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Abstract  

Cystic Fibrosis (CF) is a genetic disease which impacts multiple organs in the body. As a 

result, CF individuals require lifelong care. Over the years, there has been an increase in 

the availability of treatments for CF leading to improvements in health. However, these 

improvements can place significant burden on the NHS. Economic evaluations capture 

both the costs and the benefits of treatment, which can be further extended through health 

economic modelling. This framework allows decision makers to make recommendations 

on the use of such treatments in the NHS. This thesis focuses on improving evidence 

availability for the health economic modelling of CF treatments and decision about 

appropriate care.  

A review of health economic modelling studies was carried out. Studies were evaluated 

for model structure, data inputs and modelling methods for areas requiring improvement. 

The evidence from the review and discussion with clinical experts was used to develop a 

De Novo health economic model. Regression modelling was used to generate novel 

health state transition and cost data from the U.K. CF Data Registry (2005-2016). An 

exemplar cost-utility analysis on Orkambi® was conducted to validate the De Novo model 

and input data. Statistical tests, between model consistency, clinical expert opinion and 

the observed data was used for validation.  

The results of the study show that the input data were comparable to data found in the 

literature and used in existing health economic models. The De Novo model produced 

comparable ICER and cost estimates to those found in the literature. The methods of the 

work conducted in this thesis can be applied to other Data Registries. They prove to be a 
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strong supportive tool with great potential to improve the cost effectiveness evaluation of 

existing and novel treatments in the future.  
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1 Chapter 1: Introduction  

1.1 Overview of Thesis 

Cystic Fibrosis (CF) is an incurable genetic condition. Those with CF require constant 

care throughout their lives and over more than a decade there has been an ever-

increasing availability of novel treatments which looked to improve the survival and 

symptoms of people with CF [3]. As a result, over the last decade there has been 

considerable improvement in the survival of people with CF [3]. A number of clinical trials 

exist which evaluate CF treatments, up to 1,200 according to a search conducted on the 

United States (U.S.) National Library of Medicine website [4]. However due to the 

comparatively short duration of such trials for a condition which is lifelong, it is unlikely 

that all factors considered important in deciding whether to provide such medicines are 

taken into account. As a result, there is a need for the long-term evaluation of such 

treatment, one avenue of which is the use of health economic modelling [5]. In summary, 

with health economic modelling improvements made possible through novel treatments 

is evaluated against the cost of such medicines over a longer time horizon [5]. Recent 

evaluation of CF treatments using such methods, particularly modulator treatments, was 

considered too costly according to medicines reimbursement agencies globally [6-10].  

The aim of this thesis is to extend what is known about the health economic modelling of 

CF interventions, advance the health economic evidence available to inform such 

economic models and discuss their usefulness in informing decisions about the optimum 

provision of CF care.  

The thesis was completed under a larger network of research conducted by a strategic 

research centre called the Cystic Fibrosis Epidemiological Network (CF-Epi-Net). The 
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network was funded by the Cystic Fibrosis Trust. The aim of this was to harness 

observational registry data to improve the lives of those with CF. The CF Data Registry 

from the United Kingdom (U.K.) was utilised with this aim in mind. This chapter ends with 

a detailed statement of the aims and objective and with an brief description of what each 

chapter covers. 

1.2 Overview of Chapter 

The sections that follow give a summary of CF as a progressive and chronic disease 

which is terminal in nature. They also describe the epidemiology of CF in and outside of 

Europe, factors associated with disease progression, resultant co-morbidities and lastly 

the treatment of CF. The economic burden of CF is also described in the sections that 

follow alongside principles of priority setting of healthcare and the tools used to support 

decision making in the context of healthcare provision.  

1.3 Background to CF 

Cystic Fibrosis (CF) is a hereditable disease and individuals with the disease inherit a 

faulty gene from each of their parents, which depending on the type of mutation can vary 

the resulting severity of the condition [11]. The mutation itself occurs on the long arm of 

chromosome 7 [12]. The underlying mechanisms in the body that maintains the 

composition of appropriate salt and water content of mucus, the Cystic Fibrosis 

Transmembrane Regulators (CFTR), are compromised in this condition [13]. The cells 

that line the lungs and other organs in the body; the epithelial cells, such as those in the 

digestive, pancreatic and reproductive tract, as a result are unable to transport Chloride 

ions across them. Downstream ion transport across the cell linings not taking place via 

these CFTR’s later results in water not being able to travel through a mechanism called 

osmosis across these linings.  Ultimately, the viscosity of mucus increases. Ciliary, which 
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are hair like linings on the surface of epithelial cells, can no longer transport mucus back 

up the respiratory tract. This mucus clogs and collects particularly in the lungs, leading to 

bacterial infection, reduction in respiratory capacity and eventually death [13]. 

1.3.1 Mutation classification 

In total there are currently 2,092 mutation classes in CF according to the CFTR1 

mutations database [14], in the CFTR gene.  These CFTR mutations in CF can be placed 

into 6 classes [15-17]. Table 1 below demonstrates the 6 classes of mutation described 

by Quon et al [17]. This mutation classification links to the severity of CF disease in each 

individual patient to their phenotype, the physical manifestation of their mutation. Classes 

I-III are mutations that occur in both copies of the CFTR gene on the pair of chromosomes, 

classes IV-VI are mutations that occur on the single allele from the pair of chromosomes 

[17]. 

Table 1: Mutation classification [17] 

Studies have shown that mutation class I-III have been linked to worse lung deterioration, 

pancreatic insufficiency and are deemed ‘high risk’ [18], whereas for those with class IV-

MUTATION CLASS DESCRIPTION 

I leads to no synthesis of CFTR protein 

II leads to CFTR protein processing defects 

III lead to decrease in the opening of the CFTR channel 

IV leads to reduced Chloride ion conductance 

V leads to reduced synthesis of the CFTR protein 

VI 
leads to reduced stability of the CFTR protein at the surface of the 

biological cell 
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VI mutations, there is milder lung deterioration and pancreatic insufficiency and are 

deemed ‘low-risk’ [18].  

Of those who are deemed high-risk, the most common single mutation is F508Del with 

more than 80% of those in Europe having at least one single allele with this mutation [19]. 

As a result, a lot of focus has been directed in the treatment of this mutation class which 

comes under class II using the conventional classification system [17]. 

1.3.2 Epidemiology 

Epidemiological investigation demonstrates how often and in which different types of 

people CF occurs. The populations at risk of CF varies greatly dependent on which 

continent is discussed. A number of studies have investigated the epidemiology of CF in 

European (EU) and Non-European (Non-EU) countries [20-23]. However, prevalence and 

incidence data is more complete and representative in more developed EU and Non-EU 

countries.   

1.3.2.1 Europe 

Data on individuals who have Cystic Fibrosis in Europe is available from the European 

Cystic Fibrosis Society [24] and is well documented. This society provides information 

through a patient registry designed to allow users to measure, survey and compare 

aspects of CF and its care in countries across Europe [24]. Figure 1 presents the 

prevalence data for a range of European countries which were taken from Burgel et al 

[25].  Burgel et al [25] further go on to forecast future prevalence of CF in European 

countries through use of longitudinal data/assumptions and modelling. Figure 2 shows 

the changes that are forecasted to take place within 34 European countries by the year 

2025. It is evident through the literature that the number of individuals with CF are on the 
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rise. By 2025, a 50% increase in overall, 75% increase in adult and 20% increase in child 

CF is forecasted [25]. 

Figure 1: Patterns of Cystic Fibrosis prevalence by 2025 

 

 

 

 

 

 

 

 

Recent investigation on the incidence of CF in Europe conducted by Farrell et al [21] 

shows the incidence for a range of European countries, drawn out from the literature 

(Table 2). It can be seen from Table 2 that Ireland has the highest incidence followed by 

Slovakia. Future trends in the increasing number of CF individuals, Figure 2, also follows 

the pattern in Table 2.   
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Table 2: CF incidence by country [21] 

COUNTRY  CF INCIDENCE PER LIVEBIRTH (1 IN EVERY:)  

Austria 3500 

Belgium 2850 

Bulgaria 2500 

Cyprus 7914 

Czech Rep. 2833 

Denmark 4700 

Estonia 4500 

Finland 25000 

France 4700 

Germany 3300 

Greece 3500 

Ireland 1353 

Italy 4238 

Netherlands 4750 

Poland 5000 

Portugal 6000 

Romania 2056 

Slovakia 1800 

Slovenia 3000 

Spain 3750 

Sweden 5600 

UK 2381 
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1.3.2.2 Non-European 

Prevalence information on CF is not so readily available in countries outside of Europe. 

However, studies do exist that look at the prevalence of CF. Other countries outside 

Europe however also include the United States (U.S.). The U.S. has the most complete 

and up to date CF Data Registry globally [26]. The prevalence of CF in the U.S. is similar 

to that of the whole of Europe, with only a small marginal difference [23].  

In Asia, studies based mainly on retrospective analysis and case studies span over two 

decades [27]. Studies investigating prevalence in Asia are on poorly collected patient 

information and diagnosis and is under representative. Furthermore, evidence presented 

from countries such as Jordan, Bahrain, Japan, United Arab Emirates (UAE) and India 

demonstrates that, data collection methods vary, duration of data collection does not go 

beyond after the year 2000 and the diagnostic standards for detecting the presence of 

CF differ [27]. 

Incidence data is overlooked in developing non-European countries due to high mortality 

rates, malnutrition, tuberculosis and diarrhoeal diseases. Lack of CF Registries, under-

diagnosis and under-reporting of CF only add to this current problem [27]. As a result, 

information on prevalence and incidence of CF outside the EU (not including the U.S.) 

may not be representative.  

1.3.3 Survival and Mortality in Cystic Fibrosis 

Over the last half a century the resultant outcomes of individuals with CF has changed 

considerably. Around 60 years ago, children born with CF would not live past 5 years of 

age [12]. The first step of mortality prevention was the treatment of malnutrition with 

pancreatic enzymes to counteract the pancreatic insufficiency. Treatment of lung 

infections, a predominant catalyst of lung function decline in CF individuals followed [12].  



 - 38 - 

Investigation of survival in CF patients both in and outside of the EU over the last two 

decades has been undertaken [22, 26, 28-32]. European mortality data evaluated through 

CF patient registries compared to use of data from the Statistical Office of the European 

Union (EuroStat) has demonstrated small differences in overall mortality trends [22, 30]. 

However, the underlying improvement demonstrated in the survival of individuals with CF 

is in the same direction. 

European CF registries contain data of more than 29,000 individuals from 35 European 

Union (EU) and Non-EU countries[22]. Although mean age of individuals within Europe 

was 17.9 years, differences between EU and Non-EU countries do exist. European Union 

members demonstrated an increase in the number of CF individuals, particularly in the 

younger and older age groups when compared to Non-EU countries (due to reduction in 

mortality). One in every 21 CF individuals in the EU were aged over 40, whereas only 1 

in every 50 individuals were aged over 40 in Non-EU countries [22]. Such difference in 

overall survival shows that where CF individuals reside can have an impact on their long-

term survival. Although these differences come to light within Europe, it is important to 

understand that a majority of registry data comes from 4 well established country specific 

registries, one of which is the U.K CF Registry. These datasets contribute up to 75 % of 

the data collated in European registries. This means that people from Non-EU countries 

are under-represented and further work in developing similar standards of data collection 

is required in these countries [22]. 

Other mechanisms of measuring mortality within CF individuals across Europe have also 

been investigated [30, 31, 33, 34]. Data from the EuroStat (1994 – 2010) demonstrated 

5,130 deaths from CF across Europe over this particular time period [30]. Compared to 
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the McCormick et al [22] paper, clear differences in mortality over short periods in earlier 

life years of CF individuals is evident. 

A number of studies have evaluated the rate of mortality across Europe for individuals 

with CF [26, 29-31]. Similarly, studies have been conducted outside of Europe [28, 32]. 

Corey and Farewell [28] conducted an analysis of the Canadian Patient Data Registry 

(CPDR) over a period of two decades. The analysis showed, compared to 1970-1974, 

the risk of death significantly decreased by 45% during 1985-1989. However, no further 

research on the changing trends of mortality in Canada has been undertaken. The 

Canadian Cystic Fibrosis Registry annual reported improvements in survival in their most 

recent report [35]. The mean age of survival in Canada is around 51 years [35]. Similar 

to Canadian mortality data, Australian state and territories General Record of Incidence 

of Mortality (GRIM) data covering a period of 26 years (1979-2005) was evaluated. The 

data showed that overall mean age of survival was 27 years by 2005, moving up 

significantly from 13 years in 1979 [32]. 

1.3.4 Diagnosis of Cystic Fibrosis  

Data from 35 Europe countries show that 17% of CF diagnoses are made at birth (0 

months), with overall 59% of them occurring before the age of 12 months [22].  Diagnoses 

of CF also occurs up until the age of 40 and differences do exist between diagnosis 

dependent on whether it is an EU or non-EU country. European countries have higher 

proportions diagnosed at an early age compared to Non-EU countries, which have higher 

proportions diagnosed later. 

According to the National Institute for Health and Care Excellence (NICE) guideline 

document, CF is most often detected through newborn screening in the U.K. [36], at a 

median age of 3 months. Clinical and expert opinion also states that most often diagnosis 
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is made through this route (Siobhan Carr, 13th July 2017). Similarly, NHS choices [37] 

states that CF is diagnosed through sweat and genetic testing which are tests conducted 

during newborn screening.  

Diagnosis of CF however has always been challenging due to cases that bring about 

uncertainty and challenging diagnostic dilemmas [38]. Nevertheless, sweat chloride 

testing has been the gold standard for CF diagnosis [38].  

1.3.5 Impact of CF on FEV1 

As mentioned in section 1.2 reduction in respiratory capacity leads to disease progression 

in CF. Cystic Fibrosis, a multi organ disease, is assessed for progressive disease through 

the use of the lungs, although there are a number of other avenues for measuring 

progression [39]. Lung function in general can be measured in a number of ways. 

However, the primary technique used in CF, is spirometry. This is a test which assesses 

how much and how quickly an individual can move air in and out of the lungs. Forced 

expiratory volume in 1 second (FEV1) is measured by asking an individual to forcefully 

exhale air in 1 second. This is the most common measurement used in diagnosing 

disease progression in CF. Although there is literature that discusses the importance of 

such a measure and the current potential challenges with measuring and using FEV1 in 

CF in more recent years [40]. Additional factors which have been associated with effecting 

FEV1 in those with respiratory diseases include body mass index (BMI), age, bacterial 

infection status, pancreatic insufficiency and CF related diabetes (CFRD) [41]. To assess 

the prognosis of a CF individual, the FEV1 measurement obtained from spirometry is 

compared to a reference population (FEV1 percent predicted, referred to as ppFEV1) 

which is the FEV1 of the average population of similar age, sex, BMI [41]. This measure 

of ppFEV1 is considered the best general measure of lung disease [41]. Furthermore, 
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FEV1 has been linked to mortality [41, 42], health related quality of life (HRQOL) [43] and 

is a the primary outcome measure in a number of clinical trials [44-46] and as a result this 

bolsters its use.  

1.3.6 Impact of CF on HRQOL 

There are a number of studies which have evaluated the impact of CF on HRQOL [43, 

47, 48] and shown that CF affects HRQOL. Studies not only exist on the cross-sectional 

impact but also on the longitudinal impact of CF on HRQOL [49]. As such including 

evaluation of HRQOL in CF is important. This is further discussed in Chapter 3. 

1.3.7 Treatment of Cystic Fibrosis 

Cystic fibrosis is a long-term chronic condition, which has no cure [37] and a wide range 

of treatments are available [37]. Medications for pulmonary problems exist in the form of 

antibiotics for chest infections, medicines to break down thick sticky mucus for removal 

from the lungs, bronchodilators to widen airways for ease of breathing and steroid 

medications to treat nasal polyps [37].  

Rapid investigation of the literature showed no signs of clinical care pathways that exist 

providing an overview of the patient journey from diagnosis to long-term treatment 

throughout their life course. However, guidelines are provided around treatments and 

therapies to improve long-term outcomes for patients with CF. NICE guidelines on the 

diagnosis and management of CF exist and highlight key aspects of CF that have the 

biggest impact on long-term mortality and progression of respiratory aspects of CF [36].  

1.3.8 Prognostic Indicators 

Many studies on the long-term survival of CF individuals mention a comprehensive list of 

factors that affect disease progression. These include but are not limited to sex [50, 51], 

mutation class/status [50], age [50, 51], FEV1 [42, 51, 52], Cystic Fibrosis related Diabetes 
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(CFRD) [42], weight [42, 51], pancreatic insufficiency [42], bacterial infections [42], 

pulmonary exacerbation events (PEx) [42], psychosocial status [51] and treatment 

regimens [51]. 

Discussion with experts and examples of evidence from the above literature show that a 

wide range of variables have an impact on the long-term outcome of individuals with CF 

and include CFRD, PEx and CRLD. 

1.3.9 Pulmonary Exacerbation 

Pulmonary changes within individuals who have CF is a cause for the majority of morbidity 

and mortality. Clinically, worsening of CF is correlated with worsening of respiratory 

symptoms and range from cough, sputum production, weight loss, anorexia and fatigue 

[53] [54]. This sudden decrease in pulmonary function due to restriction or obstruction of 

the airways in the lungs lead to pulmonary exacerbations (PEx) [53]. Pulmonary 

exacerbation is a common clinical trial outcome measure in CF [55] and has been linked 

to a reduction in quality of life (QOL), higher costs, increased mortality, lower baseline 

FEV1, faster decline in FEV1, greater risk of lung transplant and increased clinical burden 

among patients [54, 56, 57]. As a result PEx’s are key events that clinicians aim to impact 

with preventative and therapeutic protocols [58]. However, in the past there have been 

issues highlighted around what defines an PEx event and what criteria should be 

considered [59].  

Correlated to mortality in CF individuals, the worse the FEV1 values the higher the risk of 

lung transplantation or death. An outcome of interest directly correlated with a reduction 

in FEV1 is the number PEx’s [60]. The number of PEx’s experienced over time increases 

with age in CF patients [61].  
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A study conducted over approximately 7 years attributed lung function, FEV1 decline to 

PEx events, which require antibiotic treatment [60]. Furthermore, the number of 

exacerbations a CF patient experiences can make patients 7.9% worse off than those 

who experience no such events [60]. In a 5-year survival model, PEx events had a 

significantly large impact on survival, resulting in a 12% decrease in the overall FEV1 

value [42]. Similar studies show PEx events link to decreases in FEV1 and an increase 

risk of lung transplantation and mortality [56]. Further associating PEx with FEV1, studies 

have shown that proportions of PEx events are linked to inability to recover to baseline 

FEV1 values [54]. A large proportion of costs related to hospitalisation of individuals with 

CF are attributed to PEx events [58]. Pulmonary exacerbation events are also associated 

with a reduction in HRQOL [62]. Given the relationship between PEx and mortality and 

PEx and reduction in HRQOL, there is considerable treatment burden from such events 

[53]. Evidence presented in studies for use of rhDNase therapy show that such therapy 

resulted in a reduction in risk of exacerbation events which ultimately translated into 

improvements in HRQOL, FEV1 and reduction in hospitalisation costs [63]. 

It can be understood that PEx events are a central feature in CF disease progression. 

PEx management within CF is an important outcome for clinicians. Exacerbation events 

have been described as equally important in reducing disease progression and 

maintaining long-term health [40].  

1.3.10 Cystic Fibrosis related Diabetes 

Cystic Fibrosis related Diabetes (CFRD) often found within individuals with CF is 

associated with higher rates of mortality, especially women who as a result are at high 

risk of early death [64]. Even in the presence of CFRD the eventual reason for death is 

respiratory failure as CRFD is directly linked to lung function decline [64]. A longitudinal 
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study evaluated the impact of CFRD on long-term mortality as well as the impact of CFTR 

genotype, age and sex [64]. The results showed that those with CFRD from 2008 - 2012 

had a 10% higher risk of mortality per person compared to those who did not have CFRD. 

Individuals with CFRD over the age of 30 had significantly higher age-adjusted mortality 

than those without CFRD [64].  

1.3.11 Cystic Fibrosis related Liver disease 

Due to the changing nature of CF survival in recent years, pathologies in different organs 

systems have become more common. Due to improvement in long-term survival, cystic 

fibrosis related Liver disease (CFLD) is becoming more common within the CF population 

[65]. The prevalence of CFLD is around 2-37% in children and young adults and 

considering that it is the third cause of death, which follows lung disease and 

complications from transplantation, it accounts for 2-4% of CF mortality [65, 66]. 

Independent risk factors associated with CFLD and severe CFLD include sex (male), 

F508Del Homozygous status and history of meconium ileus (MI) [67]. Additional 

retrospective studies on an Australian cohort of CF individuals showed that those with 

CFLD had a higher risk of CFRD, hospitalisation and bone disease [68].  

1.3.12 New Modulator treatments 

As stated earlier, CF is genetic disease which manifests in different organs in the body 

due to the CFTR receptor being present throughout the body. A number of existing 

treatments have already been mentioned in section 1.2.7. However, novel treatments 

which are becoming more available which target the underlying CFTR defect have not 

been discussed and these also include treatments that support the expression of the 

CFTR receptor at the cell membrane surface. Such treatments are called correctors [69, 

70] or potentiators [69, 71]. Correctors, such as Orkambi®, support the correct folding of 
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the CFTR protein to enable it to function and is more prevalent in those with at least one 

copy of the F508Del mutation which is a large population of CF individuals globally. 

Potentiators, such as Ivacaftor® activate the CFTR protein at the cell surface which allow 

high channel activation for transport of ions across the cell membrane [69] and is used in 

the G551D mutation class but its use has been expanded to other mutation classes [69]. 

The use of such therapies have been identified as a clear objective and are considered 

to have great promise to substantially impact disease progression if began close to 

diagnosis as possible such as subsequent to newborn screening [72].  

A number of clinical trials exist which have evaluated the effectiveness of such treatments 

[73, 74]. The treatments have a variable effect on FEV1, improvement in HRQOL and PEx 

[72, 73] and have a very high cost per person [75].   

1.3.12.1 Orkambi® 

Orkambi® (Vertex Pharmaceuticals) is a combination treatment of Ivacaftor/Lumacaftor 

[76]. It was first approved for use by the U.S. Food and Drug Administration (FDA) and 

the EMA in 2015 for those who were F508Del Homozygous and >12 years old. However, 

recently the treatment was opened up to those who are above the age of 2 [76]. 

Lumacaftor is a corrector while Ivacaftor is a potentiator of the CFTR. This mean that the 

corrector results in more receptors being made, inside the cell, and thus transported to 

the cell surface. The potentiator increases the opening of the receptor on the cell surface. 

This combination results in better transport of ions across the cell membrane [77]. 

Orkambi has been linked to a number of improvement in patient outcomes [76] but at a 

considerable cost [75].  
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1.4 Economic burden of Cystic Fibrosis 

Respiratory conditions, in which CF fits due to its impact on the lungs, have a considerable 

economic burden. This translates into an annual cost in excess of €380 billion spread 

over 28 European countries, formed of direct primary care, hospital care, productivity loss 

and life years lost [78]. 

The U.K. along with many other developed countries are contributing increasing amount 

of economic activity to the healthcare sector [79]. Over the last decade, the long-term 

survival in individuals with CF has changed. Children are now able to live longer into 

adulthood [80]. Due to this change in the nature of disease progression and mortality, 

economic impact of CF has increased both direct (medical and non-medical) and indirect 

costs [80].  

A U.K. adult and non-adult population with an average age of 18 years, whose caregivers 

were on average 37 years old, had an average annual cost of €48,603 per CF patient 

[80]. Direct non-healthcare, direct healthcare and loss of productivity were the largest to 

smallest proportion of costs for CF care. Of the direct healthcare costs, medication, 

hospitalisation and primary care visits were the three largest areas of costs. Informal care 

costs on average were €21,447 per person. Loss of productivity was composed of sick 

leave (29%) and early retirement (71%) due to CF.  The presence of a caregiver was 

related to a severe burden of disease on the CF individual. With the presence of caregiver 

support, the cost of CF care approximately doubled, those requiring support with personal 

care cost an average of €76,271 a year [80]. 

An analysis conducted within the Australian CF Data Registry provided a cost breakdown 

by disease severity. The data showed an expected increase in cost by severity grouping, 

US $10,151, US $25,647, and US $33,691 respectively for mild, moderate and severe 
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disease (per patient, per year). Later lifetime costs of CF treatment were projected to be 

US $306,332 per CF patient [81]. 

However, the costs presented above do not account for the cost of new modulator 

treatments. The cost of stand-alone treatment with modulators such as Ivacaftor (also 

called Lumacaftor®) was £104,000 per person in the U.K. (not including value-added tax 

(VAT)) [10] and cost of Orkambi® was £105,000 per person [75]. This led to a deadlock 

between reimbursement authorities and the manufacturer (Vertex Pharmaceuticals®) in 

the U.K. due to the drugs not meeting the threshold of cost effectiveness [75]. More 

recently an agreement on the reimbursement of Orkambi® has been reached based on 

a number of terms [82].  

1.5 Economic Evaluations 

Economic evaluations (EE) support difficult and unavoidable questions in healthcare [83]. 

Resources are scare and we cannot produce all desired outputs or consequences from 

finite inputs, in this case cost. This means that decisions need to be made as to what is 

spent where, also known as opportunity cost. An investment of inputs in one area will 

mean that the opportunity of investment elsewhere is being given up [83]. Due to the 

nature of healthcare decision-making, the inherent link that exists between decision-

making and healthcare resource use, it has subsequent effects further outside healthcare. 

There is a need to consider the costs and benefits of healthcare interventions. This 

consideration of costs and benefits, economic evaluation, are analyses and subsequent 

comparisons conducted on cost and effects of different healthcare interventions [83, 84]. 

As such, interventions can be deemed as ways in which population health can be 

improved which may include pharmaceutical or surgical interventions and screening or 

public health programmes [5]. The framework available through economic evaluations 
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provide valuable and organised consideration of all available effects on health and 

healthcare costs as well as effects outside this remit [83]. 

A range of methods exist which can be utilised in order to conduct an economic 

evaluation.  

Cost effectiveness analysis (CEA) is comparative analysis of an alternative and current 

therapy in terms of a natural effect of unit measure. For example, a novel hypertension 

intervention could look to decrease blood pressure in treatment recipients. In order to 

conduct a CEA the resultant measure of incremental cost per unit effect would be cost 

per mmHg reduction, which is the unit of blood pressure, which would equate to cost per 

mmHg reduction. Alternative natural unit of effect could also include cost per stroke 

avoided [83]. Cost effectiveness studies are useful to decision makers who are interested 

in one particular aspect of a disease for example hypertension or stroke. However, CEA 

have a number of disadvantages. The measure of unit effect used in CEA are dependent 

on the unit of consequence used i.e. mmHg reduction or number of strokes prevented. 

As a result, comparing two different treatments across broad groups of healthcare is such 

cases is difficult. This as a result make it difficult to measure opportunity cost (i.e. benefit 

forgone) between areas of healthcare which may be funded from the same source e.g. 

National Healthcare Service (NHS) healthcare budget [83]. Decision makers often want 

to compare the benefits gained from a new intervention and compare it to those of other 

healthcare interventions that may be displaced if the new intervention were made 

available in the NHS [83]. As a result, use of alternative forms of EE, Cost-utility analysis 

(CUA), are advised by reimbursement agencies such as NICE [85]. 
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Cost-utility analysis use generic non-disease specific health outcomes for the effect side 

of the EE [83]. Generic outcomes allow interventions across health disciplines to be 

compared as like for like. Utility is the cornerstone of such comparisons of healthcare 

interventions as it encompasses different aspects of health which an individual may value 

such as length of life as well as quality [83]. Such utility measurements help determine 

the effect of health interventions on the long term physiological and psychosocial aspects 

of an individual’s health. This measurement of utility can be achieved through a 

preference-based healthcare instrument (questionnaire). This measurement of utility 

gauges an individual’s preference for a particular scenario. This utility can later be 

translated into Health-related quality of life (HRQOL) and then converted into a generic 

outcome, the Quality-adjusted life year (QALY) [83]. 

Cost-benefit analysis (CBA) is an EE that measures the effect of an intervention in 

monetary terms. Cost-benefit analysis allows comparison of benefits gained from a 

healthcare intervention against others healthcare interventions or interventions in 

different sectors.  Cost-benefit analysis provides a decision maker to judge the best 

programme in terms of return on investment (ROI) analysis. However, assigning 

monetary value to health care be difficult. Although a range of methods can be used to 

determine the monetary value of effect gained through healthcare interventions and 

include Willingness-to-Pay (WTP) studies [83].  

Cost-minimisation analysis (CMA) is used in situations where the effect of treatment in 

both interventions is considered equivalent. As a result, the analysis is focused on how 

much cheaper one intervention is to the other. However, it has been argued that CMA is 

not considered a full economic evaluation [83].  
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In the U.K. NICE for their technology appraisals recommend the use of CUA for evaluating 

interventions for their cost-effectiveness. Called the reference case [86], evaluations are 

done using specific health utility measurements, perspectives and using a particular rate 

of discounting also.  

Considering the already described complex nature of CF as a condition and its effect both 

the quality and length of life and treatments effecting both these aspects, a CUA approach 

is adopted in this thesis (Chapter 6).   

1.5.1 Economic Evaluations in decision-making  

Due to the increasing pressure on resources and the changing demographics of 

countries, a shift from simply looking at the clinical effectiveness of an intervention to the 

use of supportive methods to aid decision making and reimbursement of healthcare 

provision has been increasing over the past 20 years [83]. NICE who are the main health 

technology assessment (HTA) organisation in England and Wales and who make 

recommendations regarding the availability of treatments for a multitude of conditions, 

require the use of EE (and specially CUA [86]) as part of the evidence to support 

recommendations for reimbursement.  

 A number of countries use EE to aid decision making, with many requiring submissions 

of economic data/analyses prior to an intervention receiving approval for use in the 

resident population. The use of EE however is more prominent in single-payer healthcare 

systems such as the NHS in the U.K. compared to multi-payer systems such as the U.S 

[83]. 

1.5.2 Decision analytical modelling  

The definition of decision analytical modelling is …’a systematic approach to decision 

making under uncertainty’…[5].  Given the nature of economic evaluations being carried 
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out alongside clinical trials, such trials for healthcare interventions are often only carried 

out for a specified time period or until a clinically significant difference is found between 

the intervention and comparator [87]. Single intervention clinical trials are useful for 

conducting EE and vital for generating evidence on the impact of new treatments. 

However, there are reasons why use of decision analytical modelling may help in 

enhancing and supporting decision making further. Due to cost, management and ethical 

implications not all relevant options may be included in a clinical trial and subsequently 

the trial based economic evaluations [83]. Similarly, limiting economic evaluations to in 

clinical trial analyses have their own shortfalls [83] and subsequently requires EE of an 

intervention to draw from other sources for cost, utility and clinical effectiveness [83].  

Such circumstances encourage the use of decision analytical modelling which can also 

assess an interventions cost effectiveness under conditions of uncertainty [83].  

As a result, evidence has to be drawn from various sources to allow comparison of 

interventions through other methods. As such, decision analytical modelling enables 

comparison of healthcare interventions and brings together a range of datasets to target 

a specific decision problem [83]. 

With increases in the need for conducting economic evaluations to support decision 

making there have been subsequent increases in the need for decision modelling as a 

platform for undertaking such comparisons [5]. This can be demonstrated through 

guidelines published by NICE which require submissions of economic evaluations to 

include aspects of decision analytical modelling being conducted [5]. The increase in 

utilisation of health economic modelling can be directed to a range of reasons which are 

aimed to support decisions makers which include use of all relevant information or data, 
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consideration of all relevant competing interventions/comparators, use of an appropriate 

time-horizon and calculation of decision uncertainty through use of sensitivity analyses.  

1.5.2.1 Principles of Good practice in Decision modelling 

In accordance with the working guidelines of the International Society of 

Pharmaeconomics and Outcomes Research (ISPOR), decision analytical models are 

meant to aid decision-making [88]. Thus, the relationship between the inputs (data and 

assumptions) and the outcomes should be transparent. This transparency should exist in 

all aspects of the model and the assumptions around the structure, linkages between 

variables, disease incidence/prevalence, treatment efficacy/effectiveness, mortality, 

health-state utility, resource utilisation/costs and any added value judgements as 

considered by the decision makers [88].  

Decision analytical models quality can be evaluated in three major areas: structure, data 

and validation. In accordance with structural quality, the model should include all 

appropriate inputs and outcomes that reflect the perspective of the evaluation i.e. if the 

model is to take a societal perspective then appropriate costs and consequence should 

be included which are applicable to that population group [88]. Similarly, the overall 

structure of the model and the constituent health states should reflect the theory behind 

the health condition, which includes reflection of linkages between direct and/or indirect 

variables such as body mass index (BMI) and mortality. As a result, exclusion of health 

states is not recommended if it is based on the lack of data [88]. 

Data inputs are subdivided into three categories, data identification, data modelling and 

data incorporation.  In terms of data identification, it is recommended that all data be 

identified systematically. Additionally, where possible, a case to identify reasonable 



 - 53 - 

attempts made to obtain additional data should be presented before modelling is 

conducted [88]. 

The data modelling refers to the mathematical steps used to convert the original empirical 

data into a form that is useful for decision modelling. These include incorporation of 

treatment effectiveness, interval probabilities of disease progression, mortality (disease 

specific and all-cause), health-related quality of life, costs, inflation, discounting, and data 

modelling relevant assumptions [88]. 

Lastly, data incorporation largely covers units of measurement within the model, types of 

modelling, the different types of sensitivity analyses that can be conducted and half-cycle 

correction [88]. 

The validation aspect of good research practice in health economic modelling covers 

three areas: internal, between-model and external validity. Internal validation testing of 

models involves debugging and ensuring that the model works accordingly to answer the 

research question. Between-model validation aims to understand difference between new 

and existing models with explanation of any difference in the outcomes given by the 

modeller. External validity in models is based on them representing the best available 

evidence [88]. 

1.6 NICE technology appraisal in Cystic Fibrosis 

Due to the lack of NICE patient treatment pathways in CF there are no firm clinical 

treatment maps which can be utilised to develop appropriate health economic models in 

CF. Discussions with experts highlighted key aspects of CF that should be incorporated 

into the models themselves which are described later in Chapter 4. In order to understand 

the health economic modelling practices, the current data utilised within these models 

and overall, how well these models reflect CF disease progression based on the literature 
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and expert opinion, an evaluation of current NICE guidance on the treatment of CF was 

undertaken.  

Health technology guidance review documents on the NICE website covered antibiotic 

treatment [89], correctors and potentiators of the CFTR protein [10] and muco-active 

agents [90]. 

Evaluation of the evidence and interpretation section within the guidance document for 

antibiotic treatment identified key areas of evidence that was lacking. The NICE 

assessment group identified that appropriate HRQOL data which reflects the NICE 

reference case was not collected in both the intervention and comparator groups [89]. 

Similarly, evidence presented from the trials around the clinical effectiveness of the 

interventions did not present information on PEx events in one trial. The comparator trial, 

although it does not provide information around PEx events, lung disorders was used as 

a proxy within the evaluation by the NICE assessment group.  The assessment group 

commented that more clinically relevant outcomes should be included such as frequency 

of PEx events and antibiotic use alongside surrogate outcomes such as ppFEV1 [89]. The 

NICE assessment group also identified a common shortfall that exist which included a 

short-term lung function improvement and no assessment of QALY gains in trials [89].  

Evaluation of the evidence section within the guidance document for CFTR correctors 

and potentiators identified key areas of evidence that were presented in the economic 

model that reflect the recommendations set by the European Medicines Agency (EMA) 

[91]. Appropriate collection and representation of data for pulmonary exacerbation events, 

antibiotics use and hospital admissions was undertaken for the economic model. Other 

important variables that were accounted in the submitted model include CFRD status and 
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pancreatic insufficiency [36]. The NICE Evidence Review Group (ERG) stated that the 

model covered appropriate aspect of Cystic Fibrosis.  

Evaluation of the evidence presented within the NICE guidance document for mucoactive 

agents [90] identified adequate measurement of pulmonary exacerbation events and 

subsequent hospital care utilisation. The trials representing the intervention however fell 

short of collecting appropriate HRQOL data, failing to reflect the NICE reference case 

requirements. The ERG further went on to comment that current measures of quality of 

life (QOL) may not accurately represent the consequences of having CF and the impact 

of any appropriate treatment for the Cystic Fibrosis [90]. 

After reflection on the NICE guidance document for CF diagnosis and management [36], 

a range of important variables were missing from the reviewed NICE appraisal documents 

which could have substantial impact on the long-term outcomes after inclusion into the 

economic model. These included frequency of PEx events, HRQOL data, identification of 

CFRD, Pancreatic insufficiency and Liver disease (as these both influence 

mortality/survival; Sections 1.2.9 and 1.2.10). 

In order to fully elucidate the shortfalls in the health economic modelling of CF 

interventions it is important that a range of analyses are conducted which have been 

proposed in the thesis objectives.  

1.7 Aims and objectives 

The aim of this thesis is to extend what is known about the health economic modelling of 

CF interventions, advance the health economic evidence available to inform such 

economic models and decisions about appropriate CF care. As highlighted in the previous 

section (Section 1.5), NICE evaluated current treatments and found a number of shortfalls 

upon their evaluation. As a result, in an attempt to further understand shortfalls in the 
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cost-effectiveness analysis of CF interventions the evidence in the wider literature will be 

evaluated.  

Areas of particular interest are: 

1) Health economic modelling structure for evaluation of CF interventions  

2) Application of statistical methods on the U.K. CF Data Registry to determine:  

a) health state transitions probabilities 

b) cost band transitions probabilities 

c) lung transplant probabilities.  

Specifically, the aims of this thesis are to understand:  

1) How are Cystic Fibrosis medications evaluated for their cost-effectiveness? 

I have answered this by: 

a. Identifying and reviewing the current state of the economic modelling 

literature for CF with the view to identify potential areas of importance that 

can be addressed within this PhD.  

b. Identifying and reviewing health utility data that exists for the health 

economic modelling of CF. 

2) How can the Registry Data be used in the development of parameters to inform 

health economic modelling in the context Cystic Fibrosis treatments? With 

particular emphasis on:  

a. Demonstrating how existing statistical methods can be utilised to develop 

health state transition or other probability estimates 
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b. Generate new U.K. based health state transition (including mortality) 

probabilities for those who are F508Del Homozygous based on data from 

the U.K. CF Trust Data Registry. 

c. Generate new U.K. based Cost band probabilities by health state from the 

U.K. CF Trust Data Registry to allow best possible estimates of cost 

d. Generating new U.K. based Lung Transplant probabilities from U.K. CF 

Trust Data Registry 

e. Developing a novel health economic model structure based on disease 

progression, data availability and clinical expert opinion in the U.K. 

f. Developing a health economic model incorporating the estimates generated 

in objectives a) to d) into objective e) to evaluate an exemplar intervention, 

Orkambi®.  

In summary this chapter has outlined CF as a disease, its economic burden and the 

shortfalls from a health economics perspective at the time in the evaluation of CF 

treatments in the U.K. 

The following chapters will develop these themes and meet the aims and objectives of 

the thesis in the following ways. Chapter 2 reports on a systematic review to identify all 

relevant CF health economic modelling studies. This includes an evaluation of identified 

literature to look at the health economic modelling practices used in CF with particular 

interest on how this can be improved. Chapter 3 reports on a systematic review to identify 

all evidence around the health utility data which is available for utilisation in the health 

economic analysis of CF interventions. Chapter 4 reports on the U.K. CF Data Registry, 

De Novo model conceptualisation process and description of the data cleaning processes 
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employed to prepare the U.K. CF Registry Data for use in exemplar economic evaluation 

of Orkambi®. Chapter 5 focuses on the use of statistical methods on the U.K CF Data 

Registry to generate inputs for the exemplar health economic evaluation of Orkambi®. 

Chapter 6 looks at using the inputs from Chapter 5 and De Novo model from Chapter 4 

to carry out an exemplar cost utility analysis of Orkambi® which was also validated using 

a between model consistency approach. Lastly, the thesis will be summarised and 

concluded upon (Chapter 7).  

1.8 Work published from this thesis 

1.8.1 Formatting of publications 

Chapters 2 and 3 present verbatim the content of papers that have been published in 

academic journals during candidature. The chapters have been formatted so as to be 

consistent with the rest of this thesis to meet the University requirements for using work 

conducted as part of a thesis which has been subsequently published. This allows the 

incorporation of work conducted (Chapters 2 & 3) to be included. Further information 

about this can be found in the link provided below, in section 7 (n) of the document: 

https://my.uea.ac.uk/documents/20142/274589/RDPD+3+-

+Research+Degrees+Submission+Presentation+Consultation+and+Borrowing+of+Thes

es_M.pdf 

1.8.2 Permission from the Journals 

Permission was sought and received when reutilising the material published which 

composed both Chapter 2 and 3.  

Permission was given on 27th November 2020.  

The Journal of Cystic Fibrosis publication [92] state the following: as the author of this 

Elsevier article, you retain the right to include it in a thesis or dissertation, provided it is 

https://my.uea.ac.uk/documents/20142/274589/RDPD+3+-+Research+Degrees+Submission+Presentation+Consultation+and+Borrowing+of+Theses_M.pdf
https://my.uea.ac.uk/documents/20142/274589/RDPD+3+-+Research+Degrees+Submission+Presentation+Consultation+and+Borrowing+of+Theses_M.pdf
https://my.uea.ac.uk/documents/20142/274589/RDPD+3+-+Research+Degrees+Submission+Presentation+Consultation+and+Borrowing+of+Theses_M.pdf
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not published commercially. Permission is not required, but please ensure that you 

reference the journal as the original source. For more information on this and on your 

other retained rights, please visit: https://www.elsevier.com/about/our-

business/policies/copyright#Author-rights. No changes were made to the above article.  

The Journal of Pharmacoeconomics Open publication [93] was made open access and 

as such is available under the following license: 

Open Access: This article is distributed under the terms of the Creative Commons 

Attribution-Non-Commercial 4.0 International License, which permits any non-commercial 

use, distribution, and reproduction in any medium, provided you give appropriate credit 

to the original author(s) and the source, provide a link to the Creative Commons license, 

and indicate if changes were made; (http://creativecommons.org/licenses/by-nc/4.0/). 

No changes were made to the above article. 

1.8.3 Authors and Contribution 

Below is a list of the publications, their citations and information of the primary author 

which indicates level of contribution made.   

1. Bishal Mohindru, David Turner, Tracey Sach, Diana Bilton, Siobhan Carr, Olga 

Archangelidi, Arjun Bhadhuri, Jennifer A. Whitty. Health economic modelling in 

Cystic Fibrosis: A systematic review. Journal of Cystic Fibrosis. Volume 18, Issue 

4. 2019. Pages 452-460. ISSN 1569-1993. 

https://doi.org/10.1016/j.jcf.2019.01.007 

PhD candidate, Bishal Mohindru (BM) and supervisors Prof Jennifer Whitty (JW) and 

Mr David Turner (DT) conceived the systematic review. BM designed and undertook 

the searches and collated the data, with assistance from Arjun Bhadhuri (AB). BM, 

with assistance from JW, DT, Prof Tracey Sach, Dr Diana Bilton, Dr Siobhan Carr, Dr 

https://www.elsevier.com/about/our-business/policies/copyright#Author-rights
https://www.elsevier.com/about/our-business/policies/copyright#Author-rights
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1016/j.jcf.2019.01.007
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Olga Archangelidi, interpreted the data. BM drafted the manuscript. All authors 

subsequently contributed to the review and revision of the manuscript and approved 

the final version. 

2. Mohindru, B., Turner, D., Sach, T. et al. Health State Utility Data in Cystic Fibrosis: 

A Systematic Review. PharmacoEconomics Open 4, 13–25 (2020). 

https://doi.org/10.1007/s41669-019-0144-1 

PhD candidate, Bishal Mohindru (BM) and supervisors Prof Jennifer Whitty (JW) and 

Mr David Turner (DT) conceived the systematic review. BM designed and undertook 

the searches and collated the data, with assistance from Arjun Bhadhuri (AB). BM, 

with assistance from JW, DT, Prof Tracey Sach, Dr Diana Bilton, Dr Siobhan Carr, Dr 

Olga Archangelidi, interpreted the data. BM drafted the manuscript. All authors 

subsequently contributed to the review and revision of the manuscript and approved 

the final version. 

1.9 Conferences  

A number of conferences were attended as part of this PhD which were funded by the 

EPI-NET project. Below is a list of these conferences and details of poster presentations 

or talks given.  

• U.K. Cystic Fibrosis Conference (Birmingham) (2017) – Oral poster presentation  

• Postgraduate Faculty of Medicine and Health conference (2018) (University of 

East Anglia) – Oral poster presentation 

• U.K. Cystic Fibrosis Conference (Nottingham) (2018) – Oral poster presentation  

• Postgraduate Faculty of Medicine and Health conference (2019) (University of 

East Anglia) – Oral poster presentation 

https://doi.org/10.1007/s41669-019-0144-1
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• European Cystic Fibrosis Conference (Liverpool) (2019) – Oral presentation; 

Penny lane: delivering value in cystic fibrosis healthcare; Health economic analysis 

using UK CF Registry Data 
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2 Chapter 2: Health economic modelling in Cystic Fibrosis - 

A systematic review 

2.1 Introduction  

In light of changing costs of CF care and increasing long term survival many interventions 

related to the management of CF have been evaluated for their cost-effectiveness to 

determine their future benefit and burden. As CF is a rare condition with consequences 

over a long period of time the health economic model has been widely used to evaluate 

cost-effectiveness.  

A recent evidence report by the Institute for Clinical and Economic Review in the U.S. 

reviewed the effectiveness and value of modulator treatments in CF [94]. The report 

highlighted that two regulatory bodies, the Canadian Agency for Drugs and Technologies 

in Health (CADTH) and NICE, decided, at the time, not to provide Orkambi®(Vertex 

Pharmaceuticals) [7, 8, 10] and Ivacaftor (Kalydeco®) on the basis of the cost of treatment 

being too high [6]. Subsequently the institute developed a cost effectiveness model for a 

range of modulating treatments and found them all not cost effective. The high price of 

drugs associated with rare diseases like CF have resulted in unfavourable incremental 

cost effectiveness rations (ICERs) despite there being evidence of effectiveness. The 

issue of high ICERs being associated with the use of conventional cost effectiveness 

analysis on orphan drugs has been discussed in the past [83, 95] and is highlighted in 

the economic evaluation of CF interventions.  

In light of recent appraisals of CF treatments, it is important to understand how the effects 

of different CF treatments are evaluated in health economic models as many treatments 

simultaneously change a range of outcome measures including lung function, 
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exacerbation rate and intravenous antibiotic treatment. It is also important to evaluate the 

quality of reporting found in published CF models. A number of checklists for model 

reporting quality are available, including: Consolidated Health Economic Evaluation 

Reporting Standards (CHEERS) checklist [96], Quality of Health Economic Studies 

(QHES) instrument [97] and the recently published recommendations by the Second 

Panel on Cost-Effectiveness in Health and Medicine in the U.S [98] for studies conducted 

in the U.S.  

2.2 Aims and Objectives 

The purpose of this review is to identify studies using economic models for CF. Through 

this I aim to develop a better understanding of the methods used including, model 

structures, data inputs, modelling methods, and interventions evaluated. I consider 

potential limitations with current modelling methods and potential ways in which CF 

modelling could be developed and improved. 

2.3 Methodology 

This systematic review follows guidance provided both by the PRISMA group [99] and the 

Centre of Reviews and Dissemination (CRD) [100].   

2.3.1 Inclusion Criteria 

The inclusion criteria are specified in Table 3. Economic evaluations not based on the 

management of Cystic Fibrosis, Cystic Fibrosis clinical trials and studies not relevant to 

Cystic Fibrosis were excluded.  
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Table 3: Review inclusion criteria, following PICOS framework 

Criteria Notes 

Population Individuals with Cystic Fibrosis, no age restriction 

Intervention 
The management of Cystic Fibrosis, not including any form of 

screening pre or post birth 

Comparator Any (including usual care) 

Outcome 
Incremental Cost Effectiveness Ratios (ICER), Net Benefit and/or 

Cost per unit of Effect. 

Study types 
Cost-effectiveness (CEA), cost-utility (CUA), cost-benefit (CBA), 

which include Health Economic Models  

Language English only 

Time Frame Any 

Exclusion 

• Screening programmes looking at terminating CF related 

pregnancies or diagnosing newborns with CF (antenatal or post-

natal screening) 

• Studies that DO NOT utilise health modelling techniques: e.g. 

Markov model, decision trees, patient-level simulations  

• Books/Thesis 

2.3.2 Study selection 

Study selection was carried out by two authors (B.M and A.B.). Any disagreements were 

adjudicated by a third author (J.W.). 
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2.3.3 Search Strategies 

Databases included in the review were: MEDLINE (Ovid), American Economic 

Association (EconLit), Health Management Information Consortium (HMIC), National 

Healthcare Service (NHS) Economic Evaluation Database (EED) (NHS EED), Cochrane 

Library, PubMed (PubMed + PubMed Central) and Cumulative Index to Nursing and Allied 

Healthcare Literature (CINAHL). Google was searched using key terms, only selecting 

the first 50 links.  

Medical subject heading (MeSH), truncation (*) and Boolean operators (AND/OR) were 

used to select and combine important text words, phrases, synonyms and indexing terms. 

Modifications were made to some search strategies to match appropriate mapping terms 

in each database.  

Forward citation searching undertaken using the Web of Science (ISI) and hand-

searching the bibliography of selected articles were undertaken to find further evidence 

which could be incorporated. Finally, no date, but only English language restrictions were 

applied. The last date for conducting searches in the databases was November 17th, 

2017. The search strategies used are available in the supplementary material.  

2.3.4 Quality assessment of studies  

Articles included in this review underwent quality of reporting assessment through use of 

Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist [96], 

Quality of Health Economic Studies (QHES) instrument [97] and the Panel on Cost-

effectiveness in Health and Medicine in the U.S [98].  
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2.4 Results  

2.5 Search results and study selection 

A total of 896 articles were found through the electronic searches, which reduced to 813 

after the removal of 83 duplicates (Figure 2).  Thirty-seven articles were retrieved for full 

text screening and evaluated against the inclusion criteria.  

Of the 37 articles, 23 were excluded as they did not contain health economic modelling. 

A further 4 were conference abstracts with no full text available, and one was not 

published in English [4]. Nine articles were included for data extraction.  
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Figure 2: PRISMA diagram: process of study identification [99]  

Initial Search: 

MEDLINE, EconLit, HMIC, 

NHS EED, Cochrane 

Library, PubMed, Web of 

Science, CINAHL, Google 

N= 869 

INCLUDED 

N= 37 

INCLUDED 

After Full Text 

Screening 

N=14 

Title and Abstracts screened at first stage 

N= 786 

INCLUDED 

For Full Systematic review 

N= 9 

Title and Abstract 

screening 

EXCLUDED 

N = 749 

EXCLUDED 

Review irrelevant: 

No Health economic modelling 

Screening  

N = 23 

EXCLUDED 

Conference Abstracts - 4 

Non-English -1 

N = 5 

EXCLUDED 

Duplicates removed 

N= 83 
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2.6 Summary of included studies 

 



Table 4:Summary of included studies 

 

Author 

Type of Model Intervention 

Cohort Model Decision 

tree 

Individual patient 

simulation model 

Pharmaceutical Adherence 

Panguluri et al [101]   ✓  ✓  ✓  

Tappenden et al [102] ✓     ✓  

McGirr et al [103] ✓    ✓   

Dilokthornsakul et al 

[104] 

✓    ✓   

Schechter et al [105] ✓    ✓   

Tappenden et al [106] ✓    ✓   

Whiting et al [107]   ✓  ✓   

Christopher et al [108]     *1  ✓   

McIntyre et al [109] ✓    ✓   

 
1 Unknown if decision tree 



Table 4 provides an overview of the included studies. Of the 9 articles, 6 were Markov 

models, addressed as cohort models and 2 individual patient simulation models, 

addressed as individual patient simulation models. One was ambiguous in terms of the 

type of modelling it undertook and I was unable to speak to the author to clarify this [108].  

The cohort model splits health and costs into distinct mutually exclusive categories called 

health states, which cohorts can travel between. Over a period of time, called a cycle, a 

cohort of individuals within the model accrue cost and benefits which ultimately 

summaries the average patient experience [5]. In individual patient simulation models 

patients move through the model one at a time, rather than as a cohort. The advantage 

of such models over cohort model is their memory feature, will allows accumulation of 

patient history (such as previous health event) which can be utilised to determine, future 

movement in the model, costs and effects [5].  

