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Introduction 
Osteoarthritis (OA) is the single most common painful joint condition; knee OA alone currently 

affects >250 million people globally, and it is one of the fastest increasing health conditions 

worldwide1,2. The individual impact of OA includes pain and loss of both mobility and independence, 
25% of patients being unable to carry out normal activities of daily life3,4. OA’s societal burden is 

enormous, with current annual direct healthcare costs of knee OA alone estimated at up to $15 billion 

in the USA5. This figure is dwarfed by indirect costs of work absenteeism, early retirement, and loss of 

productivity associated with OA and associated medication use6. OA remains one of the major 

unresolved medical conditions, with no registered therapies that halt structural damage, and 

symptom-modifying interventions having only moderate long-term effect at best7.  

It is clear that developing new, safe, effective OA treatments is an international healthcare and 

socioeconomic priority. A key underpinning requirement for therapeutic advancement in OA, as it is 
for all diseases, is knowledge of the cellular and molecular pathophysiology8. There has been an 

extraordinary increase in understanding of human-relevant OA bio-molecular mechanisms over the 

last 15 years9-11. This has been associated with the recognition of OA as a joint-wide disease affecting 

and involving molecular and mechanical cross-talk between multiple tissues, and these with systemic 

processes and pathways. The complexity and breadth of new knowledge in OA pathophysiology, 

means the task of summarizing the key pathways is immense and crosses diverse mechano-

biological domains. In the current review, we have therefore taken the approach to ask individuals 

with expertise in six different aspects of OA pathogenesis (cartilage matrix degradation, inflammation, 
fibrosis, failed cartilage repair, bone remodelling, and ageing), to provide a brief narrative review of 

what they consider the key disease mechanisms in their domain, with a lens to focus on those that 

may that offer the most promise for therapeutic targeting. The essays were written independently to 

avoid unintended collusion bias and are presented below, followed by a brief conclusion written after 

collation of the individual sections. We hope this approach will not only provide a different, interesting 

and more approachable review on a daunting topic but also allow identification of pathways and 

mechanisms that cross multiple aspects of OA and contribute to the changing crosstalk between joint 
tissues as disease progresses.  

 

Targeting cartilage degradation to treat OA – Linda Troeberg 
Degradation of the cartilage extracellular matrix (ECM) is appreciated to be an important feature 

of OA pathogenesis that, together with bone remodelling, leads to progressive joint damage and 

structural failure. Breakdown of type II collagen and aggrecan are thought to be most important, as 

these are the two most abundant cartilage matrix biomolecules and their loss reduces tensile strength 

and resistance to compression. A large body of evidence supports the conclusion that matrix 
metalloproteinases (MMPs) mediate type II collagen degradation, while related metalloproteinases, the 

adamalysins with thrombospondin motifs (ADAMTSs) are responsible for the degradation of aggrecan 

(Figure 1).  

Type II collagen is a very stable molecule whose triple helical structure can only be cleaved by a 

handful of proteases, including cathepsin K and 4 collagenolytic MMPs (i.e. MMP1, 8, 13 and 14). 
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Collagen degradation occurs progressively in osteoarthritic cartilage12,13, and can be blocked by 

metalloprotease inhibitors in vitro14,15, suggesting that the collagenolytic MMPs play a central role in this 

catabolic process. Two key papers support the assertion that MMP13 is a key collagenase in OA. Firstly, 

transgenic mice overexpressing MMP-13 in cartilage exhibited increased collagen degradation by 5 
months of age, along with increased cartilage erosion and joint pathology16. Secondly, Mmp13-null mice 

developed significantly less cartilage erosion 8 weeks after surgical induction of OA17.  Expression of 

MMP13 is increased in human and murine OA cartilage, and is highly inducible in vitro by inflammatory 

cytokines. The catalytic domains of MMPs are structurally homologous, so it has historically been 

difficult to design inhibitors that effectively target a single MMP without undesirable side-effects. This is 

thought to be the reason that metalloproteinase inhibitors failed as cancer therapies18, despite clear 

evidence showing the important roles of MMPs in cancer metastasis and progression. MMP13, 

however, is unusual among MMPs in that it has deep pockets in its active site, so attempts have been 
made to design MMP13 inhibitors as potential OA therapies - these fared well in pre-clinical models19, 

but have not progressed further at present, most likely due to lingering concerns about lack of specificity 

and consequent toxicity.  

The sequence of events in early OA is difficult to ascertain, but in vitro studies indicate that collagen 

breakdown starts relatively late in the pathogenesis of OA, while breakdown of aggrecan occurs 

earlier20,21. Importantly, aggrecan loss in these models is reversible, while collagen loss is not. For many 

years, MMPs were thought to be responsible for the pathological degradation of both collagen and 

aggrecan in OA cartilage, but this view was challenged by Sandy et al.22, who showed that aggrecan 

fragments released into the synovial fluid of OA patients had been cleaved at the Glu
373

~Ala
374 bond, 

which is not targeted by MMPs. This sparked considerable interest in identifying the ‘aggrecanases’ or 

enzyme(s) responsible for pathological breakdown of aggrecan, as targets for development of OA 

therapies. The first ‘aggrecanase’ was purified from IL-1-stimulated bovine cartilage by Tortorella et 

al.23, and named A Disintegrin And Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) based 
on its homology to ADAMTS1. Another aggrecanase, ADAMTS5, was cloned shortly afterwards24,25, 

and subsequent studies indicated this is the main murine aggrecanase, since mice lacking Adamts5 

were protected against aggrecan degradation and cartilage damage in 2 pre-clinical models of OA26,27. 

ADAMTS5 may also be the primary human aggrecanase28, although ADAMTS4 may also play a role.  

