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Simple Summary: Prostate cancer is one of the leading causes of cancer-related death in men in the
world, but a large proportion of men that are diagnosed with prostate cancer do not have a form
of the disease that will cause them long term harm. Therefore, there is a need to accurately predict
the aggressiveness of the disease without taking an invasive biopsy. In this study, we develop a
test that can predict whether a patient has prostate cancer and how aggressive that cancer is. This
test combines clinical measurements, levels of four genes collected from a fraction of the urine, and
levels of six peptides found in urine. We found that this test, deemed ‘ExoSpec’, has the potential
to improve the pathway for men with a clinical suspicion of prostate cancer and could reduce the
requirement for biopsies by 30%.

Abstract: There is a clinical need to improve assessment of biopsy-naïve patients for the presence
of clinically significant prostate cancer (PCa). In this study, we investigated whether the robust
integration of expression data from urinary extracellular vesicle RNA (EV-RNA) with urine pro-
teomic metabolites can accurately predict PCa biopsy outcome. Urine samples collected within
the Movember GAP1 Urine Biomarker study (n = 192) were analysed by both mass spectrometry-
based urine-proteomics and NanoString gene-expression analysis (167 gene-probes). Cross-validated
LASSO penalised regression and Random Forests identified a combination of clinical and urinary
biomarkers for predictive modelling of significant disease (Gleason Score (Gs) ≥ 3 + 4). Four pre-
dictive models were developed: ‘MassSpec’ (CE-MS proteomics), ‘EV-RNA’, and ‘SoC’ (standard of
care) clinical data models, alongside a fully integrated omics-model, deemed ‘ExoSpec’. ExoSpec
(incorporating four gene transcripts, six peptides, and two clinical variables) is the best model for
predicting Gs ≥ 3 + 4 at initial biopsy (AUC = 0.83, 95% CI: 0.77–0.88) and is superior to a standard of
care (SoC) model utilising clinical data alone (AUC = 0.71, p < 0.001, 1000 resamples). As the ExoSpec
Risk Score increases, the likelihood of higher-grade PCa on biopsy is significantly greater (OR = 2.8,
95% CI: 2.1–3.7). The decision curve analyses reveals that ExoSpec provides a net benefit over SoC
and could reduce unnecessary biopsies by 30%.
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1. Introduction

Prostate cancer (PCa) ranks as the second most commonly diagnosed cancer among
men [1]. Although this malignancy is diagnosed in about one in eight men, 78% survive
prostate cancer for 10 or more years [2]. PCa is a heterogeneous disease with many men
presenting with low-risk indolent disease that is unlikely to progress, while others have
aggressive clinically significant life-threatening disease requiring treatment intervention.

Clinical tests to predict the presence and aggressiveness of PCa on biopsy include
serum PSA, digital rectal examination (DRE), and more recently MRI. However, PSA lacks
specificity, with only ~40% of all patients with an elevated PSA (≥4 ng/mL) being positively
confirmed with PCa on biopsy [3]. DRE has been reported to be subjective and lumps
felt by DRE can disappear [4]. MRI has high sensitivity for significant disease but also a
high false positive rate of ~50% [5]. Accurate discrimination between slow growing and
aggressive PCa remains a major challenge. This is reflected in over-treatment of patients
with indolent disease and under-treatment of those with lethal disease.

The prostate is a secretory organ. Prostatic secretions flow into the urethra and are
flushed out on urination. Prostate cancer cells, extracellular vesicles (EVs), and molecules
are transported in the prostatic secretions and can be detected in urine, which has been
shown to be a non-invasive source of biomarkers for prostate cancer [6]. Single- or few-
biomarker panels such as PCA3 [7], SelectMDx [8], and ExoDx Prostate (IntelliScore) [9]
tests have been published. However, they are in various stages of clinical validation and
none are currently implemented in the UK healthcare system [10]. In 2011 we initiated
the collection of a large set of samples (the Movember GAP1 Urine biomarker cohort)
which were analysed by a range of methods with the aim of determining the best means of
analysing urine for diagnostic and prognostic PCa biomarkers. Analyses included ELISA,
mass spectrometry, RT-PCR, DNA-methylation patterns, and RNA expression data from
urine cell pellet and urine extracellular vesicles. Four risk classifiers for significant PCa
have so far been developed and published: (i) ‘PUR’ (Prostate Urine Risk) signatures using
expression data for 167 gene-probes in urine-derived Extracellular vesicle RNA (EV-RNA),
which provided additional prognostic information for men on Active Surveillance (AS) [11],
(ii) ‘ExoMeth’ integrating cell pellet methylation data with urine EV-RNA data in a subset
of samples [12], (iii) ‘ExoGrail’ which integrates whole urine EN2 protein ELISA data with
urine EV data in a subset of samples [13], and (iv) Applying machine learning algorithms to
urine proteomic data collected by mass spectrometry to generate proteomics patterns which
could identify advanced cancers (Gs ≥ 3 + 4) [14]. All four risk models showed promising
results with AUCs for detecting significant cancer of 0.77, 0.84, 0.89, and 0.8, respectively.

Here, we aim to investigate whether robust integration of urine EV-RNA data with CE-
MS proteomic features and clinical data in multivariable models can improve the accuracy
of predicting clinically significant PCa found on biopsy. The results of this study connect
with our other Movember cohort studies [11–13,15,16] which together provide valuable
information on which combination of urine markers have the potential to improve the
accuracy of predicting clinically significant PCa in biopsy naïve men.