Five studies evaluated the impact of a range of pharmaceutical interventions [103-106, 

109], of which one was a Health Technology Assessment (HTA) report [106]. Two studies 

evaluated the impact of better drug adherence [101] or an adherence intervention [102] 

on reducing pulmonary exacerbations (PEx), nebuliser device costs, days receiving 

antibiotics, and/or the impact of reduced PEx events on FEV1. One study evaluated the 

impact of pharmaceutical interventions through use of a patient level simulation model 

[107], which again was a HTA report. Lastly, one study evaluated the impact of rhDNase 

[108] on CF disease progression and the other Dornase Alpha on long-term patient 

survival [109].    
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2.7 Pharmaceutical interventions 

2.7.1 Interventions and populations considered 

Within the 5 cohort models, very few interventions were evaluated. The types of 

treatments covered include antibiotics (Tobramycin, Aztreonam Lysine, Colistimethate 

Sodium), monoclonal antibodies (Palivizumab (PMB)), CFTR modulators (Ivacaftor) and 

an inhalation device with adherence measurement compared to current CF care [102]. 

Two studies compared treatment to no treatment, rhDNase vs. no treatment and PMB vs. 

no treatment [103, 108]. Two studies utilised individual patient simulation models [101, 

107] to evaluate the impact of Tobramycin inhalation nebuliser (TIS) vs. Tobramycin 

inhalation powder (TIP) and Ivacaftor in CF individuals, respectively. Two studies 

evaluated the impact of Ivacaftor and usual care alone to only usual care [104, 107], which 

consisted of CF-related medication, devices and respiratory therapy [107]. Two articles 

evaluated the impact of dry inhalation to nebulisation for antibiotics [101, 106], although 

one looked at the impact of adherence [101] and the other at different antibiotic treatments 

[106]. One additional study evaluated the impact of inhalation of two different types of 

antibiotics [105].  

All studies that evaluated pharmaceutical interventions provided information about their 

baseline populations. Studies selected for review utilised patient data from randomised 

controlled trials (RCTs). One study utilised the U.K. CF Trust registry for their patient data 

[102]. In one study, the effectiveness data utilised to populate the model was based on 

premature infants with chronic lung disease being treated with Palivizumab (PMB) [103]. 

The populations included in the models include both adults and children [101, 102, 105, 

107, 108], children [103] and adults [106] alone. 



 - 3 - 

2.7.2 Evaluation type, time horizon and discounting 

Cost-utility analysis (CUA) in which the quality-adjusted life year (QALY) is the measure 

of outcome was the most common type of economic evaluation undertaken. Cost-

effectiveness analysis (CEA) was the second most common evaluation method utilised 

but was conducted in conjunction to cost-utility analysis in three studies [101, 103, 104]. 

Models estimated costs and outcomes over a lifetime horizon except for two studies [101, 

105] which utilised a 10 and 3-year time horizon respectively. Discounting was applied to 

both cost and outcomes for all but three studies [104, 108, 109]. In the case of 

Dilokthornsakul et al [104] discounting was only applied to the costs and not the the 

clinical outcomes in hopes to forecast the clinical impact of Ivacaftor over a lifetime. On 

the other hand Christopher et al [108] or McIntyre et al [109] did not provide justification 

for not discounting their outcomes. For all other studies base case discounting varied from 

3% [101, 104, 105], 3.5% [102, 106, 107] to 5% [103]. Further scenarios evaluating the 

impact of varying the discounting rates through senstitivity analysis was undertaken for 

all pharmaceutical interventions except one [109].   

2.7.3 Model health states  

Cohort models assume patients transition between different health states. The five cohort 

models evaluated in this review had a different number of health states into which the 

patients could enter. The most common structure was one which contained 5 health 

states [102-104, 106], 1) mild, 2) moderate, 3) severe forced expiratory volume in one 

second (FEV1), 4) transplant and 5) death. Schechter et al [105] utilised a 14-health state 

structure, breaking the common 5-health state model FEV1 categories into 9 categories 

based on FEV1, with additional health states after lung transplantation.  
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For the remaining four models, the Panguruli et al [101] individual patient level simulation 

model contained three states into which patient parameters were entered. These included 

FEV1, PEx events and overall survival, with no health state for lung transplantation. 

The model in the Whiting et al [107] HTA report simulates the probability of death through 

a function of key variables such as sex, FEV1, pancreatic insufficiency, diabetes mellitus, 

bacterial infection and number of PEx events. Christopher et al [108] and McIntyre et al 

[109] did not adequately describe their model structures or present diagrams in their 

publications. 

2.7.4 Country and perspective  

The health economic models were  based within three countries, Canada [103], UK [102, 

106-109] and United States (U.S.) [101, 104, 105]. The modelling adopted an NHS [102, 

106, 107, 109], US payer [101, 104], Canadian Healthcare [103], third party payer [105] 

and regional health authority (U.K.) perspective [108]. 

2.7.5 Data sources and Outcome measures 

Data for all models focusing on pharmaceuticals were gathered from sources including 

clinical trials, CF registries, country specific life-tables, drug registries, pharmaceutical 

companies, personal communication and journal articles.  

Although a majority of the studies were cost-utility analyses, all but two articles [102, 106] 

provide outcomes beyond the QALYs and ICERs. Additional outcome measures provided 

include survival [101], different aspects of costs [101], life years gained [103-105, 108, 

109] reduction in hospitalisation [105], lifetime cost [104], probability of lung 

transplantation [104] and budget impact analyses [103, 104].  
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Table 5 shows all other outcomes that were also considered as part of the modelling 

analyses. We can see that five studies provide additional cost effectiveness outcomes as 

part of their analyses.
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Table 5: Further outcomes evaluated (by author and outcome) 

Outcome Author 

McGirr et al [103] Dilokthornsakul et al [104] Schechter et al [105] Christopher 

et al [108] 

McIntyre et al 

[109] 

Life years 

gained 

0.03/0.13 (All CF vs 

High risk only) 

18.25 + 0.0162 2-7 + 3-7 

Reduction in 

hospitalisation 

- - -0.8377 -1.3 days - 65 days 

Lifetime costs $294,702/$296,539 (All 

CF vs High risk only) 

$3,374,584 - - £233,070 

Probability of 

lung transplant 

- -18.27% (absolute) - - - 

Budget impact 

analysis 

$1,420,072/$284,014 

(All CF vs High risk 

only) 

$0.087/$0.083/$0.074 (3/5/10 

year time horizon, 

respectively) 

- - - 
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2.7.6 Costs 

Cost data for the models were gathered from a variety of sources. Cost for different 

stages of FEV1 severity was based on Austrialian CF registry data [103], Insurance 

claims data [105], Private databases [101], US Kaiser Permanente’s CF centre data 

[104], UK CF registry data [102, 107], Department of Health tariff banding [107], NHS 

national tariff [102] and a study conducted by Robson et al [110]. Not all studies 

separated cost of CF by FEV1/disease severity. In the case of Tappenden et al [106] 

costs for CF care were assumed to be identical between treatment arms and thus were 

excluded from the evaluation. Christopher et al [108] considered the cost of rhDNase 

derived from the British National Formulary (BNF) and savings generating through 

reduction in hospital stays through Extra Contractual Referrals (ECRs).  

2.7.7 Incremental cost effectiveness ratios 

Incremental cost effectiveness ratios (ICERs) were expressed in a range of ways in 

the models evaluating pharmaceuticals. Dilokthornskul et al [104] showed incremental 

improvements in life expectancy, lung transplantation reduction, increase in QALYS 

and incremental lifetime costs of US$3,374,584 for a hypoethetical cohort of 1,000 

patients. McGirr et al [103] showed incremental improvement in QALYs at a cost of 

CAD$61,550-157,332 per QALY, dependent on the assumed discount rate. Schechter 

et al [105] demonstrated that Aztreonam was dominant over Tobramycin through 

improvement in QALYs, life years and reduction in hospitalisation. Tappenden et al 

[106] provides ICER values for QALYs for two different dry inhalation antibiotic 

treatments compared to a nebulised form. The results of the modelling state that 

Tobramycin DPI (TPI) dominates all other treatments. Whiting et al [107] undertook 

cost effectiveness analysis in three scenarios, optimistic, intermediate and 

conservative. The estimated ICERs were £335,000, £771,000 and £1.2 million per 

QALY gained, respectively. Tappenden et al [102] demonstrate that an adherence 
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intervention dominated current care. Panguruli et al [101] reported a base case ICER 

which was a cost saving, saving $133,000 per QALY gained for TIP compared to TIS. 

Christopher et al [108] demonstrated that use of rhDNase in CF individuals over a life 

time resulted in a cost per life year gained of £52,550. McIntyre et al [109] 

demonstrated a cost of  £27,269 per life year gained for lifetime treatment with 

Dornase Alpha.  

2.7.8 Utility 

Evaluation of the models utilitising a cost-utility approach shows some overlap in the 

literature sources utilised to derive QALYs. Health related quality of life (HRQOL) was 

linked to FEV1 severity, pulmonary exaccerbation and adverse events. Three different 

instruments/methods were used to derive utility weights from HRQOL of adults and 

adolescents (caregiver perspective) which include EQ-5D [101, 102, 105, 106], SF-36 

[107] and a Standard gamble approach [103].  

Four studies included disutility around pulmonary exacerbation events [101-103, 106] 

using the same data sources [48, 111]. One source included disutlity around 

respiratory syncytial virus infection [112]. Three different studies were utilised to 

include utility of lung transplantation and used the EQ-5D [113] [102, 106, 107], Visual 

analogue scale (VAS) [105, 114] and a standard gamble approach (SG) [103, 115].   

2.7.9 Sensitivity analysis 

The robustness of the results were tested with 1 way, 2-way, probabilistic and 

deterministic sensitivity analyses for all the models included in this review. A range of 

scenario analyses were also used to determine their impact on the cost effectiveness 

of interventions.  

2.8 Quality assessment of the studies 

Quality of reporting assessment undertaken using the CHEERS checklist showed that 

the studies of medium quality according to the QHES checklist [103-105] failed to 
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provide adequate reporting of information in the methods and results sections 

according to the CHEERS checklist. On the contrary studies of high quality according 

to the QHES instrument [102, 106, 107] had very good quality of reporting in their 

publications against the CHEERS checklist.  

Studies conducted in the U.S. were also evaluted against the Panel on Cost-

effectiveness in Health and Medicine criteria [98]. According to the checklist the U.S 

based studies were lacking in a number of reporting criteria requirements and 

considerable work in improving these is required for future studies who decide to 

undertake any health economic modelling.  

2.9 Discussion  

This is the first systematic review to summarise the cost effectiveness of interventions 

in CF as predicted through economic models and in particular the modelling practices 

that lead to those estimates. It is not surprising that the estimates of cost-effectiveness 

provided by the models vary widely given that the interventions evaluated and setting 

in which they are used all vary widely. However, this review aimed in particular to 

identify the current issues in the health economic modelling of CF. The modelling 

approaches utilised also vary widely despite the comparatively limited number of 

studies included in this review. Three different types of modelling approaches have 

been reported in this review and each has its own advantages and disadvantages [5].  

In order to appraise the models and the appropriateness of the evidence I assessed 

different aspects of the economic evaluations. I looked at data from the clinical trials 

underpinning the models, HRQOL/utility studies, costs, ICERs and lastly the model 

structures.  

2.9.1 Clinical trial data 

Evaluation of the European Medicines Agency (EMA) information published around 

CF showed a list of outcomes considered important for collection in clinical trials of CF 
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[91]. Evaluation of the clinical evidence utilised within the economic models showed 

that the endpoints reported in the different trials underpinning the models varied and 

not all studies followed the guidance set by the EMA for CF.  

All trials conducted to evaluate the clinical effectiveness of different treatment options 

evaluated FEV1 as their primary outcome measure. Secondary and tertiary outcomes 

considered in the clinical trials included change in FEV1 over the trial period, change 

in sweat chloride, change in weight, time to/number of and duration of PEx events, 

quality of life (QOL), number of days admitted to hospital and the need for antibiotic 

therapy. Collection of these outcomes have been clinically justified by the EMA [91].  

It was evident after evaluation against the EMA guidelines that data were collected for 

PEx events in some clinical effectiveness studies of CF interventions [101, 104-107]. 

However, not all PEx event data were utilised when undertaking health economic 

modelling of the intervention [101, 103, 104]. A similar finding was observed for 

hospitalisation and antibiotic use [104, 107]. Although this may seem unrelated to the 

modelling of CF, data sources provide vital input and future trials should aim to meet 

the EMA guidelines [91] which can in turn be utilised in the health economic modelling 

of CF interventions.  

2.9.2 Utility/ HRQOL data 

Utility data were presented for each model described by the review where the QALY 

was an outcome measure for different health states. These included FEV1 based 

disease severity, transplantation and PEx events. The evidence presented in all the 

different economic evaluations around utilities for the intervention themselves were 

based on a range of sources, but they did use similar data in a majority of cases [101, 

102, 104-106].  
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Only one trial collected HRQOL information, which met the requirements of the NICE 

reference case [107] but the utility estimates were considered inflated by NICE HTA 

evaluation team. As a result, utility values for the Whiting et al [107] model are based 

on utilities that are also used by Dilokthornsakul et al [104].  

Utility values for transplantation were also included in the models. The utility of lung 

transplantation was measured through a range of methods across the evaluated 

studies.   

Disutility from PEx event was only included in four studies [101, 102, 105, 106] and 

the source of the disutility data were the same [48, 111] in three studies. Panguruli et 

al [101] simply stated the decrement in utility without further elaborating on the source. 

Dilokthornsakul et al [104] failed to incorporate disutility of PEx despite there being 

data on the number of PEx events and subsequent healthcare utilisation in their clinical 

trial studies. Similarly, although data were available from the clinical trials around PEx 

events and subsequent healthcare utilisation, Whiting et al [107] failed to account for 

disutility of such events. Their model only accounted for PEx through its impact on 

long-term survival. However, they do state that reduction in PEx events could also 

have additional impact outside survival.  

2.9.3 Cost Data 

Evaluation of the cost evidence in the models showed that a range of sources were 

utilised. McGirr et al [103] utilised an study based on Australian patients to calculate 

cost per mild, moderate or severe FEV1 health state and lung transplantation [81] to 

determine the cost effectiveness of PMB. But these cost estimates are averages for 

patients across 0-30+ years of age. Similarly, lung transplantation costs are based on 

CF individuals between 11-13 years old.  However, the population in the model is that 

of less than 2 years.  
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Two studies evaluated the cost effectiveness of Ivacaftor [104, 107]. Dilokthornsakul 

et al [104] utilised 1996 cross-sectional US Kaiser Permanente’s regional CF centre 

data to determine health state specific costs [116]. Other models reviewed in this work 

which were also based in the US [105] used an alternative source to determine 

healthcare utilisation costs for US CF individuals [117]. In comparison to the Kaiser 

Permanente’s regional CF centre data, which was conducted on 136 individuals in 1 

year, Briesacher et al [117] evaluated longitudinal healthcare utilisation in 3,723 CF 

individuals from 2001-2007 and adjusted for disease burden and time trends in 

medical costs.  

Most importantly, the Lieu et al [116] study was conducted prior to the introduction of 

new maintenance therapies [117] and subsequent studies looking at the cost of CF in 

a similar setting [118] have shown a 140% increase [117] in costs compared to those 

calculated by Lieu et al [116].  Lung transplantation costs inputs in Dilokthornsakul et 

al [104] utilise 2011 data, although more up to date costs on single and double lung 

transplantation data exist for 2014 [119].  

Whiting et al [107] utilised a banding system to reflect disease state specific costs [60] 

due to increasing treatment complexity and NHS reference costs for lung 

transplantation.  

A total of four studies evaluated the cost-effectiveness of antibiotic treatments [101, 

102, 105, 106], all of which evaluated tobramycin in solution/nebuliser. Although the 

reference cost year for the studies ranged from 2011 to 2016, there was considerable 

difference in cost of antibiotic treatments. A similar scenario exists for Aztreonam 

where there is up to a 4-fold cost difference between studies [102, 105]. The reason 

for such difference is unapparent.  
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2.9.4 ICERs 

The ICERs for the treatments in the cost effectiveness models were evaluated. Given 

the difference between countries for the same drug, this demonstrated that it is difficult 

to generalise country specific results to others. This highlights the possible variability 

in CF clinical treatment patterns, difference in drug pricing across countries and in 

secondary or primary healthcare utilisation and ultimately the health policy agenda for 

particular countries. 

2.9.5 Model structure 

Just over a quarter of the models evaluated in this review did not provide a justification 

for using a model structure based on 5 health states [104, 105]. Considering CF’s 

multifactorial nature, disease models lack a similar approach.  The structure utilised 

by McGirr et al [103] was based on a study conducted on an Australian CF registry 

dataset which separated out disease severity by lung function scores (FEV1). Two 

additional health states, death and transplant, were added at this point. Prior to this 

the model structure itself is based on another cost analysis study conducted by Lieu 

et al [116] which was designed based on advice from the CF Foundation.  

Evidence presented by Tappenden et al [106] defined the health states through 

information presented in their HTA report which detailed the conceptualisation of the 

decision problem [120]. The probability of transitioning between the defined states 

were based on data from systematic reviews looking at the plausibility of relationships 

between intermediate and final endpoints as well as expert opinion [120]. The 

additional Tappenden et al [102] paper simply refers back to the 2014 publication in 

reference to the structure of the model.  Whiting et al [107] utilised a patient-level 

simulation model, demonstrating the probability of death as a function of age, sex, 

bacterial infection, pancreatic insufficiency, PEx events, weight, baseline FEV1 value 

and diabetes. A structure and a description is presented in the HTA report. Panguluri 
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et al [101] also utilised a patient level simulation model for their adherence study. They 

utilised this model particularly due to the advantages of using individual patient data 

over cohorts of patients. The model was also appropriate for the data being utilised 

and the model structure was consistent against guidelines published by Brennan et al 

[121].  

2.10 Future research direction 

The evidence presented in this review suggests that health economic aspects of CF 

disease modelling require better access to data and more representative modelling 

methods. Future health economic modelling could attempt to focus on conceptualising 

a model that is relevant to CF, one that incorporates separate health states such as 

PEx or intravenous antibiotic use which are known to be important for patients [62] as 

they are predictive of longer term survival [42, 60] and cost considerable resources 

[122]. Future models could also take account of co-morbidities such as Diabetes and 

Liver disease. Although EMA guidelines make no mention of diabetic and liver disease 

status for identification in CF clinical effectiveness studies, both these conditions are 

becoming more common in CF patients [64-66, 91]. The impacts of these 

comorbidities on the long-term mortality becoming clearer [64-66]. Given the recent 

workshop on clinical trial endpoints in CF [91], future trials should aim to follow or 

improve the availability of such data. This is not only important for the clinical 

effectiveness aspect of CF interventions, but also on any subsequent analyses or 

evaluations, which are dependent the quality of such data for their findings.  

As for cost data, such information could be gathered from more robust sources such 

as Hospital Episode Statistics (HES), Secure Anonymised Information Linkage (SAIL) 

data bank or their equivalent in Europe. This would allow for more up-to-date 
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healthcare utilisation and costing which are longitudinal and consider time trends of 

CF treatment.  

However, to truly evaluate the long-term survival of CF individuals, it is necessary to 

evaluate all interventions within a single epidemiological model but also include the 

impact of post transplantation complications and mortality.  

Moreover, given the importance of HRQOL as an outcome in CF, future research 

should aim at understanding the evidence base around the availability of utility-based 

outcome information, which is required to assess QALY’s in HTA submissions to 

NICE.  

2.11 Limitation of this review 

This review only included studies written in English. However, this only resulted in the 

exclusion of one article, making the introduction of bias unlikely. I believe that the 

published literature gives a reflection of the methods that are being applied and most 

models used to underpin submissions to regulatory bodies are likely to be 

subsequently published, assuming they meet acceptable quality standards at peer 

review. 

2.12 Conclusion 

This review aimed to evaluate the modelling practices utilised in the health economic 

evaluation of CF.  Clinical trial data underpinning the models in a majority of cases 

aimed to follow the guidelines set by the EMA, but not all studies demonstrated this. 

It is evident through the data, particularly the two studies on adherence to antibiotics, 

that PEx can have considerable impact on both the costs and outcomes of CF 

individuals. Therefore, further study into this highly relevant clinical endpoint should 

be encouraged. Health utility measurement of PEx and other relevant health states is 

needed for incorporation into health economic modelling. Given the different cost data 

sources utilised in the models, even in the same country, attempts to utilise more 
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robust sources could help reduce methodological variability and variability in ICER 

estimates.  

2.12.1 Update of review  

The initial search conducted in this chapter was until 17th November 2017. Searches 

were updated to 31st October 2020. A total of 7 additional studies were found. Of these 

4 did not satisfy the inclusion/exclusion criteria: 1 was a systematic review of CF 

modelling studies (this chapter) [92]; 3 were CF screening studies [123-125]. Two 

studies were cost effectiveness of Orkambi® [126, 127] and the last study was a cost-

effectiveness study on Mannitol [128]. As a result, only the three studies were 

evaluated further. Particularly the two cost effectiveness studies on Orkambi® will be 

covered in more detail in section 6.5 of Chapter 6. A brief description of the cost-

effectiveness study of Mannitol® [128] is given below.  

2.12.2 Summary of study(s) 

In summary, the cost effectiveness study on Mannitol® [128] utilised an individual 

patient simulation model to evaluate a pharmaceutical intervention. The patient 

population considered were those with CF in Australia. The evaluation was a cost 

utility analysis over a lifetime horizon and both cost and outcomes were discounted at 

5%. The perspective taken for the analysis was an Australian national healthcare 

system perspective.  

The model itself was based on 4 primary health states, No event, PEx, lung transplant 

and death within two FEV1 categories considered, <30 or equal to or more than 30. 

The author [128] states that the model structure was reviewed by both Australian and 

U.K. HTA authorities. Additional between model comparisons for validity were made 

against a single more recent cost effectiveness study in CF, which was not included 

in this review as it was not a cost-effectiveness study [129].  
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Disease progression in the model is based on an Australian dataset of 855 patients 

with CF. A linear regression model was developed to generate annual rate of decline 

in FEV1. Rate of decline in FEV1 was based on age, sex, BMI and number of inpatient 

days in hospital days per quarter (as a proxy for severe PEx events) [128]. Those who 

were hospitalised compared to those who were not, had a 1.44% higher chance of 

annual decline in FEV1. Based on age, the annual decline was 1.5% FEV1 per year 

until the age of 30, after which the FEV1 increases per year. This clinically does not 

make sense, and the author [128] said this is most likely due to survival bias in the 

dataset as healthier patients out-survive the unhealthier patients. As a result, it was 

assumed in the dataset that FEV1 decline post 30 years would remain unchanged 

[128]. Mortality was also based on the same dataset.  

Health utility was taken from a clinical trial conducted on the use of Mannitol [130]. 

However, further evaluation of the published article did not show data collected in 

relation to health utility.  

Costs were based on a paper published in 2011 [81] which reflected an Australian 

cross section cohort from the Australian CF Data Registry.  

2.13 Chapter summary  

In this Chapter, the different cost effectiveness models for management interventions 

in CF for their were evaluated. They were assessed under a number of areas (section 

2.7). Overall, in terms of quality, majority of studies were of medium or low quality and 

did not meet the respective quality assessment guidelines. Only a handful did and 

were of high quality. Improvements were also suggested for the future model 

structures utilised to evaluation CF management interventions.  

One important future direction was the evaluation of the level of evidence available in 

the literature around health utility, as this was described as lacking in the chapter and 
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most often utilised the same source of information which in itself was based on a small 

sample size. Furthermore, disutility of treatment with antibiotics was not accounted for 

in most models. Chapter 3 reviews the existing evidence around the health utility data 

available in CF for use in future cost effectiveness evaluations.   
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3 Chapter 3: Health state utility data in Cystic Fibrosis: A 

systematic review 

3.1 Introduction 

In the previous Chapter, a review of the health economic modelling studies was 

undertaken to shed light on existing modelling practices as well as the sources of data 

used for such evaluations. A shortfall in evidence around health utility data were 

highlighted. To shed light on the availability of health utility data for the health 

economic modelling of CF interventions. I conducted a systematic review on health 

state utility data in CF.  

Treatments received by CF individuals are leading to improvements in clinical 

outcomes [131-134]. However, the decision for treatment provision by governing 

bodies like the NICE in the U.K. is based on the cost-effectiveness of the treatment 

[86]. Health state utility (HSU) values play a central role in valuing health-related 

quality of life (HRQOL) to support economic evaluations and can be elicited through 

direct or indirect methods [135]. Indirect methods utilise questionnaires, such as the 

EQ-5D, to determine perceived health states of those filling in the questionnaire (also 

known as instruments). Completion of the instrument across many domains such as 

mobility, pain and mental health etc. results in a score which is then matched up to a 

utility value. On the other hand, direct methods such as time-trade off (TTO) and 

standard gamble (SG) present hypothetical scenarios which ultimately allows for 

health utility evaluation. Both these techniques generate utilities anchored at 0 (death) 

and 1 (full health) [135]. Indirect measures are required or suggested for inclusion in 

economic evaluations in countries which include England, Wales, Spain, France, 

Finland, Poland, New Zealand and the Netherlands [136]. Measures, particularly those 
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generated through generic questionnaires, such as the EQ-5D [86] are required by 

regulatory bodies like NICE.   

In an ideal world, for a health economist all clinical trials conducted on healthcare 

interventions would include some form of preference-based measure (PBM) which can 

provide a health utility value. This does not happen often where generic PBMs such 

as the EQ-5D, are included for completion by participants. One way to obtain health 

utility values is through mapping [135].  ‘Mapping’ allows conversion of outcomes from 

one incomplete PBM, such as a patient report outcome measure (PROM), to a generic 

PBM which allow calculation of utility values [136], which can in turn be used for health 

economic modelling.  

3.2 Aims and Objectives 

I conducted a systematic review which aims to identify all studies that determine the 

health state utility in CF as well as studies that provide utility data for defined 

populations of CF individuals. The main goal is to inform future health economic 

models by clarifying what data is available. Additionally, I look to inform future work by 

highlighting gaps in the research related to health state utility values of CF individuals.   

3.3 Methodology  

This study follows the Preferred Reporting Items for Systematic Reviews and Meta-

analyses (PRISMA) guidelines [99] for reporting systematic reviews.  

3.3.1 Inclusion criteria 

Although it is not entirely possible to apply the PRISMA guidelines to a HSU systematic 

review [137], I have attempted to do so in order to define the boundaries of this review. 

I have selected a Population, Intervention, Comparator, Outcome and Study Design 

(PICOS) framework [100], this is presented in Table 6.  Although I am aware that the 

HSU may not be attached to a particular intervention. When I describe the intervention, 

I aim to describe the method of determining the HSU values.  
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The utility values I seek pertain to individuals of any age with CF and health states 

associated with these individuals. Studies that reported utility weights gained through 

proxy are also included. Studies utilising rating scales such as the visual analogue 

score (VAS) were excluded as they are not considered utility values anchored by full 

health and death and also risk scaling biases such as the end of scale bias [138]. 

Studies included in the review were assigned to 1 of 4 categories during the title and 

abstract screening process which included: 1) Measuring utility in CF individuals, 2) 

Mapped between patient reported outcomes (PROMS) and preference-based 

instruments (e.g. CFQ-R and SF-6D), 3) Economic evaluations on the management 

of CF which use utility data and 4) Any CF clinical trial that reported health utility as an 

outcome. Studies excluded from this review were placed in the following categories: 

5) Study describing psychometric properties of CF-related instruments, 6) a CF 

individual’s perception of treatment/disease, 7) Articles about CF but not relevant, 8) 

Non-CF study and lastly, 9) Book or Thesis.  
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Table 6: Inclusion criteria 

Criteria Notes 

Population Health states of Individuals with or Valuations pertaining to CF  

Intervention 

(Method) 

Any preference elicitation technique in order to determine health 

utility 

(Excluding VAS if scales not anchored to full health and death) 

Comparator Any similar elicitation technique or nothing at all 

Outcome 

Utility-based weighting of different severities of CF such as forced 

expiratory volume in 1 second (FEV1) (mild, moderate and 

severe), Lung transplantation, PEx events, hospitalisation 

Study types 
Health related quality of life derived utility studies, clinical trials, 

and mapping studies 

Language English only 

Time Frame Any 

Exclusion Books, Editorials or Conference Abstracts 

3.3.2 Search strategies 

Search strategies were designed in order to identify the appropriate original published 

studies for this review. Text words, phrases, synonyms and indexing terms were 

selected through the Medical subject heading (MeSH) thesaurus. Preselected search 

strategies were also utilised from a previous study [107]. Appropriate changes were 

made to the designed search strategies in order to tailor them to different subject 

heading terms in alternative databases.  

Databases included for this review were: MEDLINE Ovid PubMed (PubMed + PubMed 

Central), PsycINFO, Web of Science, Cochrane Library (NHS EED only), Cumulative 

Index to Nursing and Allied Healthcare Literature (CINAHL). Google was also 
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searched using key search terms, as the search algorithm for this database changes 

frequently, with the first 50 results reviewed for inclusion. No date restrictions were 

applied, although I restricted the language to English only. 

Forward citation searching was undertaken using the Web of Science (ISI) to find 

further evidence which could be incorporated. Additionally, the bibliography of articles 

(backward citation searching) selected for full text review were hand-searched for 

relevant literature. The last date for conducting searches in the databases was 15th 

March 2019. Conference abstracts were excluded. Search strategies are available in 

the supplementary material.  

3.3.3 Study selection 

Two rounds of selection were carried out by two authors (B.M and A.B.) based on the 

inclusion criteria. Any disagreements were adjudicated by a third author (J.W.).  

3.3.4 Quality assessment of studies 

Qualities assessment of the health utility studies was not conducted as there is no 

agreed reporting standard for these types of studies.  

3.4 Results 

3.5 Search results and study selection 

A total of 2,474 articles were found through our electronic searches. This number was 

reduced to 1,664 after removing 810 duplicates. A further 1,433 were excluded at the 

title and abstract screening stage, leaving 231 articles. Of these, 201 were removed 

after full text review. Finally, a further 15 articles were excluded because they were 

conference abstracts, not written in English or presented visual analogue scores (VAS) 

only.  A total of 15 articles were included in this review and were processed for data 

extraction in Microsoft Excel by Bishal Mohindru and Arjun Bhadhuri. A PRISMA 

diagram is presented in Figure 3, to demonstrate the process of study selection.  
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Figure 3: PRISMA diagram: Adapted from Moher et al [99], showing the 

process of study selection.

Initial Search: 
CINAHL 

Cochrane Library 
MEDLINE 
PsycINFO 

Web of Science 
Google 

N= 2,474 

INCLUDED 
N= 231 

INCLUDED 
After Full Text Screening: 

Utility measurement 
Mapping study 

Economic Evaluation 
Clinical Trial 

N= 30 

Title and Abstracts screened at First Stage 
N= 1,664 

INCLUDED 

For Full Systematic review 
N= 15 

Title and Abstract screening 
EXCLUDED 

N = 1,433 

EXCLUDED 
Review irrelevant: 
Psychometric study 

Patient perception study 
General CF study 

Non-CF study 
Book/Thesis 

N = 201 

EXCLUDED 
Conference Abstracts - 7 

Not English – 5 
VAS only- 3  

N = 15 

EXCLUDED 
Duplicates removed 

N= 810 
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Table 7: Summary characteristics of included studies (by descending publication date) 

AUTHOR YEAR COUNTRY SUBJECTS  TYPE OF STUDY SAMPLE SIZE TOTAL 

SOLEM ET AL 

[139]  

2016 USA Patients (Adults) 12 

+/> (Ivacaftor therapy 

in CF ptx with G551D 

mutation) 

HRQOL study 161 

CHEVREUL ET 

AL [140] 

2016 Multiple Patients (Adults and 

Children) (or 

Proxy/carer) and 

carers 

HRQOL study 920 

ISKROV ET AL 

[141] 

2015 Bulgaria Patients (Adults and 

Children) and carers 

HRQOL study 40 

CHEVREUL ET 

AL [142] 

2015 France Patients (Adults and 

Children) (or 

Proxy/carer) and 

carers 

HRQOL study 166 
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AUTHOR Year Country Subjects  Type of study Sample size total 

ANGELIS ET AL 

[80] 

2015 UK Adults, Children and 

Caregiver (Adults, 

Children and 

Caregiver) 

HRQOL study 74 

ACASTER ET 

AL [143] 

2015 USA Patients. (Adults) 18 

+ > 

Mapping study 401 

BRADLEY ET 

AL [48] 

2013 UK Patients (Adults) >16 

years, +bacterial 

infection, + antibiotics 

medication 

HRQOL study 94 

DEWITT ET AL 

[144] 

2012 USA Patients with mild 

lung impairment 

(FEV1:75 or more) 

and carers 

Clinical trial 328 
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AUTHOR Year Country Subjects  Type of study Sample size total 

FITZGERALD 

ET AL [145] 

2005 Australia Children, 

Adolescents and 

Adults (5-18 years) 

Clinical trial 50 

YI ET AL [146] 2003 USA Patients (8-12 years) 

(No patients who 

have had lung 

transplant) (no 

further mention of 

actual population 

group) 

HRQOL study 65 

SURI ET AL 

[147] 

2001 UK Children only Clinical trial 40 

SELVADURAI 

ET AL [148] 

2001 Australia Patients (8-16 years), 

admitted to hospital 

for infective PEx 

HRQOL study 66 
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AUTHOR Year Country Subjects  Type of study Sample size total 

CZYZEWSKI ET 

AL [149] 

1994 USA Patients and carers 

(Children and 

Adolescents and 

Caregiver) 

HRQOL study 254 

BUSSCHBACH 

ET AL [114] 

1994 Netherlands Patients 

(Adults)waiting for 

and having received 

and lung transplant 

HRQOL study 6 

OREINSTEIN 

ET AL [150] 

1990 USA CF individuals older 

than 10 years, 

positive for bacterial 

infection and treated 

with a new antibiotic 

(proxy: examiner) 

HRQOL study 28 
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3.6 Study Characteristics  

Table 7 summarises key study characteristics. Included studies were published from 

1990 onwards. The most recent publication was 2016, with more than 20% being 

conducted in 2015. The duration of the studies varied, with most studies undertaking 

only a cross-sectional measurement, some included longitudinal follow up, up to 5 

years. Studies were undertaken in many different countries in and outside of Europe, 

with one study [142] covering multiple countries which were part of the same 

BURQOL-RD research network study. The most common countries were United 

States of America (USA) (6) and United Kingdom (U.K.) (3). Two were from Australia 

[145, 148].  

In Table 7, I have identified the type of study being undertaken and have categorised 

them. Studies focusing on determining HRQOL were categorised as HRQOL studies. 

Studies focusing on evaluating HRQOL in conjunction to an intervention were 

categorised as clinical trials. Finally, studies focusing on deriving utility values from 

one instrument based on outcomes from another were labelled as mapping studies. 

The patients in the studies included children, adolescents and adults in different 

combinations such as adults and children, children only or adults only. In some cases, 

studies included caregivers [80, 140-142, 149], some of whom were also assessed for 

their health utility [80, 140-142].  

The total number of individuals covered in the studies in this review equated to 2,693 

CF individuals, with sample sizes ranging from 6 to 920 people. The largest sample 

came from a study looking at the HRQOL across multiple European countries, 

conducted as part of the BURQOL-RD research network study [140]. The population 

age varied across studies, with the youngest mean age of the participant being 

approximately 9 years [149] and the oldest mean age being 30 years [143].  
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Completion of the questionnaires was undertaken with no proxy on 6 occasions [48, 

114, 139, 141, 143, 147]. The remaining studies utilised proxies in some patient 

groups to complete the instruments [80, 140, 142, 144, 150]. Dewitt et al [144] only 

utilised a proxy when people with CF were under a particular age, <14 years old. Two 

studies were ambiguous about how the questionnaires were completed [145, 148]  

and one study interviewed the participants and subsequently allowed them to 

complete the questionnaire at home [149]. Lastly, one study collected information 

through face -to- face interviews [146]. 

Table 8: Summary of utility data collection (by descending publication date) 
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AUTHOR DATE METHOD OF OBTAINING UTILITIES UTILITY FOR 

HEALTH 

STATES 

VALUE SET 

UTILISED 

INTERVENTION 

Direct 

Utility 

Multi-

attribute 

Mapping 

study 

Instrument/Tec

hnique 

SOLEM ET AL 

[139] 

2016   ✓   EQ-5D-3L  ✓ Dolan et al 

[151] 

Ivacaftor 

CHEVREUL ET 

AL [140] 

2016   ✓   EQ-5D-5L 

(mapping to 3L 

value set)  

x Multiple 

countries  

- 

ISKROV ET AL 

[141] 

2015   ✓   EQ-5D-3L  x  Dolan et al 

[151] 

- 

CHEVREUL ET 

AL [142] 

2015   ✓   EQ-5D-5L 

(mapping to 3L 

value set)  

x Perneger et al 

[152] 

- 

ANGELIS ET AL 

[80] 

2015   ✓    EQ-5D-5L> EQ-

5D-3L 2+ VAS 

x Kind et al [153] 

& Dolan et al 

[151] 

- 
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2 EQ-5D 5L used but value set for conversion is for EQ-5D 3L 

AUTHOR Date Method of obtaining utilities Utility for 

health states 

Value set 

utilised 

Intervention 

Direct 

Utility 

Multi-

attribute 

Mapping 

study 

Instrument/Tec

hnique 

         

ACASTER ET AL 

[143] 

2015   ✓ ✓ CFQ-R to EQ-

5D-3L 

✓ Dolan et al 

[151] 

- 

BRADLEY ET AL 

[48] 

2013   ✓   EQ-5D -3L  ✓ MVP Group 

[154] 

Pulmonary 

Exacerbations 

(PEx) 

DEWITT ET AL 

[144] 

2012   ✓   Health Utilities 

index 2/3 

x Unknown  Chloride Channel 

Activator 

FITZGERALD ET 

AL [145] 

2005   ✓   Quality of 

Wellbeing 

x Unknown  rhDNase 
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AUTHOR Date Method of obtaining utilities Utility for 

health states 

Value set 

utilised 

Intervention 

Direct 

Utility 

Multi-

attribute 

Mapping 

study 

Instrument/Tec

hnique 

         

YI ET AL [146] 2004 ✓ ✓   Time trade off, 

Standard gamble 

& Health Utilities 

Index 2 

✓ Unknown 

& Direct 

valuation  

- 

SURI ET AL [147] 2001   ✓   Quality of 

Wellbeing 

x  Unknown rhDNase 

SELVADURAI ET 

AL [148] 

2001  ✓  Quality of 

Wellbeing 

x Unknown Aerobic vs 

Resistance training 

BUSSCHBACH 

ET AL [114] 

1994 ✓     Time trade off & 

Standard gamble 

✓ Unknown 

& Direct 

valuation  

Lung 

Transplantation 
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AUTHOR Date Method of obtaining utilities Utility for 

health states 

Value set 

utilised 

Intervention 

Direct 

Utility 

Multi-

attribute 

Mapping 

study 

Instrument/Tec

hnique 

         

CZYZEWSKI ET 

AL [149] 

1994   ✓   Quality of 

Wellbeing 

x Unknown - 

ORENSTEIN ET 

AL [150] 

1990  ✓  Quality of 

Wellbeing 

x Unknown Antibiotic (Abx) 



3.7 Utility elicitation  

Table 8 provides a summary of utility collection procedures, value sets used and 

interventions considered.  

From the 15 studies evaluated in this review, 13 studies reported utility scores described 

by multi-attribute utility instruments (MAUI).  A combination of direct and indirect utility 

elicitation methods were used to derive utilities. The most common multi-attribute 

instrument used to derive utility was the EQ-5D [48, 80, 139-142]. This included different 

version of the EQ-5D, the 3L and 5L. Studies that utilised the EQ-5D-5L version of the 

instrument [80, 140, 142] mapped their results to the 3L instrument due to the lack of a 

value set at the time, which is what NICE recommends [86]. This method of deriving 

utilities was followed by utility elicitation through the Quality of Well-being instrument 

(QWB) [145, 147-150]. Lastly, the Health Utilities Index (HUI), version 2 and 3 were used 

in two studies [144, 146]. Direct elicitation via TTO and SG was used by two studies [114, 

146].  

3.8 Converting HRQOL scores into utilities 

I aimed to identify the value sets that were used to convert the multi-attribute scores into 

utility values. The U.K. value set was based on a study the by Dolan et al [151] was 

commonly used to calculate utility values for studies using the EQ-5D-3L instrument, 

although it was not used exclusively for U.K. studies. Only on two other occasions were 

different value set utilised for the EQ-5D-3L, by Chevreul et al [142] who used a French 

value set [152] for a French study and by Chevreul et al [140] who utilised multiple value 

sets for different European countries. Chevreul et al [140] also applied value sets from 

different countries to the multi-attribute instrument scores in cases where value sets were 

not available for that particular country.  
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Five studies were investigated to understand which value sets they had utilised to convert 

Quality of Wellbeing scores into utilities [145, 147-150]. There was no clear information 

about the value set in any study. However, I am aware that the utility scoring algorithm is 

available from the developers of the instrument [135].  

Finally, two studies utilised the HUI, versions 2 and 3 [144, 146]. Neither study provided 

information around the value sets that were used to calculate their respective utilities.  

3.9 Mapping between instruments 

A single study was found in this review that undertook mapping from the Cystic Fibrosis 

Questionnaire- Revised (CFQ-R) disease specific multi-attribute instrument to the EQ-

5D-3L [143].  

3.10 Health State-derived utility 

Of the 15 studies included in this review, only 5 provided data which were broken down 

in some form by CF disease relevant interventions or health states. These included health 

states related to the following: lung transplantation [114], PEx events [48, 139] and FEV1 

[143, 146].  

3.10.1 Lung Transplantation 

Lung transplantation utility data were separated by type of transplantation, bilateral and 

also by the time-points prior to and after the transplant [114].  

This study measured utility at three-time points for individuals with bilateral transplant. 

This included before, during and after the lung transplant where the utilities were 0.8, 0.4 

and 0.9, respectively [114].  

3.10.2 Pulmonary exacerbations 

PEx utility was separated by the following health states, PEx requiring/ not requiring 

hospitalisation and the time periods prior to and after the events [139] and mild/ moderate/ 
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severe PEx [48]. It is evident from the data that increasing severity of PE events 

decreases the EQ-5D utility index. Utility values were 0.85, 0.79 and 0.60 for No, mild 

and severe PEx events respectively [48]. 

Utility derived by the time since PEx event start and finish was investigated by Solem et 

al [139] and was based on whether the individual required hospitalisation or not. For PEx 

events that required hospital admission, utility was the worst during the period during the 

build-up to a PEx event (0.76). Utility up to 8 weeks prior to PEx was much better (0.9) 

compared to time periods up to 8 weeks after the event (0.85). This relationship is not 

evident in the non-hospitalised PEx events group, for the EQ-5D utility index score, with 

the utility score being highest 1-4 weeks after the PEx.  

3.10.3 FEV1 

FEV1 utility data were separated either by three [143] or four categories [146] of severity. 

This included the conventional mild, moderate and severe categorisation. Yi et al [146] 

further separate them into the following, <40% predicted, 40%-59% predicted, 60%-79% 

predicted and >79% predicted FEV1. The studies undertook FEV1 evaluation using 

different approaches. Acaster et al [143] mapped the CFQ-R instrument to the EQ-5D 3L 

by 3 FEV1 severity levels.  Yi et al [146] used combination of a direct utility approach of 

TTO and SG in addition to HUI2 instrument to determine utility and categorise FEV1 by 4 

severity levels.  

The calculated utility data in the Acaster et al [143] study shows a decrease in utility score 

with increasing severity according to the EQ-5D-3L (data not shown). This relationship is 

not so evident in some cases for Yi et al [146]. For instance, the HUI2 utility index scores 

do not decrease with increasing severity. This is also evident in the SG utility data across 
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the varying FEV1 severity, with utility for 40-59% FEV1 (0.96) being better than that of 

>79% FEV1 (0.92). A similar pattern is evident in the TTO utility data. 

3.11 Population based-utility 

Of the 15 studies included in this review, 10 provide mean utility for specific CF 

populations. The studies cover populations on the following treatment/intervention: 

rhDNase [145, 147], antibiotics [150], aerobic vs resistance training [148], education [149] 

and chloride channel activator [144]. Four additional articles simply observed the mean 

utility of CF individuals across Europe [80, 140-142]. These studies particularly focus on 

characterising change in utility pre and post intervention over time.  

3.11.1 Recombinant Human DNase (rhDNase) 

Recombinant Human DNase (rhDNase) was evaluated in two clinical trials [145, 147]. 

Each study targeted different population groups, children only [147] or children and adults 

[145]. Both studies utilised a multi-attribute instrument to obtain utility data, the Quality of 

Wellbeing instrument (QWB) Although, Suri et al [147] study did not provide utility data 

post treatment with rhDNase, only including a baseline QWB score of 0.61 for their CF 

study population.  

Suri et al [147] evaluated two different rhDNase treatment regimens, once daily or 

alternative days of rhDNase against twice daily hypertonic saline. The QWB scores 

following the 12-week trial showed no significant difference between the treatment 

options.  

Fitzgerald et al [145] evaluated the impact of administering rhDNase before or after 

physiotherapy treatment as part of a clinical trial. The results showed significant difference 

in QWB between the two treatment periods, 0.778 vs 0.752 (p<0.05). But it is not clear in 

the article what period represents which treatment option.  
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3.11.2 Chloride Channel Activator 

The impact of Denufosol, a chloride channel activator, on CF individuals with mild 

impairment in lung function was evaluated over 48-weeks in a clinical trial [144]. The study 

utilised the HUI2/3 to evaluate the utility of treatment, but there were no significant 

changes in utility of the treatment period in either instrument.  

3.11.3 Aerobic vs Resistance training 

Selvadurai et al [148] looked to determine the impact of aerobic vs resistance training on 

QWB subsequent to a pulmonary infection. Significant changes (p<0.05) in quality of life 

were only seen in the aerobic training group. However, this is poorly presented and 

difficult to quantify. 

3.11.4 Education intervention 

A clinical education intervention was provided to children and adolescents in order to 

determine QWB derived utility [149]. The interdependent respondent agreement between 

parent/caregiver and adolescent CF individual in terms of utility was evaluated. Utility 

scores were 0.79 and 0.76 for caregivers and adolescents respectively.  

3.11.5 Antibiotics 

Quality of wellbeing was applied to CF individuals being treated for PEx with oral 

Ciprofloxacin [150]. Change in QWB was scored in the patient sample subsequent to 

treatment and showed a mean change of 0.104 but the worse and best change in QWB 

were -0.201 and 0.209, respectively.  

3.12 Cohort studies 

Finally, four studies [80, 140-142] evaluate the health derived utility in a range of 

European countries as part of the BURQOL-RD Research Network. The overall 

population covered within the individual countries were based on the same criteria, CF 
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patient centre or its equivalent in different countries and CF Trust registries. Three studies 

were in depth publications [80, 141, 142], whilst the remaining article was a summary of 

the before mentioned articles with many additional countries which were evaluated as 

part of the project [140]. The countries included Germany, Hungary, Italy, Spain and 

Sweden.  

Evaluation of the individual published studies showed discrepancies in the data. Not all 

the data in Chevreul et al [140] matched those figures provided within either Chevreul et 

al [142], Angelis et al [80] or Iskrov et al [69]. Further evaluation of the number of patients 

utilised to reflect the EQ-5D-3L utility index data showed for example in Angelis et al [80], 

that different population numbers were used to calculate the utility score, 37 vs 33, 

respectively. A similar case is evident in the other two publications [141, 142]. 

3.13 Discussion 

Health economic modelling has become a key component of healthcare decision making 

and its use is recommended by NICE for technology appraisals [86]. However, in order 

to undertake health economic modelling, there needs to be sufficient data to populate the 

model which in turn should reflect disease progression [155]. Previous models have 

highlighted a lack of health outcomes evidence to inform CF health economic models 

[107, 120], particularly around the health outcomes data.  

Health state derived utility values were only available for 5 studies [48, 114, 139, 143, 

146]. They focused only on lung transplantation, PEx events and FEV1. These studies 

have substantial limitations in their application. The lung transplantation data presented 

covers only bilateral lung transplantation [114]. The treatment sample in Busschbach et 

al [114] was small. Utilisation of health utility data derived from these CF individuals for 

health economic modelling should be undertaken with caution. Additionally, these CF 
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individuals were hypothetically put into different lung transplantation health states and 

were described as overestimating their utility [114].  

PEx event data presented covered a 16 to 48-week period [48, 139] and has limited 

application for this particular health state due to the nature of the populations and 

treatments being investigated. Solem et al [139] evaluated the impact of Ivacaftor on PEx 

events. Data from Bradley et al [48], examines health utility of those who are taking oral 

or inhaled antibiotics. So, utility values can only be applied in CF individuals taking those 

treatments. 

FEV1 derived health state utility was investigated in two articles [143, 146]. Acaster et al 

[143] categorised FEV1 derived utility into three states: mild, moderate and severe, which 

was self-reported in a cohort of self-diagnosed CF individuals.  Yi et al [146] reported and 

categorised FEV1 derived utility into 4 states, the data produced from this study has been 

utilised to model an antibiotic treatment in CF [103]. Due to unconventional nature of 

categorising the FEV1 severity into four categories, the model by McGirr et al [103] had 

to transform these values to fit a three-health state FEV1 severity model. Previous models 

in CF have generally utilised three FEV1 health states [102, 104, 120].  

A total of 10 studies evaluated health utility in a range of different CF populations. These 

studies provided mean values at cross sectional time points, every 12 weeks for up to a 

year and a half. The majority of the utility information was gathered using the EQ-5D 

(3L/5L). These studies are of particular interest as the EQ-5D is the reference case 

instrument recommended by NICE for use in all Health Technology Appraisals (HTA) [86]. 

From the studies that evaluated health utility with the EQ-5D we can understand that the 
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population samples in all three studies [80, 141, 142] are quite different as well as the 

possible application of the utility data obtained from the studies.  

As the first study to review the literature for information around health utility of particular 

health states in CF, I identified that there are few studies which focus their attention on 

deriving utility data for CF individuals for the health states that may be needed to model 

the cost-effectiveness of interventions for CF. Considering the improvements in CF 

mortality and morbidity over the last 50 years which are largely related to improvements 

in screening [156, 157] and treatment of the condition [25, 158], this finding comes as a 

surprise. Especially since health economic models currently exist which look at the cost-

effectiveness of a range of interventions available to CF individuals [101-105, 107, 120] . 

For this dearth of evidence to come to light at this time suggests that CF research around 

health utilities has been slow.  

Health state derived utility values found in this review have limited application due to the 

treatments being considered. Such studies do not allow for the generalisability of the 

health utility data to CF patients as the studies have selectively picked certain CF 

individuals for inclusion into their clinical trials.   

Future work should look at health state utility elicitation, longitudinal health utility 

measurement and mapping studies.  Health state preference elicitation could focus on 

significant adverse events such as PEx, CF related diabetes (CFRD), CF related Liver 

disease (CFLD) and other life-long complications such as Distal Intestinal Obstruction 

Syndrome. Attempts should be made to measure utility as close to the event as possible. 

Similarly, health utility of adults with differing FEV1 could be assessed multiple times 

annually or collected on encounter of complications or adverse events.  Such longitudinal 
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measurement will allow for more reflective health economic evaluation of interventions. 

Such studies of health utility using the EQ-5D would also allow research to address 

problems around ceiling effects of the instrument which have been mentioned in NICE 

appraisals of Orkambi® [10] and the published literature [139]. This in turn would 

provide evidence of the appropriateness of the EQ-5D as a health utility measure in CF.   

Research into health utility derived from the EQ-5D is appropriate as the first measure in 

the U.K. as it is considered the most appropriate measure by NICE [86].  When studies 

use different measures, other than the EQ-5D, to determine health utility this inherently 

prevents cross comparison against other instruments used in different studies. As we 

know from this study a number of different methods have been used to determine health 

utility, but what decides which measure is the best or most appropriate? Using a single 

instrument to measure health utility would prevent this problem from arising. Studies 

conducted in the past around the comparison of utility data obtained from different 

instruments showed that there was poor to moderate agreement between instruments. 

These differences can subsequently impact the cost per quality-adjusted life year (QALY) 

ratio [135].  

Another avenue for health state preference elicitation data could be the CF Trust Registry, 

who recently launched a study looking at quality of life (QOL) in CF adults [11, 159]. 

Although further information on the instruments used needs to be ascertained.   

Evident from the review, there is only one study looking at mapping one PBM instrument 

to the generic EQ-5D [143]. Currently many instruments exist which measure patient-

reported outcome measures (PROMs) which do not have an associated preference-

based scoring system, so do not allow for utility and subsequent (QALYs) measurement. 
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Future mapping studies between PROMs and PBM could allow for better availability of 

utility and QALY data, which would prove useful for health economic modelling in CF. An 

added incentive to undertake such studies, especially in the U.K. could be the fact that 

NICE recommend undertaking mapping in the absence of EQ-5D data in clinical trials 

[86].  