Aggrecanase inhibitors have been designed by several groups, with some of these showing 

promising efficacy in pre-clinical models29. For example, Galapagos and Servier developed an 

ADAMTS5 catalytic domain inhibitor, GLPG1972/S201086, with good selectivity for ADAMTS5 and 
efficacy in preclinical rat and mouse OA models30,31.  However, this inhibitor failed to meet its primary 

outcome (reduction in cartilage loss over 1 year by qMRI) or secondary outcomes, including pain and 

structural progression in a clinical trial (https://clinicaltrials.gov, NCT03595618). Some groups have 

taken the approach of designing inhibitors that target the non-catalytic domains of ADAMTSs, to reduce 

the potential for cross-reactivity and off-target inhibition of homeostatic MMPs and related 

metalloproteases such as ADAMs. For example, Santamaria et al.32 recently generated small molecule 

exosite inhibitors of ADAMTS5, and Merck generated a cross-domain bi-specific nanobody with good 

efficacy in a murine OA model33. However, a word of caution was raised by GlaxoSmithKline34, who 
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found that their antibody against ADAMTS5 caused cardiac abnormalities in cynomolgus monkeys, 

which they suggest may relate to expression of ADAMTS5 in cardiovascular tissue. ADAMTS5 also has 

homeostatic roles in other tissues (reviewed by Santamaria35), suggesting further challenges for 

inhibitor design.  
 

 
 

Figure 1: MMPs and ADAMTSs metalloproteases cleave type II collagen and aggrecan in the OA 
cartilage extracellular matrix. Chondrocytes secrete metalloproteases that degrade the cartilage 

extracellular matrix in OA. Studies on transgenic mice suggest that MMP13 is the key collagenase in 

cartilage, while ADAMTS5 is the main ‘aggrecanase’. 

 

Targeting inflammation to treat OA - Christopher B. Little 
Historically osteoarthritis (OA) was considered a non-inflammatory “degenerative-joint-disease”, 

and alternative names such as osteoarthrosis were proposed. However, just as the concept of 
passive “wear-and-tear” OA cartilage loss has been replaced with an understanding of a dynamic 

balance between bio-cellular repair and destruction (see sections by Troeberg and Vincent), the 

presence of synovial inflammation is now a well-recognized and consistent finding in OA patients and 

pre-clinical animal models10,36-38.  OA synovium, even in early-stage disease, displays focal 

hyperplasia and hypertrophy of synovial lining cells, subintimal accumulation of inflammatory cells 

(macrophages, lymphocytes, plasma cells) and increased vascularity39,40, along with progressive 

fibrosis of the joint capsule (see section by Kapoor). In the OA knee, the infrapatellar fat pad as part of 

the functional synovial unit also has increased inflammatory cells and fibrotic changes, although 
notably with some unique characteristics compared with other synovial tissues41-43.  

Synovial inflammation in OA is associated not only with symptoms but structural disease severity 

and progression in patients44-48. Beyond simply being a secondary response to late-stage joint tissue 

breakdown, synovial inflammatory mediators are more elevated acutely after OA-inducing joint injury49 

and in early compared with late OA39,46,50,51. Importantly, synovitis/joint-effusion is associated not only 

with faster progression of established disease, but also more incident OA44 and increased risk of post-

traumatic OA following joint injury52. In light of this, it seems clear that the “itis” in OA is indeed 
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appropriate, not only from the perspective of correctly describing the presence of synovial 

inflammation but also its potential pathophysiological role in initiation and progression of structural 

and symptomatic disease.  

Activation of the innate inflammatory/immune response in OA has been well-described and may 
be triggered by mechanical injury directly, as has been proposed for articular cartilage53. It is 

characterized by the influx of blood-derived monocytes and macrophages, which may contribute 

directly to increases in cytokines, growth factors and pathologically-relevant enzymes (e.g. IL1, IL6, 

TNF, TGFb, MMP1, MMP13, ADAMTS4, ADAMTS5)54-56. Lymphocytes, particularly CD4 and CD8 T-

cells are also increased in OA synovium even in early disease stages, these cells producing 

cytokines, chemokines and enzymes implicated in disease progression (e.g. IL8, IL17, TNF, CCL2, 
MMP1, MMP3, MMP9)39,41,43,57-59. Stromal cells in the synovium and other joint tissues (e.g. injured 

cruciate ligament) also increase synthesis of cytokines and chemokines60-62, and OA chondrocytes 

themselves increase expression of pro-catabolic cytokines (e.g. IL8, IL12, IL17) that may act in an 

autocrine or paracrine manner to promote cartilage degradation63. Finally, systemic inflammation, 

particularly circulating cytokines (e.g. IL6, TNF) and activated monocytes (associated for example, 

with obesity/metabolic-syndrome), further contribute to the pro-inflammatory milieux and complex 

cellular cross-talk that may initiate, perpetuate and exacerbate joint-wide OA structural pathology and 
pain (Figure 2)54,64-67.  

 
Figure 2: Schematic image depicting the key inflammatory cells and soluble mediators and pathways 

implicated in osteoarthritis pathogenesis. 