2. Materials and Methods
2.1. Patient Population and Characteristics

Urine samples were collected for the Movember GAP1 Urine Biomarker Cohort be-
tween 2009 and 2015. Consenting men attending urology clinics at multiple sites pro-
vided first-catch urine samples, collected post-DRE and pre-biopsy (fully described by
Connell et al. [11]). Inclusion criteria for model development were that urine samples had
been analysed by both extracellular vesicle RNA analysis (NanoString) and mass spectrom-
etry analysis of excreted urinary peptides. Exclusion criteria: Men who had had a prostate
biopsy or trans-urethral resection of the prostate up to 6 weeks previously and men with
metastatic cancer (positive bone scan or PSA > 100 ng/mL).

All samples analysed in the ExoSpec cohort were collected from the Norfolk and
Norwich University Hospital (NNUH, Norwich, UK; Table 1). Sample collections and
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processing were ethically approved by the East of England REC. D’Amico classification
used Gleason Score (Gs) and PSA criteria as per D’Amico et al. [17]. All biopsies were
TRUS guided. Where subsequent biopsies were taken the results from the closest biopsy to
initial urine sample collection were used. The ‘No Cancer’ (NC) patient group (n = 59) were
a combination of men with raised PSA and a negative biopsy for cancer (n = 36) and men
with no evidence of cancer (n = 23) who had a PSA normal for their age [18], a normal DRE,
and for whom there was no suspicion of prostate cancer and as such had not been biopsied.

Table 1. Characteristics of the ExoSpec development cohort subdivided into ‘No Cancer’ (NC) and
prostate cancer (PCa) patients—see Methods.

‘No Cancer’ (NC) PCa

Collection Centre:
NNUH, n (%) 59 (100%) 133 (100%)

Age (years):
minimum 45.0 53.0

median (IQR) 67.0 (59.5, 71.0) 70.0 (65.0, 76.0)
mean (sd) 66.2 ± 8.3 70.2 ± 7.8
maximum 82.0 91.0

PSA (ng/mL):
minimum 0.3 4.10

median (IQR) 5.3 (2.3, 7.9) 10.40 (6.90, 16.60)
mean (sd) 6.4 ± 5.9 16.8 ± 17.4
maximum 30.3 95.9

Prostate Size (DRE estimate):
Small, n (%) 16 (27%) 12 (9%)

Medium, n (%) 25 (42%) 67 (50%)
Large, n (%) 14 (24%) 38 (29%)

Unknown, n (%) 4 (7%) 16 (12%)
Gleason Score:

0, n (%) 59 (100%) 0 (0%)
3 + 3, n (%) 0 (0%) 31 (23%)
3 + 4, n (%) 0 (0%) 48 (36%)
4 + 3, n (%) 0 (0%) 25 (19%)
≥4 + 4, n (%) 0 (0%) 29 (22%)

Biopsy Outcome
No Biopsy, n (%) 23 (39%) 0 (0%)

Biopsy Negative, n (%) 36 (61%) 0 (0%)

Biopsy Positive, n (%) 0 (0%) 133 (100%)
The bold is used to aid visualisation of the separate variables.

2.2. Sample Collection and Processing

Urine samples were collected, processed, and the extracellular vesicle RNA was
extracted according to the Movember GAP1 standard operating procedure, as previously
described by Connell et al. [11].

2.3. NanoString Analysis

NanoString analysis of extracellular vesicle RNA (EV-RNA) was performed as de-
scribed in Connell et al. [11], with the modification that NanoString data were normalised
according to NanoString guidelines using NanoString internal positive controls and log2
transformed. The NanoString data presented here are a subset (n = 192) of the data previ-
ously reported by Connell et al. [11] for which mass spectrometric analysis had also been
performed. See Table S1 for NanoString probe sequences.

2.4. Mass Spectrometry Analysis

Capillary electrophoresis–mass spectrometry (CE-MS) analyses were performed on
whole urine samples (n = 192) stored at −80 ◦C using the previously established protocols
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for sample preparation and data acquisition [19]. CE-MS analysis and data processing
were performed according to the ISO13485 quality standard [20]. In short, samples (700 µL)
were mixed 1:1 with alkaline buffer (2 M urea, 10 mM NH4OH, and 0.02% SDS (pH 10.5)),
filtered with Centrisart ultracentrifugation filters (Sartorius, Göttingen, Germany) to retain
proteins/polypeptides below 20 kDa. To remove urea, electrolytes, and salts and to decrease
matrix effects, the samples were ultra-filtrated using Centrisart ultracentrifugation filter
devices (20 kDa MWCO; Sartorius, Goettingen, Germany) at 3000 rcf until 1.1 mL of filtrate
was obtained. Later, the volume of 1.1 mL of the filtrate was applied on PD-10 columns
(GE Healthcare, Munich, Germany) equilibrated with 0.01% NH4OH in high-performance
liquid chromatography (HPLC)-grade H2O (Carl Roth GmbH, Karlsruhe, Germany). After
rinsing the column with 1.9 mL of 0.01% NH4OH in H2O, 2 mL of HPLC-grade H2O was
applied, and the resulting eluate was collected. The eluate was lyophilized and resuspended
in HPLC-grade H2O shortly before analysis, as previously described [21]. The analysis
was performed using a P/ACE MDQ capillary electrophoresis system (Beckman Coulter,
Fullerton, CA, USA) coupled with a Micro-TOF MS (BrukerDaltonic, Bremen, Germany)
supplemented with 0.94% formic acid (Merck KGaA, Darmstadt, Germany sourced from
Sigma-Aldrich) as running buffer. In addition, the electrospray ionization interface from
Agilent Technologies (Palo Alto, CA, USA) was set to a potential of −4.0 to −4.5 kV. Spectra
were recorded over an m/z range of 350–3000 and accumulated every 3 s [21].