Evaluation of the James Lind Alliance (JLA) for the top research priorities identified for 

CF showed QOL evaluation, particularly for the long-term effects of Cystic Fibrosis 

transmembrane receptors (CFTR) modulators, was suggested [160]. This further 

emphasises what patients, clinicians, nurses and other healthcare staff consider to be 

priorities of research in CF. 

3.14 Limitation of this review 

This review only considered full text articles, abstracts identified in this review would have 

been useful additions as full text articles. A study by Giron et al [161] evaluated EQ-5D-

3L derived utility in Spanish patients who had mild or moderate PEx events, L’abbe et al 

[162] evaluated HRQOL in CF lung transplantation patients and Yarlas et al [163] 

evaluated CF HRQOL in CF individuals in Europe and United States (U.S.). These articles 

would prove useful additions to this review if/when a future update if available. A total of 

5 studies were excluded from this review as they were in language other than English. 

Incorporation of these articles could have contributed towards to better understanding of 

general country and population specific utility.  

3.15 Conclusion 

This review aimed to determine the level of available utility information around CF, 

particularly related to various health states. The studies identified were cross-sectional 

with little application for longitudinal evaluations without the use of assumptions. Work on 
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eliciting health state preferences particularly for FEV1, PEx events (by severity) and lung 

transplantation require further work, some areas more than others. However, new studies 

on health state utility data is warranted for CFRD, Liver disease (CFLD) and intestinal 

obstructive syndrome. Further research on identifying health state utility value data needs 

for decision modelling for CF treatment would also prove beneficial for the health 

economic modelling of CF related treatments in order to aid future decision making in CF.  

3.15.1 Update of review 

The initial search conducted in this chapter was until 15th March 2019. Searches were 

updated to 31st October 2020. A total of 6 additional studies were found. Of those studies 

found, study by Ratnayake et al [164] was a review of patient reported outcome measures 

(PROMs) which included all the studies found from this review chapter except studies 

which were RCT’s as they removed such studies as part of their exclusion criteria. As a 

result, the studies found in this chapter cover wider sources of information for HSU data. 

The paper by McLeod et al [165] was a protocol for a proposed study looking at 

determining HSU from discrete choice experiments (DCEs), a very relevant study. The 

study proposed to include more than 4,000 CF individuals from the Australian CF Data 

Registry. As such, this study may prove to be very useful for future health economic 

analysis for HSU data, particularly in those countries with similar baseline patient 

characteristics as Australia. The HRQOL study by Bell et al [166] looked at the EQ-5D-

5L outcomes of those patients taking Ivacaftor treatment. However, no HSU or utility data 

is provided in the publication. The study by Gold et al [167]  is a validation study which 

compares a disease specific instrument outcome measures to the EQ-5D 5L. Lastly, a 

single study was a cost-effectiveness study on Mannitol [128]. As a result, only these two 

studies [167, 168] were evaluated further. A brief description of Perez et al [168] is given 
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below (Section 3.15.2). The study by Perez et al [128] has already been evaluated in 

Chapter 2 (Section 2.12.2) and the source of data on HSU was deemed to not contain 

any such data, quite possibly not reported by the author in the published manuscript and 

directly obtained by Perez et al [128]. 

3.15.2 Summary of study(s) 

In summary, the only study which was evaluated [168] was conducted in the U.S. on 23 

CF individuals awaiting lung transplantation who were older than 18 years. It is a HRQOL 

study which evaluated lung transplantation using other instruments alongside the EQ-5D-

5L, although the value set used to covert the scores into utilities was not mentioned. The 

study itself evaluated HRQOL at different time points (baseline, three months post lung 

transplant and six months post-transplant. The mean (sd) utility values for each time 

period were 0.56 (+/- 0.29), 0.90 (+/- 0.09), 0.90 (+/- 0.16). The values showed a mean 

difference of 0.34 (95% CI; 0.23 - 0.46) (post-transplant compared to pre transplant), 

which was much higher than the minimum clinical important difference (MCID) of 0.06 for 

the EQ-5D. The study also showed that changes in lung function and frailty were 

associated with improvements in EQ-5D.  

3.16 Summary of chapter 

In this Chapter, the availability of health utility data in the literature was evaluated. The 

studies were assessed under a number of areas (Section 3.6). Overall, the level of data 

available for use in health economic modelling of CF interventions is lacking and further 

research by undertaking studies which evaluate health utility, particularly through use of 

the EQ-5D is recommended. Further studies which evaluate health utility through 

assessment of CF individuals contributing data to the CF Data Registry is also suggested.  
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4 Chapter 4: Methods 

4.1 Chapter outline and Aims and objectives 

The previous chapters (Section 1,2 and 3) focused on introducing CF, health economics 

and existing technology appraisals in CF for treatments (Chapter 1), followed by a review 

of existing health economics modelling studies in CF (Chapter 2) and lastly another 

review looking at the current level of evidence available around health state utility data in 

the literature (Chapter 3).   

Previous chapters highlighted a requirement for better more representative modelling 

methods for the economic evaluation of CF management interventions. I suggested 

focusing on significant healthcare events such as PEx or IV antibiotic use which have 

been related to disease progression in CF in Chapter 1. The model conceptualisation 

work conducted in this chapter was undertaken as no previous evidence exists on the 

conceptualisation of a health economic model in CF for management interventions, 

despite a number of models being identified in Chapter 2. One of the main aims of the 

Epi-Net project, presented earlier in this thesis, was to utilise data from the CF Data 

Registry to help improve the lives of those with CF. As a result, a large focus of this 

chapter will be the CF Data Registry. Particular emphasis is placed on the use of the CF 

Data Registry to create transition probability estimates for health economic modelling, 

further presented in Section 4.19.  

Lastly, further work on use of cost data from more representative sources such as HES 

or SAIL data were suggested in Chapter 2. The work conducted in this chapter highlights 

the use of the CF Data Registry which contains cost banding data is further presented in 

Section 4.18.2.  
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This chapter will describe the data, termed ‘Registry Data’ or ‘CF Registry Data’ briefly as 

the data used in this thesis comes from the UK Cystic Fibrosis Trust Registry. This will be 

followed by a summary of methods used in conceptualising a De Novo health economic 

modelling structure for the evaluation of CF interventions. This chapter will cover the 

methods used in generating model variables from the Registry Data. This will include key 

assumptions made in relation to the patient population, data cleaning, and variable 

selection and creation.  This will be followed by a description of the statistical methods 

used to create the data inputs for the health economic modelling of CF interventions. The 

chapter will conclude with the variables required for the exemplar evaluation of the 

intervention that will be used to test and validate the De Novo model, namely Orkambi®.  

The aim of this chapter is to: 

1) Give a description of the UK CF Data Registry 

2) Give a description of the methods used in the conceptualisation of a De Novo 

model structure for the health economic modelling of CF interventions. 

3) Give a description of the methods used to clean the data and any additional 

assumption made in this process.  

4) Present the statistical methods which were evaluated and subsequently used to 

generate inputs for the health economic modelling of CF interventions. 

4.2 Access to the CF Data Registry 

An application to access the Registry Data from its inception to 2016 was submitted to 

Elaine Gunn (U.K. CF Registry Clinical Data Manager) on July 31st, 2017 and was 

granted on the 11th September 2017 (NHS research ethics approval – East of England 

Cambridge East REC Ref: 07/Q0104/2 UK Cystic Fibrosis Registry). Access to Registry 
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data were obtained through a remote server at the Royal Brompton Hospital (RBH) with 

a RBH visitor login. The programme called RStudio [169] was used to undertake all data 

cleaning, preparing new variables and descriptive analysis of the Registry Data. The 

Registry Data has individual patient data (IPD) from 1996-2016.  

4.3 History and overview of the Registry 

The U.K. Cystic Fibrosis (CF) Data Registry is a national centralised database which 

securely holds information for those who have CF and have given their consent for data 

collection for a range of variables [159]. Established in 1995, the Registry was initially a 

small dataset of paediatric individuals. In 2005, the UK Cystic Fibrosis Trust began to 

utilise a web-based portal for electronic patient data collection and now collect longitudinal 

data from individuals with CF across the United Kingdom (U.K.), with a more than 12,000 

individuals currently present in the dataset (2019) which constitutes more than 90% of 

those with CF in the U.K, further detail is provided in Section 4.4.3. The UK Cystic Fibrosis 

Registry now represents the largest and most complete data collection in Europe for CF 

[159]. All individuals with CF in the U.K. are treated at any one of 33 specialist centres, 

which form further network clinics which number into the 100s. During adolescence (16-

18 years old) CF individuals transfer to one of 27 adult specialist centres. Consent for 

data collection, depending on the age of the CF individual is given by their parent/guardian 

or themselves [159].  

The Cystic Fibrosis Trust Registry is a combination of administrative and clinical data, as 

a result a powerful resource which can and has been utilised in CF specific research [50, 

102, 170-175]. Sister registries, which collect similar data to the CF Trust Registry exist 

in other countries which also have been used in many avenues of research from 

epidemiology [176], survival analysis [177] to health economics [81, 107].  
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4.3.1 Data collected 

A standardised web-based system is utilised by all CF centres to collect data from CF 

individuals. Data collection covers demographics, hospital resource utilisation, 

treatments, diagnostic tests, nutrition, social deprivation and mortality. Further information 

about these variables are available from the CF Registry Portal and CF Trust Registry 

webpage [178].  Data in the Registry is collected in two distinct ways; by annual review 

and using an encounter-based approach. The annual review comprises regular reviews 

on a yearly basis at one of the U.K. specialist centres, whereas the encounter-based 

approach comprises visits which are in addition to those conducted in that same year at 

annual review. Although data are collected by either of these approaches, I will only 

discuss and later use annual review data. This is due to annual review data being 

systematically collected across the CF centres [159].  

4.3.2 Coverage 

Between 1996 and 2016 there were 12,463 individuals covered in the UK CF Data 

Registry. Data coverage, defined as the number of complete entries for those who are 

registered in a particular year, has been above 90% since 2013 [179]. In total there are 

more than 120,000 annual review entries in the Registry Data.  

4.3.3 Data Quality 

Data quality can be assessed by accuracy and completeness. The completeness of the 

data is represented by how well the data actually represents the condition specific 

population and how comprehensive such data is. Accuracy refers to validity and reliability 

[180], how valid the data entered and reliable the process of data entry is [180]. The data 

quality of the Registry is maintained in a number of ways which include: (1) availability of 

user guides and training videos for accurate data entry; (2) dashboard alerts for data 
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completeness and information on key clinical variables/indicators and (3) validation 

checks conducted by software which ensures meaningful values are entered, for 

example, clinical indicators and dates [159]. The completeness of the Registry is reflected 

in the CF Trust annual report, which showed that the Registry covered more than 90% of 

the CF population in the UK for more than 5 years [178].  

4.3.4 Health Care Resource use data 

Alongside a range of clinical variables, the UK CF Data Registry also collects data around 

the use of IV antibiotics (Abx) or oral Abx, whether taken at home or hospital and the 

number of days spent in hospital. This data is used to define the cost banding group the 

patient is categorised into. Costing banding categories and the banding matrix is further 

described later in this chapter, section 4.17.2. Additional data around lung transplant and 

mortality are also collected in the UK CF Data Registry.  

4.3.5 Strengths and weaknesses of Registry 

The CF Trust Registry allows many aspects of patient treatment to be monitored for 

improvement in health policy, NHS reimbursement decisions, drug safety reporting to the 

European Medicines Agency (EMA), drug efficacy and has the potential to allow Registry 

based clinical trials to be conducted [181]. The high level of patient coverage includes 

almost all CF patients nationally (>90%). This coupled with high data accuracy enables 

the UK CF Trust Registry to be utilised in statistical analyses such as diagnostic and 

prognostic modelling. Weaknesses of the Registry Data include only having, in majority, 

annual review-based data. 

Survival estimation from the Data Registry cohort is also potentially subject to survival 

bias. This was also highlighted in a NICE technology appraisal [10]. Individuals in the UK 

CF Data Registry entered the Registry at different time points and would have a range of 
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ages at Registry entry. This means that individuals in the Registry who are currently older 

were not receiving treatments which have resulted in big changes in survival for those of 

a similar age who are now receiving treatment. Therefore, those who are older in the UK 

CF Data Registry are not representative of mortality or survival in the current treatment 

climate and may result in some bias.  This limits the ability of the data to be utilised to 

predict survival. Although studies have attempted to this into account [50], this remains a 

challenge as the availability of newer more effective treatments as time has moved on will 

impact survival in newer cohorts [159].  

4.4 Decision analytical modelling  

The role of decision analytical modelling is to bring together a range of evidence and 

focusing this evidence upon a particular decision problem to aid decision making at a 

particular point in time and location under uncertainty [83]. The modelling conducted as 

part of any economic evaluation, is undertaken to fulfil five key aspects, 1) structure, 2) 

evidence, 3) evaluation, 4) uncertainty and 5) future research. The first two aspects of 

economic evaluations have been covered in this chapter, structure (Section 4.4.1.1-4.9) 

and evidence (Section 4.10 onwards). The remaining three, evaluation, uncertainty and 

future research will be covered in Chapters 6 and 7. 

4.4.1.1 Structure 

An important element in decision modelling is decision of how the model will be structured. 

This aspect of the model will be developed and discussed in Sections 4.5 to 4.11 of this 

chapter. As will be seen in later portions of this chapter, it was decided that due to the 

nature of existing models and the conventional use of FEV1 categories in CF, that 

continuous FEV1 data would be categorised into 6 respective health states, Mild, Mild IV, 

Moderate, Moderate IV, Severe and Severe IV (not including mortality, Figure 11 Section 
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4.10). Due to the nature of the above assumptions and application of the taxonomy of 

model structures [121, 182], this ultimately defined the type of model that would be used 

for this thesis, non-homogenous Markovian model with semi Markovian processes. The 

methods for creating the exemplar cost-effectiveness model are further elaborated on in 

Section 5.8 and 6.4 in Chapters 5 and 6 respectively.    

4.5 Model conceptualisation 

The conceptual model will inform and eventually transform into the De Novo model for 

the health economic analysis of CF interventions. However, prior to developing a 

conceptual model it is important to identify that when modelling is referred to herein, it 

does not include regression models which explain or predict the relationship between 

inputs and outcomes or infection disease models which look at the epidemiology of 

infectious diseases. The conceptual model refers to models which are used to simulate 

the natural process of a disease, in CF for this thesis, and the impact of interventions on 

this natural disease process and its subsequent impact on both the primary endpoints, 

incremental costs; outcomes and subsequently the cost-effectiveness.  

Figure 4 below presents the model conceptualisation process. It highlights the different 

levels of evidence used in this chapter to create the final De Novo Model. This includes, 

an initial meeting with a CF expert (Section 4.9.1.8); the systematic review of health 

economic models in CF for management interventions; looking at NICE Decision Support 

Unit (DSU) and ISPOR guidelines around model conceptualisation (Section 4.6); looking 

at evidence from the literature linking FEV1, the primary outcome measure to other 

important variables/outcomes in CF (including evidence from the EMA and NICE 

treatment guidelines (NG78) (Covered in detail in Chapter 1 and Section 4.8.1.2-6); 

looking for existing conceptual models in CF in the literature through a systematic review 
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(Section 4.9.1.7) and lastly, discussion with a panel of clinical experts in CF around 

important health events and proposed model structure before coming to the De Novo 

model.  

Later portions of Figure 4 look at creating data which could populate the De Novo model 

(Chapter 4 and 5), including health state transition and cost data. Finally, the far-right end 

of Figure 4 refers to Chapters 6, looking at validating the model (internal and external 

validity) using an exemplar intervention, Orkambi®. 

4.6 Recommendations in the literature 

Prior to creating the model, it was important to define what a conceptual model is and 

later understand if there were any guidelines on how to do this.  

Conceptual modelling is defined as;…“the abstraction and representation of complex 

phenomena of interest in some readily expressible form, such that individual 

stakeholders’ understanding of the parts of the actual system, and the mathematical 

Figure 4: Model conceptualisation process map (including creation of data for the 

model and validation of the model (internal and external validity) 
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representation of that system, may be shared, questioned, tested and ultimately 

agreed.”…[183]  page 19.  

A conceptual model (CM) can be used to understand disease attributes that lead to 

disease progression in any condition. It is the crux which allows evidence to underpin a 

De Novo health economic model. It allows relationships between disease attributes, 

disease progression and health outcomes to be illustrated, ultimately to understand how 

some key disease attributes/events can impact the cost-effectiveness of healthcare 

interventions [184]. Most importantly a CM can help identify relationships that exist 

between an intervention and a primary outcome which in turn may affect other aspects of 

the disease in an indirect way which were observed in the literature or clinical trials.  

In order to develop a health economic model for CF I first understood the practices which 

are recommended in the literature. I refer initially to the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) guidelines on conceptualising a 

model [155]. I move on to looking at other guidance documents; NICE decision support 

unit (DSU) technical support document 13 [183] and Conceptual modelling (CM) for 

health economic model development [185]. These informed the essence of my 

understanding and underlying enquiries in order to develop an implementable De Novo 

model for CF. Evidence as to what model parameters should be included in a De Novo 

health economic model also needed to be evaluated which will be covered further in a 

later portion of this chapter and in Chapter 5.  

It is important to note here that the Tappenden et al [185] adapted their discussion paper 

from the NICE DSU document [183]. As a result, only the NICE DSU discussion paper is 

used to avoid duplication.  
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4.6.1 NICE Decision Support Unit (DSU) Model Conceptualisation guidelines 

The NICE DSU document explains in considerable detail the process of gathering 

evidence to inform alternative model structures [183] . The process itself is described as 

complex and iterative and can be broken into digestible decisions; 1) what should be 

included in the model? 2) what should be excluded? And 3) how the aspects of the model 

that are included are conceptualised and mathematically included in a health economic 

model [183]? 

The first aspect of conceptualisation is to determine what is relevant and the NICE DSU 

document states that such a process should not be dependent on a single person, but 

rather open to discussion between modellers, decision makers, healthcare professionals 

and other stakeholders to whom the decision problem is of importance and relevance 

[183]. This later feeds into the reasons why an initial meeting was held with an expert 

which was subsequently followed by a discussion with a group of experts. Failure to do 

so would have introduced bias into the model and would result in a model that is 

contextually not reflective of the disease or of treatment [183]. A lack of model 

conceptualisation would lead to lack of model credibility and validity. 

A conceptual model can be used to fulfil a number of roles but is classified into two groups 

1) problem-orientated and 2) design-orientated [183]. Figure 5 from Kaltenthaler et al 

[183] shows the process from real world, conceptualisation to the final model design.  
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Figure 5: Model conceptualisation process [183]  

 

4.6.1.1 Problem orientated models  

The problem orientated model looks at primarily seeking input from experts in the disease 

to determine what should be included and is not governed by what data is available [183]. 

The aim of this model is to encourage communication and discussion between those who 

are involved in the informing, building and using the end product, the model [183]. The 

main focus of this model is the relevance of the disease process and the clinical pathways 

the patients follow [183].  

4.6.1.1.1 Practical model conceptualisation  

The problem-orientated conceptual model can be further divided into a 1) Disease 

process model or 2) Service pathway model [183].  

4.6.1.1.1.1 Disease process model 

The focus of this type of model is the on relevant disease events and processes and not 

based on treatments received [183]. As such the model illustrates the disease process. 

The list of considerations in Table 9 below, adapted from Kaltenthaler et al [183] are useful 

when developing a disease process model. For those interested in a more in-depth 

description, please refer to Kaltenthaler et al [183].  
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Table 9: Disease process model conceptualisation 

Consideration/Issue comments 

Inclusion/exclusion of disease related 

events 

Does the conceptual model include all 

clinically relevant disease events?  

What metric is the most appropriate to 

measure progress of disease? 

Are competing interest considered? E.g. 

death 

Impact of disease on HRQOL or other 

outcomes 

Is there a relationship between disease 

related events and HRQOL? 

Representation of different-risk subgroups Is the disease process relevant to all 

patients or a single group or subgroup? 

Impact of technologies on the 

conceptualised disease process 

Have all relevant treatments which can be 

evaluated been identified? 

Can the model itself account for the impact 

of technologies used for the treatment of 

the condition appropriately? 

 

4.6.1.1.1.2  Service pathway model 

The focus of this type of model is the treatments received based on what clinical experts 

or what is known about the disease itself [183]. As such the model illustrates the treatment 

pathway. For those interested in a more in-depth description, please refer to Kaltenthaler 

et al [183].  
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4.6.1.2 Design orientated models 

The design orientated model primarily looks, at different potentially acceptable and 

feasible model designs [183], to identify the evidence that would be required and then 

have a series of model designs from the beginning to end for comparison and justification 

of against the final model design [183]. Design orientated models set out clear boundaries 

around the modelling of pathways and the level of depth contained within the model.  

The objective of the design orientated model is defined by the problem-oriented model, 

but then the design orientated model takes and adds to this step by defining what is 

feasible based on data availability and available resources (time, expertise etc) for the 

development of the model itself [183].  

Table 10 presents the considerations for the Design orientated model. For those 

interested in a more in-depth description, please refer to Kaltenthaler et al [183].  

Table 10: Design orientated model conceptualisation 

Consideration comments 

Anticipated evidence requirements What clinical evidence is available to 

simulate the impact of the new 

intervention? 

Is comparison arm most appropriate and 

does it include all relevant treatments? 

What other data is required to populate the 

model? e.g. survival  

Modelling clinical outcomes What outcomes are of interest to the 

decision maker? 
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How will evidence be extrapolated? 

How will impact of treatment be 

simulated?  

How will treatment influence costs and 

outcomes? 

Modelling approach What is the most appropriate modelling 

approach? E.g. state transition or patient 

level simulation? 

Is the proposed modelling approach 

feasible given the available resources? 

Adherence to economic reference case Will the proposed model meet the 

reference case e.g. NICE reference case 

[86] 

Simplifications and abstractions Has anything been omitted from the model 

and is this appropriate? 

Have any aspects of the disease been 

excluded? 

How do the problem and design orientated 

models differ and are these differences 

appropriate? 
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In summary, when conceptualising a model, the NICE DSU states that either a problem 

or design orientated approach may be taken. A list of consideration for either approach 

have been highlighted above. The NICE DSU further goes on to state that there are a 

number of evidence sources which can be utilised in support of developing such a 

conceptual model and are presented in Figure 6. These sources of evidence will be drawn 

on for the model conceptualisation process in this chapter. Previous work from Chapter 

2, the review of models is also a key piece of evidence which will be utilised in the 

development of the De Novo Model. 

Existing Health Economic 
models 

• Applying the previous 
model structure to the 

current decision problem

• Using existing health 
economic models to identify 

key evidence limitations

• Identify relevant treatment 
pathways

Clinical guidelines (e.g. 
NICE, treatment 

protocols)

• To identify existing 
treatment/management 

pathway

Studies looking at the 
relationship between 

primary and other 
endpoints

• To inform relationships 
between intermediate and 

final endpoints

• Refere to existing available 
evidence. 

Expert input 
(clinicians/patient 
representatives)

• To scrutinise alternative 
model structures

• To inform the new model

Figure 6: Model conceptualisation: sources of evidence  
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4.6.2 ISPOR Model Conceptualisation guidelines 

When starting the conceptualisation process, Roberts et al [155] defined the process in 

two parts, 1) Problem Conceptualisation and 2) Model Conceptualisation. In reference to 

Figure 7, these steps are represented by the number 1.  

Figure 7: Model Conceptualisation process, taken from Roberts et al [155]. 

 

4.6.2.1 Problem Conceptualisation 

The Problem Conceptualisation, in summary, looks at the statement of the problem and 

the objectives to be achieved from addressing this problem [155]. These could include 

the development of a De Novo model to 1) guide clinical practice, 2) Informing the 

reimbursement or funding of an intervention, 3) Optimising use of scarce resources and 

lastly, 4) Guide public health practice [155]. The problem could fit in any one or multiple 

categories listed above. Table 11 below defines the objectives, scope and context of the 

model being developed in this thesis through use of the guidelines presented in the 

ISPOR guidelines [155]. Table 11 presents a range of recommended best practices by 

Roberts el al [155] and addresses how they will be achieved in this chapter, (best practice 

II-1,2, 2a, 2b, 2c, 2d, 2e, 3, 3a, 3b). 
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Table 11: Defining the Objective, scope and policy context of a novel model.  

Decision 

problem/decision 

objective 

Advancing the Health Economic evidence available to inform economic 

models and decisions about appropriate care 

1) To develop a De Novo model which incorporates significant 

health events which impact disease progression (Best practices 

II-1 [155]) 

a. Review existing health economic modelling practices 

2) Use more reflective data sources as input parameters in a De 

Novo health economic model (Best practices II-3 [155]). 

a. Review of utility data 

3) Employ clinical experts to understand clinical practice (Best 

practices II-1 [155]) 

Policy context 
Advance the understanding of the health economic evaluation of CF 

interventions in the UK 

Funding source UK Cystic Fibrosis Trust 

Disease Cystic Fibrosis 

Perspective 
NHS only (does not include PSS; no such data available in CF Data 

Registry) 

Target population 
Cystic Fibrosis; high or low risk mutation groups using a closed 

approach (patients enter model only at the beginning) [155]. 

Health outcomes QALYs and life years gained 

Strategies/compar

ators 
Best available care/Standard care (Best practices II-3a [155]) 

Resources/costs 
Reduction in costs from changes in treatment use, reduction in costs 

from changes in disease progression 

Time horizon 
Remaining life-time if data is available to support this (Best practices II-

3b [155]) 



4.6.2.2 Model Conceptualisation 

The subsequent process of model conceptualisation focuses on the best practice 

guidelines II-6 to 7 presented by Roberts et al [155]. These involve an explicit 

conceptualisation process and the use of concept mapping and expert consultations, with 

the aim to ensure that the final model structure reflects current disease knowledge and 

how this process is modelled (Best practices II-6 [155]), [155]. It also focuses on the 

selection of model type which would be suitable to achieve the set objective. There are a 

number of modelling types that can be used, decision trees are useful for shorter time 

horizons, state transition models for longer time frames or when transition probabilities 

vary over time and the population can be considered homogenous in nature and discrete 

event simulation (DES) which is useful for evaluating outcomes at the individual level 

while taking into account interaction among individuals [155]. The type of model selected 

depends on the above characteristics. More detail achieved through DES does not 

necessarily mean greater accuracy [155], cohort models can achieve detail or accuracy 

through subgroups characteristics and analysis [155]. Further disadvantages of cohort 

models such as the lack of patient history can be addressed through the use of tunnel 

health states/semi-Markov processes [155]. Advantages of cohort models include being 

simple to; develop, debug, communicate, analyse, accommodate for parameter 

sensitivity analysis and easier for decision makers to understand [155]. However, the level 

of detail required for the model is a difficult decision to consider, lack of detail can result 

in a failure of the model to have any face validity whereas models that are complex will 

be more difficult to develop, debug, communicate, analyse and accommodate for 

parameter sensitivity analysis [155]. 
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4.7 Using the Model Conceptualisation evidence from the literature 

The modelling conceptualisation process has demonstrated some overlap in the 

guidelines above, particularly around discussion with stakeholders which include 

modellers, clinicians and other individuals that would know more about the disease, in 

this case CF. Further overlap exists around what is the best modelling approach and the 

evidence required for modelling the disease process itself and the outcomes that were of 

interest in this thesis.  

The guidance presented by Roberts et al [155] was used to define the objective, scope 

and policy context of a novel model (Table 11). The evidence was also used to understand 

the advantage and disadvantages of various types of health economic model types 

available. It also helped form an understanding of what outcomes were considered 

important as well as the perspective taken.  

The guidance presented by the NICE DSU [183] was used to understand what would be 

the best possible model for use in this chapter, presented as the initial model in Figure 10 

(Section 4.8.2.1), using the problem orientated approach. This was followed by what was 

feasible based on discussion with experts, clinical criteria and data availability, presented 

as the De Novo Model, Figure 11 (Section 4.9), using the design orientated approach. 

Furthermore, subsequent to discussions a clear communication on the disease process 

and treatment available is also mentioned in detail (Section 4.8.1.6), NICE treatment 

pathway (Figure 9). Taking into consideration the treatment pathway, the ideal model, 

discussion with experts and data availability the NICE DSU guidelines were also used to 

support the model conceptualisation process.  
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Lastly, Figure 8 provides a good visual depiction of the types of evidence that could be 

utilised in the model conceptualisation process and was used to determine the different 

types of evidence that could be drawn on to develop a CM.  

In this Chapter, due to the overlapping nature and the similarities in the different 

guidelines [155, 183]. I amalgamated these guidelines to reach the De Novo Model 

design. 

This process of conceptualisation will included looking at the existing evidence in the 

health economic modelling of CF management interventions, NICE guidance of CF 

treatment (NG78) [36], literature linking primary to other endpoints, systematic review of 

CMs and finally taking into account expert opinion (Figure 8), all which are described 

further in the sections that follow. The different sources of evidence are also discussed.  

4.8 Model conceptualisation process taken for De Novo model 

The below sections start with a description of evidence found from Chapter 2, review of 

CF models, followed by the importance of FEV1 as a primary outcome measure for 

modelling disease progression (which is linked to Chapter 1, Section 1.3.5-8), evidence 

from NICE guidelines around CF treatment [36], review of existing health economics 

model conceptualisation literature in CF and discussion with experts (Epi-Net team). 

Subsequent to initial investigations, an initial model design was presented to a panel of 

experts as part of the conceptualisation process to understand whether changes in the 

model design was required. Result of this panel discussion are presented alongside the 
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final De Novo Model design in later sections. Figure 8 below shows the Model 

conceptualisation timeline.  

Figure 8: Model Conceptualisation timeline 

 

4.8.1 Gathering the evidence  

In the model conceptualisation process, the primary endpoints currently used in CF health 

economic modelling are linked to disease progression and other additional factors that 

are associated with disease progression are also identified. In the following sections I 

look at the existing evidence which links primary endpoints to endpoints of interest to 

decision makers and health economics. This is followed by a review of the evidence in 

the literature which links such outcomes to disease progression in CF.  

4.8.1.1 Previous health economic modelling in CF  

In Chapter 2, a systematic review of health economics modelling used on CF 

interventions for the management of the condition was undertaken. The aim of the review 

was to evaluate CF health economic modelling as newer treatments in CF, such as 

Orkambi®, have effects on IV treatment, PEx and most importantly FEV1. Among the 

primary findings, those around the model structure identified a lack of health states which 
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accounted for significant health events linked to disease progression, particularly PEx 

events. Some models accounted for such health events indirectly through inclusion of 

cost and their impact on outcomes, such as utilities. Other models did exist which 

incorporated PEx as a health state but failed to incorporate other health states such as 

lung transplantation and post lung transplantation. Other findings highlighted the need for 

better costing data such as data from Secure Anonymised Information Linkage (SAIL), 

Hospital Episode Statistics (HES) or the UK CF Data Registry. 

For direction of future research, the review highlighted the need for the development of a 

single model which could be used to evaluate all CF interventions and one which 

incorporates health states such as PEx events, lung transplantation as well as post lung 

transplantation alongside mortality. Previous models failed to holistically include all 

significant health events as highlighted in Section 2.9.5 in Chapter 2.  

In accordance with the recommendations in Figure 6 from the NICE DSU document, it 

recommends looking at existing evidence around model structure which could be applied 

to the current decision problem (Section 4.1.6.2). The model which followed the most 

appropriate model structure from the systematic review in Chapter 2 was identified. The 

criteria used to assess the model structure was, the evidence in the literature; how primary 

outcomes such as FEV1 are linked to disease progression (which are further discussed 

below in Sections 4.8.1.2-6); as well as the quality of the study measured through the 

QHES instrument (Section 2.8) and the inclusion of evidence in their articles (in Chapter 

2) around a model conceptualisation process [120]. The Tappenden et al [102] model 

reflected disease progression in terms of the health states except for inclusion of specific 

health state for PEx events. Additional health states such as post lung transplant and 
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death were also included. Although the model could not be applied to my current decision 

problem, it could be used as a consideration point for the conceptualisation of the De 

Novo model. 

4.8.1.2 The importance of FEV1 

The importance of FEV1 is clearly outlined in the introduction of this thesis in Chapter 1.  

The importance of this outcome measure is linked to its reproducible and repeatable 

nature [40] and to the strong association of low FEV1 and increased mortality [40, 186, 

187] and decrease in quality of life (QOL) [40]. FEV1 is also very influential, clinically, in 

defining disease severity, for comparison between treatment nationally and globally and 

in regulatory approval of therapeutic CF interventions [41, 187] and has been used in all 

models reviewed in Chapter 2. The importance of FEV1 is linked to model 

conceptualisation through the above-mentioned factors and including it as the primary 

measure of disease progression will allow the appropriate modelling of disease 

progression whilst taking into account the impact of disease progression on HRQOL 

(Chapter 3 and Section 4.9.1.5 below) and cost of care, of which cost is further discussed 

below in relation to PEx events. This reaffirms that the use of FEV1 for the modelling need 

not be changed, but rather should be maintained as the primary outcome measure which 

determines disease progression.  

4.8.1.3 FEV1 linked to PEx 

As FEV1 is linked to long term survival in CF individuals, it is important to understand the 

impact of the frequency of PEx on overall pulmonary function, FEV1 [56, 57]. As stated in 

Section 1.38 PEx events lead to a reduction in quality of life (QOL), higher costs, 

increased mortality, lower baseline FEV1, faster decline in FEV1, greater risk of lung 

transplant and increased clinical burden among patients [54, 56, 57]. 
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In terms of cost of PEx events, only a single study exists which evaluated this [122]. The 

study split the cost of PEx into three treatment administration categories, PEx with 

intravenous treatment with antibiotics (IV-Abx)., PEx-Inpatient stay (IP) and PEx-Oral Abx 

(O), which respectively cost US $36,319, $45,361 and $3,2653. The study also 

categorised PEx by stage of pulmonary disease which cost US $30,066 to $119,8624 for 

mild and severe FEV1 respectively. Increase in cost of treatment were attributable to 

increases in PEx-IV in each FEV1 severity state. The overall average cost for PEx events 

was US $37,025 per patient5 [122]. 

4.8.1.4 Regulatory authority advice on outcomes in CF 

The European Medicine Agency (EMA) have demonstrated that FEV1 be recommended 

as a primary endpoint to measure disease progression [91]. The rate of decline in FEV1 

is correlated with survival and is the strongest clinical predictor of survival [91]. The 

justification of using such an outcome was that is it allows demonstrable change when 

assessing patients for disease status. However, the EMA also stressed that number of 

infections with bacteria and resultant pulmonary exacerbations are also important 

measurable outcomes [91]. A further initiative from the EMA has resulted in PEx being 

earmarked as important CF related events which should be included for collection in all 

CF patient registries across Europe [188].  

 
3 Cost year 2013 

4 Cost year 2013 

5 Cost year 2013 
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4.8.1.5 FEV1 and Quality of life 

Further to the mention of impact of FEV1 on HRQOL in Section 1.2.6 the systematic 

review conducted in Chapter 3 demonstrated the link of FEV1 to QOL. Two studies 

evaluated FEV1 state (mild, moderate or severe) and subsequent health utility [143, 146]. 

The evidence showed a clear link between FEV1 severity and a decrease in health utility 

[143], although this was not always so clear in other studies [146].  

4.8.1.6 NICE treatment guidance for CF 

Base on the NICE CF diagnosis and management document (NG78) [36] the treatment 

pathway for those with CF is shown in Figure 9. The NICE guidance document outlines 

how CF individuals can be treated for a range of complications from having been initially 

identified as positive for CF. There is lifelong monitoring of the individual and a range of 

complication have been highlighted such as liver disease and diabetes in addition to the 

impact of CF on FEV1/lung function and the treatment of pulmonary infection with a range 

of antibiotics (Abx). Additional avenues for treating CF such as modulators and 

physiotherapy/lung clearance techniques have been identified. Lastly, lung transplant is 

also available as an intervention to improve the long-term survival of the CF individual. 

Subsequent to creating Figure 9 from the NG78 NICE guidance document [36], the 

treatment pathway was further validated through a meeting with clinical experts in CF (Dr 

Siobhan Carr and Dr Diana Bilton, 16th February 2018). A discussion was had in regard 

to the validity of the treatment pathway and both clinicians agreed with pathway. We also 

discussed that although CF individuals are monitored for a range conditions/symptom the 

primary aim of the model being developed was to look at lung disease and pulmonary 

infection. This is highlighted by the dotted box in Figure 9 (management interventions) 

and although only some arrows are shown to link to lung disease or pulmonary infection, 
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it is important to note that these areas in the dotted line for management interventions are 

intertwined and affect each other.  

The focus of the existing health economic modelling of CF management interventions, as 

identified in Chapter 2, exists subsequent to screening. Here the CF individuals are 

evaluated in terms of disease progression through FEV1. However only a few models take 

into account the impact of pulmonary infection and subsequent PEx events whilst all 

models use FEV1 as the primary avenue to record improvement in disease from treatment 

(Chapter 2). Although pulmonary infections are often treated with oral Abx, PEx events 

as a result of such infections are treated with IV antibiotics which can take place either at 

home or at hospital. This further highlights the importance of FEV1 and of PEx events.  
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Figure 9: NICE treatment pathway 

 

4.8.1.7 Rapid review of literature for CM models 

A part of developing an understanding of the how to develop a conceptual model for CF, 

a rapid review of the literature was conducted in order to identify any existing conceptual 

models for CF which could be used in the conceptualisation process or which could 

support the conceptualisation of the De Novo model.  
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As advised by the NICE DSU technical document, I searched two databases which are 

considered important sources, Medline and Embase [183]. 

Searches were performed in the two databases, limited to English language articles only 

from 2007 to March 2018. Date restrictions were applied to reflect the development in 

understanding of CF disease in the past decade. Due to the nature of disease 

understanding any literature older than 10 years would be unreflective. The search 

strategies were designed with one objective, 1) To Identify CMs.   

The terms used to identify any existing CMs included: Conceptual Model, Model, 

Conceptual Framework and CF/Cystic Fibrosis and are based on an existing 

conceptualisation document by Tabberer et al [184] for Chronic Obstructive Pulmonary 

Disease (COPD). Results of the search did not identify any existing CMs for CF beyond 

the health economic models already identified in Chapter 2.  

4.8.1.8 Speaking with a clinical expert 

Subsequent to conducting the review of health economic models (Chapter 2), looking at 

the evidence in the literature linking outcomes to disease progression in CF and 

conducting the rapid review of CM further discussion was sought with a clinical expert in 

CF. Dr Diana Bilton (Honorary Clinical Senior Lecturer and Director of the Adult Cystic 

Fibrosis Service at Royal Brompton Hospital) was contacted and a meeting was held on 

12th December 2017. The proposed relationships between the different variables 

discussed above in sections 4.9.1.2 to 4.9.1.3 were presented. Further discussion was 

had around PEx events and IV treatment data in the CF Data Registry. Dr Diana Bilton 

stated that markers for PEx events were receipt of IV treatment but severity of IV 

treatment is difficult to identify as there is no record of severity of PEx events. Only after 
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2016 would information in regard to PEx being linked to hospital admissions which would 

not be available in the data I would be sent which is further highlighted in Section 4.13 

below. Additional co-morbidities such as CF related Diabetes (CFRD) and CF Liver 

Disease (CFLD) were also discussed for possible inclusion in the De Novo model to 

account for changes in long term survival of patients as a result of improve survival. 

Further discussion around inclusion of such co-morbidities is mentioned in Section 4.8.3.  

4.8.2 Conceptualised model structure 

4.8.2.1 Initial model design  

Subsequent to understanding the NICE treatment pathway, looking at existing CF health 

economic models [102] and looking for existing CM for and discussion with an expert, a 

novel model structure was proposed which included PEx as a health state for every FEV1 

category and also included two types of PEx, Mild and Severe. The model also included 

lung transplant and death health states, Figure 10. FEV1 categories were designated as 

the following: >70 as Mild, ≥40 <70 as Moderate and <40 as Severe. These classifications 

were used in subsequent models.  

Transition were allowed from any health state (box A) to death and lung transplant could 

only occur from the Severe health state. Any PEx events that occurred would result in a 

cohort spending a cycle in that health state followed by returning to their previous health 

state.  
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Figure 10: Initial planned CF model 

 

4.8.2.2 Panel discussion 

In order to determine the structure of the new health economic model, a panel discussion 

was held with other Epi-Net members (17th March 2018). This included clinicians (Dr 

Siobhan Carr and Dr Diana Bilton), statisticians (Professor David Taylor Robinson, Miss 

Amy MacDougall, Dr Daniela Schlueter and Professor Ruth Keogh) and health 

economists (Professor Jennifer Whitty and Mr David Turner) who have expertise in, 

understanding disease progression in CF, the U.K. CF Data Registry and health 

economic modelling. The aim of the panel discussion was to convene and discuss 

whether the conceptualised model, Figure 10, met the criteria for disease progression in 

CF and data were available to populate the model. The points raised during this panel 

discussion shaped the final structure of the De Novo model.  

4.8.3 Findings of Panel discussion   

The results of the discussion were that IV treatment was considered to be a more 

appropriate health state rather than PEx event. This was primarily due to the lack of 
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definitive guidelines on the definition of what constitutes an PEx event. It was brought to 

my attention that EuroCareCF Working Group highlighted the difference in the definition 

of an PEx event in a number of trials [59] and that the Fuch’s criteria was best applied to 

clinical trials [59]. Additionally, the criteria’s being applied to signify an PEx have not been 

prospectively validated [189]. As a result, this criteria for PEx cannot be applied on the 

UK Registry Data. More recently, the poor application of criteria for PEx in Registry Data 

has been highlighted, where Registry definitions rather than clinical definitions were 

applied to such events in a longitudinal analysis of a CF intervention [190].  

The common proxy of 14 days of IV-day treatment has been applied in the past in health 

economic models to signify an PEx event [106]. However, the data on the severity of an 

PEx event in the CF Registry Data is not recorded. Furthermore, evidence suggests that 

the duration of PEx event treatment had no particular consistent pattern across countries 

like United States (U.S.) and Canada, with some lasting 22-50 days [191] or 18-29 days 

[122] depending on whether they were managed in hospital or community [191] and what 

type of treatment was required, IV or oral Abx [122]. Duration of treatment has been 

recorded to be as low as 1 day [192]. Furthermore, when looking at the UK CF Data 

Registry report for 2016, the results show that over all age groups the number of IV days 

received were between 14- 45 but could also vary by age groups. Similarly, there was a 

45 to 55 % split in the Registry Data between those who did and did not receive IV 

treatment in that year. Due to these reasons IV days was considered to be a proxy for 

PEx rather than vice versa. No health states were included which signified the number of 

IV days but only to identify whether an individual received IV treatment in any given year. 

This in turn would reduce the complexity of the model structure. The number of IV days 



 78 

is included in the cost banding matrix (section 4.25) alongside hospital days and 

additional standard care provided to the CF individual in that year such as physiotherapy 

and clinical visits to the hospital.  

4.9 De Novo model structure 

The De Novo model diagram presented in Figure 11 shows a total of 10 health states. All 

those in box A can transition back and forth into any health state in that box or stay in 

their respective health states. Similarly, all those in box A can transitions into box C, i.e. 

CF individuals can die from any health state and can die either subsequent to receiving 

IV treatment or not. Only those in box B, in either the Severe or Severe IV health state 

can transition into the lung transplant health state. Subsequent to receiving a transplant 

only those in box D, surviving from 1 to 10+ years Post Transplant remain in box D or 

enter box E, Dead subsequent to not receiving any IV treatment. Two dead states were 

created out of interest if the treatment would lead to difference in outcomes in terms of 

the number of deaths with or without IV treatment in any given year.   

This final model structure was presented at a subsequent Epi-Net group meeting and all 

those on the panel agreed that they were in agreement with this Final De Novo model 

design (7th November 2018).  



Figure 11: De Novo Model Structure 

 



4.10 Model structural assumptions 

The model structure presented in Figure 11 is based on a number of assumptions, 

outlined in Table 12.  

Table 12: Structural assumptions 

Patients in any FEV1 health state IV or No IV, can get either better or worse 

Only those in the Severe health state can receive a transplant 

Subsequent to having a lung transplant, patients can only progress into the post-

transplant health state or die 

Every health state has an assigned HRQOL and IV treatment results in a permanent 

reduction in HRQOL for that cycle 

 

4.11 Preparing the data for De Novo Model  

The model was populated largely through the use of individual patient data (IPD) from the 

UK CF Data Registry, literature and expert opinion. Data from a total of 12,494 CF 

patients, from 1996 to 2016, were evaluated for use in the De Novo model. Patients could 

have multiple data points, corresponding to different annual reviews. An initial dataset 

was created using the master data provided by the UK CF Data Registry. Table 13 below 

lists included variables and their description. A total of 126,574 observation data entry 

points across 16 selected variables existed at the beginning of the analysis. The data 

initially available from the Registry Data were also used to create other variables which 

were used to create the data inputs for the De Novo model, I will be describing these in 

more detail later, in Section 4.18.1.1-4 of this chapter.  
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Table 13: Variables from master dataset 

Variable  Description 

Patient ID Unique identifier for a patient  

Created Time This gives the date of when the annual review entry was made.  

Annual Year of Review Year the patient review took place. This helps us calculate the cut-off 

point of the longitudinal data analysis is required 

Age Patients age at time of review.  

Date of birth -  

Sex Male or Female 

Genotyped and Mutation 

class 

Was the patient genotyped? Yes or No  

mutation class if Yes  

FEV1 Measured yearly at annual review 

Has the patient died? / 

Death date 

Did the patient die?  

Date if Yes 

IV treatment in hospital /at 

home 

Whether patient received IV treatment in that year or not (0 or 1) 

 

4.12 Data descriptive 

4.12.1 Key Variables 

4.12.1.1 FEV1 

In the introduction to this thesis, how FEV1 is calculated and what it measures was 

described in more detail (Section 1.2.5). As also explained in that section, FEV1 is the 
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primary outcome measure which is used to measure disease progression in CF. In the 

UK CF Data Registry FEV1 is taken at every annual review in order to assess the health 

of the individual. For the proposed De Novo model, FEV1 was used as the main measure 

of disease progression from the different health states. FEV1 was categorised in to three 

different states, Mild, Moderate and Severe which correspond to FEV1 >70, ≥40 ≤70 and 

<40 respectively.  

Figure 12 below shows the FEV1 values from 1996-2016 for those in the CF Registry 

Data by age and sex. The violin plot demonstrates the distribution of the FEV1 within the 

two, male and female, populations. We can see that the two sexes are quite similar, with 

small differences in the FEV1 above and below around 23 to 30 years old. The plot has 

been truncated at the lower end of the x-axis. This shows that a majority of the missing 

data removed when creating this plot is located in those age groups. This further reflects 

that those under the age of 6 years old do not provide FEV1 as such individuals find it 

difficult to do the manoeuvres to provide FEV1 values [39].   
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Figure 12: FEV1 by Age and sex 

 

Table 14 shows the FEV1 by sex in the registry between 1996-2016. We can see again 

that males have a better FEV1 compared to females. This follows the observed 

differences between males and females in CF in general. In the De Novo Model, FEV1 is 

not used directly, rather FEV1 is used to define related health states as explained 

previously (Section 4.10).  

Table 14: FEV1 by sex (1996-2016) median (SD) 

Sex FEV1 

Female 72 (24) 

Male 73 (25) 

4.12.1.2 IV days  

In the CF Data Registry, data is collected on where the IV treatment, when provided, is 

taken. It is important to note here that whether an individual receives IV treatment at home 

or at the hospital is not dependent on disease severity. Evaluation of the variable showed 

Sex 
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that the mean number of IV days received at home was 9, whereas the number of IV days 

received at hospital were 10. However, further evaluation of the data showed a number 

of outliers in both variables which showed unrealistic number of IV days. These included 

-346 and on four occasions more than 365 days of IV days at home. For IV days at 

hospital, these included 36,000 days. As a result, the mean values presented are likely 

to be skewed from the errors in data entry in the data.  

The De Novo model structure has health states which identify whether the individuals in 

the cohort receive IV treatment in the last cycle. This is possible for any health state; Mild, 

Moderate and Severe.  

4.12.1.3 Mortality 

Mortality estimates from the model were also taken from the CF Data Registry. Although 

there are three variables that identify mortality in the dataset, date of death was used as 

the primary measure by all Epi-Net team members utilising such data. As a result, the 

same variable was used in my data analysis. 

Out of the total population (12,494) in the dataset, 1,895 (15%) died between the years 

1996-2016. Of these, 52% were females and 48% males. Although this mortality is not 

age adjusted, this signifies that there may be a difference in survival between either sex. 

This is further supported by reports from the UK CF Data Registry and recent evaluation 

of the CF Data Registry for survival bias between males and females [11, 193].  

4.13 Patient characteristics 

4.13.1 Sex 

In terms of sex, there were more males (6,546) in the dataset compared to females 

(5,917), 53% and 47% respectively. The De Novo model will include two separate cohorts 

for either sex. This approach was taken as there was already some indication of difference 
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in long-term outcomes between males and females from the UK CF Data Registry [11, 

193]. This could potentially highlight difference in treatment effect in the two groups, male 

and female.    

4.13.2 Genotype 

In the introduction (section 1.2.1), the different genotypes and their classifications were 

identified. Variables for genotype selected from the UK CF Data Registry included: 

whether the individual had been genotyped, what class their genotype was (high, low or 

none assigned (Section 1.2.1) and in the case the genotype mutation was F508del, 

whether it was homozygous, heterozygous or other. For the data required in this thesis, I 

selected only those who had been genotyped. Also, to allow future sub-group analysis of 

the data, genotype class was also used. Only 84% of those in the UK CF Data Registry 

were classified as high or low, the remainder were missing (3%) and not assigned (13%). 

Further looking at genotype, the sex distribution of those who had been assessed for 

genotype classification was determined. A total of 99% of the female CF Data Registry 

population had been assessed, compared to 98% of the males.  

Looking at the mean FEV1 value by genotype class showed that those in the high 

compared to low genotype class had worse values, Table 15. Those whose genotype 

data were missing had the worst FEV1 value overall. This was closely followed by those 

who were in the High-risk group, which includes those with the F508Del mutation.  
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Table 15: Genotype class by mean (SD) FEV1 

Genotype Mean FEV1 

High 69 (24) 

Low 75 (23) 

Missing 65 (28) 

None assigned 71 (25) 

 

Similarly, the average number of IV treatment days received by genotype class showed 

those in the missing genotype class received, on average, more IV treatment days, 

closely follow by the higher risk genotype group, Table 16.   

Table 16: Mean number of IV days (home and hospital) by Genotype class 

Genotype Mean IV days 

High 10  

Low 4  

Missing 11  

None assigned 9 

 

Of those individuals in the High genotype class, 52% were F508del Homozygous and 

21% Heterozygous. Knowing this is particularly important as modulator CF interventions 

available for treatment are only given to those individuals who are Homozygous while 

others are also available to Heterozygous patients.  

4.13.3 Age 

The mean age of the cohort in the dataset was 19 years, maximum was 87 and the 

youngest individual in the dataset was assumed to be 0 days. For the age variable a total 
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of 20 data point entries, had an age lower than 0 (-0.83) at the date of their review. Figure 

13 shows that the median age of the cohort by review year, not including missing data, 

increased over time between 1996 up until 2016, this shows that there is a clear increase 

in survival over time in the dataset linked to improvement in the treatment and 

management of CF in the UK. 

Figure 13: Median age by year in the UK CF Data Registry (1996-2016) 

 

4.14 Missing data 

Overall, in the UK CF Registry Data, there was a small proportion of the overall data that 

was missing, around 2% for data between 1996-2016. This meant that overall, there was 

only a small proportion of missingness from the total number of participants in the Registry 

Data. Figure 13 also shows the percentage of missing data for each variable across all 

observations in the dataset. We can see that the largest percentage of missingness exists 

in the FEV1 variable, 22%. This is followed by both age and date of data entry. Lastly, 

either home or hospital IV treatment was missing in less than 2% of total observations 
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within those variables. So, both collectively as a dataset and per variable missingness 

information is provided in Figure 14.  

Figure 14: Missingness across all observations (1996-2016) 

 

Looking at the completeness of data per variable in the CF Data Registry, Figure 14 

shows the percentage of complete data per variable in the Data Registry from 12,464 

individuals. Again, we can see that the majority of missing data exists in the FEV1 variable 

followed by age, date of entry for the data and IV days. Variable such as genotype class 

have options to account for missingness from within the classification of the data itself.  

From Figure 14 we can see that only 28% of the 12,464 had all entries for FEV1 between 

1996 to 2016, which equates to 3,490 individuals with no missing information for the FEV1 

between 1996-2016. Similarly, the completeness of each of the other variables can be 

assessed by looking at Figure 15. Furthermore, a detailed breakdown of the percentage 

of individuals missing between 1-24 entries in their longitudinal data values out of the 
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whole cohort of 12,463 for each variable are also provided in Table 17. The only variable 

which had up to 24 missing entries was for FEV1, where a single individual did not have 

FEV1 for the whole duration of the longitudinal data, 1996-2016.  