 

The discussion above provides a glimpse of the burgeoning evidence for up-regulation of a 

multitude of inflammatory pathways locally and systemically in OA, involving innate and adaptive 

immune cells, and numerous cytokines, chemokines and growth factors. Dysregulation does not 

equal causality however, so is there data supporting the therapeutic potential of targeting 

“inflammation” in OA, and which if any of the pathways may hold the most promise? Notwithstanding 

that samples are predominantly from late-stage disease, unbiased genome-wide mRNA expression 
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and network analyses of different human joint tissues have identified highly-relevant/hub genes and/or 

inflammatory processes in OA54,57,60,63,68. While there are, not surprisingly, some differences between 

joint-tissue compartments and even cells with a given tissue, the commonly identified dysregulated 

inflammatory pathways in OA include: IL1, IL6, IL8, IL12, IL17, TNF, CCL2, M1/M2 macrophage 
polarization and Th1 and Th17 CD4 T-cells. There is supporting evidence from pre-clinical tissue 

culture and/or animal models, that inhibiting or ablating any of the above identified inflammatory 

pathways can modify onset, progression and/or severity of various aspects of joint-wide structural 

and/or symptomatic OA10,38.  

Despite the above evidence, clinical trials targeting some of these pathways in OA patients have 

been disappointing69,70. Does this mean inflammation is not as important an OA-therapeutic target as 

it appeared? In answering this, it is noteworthy that variable outcomes are reported in different OA 

disease models and model systems e.g. IL1 in mono-idodacetate-, meniscal destabilization-, 
meniscectomy- and collagenase-induced OA71-74; IL6 in post-traumatic and age-associated OA75,76. 

This pre-clinical data suggests that the specific inflammatory pathways involved and therefore usefully 

therapeutically targeted, may differ depending on the disease model i.e. it is disease-phenotype-

dependent. This is consistent with human OA patient data showing differences in inflammatory 

dysregulation e.g. in hip versus knee OA77, in knee OA in males versus females78, and the cytokines 

that correlate with different aspects of knee OA pain46,79.  Even within a given OA population, distinct 

inflammatory cell/cytokine patient clusters can be identified e.g. in those presenting for knee 

replacement80.  
This OA inflammatory heterogeneity may, at least in part explain the poor outcomes from clinical 

trials70. Just as in recognized inflammatory arthropathies81,82, a more nuanced approach to anti-

inflammatory therapy in OA may be needed for example selecting patients with a more inflammatory 

clinical phenotype, or potentially using biomarker analysis to identify particular inflammatory molecular 

endotypes within OA sub-populations. This is supported by serendipitous data from a large trial of 

IL1b inhibition for myocardial infarction in patients with elevated C-reactive protein, that demonstrated 

a significant reduction of incident or worsening OA symptoms and rates of total knee and hip 

replacement83. While not designed with OA-relevant structure and symptom outcomes, this study 

strongly suggests that targeting the right inflammatory pathways in the right patients at the right time 

may make significant inroads to successfully treating OA (Table 1). As with many of the potential OA 

therapeutic approaches based on targeting pathophysiologic pathways, developing biomarkers to 

identify different patient cohorts is a key research imperative.  

 

Table 1. Evidence in favour of targeting inflammation in osteoarthritis 

• Human and preclinical animal model data consistently shows upregulation and activation of 

inflammatory and immune pathways in the joint and systemically. 

• Data from selective preclinical in vitro and in vivo models confirm that genetically or 

pharmacologically inhibiting specific inflammatory cytokines and immune cells can reduce 
structural and/or symptomatic OA. 
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• High priority, and potentially joint-tissue and OA-phenotype specific inflammatory pathways 

identified from unbiased genome-wide human OA expression studies. 

• Many efficacious therapeutics already developed, approved and in clinical use in other 
diseases, could be repurposed for specific OA phenotypes. 

• Treating systemically with an inhibitor of IL1b (canakinumab) shows disease modification in 

patients with a systemic inflammatory phenotype.   

 
Targeting synovial fibrosis to treat OA – Mohit Kapoor 

The synovial membrane is a thin membrane that surrounds articular joints and comprises two 

main layers; a cellular intima and underlying collagen I-rich sub-intima84,85. The synovium is required 

to maintain joint integrity, lubrication and homeostasis. While the majority of OA research has focused 

on mechanisms associated with articular cartilage degeneration, it is now believed that changes in the 

synovium may play an active role in driving OA pathogenesis. During OA, synovium presents with 

different synoviopathies, including inflammatory (see preceding section), hyperplastic, fibrotic and 

detritus-rich forms86.  

Synovial fibrosis is characterized by excessive ECM deposition and contributes to the joint 
stiffness and pain associated with OA. Underlying endogenous mechanisms associated with synovial 

fibrosis are not well characterized and several critical questions remain to be answered: (1) Why and 

how does synovial fibrosis occur?; (2) Which cell types are responsible for the initiation and 

progression of synovial fibrosis?; (3) How can we control fibrosis to reduce structural and 

symptomatic OA?  

Fibrosis is speculated to occur due to uncontrolled tissue repair responses, prolonged 

inflammatory insults, and cross talk between a variety of endogenous pro-fibrotic molecular and 
cellular mechanisms. The synovium consists of cells including, but not limited to, fibroblast-like 

synoviocytes (FLS) and macrophages. FLS are the key cell type of the synovium that is responsible 

for maintaining homeostatic functions and promoting inflammatory and fibrogenic responses 

(reviewed in 87). FLS respond to a wide array of stimuli in the OA joint microenvironment resulting in 

increased proliferation, migratory capacity and acquiring a myofibroblast like phenotype (Figure 3), all 

contributing towards increased ECM deposition and fibrogenic responses in the synovium. Some of 

the key triggers associated with FLS activation include transforming growth factor-beta (TGFβ), 

cartilage wear products, Wnt/beta-catenin signaling pathway, and hypoxia inducible factor-1 alpha88-

94, among others. TGFβ is a major pro-fibrotic mediator known to activate FLS and induce their 

transition to highly contractile myofibroblast-like cells that are believed to be involved in excessive 

ECM accumulation in the synovium95. Targeting TGFβ and its signaling to achieve anti-fibrotic effects 

has proved to be complex due to its homeostatic roles in other joint tissues such as the articular 

cartilage96,97. 