2.5. Peptidomic Data Processing

Mass spectral ion peaks representing identical molecules at different charge states were
de-convoluted into single masses using MosaiquesVisu software [20,22]. Normalisation
of the CE-MS data was based on twenty-nine collagen fragments that are generally not
affected by disease and serve as internal standards [23]. A mass spectrometric peak list for
each peptide was defined by its molecular mass (kDa), normalized migration time (min),
and normalized signal intensity (AU) [22]. Normalization of the CE-MS data was based on
29 internal collagen fragments found to be stable over disease/health state that served as
internal standards [23]. All detected peptide data were deposited, matched, and annotated
in a Microsoft SQL database and used as input in the presented study [24]. Polypeptides
obtained from different samples were considered identical when mass deviation was
50 ppm for peptides of 800 kDa and 100 ppm for peptides with a maximum mass of
20 kDa. Due to analyte diffusion effect, CE peak widths increase with CE migration time.
For data clustering this effect is considered by linearly increasing cluster widths over the
entire electropherogram (19 min to 45 min) from 2 to 5%. Transformation of the data (log-
transformation) was performed before performing the statistical analysis, as previously
described [25]. These data have not been described before and are unique to this study.

2.6. Peptide Sequence Assignment

Matching of the amino acid sequences with ion peaks obtained by CE-MS was based on
mass correlation between CE-MS and liquid chromatography-tandem mass spectrometry
analysis (LC-MS/MS). Further validation of the obtained peptide identifications was based
on the assessment of the peptide charge at the working pH of 2.2 and the CE-migration time
results [20]. The amino acid sequences were obtained by performing MS/MS analysis using
either a PACE CE or a Dionex Ultimate 3000 RSLS nanoflow system (Dionex, Camberly, UK)
coupled to an Orbitrap Velos instrument (Thermo Fisher Scientific Inc., Boston, USA), as
previously described [26]. The mass spectrometer was operated in MS/MS mode scanning
from 350 to 1500 amu. The fragmentation method was HCD at 40% collision energy. For
CE, the top five multiple charged ions were selected for each scan for the MS/MS analysis
whereas for LC, the top 20 multiple charged ions were selected for each scan for MS/MS.
The detection limit for the LC- or CE-MS/MS analysis using the Orbitrap Velos mass
spectrometer, with 60,000 resolution for MS1 and with 7500 resolution for MS2, was in the
range of 0.05–0.2 fmol [27]. Proteins and peptides were searched against Uniprot human
non-redundant database (fasta file version from 20 June 2019) using Proteome Discoverer
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1.4 (activation type: HCD; precursor mass tolerance: 5 ppm; fragment mass tolerance:
0.05 Da) without enzyme specificity. No fixed modification was selected. Oxidation of
proline and methionine (indicated with ‘p’ and ‘m’) as well as deamidation (indicated with
‘q’) were set as variable modifications. High confidence peptides with Xcorr ≥ 1.9 and rank
1 were accepted as most valid for identification of the peptide markers (Pejchinovski et al.
2015). Sequences that were not successfully matched to correct peptide markers under
these criteria were not reported (indicated with ‘-‘).

2.7. Statistical and Data Analysis

Peptide data were filtered a priori by only retaining peptides quantified at any level
in at least 30% of either cancer or non-cancer samples. All analyses, model construction,
and data preparation were undertaken in R version 3.5.3 [28], and unless otherwise stated,
utilised base R and default parameters. All data and the code and scripts required to
reproduce these analyses can be found at https://github.com/UEA-Cancer-Genetics-Lab/
ExoSpec (accessed on 13 March 2022).

2.7.1. Feature Selection Using LASSO (Least Absolute Shrinkage and Selection Operator)

EV-RNA, CE-MS, and clinical markers were interrogated for useful information. Fol-
lowing filtering, a dataset comprised a total of 814 possible variables for predictive mod-
elling including EV-RNA (n = 167), peptides (n = 643), and clinical variables (n = 4) was
derived. Subsequently, feature selection was performed as a key task to minimise the poten-
tial for model overfit and increase the robustness of any trained models. Variables robustly
associated with Gleason Score were identified by means of a 20-fold cross-validated LASSO
(L1-penalised) generalised linear model, fit using the glmnet package [29]. Only features
whose coefficients were not decreased to zero by LASSO were considered further and were
positively selected as input to Random Forest-based comparator models.