Figure 15: Percentage of complete data per individual in the Registry Data 

 

Variable such as, sex, date of birth (DOB), year of review, death date, whether the patient 

has been genotyped, F508Del classification and annual review encounter are all 

complete across the longitudinal period of the data (1996-2016). The Genotype variables 

already accounted for missingness within the variables. 

Figure 16 demonstrates the number of missing entries in the master dataset by variable 

and any patterns in missingness between the variables. We can see that only 5 variables 

have missing data, which has already been identified in Figure 14. But in addition to this 

we can see there missingness linked between variables. For example, age missingness 

is linked to missingness in FEV1 and the date the data entry was created.  

Figure 16: Missingness by variable and patterns of missingness 
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Table 17: Number of missing entries shown by overall population percentage (1996-2016) 

 
Number of Missing entries 

Percentage missing (%, out of total population; 12,463) 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 24 

Age 17 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Patient ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Created Date/Time 17 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Date of Death 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Has the patient been Genotyped? (Yes/No) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F508 class (homozygous/Heterozygous) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Genotype class (High/Low/Missing/Other) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FEV1 20 14 12 11 8 4 2 1 0 0 0 0 0 0 0 0 

Annual review or Encounter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total Home IV days 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Total Hospital IV days 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Year of Review 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Subsequent Sections within this Section (4.16) further look at the missingness within each variable and subsequent actions 

taken as a result of this. In summary, it was assumed that the information was missing completely at random (MCAR) and 

there were no patterns in missingness. This assumption was similar to the assumption taken by other Epi-Net analyses 

taken as part of the wider group of work. Detailed descriptions of assumptions taken for each variable are provided in 

subsequent Sections 4.16.1-7.  

4.15 Summary of Data Cleaning and Assumptions 

A number of variables were cleaned and assumptions applied on the primary dataset to reach the final 34,391 number of 

observations for 4,822 individuals who were F508Del Homozygous between 2005-2016 in the UK CF Data Registry. 

F508Del Homozygous individuals were selected as those in this genotype class receive Orkambi®. 

Figure 17 below provides a summary of the steps taken to clean/apply assumptions to the data and the number of patients 

and observations remaining at each step. At the last stage of the cleaning and applying assumptions, the dataset was split 

into 6 distinct datasets based on the previous health state, which fit the specifications of the regression modelling which is 

discussed in sections 4.19 and in Chapter 5 sections 5.9 to 5.10. 
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Figure 17: Summary diagram of Data cleaning 
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4.15.1 Age and FEV1 

There was a total of 3,487 missing values for the age variable, this belonged to a total of 

2,734 CF individuals. For those missing the age variable, additional variables were also 

evaluated for missingness in the same row of patient annual review entry. The analysis 

showed that for those whose age was missing, 100% of observations for FEV1 and 4% of 

genotype for that review year were also missing. As a result, all individuals with missing 

age data were removed from the dataset prior to use for deriving input values for the De 

Novo model, primarily because the primary outcome measure to assess disease 

progression, FEV1, was missing entirely.   

In Figure 18, a large majority of missing FEV1 exist in those younger than 6 years old. 

This is due to FEV1 data not being collected frequently from those under the age of 6, this 

is primarily due to the inability of the patient to give a reliable reading, which has already 

been identified in Section 14.13.1.1.  

Figure 18: Density of missing FEV1 values by Age (1996-2016) 
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Figure 19 below shows the missingness of data in both FEV1 and Age variables. The 

black line across the y-axis highlights those at age 6. This again shows that there are a 

number of missing FEV1 values below 6 years old. As a result of these findings, only 

values for those older than 6 will be used to create the data inputs for the De Novo model. 

This approach has been used in other studies which use the CF Trust Registry Data as 

part of Epi-Net (Amy Macdougall, unpublished). This subsequently reduced the 

missingness of the age and created date variable to 0 and the FEV1 from 26,759 to 7,589 

observations. This reduced the overall missingness in the dataset from 2 to 0.7%. 

Figure 19: Missingness of FEV1 and Age 

 

Figure 20 below shows that the missingness in the FEV1 was reduced considerably, from 

72% to 41%. Figure 21 shows the interquartile range (IQR) of the FEV1 data prior to it 

being cleaned and after. We can see that the mean is largely unchanged and any 

differences in the upper and lower interquartile between the datasets are very small.  
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Figure 20: Completeness of data: after excluding <6 years old 
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Figure 21: Comparison of data distribution (IQR): before/after excluding <6 years old 
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However, it is important to note here that prior to restricting the data, assumptions were 

applied to the mortality variable. It was assumed that those with no FEV1 value in 

instances of mortality, would carry their last entry forward. This resulted in a reduction of 

the missingness in FEV1, from 7,589 to 6,687 missing FEV1 observations. Subsequent to 

removing these missing values, no further missing FEV1 existed in the dataset. However, 

a number of other variables were cleaned prior to reaching the final complete dataset.  

4.15.2 Duplicate Data 

Prior to cleaning the data there were a total of 3,452 duplicate entries in the UK CF Data 

Registry. These duplicates had at least two reviews for the same year within a short period 

of time. Subsequent to restricting the dataset to those aged over 6 years old, this was 

reduced to 1,608 duplicates. 

4.15.3 Mortality 

Mortality was included in the health state transition input estimation methods further 

described in Section 4.18.1. After the data were restricted to those who were 6 or older, 

the overall number of individuals who died in the UK CF Data Registry between 1996-

2016 were 1865. In the dataset a number of patients were identified who died but did not 

have an annual review for the year in which they died. A total of 793 individuals of the 

1865 died in the subsequent year after having their review. As a result, I assumed that 

the last observation was carried forward for all included variables.  

The days since last review was determine by subtracting the death date from the date of 

data entry for the previous year. Similarly, the age at review was determined by 

subtracting the death date by the date of birth. Additionally, there were individuals in the 

dataset who provided only a single annual review entry, of these 90 died in the same 

year. In order to ensure that mortality data for individuals with genotype data were not 
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removed from the dataset, it was assumed that the FEV1 for the current year was the 

same as the previous year. Similarly, it was assumed in the previous year the IV treatment 

received was the same and the last annual review was conducted exactly a year ago (365 

days).   

4.15.4 IV days (Home or Hospital)/ IV treatment (Yes or No) 

IV treatment, home or hospital were cleaned. Number of days across both variables were 

added together to create a single IV days variable. Based on this, another variable was 

created to identify whether the individual received any IV treatment in a given year. If the 

total number of IV days across both variables exceeded 365 days, it was assumed that 

only a total of 365 days of IV treatment was possible. Due to there being no discernible 

difference in terms of severity being identified by whether an individual has IV treatment 

at hospital or at home, these two variables were added together to create a single 

variable, IV treatment (yes or no).  

4.15.5 Genotype 

The primary dataset contained 12,463 individuals. Of these individuals only 84% of those 

in the UK CF Data Registry were classified as high or low, the remainder were missing 

(3%) and not assigned (13%). Subsequent to applying assumption or cleaning the 

variables, those who were genotyped (10,010 patient) were selected of which those who 

were F508Del (5,136 patients) were identified for inclusion in the analysis and regression 

modelling discussed in Sections 4.25.  

4.15.6 Year of Birth 

Over time the treatments available in CF have changed considerably. The treatments 

available today were unavailable 10 years ago, especially more novel Abx treatments 

such as dry powder inhaled (DPI) antibiotic treatments. As a result, in order to take into 
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account any differences in health state transitions by age, the year of birth variable was 

created. This would enable distinction between those aged for example 7 being born in 

2009 and those aged 7 being born more than a decade ago. The resultant transitions are 

likely to be different for such groups primarily due to changes in treatment availability and 

resultant improved survival also.  

4.15.7 Days since last review 

The number of days since the last review was created as an additional variable in the 

dataset in order to take into account any gaps between annual review. The previous date 

of data entry was subtracted from the current date of data entry. This allowed large 

decreases in FEV1 over time to be explained by large gaps in annual review.  

A number of entries existed in the dataset which had an annual review less than a year 

ago. For example, the individual has their review in December 2015 and then 30 days 

later, they have another review entry for January 2016. Although having a clinical review 

earlier than 365 days is possible in clinical care, I assumed that those who had their last 

review less than 31 days ago were errors in the dataset. This was the case for 241 

individuals. However, those who had their annual review entry less than 31 days ago but 

also died in that annual review period, were kept in the dataset in order to avoid losing 

mortality data. This was the case for a total of 24 individuals.  

4.16 Methodology for calculating transition probabilities  

4.16.1.1 Evidence 

The evidence that can be applied to any health economic model depends on data 

availability and the structure of the model itself [83]. Probabilities reflect the possibility of 

an event occurring in clinical decision making and/or disease progression, such events 

impact both costs and health outcomes. One aspect of probabilities in decision analytical 
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modelling are transition probabilities. These form the core functioning of the analytical 

model [83].  Based on transitions to health states that occur within the model, each 

transition has a cost and outcomes attached to it [5]. Transition probabilities govern the 

direction of movement of a cohort in a given model. Transitions can be fixed with respect 

to time or can change as the model progresses through time and/or based on cohort 

subgroups (e.g. sex or genotype). Such models are called a homogenous Markov chains 

model and non-homogenous Markov chains model, respectively [194, 195].  

The following sections will look at the data cleaning and assumptions performed on the 

U.K. CF Data Registry followed by the regression methods applied to the data subsequent 

to this process. The regression modelling process will be used to derive the majority of 

the inputs utilised for the De Novo health economic model.  

4.17 Data cleaning for regression modelling 

Each subsequent dataset created from the above-described data were created as an 

adjunct to the primary health state transition data. This is primarily because the health 

state transition dataset, utilised FEV1 and the above additional variables. Health state 

transition data is the input information required for state transition modelling, in this case 

Markov modelling, described above where a cohort of individuals transition between 

various health states over a predefined time horizon. Any missingness of these variables 

in this dataset would subsequently impact the missingness in the lung transplantation and 

cost banding dataset.  

As the cost data were only available between 2013-2016, such data were merged with 

the existing health state transition data between that period. Similarly, the lung 

transplantation data were also merged with the complete health state transitions data. 

These are described further in each respective Section (4.18.1, 4.18.2 and 4.18.3).  
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4.17.1 Health State Transition Dataset 

As a result of the missingness identified in the primary dataset between 1996-2016, 

above, a number of steps were taken to clean the data in order for it to be used in creating 

the input data for the De Novo model.   

4.17.1.1 Health State Previous/Current health state 

The current and previous health state variables were created based on the categorisation 

of the FEV1 values and whether the annual review entry included IV treatment for that 

year. Table 18 below shows the FEV1 for the various current and previous health states 

and the values given to those FEV1 categories. Creation of the previous health state 

variable was based on the FEV1 value for the patient in the previous year. This meant 

that the first year an individual patient contributed data to the Registry would have no 

previous FEV1 value, hence a missing value would be present for the initial year. 

Subsequent entries from the same individual would have the previous as well as the 

current years FEV1 value. This would be the case until the last available annual review 

entry.  
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Table 18: Categorisation of Current and Previous health state 

Current health state categories (with or 

without IV) based on FEV1 

Name of Health 

state 

Previous health state categories 

(with or without IV) based on 

FEV1 

Name of 

Health state 

≥ 70 No IV Mild ≥ 70 No IV Mild 

≥ 70 IV Mild IV ≥ 70 IV Mild IV 

≥40 <70 No IV Moderate ≥40 <70 No IV Moderate 

≥40 <70 IV Moderate IV ≥40 <70 IV Moderate IV 

<40 No IV Severe <40 No IV Severe 

<40 IV Severe IV <40 IV Severe IV 

Na Dead   

Na Dead IV   



 104 

4.17.2 Cost Band Data 

The cost banding is a system used by the UK CF Data Registry to assign a cost of care 

to those with CF in the UK. A set of criteria are applied to each individual in the UK CF 

Data Registry to determine which cost band they are assigned to any given year. Table 

19 below shows that different criteria used to assign cost bands. The cost per band 

themselves, 2016, are given in Chapter 6 Section 6.18.2 Table 71. It is important to note 

that cost of care includes treatment but also includes cost of other services such as 

appointments, physiotherapy and additional services. The cost banding system also 

included information on the number of IV days received and hospital of days in hospital 

for those who receive IV treatment in any given year. In instances where individuals do 

not receive any IV treatment in the year, they are still assigned a cost band, but these 

costs do not include any IV treatment. The cost banding system does not include High-

Cost drugs which are treatments that are reimbursed through other avenues. This is 

described further in Chapter 6, section 6.18.3.  

 

 

 

 

 

 

 

 

Table 19: UK CF Banding Matrix
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                                  Banding definitions Band 

Therapies 

 1 1A 2 2A 3 4 5 

Maximum number of total days of IV 

antibiotics 
0 14 28 56 84 112 >/=113 

Nebulised antibiotics (Pseudomonas 

infection) 
 Yes      

Long-term (>3 months) nebulised 

antibiotics or DNase 
  Yes     

Long-term (>3 months) nebulised 

antibiotics and DNase 
   Yes    

Hospitalisations Maximum numbers of days in hospital 0 7 14 14 57 112 >/=113 

Supplemental 

feeding 

Nasogastric feeds    Yes    

Gastrostomy     Yes   

Complications 

CF Related Diabetes or ABPA w/o other 

complications 
   Yes    

CF Related Diabetes and ABPA     

Yes and 

(FEV1 

≥60%) 

Yes and 

(FEV1 

<60%) 
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Massive Haemoptysis or Pneumothorax     

Yes and 

(FEV1 

≥60%) 

Yes and 

(FEV1 

<60%) 

 

CF Related Diabetes and Gastrostomy     

Yes and 

(FEV1 

≥60%) 

Yes and 

(FEV1 

<60%) 

 

Non Tuberculous mycobacterium treated 

or difficult to treat infections (eg MRSA or 

Cepacia) requiring other nebulised 

antibiotics eg Meropenem, Cayston , 

Vancomycin. 

    Yes   
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A data request was submitted to the UK CF Data Registry for cost banding data between 

1996-2016. This request was submitted on 30th May 2018. The request was completed 

and data alongside information on the cost band of each individual in the Data Registry 

for each annual review was provide. The data were received on 5th June 2018, only data 

between 2013-2016 was provided.  

The primary dataset contained 31,693 observations with no missing data and belonged 

to 8,769 patients from the UK CF Data Registry. The data were merged with the primary 

health state transition data. The cost banding data were cleaned alongside this data to 

ensure information on additional variables required for the regression modelling were 

available as well as the cost band for each data entry. The total number of patients who 

were F508Del Homozygous with annual review between 2013-2016 were 3,740 and 

totalled 12,919 observations over this period.  

We can see from Figure 22 below, that a majority of the data entries in the Cost band 

dataset are in cost band 2A followed by cost band 3, with very few in cost bands 1a and 

5. The time point at which the cost banding was assigned was at the end of each annual 

review, based on the criteria in the Banding Matrix, Table 19.  
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Figure 22: Cost band Distribution 

 

4.17.3 Lung Transplant Data 

Prior to receiving the lung transplant data, Prof Ruth Keogh (Professor of Biostatistics 

and Epidemiology at London School of Hygiene and Tropical Medicine) and Dr Sanja 

Stanojevic (Assistant Professor in Community Health and Epidemiology at University of 

Toronto), both evaluated the primary UK CF Data Registry Lung transplant data. Any 

differences or miscellaneous results were cleaned and subsequently the file was sent 

across for further evaluation and use in this thesis. The data were received on the 20th 

May 2019.  

The lung transplant data were created simultaneously to the health state transition data 

which was later used to calculate health state transition inputs for the model. Subsequent 

to the health state transition data being cleaned, the lung transplant data were merged to 

the data in order to identify all patients who received a transplant and in which year. As a 

result of identifying all those who received a transplant, data for such individuals was 
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removed from the health state transition dataset subsequent to receiving a transplant. 

This was in order to determine the probability of receiving a transplant separately to 

calculating the health state transitions and is conducted in Chapter 5 Section 5.10. 

Additionally, annual review entries after the transplant year were removed. This is 

because the FEV1 of individuals improved over time subsequent to receiving a transplant, 

removing annual review entries for subsequent years reduced any possibility or errors in 

the health state transitions inputs calculated from such data.  

A series of assumptions were made when creating the lung transplant data. The first date 

of transplant was considered the only time the patient received a transplant. All those who 

received a transplant prior to joining the UK CF Data Registry were removed.  

A total of 732 individuals were in the primary lung transplant date. These include those 

who had a transplant since their last annual review between 1996 - 2016. After restricting 

the dataset to the period set in the health state transitions dataset, 2005-2016, the number 

of patients dropped to 554 and reduced further down to 408 after removing duplicates 

and those who received a transplant prior to entering the UK CF Data Registry. 

Subsequently, restricting the population of the dataset to those who were F508dDel 

Homozygous and had sex/sex and age information resulted in data with 211 patients who 

received a transplant during 2005-2016 who also had complete data for the health state 

transition analysis.  

4.17.4 Post Lung Transplant Data 

The post-lung transplant data were cleaned by Prof Ruth Keogh (Professor of Biostatistics 

and Epidemiology at London School of Hygiene and Tropical Medicine). The input 

parameters were sent on 18th September 2019. These are further described in Chapter 

6, Section 6.16. 
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4.18 Regression methods 

Herein the regression methods are discussed based on the characteristics of the data 

discussed in above section of this Chapter. A small number of available regression 

methods which could be used were evaluated (Sections 4.19.2-3) and only a single 

method was selected to carry out the statistical analyses.  

4.18.1 Regression models 

Regression modelling is a statistical method by which one variable, response variable, 

can be explained through its relationship with a single or more variables [196]. When the 

response variable is continuous the model is linear, when it takes the value between 0 or 

1 it becomes logistic [196] and is often termed logistic model [196]. This also means that 

the error term in the model also takes a value between 0 or 1 [196]. In logistic regression 

models the outcome is not predicted directly from a series of relationships between other 

variables but by applying an inverse of any one link functions available to a series of linear 

explanatory variables [197]. In instances where a logistic regression model is utilised, a 

logit link function is the only model that can produce odd ratios as the response variable. 

Other link functions which are capable of handling binary response variables include 

probit, complementary loglog (C-loglog) and loglog [196]. Both the logit and probit are 

symmetric link functions with a probability interval of 0-1 and a mean of 0.5 [198]. Although 

the results of either logit and probit models are most often very similar [196], the choice 

of the link function is important as it relates the response to the explanatory variables. 

Both the logit and probit link functions convert the binomial response variable into a 

continuous scale between 0 and 1. However, as explained already, the logit link function 

is the only one that allows results to be presented as odds ratios. On the other hand, the 

probit link corresponds to a standard normal cumulative density function (CDF) and is 
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most often used when one is interested in the predictive value of a model [198]. When 

the response variable is assumed to take a normal distribution, this is another justification 

for use of the probit link function [198]. 

4.18.2 Health State and Cost band transitions  

Often, survival models are modelled as a function of time. However, health is a 

multifaceted variable which can be associated with many different factors such as age, 

sex, weight, height, socioeconomic status and genotype. Similarly, cost can be 

associated with a number of different factors when it comes to healthcare utilisation, such 

as age, sex, socioeconomic status and disease severity by genotype. In the Whiting et al 

[107] study, cost for CF by health state/FEV1 was associated with factors such as age 

and FEV1. However, how such variables were selected were not described in the work.  

As previously highlighted in this Chapter, due to the nature of the variables in the CF Data 

Registry and the categorisation of FEV1 into health states, statistical models which used 

categorical variables as the response variable would be most appropriate. Similarly, due 

to the nature of the lung transplant data in the UK CF Data Registry statistical methods 

which use binary responses for the response variable would be most appropriate.  

Two regression modelling methods fit the requirements of the data for health state 

transitions between the Mild and Dead IV health states, Ordered Logistic and Multinomial 

Logistic Regression. For determining the probability of lung transplantation, Generalised 

Linear Regression and Mixed or Random Effects models were evaluated. The probability 

of survival post-lung transplant was estimated in a separate study using the UK CF Data 

Registry by the Epi-Net statistician (Prof Ruth Keogh, unpublished), which is described 

further in Chapter 6, Section 6.16. 



 112 

4.18.3 Generalised linear regression 

Generalised linear regression brings together linear regression and nonlinear regression, 

where the response variable can take a range of distributions [199]. The key assumptions 

of the generalised linear regression model (GLMs) is that the response variable can have 

an exponential distribution, which includes normal and binomial, the explanatory variables 

form linear combination called a linear predictor and that the link function models the log 

of odds for binomial data which are used for values between 0 and 1, or probabilities [13] 

such as lung transplant and no lung transplant in the case of the data in used in this 

chapter. However, as many GLM make the additional assumption that individual subjects 

are independent, this will be violated when data is correlated by repeated entries of patient 

data [198]. Although the above GLM model would meet the requirements of our decision 

problem and data, models known as Generalised Estimating Equations (GEE) would 

mean I do not violate the independence assumption and result in probability estimates 

which take into account repeated measures [196]. Also, the distribution of the response 

variable, transplant or no transplant was not normal and GEE models are flexible for 

analysis of such variables [200].  GEE models are primarily used to model correlated data 

which would otherwise be modelled using GLMs [196]. Such models allow clustering of 

the data based on observation from the same patient. This is particularly important as 

estimates can be positively correlated within clusters [201]. However, not taking account 

of correlation within measurements from the same patient I would still be able to model 

parameter estimates well but results in biased standard errors  [201, 202]. GEE based 

models are a population averaging method, which differs to subject specific models such 

as mixed effects or random effects models [196]. Population averaging used in standard 

logistic regression is similar to that used in GEE based models, where for example 
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predicted probabilities refer to the average of measure within a cluster [196]. This is 

largely different to mixed effects or random effects models which employ subject specific 

effects and the resultant predicted probabilities estimated would be related to individual 

subjects [196].  

As the population in the lung transplant dataset represented a smaller subsample of those 

with the F508Del Homozygous genotype, it was decided that a population averaging 

method would suffice for our analysis compared to a subject specific method. The 

potential gain of using a more complex regression methodology may have not been 

realised at the opportunity cost of employing more simpler methods. Additionally, the GEE 

models have been applied in similar healthcare datasets [203], they relax the distribution 

assumption for the response variable, model fitting is easier to conduct compared to 

mixed or random effects model and the model is robust to some misspecification around 

the correlation structure of the data [203]. Therefore, a decision was made to use GEE 

modelling to calculate the probability of receiving a transplant. 

4.18.4 Ordered Logistic regression models 

Ordered logistic regression is similar to the binomial logistic regression model and can be 

used for binary response variables as well [196]. However, the ordered logistic regression 

model is most often used when there are more than two levels in the response variable. 

The model structure presented in Chapter 4 has 8 levels (Figure 11), not including lung 

transplant and post lung transplant. Ordered logistic regression models also include, as 

the name suggests, an ordering of the response variables, from Mild to Dead IV for 

example, the prior being a better health state than the later. Additionally, the response 

variable takes the form of a series of mutually exclusive and exhaustive values [204]. In 
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the case of my data, this would take the form of the 8 mutually exclusive and exhaustive 

health states mentioned in Chapter 4; Figure 11. 

When the categories in the variable are ranked the distance between adjacent categories 

is unknown, but it is assumed that the distance between the categories are equal [204]. 

However, this assumption can be relaxed within the model specification to include 

different threshold values for the response variable and result in flexible distances 

between the intervals, mentioned further in model specification, section 5.9.1.  

One of the key assumptions for an ordered logistic model is the proportional odds 

assumption. This means that the model assumes for each covariate the co-efficient value 

for each response or ordered category is the same [196]. For example, it assumes that 

age would affect the response category Mild and Severe IV the in the same way. 

Additionally, another assumption of ordered logistic regression is that the model is based 

on a normally distributed latent response variable. The latent continuous variable is then 

divided into a number of categories, similar to the categories generated in the previous 

models in CF [92]. As can be seen in Figure 23, the distribution of FEV1, the primary 

response variable, in the prepared datasets is approximately normally distributed and 

continuous in nature. 

 

 

 

 

 

 



 115 

Figure 23: Latent response variable, FEV1 

 

The underlying continuous range of severity is common in disease progression predictors, 

so it is difficult to argue against such ordering of categories. Especially given the structure 

of my primary response variable. If no underlying continuous latent variable exists, then 

the categories cannot be ordered, the ordered logistic model can no longer be used. The 

alternative model used in such cases in the multinomial logistic model.  

4.18.5 Multinomial logistic regression models 

Multinomial logistic regression models are an extension of generalised linear models 

[196].  

The estimation of unordered categories if clear ordering is present in the response 

variable is lost due to using this regression modelling method [196] and can result in a 

serious loss of power in the model [201]. One of key assumptions of a multinomial model 

is the independence of irrelevant alternative (IIA) [196]. This assumption means that the 

presence of one response category is not affected by the presence of another response 

category [196]. For example, the chance of an individual to be in Mild health state is not 

different from the chance of being in Severe. This is also not affected when another 

response category is added, for example Dead IV.  
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4.19 Summary    

In summary, this chapter outlines the conceptualisation and structure of the De Novo 

model which will be used to evaluate an exemplar CF intervention, Orkambi®. The overall 

UK CF Data Registry is described as well as the assumptions and steps used to clean 

the data for it to be used to create the model inputs for the De Novo Markov Model.  The 

final datasets include those used to determine health state transitions, cost banding and 

lung transplantation of individuals in the UK with CF who are F508Del Homozygous. The 

proposed regression methods used to calculate input parameters for the De Novo model 

are also described in detail. The next chapter will focus on deriving input parameters for 

the De Novo model using regression methods that are appropriate for the final datasets 

developed in this chapter. Of the different regression models that could be utilised to 

generate the inputs, in the next chapter only one will be selected for each data set, health 

state transitions, cost band probabilities and lung transplantation probabilities 

respectively.  
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5 Chapter 5: Using the U.K. CF Data Registry for the 

development of parameters to inform health economic 

modelling in the context of Cystic Fibrosis management 

interventions  

5.1 Introduction 

In Chapter 4, the UK CF Data Registry was discussed with descriptions of the data along 

with the assumptions made in order to prepare the dataset for use is this chapter. This 

chapter focuses on determining health state transition probabilities, cost band 

probabilities and lung transplant probabilities. Regression models will be selected and 

specified. Inputs generated in this chapter will be used to fill the requirements of the data 

in order for the De Novo model developed in Chapter 4 to function.   

This chapter initially discusses the regression modelling methods paying attention to 

selecting a regression modelling approach from Chapter 4, specification of the selected 

regression models and the results of the chosen models. Following this, the chapter 

presents the transition probabilities data for the three areas mentioned above. The 

chapter later looks at the validation of the resultant transition probability data, for both 

costs and health state transitions including lung transplant. The validity is considered from 

a statistical and graphical perspective, later turning to the validity through comparison 

against the existing evidence.   

The remainder of the introduction section will focus on previous statistical or other 

methods used for longitudinal cost and clinical events data in CF. This will be followed by 

a description of the regression methods used in this chapter in the methods section. In 
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the previous chapter, the data were described in detail as well as the regression models 

that could be utilised on such data.  Subsequently in this chapter only the methods 

selected to develop the health economic model inputs parameters are described further. 

5.2 Previous findings from the CF Data Registry in Health Economics 

5.2.1 Health State transitions 

Previous studies which have used the U.K. CF Data Registry for health state transition 

probability analysis were identified through the review conducted in Chapter 2. No studies 

exist which have utilised the U.K. CF Data Registry to determine health state transitions 

for F508Del Homozygous patients. A study was identified which utilised the U.K. CF Data 

Registry for other genotype group analysis in a cost-effectiveness study [102]. The study 

was evaluating an adherence intervention [102]. The overall statistical method that was 

utilised to determine the transition probabilities was an ordered probit regression method. 

The range of covariates included in the regression models were time since last annual 

review, rate of being admitted to hospital for IV antibiotic treatment and the individual’s 

age. Although age was included in their regression analysis, it was not used to predict the 

probabilities for transitioning to different health states for use in their cost effectiveness 

model. The mean transition probability estimates are presented in Table 20 below.  

Table 20: Mean probability of transition by health state; Tappenden et al [102]. 

FEV1 transition Mean Probability value 

≥70 to ≥70% - Mild to Mild 0.87 

≥70 to 40–69% - Mild to Moderate  0.13 

≥ 70 to < 40% - Mild to Severe 0.00 

40–69 to ≥70% - Moderate to Mild 0.13 
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40–69 to 40–69% - Moderate to Moderate 0.76 

40–69 to<40% - Moderate to Severe 0.10 

< 40 to ≥70% - Severe to Mild  0.03 

< 40 to 40–69% - Severe to Moderate 0.14 

< 40 to < 40% - Severe to Severe 0.84 

 

Other studies which used CF Data Registries to calculate transition probabilities for a non-

UK population were, Van Gool et al [81] and Sharma et al [126]. Van Gool et al [81] 

utilised three years of data from the Australian CF Registry to determine transition 

probabilities. Transition probabilities were stratified by age and sex, these are presented 

in Table 19. Three consecutive years of data were used to calculate transition 

probabilities. No regression modelling methods were used [81], a simple counting method 

to determine probabilities by health state and age group was utilised. Sharma et al [126] 

utilised the American Cystic Fibrosis Foundation to look at overall survival in the model 

looking at the cost-effectiveness analysis of Orkambi®.  
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Table 21: Probability of transition by Health State (1 (Mild) to 5 (Death)) and Age groups; Van Gool et al [81] 

 From Health State 1 to Health State 1 to 5 

Age group (years) Mild| Mild Moderate| Mild Severe| Mild Lung Transplant| Mild Dead| Mild 

0–2 1   0 0 

3–5 1   0 0 

6–7 0.997   0 0.003 

8–10 0.973 0.027 0 0 0 

11–13 0.966 0.031 0 0.003 0 

14–16 0.952 0.045 0 0.003 0 

17–19 0.885 0.109 0 0 0.005 

20–22 0.879 0.121 0 0 0 

23–25 0.904 0.096 0 0 0 

26–28 0.917 0.083 0 0 0 

29–31 0.857 0.143 0 0 0 

32–34 0.839 0.161 0 0 0 

35–37 0.788 0.212 0 0 0 

>37 0.884 0.116 0 0 0 
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 From Health State 2 to Health State 2 to 5 

Age group (years) Moderate| Moderate Severe| Moderate Lung transplant| Moderate Death| Moderate 

0–2     

3–5     

6–7     

8–10 1 0 0 0 

11–13 0.935 0.065 0 0 

14–16 0.9 0.075 0 0.025 

17–19 0.947 0.053 0 0 

20–22 0.92 0.08 0 0 

23–25 0.897 0.09 0 0.013 

26–28 0.902 0.082 0.016 0 

29–31 0.986 0 0 0.014 

32–34 0.911 0.054 0.018 0.018 

35–37 0.9 0.1 0 0 

>37 0.914 0.057 0.014 0.014 
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From Health State 3 to Health State 3 to 5 

Age group (years)  Severe| Severe Lung Transplant |Severe Death| Severe 

0–2     

3–5     

6–7     

8–10  1 0 0 

11–13  0.5 0 0.5 

14–16  0.5 0.167 0.333 

17–19  0.8 0.2 0 

20–22  0.806 0.032 0.161 

23–25  0.769 0 0.231 

26–28  0.765 0 0.235 

29–31  0.75 0.05 0.2 

32–34  0.667 0.167 0.167 

35–37  0.783 0 0.217 

>37  0.844 0.044 0.111 
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From Health State 4 to Health State 4 or 5 

Age group (years)  Lung Transplant| Lung Transplant Death| Lung transplant  

0–2  1 0  

3–5  1 0  

6–7  1 0  

8–10  1 0  

11–13  1 0  

14–16  0.833 0.167  

17–19  1 0  

20–22  1 0  

23–25  0.909 0.091  

26–28  0.95 0.05  

29–31  1 0  

32–34  0.933 0.067  

35–37  0.944 0.056  

>37  0.94 0.06  
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Absorbing state 

Age group (years) Death| Death 

0–2  1   

3–5  1   

6–7  1   

8–10  1   

11–13  1   

14–16  1   

17–19  1   

20–22  1   

23–25  1   

26–28  1   

29–31  1   

32–34  1   

35–37  1   

>37  1   
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5.2.2 Costs 

Similar to the health state transitions, studies which used the U.K. CF Data Registry 

for cost analysis were identified through the review conducted in Chapter 2. Whiting et 

al [107] used 2011 cross sectional data from the CF Data Registry with CF Banding 

matrix (presented in Chapter 4, section 4.18.2) categories. They also requested a list 

of variables in order to determine annual costs for treatments not included for 

reimbursement within the CF Banding matrix, also known as ‘High-Cost’ drugs, 

described further in Chapter 6, Section 6.17.3. Subsequently, costs for care in the cost 

band (PbR tariff) and non-reimbursed tariff (High-Host drugs) were summed per 

patient. A linear regression modelling method was used to explore the relationship 

between age, FEV1 and costs. Results from their analysis are presented in Table 22, 

below.  

Table 22: Cost regression analysis results by Whiting et al [107] 

Variable ß SE 

Constant 41084 588 

Age –101 12 

pp FEV1 –254 6 

 

Other studies which used CF Data Registry information included a study by Tappenden 

et al [102]. The data were used to present proportion figures of being in a particular cost 

band whilst being in a particular health state or FEV1 category (as described in Chapter 

4, Section 4.10) at the time. These values are presented in Table 23 below.  
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Table 23: Probability of Cost Band Transition by Health state 

FEV1 transition Mean Probability value 

Mild - Proportion band 1 0.20 

Mild - Proportion band 1a 0.02 

Mild - Proportion band 2 0.24 

Mild Proportion band 2a 0.34 

Mild - Proportion band 3 0.18 

Mild - Proportion band 4 0.02 

Mild - Proportion band 5 0.00 

Moderate - Proportion band 1 0.05 

Moderate - Proportion band 1a 0.01 

Moderate - Proportion band 2 0.11 

Moderate - Proportion band 2a 0.35 

Moderate - Proportion band 3 0.34 

Moderate - Proportion band 4 0.11 

Moderate - Proportion band 5 0.02 

Severe - Proportion band 1 0.02 

Severe - Proportion band 1a 0.01 

Severe - Proportion band 2 0.06 

Severe - Proportion band 2a 0.25 

Severe - Proportion band 3 0.33 

Severe - Proportion band 4 0.24 

Severe - Proportion band 5 0.10 
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Another study which used CF Data Registry to calculate transition probabilities for a non-

U.K. population was, Van Gool et al [81]. Van Gool et al [81] utilised three years of data 

from the Australian CF Data Registry to determine the cost of being in particular health 

state by age groups and health states. Table 24 presents the total cost overall costs per 

health state, mean and median. Although the mean cost is highest for lung transplant, the 

median costs show that disease severity, worsening health state, resulting in an increase 

in costs.  

Table 24: Costs (US$) by health state and Age groups; Van Gool et al [8] 

 

5.2.3 Lung Transplant 

Similar to the health state transitions and costs, studies which could have utilised the UK 

CF Data Registry to determine the likelihood of lung transplant were identified via Chapter 

2. The review did not identify any studies which used the UK CF Data Registry to 

determine probability of lung transplant over time. In terms of costs of lung 

transplantation, Whiting et al [107] used NHS reference cost data, whereas Tappenden 

et al [102] used personal communication with NHS England.   

Other studies which used CF Data Registries for a non-UK population were Van Gool et 

al [81] and Sharma et al [126]. Van Gool et al [81] utilised three years of data from the 

Australian CF Registry to determine the probability of transitioning into a lung transplant 

health state as well as the cost associated with this health state. Sharma et al [126] 

 
Health state 

 
Mild Moderate Severe Lung Transplant 

Total (mean)  £     10,151   £     25,647   £     33,691   £              38,344  

Total (median)  £       4,331   £     18,230   £     27,108   £              22,915  
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utilised the American Cystic Fibrosis Foundation to look at lung transplant and survival 

post lung transplant of the cost-effectiveness analysis of Orkambi®.   

The above summary of existing studies highlights the existing evidence in the literature 

which has been utilised in the cost effectiveness assessment of CF interventions. It 

highlights existing practices and the scope for potential future improvement. 

5.3 Aims and objectives 

The aim of this chapter was to use the best available evidence from the U.K. CF Data 

Registry and robust statistical methods to: 

1. Generate new U.K. based health state transition (including mortality) 

probabilities for those who are F508Del Homozygous based on data from 

the U.K. CF Trust Data Registry. 

2. Generate new U.K. based Cost band probabilities by health state from the 

U.K. CF Trust Data Registry to allow best possible estimates of cost 

3. Generate new U.K. based Lung transplant probabilities from the U.K. CF 

Trust Data Registry 

4. Compare the probabilities against existing evidence (where available) and 

data from the U.K. CF Data Registry.  

The transition probabilities calculated in this chapter will be used to populate the De Novo 

model developed in Chapter 4 (Section 4.10).  
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5.4 Methodology 

5.5 Data  

The UK CF Data Registry contains longitudinal data with repeated measures over time 

for a number of patients. The primary outcome of CF, FEV1, was presented as a 

continuous numerical value. However, this was changed into a categorical variable to 

match the model requirements. Additional variables in the dataset used were discrete and 

binomial in nature. For instance, the probability of lung transplant was binomial. 

Considering the high quality of CF Data Registry dataset and the coverage of >90% of 

the UK CF population [178], constructing a health state transition probability matrix based 

on this data would prove to be a great resource for the health economic modelling analysis 

of CF interventions.  Prior to making a decision on which regression method to use on the 

data, I understood the nature of the variables that were in the UK CF Data Registry. A list 

of the variables and patient characteristics are presented in Chapter 4 Section 4.13 and 

4.14.  

5.5.1 Study design 

The work undertaken in this chapter uses longitudinal U.K. CF Registry Data to calculate 

the probability of transitioning between health states as well as cost banding categories 

and lung transplant probabilities. Such estimates were produced whilst taking into 

account a range of variables presented in the statistical regression modelling section, 

later in this chapter (Sections 5.8.1 and 5.9.1 respectively). 

5.5.2 Study Population 

The patient population used to calculate the health state transition, cost band and lung 

transplantation in this chapter were selected from the overall patient population in the CF 

Data Registry. The CF Data Registry is described in detail in Chapter 4. Figure 16, from 
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Chapter 4, shows an inclusion/exclusion flow diagram of the patient population for each 

analysis in this chapter.  The diagram shows that the population used in this chapter were 

those aged above 6 years, who are F508Del Homozygous. This equated to 4,822 patients 

across 34,391 observations. The population was restricted to this genotype as the 

exemplar intervention, Orkambi® is provided to those who are of this class. Subsequent 

population used for cost band and lung transplantation are defined in Chapter 4 under 

their respective sections (4.18.2 and 4.18.3-4 respectively).   

5.6 Statistical regression modelling  

5.6.1 Estimating Markov transition probabilities using the UK CF Data Registry 

Using a combination of existing health economic modelling practices, expert opinion (Epi-

Net) and existing research, I proposed a new Markov model structure in Chapter 4 to 

evaluate the cost-effectiveness of a treatment option. Subsequent sections discuss the 

regression methods applied to the data to derive inputs for the De Novo Markov Model. 

The regression methods were initially described in Chapter 4 Section 4.19.  

5.7 Regression model selection  

Given the characteristics of the data, that the response variable is categorical and ordered 

based on severity, the previous use of the regression modelling method in CF [102] and 

the possibility to adjust for the proportional odds assumptions in the model, it was decided 

that the ordered probit regression model would be used. The probabilities for transitioning 

to different health states and the probability of being in a particular cost band in the model 

were calculated using an ordered multinomial, specifically an ordered probit methodology 

specified by Jung [205]. An ordinal regression model with a probit link function was 

selected as I am interested in producing predictive probabilities of categorical responses 

as outcomes of the regression model. Additionally, a probit link was used as it is assumed 
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that the underlying distribution of the response variable, FEV1, although separated into 

categories is normal and that the error term in the regression equation was normally 

distributed.  Although in most application of ordinal regression models the choice of logit 

or probit link function does not make much of a difference in the outcomes [204]. 

The model specification also uses previous health states (Mild to Severe IV) observations 

as predictors for the model. Such transitional models also include observations from the 

current year. Also called a Markov chain model or regressive logistic model, the model 

treats repeated observations from the same individual as independent [201] and the 

model can be specified to treat each individual separately [201].  

Further model specifications and methods are provided in the model specification section 

which follows for health state transition probabilities, cost band probabilities, lung 

transplant probabilities and post-lung transplant survival.  

5.8 Ordered Probit Model 

5.8.1 Specification of the ordered probit models 

5.8.2 Health state transition 

The models specification presented by Jung et al [205] was followed in order to calculate 

the probabilities of health state transition. The parameters were selected based on the 

requirements of the health state transitions within the Markov model, rather than a 

backward/forward stepwise regression approach. Due to the non-homogenous nature of 

the model age was selected for inclusion. Similarly, sex was selected as sex gaps in terms 

of survival and healthcare resource utilisation have been eluded to in CF [11, 178, 206-

208]. Additional variables, time since last annual review allowed for the estimation of 

annual transition probabilities regardless of whether this was different in the actual 

dataset, the median time between annual review was 366 days. Lastly, year of birth 



 132 

accounted for treatment trends in the dataset and would allow for selection of probability 

estimates which reflected more current treatment patterns in CF.  Similar variable 

selection was undertaken by Tappenden et al [102], although their probability estimates 

were not, in the end, based on those covariates. It is not apparent from their publication 

why their work did not differentiate the transition probabilities by age when age was a 

significant variable in the model variable selection process. 

In order to create transitional data and to account for the parallel slope assumption the 

dataset, as explained in Chapter 4, was separated into 6 distinct sets. Each accounting 

for the previous health states Mild, Mild IV, Moderate, Moderate IV, Severe, Severe IV.  

As such I state Pi(kt|jt-1) as the probability of individual i draws health state k in time period 

(t), is conditional on having been in health state j in time period t-1. Where time periods t 

and t-1 represent the current health state and previous health states respectively.  In 

simple terms, the probability of being in a future health state is dependent on the health 

state at a previous point in time, a year before. Such probabilities of transitioning were 

allowed to vary by the afore mentioned covariates in the model.  Lastly, a cross-sectional 

output of predicted probabilities were taken to reflect predicted probabilities for those in 

2016 at the various ages and for either sex. For further information on the specifications 

and statistical equations please see Jung et al [205].  

5.8.3 Cost band probability 

Similar specification and assumptions used for health state transition models were also 

used to determine the probability of being in the particular cost bands. The purpose of 

calculating transition probability estimates of being placed in a particular cost band based 

on the current health state is to be able to appropriately cost the cohort in any health state 

through their distribution amongst the 7 different costs bands alluded to in Chapter 4, 
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Table 17 (Section 4.18.2). This would allow more accurate costing for each health state 

by age and sex, whilst taking into account similar variables used in the health state 

transition model specification. As a result, the costs can be calculated by age, sex, and 

health state, which has not been done before using regression modelling methods in CF. 

Here the probability of being in a particular cost band was based on an individual existing 

in a particular health state at time (t) 0, the health state the cohort is in at the start of the 

model. Therefore, I state Pi(kt|jt) as the probability of individual i draws cost band k in time 

period (t), is conditional on having health state j in time period t. In simple terms, the 

probability of being in a cost band is dependent on the health state at the same point in 

time, at the start of the model. I also allow the probability to differ based on a range of 

explanatory variables which include age, sex, year of birth and last review.  

5.8.4 Further specification of the Ordered Probit models 

Additional adjustment to the models were made to account for, the requirement of 

predicted probabilities as the outcome measure from the regression models (a probit link 

function) and the cut-off threshold of the categorical response variable (equidistant or 

flexible).  

Ordinal regression models can be used to produce a number of outcome variables in the 

regression outputs [204], these include Odd Ratio and predicted probabilities, based on 

the link functions used. Due to the nature of the data required for the Markov modelling 

in Chapter 6, it was decided that predicted probabilities would be the primary outcome 

measure of the models. Similarly, the assumption of ordered probit regression models is 

that the distance between the threshold points of the different response health states is 

equally spaced. This assumption can be relaxed to change the threshold points or value 

to be flexible [209]. This was done as the categorisation of the different FEV1 values (i.e. 



 134 

Mild, Moderate and Severe health states) is not equally distributed but varied in the 

Markov model health state categories. Lastly, in cases where the proportional odds 

assumption was violated, adjustments were made to the model using scale effects. This 

has been recommended, in many instances, as a better alternative to using nominal effect 

(partial-proportional odds) [209]. Scale effects allow for the scale of the latent variable to 

differ based on the levels in the covariate within the model [209], rather than changing the 

threshold of the latent variable based on the different levels of the covariate which is 

violating the assumptions of parallel slopes [209].  

5.8.5 Interpretation of model coefficients 

Regression coefficients produced from regression analyses estimate unknown 

parameters within the population of interest. As such the coefficient estimates describe 

the relationship between the independent and dependent variable. A positive coefficient 

value indicates that as the independent variables increase the dependent variable is also 

increased and vice versa for negative coefficient values. This applied for cases where the 

dependent variable is continuous. However, for an ordered probit model, the conventional 

practice of coefficient value representing the mean change in the dependent variable 

given a one unit increase in the explanatory variable does not apply [204]. The 

interpretation of the coefficients provides an indication whether the explanatory variable 

has a negative or positive association of being in a better health state or being in a less 

costly band. 

5.9 Generalised Estimating Equations 

5.9.1 Specification of Generalised Estimating Equations model 

Due to the specification of the models used to calculate the transition probabilities for both 

health states and costs, it was decided that the same covariates alongside age2 would be 
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used to specify the relationship between the dependent variables and the independent 

variables for lung transplant. The variable age2 was included to account for any non-linear 

relationship between the dependent and independent variable over time. Due to the 

nature of the data used for lung transplantation, a complementary log-log (C-loglog) 

binomial link function was used in the model to account for the fact that there would be 

more 0 values in the model compared to 1s, i.e., more individuals would not have a 

transplant compared to those who would. This skewed nature of the data would be 

mimicked by the asymmetric C-loglog link function. This would allow for better 

specification of the model and better link the explanatory variables to the response 

variable [198].  

5.9.2 Probability of receiving a transplant  

The regression used to model the hazard of receiving a transplant is described below. As 

described in Chapter 4, a GEE model was selected, to account for clustering at the level 

of the individual. The complementary log-log link function was used. 

The covariates included in the model were: age; the square of age; gender, last review, 

year of birth. 

Equation 1 

Yij = g(β𝑿𝒊𝒋) 

Yij = a vector representing whether the individual, i, receives a transplant or not at time j, 

i = 1, ..., n, j = 1, ..., ni 

 

g(.) = link function (c log-log) 

Xij = covariates (age/age2, gender, last review and year of birth) for individual i at time j 

as well as an intercept term. 
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5.9.3 Interpretation of model coefficients 

In reference to the equation above (Equation 1), the β represent weights assigned to the 

explanatory variables in the equation, i.e. β1*Age1. The initial β is a constant, also known 

as an intercept, which means that this is the same for all explanatory variables. It 

represents the value of Y when all explanatory variables are equal to 0. The remaining β 

are associated with a single variable, 1 – 6. These β are multiplied by each explanatory 

variable and indirectly influences the importance of each variable, the larger the β value 

the more the associated explanatory variable influences the outcome [210]. Ultimately, 

the β value gives the change in Y for every in unit increase one the explanatory variable 

[210]. 

5.10 Software and packages used to build regression models and calculate 

probabilities 

This section describes the different software packages that were used to calculate the 

probability estimates which will feed into the model structure presented in Chapter 4.  

R Studio was the primary software environment and language used to conduct the 

analysis to calculate the transition probabilities [169]. A range of packages and 

commands were used as part of the analysis.  

5.11 Health state transition and cost band probabilities 

As well as the assumptions taken in the model specification, additional assumptions that 

could be taken as part of the packages used to calculate transition probabilities are 

presented. The package, ordinal, from R was used for the cumulative linked models 

function, CLM [209]. The CLM function provides the option of changing the thresholds of 

the latent response variable, which forms the categories of the response variable i.e. 

health states. The threshold selected for the health state transitions model in this chapter 
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was flexible, this is to reflect that the space between the categories is not assumed to be 

equal but flexible. Alternatively, due to the nature of the cost bands, as structure of the 

latent variable, costs, is unknown, the threshold was kept equidistant.  

As part of predicting the probabilities for the health state transitions or cost bands, the 

predict function was used in association with the expand.grid function. The predict 

function can be used to predict values or probabilities of being in particular health states 

or cost band for a series of predictors from the fitted models [211]. 

The expand.grid function creates a series of observations with the characteristics which I 

specify from the predictors in the regression equation. These were age ranging from 6-

65, sex (males/females), year of birth, last annual health review (365 days). Further 

information on how to calculate the predicted probabilities without the predict function is 

available on page 360 of Hilbe [196].  

5.12 Lung Transplantation probabilities 

As well as the assumptions taken in the model specification, additional assumptions that 

could be taken as part of the packages used to calculate transition probabilities are 

presented. The main package, geepack, was used for the geeglm function in order to fit 

Generalized Estimating Equations (GEE) [212]. Due to the nature of the binary lung 

transplant data, a C-loglog link was used which has an asymmetric distribution and 

accounts for the skewed distribution of the Y or outcome variable. As above, the predict 

and expand.grid functions were used to determine the predicted probabilities for specified 

age range, sex distribution, year of birth and last annual health review (365 days).  

5.13 Multicollinearity  

Multicollinearity is a term used to describe the interdependence between predictors to the 

response variable in a regression model [213]. Also termed correlation, high values of 
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correlation between variables in a model can lead to a range of problems. These are 

unexpected signs on parameter estimates; no independent variable with statistically 

significant relationship with the response variable and lastly; increases in the estimated 

standard errors [213]. To assess the correlation between variables in the regression 

equations for all probabilities estimates, health state and cost band transition, the 

calculation of the variance inflation factor (VIF) was used alongside correlation estimates 

from the packages, clm; ordinal, used to run the regression models. Although there is no 

overall consensus on what value the VIF need to take in order to indicate collinearity, 

there are suggestions that value above 10 indicates this [213]. It is important to note here 

that in instances where variables are correlated does not reduce the ability of the model 

to be a good fit, affect the ability of the model to make inferences about the mean 

response or predictions of new responses as long as the inferences are made within the 

realms of the observed data [214]. The probabilities produced from the different models, 

particularly the ordered probit model does not look to predict future outcomes but predict 

existing outcomes on the observational data already available, i.e., the models look to 

predict probabilities within the realm of the data and not beyond 2016.  

5.14 Model goodness of fit 

When building the regression models for the health state transitions, cost band 

probabilities and lung transplantation probabilities it was assumed that the model 

covariates that were selected were appropriate for the model based on evidence in the 

literature (as above) and previous studies [102, 107]. Following on from this, I looked to 

understand how accurately the probabilities predicted from the models reflects the 

experience in the observed dataset. This understanding is called goodness of fit [215]. It 

is important to note here that goodness of fit is not a relative but absolute comparison of 
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the model. Relative model comparisons when selecting covariates and comparing 

outcome statistics such as R2 is not a measure of absolute model fit [215]. Absolute 

goodness of fit is a comparison of the observed values against the fitted values, where 

the observed values are considered the best possible model [215].  

The approaches used to assess model fit and adequacy in this Chapter will cover 2 areas, 

1) assessment of absolute goodness of fit via statistical measures and 2) graphical 

examination of the difference in the observed and predicted values.  

5.14.1 Statistical measures of goodness of fit 

A number of tests have been identified for the assessment of fit for each of the regression 

methods used. For instance, for a binary logistic model, the Hosmer and Lemeshow 

goodness of fit (GOF) test is used to assess the goodness of fit, where a p-value >0.05 

shows that model is a good fit [216]. For ordered probit models, an extension of the 

Hosmer and Lemeshow GOF test is used which can be applied to ordinal data and two 

additional tests are recommended to assess absolute goodness of fit [217]. They are the 

Pulkstenis and Robinson (PR) and Lipsitz test [217]. These allow for the model to be 

tested against the alternate hypothesis, that the model fits the data well. Similar to the 

Hosmer and Lemeshow GOF test, a p value <0.05 indicates that there is something wrong 

with the model [217] in either of these tests. For both the health state transitions and cost 

band probabilities, one of the above goodness of fit assessments was applied. For lung 

transplantation the Hosmer and Lemeshow goodness of fit (GOF) test was applied. These 

were applied in order to assess whether the probability estimates that were obtained from 

the regression models could be used with confidence. 
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5.15 Graphical examination 

Graphical examination was undertaken to assess the outcomes presented in all 

regression model based predicted transition probabilities. This was done in a number of 

ways; results were compared to the data from the actual UK CF Registry for the year 

2016 and later compared to the existing literature which was described in section 5.2 

subsequent to the Introduction of this Chapter. This enabled assessment of the goodness 

of fit of the results, the expected results in the UK CF Data Registry against those 

observed and estimated from the regression methods in this thesis. This was primarily 

undertaken as the models were also stratified by age, (Appendix 1,2,3 and 4, section 8.1-

4 for health state transition, cost band probabilities and lung transplant respectively). This 

graphical examination of the observed and expected probabilities could identify if the 

models were performing at different success rates across age as well as sex.  