At this point, clinical evidence to support efficacy of anti-fibrotic therapies to minimize the degree 

of joint destruction during OA requires further investigation. One could speculate that controlling 
inflammation during early stages of OA initiation and development could indirectly minimize the pro-

fibrotic events and associated pathological mechanisms. Another potential therapeutic modality may 



	 	 	
	

	 8	

include the simultaneous targeting of inflammation and fibrosis using a combination of anti-

inflammatory and anti-fibrotic agent(s). In this context, Pirfenidone, an anti-inflammatory and anti-

fibrotic drug currently approved for the treatment of idiopathic pulmonary fibrosis98, has been shown to 

attenuate synovial fibrosis and delay the progression of OA in a preclinical model99. Future clinical 
trials would help determine the therapeutic efficacy of such drugs and agents in reducing fibrosis and 

minimizing the degree of joint destruction during OA.  

The Wnt family of proteins are also involved in OA pathogenesis100-102 and have drawn significant 

attention in the OA field. For instance, a phase II study of Lorecivivint (SM04690) an inhibitor of 

intranuclear kinases CDC-like kinase 2 (CLK2) and dual-specificity tyrosine phosphorylation-regulated 

kinase 1A (DYRK1A) that modulates the Wnt pathway, shows initial efficacy in improving pain, 

function and joint space narrowing in patients with unilateral moderate to severe symptomatic knee 

OA103, with phase III trials currently underway104. Preclinical studies using SM04690, shows cartilage 
protective effects in vivo105. It would therefore be of interest to investigate the potential of SM04690 to 

reduce synovial inflammation and fibrosis in preclinical animal models and in clinical trials. In this 

context, intra-articular injection with XAV-939, a small-molecule inhibitor of Wnt/β-catenin signaling, 

reduces the degree of synovitis and cartilage degeneration in a mouse model of knee OA in vivo, and 

reduces proliferation and collagen synthesis of FLS treated with XAV-939 in vitro90; however, it 

remains to be determined if XAV-939-induced cartilage protective effects are driven by reductions in 

synovitis or vice versa.   

Research on synovium as a key driver of OA pathogenesis is garnering significant attention in 
the OA field. To better understand the contribution of synovium and to devise adequate therapeutic 

strategies to control processes such as synovial fibrosis and inflammation in joint destruction, it is 

essential to identify and understand the roles of individual synovial cell types and subpopulations that 

are involved in the initiation and progression of OA. The emergence of single cell sequencing, high 

throughput omics technologies and advanced bioinformatics provides an excellent opportunity to deep 

dive into the role of the synovium in OA pathogenesis. Applying these technologies to investigations 

using pre-clinical animal models and well characterized human OA synovial samples will allow for the 
identification of putative therapeutic targets that may limit pathological processes in OA, including 

synovial fibrosis.  
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Figure 3: Fibroblast like synoviocytes (FLS) and macrophages are key cell types present in the 

synovium. FLS exhibit increased proliferation and migration, and also acquire a myofibroblast like 

phenotype, resulting in the excessive ECM deposition in the synovium during osteoarthritis. 
 
Targeting regeneration of cartilage to treat osteoarthritis - Tonia L. Vincent 

OA textbooks frequently describe OA as a disease determined by the balance between catabolic 

and anabolic pathways activated within the tissue. Historically this was based on the observation that 

some chondrocytes appeared to display an exuberant synthetic response in OA tissue when 

measuring uptake of radiolabelled sulfate (indicative of synthesis of sulfated proteoglycans), whilst 

other chondrocytes were in regions of the matrix completely devoid of proteoglycan106. Later evidence 
was based on transcriptomic analyses where evidence of new matrix synthesis was often upregulated 

alongside catabolic enzymes and other inflammatory molecules107,108. The textbooks shied away from 

describing the anabolic response as evidence for regenerative activities, as the pervasive view had 

been that articular cartilage was incapable of repairing itself.  

Mounting evidence in the past 10 years indicates that this paradigm is incorrect. Not only is there 

evidence from careful prospective arthroscopy studies that many focal cartilage lesions heal 

spontaneously (reviewed in109), but also that established OA can repair if the hostile mechanical 

environment of the joint is corrected e.g. by joint distraction, using an external frame attached above 
and below the joint, or by high tibial osteotomy110,111. Such studies demonstrate MRI-proven 

regeneration of cartilage-like tissue even where the erosion was down to the underlying bone112. In 

the case of joint distraction, which is typically in situ for 6 weeks, this tissue appears to be maintained 

up to 2 years after removal of the frame and is associated with a sustained clinical benefit over longer 

periods113. Whether the tissue that is produced is true hyaline cartilage with newly synthesized type II 

collagen or fibrocartilage (type I collagen rich) is unclear. This fact may also be irrelevant so long as it 

shows resilience over time with associated symptom improvement. Several studies point to minimal 
type II collagen incorporation after skeletal maturity, which does not appear to change with OA114,115. 
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Molecular mechanisms that underly regenerative activities in articular cartilage are being 

revealed. These fall into two broad areas: the identity, control and activity of progenitor cells in the 

joint that mediate cartilage repair, and tissue factors that signal the injury and activate the tissue 

repair response. Meachim famously described two distinct repair responses in articular cartilage; one 
which was ‘intrinsic’ to the cartilage, mediated by cells that resided within the substance of the tissue, 

and a second which was mediated by cells migrating from the underlying bone marrow (especially 

where the osteochondral junction had been breached), which he called ‘extrinsic’ repair. Intrinsic 