2.7.2. Model Construction

All models were trained via the Random Forest algorithm [30], using the randomForest
package [31] with default parameters except for: (a) resampling without replacement and
(b) 401 decision trees being grown per model. Risk scores, as generated by the trained
models, are presented as the out-of-bag predictions: the aggregated outputs from decision
trees within the forest where the sample in question has not been included within the
resampled dataset [30]. Both cross-validation folds and bootstrap resamples were identical
for feature selection and model training, respectively, for all models and by applying the
same random seed. Models were trained on a modified continuous outcome (range: 0–1)
based on the dominant Gleason pattern: where no evidence of cancer was set to 0, Gleason
scores 3 + 3 & 3 + 4 to 0.5, and Gleason scores ≥ 4 + 3 to 1. Using Gleason score as a
continuous variable better reflects the reality that two patients with the same TRUS-biopsy
Gleason score will not share the exact same proportions of tumour pattern or overall
disease burden within their prostate. Following this categorisation, the score is treated as a
continuous variable by the Random Forest algorithm described above. When determining
the predictive ability and clinical utility of the models, the original non-continuous Gleason
score is used.

2.7.3. Comparator Models

To evaluate potential clinical utility, additional models were trained as comparators
using subsets of the available variables across the patient population: a clinical standard of
care (‘SoC’) model was trained by incorporating age, PSA, T-staging, and clinician DRE
result; a model using only the pre-filtered CE-MS derived peptides (‘MassSpec’, n = 643);
and a model only using NanoString gene-probe information (‘Exo-RNA’, n = 167). The
fully integrated ‘ExoSpec’ model was trained by incorporating information from all the
above variables (n = 814). Each set of variables were independently selected for generating
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comparator models via the cross-validated LASSO feature selection process as described
above to select the optimal subset of variables possible for each predictive model.

2.7.4. Statistical Evaluation of Model Predictivity

Metrics for Area Under the Receiver-Operating Characteristic curve (AUC) were pro-
duced using the pROC package [32], with confidence intervals calculated via 1000 stratified
bootstrap resamples. Density plots of model risk scores and all other plots were created
using the ggplot2 package. Cumming estimation plots and calculations were produced
using the dabestr package [33] and 1000 bootstrap resamples were used to visualise robust
effect size estimates of model predictions. Decision curve analysis (DCA) [34] examined
the potential net benefit of using the developed risk-signatures in the clinic. Standardised
net benefit (sNB) was calculated with the rmda package [35] and presented throughout our
decision curve analyses as it is a more directly interpretable metric compared to net bene-
fit [36]. To ensure DCA was representative of a more general population, the prevalence
of Gleason scores within the ExoSpec cohort were adjusted via bootstrap resampling to
match those observed in a population of more than 219,000 men within the control arm
of the Cluster Randomised Trial of PSA Testing for Prostate Cancer (CAP) Trial [37], as
described in Connell et al. [11]. Briefly, the biopsied men within this CAP cohort were
23.6% GS 6, 8.7% GS 7, and 7.1% GS ≥ 8, with 60.6% of biopsies showing no evidence of
cancer. These ratios were used to perform stratified bootstrap sampling with replacement
of the Movember cohort to produce a new dataset of 197 samples with risk scores from each
comparator model. sNB was then calculated for this resampled dataset, and the process
repeated for a total of 1000 resamples with replacement. The mean sNB for each risk score
and the treat-all options over all iterations were used to produce the presented figures to
account for variance in resampling. Net reduction in biopsies was calculated relative to
the clinical Standard of Care model, as it is the best decision model we could produce with
the clinical data within this cohort as opposed to defaulting to undertaking biopsy in all
patients with a PSA ≥ 4 ng/mL. With this considered, biopsy reduction was calculated as:

BiopsyNetReduction = (NBModel − NBSoC)×
1 − Threshold

Threshold
, (1)

where the decision threshold (Threshold) is determined by accepted patient/clinician risk.
For example, a clinician may accept up to a 25% perceived risk of significant cancer before
recommending biopsy to a patient, equating to a Threshold of 0.25.

3. Results
3.1. The Development Cohort

The development cohort consisted of paired extracellular vesicle RNA (EV-RNA)
and mass spectrometry peptide-metabolite datasets derived from urine collected from
192 patients during Movember GAP1 Urine biomarker study (Table 1).

3.2. Feature Selection and Model Development

Using LASSO regression models based on 20-fold cross-validation, feature selection
was performed for four datasets: only clinically available parameters, the EV-RNA dataset,
the mass spec dataset, and the integrated dataset combining all three types of data (Table 2).
LASSO regression will select those features (EV-RNA probes, peptides, or clinical variables)
that are useful in predicting risk category, discarding the redundant or useless features. Of
the clinical data (serum PSA, age at sample collection, DRE impression, and urine volume
collected) only age and PSA were selected as significant predictors of biopsy outcome,
both increased in prostate cancer (PCa) patients. Following filtering of the mass spec data,
643 peptides were inputted into the feature selection, of which 14 were found to have
significant utility in predicting PCa biopsy outcome (Table 2, Table S1). Nine peptides
were detected in higher levels in urine from PCa patients; these included fragments of
matrix metalloproteinase-2 (MMP2, 4.8× higher), three peptide fragments of fibrinogen
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alpha chain (FGA, 3.2–5.6×), and Histone H1.4 (HIST1H1E, 7.1×). Five peptides were
detected in decreased abundance: glutamate dehydrogenase 1 (GLUD1, 2-fold decrease in
PCa men) and four collagen peptides. Three fragments of collagen 1 alpha 1 (COL1A1) had
significant utility; one was upregulated in PCa samples (6.4×) and two were downregulated
(0.6–0.7×).