I now describe how the count-based estimates for, health state transition probabilities, 

cost band probabilities and lung transplantation probabilities were calculated for use in 

comparison against the estimates generated from the regression models for the graphical 

examination.  

Chapter 4 describe the methods used to create the overall dataset for health state 

transition, cost band and lung transplant regression models. These datasets were used 

to simply count the number of transitions made in the year 2016. The year 2016 was 

selected as this would account for the most current treatment trends in CF for ages 

ranging from 6-65 and for either sex group. Variables selected to stratify the data by 

included only age, sex and the previous health state of the individual, where relevant. 

Last review and year of birth were not taken into account, although by restricting to the 

year 2016 the dataset would reflect the assumption of estimating transition probabilities 
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for 2016 from the regression models. Due to the nature of the fluctuation in transitions 

over time when age was used as a continuous variable, age was categorised into groups 

in brackets of 10 and 5 years from 5-65 years old, for health state transition and cost band 

proportion estimates respectively. For lung transplantation, age was left as continuous 

due to the small number of individuals who received a transplant compared to those who 

did not.  

5.16 Health State transition count 

Based on the previous health state, transitions to any one of the eight current health states 

were counted and then divided by the total number of transitions for each age group 

stratified by sex. This gave the proportion of individuals which made a transition from one 

health state to another. These proportion estimates were used as probabilities for 

validating the estimates from the actual dataset. Section 8.2.1 in Appendix 2 show the 

proportion value for those transitioning from the already described health states to a future 

health state by age group and sex.  

5.17 Cost band count 

Based on the current health state the number of individuals in any one of seven band 

categories, as shown in Chapter 4, were counted and then divided by the total number of 

transitions for each age group stratified by sex. This gave the proportion of individuals in 

one of the seven cost bands. These proportion estimates were used as probabilities for 

validating the estimates from the actual dataset. Section 8.3.1, in Appendix 3, show the 

proportion value for those in the different cost bands based on their current health state. 

As, explained, these figures were stratified by age group and sex.  
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5.18 Lung Transplant count 

As described in Chapter 4, it was assumed that lung transplantation would only occur 

while in any one of the severe health states. Although transplants do occur from other, 

better, health states it is rare. As a result, proportion of individuals receiving a transplant 

were calculated from the UK Registry Data by age and sex only. Section 8.4.1 in Appendix 

4 shows a graphical representation of proportion of individual receiving a transplant by 

age and sex.  

5.19 Results  

5.19.1 Health state transitions 

The models fitted to calculate the health state transition probabilities showed that they all 

converged successfully and were able to make accurate likelihood estimates. The models 

also showed that the conditional hessian, which was suggested to be lower than between 

104 and 106 [209], were at these values. This shows that a well-defined optimum for the 

model was reached [209]. Table 25 presents the convergence summaries and conditional 

Hessian values for each model.  

Table 25: Model convergence and parameter accuracy 

Model Previous health state 

 Mild  Mild IV Moderate  Moderate IV Severe  Severe IV 

Hessian value 8.4e+04 4.3e+04 3.5e+04 3.1e+04 4.2e+04 5.3e+04 

Convergence 

outcome 

successful convergence  

In addition: Absolute and relative convergence criteria were met 
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The ordered probit regression summaries for all health states described in Chapter 4 are 

provided in Table 26. These are the regression outputs from the 6 different ordered probit 

models that were ran based on the previous health state. The table shows the co-efficient 

estimates produced through the regression analyses. The estimates show whether the 

variables selected in the model have a positive or negative association on the probability 

of being in a better health state. Statistical significance of each covariate is also explained 

in the Table. 

The number of observations available for each regression model are also presented and 

vary from 10,460 to 935. The variance in observational entries size exist due to the initial 

distribution of patients who were in the different previous health states in the prior year. 

There were more individuals in the Mild health state, as they represent a healthier 

population. Alternatively, there were only 935 entries for those in the Severe health state 

in the previous year. Additionally, those in the Severe health state are more likely, 

clinically, to be needing IV antibiotic treatment in the previous year.  
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Table 26: Regression output for Health state transition models, with confidence interval 95% (Note: *p<0.1; 

**p<0.05; ***p<0.01) 

  

Previous Health 

State  

Mild  Mild IV Moderate  Moderate IV Severe  Severe IV 

Number of 

observations  

10,460 7,190 3,941 8,022 935 3,843 

 Co-efficient values 

age   - 0.005 (-0.01, 

0.003)     

 -0.002 (-

0.01, 0.04) 

-0.02*** (-0.02, 

-0.01)   

-0.01*** (-0.01, 

-0.01)   

 -0.02*** (-

0.03, -0.01)     

 -0.02*** (-

0.02, -0.01)     

Time since last 

review  

  0.03*** (0.01, 

0.1)     

 0.1*** (0.04, 

0.1)     

 -0.2*** (-0.2, -

0.1)     

0.1*** (0.04, 

0.1)      

  0.1*** (0.1, 

0.2) 

  0.1*** (0.05, 

0.1)      

sex (Male)    0.1** (0.01, 

0.1)      

    0.1*** (0.1, 

0.2)      

  0.1*** (0.1, 

0.2)      

  0.1*** (0.03, 

0.1)      

 0.3*** (0.1, 

0.4)      

  0.1** (0.01, 

0.1)      

year birth      -0.02*** (-

0.02, -0.01)     

- 0.01 (-0.01, 

0.000)     

-0.01** (-0.01, 

0.001)     

-0.01*** (-0.01, 

0.004)   

 -0.02* (-0.03, -

0.002)     

- 0.02*** (-0.02, 

-0.01)     
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The results of the regression analyses show that age is a contributor to increasing severity 

of disease in any health state, with increasing age having a negative association on the 

probability in being in a better current health state, with all but two (Mild and Mild IV), 

being significant (p<0.01). In all instances a longer last annual review period 

demonstrates a very significant (p<0.01) positive association of being in a better health 

state. Although, there is negative association on the probability of being in a better current 

health state for those in the Moderate health state. Sex, being male, resulted in a higher 

positive association on the probability of being in a better health state compared to 

females. This was demonstrated in all regression models with high significance (p<0.01 

& <0.05). This reflects the differences seen in sex survival and additional outcomes 

mentioned in the specification of the ordered probit model, section 5.9.1. 

Lastly, year of birth, which was placed in the regression equation as an integer and 

accounted for the treatment trends in the Data Registry. Two models were not significant 

(Mild IV and Severe), the remaining models were significant at the p<0.01 & <0.05 levels 

for year of birth. The coefficient values for this variable showed that having been born 

closer to 2016 had a negative association on probability of moving to a better health state 

in the following year.  

5.19.1.1 Model goodness of fit 

As specified in the model goodness of fit section (5.14) of this chapter, ordered probit 

models could be assessed for absolute goodness of fit up to three tests. The Lipsitz test 

[218] was applied to the models and the results for each of the 6 regression models are 

presented in Table 27. The results show that only two models reject the null hypothesis, 

that the model predicted values are different from those that exist in the observed dataset. 

This means that the transition estimates produced in all models except either severe 
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health state can be used with reasonable confidence in the appropriate specification of 

the model. The remaining two models, Severe and Severe IV show a lack of fit, especially 

the Severe ordered probit model. This means that the transition estimates produced 

should be used with caution. That being said, the clinical characteristics of those in such 

health states are replicated in the model transition probability results, i.e., difference 

existing in males vs. females and increasing probability of transitioning to a more severe 

health state with poorer survival over time. The goodness of fit statistics for the Severe 

health state model was poorest, this is likely due to the much smaller numbers of patients 

in these health states. This is also reflected in the p-values for both models, with Severe 

IV having a much higher p-value than Severe health state model.  

Table 27: Health State transition regression models Goodness of fit (GOF) 

Health State p value 

Mild  0.02 

Mild IV 0.003 

Moderate  0.003 

Moderate IV 2E-08 

Severe  0.4 

Severe IV 0.1 

 

5.19.1.2 Multicollinearity  

In order to assess the multicollinearity of variables in the datasets for each health state 

transition the VIF was calculated. Table 28-33 presents the correlation of co-efficient 

results from the CLM package for each model by previous health state. Table 34 presents 
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the VIF values for each variable by previous health state. The results of the correlation 

estimations show that year of birth was correlated with age in all models. Similarly, in the 

VIF analysis results showed correlation existed due to the age and year of birth variables. 

However, this was under the value of 10 for all except the Moderate previous health state 

model. This VIF was conducted on the primary data utilised in the regression models. So 

as age was increasing the year of birth was decreasing, so there would be an expected 

linear relationship between the two variables. As a result, there would be an expected 

relationship in the VIF to be high for both these variables. We can see that the VIF is 

almost identical for both variables. Similarly, the correlation co-efficient values of close to 

1 for the above-named variable demonstrated a high correlation, values close to one. This 

is mainly a structural multicollinearity in the model equation.  

Table 28: Correlation of Coefficients: Mild 

 age Last review sex Male year of birth 

age  1       

Last review 0.069  1     

sex Male -0.034 0.009  1   

year of birth 0.936 0.097 -0.005  1 
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Table 29: Correlation of Coefficients: Mild IV 

 age Last review sex Male year of birth 

age 1    

Last review 0.082 1 

  
sex Male 0.008 0.014 1 

 
year of birth 0.922 0.114 0.025 1 

 

Table 30: Correlation of Coefficients: Moderate  

 age Last review sex Male year of birth 

age 1 

   
Last review 0.081 1 

  
sex Male -0.041 -0.008 1 

 
year of birth 0.955 0.081 -0.015 1 

 

Table 31: Correlation of Coefficients: Moderate IV 

 age Last review sex Male year of birth 

age 1 

   
Last review 0.1 1 

  
sex Male -0.026 -0.027 1 

 
year of birth 0.931 0.101 -0.004 1 
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Table 32: Correlation of Coefficients: Severe  

 age Last review sex Male year of birth 

age 1 

   
Last review 0.049 1 

  
sex Male -0.117 0.028 1 

 
year of birth 0.939 0.047 -0.086 1 

 

Table 33: Correlation of Coefficients: Severe IV 

 age Last review sex Male year of birth 

age 1 

   
Last review 0.089 1 

  
sex Male 0.014 0.034 1 

 
year of birth 0.934 0.105 0.025 1 

 

 

 

 

 

 



 150 

Table 34: Variance inflation factor by variable and model 

Previous health state 

Variance inflation factor (by variable) 

age Last review sex Year of birth 

Mild  8.401202 1.01697 1.008274 8.440526 

Mild IV 7.178861 1.016694 1.001007 7.220044 

Moderate  10.656262 1.006025 1.00987 10.641385 

Moderate IV 7.826937 1.012725 1.001199 7.842121 

Severe  8.507593 1.004156 1.027378 8.424221 

Severe IV 7.587763 1.011821 1.00167 7.609391 

 

5.19.1.3 Graphical examination 

As another avenue for the assessment of model fit and adequacy, graphical examination 

of the predicted and observed data were undertaken. The methods used to calculate the 

proportions of individuals transitioning to the various health states is described in the 

earlier methods section. Results are presented in Figures 1-96 in Appendix 2 (Section 

8.2.1).  

Examination of the plots across the different previous health state, Mild to Severe IV, 

showed that there were large variations in the observed and expected results in some 

instances and in others both followed similar trajectories and were within the probability 

interval (PI) limits of the predicted probabilities derived from the regression models. This 

means that although the data may be different, these differences could be explained by 

the use of a strict 365-day annual review period in the regression model derived predicted 

probabilities. In the primary dataset there are large variations in days since last review 
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which could lead to difference in raw transition probabilities compared to the predicted 

transition probabilities. This is evident through the significance of the last review variable 

in all specified models (Table 26, section 5.19.1). 

5.19.1.4 Transition matrix 

The following section provides the predicted probabilities which were estimates from the 

above regression models using the, expand.grid and predict function in R, which have 

been described in the software and packages section (5.11) of this chapter.  

A summary of the results are presented in Tables 35-40. The results show the annual 

probability (mean) of transition stratified by sex/previous health state and being reviewed 

on a strict annual basis (365 days) to any one of the health states (Mild to Severe IV). 

Probability intervals (95% PI) (lower/upper) for each mean estimate are also provided.  

Table 35: Aggregate Transition probabilities (All| Mild) (including PIs) 

Sex Female Male 

Current Health State from 

Mild Health State 
Mild Mild 

Mild (PI) 0.649 (0.622-0.676) 0.666 (0.641-0.69) 

Mild IV (PI) 0.201 (0.183-0.221) 0.194 (0.177-0.213) 

Moderate (PI) 0.07 (0.063-0.079) 0.066 (0.059-0.074) 

Moderate IV (PI) 0.061 (0.052-0.071) 0.056 (0.048-0.066) 

Severe (PI) 0.002 (0.001-0.004) 0.002 (0.001-0.004) 

Severe IV (PI) 0.005 (0.003-0.009) 0.005 (0.003-0.008) 

Dead (PI) 0.005 (0.003-0.01) 0.005 (0.002-0.009) 

Dead IV (PI) 0.002 (0.001-0.006) 0.002 (0-0.006) 
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Table 36: Aggregate Transition probabilities (All| Mild IV) (including PIs) 

Sex Female Male 

Current health state from Mild IV Health 

State 

Mild IV Mild IV 

Mild (PI) 0.21 (0.186-0.238) 0.247 (0.221-0.276) 

Mild IV (PI) 0.505 (0.476-0.533) 0.507 (0.478-0.535) 

Moderate (PI) 0.053 (0.047-0.06) 0.049 (0.043-0.055) 

Moderate IV (PI) 0.213 (0.191-0.237) 0.183 (0.162-0.206) 

Severe (PI) 0.001 (0-0.003) 0 (0-0.002) 

Severe IV (PI) 0.006 (0.003-0.01) 0.004 (0.002-0.008) 

Dead (PI) 0.001 (0-0.004) 0.001 (0-0.003) 

Dead IV (PI) 0.007 (0.003-0.014) 0.005 (0.002-0.011) 
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Table 37: Aggregate Transition probabilities (All| Moderate) (including PIs) 

Sex Female Male 

Current health state from Moderate Health 

State 
Moderate Moderate 

Mild (PI) 0.06 (0.048-0.074) 0.077 (0.064-0.094) 

Mild IV (PI) 0.05 (0.041-0.06) 0.061 (0.051-0.072) 

Moderate (PI) 0.443 (0.41-0.476) 0.476 (0.445-0.508) 

Moderate IV (PI) 0.348 (0.32-0.376) 0.311 (0.286-0.337) 

Severe (PI) 0.042 (0.034-0.053) 0.033 (0.026-0.042) 

Severe IV (PI) 0.049 (0.037-0.066) 0.035 (0.026-0.048) 

Dead (PI) 0.004 (0.002-0.009) 0.003 (0.001-0.006) 

Dead IV (PI) 0 (0-0.002) 0 (0-0.001) 
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Table 38: Aggregate Transition probabilities (All| Moderate IV) (including PIs) 

Sex Female Male 

Current health state from Moderate IV 

Health State 
Moderate IV Moderate IV 

Mild (PI) 0.009 (0.006-0.012) 0.018 (0.014-0.024) 

Mild IV (PI) 0.049 (0.042-0.059) 0.074 (0.065-0.085) 

Moderate (PI) 0.087 (0.077-0.097) 0.109 (0.099-0.12) 

Moderate IV (PI) 0.66 (0.633-0.686) 0.637 (0.612-0.662) 

Severe (PI) 0.017 (0.014-0.021) 0.014 (0.011-0.017) 

Severe IV (PI) 0.157 (0.138-0.178) 0.129 (0.112-0.148) 

Dead (PI) 0.001 (0-0.002) 0.001 (0-0.002) 

Dead IV (PI) 0.017 (0.011-0.025) 0.014 (0.009-0.021) 

 

Table 39: Aggregate Transition probabilities (All| Severe) (including PIs) 

Sex Female Male 

Current health state from Severe Health 

State 
Severe Severe 

Mild (PI) 0.002 (0-0.01) 0.005 (0.001-0.017) 

Mild IV (PI) 0.003 (0.001-0.01) 0.006 (0.002-0.016) 

Moderate (PI) 0.038 (0.021-0.07) 0.063 (0.04-0.099) 

Moderate IV (PI) 0.048 (0.031-0.075) 0.07 (0.05-0.098) 

Severe (PI) 0.36 (0.298-0.426) 0.412 (0.354-0.471) 
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Severe IV (PI) 0.486 (0.409-0.563) 0.405 (0.34-0.475) 

Dead (PI) 0.05 (0.028-0.088) 0.031 (0.016-0.059) 

Dead IV (PI) 0.01 (0.003-0.03) 0.005 (0.001-0.018) 

 

Table 40: Aggregate Transition probabilities (All| Severe IV) (including PIs) 

Sex Female Male 

Current health state from Severe IV Health 

State 
Severe IV Severe IV 

Mild (PI) 0.001 (0-0.003) 0.002 (0.001-0.004) 

Mild IV (PI) 0.002 (0.001-0.004) 0.002 (0.001-0.005) 

Moderate (PI) 0.011 (0.008-0.017) 0.014 (0.009-0.02) 

Moderate IV (PI) 0.082 (0.067-0.1) 0.093 (0.077-0.112) 

Severe (PI) 0.077 (0.066-0.09) 0.084 (0.072-0.097) 

Severe IV (PI) 0.721 (0.688-0.751) 0.713 (0.681-0.743) 

Dead (PI) 0.008 (0.006-0.012) 0.008 (0.005-0.011) 

Dead IV (PI) 0.094 (0.071-0.123) 0.081 (0.061-0.108) 

 

The transition matrices (Tables 35-40) show that males compared to females are more 

likely to stay in better health state which is confirmed by the significance of the sex 

variable in the regression model. This is clearly evident in the best health state, Mild 

(males; 0.666 vs. females; 0.649). Similarly, males are more likely to transition back 

towards a better health state compared to females. This is evident in multiple health states 

but clearly so in the Severe IV to Moderate IV transition, males; 0.093 vs. females; 0.082. 
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This sex-based effect also continues within mortality probabilities across all health states, 

most evident in the Severe IV to Dead IV transition, males; 0.081 vs. females; 0.094.  We 

can also see that the probability of dying increases subsequent to existing in a worse 

previous health state. For example, the probability of dying is lower for those in the Mild 

health state (Dead; 0.005, Dead IV; 0.002) compared to those in the Severe health state 

(Dead; 0.05, Dead IV; 0.068).  

We can see that those who do not receive IV treatment in the previous year have a lower 

probability to transition to health states which involves IV treatment in that current year 

and vice versa. This could also mean that those who did not have IV treatment in the 

previous year are less likely to require it in the following year.    

The disaggregated results which also stratify the above probability estimates by age (6-

65 year), in the Supplementary Material (Markov Model), which will be used for the 

exemplar health economic cost utility analysis (Chapter 6), shows the same pattern.   

5.19.1.5 Comparison against literature 

Existing data on health state transition probabilities produced by Tappenden et al [102] 

were available and based on the U.K CF Data Registry and used for external validity 

assessment, although such probabilities were not stratified by age or sex. Additional 

probabilities for health state transitions, although not U.K. based [81, 126], were also 

compared against using my results.  

Regression model outputs were also compared to those available in the literature, where 

possible. Age being significant is consistent with another study which used U.K CF Data 

Registry [102]. This study used similar regression methods as presented in this chapter 

[102] and also used similar variables for their analyses. But the study did not state why 

probabilities were not based on such estimates of age for their health economic 
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modelling. Such studies also did not provide details of model accuracy/goodness of fit 

[102]. The coefficients produced from the health state transitions model showed that 

males were better off overall. This is reflective of the sex gap present in mortality 

particularly as seen in the UK CF Data Registry [179] and more recently in survival 

modelling using the UK CF Data Registry [193].  

Table 41 shows the health states transitions produced in this chapter in comparison to 

those generated by Tappenden et al [102]. It is important to note here that the transitions 

that were calculated in this chapter also included death subsequent to receiving no IV 

treatment in the current year and also subsequent to receiving IV treatment in the current 

year. Whereas Tappenden et al [102] calculated mortality separately to health state 

transitions. As result the transitions in Table 41 may not sum to 1 exactly. Additionally, 

probabilities across no IV and IV health states and both sex (male and female) were 

added together by health state for comparison purposes. The results show that the 

probability estimates generated from the models in this chapter are very similar to those 

which were generated from the same ordered probit methods, albeit different genotypes, 

by Tappenden et al [102]. This supports the face validity of the estimates produced from 

the regression methods used in this thesis. This is despite the lack of goodness of fit 

which could be due to use of annual review at exactly 365 days to derive predicted 

probabilities.  
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Table 41: Model derived transition probability comparison 

FEV1 transition 
Tappenden et al [102] Estimates from this chapter  

Mean Probability value Mean Probability value 

≥70 to ≥70% - Mild to Mild 0.87 0.80 

≥70 to 40–60% - Mild to Moderate  0.13 0.19 

≥ 70 to < 40% - Mild to Severe 0.00 0.01 

40–60 to ≥70% - Moderate to Mild 0.13 0.10 

40–60 to 40–60% - Moderate to Moderate 0.76 0.77 

40–60to<40% - Moderate to Severe 0.10 0.12 

< 40 to ≥70% - Severe to Mild  0.03 0.01 

< 40 to 40–60% - Severe to Moderate 0.14 0.11 

< 40 to < 40% - Severe to Severe 0.84 0.82 
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Additional comparison of the estimates against data from Van gool et al [81] are presented 

in Table 42, and Sharma et al [126] is discussed further below.  

It can be see that the mortality-based estimates when averaged across the age groups 

present in Table 42 result in transition probabilities that are comparable, even though the 

data utilised is from the Australian CF Data Registry [81]. Van gool et al [81] also assume 

that transition to a better health state is not possible, whereas I do allow such transitions, 

as a result the transitions may differ based on this assumption. But the transitions to better 

health states in my dataset is based on existing evidence of such occurrences in the Data 

Registry and CF in general. It is also important to note here that the transition probabilities 

generated by Van gool et al [81] are based on 2004-2005 data, when more novel 

treatments were not available, whereas this thesis utilises more recent data. Lastly, 

Sharma et al [126] used data from the Cystic Fibrosis Foundation Patient Registry in the 

U.S [34] to look at mortality from the health states presented in Chapter 4. However, 

percentage annual mortality, by age for F508Del Homozygous patients, are presented in 

a graphical format and are difficult to quantify. However, it is clear from the graphs that 

females had a high annual mortality by age compared to males. This pattern is clearly 

seen in this chapter, with mortality probabilities presented in Tables 35-40.  
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Table 42: Model derived Transition probability comparison 

FEV1 transition 

Van gool et al [81] Estimates from this chapter  

Mean Probability value Mean Probability value 

≥70 to ≥70% - Mild to Mild 0.92 0.80 

≥70 to 40–60% - Mild to Moderate  0.10 0.19 

≥ 70 to < 40% - Mild to Severe 0.00 0.01 

≥ 70 to N/A - Mild to Dead 0.004 0.004 

40–60 to ≥70% - Moderate to Mild N/A 0.10 

40–60 to 40–60% - Moderate to Moderate 0.93 0.77 

40–60 to <40% - Moderate to Severe 0.07 0.12 

40–60 to N/A - Moderate to Dead 0.017 0.01 

< 40 to ≥70% - Severe to Mild  N/A 0.01 

< 40 to 40–60% - Severe to Moderate N/A 0.11 

< 40 to < 40% - Severe to Severe 0.74 0.82 

< 40 to N/A - Severe to Dead 0.23 0.07 
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5.19.2 Cost band probabilities 

Here I describe the results of the regression modelling methods used to calculate the 

probability of being in one of the seven cost bands based on the current health state of 

the individual which was determined in the above section.  

The models fitted to calculate the probabilities showed that they all converged 

successfully and were able to make accurate likelihood estimates. The models also 

showed that the conditional hessian, which was suggested to be lower than 104 and 106 

[209], were at these values and shows that a well-defined optimum for the model was 

reached [209]. Table 43 presents the convergence summaries and conditional Hessian 

values for each model.  

Table 43: Model convergence and parameter accuracy  

Model Cost band probabilities 

  Mild  Mild IV Moderate  Moderate IV Severe  Severe IV 

Hessian value 5.00E+04 4.70E+04 3.00E+04 4.10E+04 2.40E+04 6.20E+04 

Convergence 

outcome 

successful convergence  

In addition: Absolute and relative convergence criteria were met 

 

The ordered probit regression summaries for all cost bands are provided in Table 44. The 

table shows the co-efficient estimates produced through the regression analyses. The 

estimates show whether the variables selected in the model have a positive or negative 

association on the probability of being in a particular cost band. Statistical significance of 

each covariate is also explained in the table. 
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The number of observations available for each regression model are also presented and 

vary from 2,610 to 191. The variance in observational entries size exist due to the initial 

distribution of patients who were in the current health states in the current year. There 

were more individuals in the Mild health state, as they represent a healthier population. 

Alternatively, there were only 191 entries for those in the Severe health state. 
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Table 44: Regression output for cost band probability models with confidence interval 95% (Note: *p<0.1; 

**p<0.05; ***p<0.01). 

Current Health State 

Regression output 

Mild Mild IV Moderate Moderate IV Severe Severe IV 

Number of observations 2,610 1,867 883 2,221 191 1,130 

 Co-efficient values 

age 0.1*** (0.1, 0.2) -0.003 (-0.1, 0.1) 0.1 (-0.01, 0.1) -0.04* (-0.1, -0.004) -0.02 (-0.2, 0.1) -0.1*** (-0.1, -0.02) 

Time since last review -0.01 (-0.2, 0.1) 0.3*** (0.1, 0.4) -0.2 (-0.4, 0.1) 0.2* (0.000, 0.3) -0.7*** (-1.1, -0.3) 0.2** (0.1, 0.4) 

sex (Male) 0.1 (-0.01, 0.1) -0.2*** (-0.3, -0.1) -0.1* (-0.3, -0.01) -0.04 (-0.1, 0.03) -0.3* (-0.6, -0.02) -0.1** (-0.2, -0.04) 

year birth 0.1*** (0.1, 0.1) -0.01 (-0.1, 0.05) 0.1 (-0.02, 0.1) -0.03 (-0.1, 0.001) 0.003 (-0.2, 0.2) -0.1* (-0.1, -0.01) 
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The results of the regression analyses show that age is a contributor to the increasing 

probability of being in a higher cost band for those in Severe IV health state as it was 

associated with a negative co-efficient value, this was significant, Severe IV, -0.1***, 

(p<0.01). Alternatively, on one occasion, Mild (0.1***), the regression model 

demonstrates a very significant association of age, (p<0.01) of being in a better, less 

costly, cost band. In other instances, Moderate, age continues to demonstrate a positive 

association although not significant (p>0.05). It is also important to note here that current 

health states with no IV treatment show positive co-efficient values for the better health 

states, which shows that healthier individuals with increasing age may have a higher 

probability of being in the less costly band for those health states, as this is not significant 

(p>0.05).  

In one instance (Severe), a longer last annual review period demonstrates a very 

significant (p<0.01) association. The co-efficient shows that a larger gap since the last 

annual review resulted in a lower probability of being in a cheaper cost band (-0.7). This 

pattern also exists in other No IV health states (Mild (-0.01), Moderate (-0.2)). 

Alternatively, it is clear from the co-efficient values for IV health states (Mild IV 0.1, 

Moderate IV 0.2 and Severe IV 0.2) that larger gaps between annual review results in a 

higher probability of being in a less costly band. Clinically, this make sense as those who 

have entered an IV based health state in the current year since their last annual review 

and have not been seen for some time, are less likely to be sicker compared to those who 

have not entered an IV treatment health state and have a short last annual review period, 

i.e. needing to see a specialist earlier.  
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Being male resulted in a higher probability of being in a less costly band, compared to 

females, in the Mild health state (0.1 (95% CI: -0.01, 0.1), although not at a significant 

level. In contrast, being male resulted in the higher probability of being in a high-cost band 

for the remainder of the health states (Mild IV, Moderate, Moderate IV, Severe, Severe 

IV). Significantly so for those in the Mild IV and Severe IV health states (p<0.05).  

Lastly, year of birth, which was placed in the regression equation as an integer. The 

coefficient values for this variable showed that having been born closer to 2016 resulted 

in a higher probability of being in a more costly band for all the IV health states. 

Alternatively, being born closer to 2016 and being in the No IV health states meant that 

there was a higher probability of being in the less costly bands and this was significant 

for the Mild health state (0.1*** (95% CI: 0.1, 0.1), (p<0.01)).  

5.19.2.1 Model goodness of fit 

As specified in the methods section of this chapter, ordered probit models could be 

accessed for absolute goodness of fit up to three tests. The Lipsitz test [218] was applied 

to the models and the results for each regression model are presented in Table 45. The 

results show that only one model, Mild, does reject the null hypothesis, that the model 

predicted values are different from those that exist in the observed dataset. 
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Table 45: Cost band probability regression models; Goodness of fit (GOF) 

Health State p value 

Mild  3E-10 

Mild IV 0.3 

Moderate  0.6 

Moderate IV 0.4 

Severe  0.06 

Severe IV 0.3 

 

5.19.2.2 Multicollinearity  

In order to assess the multicollinearity of variables in the datasets for each current health 

state and subsequent cost band probabilities, the VIF was calculated. Table 46-51 

presents the correlation of co-efficient results from the CLM package for each model by 

current health state. Table 52 present the VIF values for each variable by previous health 

state. This VIF was conducted on the primary data utilised in the regression models. So 

as age was increasing the year of birth was decreasing, so there would be an expected 

linear relationship between the two variables, this is known as a structural 

multicollinearity. As a result, there would be an expected relationship in the VIF to be high 

for both these variables. We can see that the VIF is almost identical for both variables, 

this is mainly a structural multicollinearity in the model equation. Similarly, the correlation 

co-efficient values of close to 1 for the above-named variable demonstrated a high 

correlation, values close to one. The remainder of the variables do show very weak or 

weak levels of correlations which shows that there is a low risk of bias present in the 
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model. Similarly, due to the lack of multicollinearity in the remainder of the variables and 

the presence of significant regression co-efficient values of independent variables in 

relationship to the dependent variable, it is likely that the specified models are producing 

reliable relationships between the independent and dependent (health state) variable and 

any significance shown for any variable is likely to be correct.  

Table 46: correlation by variable and health state 

 
Correlation of Coefficients: Mild  

 
age Last review sex Male year of birth 

age  1       

Last review -0.1555  1     

sex Male 0.0069 0.0379  1   

year of birth 0.9965 -0.1537 0.0105  1 

 

Table 47: correlation by variable and health state 

  Correlation of Coefficients: Mild IV   

  age Last review sex Male year of birth 

age 1     

Last review -0.1382 1    

sex Male 0.007 -0.0294 1   

year of birth 0.9954 -0.1398 0.0156  1 
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Table 48: correlation by variable and health state 

 
Correlation of Coefficients: Moderate 

 
age Last review sex Male year of birth 

age  1       

Last review -0.1069  1     

sex Male -0.0701 -0.0258  1   

year of birth 0.9971 -0.1082 -0.0615  1 

 

Table 49: correlation by variable and health state 

  Correlation of Coefficients: Moderate IV 

  age Last review sex Male year of birth 

age 1     

Last review -0.1857 1    

sex Male 0.0063 0.0055 1   

year of birth 0.9959 -0.1875 0.0104  1 
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Table 50: correlation by variable and health state 

 
Correlation of Coefficients: Severe  

 
age Last review sex Male year of birth 

age  1       

Last review -0.1557  1     

sex Male -0.0303 0.1478  1   

year of birth 0.9972 -0.1575 -0.0297  1 

 

Table 51: correlation by variable and health state 

  Correlation of Coefficients: Severe IV 

  age Last review sex Male year of birth 

age 1     

Last review -0.122 1    

sex Male 0.0175 -0.2101 1   

year of birth 0.9944 -0.0908 0.0117  1 
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Table 52: Variance inflation factor by variable and model 

Current health state age Last review sex Year of birth 

Mild 149 1 1 149 

Mild IV 114 1 1 114 

Moderate 174 1 1 174 

Moderate IV 117 1 1 117 

Severe 187 1 1 187 

Severe IV 112 1 1 112 

 

5.19.2.3 Graphical examination 

As another avenue for the assessment of model fit and adequacy, graphical examination 

of the predicted and observed data were undertaken. The methods used to calculate the 

proportions of individuals transitioning to the various health states is described in the 

earlier methods section. Results are presented in section 8.3.1 in Appendix 3.  

Examination of the plots across the different current health states, Mild to Severe IV, 

showed that there were large variations in the observed and expected results in some 

instances and in others both followed similar trajectories and were within the PI interval 

limits of the predicted probabilities derived from the regression models. Most notably, the 

estimates produced from the ordered probit method were a better fit for the cost band 

probabilities than for the health state transitions when compared graphically, despite the 

goodness of fit statistics presenting data showing otherwise. It is also important to note 

here that the predicted probabilities for being in any given cost band based on being in a 
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particular health state were based on strict annual review (365 days). This could have 

influenced the goodness of fit results. 

5.19.2.4 Transition matrix 

The following section provides the predicted probabilities which were estimates from the 

above regression models using the, expand.grid and predict function in R, which have 

been described in the software and packages section of this chapter.  

A summary of the results are presented in Table 53-57. The results show a mean annual 

average probability of being in a particular cost band stratified by sex/current health state 

and being reviewed on a strict annual basis (365 days). Probability intervals (95% PI) 

(lower/upper) for each mean estimate are also provided. The tables show that males 

compared to females are more likely, overall, to stay in lower cost bands. Although this is 

not evident in the Mild health state, it is in the remainder of the health states. We can also 

see that those in the No IV compared to the IV based health states have a higher 

probability of being placed into lower cost band categories. Clinically, this makes sense 

as those not receiving IV treatment based on health state are less likely be in high-cost 

bands even within the same current health state. This is most likely due to no costs being 

incurred in those No IV health states for IV treatment and reduced costs for additional 

resources for any given band compared to those in IV based health states.  
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Table 53: Aggregate Cost band probabilities Mild  

Sex Female Male 

Cost band/Current Health State Mild Female Mild Male 

1 (PI) 0.059 (0.048-0.073) 0.052 (0.043-0.064) 

1a (PI) 0.008 (0.006-0.012) 0.007 (0.005-0.011) 

2 (PI) 0.222 (0.197-0.25) 0.209 (0.186-0.235) 

2a (PI) 0.506 (0.477-0.535) 0.509 (0.48-0.537) 

3 (PI) 0.185 (0.154-0.219) 0.199 (0.169-0.233) 

4 (PI) 0.014 (0.006-0.028) 0.016 (0.008-0.032) 

5 (PI) 0.003 (0-0.017) 0.004 (0-0.02) 

 

Table 54: Aggregate Cost band probabilities Mild IV 

Sex Female Male 

Cost band/Current Health State Mild IV Female Mild IV Male 

1 (PI) 0.002 (0.001-0.005) 0.004 (0.001-0.009) 

1a (PI) 0.003 (0.001-0.007) 0.005 (0.002-0.01) 

2 (PI) 0.106 (0.082-0.136) 0.139 (0.111-0.174) 

2a (PI) 0.377 (0.34-0.415) 0.41 (0.377-0.444) 

3 (PI) 0.464 (0.417-0.511) 0.408 (0.361-0.457) 

4 (PI) 0.036 (0.024-0.053) 0.025 (0.016-0.038) 

5 (PI) 0.01 (0.005-0.02) 0.006 (0.003-0.012) 
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Table 55: Aggregate Cost band probabilities Moderate  

Sex Female Male 

Cost band/Current Health State Moderate Female Moderate Male 

1 (PI) 0.045 (0.03-0.068) 0.059 (0.042-0.084) 

1a (PI) 0.004 (0.001-0.011) 0.005 (0.002-0.013) 

2 (PI) 0.127 (0.099-0.162) 0.15 (0.121-0.184) 

2a (PI) 0.555 (0.519-0.591) 0.56 (0.526-0.594) 

3 (PI) 0.215 (0.175-0.262) 0.185 (0.151-0.225) 

4 (PI) 0.042 (0.026-0.065) 0.032 (0.02-0.05) 

5 (PI) 0.008 (0.003-0.021) 0.005 (0.002-0.015) 

 

Table 56: Aggregate Cost band probabilities Moderate IV 

Sex Female Male 

Cost band/Current Health State Moderate IV Female Moderate IV Male 

1 (PI) 0.003 (0.001-0.008) 0.003 (0.001-0.01) 

1a (PI) 0.002 (0.001-0.006) 0.002 (0.001-0.007) 

2 (PI) 0.041 (0.028-0.061) 0.045 (0.031-0.066) 

2a (PI) 0.326 (0.288-0.367) 0.34 (0.3-0.381) 

3 (PI) 0.475 (0.436-0.515) 0.468 (0.428-0.508) 

4 (PI) 0.126 (0.102-0.158) 0.118 (0.095-0.149) 

5 (PI) 0.022 (0.014-0.036) 0.02 (0.013-0.032) 
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Table 57: Aggregate Cost band probabilities Severe  

Sex Female Male 

Cost band/Current Health State Severe Female Severe Male 

1 (PI) 0.013 (0.003-0.056) 0.028 (0.009-0.082) 

1a (PI) 0 (0-0) 0 (0-0) 

2 (PI) 0.065 (0.027-0.145) 0.104 (0.056-0.185) 

2a (PI) 0.449 (0.338-0.569) 0.511 (0.421-0.602) 

3 (PI) 0.336 (0.242-0.45) 0.275 (0.196-0.376) 

4 (PI) 0.124 (0.06-0.242) 0.076 (0.037-0.149) 

5 (PI) 0.01 (0.001-0.075) 0.004 (0-0.037) 

 

Table 58: Aggregate Cost band probabilities Severe IV 

Sex Female Male 

Cost band/Current Health State Severe IV Female Severe IV Male 

1 (PI) 0.003 (0-0.013) 0.002 (0-0.012) 

1a (PI) 0.002 (0-0.01) 0.002 (0-0.01) 

2 (PI) 0.021 (0.01-0.043) 0.024 (0.011-0.049) 

2a (PI) 0.167 (0.128-0.215) 0.213 (0.165-0.269) 

3 (PI) 0.412 (0.359-0.466) 0.459 (0.401-0.518) 

4 (PI) 0.284 (0.236-0.34) 0.236 (0.193-0.292) 

5 (PI) 0.108 (0.08-0.15) 0.06 (0.04-0.091) 
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The disaggregate results which also stratify the above probability estimates by age (6-65 

year), in the Supplementary Material (Markov Model), which will be used for the exemplar 

health economic cost utility analysis (Chapter 6), shows the same above sex, no IV/IV 

treatment-based patterns. 

5.19.2.5 Comparison against literature 

Existing data on costs produced by Tappenden et al [102] and Whiting et al [107] were 

available and based on the U.K CF Data Registry. However, only the data from Whiting 

et al [107] were used for external validity assessment. This was primarily because I did 

not have any estimate of cost per health state in this chapter. Similarly, proportion data 

from Tappenden et al [102] was based on a different genotype of CF patients in the U.K 

Data Registry. As a result, only the regression coefficients from the linear regression 

model output were compared against [107]. Although, it is important to note here that the 

variables selected for the regression modelling conducted in this chapter were different 

to those used by Whiting et al [107]. Similarly, Whiting et al [107] included data on high-

cost drug use in their analysis, whereas I did not and the costs for Whiting et al [107] were 

based on the total CF population in the U.K. Data Registry for 2015. As a result, 

differences between the two could be explained by the above.  

An existing study on the U.K CF Data Registry shows that females cost more during the 

later years of their lives compared to males [219]. The coefficients in the regression model 

show that males are associated with a higher probability to be in a lower cost band than 

females for all except the Mild health state. The probability estimates generated from the 

regression model reflect the literature and show that males are less likely to be placed in 

the high-cost bands compared to females.  
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 Additional data, although not U.K. based [81], was available but not compared against, 

for the same reason as above, I did not produce any estimate of cost per health state. 

This will be further evaluated in Chapter 6 Section 6.26.2.4.  

Whiting et al [107] showed the cost of treating CF in the UK for the total CF population 

was £41,084 (SE: £588) per person per year and that this value changes based on age 

(-£100.78 SE; 12) and FEV1 (-£254.34, SE; 6). As a result, the baseline cost of £41,084 

(SE: £588) decreased with increasing age as well of from higher FEV1 values. This pattern 

was compared to the estimates produced in this chapter. The regression estimates from 

each model in Table 40 showed that as age was associated with an increase the 

probability of being in a cheaper band for those in the No IV health state and vice versa 

for those in the IV based health states. This age effect of Whiting et al [107] on costs is 

similar to that which is seen in our estimates. Similarly, those in better FEV1 health states 

have lower negative co-efficient values compared to those with FEV1 values which 

correspond to worse health states. For example, an individual in the Mild IV health state 

has a lower negative co-efficient value (-0.003 (p>0.01)), than those in the Severe IV 

health state (-0.1 (p<0.01)). 

5.19.2.5.1 Comparison against the observed data 

Additional comparisons were made against the data used to generate the regression 

models. This was done in order to determine if the underlying patterns in the derived 

datasets are similar to what already exists. This can help me further validate the model.  

Evaluation of the dataset utilised to estimate the probabilities of costs showed that the 

better/healthier states often occupied the band 2A more than any other cost banding 

category (Mild, Mild IV, Moderate), this was followed by high-cost bands (4 and 5) being 
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occupied in more severe current health states (Moderate IV, Severe, Severe IV). This is 

clearly shown in Table 59, below which shows the distribution of CF individuals in 

particular bands but sex and health state (current). Furthermore, the sex-based difference 

shows that males were more likely to be placed in less costly bands compared to females 

overall. This is similar to what is seen in the probability estimates generated from the 

regression models.  

Table 59: Distribution of individuals in cost bands by health state (current) 2013-

2016 
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Band Sex 

Current Health state  

Severe IV Severe  Moderate IV Moderate  Mild IV Mild  

1 
Female 4 1 7 17 2 141 

Male 2 4 7 36 7 185 

1A 
Female 2 0 6 0 1 17 

Male 3 0 3 5 10 24 

2 
Female 14 3 63 47 124 333 

Male 16 15 50 86 145 507 

2A 
Female 83 23 351 178 362 440 

Male 106 72 349 317 407 740 

3 
Female 199 14 572 70 389 77 

Male 243 42 435 94 360 138 

4 
Female 179 7 164 11 27 3 

Male 152 9 149 17 20 4 

5 
Female 84 0 38 1 9 1 

Male 43 1 27 4 4 0 
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Table 59 shows that males compared to females have a higher probability to stay in a 

better cost band. We can see that males in any health state, except Mild, have a lower 

probability, compared to females, of being in either cost bands 4 or 5, which are the most 

expensive, £33,224 and £40,054 respectively. We can also see that those who do not 

receive IV treatment in the current year have a lower probability of being placed in a 

higher cost band than those who do. These patterns are also evident in the predicted 

probabilities estimates looking at the probability of being in a particular cost band by 

current health state.     

In comparing the existing studies which have data which could be utilised the validate the 

estimates from the methods used in this chapter, the results show that the estimates 

produced have similar patterns and probability estimates. This strengthens the validity of 

the estimates produced in this chapter, despite the lack of model fit, especially for the 

cost band probability estimates. In conducting the work presented in this chapter the work 

improves the data available in the literature to allow for more accurate estimates of cost-

effectiveness in future cost effectiveness analyses in Cystic Fibrosis. 

5.19.3 Lung Transplant probabilities 

Here I describe the results of the regression modelling methods used to calculate the 

probabilities of receiving a lung transplant using the data described in Chapter 4 (Section 

4.18.3).  

5.19.3.1 Model goodness of fit 

Model goodness of fit as specified in the goodness of fit section above, specified that I 

would be using the Hosmer and Lemeshow goodness of fit (GOF) test to see if the 

observed data and expected data produce similar results for lung transplantation. Table 
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55 below, shows the output from the test, which shows that the model was a good fit when 

comparing the observed and expected results. The p value shows that I can reject the 

alternative hypothesis that the expected and observed values are different. Table 61 

presents the observed and expected number of transplants generated compared to the 

model against the actual dataset based on the number of groups specified in the 

goodness of fit calculation, G, which is most commonly selected to be 10 [196]. For larger 

datasets high values of G are set [196]. However, it is also suggested that the groups be 

changed and the goodness of fit test be re-evaluated at different levels to test for 

consistency in results [196]. As a result, the grouping was changed to 8 and 12 to see 

whether the p-value fell below 0.05. The results show that change in the groupings did 

not change the result to a value below 0.05, Table 62.  

Table 60: Hosmer and Lemeshow goodness of fit (GOF) test 

X-squared 9 

df 8 

p-value 0.3 
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Table 61: Observed and expected number of transplants by different group specified 

G 
Observed: No Lung 

Transplant 

Observed: Lung 

Transplant 

Expected: No Lung 

Transplant 

Expected: Lung 

Transplant 

1 3459 2 3461 0 

2 3457 3 3457 3 

3 3454 6 3455 5 

4 3450 10 3449 11 

5 3445 15 3450 10 

6 3439 21 3431 29 

7 3433 27 3437 23 

8 3426 34 3419 41 

9 3419 41 3424 36 

10 3,408 53 3408 53 

 



Table 62: Hosmer and Lemeshow goodness of fit (GOF) test with changed 

grouping 

Groups 
  

 X-squared 9 

8 df 6 

 p-value 0.2 

 X-squared 9 

12 df 10 

 p-value 0.5 

5.19.3.2 Graphical examination 

As another avenue for the assessment of model fit and adequacy, graphical examination 

of the predicted and observed data were undertaken. The methods used to calculate the 

proportions of individuals transitioning to the various health states is described in the 

earlier methods section. Results are presented in Section 8.4.1 in Appendix 4.  

Examination of the plots across age and sex showed that there were large variations in 

the observed and expected results in some instances and in others both followed similar 

trajectories.  

5.19.3.3 Multicollinearity  

In order to assess the multicollinearity of variables in the dataset the VIF was calculated. 

Table 63 present the VIF values for each variable. 
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Table 63: Variance inflation factor for lung transplantation variables 

 
Variance inflation factor (by variable) 

Transplant 
age age2 sex Last review year of birth 

28.48 26.32 1.05 1.06 5.99 

 

The VIF analysis results showed correlation existed due to the age and age2 and year of 

birth variables. The VIF values showed that only the two variables, age and age2 were 

highly correlated.  However, this is expected as changes in age while holding other 

covariates in the model constant is also expected to change the age2 covariate as they 

are related, a structural collinearity. On the other hand, the year of birth variable, although 

shows signs of correlation, this is below 10. As previously encountered, year of birth and 

age are likely to be correlated due to structural collinearity. The value is lower, most likely 

due to repeated measures having been used in the regression model.  
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Table 64: Lung Transplantation regression output 

  Transplant 

  Risk Ratio CI p 

(Intercept)  0.00 - .279 

age  1.45 1.33 – 1.59 <.001 

age2  0.99 0.99 – 1.00 <.001 

sex (Male)  0.78 0.59 – 1.02 .070 

Last review  1.00 1.00 – 1.00 <.001 

Year of birth  1.02 0.98 – 1.06 .411 

 

The results of the regression analyses, Table 64, show that an increase in age increases 

the probability or risk of receiving a transplant. The age2 variable shows a decreased risk 

of receiving a transplant (p<0.01), possibly hinting to a bell-shaped distribution, most likely 

due to survival bias. Although this does show no effect based on the confidence interval 

(0.99 – 1.00). The results also show that there is no difference in the probability or risk of 

receiving a transplant when there is a change in the number of days since the patient had 

their annual review, also statistically significant (p<0.01). The relative risk of receiving a 

transplant was lower for males (0.78 (95%CI 0.59-1.02) compared to females, although 

not statistically significant. However, such a pattern also exists in the CF Data Registry 

observed data which shows that females are more likely to require a lung transplant 

compared to males.  
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5.19.3.4 Transition matrix 

The following section provides the predicted probabilities which were estimates from the 

above regression models using the, expand.grid and predict function in R, which have 

been described in the software and packages section of this chapter (Section 5.10).  

In summary, Figure 24, shows the probability of receiving a transplant based on sex and 

age. We can see that females are more likely to receive a transplant compared to males. 

This is also the case in the observed dataset, Table 65, where overall a higher percentage 

of females receive a transplant compared to the males. We can also see that the 

probability of receiving a transplant increases until around 34 years for both sex groups. 

Subsequently, the probability decreases near enough to 65 years for both groups which 

according to the age2 variable is some survival bias present in the data due it being 

significant.  
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Figure 24: Probability of receiving a transplant 

 

Table 65: Observed lung transplants by sex 

 Number of individuals who received a transplant 

Sex Female Male 

Transplant   

No 15,495 18,896 

Yes 104 107 

% 0.671 0.566 

5.19.3.5 Comparison against literature 

Existing data on lung transplant produced by Van gool et al [81] available and based on 

the Australian CF Data Registry between 2002-2005. These were used for external 
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validity assessment of the probabilities generated in this chapter. Evaluation of the data 

presented by Van gool et al [81], also presented in Section 5.2.3 of this Chapter showed 

that a large majority of lung transplants occurred while the CF individual was in the Severe 

health state, although very few occurred in better health states. Figure 25 below shows 

the probability of receiving a transplant based on the health states which was taken from 

Van gool et al [81].  

Figure 25: Probability of Lung transplant by Health state [81].  

 

Figure 26 below shows the predicted and observed probabilities of receiving a lung 

transplant based on the U.K. CF Data Registry from the regression model and the raw 

count data (males and females). A comparison of Figure 25 and 26 shows that the 

observed estimates from the raw data for both differ in terms of probability of receiving a 

lung transplant. The most immediate explanation for this difference may be that the two 

datasets represent different countries and two different time periods, 2002-2005 [81] and 
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2016. The change in available treatments and improvement in survival over time could 

have changed the likelihood of receiving a transplant. However, the overall increase in 

probability over time, as age increases, is present in both Figures.  

Figure 26: Probability of Lung transplant by sex 

 

5.20 Discussion 

5.20.1 Summary  

5.20.1.1 Principle findings  

The aim of this chapter was to, 1) develop probability estimates for health state transitions, 

2) cost banding probabilities and 3) lung transplantation probabilities for use in the De 

Novo health economic model developed in Chapter 4. Two different types of regression 

modelling methods were utilised, ordered probit regression (health state transitions and 

costs) and GEEGLM regression (lung transplantation).  
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This is the first study to provide transition probabilities based on age and sex. This allows 

for more accurate cost effectiveness estimates from decision modelling of CF 

interventions. All models included age, sex, last annual review and year of birth and the 

majority of these were statistically significant for transition between health states, costs 

and lung transplantation.  

Compared to existing approaches [102, 107] utilised for the health state transition 

probabilities estimates, this is the first U.K. based study to provide estimates by age, sex 

and time since last annual review for F508del Homozygous patients. Although 

conventional counting methods could be utilised to estimate such probabilities, they are 

not able to provide detailed breakdown. These include individual age units and the time 

since last annual review which have a statistically significant association with probability 

of transitioning to a worse or better health states (Section 5.19.1). The GoF statistic 

presented in Section 5.19.1 also show that the observed and predicted estimates are a 

good match, in a majority of models. The estimates are further validated through 

comparisons with the literature which show good face validity of the data. Any differences 

in the observed and predicted estimates presented in the graphs in Appendix 8.2.1 could 

be explained by the large variations in time since last annual review in the raw data 

compared to the predicted probabilities which was selected as 365 days.  

In terms of costs, compared to existing approaches [102, 107] utilised for the cost band 

probability or costs in general, this is the first U.K. based study to provide estimates by 

age, sex, last annual review for F508del Homozygous patients. As such this means that 

costs are provided based on the probability of occupying a particular PbR cost band when 
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in a particular health state. Although other studies exist which used regression modelling 

for costs and these include age and FEV1. This study provides probabilities based on 

gender in addition to the current health state, age and time since last annual review. This 

study also takes into account treatment trends through inclusion of year of birth variable 

to ensure that costs reflect the current treatments that are utilised in CF care, 2016. The 

regression outputs in Section 5.19.2 show that age, time since last review and sex are 

significant predictors in some of the specified models. Although, the GoF statistic 

presented in Section 5.19.2 shows that only the Mild model predicted probabilities reflect 

the observed data, comparison of against the observed data (Section 8.3.1) shows good 

face validity of the predicted cost band probabilities. Lack of GoF could be due to a strict 

time since last review of 365 days used to predict probabilities from the model as in the 

observed data, there is large variation in time since last annual review.   