repair was thought to be mechanically superior, producing excellent integrated hyaline cartilage 

compared with the fibrocartilaginous response elicited by extrinsic bone marrow derived cells. He 

concluded that, as extrinsic repair was rapid, you needed to suppress this to enable intrinsic repair to 

occur (reviewed in116). Several groups since this time have described pluripotent progenitor cells that 

can be expanded in vitro from cells derived from the articular cartilage117-119. Repair cells have also 
been identified in the synovium, periosteum and synovial fluid taken from human OA joints120-122. Such 

cells may be quite distinct from classical mesenchymal stem cells derived from the bone marrow. For 

instance, synovial derived cells are marked by being GDF5 positive, arising from those cells that 

originated from the joint interzone during development123. Collectively these results are consistent 

with Meachim’s idea that intrinsic repair cells are distinct from those derived from the bone marrow. It 

also raises the possibility that orthopedic procedures such as Pridie drilling may be encouraging 

extrinsic repair by stimulating bone marrow derived MSCs, and this may not be in the long term 

interests of the tissue.  
The tissue injury signals likely originate from the cartilage matrix itself. The pericellular matrix, a 

region immediately surrounding individual chondrocytes in the tissue is rich in the proteoglycan 

perlecan, upon whose heparan sulfate chains are attached a number of heparin binding growth 

factors 124. Four such growth factors were identified by proteomic analysis, including FGF2, CCN2 

bound to latent TGFb, hepatoma derived growth factor and CCN1125,126. These are released 

immediately in response to mechanical injury of the tissue by a mechanism that involves a localized 

increase in sodium concentration as water is squeezed out of the compressed tissue127. This is 

sufficient to displace the growth factors from their pericellular matrix binding sites and allow their 

binding to high affinity cell surface receptors (Figure 4). In osteoarthritis, when proteolytic activity 

causes loss of the negatively charged aggrecan from the tissue, the sodium is no longer held in the 

tissue and mechanical compression is unable to generate the concentration of sodium required to 

release growth factors127. These results indicate that proteolytic loss of aggrecan in OA suppresses 

intrinsic repair just at the time it is most needed. FGF2 and TGFb are the best described of these 

molecules and are known chondroprotective and chondrogenic molecules in preclinical and in vitro 

studies 128-130. They are also implicated in repair responses in other tissues such as the skin 131.  

The clinical relevance of TGFb and FGF family members in cartilage repair is strongly supported 

by agnostic evidence arising from recent genome wide association studies in OA. To date, 

polymorphic variants associated with expression of eight members of the TGFb family (TGFb1, 

TGFb2, LTBP1, LTBP3, GDF5, SMAD3, ACVR1, BMP5) and two members of the FGF family 

(FGF18, FGFR3) have been documented132-136. Where described, these are hypomorphic variants 
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associated with increased OA, thus confirming their chondroprotective role in human OA. Other 

growth factor families also emerge, such as the Wnts (DOT1L; WNT9a, WNT1, WNT10a) and TGFa, 

a ligand for the epidermal growth factor receptor (EGFR). Very few recognizable ‘inflammatory’ genes 

are identified in these analyses raising the possibility that OA could be viewed primarily as a disease 

of failed repair (Table 2). 

 

 
Figure 4. Balance of pro-regenerative and mechano-inflammatory responses in articular 
cartilage with abnormal mechanical load. Compressive load leads to sodium dependent release of 

pericellular matrix growth factors, which drive repair and chondroprotection through a variety of 

intracellular signalling pathways. Surface shear stress (perpendicular to compressive load) leads to 

activation of TGFb-activated kinase 1 (TAK1) dependent inflammatory signalling and results in nerve 

growth factor regulation (driving pain) and matrix degradation. 

 

So will this change our approach to disease modification in OA? Evidence to support this concept 

is already emerging. To date, the only successful structure modifying pharmacological trial is that 

using intraarticular injections of sprifermin, a truncated form of FGF18. In this extended 3 year trial, 

(the study was originally 2 years137), there was evidence of a delay in cartilage loss in the sprifermin 

group and increased cartilage thickness measured in the affected and unaffected regions of the 

joint138. Although not reaching its primary endpoint for symptoms, a recent post hoc analysis, 

considering a ‘subgroup at risk’ of progression (defined by lower joint space width and higher pain at 

baseline), was able to demonstrate both structural and symptomatic improvement over the study 
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period139. Collectively these data appear to represent a striking U-turn for molecular pathogenesis and 

target discovery in OA. 

 

Table 2. Evidence in favour of targeting cartilage regeneration in osteoarthritis 

• Experimental data in preclinical models show that articular cartilage makes a strong synthetic 

response after injury and in some instances can repair. 

• Human data show spontaneous cartilage repair, especially when the hostile mechanical 

environment in OA is corrected. 

• Articular cartilage matrix is full of chondroprotective growth factors that are released upon 

tissue injury. This response is lost in OA when the tissue loses aggrecan. 

• Growth factor families arise from large scale agnostic genome wide association studies in OA 

• Delivery of a growth factor (sprifermin, modified FGF18) intra-articularly shows disease 

modification in Phase II clinical trials.  

 

Targeting bone remodeling to treat OA – Tamara Alliston 

In the healthy joint, subchondral bone provides mechanical and vascular support to overlying 

avascular cartilage140. Given this vital role in joint structure, function, and shape, it is not surprising 

that subchondral bone is thought to be both a target and a driver of osteoarthritis progression.  

Human imaging studies demonstrate that changes in the subchondral bone compartment 

both precede and predict degradative changes in overlaying cartilage; with the effects of OA apparent 

on the thin subchondral bone plate, subchondral trabecular bone, and the surrounding bone marrow. 