Table 2. Features positively selected for each model.

SoC MassSpec ‘ExoRNA’ ‘ExoSpec’ Difference
(PCa vs. NC)

Clinical
Parameters

Serum PSA - - Serum PSA 10.4×
Age - - Age 4.1×

Peptides -
HIST1H1E

(KSPAKAKAVKPKA
AKPKTAKPKAA)

-
HIST1H1E

(KSPAKAKAVKPKA
AKPKTAKPKAA)

7.1×

- COL2A1
(RDGEPGTPGNpGPpGP) - COL2A1

(RDGEPGTPGNpGPpGP) 7.0×

-
COL1A1

(GDDGEAGKp-
GRpGERGpPGP)

- - 6.4×

-
FGA

(DEAGSEADHEGTH-
STKRGHAKSRPV)

-
FGA

(DEAGSEADHEGTH
STKRGHAKSRPV)

5.6×

- COL4A4 (NEGLCA-
CEpGpMGPPGPp) - - 5.4×

- MMP2 (TAMSTVG-
GNSEGApCV) - - 4.8×

- - - FGA
(ADHEGTHSTKRG) 4.1×

- - - FGA
(SEADHEGTHSTKRG) 3.2×

-
NADK

(QTAPQEEAVTQEE-
VEALVCGHTQR-

WVPG)
- - 1.3×

- COL1A1
(ApGDRGEpGPPGp) - - 0.7×

- COL1A1
(SpGPDGKTGPpGPA) - - 0.6×

-

COL4A3
(PGNEGLDG-

pRGDPGqPGpPGE-
qGP)

- - 0.6×

-
COL4A5

(LPGFPGpEGPPG-
pRGQKGDDGIpGpPGPK)

- - 0.6×

-
GLUD1

(AVGESDGSIWN-
PDGIDPK)

-
GLUD1

(AVGESDGSIWN-
PDGIDPK)

0.5×

EV-RNA
probes

- - ERG exons 4–5 ERG exons 4–5 4.8×
- - PCA3 PCA3 4.2×
- - SLC12A1 SLC12A1 3.5×
- - TMEM45B TMEM45B 1.9×
- - SERPINB5 - 0.8×
- - SNORA20 - 0.8×

Features were selected using cross-validated LASSO feature selection on four datasets: clinical variables only,
mass spec, EV-RNA, and the combined dataset. Absolute mean differences between Prostate Cancer (PCa)
and No Cancer (NC) samples; ‘×’ indicates linear fold-change values. Protein/gene names are provided with
peptide sequences in brackets where appropriate. The ERG exon 4–5 probe will detect >95% of TMPRSS2:ERG
splice-variant transcripts. Bold has been added for the peptides to add readability and clarity.

For the EV-RNA dataset, six transcripts were selected (Table 2, Table S1). Four were
identified in increased urinary abundance in men with PCa (4.8×), including ERG (ETS
Transcription Factor, 4.8×) and PCA3 (prostate cancer antigen 3, 4.2×). Two genes (SNORA20
(small nucleolar RNA) and SERPINB5 (serine protease inhibitor) were at higher levels in
men with no evidence of cancer).
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The above selected features were subsequently used to train four Random Forest based
comparator models: (1) a standard of care (‘SoC’) model using only clinically available
information, (2) a ‘MassSpec’ model using only peptide mass spectrometry data (fourteen
predictive peptides), (3) an ‘ExoRNA’ model using only EV-RNA information (six gene-
probes), and (4) a multi-omics integrated model combining all data deemed ‘ExoSpec’.

3.3. Comparative Assessment of the Four Predictive Models

The three models using only a single dataset performed reasonably well with area
under the receiver operator curves (AUCs) for detection of any cancer ranging from 0.76
to 0.84 and AUCs for detection of Gleason score (Gs) ≥ 3 + 4 of ≥0.69–0.75 (Table 3).
ExoSpec AUC values were superior to all single-data models in predicting presence of any
cancer, Gs ≥ 3 + 4, and Gs ≥ 4 + 3 (ExoSpec AUCs 0.91, 0.83, 0.82, respectively, all p < 0.001,
bootstrap test, 1000 resamples, Table 3).

Table 3. Area under the receiver operator curve (AUC) values of all four trained models for detecting
disease on an initial biopsy: (i) Any cancer, (ii) Gleason score (Gs) ≥ 3 + 4, (iii) Gs ≥ 4 + 3. SoC uses
only clinically available information, MassSpec uses only peptide mass spectrometry data, ExoRNA
uses only EV-RNA information, and ExoSpec is a multi-omics integrated model combining all data.
Numbers within brackets are 95% confidence intervals for the AUC, calculated from 1000 stratified
bootstrap resamples. Input variables for each model are detailed in Table 1.