Lastly, this is the only study to provide probabilities of receiving a lung transplant based 

on age and sex through use of the U.K. CF Data Registry. The regression outputs show 

that age was a significant contribution to the probability of receiving a transplant. Previous 

studies highlighted lung transplant probabilities for Australian CF individuals between 

2002-2005. The data in this chapter presents probabilities based on gender and age with 

more recent data (2005-2016) using a regression method which takes into account 

repeated measures from the same CF individual which is novel. As such this provides a 

better, more detailed, breakdown of lung transplant probabilities. 



   

 

   

 

191 

5.21 Strengths and limitation of the study 

The study utilised a very generalisable and large dataset which covered >90% of the CF 

population in the U.K and as such is the largest primary resource available for the analysis 

of CF related outcomes. A range of statistical methods were applied to the datasets in 

order to determine input parameter for use as input parameters in the De Novo model 

from Chapter 4. This is also the first study to be conducted to look at the health state 

transitions, cost band and lung transplantation probabilities using the U.K. CF Data 

Registry which also provide a thorough breakdown of model outcomes in terms of 

goodness of fit, accuracy and probabilities values stratified by age and sex for F508Del 

Homozygous individuals in the U.K. CF Data Registry. Given the recent increase in the 

evaluation of potentiators such as Ivacaftor and other drugs such as Lumacaftor, these 

probability estimates could prove useful for the cost effectiveness analysis of such 

interventions or similar interventions.   

Furthermore, the internal and external validity of the results were compared where data 

were available and in a majority of the cases the data were comparable to the observed 

data and the evidence present in the literature. This further highlights the usefulness of 

this data. Similarly, as mentioned in Lioa et al [220], the correctness of the model 

equations can be verified through the method of appropriate sum of probability values. All 

probability values were equal to 1 for all health state transitions and cost band 

probabilities. This further increases the validity of the data.  

However, there were also a number of limitations in this study. Variable selection 

processes were not undertaken to identify the best variables which could predict disease 
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progression in CF. The variable selected were based on the existing evidence in the 

literature, expert opinion and existing practices for the health economic modelling of CF 

interventions. Other models exist which have used other variables and utilised model 

selection processes to determine survival for example Keogh et al [50] and Liou et al [42]. 

However, these were used for survival prediction not for disease progression or cost 

estimation.  

Repeated measures methods were used to calculate the probability of receiving a 

transplant. However, they were not used to determine health state transitions or cost band 

probabilities. Attempts were made to use functions available in the ordinal package [38], 

which accounted for repeated measures, such as the clmm function. However, I was 

unable to estimate the models using repeated measures because the model failed to 

converge. Further attempts were made to fit models including repeated measures, with 

support from statisticians in the Epi-Net team as well as the author of the ordinal package 

[221], but they failed. The data published by Tappenden et al [102] may or may not have 

used repeated measures. It is unclear from the article. However, the results from the 

chapter show similar transition probabilities to that of Tappenden et al [102] which have 

been used in a number of cost-effectiveness analyses presented in Chapter 2.  

In this analysis, where the violation of the parallel slope assumption occurred the models 

were adjusted for this using the scale effects mentioned by Christiansen [221]. 

Subsequent testing for the assumption showed that it was no longer violated, and the 

model took into account the scale effects of the independent variables.  
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Lastly, it is important to note that the probabilities produced were generated to reflect U.K 

CF patients who were F508Del Homozygous (male and female) who were seen on a strict 

annual basis, i.e. 365 days. However, this assumption around annual review period may 

not be reflective of what happens in reality as the mean annual review gap was 408 days 

in the Registry Data but ranged up to 4524 days. As a result, this could have reduced the 

comparability of the derived data to the observed data in the U.K. CF Data Registry. This 

may explain why in a number of cases, the derived probabilities did not reflect exactly 

those which were observed in the Data Registry. However, it is important to understand 

that the derived results were comparable to the existing evidence in the literature and 

those in the Data Registry.  

5.22 Further work 

In this study, I used rigorous regression modelling methods to estimate transition 

probabilities that can be used as inputs to the De Novo model in CF in Chapter 6. These 

regression models are appropriate because they are designed for use with outcome 

measures which are ordered and categorical as well as binomial in nature. Nevertheless, 

further work to explore the impact of using different modelling approaches to calculate 

health state transitions and cost estimates would be useful for comparison. An example 

of such a comparison is presented in the case of Whiting et al [107] where the model 

outcomes produced similar patterns in costs as a result of the explanatory variables used. 

Such an exercise would expand our understanding of the impact, if any, of using 

alternative regression approaches with differing related assumptions on the input 

parameters produced for health economic modelling of CF interventions.  
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Further work could also explore the options for using repeated measures approaches to 

estimate the transition probabilities and compare the repeated measure estimates to 

those produced by the Ordinal Probit models in this chapter.  Lastly, this thesis focuses 

on using data from the U.K, additional work in the future could look at utilising other 

Registry Data sources in CF or outside of CF and the application of such methods on 

such Data Registries. Utilisation of similar method in other registries would provide useful 

insight into whether different registries produce different results in terms of health state 

transitions, costing and lung transplantation probabilities.  

To the researcher’s knowledge, this is one of the first studies to use Registry Data to 

determine input parameters for health state transitions, costs and lung transplant whilst 

providing transparent information around the methods, model fit and subsequently, in 

Chapter 6, utilise this data to undertake an exemplar cost effectiveness analysis of a 

relevant CF treatment. The transparency provided in this thesis could be a step towards 

better reporting of methods for calculating data inputs for health economic models from 

large observational data registries.   

5.23 Conclusion  

This chapter as well as Chapter 2 and 3 look at the existing evidence availability for the 

health economic modelling of CF interventions. Chapter 4 used existing evidence and 

expert opinion to develop a De Novo model structure. However, this chapter is the main 

body of work by which the aims of this thesis are achieved, to advance the health 

economic evidence available to inform a De Novo health economic model and decisions 

about appropriate reimbursement of CF interventions. Through use of robust regression 
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methods, the evidence available for the health economic modelling of CF interventions is 

being improved. This is primarily achieved through data which is derived from the 

longitudinal Data Registry which covers more than 90% of the CF population in the U.K. 

Furthermore, data is not only provided for health state transitions including lung transplant 

and post lung transplant (Chapter 6) but also for costs as well as high-cost drugs (Chapter 

6). Such data is also available by sex and different age integers. The model structure as 

well as the estimates generated are validated by experts. Lastly, a number of 

comparisons are made of the derived probabilities against the existing evidence (where 

available) and the observed data within the Data Registry as the best real-world model. 

Although the results do not show findings that are exactly the same, they show that the 

results are very close to the observed probabilities as well as those which exist in the 

literature. The estimates improved on the existing evidence by providing a better detailed 

breakdown of inputs based on sex and age as well as novel data inputs around lung 

transplantation and post lung transplantation. The subsequent chapter will look to further 

validate the input parameters and particularly the De Novo model structure through the 

evaluation of the cost effectiveness of an exemplar intervention, Orkambi®. Orkambi® 

will be used to compare the outcomes generated in the De Novo model against those 

from existing published models looking at the economic evaluation of Orkambi®.  
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6 Chapter 6: Extending the cost-effectiveness modelling of 

CF interventions using a different model structure and real-

world data from the CF Data Registry. 

6.1 Introduction 

In the previous chapter, regression methods were utilised in order to generate transition 

probabilities with the aim to use such data in the De Novo model developed in Chapter 4. 

The De Novo model structure was developed to include IV based health states and, in 

this chapter, will be populated with novel data streams generated in Chapter 5. This will 

be done in order to evaluate whether the cost effectiveness modelling of CF interventions 

can be extended by changing the structure and through use of new data streams.  

In order to evaluate whether the cost effectiveness of CF interventions can be extended, 

an exemplar intervention was selected. Orkambi® was chosen as the CF Registry Data 

had very few individuals who were currently on the treatment at the time of the data 

analysis, this would reduce any chance of bias of treatment effect being incorporated into 

the control group of the intervention as data were utilised from the CF Registry (Section 

6.12). Additionally, there were no published U.K. based studies of the cost-effectiveness 

of Orkambi® using novel data from the U.K. CF Data Registry and existing studies, both 

technology appraisals and published studies, on the cost effectiveness of Orkambi® 

would allow for in-between model consistency validation.  

What follows is a review of existing cost effectiveness studies, which include technology 

appraisals. This is primarily presented here, rather than in Chapter 2 (Section 2.12.1) to 



   

 

   

 

197 

summarise the different aspects of the health economic modelling of Orkambi® which will 

prove vital for the validation of the model and outcomes presented in this Chapter. This 

is then followed by the methods and results of the exemplar cost-effectiveness evaluation 

of Orkambi®. Lastly, the model outcomes are validated using information from Section 

6.3. 

6.2 Aims and objectives 

The methods used in this Chapter illustrates how statistical techniques, from Chapter 5, 

can be utilised to inform and extend the De Novo health economic modelling of CF 

interventions. 

The aims of this chapter are to: 

a) Utilise a novel model structure based on disease progression, data availability and 

clinical expert opinion in the U.K. 

b) Incorporate the estimates generated in Chapter 5 to evaluate an exemplar 

intervention, Orkambi®.  

c) Validate the De Novo model structure, through in between model consistency by 

evaluating exemplar intervention Orkambi®. 

6.3 Cost-effectiveness models for Orkambi® 

A number of economic evaluations or health technology assessments have been 

conducted for Orkambi®. Two published model based economic evaluations [126, 127], 

four technology appraisals [7-10] and a single review report looking at the cost-

effectiveness of Orkambi® were identified [94]. Of the four technology appraisals that 

were found, two were conducted by the Canadian Agency for Drugs and Technologies in 



   

 

   

 

198 

Health (CADTH), and the National Centre of Pharmacoeconomics (NCPE) and NICE both 

conducted one study each. Lastly, the review of a range of modulator treatments including 

Orkambi® was conducted by the Institute for Clinical and Economic Review [94]. The two 

economics evaluations, four technology appraisals and single review were evaluated 

further in a range of areas which are discussed further in the proceeding sections.  

6.3.1.1 Evaluation type 

Of the two economic evaluations conducted on Orkambi® one was a cost-utility analysis 

[126] and the other a cost-effectiveness and budget impact analysis [127]. The technology 

appraisals by NCPE, NICE and CADTH were all cost-utility analyses [7-10]. Similarly, the 

Institute for Clinical and Economic Review conducted a cost-utility analysis in their review 

of Orkambi® treatment in CF.   

6.3.1.2 Time horizon 

The time horizon used in the models varied. All technology appraisals used a lifetime 

horizon [7-10], Sharma et al [126] adopted a 10 year time horizon owing to the lack of 

effectiveness data and a likely change in the future availability of novel treatments which 

could surmount the effectiveness of Orkambi®. Lastly, the study by Vadagam et al [127] 

had a single year time horizon due to the model being a static decision model. Again, this 

was decided based on the limited effectiveness of Orkambi®, clinical trial data and 

matched control patients. 

6.3.1.3 Discounting  

A 3% discount was applied clearly on both costs and outcomes for economic evaluation 

study by Sharma et al [126], whereas Vadagam et al [127] did not apply any discounting 

due to their model only having a time horizon of a year.  In terms of the technology 
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appraisals, the NCPE did not state the discount rate or whether it was applied to both 

costs and outcomes [9], NICE stated the discount rate of 3.5% to both costs and 

outcomes, CADTH stated that Vertex Pharmaceuticals applied different discount rate in 

each submission, 5% in the 2016 submission [7] and 1.5% in the most recent [8]. Lastly, 

the Institute for Clinical and Economic Review applied a 3% discount to costs and 

outcomes.  

6.3.1.4 Model structure 

The only study which provided information on their model structure used the conventional 

5-health state model discussed in Chapter 2 (Section 2.7.3) with additional states for 

pulmonary exacerbation and post lung transplant [126]. The technology appraisals by the 

NCPE [126] states that they used an individual patient simulation model but did not 

elaborate on the actual structure of the model, as was the case the with NICE [10] and 

CADTH [7]. However, the most recent technology appraisal by CADTH provided a 

diagram of the individual patient simulation model [8].  Lastly, Vadagam et al [127] did not 

describe their model structure.  

6.3.1.5  Country 

The country for which the analysis was conducted was either the United States (U.S) 

[126, 127], Ireland [9], Canada [7, 8] or the U.K [10]. 

6.3.1.6 Perspective 

The studies were conducted from a U.S third party payer [126, 127] and Health Service 

Executive (HSE) [9], Canadian public health care payer [7, 8] and NHS and personal 

social services perspective [10].  
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6.3.1.7 Data sources  

6.3.1.8 Treatment efficacy 

Clinical trial data utilised in all of the studies were sourced from a range of publications 

[46, 222, 223]. The two economic evaluations of Orkambi®[126, 127] used pooled 

absolute change in the FEV1 as their efficacy measure. However, this varied based on 

the treatment dose. Vadagam et al [127] used the mean absolute change in FEV1 across 

two clinical trials based on a single dose of Orkambi®(400mg Lumacaftor with Ivacaftor 

(250mg) every 12 hours), presented as a mean absolute change in FEV1 of 2.8 (CI:1.8-

3.8). On the hand, Sharma et al [126] used the mean absolute change in FEV1 across 

two dose groups of Orkambi®(600mg/400mg Lumacaftor with Ivacaftor (250mg) every 

12 hours), which was presented as a range and not a mean improvement with a 

distribution. The technology appraisal by CADTH [7] used treatment efficacy values 

similar to Vadagam et al [127]. The most recent submission from Vertex pharmaceuticals 

to CADTH [8] used a range of sources for the clinical efficacy of Orkambi®[222-226], to 

reflect the population in their model. The technology appraisal by NICE used treatment 

efficacy values similar to Vadagam et al [127]. Lastly, Institute for Clinical and Economic 

Review [94] used two different efficacy values based on the age of the population, with 

those between 6-11 having a mean absolute increase in percentage FEV1 of 2.4 (CI:0.4-

4.4) [227] and those older than 12 having a mean absolute increase in percentage FEV1 

of 2.8 (1.8-3.8) from Orkambi®(400mg Lumacaftor with Ivacaftor (250mg) every 12 hours) 

[46].  

The effectiveness data, although the same, was used differently particularly when 

applying treatment effect on the costs and outcomes. Sharma et al [126] applied a 100% 
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sustained efficacy of Orkambi®throughout the model time horizon as their base case 

analysis. In the, worst case scenario analysis, the treatment efficacy was only allowed to 

occur in the first year of the model cycle. Vadagam et al [127] used the efficacy data for 

one year to match the time horizon of their model. The technology appraisal conducted 

by NICE [10], applied the effectiveness of Orkambi® up to week 24 in the model.  

The NCPE [9] and CADTH [7, 8] did not provide much detail about how treatment efficacy 

data were utilised. 

6.3.1.9 Costs 

These were calculated through a variety of routes. Sharma et al [126] estimated the cost 

of Orkambi® through manufacture listing price and subsequent insurer reimbursement. 

Vadagam et al [127] obtained the cost of Orkambi® from the RED BOOK [228]. The 

models submitted by Vertex Pharmaceuticals to the NCPE [9], CADTH [7] and NICE [10] 

only provided a direct price of Orkambi® and no further breakdown of costs. However, 

the most recent Vertex pharmaceuticals submission [8] appraised by CADTH does state 

that annual costs for managing CF was adjusted for FEV1, exacerbations, adverse events 

and lung transplantation. Furthermore, the report shows that resource use related to the 

management of CF, lung transplantation and exacerbations were derived from both 

unpublished work by Vertex and unpublished data from the Canadian CF Data Registry 

and clinical opinion. These were weighted by figures from the literature around laboratory 

testing, staff wages and yearly costs of CF treatment, but do not clearly state what these 

were. The review by Institute for Clinical and Economic Review of the cost-effectiveness 
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of different modulators provide a very detailed breakdown of how costs were derived for 

PEx, age and FEV1 distributions [94].  

Vadagam et al [127] costs included clinic/hospital visits, laboratory/monitoring tests 

among others and were taken from CF care guidelines published by the CF Foundation 

(U.S). Sharma et al [126] used a study by Lieu et al [116] to account for the cost of being 

in the various, mild/moderate/severe PEx events. These costs were inflated using the 

Personal Consumption Expenditure health component price index. Lung transplant cost 

were taken from the Millennium report.  

6.3.1.10 Utilities 

No detail was provided in the technology appraisals by the NCPE [9], CADTH[7] on the 

sources of utility data, although the report does mention that quality of life (QOL) is taken 

into account. Information on where utility data were derived in the most recent appraisal 

by CADTH [8] was taken from two clinical trials [222, 223] and a single study around PEx 

events [139]. The Institute for Clinical and Economic Review used utility values from a 

single study [105] where the utility of being in a FEV1 health state was taken from 

Tappenden et al [106] but were originally derived from another study [229]. The NICE 

technology appraisal showed that Vertex pharmaceuticals used values from two clinical 

trials [222, 223] and a HTA submission for Ivacaftor® [107]. However, sensitivity analyses 

subsequently changed these to those derived from other studies [106, 143]. Sharma et al 

[126] obtained utility data from a previous economic evaluation by Tappenden et al [106], 

who derived these from another study [229]. Vadagam et al [127] did not conduct any 
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QOL assessment/impact as part of their health economic model. This shows clear paucity 

in available utility data as identified in Chapter 3.  

6.3.2 Primary outcome measures 

Vadagam et al [127] used the efficacy data to determine the cost per 1-unit increase in 

the FEV% predicted per patient as their ICER. However, they also included a non-

conventional, average cost-effectiveness ratio (ACER) as the cost per FEV% predicted 

per patient. The technology appraisals submitted by Vertex Pharmaceuticals to the NCPE 

[9], CADTH [7, 8] and NICE [10] looked at the cost per QALY. The Institute for Clinical 

and Economic Reviews primary simulated outcomes were cost per year, life years 

accumulated and cost per QALY [94].  

6.3.3 Model assumptions 

The assumptions taken in the base-case analysis for each published paper or technology 

appraisal are presented in Table 66. 

Table 66: Assumption taken 



Study author Assumptions 

NCPE [9] Starting age: 12 years 

Patient distribution: based on clinical trials [222, 223] 

Treatment effect: ranging between 2.6 - 4% [46] 

CADTH [7] Starting age: 12 years 

Rate of FEV1 decline: lower for those taking Orkambi® 

Price reduction in Orkambi®: 82% of original cost after 12 years 

CADTH [8] Starting age: 6 years 

Patient characteristics: based on clinical trials [222, 223] 

Price reduction in Orkambi®: 82% of original cost after 12 years 

NICE [10] Starting age: 12 years 

Patient characteristics: based on clinical trials [222, 223] 

Treatment effect: 2.8 (1.8-3.8) [46] applied until week 24 only 

Rate of FEV1 decline: lower for those taking Orkambi® 

24.7% of people with a FEV1 below 30% had a lung transplant. 

Post-lung transplant mortality was assumed to be 15.2% in the first year, and 6.1% for each subsequent year. 

Price reduction in Orkambi®: 89% of original cost after 12 years 
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Study author Assumptions 

Institute for 

Clinical and 

Economic 

Review [94] 

Starting age: 6 years 

Patient distribution: based on CF Foundation 2016 

No increase in FEV1 over time 

Standard care is the same in both treatment arms 

CFTR drugs decrease the annual number of acute pulmonary exacerbations through the increase in FEV1 and through effect 

of Orkambi® on acute PEx. 

Sharma et al 

[126] 

Starting age: 12 years 

Usual care comprised of treatment with antibiotics, pancreatic enzymes, aminoglycosides (inhaled tobramycin as well as 

intravenously administered aminoglycosides) and DNase 

Patient distribution: based on CF Foundation 2015 (87% in mild, 11% in moderate, 2% in severe) 

Transplant was only received by those in the Severe health states (including post -PEx) 

Patients do not progress to worse health states while on treatment 

 

 

 



6.3.4 Incremental cost-effectiveness estimate ratio (ICER)  

The base-case assumptions in each model produced ICER values, Table 67: 

Table 67: ICER results and cost year by study 

Study author ICER Cost year 

NCPE [9] €369,141/QALY Not stated 

CADTH [7] CAD $485,767 /QALY Not stated 

CADTH [8] CAD $446,529/ QALY No Stated 

NICE [10] £218,248/QALY Not stated 

Institute for Clinical and 

Economic Review [94] 
US $890,739/QALY 2017 

Sharma et al [126] US $3,655,352/QALY 2016 

 

6.3.5 Sensitivity analysis 

Various forms of sensitivity analysis were conducted in all the above reviewed technology 

appraisals and publication. These are further mentioned in the discussion of this chapter. 

6.4 Methodology 

In this chapter, I have carried out a cost-utility analysis which uses Markov processes in 

combination with semi-Markov processes, as described in Chapter 4. Briefly, Markov 

processes allude to Markov models which have time-dependent transition probabilities 

which have no memory of the history of the cohort of patients. i.e. what health state they 

were in prior to entering the current health state. Semi-Markov processes are a relaxation 

of the Markov processes memory assumption, whereby memory can be introduced in the 

form of tunnel health states. The perspective of the study is the National Health Service 

(NHS) and the comparator standard care. Standard care comprises, usual treatment 
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based on CF Trust PbR cost banding matrix allocation and provision of High-Cost drugs 

which are not included in the NHS PbR tariff, a list of which are provided in Table 73, 

(Section 6.18.3). Standard care also comprises lung transplantation and post lung-

transplantation follow up. 

6.5 Model design 

In Chapter 1, a summary of the principles of good practice in decision modelling were 

highlighted (Section 1.4.2.1). The quality of a model was covered in three areas: structure, 

data and validation [88]. The proceeding sections will cover these aspects in reference to 

the cost-effectiveness conducted on Orkambi® as an exemplar.  

The model chosen to undertake the evaluation of a number of CF interventions, as 

explained in Chapter 4, was adapted to look at the exemplar cost-utility analysis of 

Orkambi®. The model simulates the outcomes of a cohort of individuals with CF with a 

starting age of 7, based on the use of data from the Chapter 5 and other data from the 

literature. A starting age of 7 was selected as Orkambi® is provided for those older than 

6 years. Chapter 4 covers in detail the De Novo Model design process which includes 

reference to the advantages of using a Markov Cohort Model as well as the taxonomy of 

model structures [121]. Additional changes to the model to include tunnel health states 

was also discussed. 



With knowledge that NICE now expect uncertainty around mean outputs due to parameter 

uncertainty to be quantified [121] and the assumption that the decision maker would be 

interested in the variability of the results around the mean estimates, both a stochastic 

and deterministic approach was used in the decision modelling. Additionally, I assumed 

that there is no interaction between the patients in the dataset, the assumption that all 

individuals who are F508Del Homozygous are homogenous in the dataset, that modelling 

relationships and that some occurrences in the patient population (post lung-

transplantation) represent non-Markovian time properties. One of the main drawbacks of 

Markov models is the lack of memory which can be altered through inclusion of tunnel 

health states which represent semi-Markovian processes to add memory into the model.  

The cycle length of the model is 1 year, reflecting annual review data of the CF Data 

Registry. The time horizon is based on the median survival of those in the CF Data 

Registry in 2016, which is 47.0 (44.7-48.2), with a significant difference in mean predicted 

survival between males and females, female survival being lower [230]. This time horizon 

was utilised due to the survival bias present in the U.K. CF Data Registry and resultant 

predicted probabilities [10]. The discount rate is 3.5% for both costs and outcomes [86]. 

Half cycle correct was also applied to both costs and outcomes [86]. 
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6.5.1 Model diagram 

Figure 27: Diagrammatic representation of the CE/Markov Model Structure 

Description of health states 

The model structure is presented in Figure 27. There is a total of 10 different health states: 

Mild, Mild IV, Moderate, Moderate IV, Severe, Severe IV, Dead, Dead IV, Lung 

transplantation and Post-Lung Transplantation (years 1-10+). The two Dead health states 

are the same, the only difference between the two is whether the cohort in the model died 

post IV treatment in that year or not.  

Transitions can occur back and forth between all health states in Box A, or to the same 

health state (circular arrow). Only those enclosed in the dashed line in Box A, Box B, can 

enter into the Lung Transplant health state. Subsequent to receiving a Lung Transplant, 

individuals enter into the Post-Lung Transplant health state (Box D) in which they remain 

until death (Dead) (Box E). Transitions can occur from any health state in Box A to either 

Dead state in Box C.  
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The model assumed that individuals who would receive Orkambi® treatment would 

initially be distributed across the health state from Mild to Severe IV based on the dataset 

utilised to calculate the transition probabilities in Chapter 5. Table 68 provides the 

percentage distributed in each health state by sex. Subsequent transitions to other health 

states were based on the transition probabilities generated in Chapter 5. The initial 

distribution of patients in the model were based on distribution of 6-year-old CF patients 

in their respective health states prior (previous health state) to turning 7 years old (current 

health state). So, this means that although the transition probabilities are based on 7 

years onwards the initial cohort distribution is based on those 6 years old, as such the 

model is described as starting from age 7. The data utilised to calculate initial health state 

distribution values at 6 years old were the same data used to calculate the health state 

transition probabilities in Chapter 5. We can see from the below distribution that no 

patients were in either Severe health state and that a higher majority of females were in 

the worse health states compared to males.  
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Table 68: Patient Distribution in model 

Health state Previous (sex)   Proportion by sex  

MILD (Males) 74% 

MILD (Females) 50% 

MILD IV (Males) 18% 

MILD IV (Females) 35% 

MODERATE (Males) 5% 

MODERATE (Females) 3% 

MODERATE IV (Males) 3% 

MODERATE IV (Females) 12% 

SEVERE (Males) 0% 

SEVERE (Females) 0% 

SEVERE IV (Males) 0% 

SEVERE IV (Females) 0% 

 

Methods of disease progression are based on changes in the lung function (FEV1) which 

have been designated as follows for each health state: Mild; 70, Moderate 40 <70 and 

Severe <40. The overall designations, in terms of FEV1, are based on the most commonly 

used classification in the health economics modelling of CF interventions [92]. Further 

description of how health states are defined as not receiving intravenous antibiotics or 

receiving intravenous antibiotics has been explained in Chapter 4.  
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6.6 Characteristics of patients in the model  

The starting population of the model is the total number of individuals who were F508del 

Homozygous in the CF Data Annual Report of 2016 [11]. This equated to a total 

population size of 4,789, males and females [230]. I assumed that these individuals had 

a sex distribution similar to that of the overall CF Data Registry for 2016, which was 53.2% 

males and the remaining females [230].  

Progression in the model began at the age of 7 and individuals progressed through the 

model until the age of 47, the median survival age. The median age was selected due to 

the nature of how the probability estimates were calculated in Chapter 5, survival bias 

present in the data, treatment trending being very likely to change beyond this period, as 

well the range of assumptions made when cleaning the data in Chapter 4. The U.K. CF 

Data Registry calculates their mortality estimates by grouping together several years, 

using methods proposed by Sykes et al [208], as single year predictions of median 

survival can have large variations year on year [178].  As a result, estimates of survival 

could be even more unreliable after the median age of survival.  

A summary of these details are in Table 69.  
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Table 69: Model demographics at baseline 

Demographics at baseline 

Characteristics Starting value  Source 

Population 4,789 UK CF Data Registry annual report 2016 [230] 

Age 7 Model assumption 

Sex distribution (%) 

(Males/Females) 

53.2/46.8 UK CF Data Registry annual report 2016 [230] 

Median survival (years old) 47 UK CF Data Registry annual report 2016 [230] 

6.7 Base-case analysis 

The base case analysis started with the distribution of the cohort across the different 

previous health states, Mild to Severe IV, as described earlier in Characteristics of 

patients in the model section above. Similarly, initial cohort and sex distribution was 

provided in this section.  For those who received treatment, it was assumed that treatment 

was effective for the entire period during which they were on treatment. As a result, the 

cost of treatment was also applied to the treatment cohort for the whole-time horizon of 

the model.  

6.8 Scenario analyses 

A range of scenario analyses were performed by changing the characteristics of 

the patients in the model. Table 70 below shows the different scenarios analyses 

performed. 
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Table 70: Scenario analyses 

Base Case  Treatment effect applied for whole time horizon of model, costs of 

Orkambi® applied throughout time horizon of model in base-case 

analysis 

Scenario 1 Treatment effect applied for 2 years, costs of Orkambi® applied 

throughout time horizon of model  

Scenario 2 Treatment effect applied for 2 years, cost of Orkambi® applied 

duration of treatment (2 years) 

Scenario 3 Initial cohort patient distribution in analysis replicated RCT for 

Orkambi® [46] 

Scenario 4 Starting of age of cohort in analysis changed to 12 years 

Scenario 5 Starting of age of cohort in analysis changed to 25 years 

Scenario 6 Change utility data for health states to estimates used by Whiting et 

al [107]  

6.9 One-way sensitivity analysis 

A range of one-way sensitivity analyses were used to assess the validity of the model. 

Furthermore, it was used to look at how the ICER value for Orkambi®’s cost-effectiveness 

changes in responses to a changes in series of values.  

6.10 Threshold analysis 

Threshold analysis was performed on the cost of Orkambi® at threshold between 

£20,000-30,000/QALY and the QALYs generated from treatment at various thresholds of 

costs per QALY.  
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6.10.1 Utilities 

Looking at how the utility values of each health state in the model would affect the 

resulting ICER of the base-case scenario. The utility values were individually adjusted to 

the upper and lower range presented by Sharma et al [126]. It is important to note here 

that the values for the health states which include IV treatment, a utility decrement of -

0.17 was applied to the lower limits.   

6.11 Probabilistic sensitivity analysis (PSA) 

Uncertainty around the deterministic sensitivity analysis (DSA) results of the modelling 

conducted in this chapter was explored using the above scenario analyses but also 

included the above mentioned one-way sensitivity analysis.  However, random draws 

from the distributions of the point estimates can also be used, called probabilistic 

sensitivity analysis (PSA). Probabilistic sensitivity analysis allows the model to vary the 

value of each input parameter simultaneously based on a probability distribution selected 

as most appropriate for each input parameter in the model [1].  

The uncertainty around all model parameters were investigated. The model parameters 

sheet in the included Markov Model (Supplementary material) provides the point estimate 

for DSA and distribution of the parameters used in the PSA in the model, as well as any 

assumptions in cases where distributions were not selected (e.g., Cost bands and High-

Cost drugs).  

6.12 Model Validation 

A number of technology appraisals, publications and a review have been identified in the 

Section 6.3 which look at the cost effectiveness of Orkambi®. In order to assess the 

credibility of the model produced in this chapter the model was tested to demonstrate 
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validity. The methods that could be used are analogous to those mentioned by Turner et 

al [231] which were based on validation methods suggested by Philips et al [232]. Four 

methods of validation were discussed by Turner et al [231] and these include, internal 

consistency, external consistency, between model consistency and lastly, predictive 

validity. Due to the nature of health economic modelling and the variety of sources used 

to develop the model in this chapter, it was decided that a range of consistency checks 

would be used. In order the validate the model outcomes, as done by Turner et al [231], 

between model consistency was also evaluated.  

6.12.1 Internal consistency  

Internal consistency of the model as described by Philips et al [232] was assessed by 

changing values in the model, such as health state utilities model to extreme values 

(Threshold analysis; Section 6.10 and One-way sensitivity analysis; Section 6.9). This 

was done to ensure that the model behaved as expected when values were changed of 

the different selected parameters in the model. However, further internal consistency tests 

such as programming of the model in alternative software was not undertaken as 

resources were not available to programme the model in an alternative resource.  

6.12.2 External consistency 

In order to assess the external consistency, clinical expert opinion was used in the 

consensus of the model structure and the most appropriate information used in the model. 

Lastly, the results of the model were assessed through comparison for similarities in 

relation to estimates produced from other studies and well as review of such estimates 

by clinical experts in CF.  
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6.12.3 Between model consistency 

To validate the model against existing literature, inputs from a number of the studies 

mentioned in the previous literature section of this thesis were used. These estimates 

were used in the exemplar Orkambi® cost-effectiveness analysis to determine if there 

were any substantial difference in model outcomes. These were then elaborated on. This 

was the main focus of the validation undertaken in this chapter, the methods used follow 

those, as much as possible, utilised by Turner et al [231].  

6.12.4 Predictive validity 

This was not undertaken as the model developed in this chapter was not a predictive 

model, where data were used to predict future outcomes as in epidemiological models. 

6.13 Model assumptions 

Cost band proportions estimates were taken from Chapter 5. These estimates for each 

health state did not change for either treatment or intervention group and as a result, cost 

band proportions per health state were the same across Orkambi® and No Orkambi® 

cohorts. The main difference between control and treatment groups were driven by 

change in health state transitions from the treatment.   

Lung transplantation, although could occur from better health states as shown in the UK 

CF Data Registry, this was very rare. As a result, I assumed that lung transplantation 

would only occur from either Severe health states. This was supported by clinical expert 

opinion (Siobhan Carr, 31st July 2019). 

Patients could transition between any health state, better to worse or worse to better, 

except for absorbing health states and subsequent to lung transplantation.  
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6.13.1 Transition probabilities  

As already mentioned, a cohort of the patients moved through the model on an annual 

basis based on the transition probabilities defined in Chapter 5. Transition between 

different health states were derived from an ordered probit regression model, which 

included death. A significant difference in the model in this chapter and existing models 

for Orkambi® [126, 127] or other CF interventions [106] was that transitions were allowed 

to better health states, from worse health states, regardless of whether the individual was 

receiving treatment or not. These transitions to better health states were based on 

predicted probabilities derived from the U.K. CF Data Registry.  

6.13.2 Treatment effectiveness 

In order to model the long-term effectiveness of Orkambi®, treatment effectiveness was 

taken from a study by Konstan et al [226]. This study looked at the long term efficacy of 

Orkambi®, while taking into account the outcomes from the TRAFFIC and TRANSPORT 

clinical trials [222, 223], extending observation of treatment effectiveness in those who 

were F508Del Homozygous to 96 weeks. Patients who started treatment with Orkambi® 

(Lumicaftor 400mg/250mg Ivacaftor every 12 hours) in either the TRAFFIC or 

TRANSPORT and continued treatment in the extension study (PROGRESS; 96 weeks) 

[226], the results showed a mean absolute improvement in FEV1 of 1.1 (95% CI: 0-2.2), 

p<0.05 at 96 weeks compared to baseline levels. Values presented here from the clinical 

trials are calculated using the Global Lung Function Initiative (GLI) equations [233], which 

are also used to calculate the FEV1 values presented in the U.K. CF Data Registry. As a 

result, this would improve the generalisability of the effectiveness estimates onto the U.K. 

CF Data Registry FEV1 values.  
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To model the treatment effects without introducing any bias, the original 

population/dataset used to calculate the health state transition probabilities in Chapter 5 

were used. The development environment Rstudio® [169] was used in conjunction with 

the function rnorm in order to create a range of normally distributed values with a mean 

of 1.1, and upper and lower 95% CI of 2.2 and 0, respectively. The rnorm function 

equation is rnorm (n, mean, standard deviation (sd)), where n is the number of values 

that will be simulated with a mean and sd presented in the equation. The sd of the values 

was calculated using the following equation from Edlin et al [1], (upper – lower CI)/ 3.92, 

where 3.92 covers the probability density function of a normal distributions 95% CI (1.96 

x 2). The standard deviation is equal to (2.2-0)/3.92 = 0.56. A total of 10,000 value were 

simulated in order for the treatment effect to reflect a mean and CI of 1.1 and 0-2.2 

respectively. A larger value would have produced many estimates with these figures due 

to the central limit theorem.  

Subsequent to creating treatment effect values, they were randomly added onto the 

current FEV1 of those in the CF Data Registry to account for Orkambi®. Lastly, the 

ordered probit regression methods used to calculate the health state transition 

probabilities in Chapter 5 were applied to this dataset to calculate transition probabilities 

for those receiving treatment.  

6.14 Orkambi® status of patients in U.K CF Registry 

The Orkambi® status of those in the U.K. CF data registry was evaluated and only 77 

patients were taking Orkambi® out of the total 12,463 patients in the Registry. Orkambi® 

status was only provided from 2016, so patients would have only been on the treatment 



   

 

   

 

220 

for a year in my dataset. Of those 77 individuals, the total number in the final dataset 

utilised to calculate the transitions probabilities, Chapter 5, were 67. Out of the total 

number of patients in the dataset, those on Orkambi® represented 1.38%.  

Figure 28 provides a breakdown of those who were on Orkambi® in 2016 compared to 

those who were not by sex and their previous health state. 

I did not remove these individuals from the data as they were less than 2% of the overall 

data and that this would not affect the overall estimates generated by the regression 

modelling for health state transition probabilities. We can see that there were more 

females on Orkambi® than males and that Orkambi® status was positive more often in 

the Severe IV health state. 

Figure 28: Breakdown of Orkambi® status by sex 
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6.15 Lung transplant health state 

The probability of receiving a transplant was based on the data in the CF Data Registry 

and are described in detail in Chapter 5. For the exemplar cost utility analysis of Orkambi® 

I assumed that transplant could be received only whilst in the Severe health states and 

were age dependent. As part of the PSA, probability of receiving a transplant were varied 

by adjusting the predicted transition probabilities by up to 10% above or below the mean 

value. Subsequently, those who received a transplant could either enter into death health 

state or progress onto post-transplant survival.  

6.16 Post-Lung transplant health state 

Post-long-transplant survival was estimated using CF Registry Data from 2007 to 2016 

by Professor Ruth Keogh. The analysis was restricted to individuals who had no record 

of a transplant prior to 2007 and who were F508Del Homozygous. Dates of death post-

transplant were available up to the end of 2016 and individuals with no date of death were 

assumed to be alive at the end of 2016. There were 204 individuals included in the 

analysis who had a lung transplant between 2007 and 2016, of whom 51 died. A Cox 

regression model including sex and age at transplant (in years) was fitted. Age at 

transplant ranged from 4 to 60 years and was entered as a linear term in the Cox 

regression. The estimated hazard ratio of death post-transplant for females versus males 

was 1.19 (95% confidence interval 0.68,2.10) and a 1-year increase in age at transplant 

was associated with an estimated hazard ratio of 0.98 (0.94,1.02). Note that neither sex 

nor age at transplant were associated with post-transplant survival at the 5% significance 

level. The results from the Cox model were used to obtain estimates of 1-year, 2-year, 
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and up to 10-year post-transplant survival probabilities for males and females and by age 

at transplant.  

The health states for post-lung transplant were tunnel states/semi-Markovian processes. 

This allows mortality after lung transplant to vary by time. Without such a state this would 

not be possible. This meant that patients could only progress from Lung transplant to post 

transplant survival up to 10+ years and such survival varied by the age at which the cohort 

received their transplant. The patients in these health states could either enter an 

absorbing health state or move to subsequent post-transplant survival. After 10 years of 

post-transplant survival the cohort of individuals could either stay in 10+ survival or enter 

the absorbing health state, death. Similar to the lung transplant health state, it was 

assumed in the model that those who received a transplant would only enter into the 

Death health state post-transplant. This assumption reflects the Payment by Results 

(PbR) guidance [234]. It states that as soon as a patient receives a transplant payment 

of the CF PbR tariff will cease at the end of the month the transplant was received. Any 

further care required post-transplant, although provided at CF specialist centers, would 

be the responsibility of those managing transplant commissioning arrangements, hence 

the costs would also be accounted to them. Further discussion with a clinical expert (Dr 

Siobhan Carr, 2nd February 2021) confirmed that this assumption is in line with current 

treatment, that Orkambi® is no longer provided to lung transplant patients. Although this 

may change in the future.  
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6.17 Perspective of model  

The model analysis is based on an NHS perspective. This included only cost born to the 

healthcare system through direct resource utilisation. A personal and social service 

perspective was not added to this as no such data were available in the U.K. CF Data 

Registry.  

6.18 Costs in the model  

The costs included in the model were those born out of inpatient/outpatient care, drug 

costs, as well standard care costs based on the cost banding matrix published by the CF 

Trust Registry.  The cost year in the model was 2016/17. This was selected to reflect 

previous studies conducted on Orkambi®. Methods for adjusting the costs are presented 

in Section 6.18.3.  

6.18.1 Banding matrix 

Costs were based on the banding matrix definitions proposed by the UK Cystic Fibrosis 

Trust, Table 71. The probabilities of being in any cost band based on the current health 

state of the cohort of the patients in the model are described in Chapter 5 (Section 5.19). 

In Chapter 4, the cost banding matrix is explained in more detail (Section 4.17.2). 

However, in summary the cost banding matrix is used alongside an algorithm by the U.K. 

CF Data Registry to determine, annually, what cost band an individual patient falls into.  

The cost band probability data allows distribution of the cohort into the various bands by 

their current health state and allows calculation of cost of CF by current health state as 

well as by age and sex.  



Table 71: Cost banding matrix 

Banding definitions 

Band 

1 1A 2 2A 3 4 5 

Therapies 

Maximum number of total days of IV antibiotics 0 14 28 56 84 112 >/=113 

Nebulised antibiotics (Pseudomonas infection)  Yes      

Long-term (>3 months) nebulised antibiotics or 

DNase 
  Yes     

Long-term (>3 months) nebulised antibiotics and 

DNase 
   Yes    

Hospitalisation Maximum numbers of days in hospital 0 7 14 14 57 112 >/=113 

Supplemental 

feeding 

Nasogastric feeds    Yes    

Gastrostomy     Yes   

Complications 
CF Related Diabetes or ABPA w/o other 

complications 
   Yes    
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CF Related Diabetes and ABPA     

Yes and 

(FEV1 

≥60%) 

Yes 

and 

(FEV1 

<60%) 

 

Massive Haemoptysis or Pneumothorax     

Yes and 

(FEV1 

≥60%) 

Yes 

and 

(FEV1 

<60%) 

 

CF Related Diabetes and Gastrostomy     

Yes and 

(FEV1 

≥60%) 

Yes 

and 

(FEV1 

<60%) 

 

Non Tuberculous mycobacterium treated or 

difficult to treat infections (eg MRSA or Cepacia) 
    Yes   
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requiring other nebulised antibiotics eg 

Meropenem, Cayston , Vancomycin. 



 

6.18.2 Cost figures 

Table 72 presents the costs of being in any particular banding category in 2016/17 [235] 

also presented in the Markov Model; sheet Cost_Bands (Supplementary material). This 

banding category is based on the matrix in Table 71. The predicted probabilities 

generated in Chapter 5 define how the cohort is distributed between these banding 

categories whilst in any current health state presented in Figure 27 of this chapter, except 

lung and post lung transplant. The cost presented in Table 72 are based on the ‘year of 

care tariff’, which was first introduced in 2013 to include mandatory payments to CF 

centres across England for CF related care [178]. The ‘year of care tariff’ uses the UK CF 

Data Registry to categorise individuals to particular bands based on their disease severity 

and only covers CF related care at hospitals [178], as reflected in Table 71. This tariff-

based system also excludes charges for High-Cost drugs such as Colistimethate sodium, 

Tobramycin, Dornase alfa, Aztreonam Lysine, Ivacaftor and Mannitol [234, 236]. 

Table 72: Cost (annual) by bands [235] 

Band 1 1A 2 2A 3 4 5 

Costs   
£       

5,033 

£       

7,447 

£       

7,447 

£      

12,036 

£      

18,422 

£      

33,224 

£      

40,054 

 

6.18.3 High-Cost Drugs 

To determine the proportion of individuals in each health state that were on a range of 

High-Cost drugs, proportion estimate data were taken from the UK CF Data Registry. 

These proportions were stratified by age, sex and the current health state of the individual. 
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So, the proportions for a range of age categories for either sex group would be more 

reflective of what is observed in U.K CF care for those who are F508Del Homozygous. A 

full graphical breakdown of these proportions by age and sex are provided in the Markov 

Model, sheet; High Cost Drugs (Supplementary material). The CF Data Registry only 

provided an indication of whether the individual in the registry received a drug in that year 

or not. It did not provide any indication of duration or dose. As a result, clinical expert 

guidance (Siobhan Carr, 25th July 2019) was taken to determine the doses and duration 

of treatment for the range of High-Cost drugs based on best clinical practice.  Based on 

the advice, the doses and resultant costs are presented in Tables 73 and 74 respectively. 

Table 73: High-Cost drugs, doses and treatment regimen/duration 



Drug name Duration Type Dose 

Mucolytic Alone (12 months) 
Mannitol Dry Powder (Inhaled) 2 x day: 400mg 

Dnase 1 x day: 2500 units = 2.5 mg 

Colistimethate 

Sodium 

Alone (12 months) 
Colistimethate Sodium Solution - Colistin 

(Colomycin) 

No information in the BNF about nebuliser drug 

option: only injection so will take this as 

indicative of costs: Colomycin is 2 megaunit 2x a 

day >8 years/ 1 megaunit 2x a day <8 years 
Combination (6 months) 

Colistimethate Sodium Solution - Colistin 

(Colomycin) 

Alone (12 months) Colistimethate Dry Powder Inhaled (Colobreathe) 
Colobreathe is twice a day and only 1 strength. 

Combination (6 months) Colistimethate Dry Powder Inhaled (Colobreathe) 

Alone (12 months) Promixin (Colistimethate Sodium Solution) Promixin is 0.5 megaunits 2x a day until 8 years 

old/ Promixin is 1 megaunits 2x a day over 8 

years old 
Combination (6 months) Promixin (Colistimethate Sodium Solution) 

Tobramycin 
Only used in alternating 

fashion (i.e. 6 months) 
Tobramycin Solution (inhaled)-Bramitob 

Tobramycin – is 300mg twice a day every other 

month – so 6 months use 
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Only used in alternating 

fashion (i.e. 6 months) 
Tobramycin Solution (DPI)-TOBI 

Tobramycin (DPI) is also twice a day, alternate 

months 

Only used in alternating 

fashion (i.e. 6 months) 
Aztreonam Lysine (Cayston) 

Aztreonam 75 mg single dose 3 times a day and 

used every other month 

Orkambi® Alone (12 months)  

400mg of Lumacaftor in combination with 

Ivacaftor (250mg) every 12 hours 



Table 74 provided the costs for each drug based on figures in the British National 

Formulary (BNF) [237]. Figures were deflated to 2016 using the NHS drug cost inflation 

index in the Personal Social Services Resource Unit (PSSRU) cost 2019 report [238]. 

The table shows the cost of the treatment for those either older, younger than 8 years or 

whether the treatment is age independent (any). Furthermore, the drug name or type is 

given followed by the duration (12/6 months) as some treatment cannot be given for more 

than 6 months at a time if they are given in combination. For example, Colistimethate 

Sodium Solution - Colistin (Colomycin) and Colistimethate DPI (Colobreathe) can be 

coupled together.  

The inflation index figures are presented in Table 75. In order to deflate the price of the 

High-Cost drugs, the 2018 index value was divided by the 2016 index value to give an 

index value of 1.04866. This value was used to calculate the drug cost for 2016.  

Table 74: High-Cost drugs (2016)  
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Drug Name/Type 
Take alone or with 

another drug 

Age of individual < 8 years > 8 years Any 

Drug Name Cost 

Mucolytic 

(DNase/Hypertonic 

Saline) 

Alone (12 months) 

Mannitol Dry Powder (Inhaled) £5,681 

Dnase £5,681 

Colistimethate 

Sodium 

Alone (12 months) 
Colistimethate Sodium Solution - 

Colistin (Colomycin) 
£618 £ 1,112  

Combination (6 

months) 

Colistimethate Sodium Solution - 

Colistin (Colomycin) 
£ 309 £556  

Alone (12 months) Colistimethate DPI6 (Colobreathe) £11,086 

Combination (6 

months) 
Colistimethate DPI (Colobreathe) £5,543 

 
6 DPI- Dry powder inhalation  
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Alone (12 months) 
Promixin (Colistimethate Sodium 

Solution) 
£ 2,334 £ 4,669  

Combination (6 

months) 

Promixin (Colistimethate Sodium 

Solution) 
£1,167 £ 2,334  

Tobramycin 

Only used in alternating 

fashion (i.e., 6 months) 
Tobramycin Solution (inhaled)-Bramitob £ 6,792 

Only used in alternating 

fashion (i.e., 6 months) 
Tobramycin Solution DPI TOBI £ 7,467 

Only used in alternating 

fashion (i.e., 6 months) 
Aztreonam Lysine (Cayston) £ 12,482 

Orkambi® Alone (12 months) Lumicaftor/Ivacatfor £ 91,546 
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Table 75: PSSRU inflation indices 

Cost were deflated using the 

PSSRU 2019 

Index values were taken from Drug costs 

(PSSRU) 

2016/17 104 

2017/18 105 

2018/19 109 

 

Although the costs presented in the NHS National Tariff Payment System 2016/17 [239] 

do not reflect any uncertainty in their cost estimates for the costs bands, for the PSA 

analysis a 10% variability above and below the mean deterministic value was introduced 

and no distributional assumption was applied. All costs and outcomes were discounted 

to present value at 3.5% annually and were presented for the year 2016 in U.K. pounds 

sterling (GBP).  

To reflect uncertainty in the probabilities of being placed in particular cost bands based 

on the current health state of the cohort in the Markov model. A beta distribution was 

assumed, which are appropriate for probability values that lie between 0 and 1. 

Uncertainty was incorporated for each estimate stratified by age and sex. In order for the 

probabilities to sum to 1, probabilities were weighted by their probability and divided by 

the sum probability for each age and sex combination.  
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6.19 Health state utility  

A systematic review was conducted to ascertain the availability of health utility data in CF, 

Chapter 3 [93]. Additionally, the utility values used in a previously published model [102] 

were obtained and used in my model (personal communication with Paul Tappenden, 

22nd February 2018). These estimates, which were also found in the review, were taken 

from two original studies to determine the utility of being in mild, moderate and severe 

health states as well as lung transplantation [113, 229]. Changes in the FEV1 were the 

main indicator in the changes in utility for any cohort of patients in the model, as well as 

whether one received a lung transplant. As explained earlier, previous models for CF 

interventions have assumed that any IV treatment longer than 14 days would signify an 

exacerbation event. For those who were in the mild, moderate or severe health states in 

this model, it was assumed that there would be a change in the utility as a result of 

receiving IV antibiotic treatment. A utility decrement of 0.17 was applied to the model 

[102], although there is no data in the CF Dats Registry about PEx events or the reason 

for receiving such IV treatment. As IV days in the Data Registry were assumed to equate 

an exacerbation, the decrement was applied for the whole year. As a result, treatment 

with Orkambi® would effect health state transitions but also impact outcomes through 

utilities. Similarly, the range data provided for the sensitivity analysis, a utility decrement 

was also applied to the lower bound to reflect utility of the IV health state. Lastly, it was 

assumed that there would be no variation in utility across either sex group.  

For conducting the PSA analysis, the deterministic values were given a beta distribution 

due to the values for all health states being closer to 1 than 0. Value for alpha and beta 
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were calculated using the following equations respectively, (((1-utility)*utility/standard 

error)-1)* utility, alpha*((1- utility)/ utility), where the utility value represents utilities for 

each respective health state. Standard errors for the alpha value were calculated based 

on the number of individuals in each respective study, 29 [229] and 79 [113]. The number 

of individuals were based on the data within the respective studies.  

Overall utility for each health state, with or without IV treatment and sex were given the 

different mean utility values but they were also allowed to vary in the PSA analysis.  

Table 76 provides a summary of the utility data used in the deterministic and probabilistic 

analysis. These values were taken from Tappenden et al [102] (health state specific 

utilities) and Anyanwu et al [113] (lung transplant utilities).  
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Table 76: Utility parameters  

Current Healthstate  Sex Health Utility SE Variance SD alpha beta 

Mild Male 0.86 0.03 0.00 0.17 109 17 

Mild Female 0.86 0.03 0.00 0.17 109 17 

Mild IV Male 0.69 0.03 0.00 0.17 109 17 

Mild IV Female 0.69 0.03 0.00 0.17 109 17 

Moderate Male 0.81 0.04 0.00 0.22 78 18 

Moderate Female 0.81 0.04 0.00 0.22 78 18 

Moderate IV Male 0.64 0.04 0.00 0.22 78 18 

ModerateIV Female 0.64 0.04 0.00 0.22 78 18 

Severe Male 0.64 0.06 0.00 0.32 42 24 

Severe Female 0.64 0.06 0.00 0.32 42 24 

Severe IV Male 0.47 0.06 0.00 0.32 42 24 

Severe IV Female 0.47 0.06 0.00 0.32 42 24 

Dead Male 0.00 0.00 0.00 0.00 0.00 0.00 
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Dead Female 0.00 0.00 0.00 0.00 0.00 0.00 

Dead IV Male 0.00 0.00 0.00 0.00 0.00 0.00 

Dead IV Female 0.00 0.00 0.00 0.00 0.00 0.00 

Lung Transplantation Male 0.83 0.02 0.00 0.17 319 65 

Lung Transplantation Female 0.83 0.02 0.00 0.17 319 65 

 



   

 

   

 

6.20 Data analysis 

6.20.1 Running the model 

The model was programmed using Microsoft Excel. The supplementary material 

contains the Markov Model. The model contains the macros used to perform the 

probabilistic sensitivity analysis (PSA) and creation of cost effectiveness acceptability 

curve (CEAC).  