First, subchondral bone loss early in OA, due to increased bone remodeling by osteoclasts and 

osteoblasts, is followed by radiographic detection of sclerosis, or thickening, of the subchondral bone 

plate and trabecular bone141 142.  Second, machine learning analysis of magnetic resonance imaging 

(MRI) in the Osteoarthritis Initiative identify changes in subchondral bone shape as one of the earliest 

known predictors of OA, as well as joint pain143 . Third, the appearance of bone marrow lesions (BML) 

in clinical MRI is associated with joint pain and increased cartilage loss144.  Histologically, BMLs are 

associated with greater cartilage degeneration, increased marrow vasculature, fibrosis, and edema, 

and increased osteoid deposition and osteocyte density145,146. BMLs appear to be a response to 

subchondral bone microdamage, resulting from traumatic injury or mechanical insufficiency of 
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subchondral bone. Therefore, the bony sclerosis, changes in joint shape, and bone marrow lesions in 

OA subchondral bone are diagnostically and clinically significant because they can be detected early 

in OA and can predict OA progression and joint pain.   

These changes in subchondral bone motivate bone-targeting therapies to prevent or treat OA, 

some of which have been tested clinically, but still with limited success.  In an effort to abrogate the 

hyperactive subchondral bone remodeling that occurs early in OA, osteoclast-inhibitory 

bisphosphonates have been evaluated in clinical trials for OA.  Bisphosphonates may indeed be 

therapeutically beneficial in a subset of non-overweight individuals with early stage OA147, even 

though this clinical benefit was not observed in a meta-analysis of randomized control trials148.  In 

clinical trials, cathepsin K inhibitors, which suppress bone remodeling, prevent changes in 

subchondral bone and cartilage, but were ineffective for treating OA pain149. Other bone-targeting 

agents with potential to impact OA progression, including estrogen, PTH, TGFb antagonists, and 

calcitonin, show benefits in pre-clinical studies, but have yet to be tested in randomized clinical trials, 

or to show reproducible clinical benefits in diverse human cohorts140.   

Discrepancies between the success of pre-clinical and clinical studies still limit the clinical 

application of bone-targeting agents to treat OA. A more precise stratification of OA subtypes, 

perhaps with the help of new genetic, serum, and imaging biomarkers, could improve the identification 

of patients who would benefit from bone-targeting therapies.  Another possibility is that bone-targeting 

therapies for OA are still missing a critical cellular target – osteocytes.    

The cellular mechanisms by which changes in subchondral bone propel cartilage 

degeneration have largely been attributed to osteoblasts and osteoclasts.  However, the contribution 

of osteocytes, the most abundant bone cell type, in OA has been overlooked until recently140. Over 

the past ten years, the dynamic role of bone-embedded osteocytes in bone homeostasis has become 

more clear.  Osteocytes couple mechanical demands to bone resorption and deposition by 

osteoclasts and osteoblasts through mechanosensitive secretion of Rank Lignad (RANKL;TNFSf11) 

and Sclerostin, respectively150-152.  Furthermore, through the process of perilacunar/canalicular 

remodeling (PLR), osteocytes directly resorb their local ECM) by secreting acid and proteases such 

as MMP13 and cathepsin K, and then later deposit new ECM. PLR maintains systemic mineral 

homeostasis, bone quality, and the intricate lacunocanalicular network (LCN), which enables 

osteocytes to communicate with one another and the vascular supply153-155 . Since cartilage relies on 
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subchondral bone for mechanical and vascular support, understanding the impact of OA on 

osteocytes, and vice versa, became a critical question.   

Several lines of evidence support a causal role for osteocytes in the progression of OA.  

Relative to non-OA cadaveric controls, subchondral bone from human OA surgical retrieval 

specimens shows several hallmarks of deregulated osteocyte function, including LCN degeneration, 

collagen disorganization, and heterogeneous mineralization156.   Furthermore, osteocyte-intrinsic 

defects in genetically modified mice were sufficient to exacerbate cartilage degeneration and mimic 

several features of human OA subchondral bone.   Specifically, mice with an osteocyte-targeted 

ablation of the PLR enzyme MMP13 exhibit cartilage degeneration, accompanied by sclerotic 

subchondral bone with degenerated LCN, disorganized collagen, and heterogeneous 

mineralization156. Similar results are observed upon osteocyte-intrinsic inhibition of TGFb signaling 

through targeted ablation of the TGFb type II receptor (TbRIIocy-/-)157. Recently, several genes in the 

osteocyte transcriptome were shown to have significant associations with OA in a human GWAS 

study, including MEPE, TSKU, SEMA3F, SEMA3G and SEMA7A, which are expressed in osteocytes 

but not in chondrocytes158.  Thus data from human clinical and genetic studies, as well as from mouse 

models with osteocyte-intrinsic mutations, support a causal role of osteocyte dysfunction in OA. 

While the mechanisms by which osteocytes affect cartilage remain to be determined, the 

importance of their participation in subchondral bone and cartilage homeostasis, and joint disease, is 

clear.  Computational modeling predicts that degeneration of the osteocyte LCN in aged or TbRIIocy-/- 

mouse bone, relative to young or control bone, is sufficient to compromise bone mechanosensitivity 

and solute transport159.  Either of these mechanisms could compromise cartilage integrity. Uncoupling 

bone remodeling from mechanical stimuli could contribute to subchondral bone sclerosis.  LCN 

degeneration could interfere with the ability of bone vasculature to support cartilage.  Interestingly, the 

downregulation of osteocytic TGFb signaling and MMP13 is a common feature in human OA 

subchondral bone, the TbRIIocy-/- mouse model, aging mouse bone, and wild type mouse bone 

following meniscal ligamentous injury156,157,159 (Table 3).  Determining whether the relationship 

between OA and osteocytic TGFb signaling and MMP13 are correlative or causal in aging will require 

further investigation.  Either way, these observations highlight the need to consider the joint-

compartment-specific effects of each factor. For example, agents that suppress MMP13 may protect 

cartilage from proteolytic degradation, while simultaneously interfering with osteocyte functions 
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required for cartilage homeostasis.  Unfortunately, diagnostic markers of osteocyte function, or 

osteocyte-specific therapies currently do not exist. Although the "osteocyte transcriptome“ identifies 

genes that are specific to osteocytes, relative to other skeletal cell types, more work is needed158. 