Initial Biopsy Outcome SoC MassSpec ExoRNA ExoSpec

Any Cancer 0.78
(0.70–0.85)

0.76
(0.68–0.84)

0.84
(0.79–0.90)

0.91
(0.86–0.96)

Gs ≥ 3 + 4: 0.71
(0.64–0.78)

0.69
(0.61–0.76)

0.75
(0.68–0.82)

0.83
(0.77–0.88)

Gs ≥ 4 + 3: 0.76
(0.69–0.84)

0.70
(0.62–0.78)

0.67
(0.58–0.75)

0.82
(0.75–0.88)

When we examined the distribution of patients for each model’s risk score, we found
that the SoC model was able to discriminate the ‘No Cancer’ from the highest risk patients
(Gs ≥ 4 + 3) with good accuracy but could not separate Gs3 + 3 from clinically significant
Gs3 + 4 disease, with the latter possessing a lower mean SoC risk score (Figure 1A). Neither
the MassSpec nor the ExoRNA comparator models could effectively differentiate between
the three cancer groups (Gs3 + 3, Gs3 + 4, Gs ≥ 4 + 3); however, ExoRNA was much better
at separating PCa and No Cancer (NC) samples (AUC 0.84, Figure 1B,C). The multimodal
ExoSpec model displayed clear improvements in separating the NC from the other cancer
groups (Figure 1D) and improved discernment of men with Gs ≥ 4 + 3 from men with
majority Gleason 3 cancers.

As ExoSpec Risk Score (range 0–1) increased, the likelihood of high-grade disease
being detected on biopsy was significantly greater (proportional odds ratio = 2.26 per 0.1
ExoSpec risk score increase, 95% CI: 1.91–2.71; ordinal logistic regression; displayed as a
waterfall plot in Figure 2).
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Figure 1. Risk score distributions generated by the four models divided by biopsy outcome data.
(A) SoC—model derived from clinical variables; (B) MassSpec—model built using mass spec peptide
data; (C) ExoRNA—model derived from EV-RNA information; and (D) ExoSpec—model using
the integrated clinical, peptide and EV-RNA data. Distributions are coloured according to biopsy
outcome: green—No Cancer (No Evidence for Cancer (NEC) and Raised PSA negative biopsy
samples), blue—Gleason score (Gs) 3 + 3, orange—Gs 3 + 4, red—Gs ≥ 4 + 3).
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Figure 2. A waterfall plot showing how ExoSpec risk score varies with biopsy outcome (increasing
Gleason score (Gs) is associated with more aggressive disease). The height of each coloured bar is
the predicted risk score given by the ExoSpec model for an individual biopsy. The colour of the bar
represents the biopsy outcome: green—No Cancer; blue—Gs 3 + 3; orange—Gs 3 + 4, red—Gs ≥ 4 + 3.
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The ‘No Cancer’ samples (n = 59) were separated into two subgroups namely (i) No
Evidence of Cancer (‘NEC’, PSA normal for age, no biopsy, n = 23) and (ii) Raised PSA
Negative Biopsy patients (n = 26). Mean ExoSpec scores for each of the clinical groups were
calculated after 1000 bias-corrected and accelerated bootstrap resamples (Figure 3). Notably,
the Raised PSA Negative Biopsy patients had a higher ExoSpec risk score than NEC (mean
difference = 0.2 (95% CI: 0.13–0.26)) and exhibited a wider ExoSpec score distribution than
other clinical categories, suggesting these patients may not form a homogenous molecular
or biological group. Mean ExoSpec score differences between NEC and the three cancer
subgroups were as follows: Gs3 + 3 = 0.38 (95% CI: 0.32–0.44), Gs3 + 4 = 0.4 (95% CI:
0.34–0.45), and Gs ≥ 4 + 3 = 0.51 (95% CI: 0.45–0.56).
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Figure 3. Relationship between ExoSpec risk signature score and biopsy status using Cumming
estimation plots. In the top panel, each point displays the ExoSpec risk score for a sample stratified
by biopsy status across the x-axis. Each sample point is coloured according to their biopsy Gleason
score or ‘No Cancer’ status: NEC—No evidence of cancer, Raised PSA—Raised PSA with negative
biopsy. Mean and standard deviation ExoSpec risk signature score distributions for each group are
shown by a gapped vertical line. The bottom panel shows mean differences in ExoSpec signatures
relative to NEC patient samples. Calculated from bias-corrected and accelerate bootstrap resampling
(1000 resamples with replacement), sample density distributions are presented with a point estimate
and vertical bar to show mean difference and 95% confidence intervals, respectively.

3.4. Net Benefit of Integrated ExoSpec Model

Decision curve analysis (DCA) was used to examine the net benefit for each of the
models in avoiding unnecessary biopsies, i.e., cancer negative or a Gs 3 + 3 biopsy result.
DCA was performed on a population of patients suspected to harbour prostate cancer, using
a PSA threshold of ≥4 ng/mL that can trigger further clinical investigations and biopsy [38].
The SoC model was taken as the baseline with which to compare DCA outputs from each
of the three models: MassSpec, ExoRNA, and ExoSpec plus the result of biopsying all
men with a PSA ≥ 4. The ExoSpec risk score consistently provided a net benefit across
all decision thresholds and endpoints examined (ruling out all disease as well as high
grade disease) and was the only model that was not predicted to be harmful at at least one
threshold when compared to the SoC model (Figure 4). ExoSpec could result in a reduction
in unnecessary biopsies by more than 30% for detecting clinically significant (Gs ≥ 3 + 4)
disease across a range of reasonable accepted risk thresholds (0.1–0.3, Figure 5).