6.20.2 Transition probabilities  

In cases where the data were taken from Chapter 5 such information has already been 

provided in Sections 5.19 of that chapter.  

To reflect uncertainty in the probabilities of being placed in particular health states in 

the Markov model, a beta distribution was assumed, which is appropriate for probability 

values that lie between 0 and 1. Uncertainty was incorporated for each estimate 

stratified by age and sex. The following formulae was used, =BETAINV(RAND(), alpha, 

beta). In order for the probabilities to sum to 1, probabilities were weighted by their 

probability and divided by the sum probability for each age and sex stratification.  

The model was run deterministically after the parameter values were set into their 

relevant sheets and cells. The deterministic analysis added the respective costs and 

QALYs for each health state for both the control and intervention cohort of males and 

females. The outcome of the analysis is presented in various forms; incremental cost 

effectiveness ratios (ICER), Cost effectiveness plane and incremental net monetary 

benefit (NMB) at a range of ceiling ratios(λ)/ threshold values for the QALY.  

In order to calculate the ICER and NMB outcomes, the formulae (Equations 2 and 3) 

were used, where C2 is the cost generated under the intervention arm of the model, C1 



   

 

   

 

is the cost generated under the control/comparator arm of the model, E2 is the 

effectiveness units (QALYs) under the intervention arm of the model and E1 is the 

effectiveness units (QALYs) under the control/comparator arm of the model. The 

ceiling ratio (λ) for the NMB calculation is represented by the threshold value for the 

QALY, which is between £20-30,000 based on NICE guidance [86] in the base case 

analysis but was kept at set at £25,000 for the base case analysis but varied to different 

levels for the creation of the CEAC and the expected value of perfect information 

(EVPI) (Section 6.24.5).  

Equation 2; ICER = C2-C1/ E2-E1 = ΔC/ ΔE 

Equation 3; NMB = (Ceiling ratio (λ)*QALYS)-C2 
 

To reflect uncertainty in the model, PSA was performed to generate a cost-utility plane 

which graphically showed the joint distribution of costs and effectiveness. The ICER from 

each simulation round was then plotted on this graph, a total of 5000 simulations were 

ran, which amounted to 5000 estimates of incremental cost and QALY. Each estimate 

showed the mean incremental difference per person in the cohort, 4,789. The plot 

provides a visual indication of the uncertainty in the costs and effects around the 

deterministic ICER result. 

 

 

 

 



   

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 29 presents an example of the cost-effectiveness plane, where the intervention is 

presented by incremental change in costs and effects against the comparator or control 

intervention [1]. It has of four quadrants with incremental costs and effects on the vertical 

and horizontal axis respectively. Any estimates presenting themselves in the north east 

(NE) quadrant are more costly but also more effective, whereas those in the south west 

(SW) quadrant are less costly and less effective. Estimates presenting themselves in the 

north west (NW) quadrant are more costly and less effective and are often described as 

being dominated, while those in the south east (SE) quadrant are less costly but more 

effective and are said to dominate the comparator or control intervention in the model [1]. 

ICER values that fall into the NW and SE quadrants both generate negative ICER values. 

This requires caution when interpreting the results especially when presenting uncertainty 

Figure 29: Example of Cost-utility plane [1] 



   

 

   

 

around the ICER through PSA as negative ICER value could span across quadrants (for 

example NW and SE) which could produce similar negative ICER values. The same could 

be said for positive ICER values which span the NE and SW quadrants of the same 

magnitude. Any resultant ranking of the ICER values, positive or negative would place 

similar ICERs from different quadrants together [5]. In turn this makes interpreting the 

ICER values difficult [83].  

A solution, around the ICER value interpretation, is the use of NMB and CEAC. The 

advantage of using the NMB approach is that it places both costs and effects on the same 

scale. In NMB, the incremental effect in the model is converted into monetary terms using 

the ceiling ratio (λ) or willingness to pay threshold of a QALY [83]. In instance where the 

ceiling ratio of willingness to pay threshold for a QALY is unknown, a range of ceiling 

ratios can be used to produce a graphical depiction of incremental NMB [83]. Figure 30 

shows an example of incremental NMB, on the y-axis, for a range of ceiling ratios on the 

x-axis with confident intervals (CIs) for each ceiling ratio. The CIs for each threshold value, 

represented by the dashed line in Figure 30, for lower and upper the CIs respectively. 

Where, N represents the simulation number ran for the PSA. If the NMB is a positive 

value, this shows that the value placed on the benefits generated exceeds the cost of 

generating them, while the opposite, negative NMB, shows that the control is the better 

option in the evaluation.  

 

 



   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Taking the concept of NMB further, it is not always easy to interpret an ICER Plane, 

particularly if there are multiple interventions. However, it is possible to determine the 

probability of the intervention being cost effective at a range of thresholds similar to the 

NMB analysis. This is achieved through the CEAC [83], where the average probability of 

cost effectiveness is calculated over all 5000 simulations of the PSA at a range of 

threshold/ceiling ratios (λ).  

Decision uncertainty surrounding intervention effectiveness, resource use and outcome 

parameters in the model will introduce a dilemma of whether a health technology should 

be adopted given existing information. The probability of cost-effectiveness at the various 

threshold in the CEAC describes the chance that resources will be wasted if a decision is 

made to commit to the approval of a health technology or vice versa if a decision is made 

Figure 30: Example of Incremental NMB [2] 



   

 

   

 

not to commit [83]. As a result, the consideration of the value of additional research to 

reduce any uncertainty around the cost effectiveness of an intervention can have 

important opportunity cost implications. As such, Value of information analysis (VOI) 

allows analysis of uncertainty on many levels, one of which is Expected Value of Perfect 

Information (EVPI) [83].  

6.21 Expected Value of Perfect Information  

Expected Value of perfect information can be calculated from the PSA (Section 6.12) [83]. 

The EVPI is the difference between the NHB or NMB given current information compared 

to that which is generated given perfect information [5]. Given the result of the PSA 

analysis, there is some uncertainty based on the distribution of the CEAC or Cost 

effectiveness plane. As a result, there is a chance that the wrong decision is made, to 

either provide a treatment or not and this could lead to an opportunity loss [83, 240] which 

could have substantial cost implications on health system budgets and also in terms of 

care not provided to a patient population. By conducting an EVPI analysis, decision 

makers can decide whether conducting further research on the intervention could lead to 

less uncertainty and better decision making [240, 241]. As such EVPI looks at the cost of 

eliminating all uncertainty [242] in the model. 

In instances where the EVPI is lower than a particular threshold of willingness to pay for 

a QALY (e.g., £20,000-£30,000) and the EVPI is not higher than this threshold then this 

suggests that there is no value in carrying out further research [242]. The EVPI can give 

the population or per person level monetary gain that could be realised at different 

thresholds of willingness to pay for conducting further research to eliminate uncertainty. 



   

 

   

 

As such the EVPI uses all the parameters in the model to determine uncertainty, but in 

instances where the EVPI is higher than the willingness to pay threshold research could 

be conducted on a single parameter or group of parameters [1], for example utility data. 

This leads to other forms of value information analysis such as Expected Value of Perfect 

Parameter Information (EVPPI) [242].  

6.22 Results  

6.22.1 Health State transitions 

Figures 31-32 show the deterministic run of number of patients in each health state by 

age for males (control/intervention) and females (control/intervention). The starting 

cohort size was 4,789, in total (2538 males and 2251 females), distribution based on 

sex is further elaborated upon in Section 6.6. The dotted lines represent the treatment 

cohort, whereas the solid lines represent the control cohort. We can see that there is 

a difference in the occupation of the different health states for the cohort on treatment. 

For mortality there is a difference from the start of the model, for males and females, 

which is shown by the slight drop and shift to the right for all-cause mortality. For other 

health states, we can see that there are initial changes which subsequently merge with 

the control group, as can be seen by the overlapping of control and treatment cohorts, 

Figure 31-32. Lung transplantation and post-lung transplantation were not included in 

the graphs due to their small numbers. However, differences can be seen in the model 

which accompanied this thesis (Supplementary Material; Markov Model). Tables 77-

78 below presents the initial distribution of the male and female cohorts across the 



   

 

   

 

different health states in the model based on U.K. CF Data Registry (2016) [11], age 6 

and based on the predicted probabilities from Chapter 5 at age 7 respectively. 

Table 77: Cohort distribution in Markov Model (6 years old) 

Sex Total  Mild  Mild IV Moderate Moderate IV Severe  Severe IV 

Females 2251 1125 794 66 265 0 0 
Males  2538 1887 456 130 65 0 0 

 

Table 78: Cohort distribution in Markov Model (7 years old) 

 

 

Sex Total Mild  Mild IV Moderate Moderate IV Severe  Severe IV Dead  

Females 2247 1072 709 147 286 5 27 4 
Males  2536 1595 643 155 129 4 10 2 
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Figure 31: Deterministic run of Males (control) vs, Males (intervention), number of people in each health state 

over time (Ages 7-47). 
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Figure 32: Deterministic run of Females (control) vs, Females (intervention), number of people in each health state 

over time (Ages 7-47). 
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6.22.2 Life years gained 

Tables 78-79 show the overall, undiscounted and discounted, time in each health state 

stratified by sex and whether the cohort received the intervention or not.  

Overall, the deterministic results show, in Table 79, that the main driver of change due 

to treatment was the amount of time spent, in life years (LYs), in the Mild and Mild IV 

health states (total Mild males; 43,928 and 51,555 LYs vs females; 28,008 and 34,080 

LYs, for control and intervention respectively). The intervention cohort of males and 

females also spent fewer years in worse health states and experienced reduced 

mortality (total deaths; males 19,929 and 16,022 LYs vs females 27,219 and 22,372, 

for control and intervention respectively). No substantial changes were seen 

subsequent to receiving a transplant or thereafter for males or females when 

comparing life years across treatment groups (data not shown).  

 

 

 

 

 

 

 

 

 



   

 

   

 

Table 79: Total life years (undiscounted) in each health state by Sex and 

treatment 

 Life years (undiscounted) 

Health state Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD               26,574                        30,834                  15,927                           19,096  

MILD IV              17,354                        20,721                  12,081                           14,984  

Total Mild              43,928                        51,555                  28,008                           34,080  

MODERATE                 9,104                          8,749                    6,508                             6,663  

MODERATE IV              17,938                        17,915                  16,203                           17,478  

Total Moderate              27,042                        26,664                  22,711                           24,141  

SEVERE                 2,188                          1,564                    2,017                             1,607  

SEVERE IV                9,981                          7,534                  10,874                             8,926  

Total Severe              12,170                          9,097                  12,891                           10,533  

Dead              19,929                        16,022                  27,219                           22,372  

 

 

 

 

 

 

 



   

 

   

 

Table 80: Total life years (discounted) in each health state by Sex and treatment 

 Life years (discounted) 

Health state Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD               18,069                        20,164                  11,422                           13,111  

MILD IV              11,099                        12,797                    8,358                             9,936  

Total Mild              29,168                        32,962                  19,780                           23,047  

MODERATE                 5,062                          4,665                    3,965                             3,853  

MODERATE IV                9,147                          8,811                    9,127                             9,359  

Total Moderate              14,209                        13,476                  13,092                           13,212  

SEVERE                 1,005                             704                    1,008                                776  

SEVERE IV                4,465                          3,310                    5,271                             4,193  

Total Severe                5,470                          4,014                    6,279                             4,969  

Dead                7,218                          5,765                  10,254                             8,340  

 

The total number of life years gained, Table 81, across all health states, per person were 

2.29 and 2.91 for males and females respectively as a result of taking Orkambi®. We can 

see that majority of life years were gained in three health states, Mild, Mild IV and 

Moderate, with females gaining more LYs in the Mild IV health state compared to males. 

However, males gained more LYs in the Mild No IV and Moderate health states. There 

was a reduction in the occupation of the more Severe health states due to treatment, 



   

 

   

 

albeit only a small reduction for both sexes. Female experienced smaller reductions in 

the Moderate and Severe IV health states. 

Table 81: Life years gained (per person) by health state and sex from treatment 

with Orkambi® (base-case) 

 Life years gained (discounted) 

Health State Males  Female  

MILD  0.83 0.75 

MILD IV 0.67 0.70 

MODERATE  1.49 1.45 

MODERATE IV -0.16 -0.05 

SEVERE  -0.13 0.10 

SEVERE IV -0.29 0.05 

Dead -0.12 -0.10 

Total 2.29 2.91 

 

Table 82 shows the life expectancy of those in the model, male and female. We can see 

that Orkambi® improved the life expectancy of females more than males.  

 

 

 



   

 

   

 

Table 82: Average number of years survived in the Markov model (starting age; 7 

years) 

Life Expectancy  

Males (control) Males (Intervention) Female (control) Female (Intervention) 

33.15 34.69 28.91 31.06 

 

Overall, in the model the lower median survival of females compared to males persisted, 

as seen in the UK CF data registry [230], regardless of whether on treatment or not. The 

model showed that around 49% of the cohort of males were still alive at 47 years, whereas 

only 32% of females were alive at the same age.  However, the number of years spent in 

the model were lower than the median survival estimates produced from the registry 

[230]. The UK CF Data Registry [230] shows that median survival for males and females 

was 47.9 years (95% CI: 46.1-51.4) and 44.2 years (95% CI: 40.8-47.1) (p<0.05) 

respectively from UK CF Data Registry between 2012-2016. For females at 44 years of 

age in the model, 37% of the cohort was still alive, less than the median survival in the 

UK CF Registry data.  

Table 83 shows the number of cycles each person in the cohort spends in each health 

state for males and females for control and intervention cohorts respectively. We can see 

that there is an increase in the number of cycles spent in the Mild, Mild IV, Moderate and 

Moderate IV health states for males and females.  

 



   

 

   

 

Table 83: Average number of cycles spent in each health state by the cohort 

(male/female) 

 Average Cycles 

Health State 
Males 

(control) 

Males 

(Intervention) 

Female 

(control) 

Female 

(Intervention) 

MILD  10.47  12.15  7.08  8.48  

MILD IV 6.84  8.16  5.37  6.66  

MODERATE  3.59  3.45  2.89  2.96  

MODERATE IV 7.07  7.06  7.20  7.77  

SEVERE  0.86  0.62  0.90  0.71  

SEVERE IV 3.93  2.97  4.83  3.97  

 

 



   

 

   

 

6.22.3 Payment by Result costs 

Figure 33-34 below presents the cost per person (undiscounted) by health state over the 

time horizon of the model for males and females respectively (undiscounted). As can be 

seen from the figure, cost for Mild, Mild IV and Moderate increase over time, whereas the 

costs decrease over time for Moderate IV, Severe and Severe IV. A similar pattern exists 

for females.  

Figure 33: Cost per person 

 

 

 

 

 

 



   

 

   

 

 

Figure 34: Cost per person 

 

Tables 84-85 show the total PbR banding costs stratified by sex, health state and 

treatment both undiscounted and discounted. These do not include the cost of Orkambi® 

for those in the treatment arm.  

For males, in Table 84, the undiscounted costs show that treatment increased the overall 

total cost for the Mild and Mild IV health states. The remainder of the health states, 

Moderate, Moderate IV, Severe No IV and Severe IV health states show a reduction in 

costs, especially the Severe IV health state. For females, Table 84, the undiscounted 

costs show that the cohort on treatment had increased costs for all the Mild and Moderate 

health states. The Severe health state showed a reduction in costs, especially the Severe 

IV health state. These above patterns of changes in cost from treatment are also evident 



   

 

   

 

in the discounted costs, Table 85, for males. However, for females discounting costs 

showed that treatment resulted in a decrease in costs for the Moderate health state, most 

likely due to discounting effects.    

Table 84: PbR Banding Costs by health state, sex and treatment (Undiscounted) 

over time horizon of model 

 PbR banding Costs by health state (undiscounted) 

Health State Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD   £      284,252,688   £           333,753,479   £      163,924,681   £             199,212,311  

MILD IV  £      246,400,626   £           294,968,963   £      180,644,373   £             224,783,550  

Total Mild  £      530,653,314   £           628,722,442   £      344,569,053   £             423,995,861  

MODERATE   £      114,208,991   £           110,166,890   £        85,255,728   £               87,706,205  

MODERATE IV  £      328,164,835   £           326,441,082   £      304,839,679   £             326,938,168  

Total Moderate  £      442,373,826   £           436,607,971   £      390,095,407   £             414,644,373  

SEVERE   £        33,396,984   £             23,758,987   £        35,335,529   £               27,925,835  

SEVERE IV  £      222,271,021   £           166,945,999   £      269,394,712   £             219,557,071  

Total Severe  £      255,668,004   £           190,704,987   £      304,730,241   £             247,482,906  

Total Cost  £   1,228,695,144   £        1,256,035,400   £   1,039,394,700   £          1,086,123,141  

 

 

 



   

 

   

 

Table 85: PbR Banding Costs by health state, sex and treatment (Discounted) 

over time horizon of model 

 PBR banding Costs by health state (discounted) 

Health State Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD   £      187,989,225   £           211,618,198   £      114,964,951   £             133,246,441  

MILD IV  £      156,388,586   £           180,668,122   £      124,205,163   £             148,002,339  

Total Mild  £      344,377,812   £           392,286,320   £      239,170,114   £             281,248,779  

MODERATE   £        62,807,358   £             58,057,349   £        51,439,200   £               50,180,289  

MODERATE IV  £      169,757,971   £           162,946,900   £      174,046,550   £             177,618,425  

Total Moderate  £      232,565,329   £           221,004,249   £      225,485,750   £             227,798,714  

SEVERE   £        15,769,743   £             11,003,836   £        18,156,873   £               13,880,216  

SEVERE IV  £      102,516,656   £             75,684,165   £      133,945,222   £             105,946,430  

Total Severe  £      118,286,399   £             86,688,001   £      152,102,095   £             119,826,646  

 

The breakdown of cost provided by cost bands for each health state, in Figure 35-36 

below, have variation in total costs by age when comparing treatment vs, no treatment 

with Orkambi®. The total cost per health state generated by in the PbR cost bands alone, 

in either sex groups, overall followed the above-described pattern stratified by age. For 

males, Figure 35, we can see that the large variation exists throughout the time horizon 

of the model. For females, Figure 36, the pattern of variation in PbR costs was similar to 

that of males.  



   

 

   

 

Figure 35: Breakdown of cost (PbR) control vs intervention (age 7-47) males over 

time horizon of model 

 

Figure 36: Breakdown of cost (PbR) control vs intervention (age 7-47) Females 

over time horizon of model 

 



   

 

   

 

Table 86 shows the discounted costs per person by health state, intervention and sex. 

This again follows the pattern described above for Table 85. Table 86 shows the 

discounted PbR banding cost per person in the model by sex and treatment. We can see 

that males overall, on treatment, cost more than any other category. The female, per 

person, costs were much lower than males, even after taking treatment. This is most likely 

due to the overall initial distribution of the patients in the model, the difference in health 

state transition probabilities between the two sexes where females have a worser 

outcomes. It was seen in Chapter 5 (Section 5.19.1), that females often were worse off in 

terms of health than males.  

The total undiscounted costs generated by PbR banding were £ £1.229 million, £1.256 

million, £1.039 million and £1.086 million for males (no Orkambi®/Orkambi®) and females 

(no Orkambi®/Orkambi®), respectively (Table 84). This shows that on average females 

accrued lower costs compared to males in either treatment or no treatment.  

 

 

 

 

 

 



   

 

   

 

Table 86: PbR Banding Costs per person by health state, sex and treatment over 

time horizon of model (Discounted) 

 PBR banding Costs per person by health state (discounted) 

 Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD NO IV  £               74,065   £                    83,374   £               45,294   £                      52,497  

MILD IV  £               61,615   £                    71,180   £               48,935   £                      58,311  

Total Mild  £             135,680   £                  154,555   £               94,229   £                    110,808  

MODERATE NO IV  £               24,745   £                    22,874   £               20,266   £                      19,770  

MODERATE IV  £               66,882   £                    64,199   £               68,572   £                      69,979  

Total Moderate  £               91,627   £                    87,072   £               88,838   £                      89,749  

SEVERE NO IV  £                 6,213   £                      4,335   £                 7,154   £                        5,469  

SEVERE IV  £               40,390   £                    29,818   £               52,772   £                      41,741  

Total Severe  £               46,603   £                    34,154   £               59,926   £                      47,210  

average  £               91,303   £                    91,927   £               80,998   £                      82,589  

 

Table 87: PbR Banding Costs, total, by sex and treatment over time horizon of 

model (Discounted) 

Total cost per person (7- 47 years) 

Males (control) Males (Intervention) Female (control) Female (Intervention) 

 £             273,910   £                  275,781   £             242,993   £                    247,767  



   

 

   

 

A closer look at the results, Figures 31-32, also show that, on average, females spent 

more time in either of the Severe health states overall, compared to other health states in 

comparison to males. This is despite both sex groups starting with an initial 0% in either 

Severe health states at age 6. We can also see this pattern in Figures 35-36, females 

accrue higher costs in the Severe IV health state at a faster rate than males. This is further 

evident in the model, where females in either treatment groups were substantially more 

likely to be placed in a higher cost band (band 4 and 5) compared to males in the same 

Severe IV health state, regardless of age, Figure 37 (control group only shown).  

The same could be said for the Moderate IV health state but this could also be influenced 

by the difference in initial patient distribution between males and females in the Moderate 

IV health state, where there were 12% of the initial cohort (females) compared to 3% for 

males in that health state at age 6, Figure 38 (control group only shown). However, this 

is unlikely to be purely due to this fact. The large difference in costs could be explained 

by females transitioning to worse health states and dying, which is already evident 

through analysis in Chapter 5.  



   

 

   

 

Figure 37: Occupation of PbR cost band by sex for Severe IV health state 
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Figure 38: Occupation of PbR cost band by sex for Moderate IV health state 

 

6.22.4 Lung transplantation costs  
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Table 88: Total Lung transplant costs by sex and treatment (7- 47 years) 

 

Males-No 

Orkambi® 

Males-

Orkambi® 

Females-No 

Orkambi® 

Females- 

Orkambi® 

Total Costs 

(Undiscounted) 
£4,747,988 £4,753,030 £6,225,985 £6,245,737 

Total Costs 

(Discounted) 
£1,910,813 £1,910,803 £2,617,186 £2,621,487 

Per person costs 

(Discounted) 
£753 £753 £1,163 £1,165 

 

In terms of the costs associated with lung transplantation, there is an unexpected 

marginal increase in costs of lung transplant across treatment groups. Table 88 shows 

those who received Orkambi® having slightly higher costs than those who were not over 

the time horizon of the model (undiscounted). The results also show that for males on 

treatment total costs after discounting were reduced and lower for the treatment group. 

This was not the case for females on treatment. Table 86 also presents the discounted 

per person costs in the model for lung transplantation for either sex group whether on 

treatment or not. We can see there was no difference for males and only a very small 

marginal increase in costs for females on treatment.  



   

 

   

 

6.22.5 High-Cost drugs 

Figure 39-40 below presents the cost per person (undiscounted) by health state over the 

time horizon of the model for males and females respectively (undiscounted) for High-

Cost drugs. 

 As can be seen from the figure for males, cost for Mild and Moderate remain relatively 

stable over time, whereas the costs for Mild IV, Moderate IV and Severe IV increases 

over time. A similar pattern exists for females.  

Figure 39: Cost per person (males) 

 

 

 

 

 



   

 

   

 

Figure 40: Cost per person (Females) 

 

Tables 89-91 show the High-Cost CF drug costs stratified by sex, health state and 

treatment. These costs do not include the costs of Orkambi®. Table 89 shows the total 

costs, discounted, generated by high-cost drugs were £436 million, £441 million, £373 

million and £385 million for males (no Orkambi®/Orkambi®) and females (no 

Orkambi®/Orkambi®), respectively.  On average males accrued higher costs for the Mild 

health states, whether they were on treatment or not, except for those in the remaining 

health states. Most likely due to the change in the transitions between the health states 

as a result of receiving Orkambi®. 



   

 

   

 

In the case of females, they accrued higher total costs the Mild, Mild IV and Moderate IV 

health states.  This is most likely due to the change in the transitions between the health 

states as a result of receiving Orkambi®.   

Table 89: High-Cost drug costs by health state, sex and treatment (7- 47 years) 

 High-Cost Drug Costs by health state (discounted) 

 Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD   £     116,366,761   £               130,721,613   £         67,067,314   £                   77,832,477  

MILD IV  £     101,276,655   £               117,938,429   £         78,456,167   £                   94,492,271  

Total Mild  £     217,643,416   £               248,660,042   £       145,523,482   £                 172,324,748  

MODERATE  £       40,363,546   £                 37,534,391   £         32,880,226   £                   32,332,621  

MODERATE IV  £     104,497,052   £               101,484,795   £       105,924,308   £                 110,208,036  

Total Moderate  £     144,860,598   £               139,019,187   £       138,804,534   £                 142,540,657  

SEVERE  £       11,203,539   £                   7,782,655   £           9,306,090   £                     7,126,246  

SEVERE IV  £       62,029,265   £                 45,957,406   £         78,993,230   £                   63,228,579  

Total Severe  £       73,232,804   £                 53,740,062   £         88,299,320   £                   70,354,825  

Total  £     435,736,818   £               441,419,291   £       372,627,336   £                 385,220,229  

 

Table 90 shows the cost per person (discounted) by health state, sex and treatment. The 

table shows that treatment with Orkambi® increases the cost per person of being in either 

of the Mild health states, but also reduced the costs per person of subsequent worse 

health states. This is also the same for females, except for the Moderate IV health state 



   

 

   

 

which resulted in an increase cost per person on treatment. We can see that females cost 

more per person for being in the Moderate IV and Severe IV health states compared to 

males regardless of whether they were on treatment or not.  

Table 90: High-Cost drug costs per person by health state, sex and treatment (7- 

47 years) 

   High-Cost Drug Costs per person by health state (discounted)  

   Males (control)   Males (Intervention)   Female (control)   Female (Intervention)  

MILD  £              45,847 £                        51,502 £                26,423 £                          30,665 

MILD IV £              39,901 £                        46,466 £                30,911 £                          37,229 

Total Mild  £              85,748 £                        97,968 £                57,334 £                          67,893 

MODERATE  £              15,903 £                        14,788 £                12,954 £                          12,739 

MODERATE IV £              41,170 £                        39,983 £                41,733 £                          43,420 

Total Moderate £              57,073 £                        54,771 £                54,687 £                          56,159 

SEVERE  £                4,414 £                          3,066 £                  3,666 £                            2,808 

SEVERE IV £              24,439 £                        18,107 £                31,122 £                          24,911 

Total Severe £              28,853 £                        21,173 £                34,789 £                          27,719 

Average £              57,225 £                        57,971 £                48,936 £                          50,590 

 

Further investigation of High-Costs drugs by age, sex and for a cohort on Orkambi®, 

Figure 41, showed that the higher cost for females in either the Moderate IV or Severe IV 

health state existed throughout the model, age 7-33 years for Moderate IV and age 7-44 



   

 

   

 

years for Severe IV health state respectively. This could be due to the difference in the 

initial distribution between the sexs, with double the males in this health state than 

females. However, this difference in costs would also be due to the difference in High-

Cost drug utilisation between the sex groups. Lastly, Table 91 shows the Males were 

more expensive to treat while on Orkambi® compared to females and that the estimated 

cost for High-Cost drugs were higher for those on Orkambi®.  

Figure 41: High-Cost Drug Costs by sex and health state 

 

Table 91: High-Cost drug costs by sex and treatment 

Total High-Cost Drug Costs per person 

Males (control) Males (Intervention) Female (control) Female (Intervention) 

£            171,674 £                      171,899 £              146,809 £                        147,252 

 



   

 

   

 

6.22.6 Costs of Orkambi® 

Tables 92-93 show the Orkambi® costs stratified by sex and health state. Table 92 shows 

the total costs, undiscounted, generated by Orkambi® treatment were £7.993 billion, 

£6.294 billion for males and females, respectively. Table 93 shows the total costs, 

discounted, generated by Orkambi® treatment were £4.619 billion and £ 3.774 billion for 

males and females, respectively. Total discounted lifetime costs per person, Table 94, for 

males and females was £1.819 million and £1.677 million. The tables showed that 

treatment with Orkambi® was more costly in males in the Mild and Moderate health states 

when undiscounted.  However, this changed when the costs were discounted, Females 

became more costly to treat in the moderate IV health state, all else remaining the same. 

Females were more costly to treat with Orkambi® in the Severe health states, 

undiscounted or discounted. However overall, Males cost more to treat with Orkambi® 

than females, undiscounted or discounted.  

 

 

 

 

 

 

 

 

 



   

 

   

 

Table 92: Orkambi® costs stratified by sex and health (undiscounted) 

 Orkambi® Costs by health state (undiscounted) 

 Males Female 

MILD  £                  2,822,719,162 £                    1,748,176,476 

MILD IV £                  1,896,882,785 £                    1,371,694,059 

Total Mild £                  4,719,601,947 £                    3,119,870,536 

MODERATE  £                     800,924,904 £                       609,959,967 

MODERATE IV £                  1,640,063,370 £                    1,600,036,356 

Total Moderate £                  2,440,988,274 £                    2,209,996,323 

SEVERE  £                     143,151,415 £                       147,102,090 

SEVERE IV £                     689,670,786 £                       817,101,694 

Total Severe £                     832,822,201 £                       964,203,783 

Total Cost £                  7,993,412,422 £                    6,294,070,642 

 

 

 

 

 

 

 

 



   

 

   

 

Table 93:Orkambi®costs stratified by sex and health state (discounted) 

 Orkambi® Costs by health state (discounted) 

 Males (control) Female (control) 

MILD  £                  1,845,951,254 £                    1,200,246,103 

MILD IV £                  1,171,531,645 £                       909,574,939 

Total Mild £                  3,017,482,899 £                    2,109,821,043 

MODERATE  £                     427,021,346 £                       352,747,664 

MODERATE IV £                     806,607,539 £                       856,727,960 

Total Moderate £                  1,233,628,886 £                    1,209,475,624 

SEVERE  £                       64,459,546 £                         71,022,813 

SEVERE IV £                     302,982,577 £                       383,891,035 

Total Severe £                     367,442,123 £                       454,913,849 

Total Cost £                  4,618,553,907 £                    3,774,210,515 

 

Table 94:Total cost of Orkamnbi® per person by sex 

Total Orkambi® cost per person 

Males Female 

£1,819,639 £ 1,676,808 

 



   

 

   

 

6.22.7 Total Costs summary 

Figure 42-43 below presents the total cost per person (undiscounted) by health state over 

the time horizon of the model for males and females respectively. 

 As can be seen from the figure for males, cost for less severe health states increases 

overtime whereas costs for more severe health states decreases overtime. Although 

overall cost per person is high for those in the severe health states compared to those in 

the healthier states.  

Figure 42: Cost per person (Males) 

 

 

 

 

 



   

 

   

 

Figure 43: Total Cost per person (Females) 

 

Tables 95-96 show the total costs stratified by sex and health state without half cycle 

correction being applied. Table 95 shows the total costs, undiscounted, generated by 

either group, control and treatment by sex and health state (males: £2.019 billion, £10.061 

billion vs. females; £1.693 billion, £8.071 billion for males and females control and 

treatment group, respectively. Table 96 presents the discounted costs as above.  

 

 

 

 

 



   

 

   

 

 

Table 95: Total costs by sex and health state (no half cycle correction) 

 Total Costs by health state (undiscounted) 

 Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD  £     459,086,921 £            3,360,036,260 £       259,891,150 £              2,063,426,179 

MILD IV £     410,969,543 £            2,390,824,570 £       298,067,581 £              1,744,361,153 

Total Mild £     870,056,465 £            5,750,860,830 £       557,958,731 £              3,807,787,332 

MODERATE  £     189,524,988 £               983,979,506 £       141,079,558 £                 755,384,998 

MODERATE IV £     540,406,105 £            2,180,074,192 £       501,324,638 £              2,141,831,535 

Total Moderate £     729,931,094 £            3,164,053,698 £       642,404,196 £              2,897,216,533 

SEVERE  £       56,828,352 £               183,469,567 £         53,978,153 £                 189,762,141 

SEVERE IV £     363,032,127 £               962,705,279 £       439,511,440 £              1,176,955,112 

Total Severe £     419,860,479 £            1,146,174,846 £       493,489,593 £              1,366,717,253 

Total Cost £ 2,019,848,037 £          10,061,089,374 £    1,693,852,521 £              8,071,721,117 

 

 

 

 

 

 



   

 

   

 

Table 96: Total costs by sex and health state (no half cycle correction) 

 Total Costs by health state (discounted) 

 Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD  £     304,355,986 £            2,188,291,065 £       182,032,266 £              1,411,325,021 

MILD IV £     257,665,241 £            1,470,138,196 £       202,661,330 £              1,152,069,549 

Total Mild £     562,021,227 £            3,658,429,261 £       384,693,595 £              2,563,394,570 

MODERATE  £     103,170,905 £               522,613,087 £         84,319,425 £                 435,260,574 

MODERATE 

IV 
£     274,255,023 £            1,071,039,235 £       279,970,858 £              1,144,554,421 

Total 

Moderate 
£     377,425,927 £            1,593,652,322 £       364,290,283 £              1,579,814,995 

SEVERE  £       26,973,282 £                 83,246,037 £         27,462,963 £                   92,029,275 

SEVERE IV £     164,545,921 £               424,624,148 £       212,938,453 £                 553,066,045 

Total 

Severe 
£     191,519,203 £               507,870,185 £       240,401,415 £                 645,095,320 

Total Cost  £ 1,130,966,358   £            5,759,951,767   £       989,385,294   £              4,788,304,884  

 

Table 97 presents the total costs per person by health state, sex and treatment 

(discounted). The results show that males cost more in the healthier states such as Mild 

No IV, Mild IV, Moderate No IV and Moderate IV, whereas females cost more in the more 

severe health states, Severe No IV and Severe IV. Lastly, Table 98 presented the cost 



   

 

   

 

per person by sex and treatment not taking into account the health state (discounted). 

The results show that males accrue a High-Cost for either treatment or no treatment 

compared to females overall.  

Table 97: Total costs by sex and health state (no half cycle correction) 

 Total Costs per person by health state (discounted) 

 Males (control) Males (Intervention) Female (control) Female (Intervention) 

MILD £            119,912 £                      862,153 £                80,873 £                        627,024 

MILD IV £            101,516 £                      579,212 £                90,038 £                        511,842 

Total Mild £            221,428 £                   1,441,365 £              170,912 £                     1,138,866 

MODERATE  £              40,648 £                      205,902 £                37,461 £                        193,378 

MODERATE IV £            108,052 £                      421,973 £              124,386 £                        508,503 

Total 

Moderate 
£            148,700 £                      627,875 £              161,847 £                        701,881 

SEVERE  £              10,627 £                        32,798 £                12,201 £                          40,887 

SEVERE IV £              64,829 £                      167,295 £                94,604 £                        245,716 

Total Severe £              75,456 £                      200,093 £              106,806 £                        286,603 

 

Table 98: Total Cost per person by sex and treatment 

Males (control) Males (Intervention) Female (control) Female (Intervention) 

 £            446,336   £                   2,269,887   £              440,727   £                     2,128,288  



   

 

   

 

6.22.8 QALYs 

Tables 99-102 show estimates of QALY generated in the base-case analysis using a 

deterministic approach without half-cycle correction, although final result provide QALYs 

with half-cycle correction. Table 99 presented the undiscounted number of QALYs 

generated from the model across the different health states. For males, we can see that 

treatment with Orkambi® resulted in an increase in the number of QALYs generated from 

the Mild health states. Subsequent health states show a decrease in QALYs, mainly due 

to a shift in transition of individuals to the better Milder health states from receiving 

Orkambi®. This pattern is also evident in the females in the model, however the increase 

in QALYs also extends to both Moderate health states. We can also see that Males overall 

generated more QALYs in the model compared to females, either with or without 

Orkambi®.  

Table 100 shows the same as the above but presented the discounted QALYs and the 

patterns evident in Table 99 are also evident in Table 100. However, we can see that 

females in the Moderate IV health state also experienced an increase in the number of 

QALYs generated subsequent to discounting. Overall, we can see that males over the 

time horizon of the model generated more QALYs than females, either with or without 

Orkambi®.  

 

 

 

 



   

 

   

 

Table 99: Total QALYs generated by health state, sex and treatment  

 QALYs generated (undiscounted) 

 

Males 

(control) 

Males 

(Intervention) 

Female 

(control) 

Female 

(Intervention) 

MILD  22,853  26,517  13,697  16,423  

MILD IV 11,974  14,297  8,336  10,339  

Total Mild 34,828  40,815  22,033  26,762  

MODERATE  7,374  7,087  5,272  5,397  

MODERATE IV 11,480  11,466  10,370  11,186  

Total Moderate 18,854  18,552  15,642  16,583  

SEVERE  1,400  1,001  1,291  1,028  

SEVERE IV 4,691  3,541  5,111  4,195  

Total Severe 6,092  4,542  6,402  5,223  

Total 59,774  63,909  44,076  48,568  

 

 

 

 

 

 

 

 

 



   

 

   

 

Table 100: Total QALYs generated by health state, sex and treatment 

 QALYs generated (discounted) 

 

Males 

(control) 

Males 

(Intervention) 

Female 

(control) 

Female 

(Intervention) 

MILD  15,539  17,341  9,823  11,275  

MILD IV 7,658  8,830  5,767  6,856  

Total Mild 23,198  26,171  15,590  18,131  

MODERATE  4,100  3,778  3,212  3,121  

MODERATE IV 5,854  5,639  5,842  5,989  

Total Moderate 9,954  9,417  9,053  9,111  

SEVERE  643  451  645  497  

SEVERE IV 2,098  1,556  2,477  1,971  

Total Severe 2,742  2,006  3,123  2,467  

Total 35,894  37,595  27,765  29,709  

 

Table 101 presented the QALYs generated per person by sex and Orkambi® treatment, 

whether discounted or not. The results show that Males on Orkambi® produced the most 

QALYs per person, either discounted or not. 

Table 102 shows the QALYs gained per person by health state subsequent to taking 

Orkambi®. Overall, it shows that females produced more QALYs per person after 

treatment over the time horizon of the model in the Mild health states, but less QALYs in 



   

 

   

 

the more severe health states. Compared to life years gained in Table 15, above, females 

gained more life years (2.91) and more QALYs (0.86) per person over the time horizon 

over the model compared to males. Although males gained more QALYs and LYs in the 

healthier states compared to females. The overall results also show, when comparing 

QALYs and LYs gained (Section 6.22.2), that there were more life years gained compared 

to QALYs which means that a large majority of health benefit comes from an improvement 

in survival and not an improvement in QOL. This also suggests that gains in LYs are made 

with very poor QOL. 

Table 101: Total QALYs per person by treatment and sex (discounted) 

 
Total QALYS per person 

 
Males (control) Males (Intervention) Female (control) Female (Intervention) 

Discounted  14.16 14.82 10.96 11.72 

Undiscounted 23.58 25.20 17.41 19.17 

 

 

 

 

 

 

 

 

 



   

 

   

 

Table 102: Total QALYs per person by health state from Orkambi® 

Health State QALYS gained (discounted) 

Sex Males Female 

MILD NO IV 0.71 0.65 

MILD IV 0.46 0.48 

MODERATE NO IV -0.13 -0.04 

MODERATE IV -0.08 0.07 

SEVERE NO IV -0.08 -0.07 

SEVERE IV -0.21 -0.22 

Total 0.67 0.86 

 

These results indicate that both males and females were spending more time in the better 

health states and less in the more severe health states based on the benefits received 

from treatment with Orkambi®. The results also show that females produced more QALYs 

for the Severe IV health state. This could be due to a combination of factors, that there 

were males in the model to begin with and that males were more likely to remain in and 

transition to better health states compared to females as shown in Chapter 5



   

 

   

 

6.23 Deterministic results 

Table 103: Results of Deterministic analysis (per person) (WTP threshold: £25,000) 

 



   

 

   

 

6.23.1 Incremental cost, outcomes and Overall ICER 

Table 103 shows the deterministic results of the ICER calculation for the model per 

patient, based on sex and with both sexes combined. The results show that treating males 

was more expensive despite the intervention being more effective for females, (males; 

£1.810 million, females; £1.678 million (without half cycle correction), (males; £1.771 

million females; £1.637 million (with half cycle correction)). The ICER results for females 

also show that the intervention costs less per QALY for females compared to males. In 

terms of effectiveness, those receiving Orkambi® treatment show an increase in QALYs, 

(males; 0.66 vs females; 0.84 and combined 0.74). The QALYs gained across sex are 

different, as stated females generating 0.19 QALYs more than males. The ICER results 

show that, per QALY, Orkambi® treatment was substantially more expensive than No 

Orkambi® treatment, males; £2.693 million vs females; £1.924 million and combined 

£2.282 million for males, females and both combined respectively, whilst taking in account 

half-cycle correction. When compared to the NICE threshold cost per QALY guidance, of 

between £20,000-£30,000/QALY, Orkambi® would not be a cost-effective option.  

6.23.2 Net Monetary Benefit  

Looking at the NMB, not incremental NMB, produced by the deterministic estimates in the 

model, we can see that there would an NMB of -£93,251, -£131,406 and -£111,184, for 

males, females and both combined who were not on Orkambi® at a threshold of 

£25,000/QALY. Those who received Orkambi® had an even large deficit in NMB of -

£1.848 million, -£1,747 million and -£1.801 million for males, females and both at the 

same threshold per QALY.  



   

 

   

 

6.23.3 Probabilistic results 

6.23.3.1 Incremental cost, outcomes and Overall ICER 

Table 104 shows the probabilistic results of the ICER calculation for the model per patient, 

based on both sexes combined. The results show little variability in costs within the 

Orkambi® or control group, this reflects the 10% variability in the PbR cost bands and no 

variability around the cost of Orkambi®, other High-Cost drugs and 10% variability in the 

cost of lung transplant. However, for QALYs, we can see that there is more variability, 

most likely due to the distribution, normal, given to such parameters for the PSA analysis. 

An important result to note here is that the QALYs generated from control, upper 95% CI, 

are higher than the lower 95% CI bound for the Orkambi® group. This shows that there 

is a plausibility that there would be no difference in QALYs from treatment with Orkambi®.  



   

 

   

 

Table 104: Probabilistic results (discounted) 

Results (PSA) Combined sex  
(95% CI)  

With half cycle correction   

  Costs (£)     QALYs  

  Lower Mean Upper     Lower Mean Upper  

Orkambi®  £      2,129,193   £      2,138,019   £      2,148,254      14.94 15.32 15.76  

                   

No Orkambi ®  £         421,965   £         429,196   £         438,169      14.18 14.55 14.97  

Incremental difference   

   £      1,703,957     £      1,714,597      0.71   0.86  

ICER  

  Lower     Upper  

     £      2,019,919           £      2,457,337     



   

 

   

 

6.23.3.2 Incremental Net Monetary Benefit  

Figure 44 shows that at threshold willingness to pay for a QALY of £2.2 million, the mean 

incremental NMB goes from negative to positive. At a threshold of £2.2 million the 

incremental NMB also shows the amount of uncertainty around the mean and places the 

incremental NMB between -£150 thousand and £181 thousand for the 97.5 and 5 

percentiles of all estimates. This further reflects the uncertainty in the cost-effectiveness 

of Orkambi®. However, at a threshold of £20,000 to £30,00 there is a 100% chance that 

the NMB is negative.  

Figure 44: Incremental Net Monetary Benefit 

 

6.23.4 Cost effectiveness plane 

As explained in the methods section the cost - effectiveness plane allows the presentation 

of the uncertainty around the deterministic values (distributions) entered into the model 

for the exemplar cost-utility analysis. In Figure 45 we can see that all of the point estimates 



   

 

   

 

of costs and QALYs fall into the NE quadrant of the plane which shows that intervention 

is more effective but also more costly. The cost-utility plane also shows that there was 

small uncertainty in the incremental costs between treatment groups, with all incremental 

cost estimates from the PSA falling between £1.69 million and £1.72 million. This reflects 

the 10% assumed uncertainty in the PbR cost banding, whilst there was no uncertainty in 

the costs of lung transplantation and high-cost drugs. Similarly, there was no uncertainty 

in the proportion estimates, calculated through use of the UK CF Data Registry, which 

were driving the High-Cost drug calculations.  

Figure 45: Cost Effectiveness plane 

 

Although the cost-utility uncertainty visually is represented in the cost-effectiveness plane. 

It is useful to present the magnitude of uncertainty in the outputs of the analysis. The 

CEAC in Figure 46, is presented to the show the probability of cost effectiveness at a 



   

 

   

 

range of threshold values. Thus, enabling the decision makers to understand the risk of 

making the wrong decision based on current information, model parameters and their 

distributions, based on the different willingness to pay for a QALY. Figure 37 shows that, 

at a threshold of willingness to pay over £2.78 million per QALY the probability of 

Orkambi® being cost effective is 100%. This shows that at a threshold of between 

£20,000-£30,000 per QALY, Orkambi® is not a cost-effective option. Even at a threshold 

of £2.2 million per QALY per person, the CEAC shows that there is a 50% probability of 

the intervention being cost effective. The shape of the CEAC reflects the placement of 

estimates in NE quadrants. 

Figure 46: CEAC 

 

6.23.5 Expected Value of Perfect Information 

In order to determine the value of information, particularly the EVPI, the EVPI for a range 

of threshold values per QALY are presented in Figure 47. Ultimately, the EVPI will provide 



   

 

   

 

the decision maker with information on whether further research should be conducted in 

order to remove any uncertainty in all parameters represented in the cost-effectiveness 

of Orkambi®. The EVPI shows that for a willingness to pay threshold of up to £2.2 million, 

there would be a £36,000 value per person in conducting further research around the 

uncertainty in all parameters, which does not justify an investment of £2.2 million per 

person, which is further supported by ISPOR guidelines on VOI analysis [242]. This 

finding is not surprising considering the very high cost of Orkambi® shown through the 

disputes between NICE and Vertex Pharmceutical [75] around its cost and previous 

studies on Orkambi® [126, 129]. 

If the EVPI presented a value which was higher than the threshold willingness to pay per 

QALY of £20,000-£30,000 then further investigation using EVPPI could have been 

conducted to determine which parameters would justify further research in order to 

remove decision uncertainty [242]. This however is very unlikely to occur in the case of 

Orkambi®. 



   

 

   

 

Figure 47: EVPI of further research into the cost effectiveness of Orkambi® 

 

6.24 Sensitivity analysis  

6.24.1 One-Way sensitivity analysis  

A number of parameters in the model were changed as part of the one-way sensitivity 

analysis to determine which parameters had the largest influence on the outcomes of the 

model.  

6.24.1.1 Health State transition probabilities 

Probability values generated in Chapter 5 for each health state were changed, individually 

by previous health state to their lower and upper limits. Transition from poorer health 

states to better health states were also evaluated despite these being considered to be 

rare, especially those from Severe health states to Mild health states. Only transitions to 

Mild and Severe IV health states were evaluated to determine what impact they had on 

the outcomes. Figure 48 shows the impact of changing the health state transition values 



   

 

   

 

to their upper or lower limit for all transitions to the Mild and Severe IV health state 

respectively. These are further discussed in detail in the sections that follow (Sections 

6.24.1.1.1-2). 

Figure 48: Impact on ICER value by changing health state transition probabilities  

 

6.24.1.1.1 Mild health state 

Changing the transition probabilities to either end of the prediction interval (lower/upper) 

for all transitions to the Mild health state resulted in a decrease and increase in mortality 

respectively. Changing the transition probability to the upper limit increased the ICER for 

both males and females, whereas decreasing the transition probability increase the ICER 

for males but decreased the ICER value for females by around £30,000/QALY.  

In terms of costs, an increase to the Mild health state transitions resulted in a decrease 

in overall costs for males and a led to a very small increase in these costs for females not 

receiving Orkambi® respectively. Changing the health state transition to the lower limit 

resulted in an increase in costs for males and females. Possibly due to more of the cohort 



   

 

   

 

transitioning to more severe health states. Increasing the health state transitions to the 

Mild health state also resulted in an increase in cost of those receiving Orkambi® 

treatment whereas decreasing it resulted in a decrease in such costs.  

6.24.1.1.2 Severe IV health state 

Changing the transition probabilities to either end of the prediction interval (lower/upper) 

for all transitions to the Severe IV health state resulted in a decrease and increase in 

mortality respectively. A closer look at the changes in mortality when using the lower 

transition probability limit showed that this resulted in an increase in male mortality but 

decreased female mortality. This could be due to less females transitioning to the Severe 

IV health state, especially considering they already had a higher probability of 

transitioning to poorer health states.  

Changing the transition probability to the upper limit decreased in the ICER for both males 

and females, whereas decreasing the transition probability increased the ICER for males 

and females.  

In terms of costs, an increase to the Severe IV health state transitions resulted in a 

decrease in overall costs for males and females. Alternatively, changing the health state 

transition to the lower limit resulted in an increase in costs for males and females. Possibly 

due to less of the cohort transitioning to more severe health states and dying. Increasing 

the health state transitions to the Severe IV health state also resulted in a decrease in 

cost of those receiving Orkambi® treatment whereas decreasing it resulted in an increase 

in such costs.  



   

 

   

 

6.24.1.2 Costs  

In the one-way sensitivity analysis cost band were evaluated by changing the individuals 

PbR band costs by increasing and decreasing them by 150% and 50% respectively. In 

terms of High-Cost drugs, the same approach was used for each drug included in the 

model (Section 6.22.5). 

6.24.1.2.1 Cost bands 

When costs for each of the listed bands (Section 6.18.1) were altered to 50 of 150% of 

the original 2016 costs, there was no large change in the overall ICER values. This shows 

that such costs had very little influence on the overall costs in the model.  

6.24.1.2.2 High-Cost drugs 

Changes to the cost for each drug to 150% or 50% of the original cost results in a 

substantial change in the ICER values for male and female individuals but also to the 

overall ICER across both sexes. This shows that the cost of such treatments had a large 

influence on the overall cost of treating a CF individual.  

6.24.1.3 Utilities  

Figure 49, a tornado diagram, shows the resulting ICER values for a change in each 

health state based on the upper and lower utility values. The base case analysis results 

are presented alongside for reference purposes.  

We can see the largest impact of reducing the ICER value was seen when increasing the 

utility value of the Severe IV health state to a lower value of 0.70. This was very closely 

followed by an increase in the ICER by decreasing the utility value of Mild health state to 

its upper limit of 0.77.  



   

 

   

 

Figure 49: One-way sensitivity analysis of utility data 

 

Lastly, Figures 50 and 51 present tornado diagrams showing the resulting ICER values 

for changes in the utility values by sex to the upper and lower utility values. As before, the 

base case analysis results are presented alongside for references purposes.  The results 

of the sensitivity analysis show, for females and males, the largest change to the ICER 

was from increasing the utility of the Severe IV health state followed by a decrease in the 

utility of the Mild health state.  



   

 

   

 

Figure 50: One-way sensitivity analysis of utility data (Males) 

 

Figure 51: One-way sensitivity analysis of utility data (Females) 

 

6.24.2 Threshold analysis  

Similar to one-way sensitivity analysis, threshold analysis was used to determine how 

adjusting a single value in the model would change the decision around the cost 

effectiveness of Orkambi®.  A threshold analysis of the cost of Orkambi® in Table 105 



   

 

   

 

shows the cost at which Orkambi® would be cost effective at threshold values per QALY 

between £20,000-£30,000.  

Table 105: Changing the cost of Orkambi® 

Cost per QALY Percentage fraction of original Orkambi® cost? Cost of Orkambi® 

£20,000 0.5%  £ 436  

£25,000 0.7%  £638  

£30,000 0.9%  £ 839  

 

6.24.3 Scenario analysis 

A range of scenario analyses were conducted as part of the sensitivity analysis (Section 

6.24.3.1-4). Table 70 presented the different assumptions for each scenario (Section 6.8). 

A summary of the results are presented in Table 106.  

 

 

 

 

 

 

 

 



   

 

   

 

Table 106: Scenario analysis deterministic results  

Scenario number 
Deterministic result 

Incremental costs Incremental QALYs ICER 

Scenario 1 £ 1,637,165 0.05 £34,261,418 

Scenario 2 £134,346 0.05 £2,811,497 

Scenario 3 £1,602,787 0.85 £1,892,719  

Scenario 4 £1,490,774  0.82 

 

£1,821,224  

 

Scenario 5 £1,136,986 0.59 £1,942,596 

Scenario 6 £1,708,206  0.68 £2,522,681  

 

6.24.3.1 Treatment efficacy  

In the base case analysis, it was assumed that treatment effectiveness would last the 

duration Orkambi® costs were applied. Costs were applied for the whole-time horizon to 

reflect treatment with Orkambi® until median survival. Changing the treatment efficacy to 

2 years (scenario 1) while cost were applied for the whole time horizon resulted in an 

ICER of £34,261,418. Changing treatment efficacy and cost of Orkambi® to 2 years 

resulted in an ICER of £2,811,497 (Scenario 2).  