Continued efforts to understand osteocyte function and regulation, in the healthy skeleton and in 

aging and disease, are needed to develop new strategies to monitor and target subchondral bone to 

prevent or treat joint disease.   

 

 

Table 3. Osteocyte-intrinsic inhibition of MMP13 or TGFb signaling is sufficient to mimic 

several hallmarks of human osteoarthritis    

  Human OA MMP13ocy-/- TbRIIocy-/- 

Cartilage Degeneration    

Subchondral Sclerosis    

Thickened Subchondral Plate    

Collagen Disorganization    

Mineral Heterogeneity    

Degenerated Osteocyte LCN    

Impaired Mechanosensitivity    

Altered TGFb signaling    

Altered MMP13 activity    

 

 

Targeting aging and cell senescence to treat OA - Richard F. Loeser 

There is no doubt that aging processes, both systemic and within joint tissues, contribute to the 

pathophysiology of OA. The prevalence of radiographic and symptomatic OA in all the commonly 

affected joints, including hands, hips, knees, and spine, increases with increasing age160. The 

prevalence of OA and the pain and loss of function associated with it make OA one of the leading 

causes of disability in older adults worldwide161. What is not clear is precisely how aging promotes the 

development of OA or if targeting aging processes would slow or halt OA progression. This essay will 
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focus on cell senescence in OA and address the question of whether targeting senescent cells would 

be of therapeutic benefit.  

Nine hallmarks of aging have been proposed that include genomic instability, telomere attrition, 

epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, 

stem cell exhaustion, altered intercellular communication, and perhaps most importantly, cellular 

senescence162. Many, if not all these aging hallmarks have been investigated in the context of joint 

tissue aging, with the majority of the published work focused on articular cartilage and its resident cell, 

the chondrocyte163. A common denominator to the hallmarks of aging is cell senescence, as the other 

hallmarks can either lead to senescence or result from the senescent state.    

The literature to date strongly supports cell senescence as a major factor contributing to age-

related diseases including OA164,165. Cell senescence can be defined as a state of growth arrest that 

prevents further cell division and results in typical phenotypic changes162,164. Importantly, cell 

senescence is not just a phenomenon seen after replicating cells have stopped dividing due to 

telomere shortening. Senescent cells contribute to tissue development during embryogenesis, tissue 

repair during wound healing, and suppress tumor formation by preventing the propagation of 

damaged cells164,166. Cell senescence can result from multiple chronic stresses that result in an 

accumulation of cellular damage, many of which are relevant to factors thought to contribute to OA 

(Figure 5). DNA damage is a central mediator of cell senescence and has been shown to induce 

senescence in chondrocytes167. The OA joint has often been referred to as a “chronic wound” with 

irreparable damage, the type of environment that can promote cell senescence. Chronic signaling 

from inflammatory factors such as cytokines has been proposed to result in “stress-induced” 

senescence resulting from a feed forward loop168. This could be a very relevant mechanism for 

senescence in the joint. 
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Figure 5: Factors that promote stress-induced senescence 

  

A central mechanism by which senescence contributes to disease is through the production of 

inflammatory cytokines and matrix degrading enzymes, referred to as the senescence-associated 

secretory phenotype or SASP164. Many of the proinflammatory mediators and matrix degrading 

enzymes considered to be SASP factors (Table 4) are found in the OA joint54,169,170 and may directly 

contribute to the tissue changes seen in OA. Increased expression of p16INK4a, a cell cycle inhibitor, is 

considered one of the most reliable markers of cell senescence164. p16INK4a mRNA expression was 

found to be significantly increased with age in murine cartilage and in primary human chondrocytes 

from cadaveric tissue donors and this correlated with expression of the SASP transcripts IGFBP3, 

MMP1 and MMP13171. However, deletion of p16INK4a in chondrocytes of adult mice did not mitigate 

SASP expression and did not alter the severity of age-related OA, suggesting the effects of 

chondrocyte senescence on OA are most likely driven by the production of SASP factors and not by 

the loss of chondrocyte replicative function that occurs with increased p16INK4a. 

 

Table 4. Senescence-Associated Secretory Phenotype (SASP) Factors Most Relevant to OA  

Class Component 

Cytokines IL1, IL6, IL7, IL13, IL15, IL17, OSM 

Chemokines IL8 (CXCL15), GRO (CXCL1), MCP1 (CCL2), MIP1α 

(CCL3), ENA78 (CCXL5) 

Excessive mechanical 
loadingMitochondrial 

dysfunction
Stress-induced senescence

DNA Damage
Dysfunctional telomeres
SA heterochromatin 

p53, p21, p16

Cell cycle-arrest

Oxidative 
stress

Chronic 
cytokine or 
mitogenic 
stimulation

Senescence
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Other inflammatory molecules TGFβ, MIF 