Cancers 2022, 14, 1995 11 of 17Cancers 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 4. Estimation of standardised net benefit (sNB) of adopting each comparator model into clin-
ical practice, displayed as decision curves, relative to standard of care. Accepted risk thresholds for 
the clinician before agreeing to biopsy are shown on the x-axis—decision threshold. For example, a 
clinician may accept up to a 25% perceived risk of significant cancer before recommending biopsy 
to a patient, equating to a decision threshold of 0.25. Each panel shows the relative sNB of a different 
biopsy outcome result when compared to standard of care: (A) detection of any prostate cancer, 
regardless of Gleason; (B) detection of Gleason ≥ 3 + 4; (C) detection of Gleason ≥ 4 + 3. The colour 
of each line represents mode model used: orange—biopsy of patients according to current standard 
of care, green—biopsy patients based on the MassSpec model, purple—biopsy patients based on the 
ExoRNA model, and red—biopsy patients based on the ExoSpec model. Data presented here were 
calculated from 1000 stratified bootstrap resamples of the available data to match the disease pro-
portions reported from the control arm of the CAP study [37]. The mean sNB from these resamples 
was calculated and presented here. 

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6
Decision threshold for detection of any prostate cancer

St
an

da
rd

is
ed

 N
et

 B
en

ef
it

re
la

tiv
e 

to
 S

ta
nd

ar
d 

of
 C

ar
e

A

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6
Decision threshold for detection of Gleason 3+4

St
an

da
rd

is
ed

 N
et

 B
en

ef
it

re
la

tiv
e 

to
 S

ta
nd

ar
d 

of
 C

ar
e

B

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6
Decision threshold for detection of Gleason 4+3

St
an

da
rd

is
ed

 N
et

 B
en

ef
it

re
la

tiv
e 

to
 S

ta
nd

ar
d 

of
 C

ar
e

C

Comparators

Treat all PSA >4 ng/mL
Standard of Care
MassSpec
ExoRNA
ExoSpec

Figure 4. Estimation of standardised net benefit (sNB) of adopting each comparator model into
clinical practice, displayed as decision curves, relative to standard of care. Accepted risk thresholds
for the clinician before agreeing to biopsy are shown on the x-axis—decision threshold. For example,
a clinician may accept up to a 25% perceived risk of significant cancer before recommending biopsy
to a patient, equating to a decision threshold of 0.25. Each panel shows the relative sNB of a different
biopsy outcome result when compared to standard of care: (A) detection of any prostate cancer,
regardless of Gleason; (B) detection of Gleason ≥ 3 + 4; (C) detection of Gleason ≥ 4 + 3. The colour
of each line represents mode model used: orange—biopsy of patients according to current standard
of care, green—biopsy patients based on the MassSpec model, purple—biopsy patients based on
the ExoRNA model, and red—biopsy patients based on the ExoSpec model. Data presented here
were calculated from 1000 stratified bootstrap resamples of the available data to match the disease
proportions reported from the control arm of the CAP study [37]. The mean sNB from these resamples
was calculated and presented here.
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Figure 5. Potential reductions in unnecessary biopsies for each proposed model. Estimated from
the net benefit of each model when compared to standard of care. Accepted risk thresholds for
the interpreter before agreeing to biopsy are shown on the x-axis. Each panel details the estimated
percentage reduction in biopsies for a differing biopsy outcome: (A) detection of any prostate cancer,
regardless of Gleason; (B) detection of Gleason ≥ 3 + 4; (C) detection of Gleason ≥ 4 + 3. Green
lines—biopsy patients based on the results of the MassSpec model, purple—the ExoRNA model, red—
the ExoSpec model. The mean change in biopsies performed were calculated across 1000 stratified
bootstrap resamples and presented here as a percentage.

4. Discussion

Building upon our previous reports using single-omics features acquired by CE-
MS proteomics [14] and EV-RNA data [11] from urine samples, in this manuscript we
investigated if robust integration of these single-omics datasets via machine learning
models can improve prediction of prostate cancer (PCa) found on biopsy. The integration of
data from two very different technologies resulted in an increase in the predictive accuracy:
from AUCs of 0.69, when using mass spectrometry peptide-metabolite data, and 0.75, when
using extracellular vesicle RNA data, to 0.83 in the combined model. In comparison with
other reported biomarkers, such as the 4K score test, PHI, PCA3, and SelectMDx, the results
in this study have good performance (an AUC higher than 0.80 compared to 0.74–0.90) [39]
and this justifies further investigations with larger cohorts. Detection of blood kallikreins
such as in the 4K score and the prostate health index (PHI) have shown improvements
over the PSA test in prostate cancer prediction. 4K and PHI have similar performances.
The advantages of the PHI are that it is a cheap and simple blood test which measures
PSA in three forms: total PSA, free PSA, and [-2]proPSA. However, the disadvantage of
PHI is that [-2]proPSA levels have been reported to be unstable in blood which requires
processing within 1 h for optimal results [40]. Secondly, these are PSA-based tests and
blood levels of PSA can rise due to several causes besides cancer, such as benign prostatic
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hyperplasia [41], prostatic infection [42], or sexual intercourse [43]. Finally, PHI is used
within the context of a PSA range of 4–10 ng/mL, and over 20% of clinically significant
organ confined PCa occurs in men with a PSA less than 4 ng/mL [44,45]. The use of urine
markers could sidestep these issues.

