

u2

h1 h2

∂h1

∂ξ2
+

u3

h3 h2

∂h1

∂ξ3
,

τ
F
23 =

h3

2h2

∂

∂ξ2

(
u3

h3

)
+

h2

2h3

∂

∂ξ3

(
u2

h2

)
.

Here, we have chosen ξ1 = s, ξ2 = n, ξ3 = φ and h1 = hs,h2 = 1,h3 = n.

τ
F
ss =−p+2µ.

1
hs
.

[
∂u
∂ s

+(υ cosφ −wsinφ)(XsZss−XssZs)

]
,

τ
F
nn =−p+2µ

∂υ

∂n
,

τ
F
φφ =−p+2µ.

1
n
.

(
∂w
∂φ

+υ

)
,

τ
F
sn = µ

[
1
hs

∂υ

∂ s
+

∂u
∂n
− u

hs
cosφ(XsZss−XssZs)

]
,

τ
F
nφ = µ

(
∂w
∂n
− w

n
+

1
n
.
∂υ

∂φ

)
and

τ
F
sφ = µ

[
1
n
.
∂u
∂φ

+
u
hs

sinφ(XsZss−XssZs)+
1
hs
.
∂w
∂ s

]
.
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