Growth factors, regulators EGF, FGF2, HGF, VEGF, SDF1 (CXCL12), NGF, 

IGFBP2, IGFBP3, IGFBP4, IGFBP6, IGFBP7 

Proteases and regulators MMP1, MMP3, MMP10, MMP12, MMP13, MMP14, 

TIMP1, TIMP2, PAI1 (SERPINE1), PAI2 

(SERPINEB2), CTSB 

Receptors and ligands OPG (TNFRSF11B), sTNFRI (TNFRSF1B), sTNFRII 

(TNFRSF1A), FAS, uPAR (PLAUR), EGFR 

Non-protein molecules PGE2, nitric oxide, reactive oxygen species 

Insoluble factors fibronectins, collagens 

Adapted from Gorgoulis et al, Cell 2019; 179:813-827. Abbreviations: bFGF, basic fibroblast growth 

factor; EGF, epidermal growth factor; ENA, epithelial neutrophil-activating peptide; GRO, growth-

related oncogene; HGF, hepatocyte growth factor; IGFBP, insulin-like growth factor binding protein; 

IL, interleukin; MCP, monocyte chemotactic protein; MIF, macrophage inhibitory factor; MIP, 

macrophage inflammatory protein; MMP, matrix metalloproteinase; NGF, nerve growth factor; OPG, 

osteoprotegerin; OSM, oncostatin M; PAI, plasminogen activator inhibitor; PGE2, prostaglandin E2; 

SDF, stromal cell-derived factor; TGF, transforming growth factor; sTNFR, soluble tumor necrosis 

factor receptor; TIMP, tissue inhibitor of metalloproteinases; uPAR, urokinase-type plasminogen 

activator receptor; VEGF, vascular endothelial growth factor. 

 

It has been suggested that senescent progenitor cells may be present in aged cartilage and 

release inflammatory mediators, including IL8, to promote the SASP172. Transplantation of senescent 

cells into mouse knee joints was shown to promote OA-like changes173. NFκB is considered a key 

regulator of the SASP164 and a recent study found activation of NFκB signaling in mice promoted age-

related OA and production of SASP factors174. Other important regulators of the SASP include 

C/EBPβ, STAT3, and GATA4, while the SASP may be inhibited by activity of FOXOs164,166. 

Importantly, all these mediators have also been implicated in OA pathogenesis175-179, providing further 

support for a strong connection between SASP regulation and the development of OA.  

Perhaps the strongest evidence for a causal role of senescent joint tissue cells in OA comes from 

studies that have demonstrated reduced OA severity in the anterior cruciate ligament transection 
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model of post-traumatic OA and in age-related OA in mice treated with small molecules called 

“senolytics” to selectively kill senescent cells or using a molecular approach to kill senescent cells 

expressing p16180,181. However, translation of this pre-clinical work to the treatment of human OA has 

not yet been realized. The senolytic compound UBX0101 that reduced OA severity in mice, did not 

achieve a significant reduction in WOMAC knee pain compared to a placebo when tested as an intra-

articular therapy in a 12-week Phase 2 clinical study in humans (UNITY Biotechnology Announces 12-

week data from UBX0101 Phase 2 Clinical Study in Patients with Painful Osteoarthritis of the Knee | 

Unity Biotechnology).  

There are many possible reasons why a single injection of a senolytic drug would fail in a short-

term trial with pain as the outcome. Clearly, further work is needed to: a) define an OA phenotype that 

may be more responsive to an intervention targeting senescent cells by discovering one or more 

biomarkers of joint tissue senescence; b) decide on the timing in the disease course of when such an 

intervention would be most useful; c) establish how many doses of the senolytic would be needed, 

and d) determine what outcome measures in early phase studies would best predict efficacy. 

Alternatives to killing senescent joint tissue cells with a senolytic also need to be developed such as 

“senomorphics” that target the production of SASP factors182. Although the link between aging and the 

development of OA is well established, and the underlying mechanisms are becoming clearer, the 

field is still not at the point where targeting a specific aging process to slow OA progression and 

improve symptoms is possible. 

 

Conclusions 

Molecular pathogenesis is a relatively new scientific discipline in OA. The scientific community 

has needed to overcome significant hurdles associated with working with matrix-rich pauci-cellular 

tissues, and to develop pre-clinical models of disease that are accepted as being clinically 

informative. In recent years, additional molecular insights have emerged from agnostic ~omic studies 

such as genome wide association studies. Being a highly prevalent condition, such studies can be 

performed in very large numbers to elucidate common pathways associated with OA risk135. As 

demonstrated above, there has been a rapid expansion of cellular and molecular pathogenic 

understanding across multiple tissues of the OA joint. But how likely is it that this knowledge will 

deliver translational success?  
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Epidemiology, perhaps the oldest discipline in OA research, has much to teach us. It reminds us 

that mechanical strain remains a principal driver of OA development and progression183. It also 

teaches us that the disease is heterogeneous; having a variable course and symptoms184. Using all 

sources of data available, we should be able to improve our chances of success but as independently 

highlighted by the authors of the individual sections, there are key questions that need constant re-

inforcement if we are to translate our ever more detailed understanding of OA pathophysiology to 

treatment and patient care.  

• Which of the pathways are targetable?  

• If targetable, do they deliver a clinically meaningful effect?  

• Does the target have benefits across all tissues of the joint or is it tissue-specific (see 

conflicting roles of MMP13 in bone and cartilage above)?  

• Do several targets need to be delivered in combination?  

• Will treatments work when the adverse mechanical environment of the joint is uncorrected? 

• Are the described processes active in all patients at all stages of disease, or will patient 

stratification be necessary?  

We don’t have all the answers yet, but progress has been rapid, there is a recognized urgency 

across funders and patient groups, and as this review demonstrates, the scientific community is 

working collaboratively and imaginatively to combat this challenging disease.  
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