We have reported features as predictive biomarkers for significant PCa, including ERG
exons 4–5, PCA3, SERPINB5, SLC12A1, TMEM45B, collagen alpha -1 (I) chains, and fibrino-
gen A (Table 2). These include NanoString detection of two well-established biomarkers
for prostate cancer PCA3 [46,47] and TMPRSS2:ERG [48]. SERPINB5 is less well known;
its transcript was decreased in PCa samples in this study, which would fit with its role
in tumour inhibition, with loss or decreased expression of SERPINB5 being reported in
prostate cancer cells [49]. Several collagen and fibrinogen fragments have been previously
reported as CE-MS biomarkers for discrimination of PCa patients from those without malig-
nancy [50] and for detecting significant PCa [14]. In this study, all three fibrinogen peptides
were identified at increased urinary abundance. Fibrinogen is reportedly overexpressed in
urological cancers and is a key factor of tumour related inflammation and angiogenesis [51].
Levels of peptides from collagen types 1, 2, and 4 were significantly altered in urine samples
from men with PCa. Interestingly MMP2, which was significantly increased in urine from
PCa patients, can degrade collagen type 4 in basement membranes [52] forming a tentative
link between some of the changes found in our studies.

NAD+ kinase (NADK) catalyses the phosphorylation of nicotinamide adenine din-
ucleotide (NAD+) to nicotinamide adenine dinucleotide phosphate (NADP+), which is
subsequently reduced to NADPH [53]. As the demand for NADPH is particularly high in
proliferating cancer cells, but also because it neutralizes the toxic high levels of reactive
oxygen species (ROS) that are produced by increased metabolic activity, NADK has been
implicated in several cancers and proposed as a target for therapeutic intervention [54]. In
this study, NAD kinase was identified in increased urinary levels in PCa patients compared
to ‘No Cancer’ samples. GLUD1, which is negatively allosterically regulated by NADP [55],
was decreased. Some important features from the single-omics models did not add value
to the combined ExoSpec model, which can be attributed in part to redundant information
shared between the multiple datasets.

Higher accuracy in determining the risk of having aggressive prostate cancer before a
diagnostic biopsy could reduce the number of men sent forward for unnecessary invasive
biopsy. Our net benefit analyses demonstrated an added value over the standard of care
assessment used for these patients and potentially could have reduced unnecessary biopsies
by up to 30% dependent on accepted patient-clinician risk. Introduction of the test into
the clinic should not be overly difficult. Urine is readily supplied by men in the clinic and
can be frozen for transport to a specialized laboratory for analysis. Urine extracellular
vesicles are much easier to purify than those in the blood stream and can simply be filtered
out of the urine with a 100 kDa centrifugal filtration device. NanoString EV expression
data and mass spectrometry data could be returned within 2 days. Feasibility and clinical
applicability of the CE-MS based urinary peptidomics has been demonstrated among others
in multicentric studies [56,57].

In this study, urine is utilized as a medium by which prostatic secretions are trans-
ported from the urethra to the outside world. We have examined our data relative to the
strength of colour of urine samples and have found no link to the quality of the RNA
expression data. We have subsequently introduced a urine preservative (Norgen, ON,
Canada) which enables us to store urine samples at room temperature for up to 2 weeks
without any loss of RNA quality; this will make transport for analysis simpler still [58].

Currently, the cost of the ExoSpec test per sample is high at approximately USD 920
(USD 120 for the EV expression data and ~USD 800 for the mass spec). This is mainly due
to high instrument costs of mass spec. However, it is expected that a broader use of this
approach will result in a lower cost. mpMRI and biopsy are also of considerable expense
and so it is still possible that ExoSpec is cost effective considering the benefits in terms of
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reducing the number of biopsies and imaging. A full economic costings analysis should be
performed before ExoSpec is implemented in the clinic.

There are some limitations to this study. In our cohort, prostate biopsy pathology
was determined by TRUS biopsy, which will underestimate presence of significant cancer
compared to template biopsy [5,59] when cancers are small [60]. A second limitation is
that no MRI data was available for these men as samples were collected prior to MRI
being widely phased in as a screening tool in the UK. Ahmed (2017) predicted that if TRUS
biopsies were directed by MRI then up to 18% more clinically significant cancer would
be detected [5]. However, while MRI can detect over 95% of significant disease (Gleason
pattern ≥ 4), it does have a high false positive rate of ~50% [5]. We envisage that ExoSpec
could perform well alongside MRI to reduce the number of negative biopsies taken as
has been shown with other biomarkers such as PHI [61], but more research in this area
is required [62]. Additionally, the development of ExoSpec was undertaken in a limited
sample size for the number of predictors [63]; to compensate for this we implemented
methods that are sufficiently robust to counter potential overfitting and bias, using strong
internal validation methods in bootstrap resampling and out-of-bag predictions. These
results are a starting point for validation of the predicted clinical benefits of the ExoSpec
model in a prospective study.

5. Conclusions

The combination of biomarkers from multiple-omics sources improves our ability
to detect significant prostate cancer (Gs ≥ 7) using urine samples. ExoSpec was able to
accurately predict biopsy results and showed the potential for a large group of men to forgo
an unnecessary invasive biopsy. If validated, ExoSpec has the potential to greatly improve
the clinical care of men suspected to have prostate cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14081995/s1, Table S1: List of predictive urinary peptides
and NanoString probes that were employed for the construction of the predictive models.
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