6.24.3.2 Cohort distribution 

Changing the initial distribution of the cohort (Scenario 3), while keeping all other 

parameters the same as the base case analysis, to that which is reflected in the clinical 

trial data of Wainwright et al [46] resulted in an ICER of £1,892,719.  



   

 

   

 

6.24.3.3 Starting age 

Changing the starting age of the model to 12 (Scenario 4) and 25 (Scenario 5) until the 

median age of death, while keeping all other parameters the same as the base case 

analysis except the initial cohort distribution, which was changed to that similar to the 

clinical trials data of Wainwright et al [46], resulted in ICER values of £1,821,224 /QALY 

and £1,942,596/QALY respectively.   

6.24.3.4 Utilities 

The utilities for the health states was changed to those used by Whiting et al [107] 

(Scenario 6). The resulted in an ICER of £2,522,681/QALY, from incremental costs and 

QALYs of £1,708,206 and 0.68 respectively.  

6.25 Between model validation 

6.25.1 Existing models data 

A number of models/technology appraisals which looked at the cost effectiveness of 

Orkambi® were identified at the start of this chapter [7-10, 94, 126]. In order to compare 

and validate the health economic model developed in this chapter, attempts were made 

to replicate their input parameters, where available and where possible, into my model 

and compare the outcomes from the deterministic analyses only. This was only done for 

three models, 1) NCPE [9] 2) NICE [10] and 3) Sharma et al [126]. These were selected 

as both the NCPE and NICE are within the U.K and Sharma et al [126] is the only 

Orkambi® based cost effectiveness publication which looks at a long-time horizon. Model 

assumptions, where possible, presented in Table 66 of the introduction were replaced 

into my model and the outcomes compared. This exercise was conducted in order to 

clearly identify the similarities and differences in the models [7-10, 94, 126] compared to 



   

 

   

 

the model developed in this chapter. Treatment effect was incorporated into each model 

using the method explained in the treatment effectiveness section in the introduction 

(Section 6.3.1.5).  

6.25.1.1 NCPE 

The model submitted to the NCPE [9] was replicated to match, the initial patient health 

state distribution, including time horizon, the treatment effect, starting age and sex 

distribution. Treatment effect duration was not clearly stated in the appraisal, so 

Orkambi® effectiveness was applied through the whole-time horizon. The model time 

horizon was assumed to be between 12-57 years old. This approach was taken as it 

reflected the age range in the clinical trial data [46]. However, treatment effectiveness 

was applied from Konstan et al [226] estimates and not Wainright et al [46]. The sex 

distribution was 51/49 % for males and females respectively. With the size of the cohort 

in the model being 1000. These parameters entered in the model develop in this chapter 

resulted in an ICER of £1,627,235/QALY.  

This is higher than the ICER value presented in the technology appraisal by the NCPE of 

€369,141/QALY. The costs and QALYs generated over the time horizon of the models 

were quite different. For costs, the NCPE HTA produced an incremental cost of €903,947 

compared to incremental cost £1,572,096 for Orkambi® from the model in this chapter. 

In terms of the number of QALYs generated across both sex groups, the model presented 

in this chapter generated 0.97 additional QALYs compared to 2.45 QALYs in the NCPE 

technology appraisal.  



   

 

   

 

6.25.1.2 Sharma et al al [126] 

The modelling data utilised by Sharma et al [126] was also utilised to carry out a between 

model validation exercise.  A number of parameters in the model developed in this chapter 

were again changed. These include, the initial patient health state distribution, treatment 

effectiveness of base-case scenario, time horizon, starting age and utility data for health 

states. However, treatment effectiveness was applied from Konstan et al [226] estimates 

and not Wainwright et al [46]. Utility data estimates were taken from the same study for 

both models but additional utility decrements for IV treatment were applied for those in 

the IV health state to replicate assumptions of Sharma et al [126]. The sex distribution 

was assumed to be similar to that which was in the clinical trial data. The size of the cohort 

that was being modelled was 1000.  

These parameters in the model resulted in an ICER of £7,193,850 which is just under 

double than that predicted by Sharma et al [126] in their base-case scenario. The 

incremental cost and QALYs generated by the model developed in this chapter were 

£746,572 and 0.10, respectively. The incremental costs are less than half of those of 

Sharma et al [126], $1,677,901 and the incremental QALYs of 0.45, is higher from Sharma 

et al [126] compared to those which were produced from the model in this chapter. 

6.25.1.3 NICE 

The model submitted to NICE [10] was replicated to match, patient health state 

distribution, sex distribution, health state utility data, time horizon, starting age and 

discounting value. Treatment effectiveness was applied from Konstan et al [226] 

estimates and not Wainwright et al [46] for the whole time horizon of the model. This was 



   

 

   

 

to reflect the reduced decline in FEV1 for those on Orkambi® compared to those in the 

control cohort. 

These parameters in the model resulted in an ICER of £2,282,330/QALY. This is 

substantially higher than the ICER value of the model technology appraisal conducted by 

NICE, £218,248/QALY. The incremental costs and QALYs for the model in this chapter 

were £1,708,206 and 0.75 respectively. However, the incremental costs and QALYs for 

the NICE technology appraisal were £753,570 and 3.45, more than double the 

incremental cost difference and more than 4 times lower QALYs.  

6.26 Discussion 

6.26.1 Summary of main findings 

The aim of this chapter was to develop and validate the De Novo novel health economic 

model conceptualised in Chapter 4 which could be used to conduct the cost-effectiveness 

analysis of CF interventions. The novel aspects of the model structure were to include IV 

health states for the three main FEV1 categories, Mild, Moderate and Severe. In addition, 

the model included lung transplant and post lung transplant health states. In terms of 

data, the model included input parameters which were largely exclusively taken from the 

UK CF Data Registry, this increases the value of the model as it is based on real world 

data and increases the generalisability to a U.K. CF population context. Although the 

model generated in this chapter was an exemplar analysis, the exercise undertaken to 

assess its validity showed whether the model could be used in the cost effectiveness 

analysis of other CF interventions such as mucolytic agents, antibiotics and further novel 

combination of modulator treatments. The validity of the model structure itself was 



   

 

   

 

assessed through its ability to take into account significant health events which would 

have impacts on both costs and outcomes. The disease process of CF was evaluated 

through the model conceptualisation process through existing evidence in the literature 

and discussion with experts (Section 4.9). Figure 8 presented in Section 4.9.1.6 showed 

the evidence of the disease pathway in CF and was developed and agreed to by clinicians 

(Dr Diana Bilton and Siobhan Carr) based on the evidence presented in the guidance 

document [36]. This Figure (8), presented the overall disease pathway for CF patients 

and as such the resultant De Novo model can be used for the evaluation of all treatments 

available for CF, expect screening interventions. In terms of the model structure, it takes 

into account significant health events that occur during the life course of the patients, 

except PEx events which were difficult to include due to limited data and no information 

being present to classify such events in terms of severity (Section 4.9.1.8). However, this 

could change with the inclusion of PEx events variable in the CF Data Registry more 

recently.  

Additionally, the probability data in the model which was generated using the CF Data 

Registry was used for particular sub-populations, however, in future similar methods 

could be applied for the use of treatments which are available to other subgroups or to 

CF individuals in general. 

The results of the exemplar analysis showed variations in the ICER results in this chapter 

when compared to the ICER estimates of other studies introduced at the beginning of this 

chapter. The base-case analysis showed an ICER of £2,282,330 per QALY gained 

(95%CI: £2,019,919 - £2,457,337). The studies included for comparison and between 



   

 

   

 

model validation were published cost effectiveness analyses and appraisals of submitted 

health technologies by governing bodies in different countries. The results of the 

comparison showed that the ICER estimate generated in the De Novo model were always 

higher than those generated in other models when input parameters were replaced with 

those from the other studies [10] [126] [9]. An exercise similar to that conducted by David 

et al (2011) was utilised to assess between model consistency but to also try to 

understand why, if any, differences existed in the ICERs and their respective cost and 

QALYs.  

As highlighted in Chapter 2, there are a number of practices when it came to the health 

economic modelling of CF interventions. Both individual patient simulation models were 

identified [101] [107] and five Markov Cohort models were identified [102] [103] [104] [105] 

[106]. The same can be said for models that appraise Orkambi® for its cost-effectiveness, 

different approaches have been utilised, either an individual patient simulation [7-10, 94], 

Markov cohort model [126] or decision tree [127]. In general, there was no overall 

consensus on the methods or data inputs utilised in the modelling of Orkambi®. This can 

reduce the comparison of the results from such models, as is seen by the different ICER 

results, Table 65 section 6.5.3. An attempt is this chapter was made to compare the cost 

effectiveness results of evaluating exemplar intervention Orkambi® from the De Novo 

model to other models present in the literature or on health technology regulatory 

websites in order to validate the model. Upon closer evaluation of the reasons for such 

difference a number of inputs, difference in methods and structure were identified. These 

are discussed further alongside the strengths of the current work below.  



   

 

   

 

6.26.2 Strengths of current work and comparison with existing literate 

Six existing studies were identified which look at the cost effectiveness of Orkambi® [7-

10, 94, 126]. These were used to compare the results generated from the model 

developed in this chapter, in the form of between model consistency. Additional studies 

which look at the costs generated, where available, for treatment of CF [81] were also 

evaluated for consistency of the results from this chapter.  

6.26.2.1 Model Structure 

The model conceptualised in Chapter 4 and validated in this chapter is the first which 

looks at the impact of including IV treatment as a health state for the three main categories 

of FEV1; Mild, Moderate and Severe. As a result, the model structure used is particularly 

relevant for interventions which impact IV abx use. No previous studies exist which 

employ a conceptualisation process for creating the model which involved clinicians, 

health economist, statisticians and epidemiologists. This was further highlighted in 

Chapter 2 when no general reason was demonstrated for having a set model structure in 

the cost effectiveness studies found.  

6.26.2.2 Data 

The data used to develop the model were originally based on a more than 90% coverage 

of those with CF in the U.K. The exemplar CEA in this thesis focuses on F508Del 

Homozygous patients. However, similar methods to calculate transition probabilities 

could be utilised for other genotypes. This as well as the ability to change the sex 

distribution to that which is reflective of age in the U.K CF population improves the 

usability of the model for assessing the cost effectiveness of CF interventions. The 

approaches taken to develop input parameters were based on transparent 



   

 

   

 

statistical/regression methods. The CF Data Registry was used to calculate health state 

transitions probabilities, probabilities for being in PbR cost bands by current health state, 

probability of being on various high-cost drugs, probability of receiving a lung transplant 

and lastly, the probability of survival post lung transplant. Again, this is the first study to 

utilise a CF Data Registry to generate such data for the health economic evaluation of an 

exemplar intervention.  

Additional benefits include the inclusion of a wider team of statisticians involved and 

clinical experts who supported in the construction of methods and validation of the model 

outputs further bolster the validity of the model.  

6.26.2.3 Treatment efficacy 

The treatment efficacy was assumed to be normally distributed between 0-2.2 (95%CI) 

absolute FEV1 improvement [24] (mean 1.1) and was randomly applied to F508Del 

Homozygous patients. Similarly, the model in this chapter applied a treatment 

effectiveness which was based on the longer-term effectiveness of Orkambi® over 96 

weeks [24]. These effects were observed in the same cohort that began treatment at week 

0. This is dissimilar to studies which applied an absolute improvement of 2.8 and did not 

consider any variance around treatment effect, as reflected in the clinical trial data [19]. It 

is also not clear what assumptions were made when treatment effect was applied by other 

studies on Orkambi® [126].  

The NICE technology appraisal submission [17] based their no Orkambi®FEV1 population 

decline on US and Canadian data. The technology appraisal submission also assumed 

that those on treatment subsequent to 24 weeks would only experience a FEV1 decline 



   

 

   

 

of -0.68 in any health state compared to the no Orkambi® cohort decline of up to -2.34 

ppFEV1. The resultant assumption by Vertex pharmaceuticals would have likely to have 

overestimated the benefits of Orkambi® in the model as stated by the NICE Evidence 

Review Group (ERG) in their appraisal [17]. The most recent Orkambi® model appraised 

by CADTH [16] made the same observations as the NICE ERG when looking at treatment 

effects over time.  Sharma et al [12] in the base-case applied the assumption that 

treatment effect would be maintained while the cohort was on therapy and there would 

be no subsequent decline in FEV1 with the added benefit of constant risk ratio reduction 

of PEx events. However, they do no state what value of FEV1 improvement was applied. 

Lastly, the ICER review of modulator treatments in CF used effectiveness measures for 

Orkambi® based on clinical trial data. However, they assumed that there was no decline 

in FEV1 for the first two years and at a rate of 50% of the no Orkambi® patients in 

subsequent years. They varied their annual FEV1 decline, in the no Orkambi® cohort, by 

age and was based on published literature [49, 50]. In comparison with the model 

developed in this chapter, the assumption around treatment effect was the FEV1 was 

based in UK CF Data Registry derived estimates and that any treatment would be 

sustained whilst on treatment. If treatment was stopped then subsequent to such a period, 

there would be no different between treatment groups in terms of health state transitions. 

The model in this chapter has used the most recent evidence available on the efficacy of 

Orkambi® [226] and applied treatment effect based on a distribution around a mean 

absolute improvement. As a result, some individual may or may not show an improvement 

subsequent to taking Orkambi® which is more reflective of the clinical trials outcomes.  



   

 

   

 

 

Treatment effect has come from a number of trials already mentioned and sensitivity 

analyses of treatment efficacy duration has been shown to considerably decrease the 

number of incremental QALYs generated. For instance, Sharma et al [126] in their base 

case analysis and assumption of lifetime treatment efficacy generated 0.45 QALYs over 

a 10-year time horizon. Changing the treatment efficacy to a single year reduced the 

incremental QALYs to 0.20 over a 10-year time horizon. When looking at the scenario 

analysis conducted in this chapter, changing the treatment efficacy to 2 years alone 

(scenarios 1 and 2) resulted in incremental QALYs of 0.05 over the time horizon of the 

model, which starts at the youngest age compared to any model appraised or published 

on Orkambi®. The highest number of incremental QALYs generated from the model in 

this chapter were 0.85 as a result of changing the initial patient distribution of cohort in 

the model from that of the UK CF Data Registry to that found in the RCT [46]. Similar 

changes to QALYs were seen in the appraisal by the CADTH [8], where adjustments of 

the assumptions in the model results in 0.85 QALYs.  

6.26.2.4 Costs 

Although this is not the first study to use statistical methods to calculate costs for CF 

individuals in a health economic model [107], the methods used reflected the specification 

of the data, that the outcome was an ordinal variable across 7 different costs bands. The 

costs are separated across sex groups as well as age, ranging from 6-65 years for either 

sex. Similarly, the statistical methods take into account treatment trends of the most 

recent data available at the time of analysis, 2016. These strengths as well as the 



   

 

   

 

probabilities being based on reviews conducted year to year resulted in transition 

probabilities which are available for a range of health states. Lastly, this is the first model 

to calculate per person cost by age and sex for both cost bands and High-Cost drugs for 

the various health states. These cost probabilities were validated by clinical experts and 

sense checked for reliability (Dr Siobhan Carr and Dr Diana Bilton).  

Costs for the NICE appraisal [10] for treatment took an NHS and personal and social 

services perspective. Cost were discounted at 3.5% and Orkambi® cost £2,000 per week 

(£104,000 annually). However, a price reduction was also assumed to take place after 12 

years in their base-case analysis which was very high. The model presented in this 

chapter did not assume any price reduction and this is likely to have resulted in an 

substantial difference to the ICER value when compared to that which was produced from 

the appraisal [10]. Cost for Orkambi® in my model were taken from the BNF, 2019, and 

were deflated to 2016 costs. This resulted in an annual cost of £92,000, which is markedly 

lower than that used by Vertex for their model. This would affect the resultant ICER value 

showing a more favourable value for Orkambi®.   

Cost for CF in the NICE appraised model [10] were based on FEV1 and were based on a 

2-year U.K retrospective study of 200 F508Del Homozygous patients. Hospitalisation cost 

were also assumed to be reduced by 61% for those receiving Orkambi®. Albeit, that this 

assumption was flagged by NICE ERG as possibly double counting health benefits from 

treatment [10]. Any information or breakdown of costs are not provided. The model in this 

chapter used data from the UK CF Data Registry which belonged to 3,740 F508Del 

Homozygous patients in the registry between 2013-2016. Costs were based on health 



   

 

   

 

state, sex and additional variables described in Chapter 5. Hospitalisation costs were 

assumed to be included in the Cost bands as already defined in the cost banding matrix 

(section 4.25, Chapter 4). Any reduction in costs associated with IV treatment or 

hospitalisation were assumed to be accounted for through changes in the health state 

and the resultant distribution among cost bands in those health states.  

Closer evaluation of the costs in the NCPE appraisal [9] does not provide any information 

about how costs were calculated. The initial [7] and subsequent appraisal [8] by CADTH 

did not provide any detailed information around costs separate to the cost of Orkambi®.  

The Institute for Clinical and Economic Review used a detailed costing method which was 

a combination of personal communication, previous research and weighted averaging 

methods. This resulted in an annual cost of $77,143 for best supportive care alone [94]. 

Costs for lung transplantation were taken from a research report from 2017 (Milliman 

Research Report [243]).  

It is clear that there are cases where costing methods are not transparent but where they 

are a range of assumptions and methods have been used. In this chapter, the methods 

for costing each health state are presented transparently and are based on the U.K. CF 

Data Registry. Additionally, the methods used in this chapter present the cost per health 

state which varies by age and sex and has not been presented in the past studies. When 

comparing the costs of standard care or best supportive care, the model in this chapter 

shows that standard care costs £433,361 over the time horizon of the model across both 

sex groups. This is different to that estimated by Institute for Clinical and Economic 

Review. However, it is important to take into account that the data used in this model is 



   

 

   

 

from CF patients who fit the criteria for allocation of treatment, i.e. F508Del Homozygous 

and is based on more recent data and few assumptions.  

I compared the results of this study against others which have looked into the long-term 

costs and outcomes of Orkambi® [129] alone. Costs for the control/no intervention group 

were also compared to data present in the literature [81] mentioned in Chapter 5 (Section 

5.19.2.5) which presented annual costs by health state, age from the Australian CF Data 

Registry (2002-2005).  

The study by Dilokthornsakul et al [129] utilised a Markov cohort model but did not 

incorporate an IV health state. The study results showed that the long-term costs of 

providing Orkambi® was $3,904,539 (95% CI $2,903,682 - $5,354,545). Compared to 

this chapter, £2,141,567 (95% CI £2,129,193 - £2,148,254) across both sexes the figures 

for either are very close to each other. However, the start age of the cohort for the 

Dilokthornsakul et al [129] model was 25 years, whereas the model in this chapter the 

cohort starts at 6 years old. As a result, we can see that the cost estimates for the 

Orkambi® cohort are well within the range of the Dilokthornsakul et al [129] study.  

Comparing the cost generated from this chapter (Section 6.22.3,6.22.5 and 6.22.7) 

against those of Van Gool et al [81] showed that the patterns present in the outcomes 

were similar and the overall costs were withing reasonable range of each other. Figure 

52 below shows the mean and median annual cost for those aged between 0->37 years 

in three different health states. The costs show a steady increase over time for the better 

health states but a decrease for the poorer health states. This pattern of increasing annual 

cost per person is also seen in Figures 33,34,39,40,42 and 43.  



   

 

   

 

Figure 52: Annual cost for health state by age [81] 

 

The overall lifetime cost were also compared and were also compared between the two 

studies. Van Gool et al [81] showed a mean lifetime costs (0-47 years) of $306,332 (95% 

CI: $256,098-$375,304) discounted at 3.5% and the model in this chapter showed a total 

lifetime cost (7-47 years) of £446,336/£440,427 for male and females respectively (3.5% 

discount rate). 

The comparison was made despite the data used in this thesis being more current than 

that which was used by Van Gool et al [81] (2002-2005). This again further increases the 

validity of the model.  

6.26.2.5 Utilities 

The review conducted in Chapter 3, showed that there was a dearth of evidence when it 

came to utility data for health economic modelling of CF interventions. The modelling 

conducted in this chapter used utility data which was evaluated for purpose and strictly 
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used data which was generated in a patient population which was being evaluated for IV 

treatment [229] for the health states specified in the model structure in Chapter 4.  

The utilities and resultant QALYs generated in cost-effectiveness appraisals [7-10] except 

for the cost effectiveness study by Sharma et al [126] were higher than those which were 

produced from the model in this chapter. The QALYs ranged from 0.45 [126] to 3.45 [10], 

whereas the QALYs produced in the model from this chapter were 0.75 over the 40-year 

time horizon. It is very clear that different studies have produced different incremental 

QALY benefits and the estimate in this chapter fits within these estimates. The key drivers 

for changes in QALYs seem to be generated from treatment effectiveness and the 

assumptions around how treatment effect is applied, especially in terms of efficacy 

duration. This in combination with the initial distribution of the cohort, starting age and the 

time horizon of the model can change the resultant incremental QALYs. 

6.26.2.6 ICER 

In the introduction a range of characteristics of these studies were identified. However, a 

number of additional sensitivity analyses performed in these studies showed large 

variations in the base case analysis ICER results. In Table 64, the ICER values for the 

different studies were shown to vary from £218,248/QALY to US $3,655,352/QALY in the 

base case analyses. The ICER value generated from the base case analysis was 

£2,282,330 per QALY (95%CI: £2,019,919 - £2,457,337). This is lower than the base 

case analysis results of Sharma et al [126], but was higher compared to other studies.  

The Evidence Review Group (ERG) at NICE applied a number of changes to the model 

submitted by Vertex pharmaceuticals [10]. The changes in the assumptions in the model 



   

 

   

 

resulted in an ICER that was as high as £459,045/QALY. Similarly, the ERG stated a 

range of plausible assumptions that Vertex Pharmaceuticals could apply in their base-

case analysis which could potentially increase the ICER value. The base-case ICER 

value for the most recent submission to CADTH [8] was CAD $446,529/QALY based on 

incremental costs and QALYs of $2,235,590, 5.20 respectively. However, after the 

common drug review (CDR) adjusted the model assumptions the ICER increased to CAD 

$ 3,785,432/QALY (12 years or older) based on incremental costs and QALYs of 

$3,204,133, 0.85 respectively. The economic evaluation conducted by Sharma et al [126] 

had an ICER of US$3,665,352/QALY. However, change in the assumption around the 

effectiveness of Orkambi® to one year only and subsequent similar decline in FEV1 

similar to the no Orkambi® cohort resulted in a much higher ICER value, 

US$8,480,265/QALY. Lastly, the review of CF modulators for the cost effectiveness by 

Institute for Clinical and Economic Review [94] resulted in an ICER of US 

$890,739/QALY, but changes to the long term effectiveness assumption of treatment 

increased the ICER to CAD$1,647,556/QALY.  

We can see that changes to base case assumptions in appraisal reports which were 

subsequently submitted to regulatory authorities such as NICE and CADTH resulted in 

ICER values that were substantially larger than their initial values. In the case of CADTH, 

the revised assumptions relating to effectiveness, compliance, and drug costs in both 

reports resulted in ICER values that were substantially larger than those seen in this 

chapter. This points out that the ICER value from the model in this chapter fits within the 

ranges estimated in the literature.  



   

 

   

 

6.26.2.7 Survival bias 

Previous health economic modelling in CF has highlighted the possible presence of 

survival bias in Registry data [10].  

Survival bias was initially covered in detail in Section 4.3.5. The model outputs in this 

chapter also included life years gained and the results presented showed that although 

males had a median survival similar to that which existing in the CF Data Registry annual 

report [11], females showed reduced survival (Section 6.22.2). The survival estimates 

published in the CF Data Registry report were based on the total CF U.K. population, 

whereas the model in this chapter estimates survival for those who are F508Del 

Homozygous. This could have resulted in differences in survival due to the more severe 

nature of the population using Orkambi®. This and the existing difference in survival 

between males and females in the CF Data Registry [11, 193] could explain the lower 

median survival for females presented in this chapter.  

6.26.3 Limitations of Current work 

6.26.3.1 Treatment efficacy 

A number of studies exist which demonstrate the efficacy of Orkambi® over time [19-25].  

The model developed in this chapter assumed that improvement in CF related outcomes 

were based on improvements in FEV1 alone and any additional impacts of reduction of 

IV days was accounted through costs and utility alone. As such, individuals received IV 

treatment regardless of improvement in FEV1 from Orkambi® if they were originally 

placed in an IV treatment health state prior to treatment i.e. control cohort. This meant 

that improvements in FEV1 would result in transition to a better IV based health state. As 

a result, impact of treatment in IV based health state would only be accounted through 



   

 

   

 

reduction in the cost banding category and improvement in utilities and in terms of the 

number of IV and hospital days received in those cost bands. This ultimately meant that 

those who received IV treatment could not go onto not receiving IV treatment as a result 

of Orkambi® treatment. Although the clinical trial paper [226] used to estimate the effect 

of treatment showed that there was a reduction in the number of IV days and hospital 

days received whilst on treatment, the model in this chapter accounted for this through 

the cost banding system which already identifies, based on the different cost bands, the 

number of IV and hospital days for each band. A change in the health state transitions as 

a result of treatment would account for changes in IV and hospital days through this 

avenue alone. This reduced the possibility of double counting treatment effect through 

both FEV1 and IV and hospital days which was also highlighted in a number of appraisals 

of Orkambi® by CADTH [7, 8] and NICE [10], which are mentioned earlier (Section 

6.25.1). But this may also increase the chance of underestimating treatment effect. This 

would also contribute to higher ICER values as seen in the results from the model in this 

chapter.  

Treatment effect was assumed to lead to an improvement of percent predicted FEV1 

between 0-2.2 in the model. Health states were formed from the categorisation of FEV1 

into health states; Mild, Moderate and Severe, whether on IV or not. As a result, only 

those individuals in the UK CF Data Registry who were close to the borderline of each 

FEV1 based category would be able to benefit from treatment. However, this would also 

be the case for other models if they categorised patients based on FEV1 thresholds.  



   

 

   

 

A small proportion of patients in the data used to create the health state transition 

probabilities were identified as being treated with Orkambi®. Application of treatment 

effect on such individuals would potentially result in double counting benefits in FEV1 and 

subsequent IV and hospital days. However, due to the small size of this population 

compared to the overall number of individuals in the dataset, the effect of such a situation 

is negligible. This is another reason why analysis post 2016 of the dataset was not 

undertaken, as post 2017 a majority of patients were given Orkambi® in the UK CF Data 

Registry.  

6.26.3.2 Costs  

Costs were taken from NHS England Monitor report [239] and as such there was no 

information around the variability of the cost banding figures provided. In the model I 

assumed a 10% variability around the mean estimate of each band. However, this 

resulted in little variability in the cost effectiveness results, as can be seen in the cost 

effectiveness plane (section 6.23.4). Further one-way sensitivity analysis showed that 

large changes in these costs had little impact on the overall ICER.  

Similarly, High-cost drugs were given a point estimate and due to information not being 

available around the uncertainty of the costs, the costs from the BNF were taken as final. 

No variability in such costs were introduced in the model due to lack of data to state 

otherwise. One-way sensitivity analysis showed that changes in High-Cost drug costs had 

the largest impact on the ICER value. This may result in an underestimation of the ICER 

variability for Orkambi®.  



   

 

   

 

The costs presented as a result in this chapter reflect the U.K. CF population, but they do 

not reflect the change in High-Cost Drug use that may be seen when taking Orkambi®. 

This is primarily due to no such data existing in the Registry Data. The model presented 

in this chapter does not take into account potential changes in utilisation of High-Cost 

drugs, only change in PbR cost band as a result of changes in Health state transition. 

Although research exists which shows that there is no significant change in the utilisation 

of High-Cost treatments when taking Orkambi® [244], this is based on an Irish national 

pharmacy claims database. This could have resulted in an overestimation of the ICER 

values presented in this chapter, which could have resulted in lower ICER values which 

were further in favour of existing published estimates.  

Although due to the high cost of Orkambi®, changes in either the PbR or High-Cost drug 

costs/use would unlikely change the decision of the modulator treatment being not cost 

effective. 

6.26.3.3 Utilities  

There is a lack of evidence around health state utility data in CF as identified by the review 

conducted in Chapter 3. Although the results showed large variation in the utility estimates 

in the PSA analysis, the overall incremental difference between the two, control and 

treatment, groups were very small.  

6.27 Future work 

Based on the aims of this chapter, the model looked to see whether adding an additional 

health state of IV treatment for each health state would enable the model to be used 

conventionally across all CF interventions. This is primarily because previous models 



   

 

   

 

failed to incorporate significant events which impact disease progression in CF, as 

identified in Chapter 2. Orkambi® was used an exemplar intervention to validate the 

model develop in Chapter 4. When compared to other model outcomes the results of the 

analysis showed that they were comparable and differences largely exist due to treatment 

effect, cohort distributions, starting age of treatment and time horizon. Future work could 

utilise the same model structure and look to validate it using other existing treatments 

such as antibiotics and modulators such as Ivacaftor®. However most importantly, the 

evaluation of Orkambi® as an exemplar intervention has highlighted the different 

approaches used to assess the cost effectiveness of the intervention. Due to data 

availability different input datasets were used in the different models that were identified. 

An important find, in conjunction to Chapter 3, has been the lack of utility data for CF. 

Future work could look at generating health state utility data alongside other CF Registry-

based variables, although difficulties in measuring utility using generic instruments in CF 

patients have been highlighted. Additionally, work could be conducted on generating 

more granularity in the Cost Banding matrix in order to identify cost which would separate 

individuals who receive IV treatment to those who do not. As a finding from the model 

related to the cost banding was that the banding matrix seemed to generate some 

instances of IV treatment for those in the No IV treatment health state. Although this was 

validated as a possible event (Dr Siobhan Carr and Dr Diana Bilton) but was only related 

to increase in costs other than IV treatment but were classified into particular bands which 

included IV treatment. 



   

 

   

 

Novel additions to the model in this chapter included data inputs generate from work in 

Chapter 5 on the UK CF Data Registry, which included health state transitions 

probabilities, cost banding probabilities, high-cost drug proportions and lung transplant 

probabilities. The novel additions also included inclusion of IV based health states. These 

would have most likely resulted in differences between model outcomes, from either costs 

or QALYs as the model was structurally different and was driven by different data.  

It is important to note that only a single model used in the validation exercise was a 

Markov cohort model (Sharma et al), the remaining model looked at in the technology 

appraisals were individual patient simulation models [9, 10]. The results from both Markov 

Models were more comparable than those which used other model types. Differences in 

results are also likely to be due to this and future research could look at using the data 

generated in this thesis or similar methods in an individual patient simulation model and 

to compare the model outcomes again.  

The purpose of conducting the EVPI in this study was to highlight that further research 

into the cost effectiveness of Orkambi® is not justified. However, it is important to note 

that EVPI is highly influenced by the population at risk and the duration the treatment is 

being provided for. In the analysis conducted in this chapter, I assumed that there would 

be no reduction in costs in treatment due to patent expiry and that the population would 

not change which was eligible for Orkambi®. Additional factors that could be considered 

in future analyses could be time to patent expiry, availability of biosimilar treatments, 

changes in number of individuals who are eligible for treatment and additional changes in 

the price of Orkambi®.  



   

 

   

 

Additional work, in the future, could also include the use of the model to evaluate other 

CF management interventions in other genotype populations. The model could be 

adapted for further analysis of the impact of both CFRD and CFLD.  

Lastly, I feel that many of the differences generated in the model identify a key element 

in the decision modelling of CF interventions. That there is no single best approach to 

modelling CF interventions and future work on coming to an understanding of the best 

approaches for modelling CF treatment would benefit the evaluation of CF treatments.  

6.28 Conclusion 

Although this is not the first cost effectiveness analysis conducted on Orkambi®, it is the 

first cost-utility analysis of a CF modulator intervention in the U.K. using data 

predominantly from the UK CF Data Registry. The modelling was conducted from the 

perspective of the NHS and the population of interest were those with F508Del 

Homozygous mutation. This is the first model that looks at the effect of Orkambi® across 

either sex or in combination. Also, outcomes in the model can be segregated by age and 

sex.  

Key variables were identified as driving the differences in results of different Orkambi® 

appraisals or economic evaluations. These included particularly how efficacy was applied 

to the models and which study was used to determine the effect or Orkambi®. Other 

drivers included utilities, initial patient distribution in the Markov model and how significant 

events such as IV treatment as a result of PEx are costed and accounted for in the 

models. The results showed that the model structure utilised in this chapter produced 



   

 

   

 

similar results to those which exist in the published literature and from agencies which 

provide guidance on medicine use i.e. NICE, CADTH and NCPE.  

  



   

 

   

 

7 Discussion  

The aim of this chapter is to revisit the original aims of this PhD and demonstrate how 

each chapter has cumulatively met the objectives set out at the start. The main findings 

are shown against each chapter, although the strengths and limitations and future work 

of each chapter are discussed therein. I discuss how this thesis adds to the literature in 

CF and highlight some avenues how my research has impacted CF research. The final 

sections provide suggestions for future work in different areas which would give 

substantial benefit for health economics research in CF. Lastly, the chapter finishes with 

an overall conclusion of the thesis.  

7.1 How the thesis addresses the objectives 

The thesis aimed to advance the health economic evidence available to inform economic 

models and the decisions about appropriate Cystic Fibrosis care. This has been achieved 

through a series of objectives. These are further described in Table 107 alongside the 

chapters which meet the objectives in this thesis. A total of two systematic reviews have 

been conducted as part of this thesis (and published) to cover aims 1a and 1b. Analysis 

of the CF Data Registry was undertaken and methods presented in 2a were used in order 

to achieve aims 2b-d. Lastly, the input parameters generated in 2b-d were utilised in a De 

Novo model structure which was discussed in detail in Chapter 4 to achieve aim 2e.  

 

 

 

Table 107: Summary of Aims and objectives 



   

 

   

 

Aims Objectives Covered in and findings 

1. How are Cystic Fibrosis 

medications evaluated 

for their cost-

effectiveness? 

 

a) To identify and review the current state of the 

economic modelling literature for CF with the 

view to identify potential areas of importance 

that can be addressed within this PhD. 

Chapter 2 presents the systematic review of 

health economic models and found that 

modelling did not reflect disease progression in 

CF 

b) To review and identify health utility data that 

exists for the health economic modelling of CF. 

 Chapter 3 showed that research around health 

utilities for CF, be it health state, FEV1 or 

significant health event (PEx) related, requires 

further work. 

2. How Registry Data can 

be used in the 

development of 

parameters to inform 

health economic 

a) Demonstrating how existing statistical 

methods can be utilised to develop health 

state transition or other probability estimates 

Chapter 4 presents regression modelling 

methods used to generate transition 

probabilities. Ordered probit and Generalised 

Estimating equations were appropriate for the 

available data.  



   

 

   

 

modelling in the context 

Cystic Fibrosis 

treatments. 

b) Generating new U.K. based health state 

transition (including mortality) probabilities 

based on data from the CF Trust Data 

Registry. 

Chapter 5 presented health state transition 

probabilities which were comparable to the 

existing data in the literature 

c) Generating new U.K. based Cost band 

probabilities from the CF Trust Data Registry 

Chapter 5 presents a novel method to 

calculate costs for being in different health 

state which were to the existing data in the 

literature 

d) Generating new U.K. based Lung Transplant 

probabilities from the CF Trust Data Registry 

Chapter 5 presents a novel method to 

calculate probability for receiving a transplant 

which were to the existing data in the literature 

and the observed data in the U.K CF Registry 



   

 

   

 

e) Developing a novel health economic model 

structure based on disease progression, data 

availability and clinical expert opinion in the 

U.K. 

Chapter 4 present the model conceptualisation 

process used to develop a De Novo health 

economic model which was validated against 

the literature and by clinical experts 

f) Developing a health economic model 

incorporating the estimates generated in 

objectives a) to d) into objective e) to evaluate 

an exemplar intervention, Orkambi®. 

Chapter 6 presents the exemplar CUA of 

Orkambi® to validate to the De Novo model 

and found that the ICER and cost estimates 

produced were comparable to existing 

published models 



   

 

   

 

7.2 How this thesis extends knowledge and understanding 

In summary, this thesis extends our knowledge and understanding in the health 

economics of CF in 4 main ways. 

7.2.1  Health state transition data for use in CF models 

This thesis looked to understand how the use of the UK CF Data Registry could support 

and further advance the health economic modelling of CF interventions.  

One of the key additions to existing evidence is health state transition probabilities based 

on a national Data Registry which covers more than 90% of the population and this really 

strengthens the external validity of these estimates. Chapter 5 has provided a very 

detailed breakdown of probability estimates by age, sex and health state. The new data 

has been assessed by clinical experts and has been comapred to existing evidence and 

the estimates are highly comparable and have been said to make clinical sense by 

experts (Dr Siobhan Carr and Dr Diana Bilton).  

7.2.2 Cost band probability data for use in CF models 

This thesis looked to understand the current practice of health economic modelling of CF 

interventions. Existing health economic models were evaluated for different aspects 

including model structure and data inputs (Section 2.7).  

The review highlighted that available cost data were based primarily on multiple external 

data sources and in some instances were more than a decade old. In cases where count-

based estimates were used, these were based on CF Registry Data but were not 

disaggregated by age, sex and health state together. Only in one instance were costs 

based on regression methods employed on the CF Registry Data [107] but again, this did 

not incorporate sex into the cost estimation and the approach used presented costs as a 



   

 

   

 

continuous outcome. However, such cost data is not available in CF. Existing cost 

banding categories (Section 4.18.2) only exist for CF. Similarly, no variation around the 

mean cost per band is available in the literature. In this thesis, novel approaches to 

costing have been demonstrated through regression methods to determine the probability 

of occupying a cost banding category, which is includes all drugs but High-Cost drugs. 

Such cost banding categories also include IV treatment days received per year and also 

the number of hospital days spent as an inpatient in hospital annually. Such probabilities 

are based on sex, age and current health state. Additional costs for High-Cost drugs have 

been included as part of Chapter 6. As a result, the work presented in this thesis shows 

probabilities estimated for cost banding categories by age, sex and current health state, 

which in not currently available in the literature. Furthermore, costs are based on a 

national Data Registry which covers at least 90% of the CF population in the U.K, so this 

really strengthen the external validity of these estimates.  

7.2.3 Novel Model Structure 

Similarly, existing model structuring practices were evaluated as part of this thesis. The 

results showed that very few studies incorporated the effects of serious health events 

such as PEx’s But in cases where this was done, impact was indirectly applied through 

HRQOL and costs [102]. In instances where such events were incorporated as health 

states, subsequent health states such as lung transplantation and post lung 

transplantation were not included [101]. The work undertaken in this thesis on the model 

structure used a detailed conceptualisation process which was supported with 

contribution by statisticians, epidemiologist, clinicians in CF and health economists. As a 



   

 

   

 

result, a De Novo model structure was created which incorporated significant health 

events and is reflective of disease progression in CF and can be used for a multitude of 

interventions in CF in the future.  

7.2.4 Gaps in literature for future focus 

Subsequent to understanding how CF interventions were evaluated, gaps in evidence 

were identified. Particularly, health state utility data were identified as needing further 

enquiry. The review conducted highlighted that there was limited evidence available 

which could be used in the health economics modelling of CF interventions and requires 

further research.  

A number of strengths and limitations were also discussed and are presented in detail in 

each chapter. 

7.3 Research impact of the work 

Overall, this thesis shows how refined use of the CF Trust Data Registry can support the 

health economic modelling of CF interventions. All input parameters used in the De Novo 

health economic model in this thesis were generated from the UK CF Data.  

Similarly, the reviews conducted in this thesis have highlighted the need for further work 

on the HRQOL data, particularly, utility data. This had led a research grant being 

approved to look at the health-related quality of life in CF individuals (personal 

communication, Professor Jennifer Whitty, 16th Nov 2020).  

Furthermore, the review on the health economic modelling studies conducted led to a De 

Novo model structure which incorporated significant health events which can affect the 

long-term costs and utilities as a result of receiving a CF treatment, as shown through 



   

 

   

 

Orkambi®in this thesis. The validity of which has been demonstrated through between 

consistency comparison with published technology appraisals [7-10] and articles [126]. 

The results showed that the transition probabilities generated in this thesis are 

comparable to those existing in the literature when averaged by age and sex. Although it 

may be argued that use of Registry Data may lead to some confounding due to a small 

proportion of patients in the CF Data Registry receiving Orkambi® treatment. This is 

unlikely due to the small numbers of such people in the Registry Data.  

Furthermore, the development of a De Novo model for the cost-effectiveness analysis of 

CF interventions was another key aspect of this thesis. The De Novo model could be 

used for future evaluation of CF treatments, in the UK particularly, as all aspects of costs 

and outcomes are covered in this model. The model itself allows for inclusion of significant 

health events and further patient/cohort sub-groups, such as those with CFRD or CFLD, 

could be included for impact of such treatment on the cost-effectiveness of different 

treatments.  

7.4 Future work 

7.4.1 Utility data 

Data on the utility of being in particular health states but also experiencing significant 

health events such as PEx have been highlighted as requiring further study in this thesis. 

A single study by Bradley et al [48] has been used in a majority of health economic models 

to demonstrate health state utility and disutility and also in this thesis. 

However, other sources of evidence, particularly Solem et al [139] provide information on 

utilities based on PEx which led to hospitalisation or not and the definition of PEx meets 



   

 

   

 

the defined Fuch’s criteria which was highlighted as best for use in clinical trials. However, 

no utility data is provided based on health state. As a result, Bradley et al [48] alone 

provide health state-based utility data. But the author, in their study limitations, highlighted 

that the sample size for the study was small. So, another study looking at the health state 

related utility for CF patients would provide an additional valuable resource for the health 

economic modelling of CF interventions. This could be achieved through such data being 

collected by the CF Data Registry when patients see their physicians for annual review. 

Additional studies could be carried out which look at HRQOL subsequent to significant 

health events such as PEx as close as possible to the event data whilst recording their 

best FEV1 value that year and follow up the patient prospectively. These later could be 

linked to the CF Data Registry to determine long term outcomes such as mortality and 

health state transitions as well as costs and could again be used for the health economic 

modelling of CF interventions.  

7.4.2 Cost data  

As explained in this thesis, existing cost data in the literature were estimated using count-

based methods and only provided probabilities of being in particular cost bands by health 

state [102]. Only a single health economic evaluation conducted [107] used regression 

modelling approach to costing but added cost per band and High-Cost drugs. The cost 

that were used were not derived from a particular genotype but of those in the overall 

registry. This may not be appropriate for evaluating interventions which are given to select 

genotype groups. The costs band probabilities and well as use of High-Cost drugs 

presented in this thesis are based on a select genotype (F508Del Homozygous) and are 



   

 

   

 

provided by age, sex and current health state. This level is detail is not currently available 

in the literature. Furthermore, given the nature of F508Del Homozygous mutation, which 

is a high-risk group, High-cost drug use and probabilities of occupying particular cost 

bands will most likely to differ compared to those in lower risk groups or in CF on average 

(mixture of High and Low risk groups). As a result, reductions in IV days, hospital inpatient 

stay will reflect changes upon receiving treatment for F508Del Homozygous patients and 

not an average of CF patients in the U.K. 

Future work for cost data could focus on linking the U.K. CF Data Registry to Hospital 

Episode Statistics (HES) or Secure Anonymised Information Linkage (SAIL) data to 

obtain more refined use of resources to support the calculation of cost per person, by 

age, sex and current health state. This will support the HTA of novel and existing 

treatments in CF.  

7.4.3 New Data from the CF Trust Registry 

The data provided as part of this thesis contained variables only up until 2016, where 

such data did not contain information on whether an individual in the Data Registry 

experienced an PEx. However, subsequent years 2017 onwards have data on such 

events. As a result, future studies could also focus on the number of PEx events 

experienced whilst on a number of existing or novel CF treatments. Furthermore, the 

number of individuals in the Registry Data who were receiving Orkambi® as a treatment 

were very few. However, subsequent to 2019 the number of those receiving this treatment 

has increased considerably. This could potentially lead to issues with confounding upon 

use. As a result, methods such as propensity score matching could be used to account 



   

 

   

 

for novel modulator treatment use and comparison in economic evaluations using the CF 

Data Registry. Existing studies which have looked at the effectiveness of modulator 

treatments through use of the CF Data Registry have highlighted the impact of such 

treatments in real world settings and thus increases the external validity of such 

treatments [245]. As a result, future studies could also use treatment efficacy data from 

within the Data Registry to evaluate their cost-effectiveness and the EMA have already 

called for such observational research [246].  

7.4.4 Further model adaptations 

The work conducted in this thesis also looked at developing a novel model structure. 

However, as highlighted in Chapter 2, there are other additional areas of CF that require 

further research. These include the impact of CFRD and CFLD, which are becoming more 

prevalent as the median survival of those in the CF in the U.K. increases. Future models 

could look at incorporating the impact of such conditions on the health state transitions, 

including lung transplantation, as well as costs.  

7.4.5 Other registries   

This thesis is not the first study which has looked to use Registry Data in the health 

economic modelling of treatments. However, this is the first study to use the CF Registry 

Data to provide input parameters to such a refined level. Further studies in the future 

could also be conducted on additional CF Registry Data from other countries to determine 

if there are substantial differences in the long-term outcomes of CF patients as well as 

the cost effectiveness of CF interventions. Such studies could be useful in highlighting 

key areas of research in CF so that treatment provision could be homogenous across 



   

 

   

 

different countries. The methods used in this thesis have also highlighted that such 

regression methods could be applied to registry outside CF to generate similar input 

parameters for the economic evaluation of treatments.  

7.5 Conclusion 

This thesis has developed our understanding of the areas that require further 

improvement for the health economic modelling of CF interventions to take a step in a 

direction which allows decision makers to be more confident about drug reimbursement. 

This thesis has taken an approach to develop a De Novo model to address the lack of 

reflective disease modelling in CF. It has also developed input parameters from a national 

Data Registry to show that such databases can prove to be a strong supportive tool which 

has great potential in supporting the improvement in the cost effectiveness evaluation of 

existing and novel CF treatments in the future. Most importantly the methods used and 

resultant evidence developed in this thesis can help support decision makers to allow 

appropriate access for CF individuals to treatment whilst preserving the sustainability of 

the NHS, not just today but also in the future.  

  



   

 

   

 

8 Appendix  

8.1 Appendix 1: Plot of observed proportions in each current health state 

by previous health state, gender and age groups 

8.1.1  Health State transitions 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 



   

 

   

 

 

8.1.2 Cost band proportions 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

  



   

 

   

 

8.2 Appendix 2: Plot of observed and derived health state transitions 

probabilities from the U.K. CF Data Registry (2016) 

8.2.1 Previous health state 

8.2.1.1 Mild No IV 

 

 



   

 

   

 

 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 

 

 



   

 

   

 

8.2.1.2 Mild IV 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.2.1.3 Moderate No IV 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.2.1.4 Moderate IV 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 



   

 

   

 

8.2.1.5 Severe No IV 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

8.2.1.6 Severe IV 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 

 

 



   

 

   

 

 

 

 



   

 

   

 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.3 Appendix 3: Plot of observed and derived cost band probabilities from 

the U.K. CF Data Registry (2016) by current health state 

8.3.1 Cost Band probabilities  

8.3.1.1 Mild No IV 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

8.3.1.2 Mild IV 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.3.1.3 Moderate No IV 

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.3.1.4 Moderate IV 

 

 

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 



   

 

   

 

 

 



   

 

   

 

 

 

8.3.1.5 Severe No IV 

 



   

 

   

 

 



   

 

   

 

 



   

 

   

 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

8.3.1.6 Severe IV 

 



   

 

   

 

 



   

 

   

 

 

 



   

 

   

 

 

 



   

 

   

 

 



   

 

   

 

 



   

 

   

 

 



   

 

   

 

 

 

 

 



   

 

   

 

8.4 Appendix 4 : Plot of observed and derived lung transplant probabilities 

from the U.K. CF Data Registry (2016) by age and gender 

8.4.1 Probability of lung transplant  

 



   

 

   

 

9 References 

1. Edlin, R., et al., Cost Effectiveness Modelling for Health Technology Assessment: 
A Practical Course. 2015: Adin. 

2. Le, Q., et al., Cost-effectiveness Analysis of Sequential Treatment of 
Abaloparatide Followed by Alendronate Versus Teriparatide Followed by 
Alendronate in Postmenopausal Women With Osteoporosis in the United States. 
Annals of Pharmacotherapy, 2018. 53: p. 106002801879803. 

3. Stuart Elborn, J., Personalised medicine for cystic fibrosis: treating the basic 
defect. European Respiratory Review, 2013. 22(127): p. 3. 

4. Medicine, U.S.N.L.o. Clinical trials.gov. 2021  [cited 2021 01/01/2021]; Available 
from: https://clinicaltrials.gov/ct2/results?term=Cystic+fibrosis&Search=Search. 

5. Briggs, A., K. Claxton, and M. Sculpher, Decision Modelling for Health Economic 
Evaluation. 2006, Oxford: Oxford University Press. 

6. CADTH, Canadian Agency for Drugs and Technologies in Health (CADTH) 
Canadian drug expert committee final recommendation: Ivacaftor. 2015, Canadian 
Agency for Drugs and Technologies in Health. p. 1-6. 

7. CADTH, Canadian Agency for Drugs and Technologies in Health. Canadian Drug 
Expert Committee Final Recommendation: Orkambi. Canadian Agency for Drugs 
and Technologies in Health, 2016: p. 1-9. 

8. CADTH, Canadian Agency for Drugs and Technologies in Health (CADTH)  
Canadian Drug Expert Committee Recommendation (Final) - 
LUMACAFTOR/IVACAFTOR 2018, CADTH. 

9. NCPE: and N.C.f. Pharmacoeconomics, Cost-effectiveness of 
Lumacaftor/Ivacaftor (Orkambi) for cystic fibrosis in patients aged 12 years and 
older who are homozygous for the F508del mutation in the CFTR gene. National 
Centre for Pharmacoeconomics, 2016. 

10. NICE. National Institute for Health and Care Excellence (NICE). Lumacaftor–
ivacaftor for treating cystic fibrosis homozygous for the F508del mutation. 
Technology appraisal guidance [TA398]. 2016  [cited 2017 January]; Available 
from: https://www.nice.org.uk/guidance/ta398/chapter/3-Evidence#cost-
effectiveness. 

11. Cystic Fibrosis Trust. Annual Registry Report 2016. 2016; Available from: 
https://www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/uk-cf-
registry/2016-registry-annual-data-report.ashx?la=en. 

12. Proesmans, M., F. Vermeulen, and K. De Boeck, What’s new in cystic fibrosis? 
From treating symptoms to correction of the basic defect. European Journal of 
Pediatrics, 2008. 167(8): p. 839-849. 

13. Gadsby, D.C., P. Vergani, and L. Csanady, The ABC protein turned chloride 
channel whose failure causes cystic fibrosis. Nature, 2006. 440(7083): p. 477-83. 

https://clinicaltrials.gov/ct2/results?term=Cystic+fibrosis&Search=Search
https://www.nice.org.uk/guidance/ta398/chapter/3-Evidence#cost-effectiveness
https://www.nice.org.uk/guidance/ta398/chapter/3-Evidence#cost-effectiveness
https://www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/uk-cf-registry/2016-registry-annual-data-report.ashx?la=en
https://www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/uk-cf-registry/2016-registry-annual-data-report.ashx?la=en


   

 

   

 

14. CFGAC. Cystic Fibrosis Genetic Analysis Consortium (CFGAC): Cystic fibrosis 
mutation database. 2020  [cited 2020 14/09/2020]; Available from: 
http://www.genet.sickkids.on.ca/Home.html. 

15. Amaral, M. and C. Farinha, Rescuing Mutant CFTR: A Multi-task Approach to a 
Better Outcome in Treating Cystic Fibrosis. Current pharmaceutical design, 2013. 
19. 

16. Lopes-Pacheco, M., CFTR Modulators: Shedding Light on Precision Medicine for 
Cystic Fibrosis. Frontiers in Pharmacology, 2016. 7: p. 275. 

17. Quon, B.S. and S.M. Rowe, New and emerging targeted therapies for cystic 
fibrosis. Bmj, 2016. 352: p. i859. 

18. McKone, E.F., C.H. Goss, and M.L. Aitken, CFTR genotype as a predictor of 
prognosis in cystic fibrosis. Chest, 2006. 130(5): p. 1441-7. 

19. De Boeck, K., Cystic fibrosis in the year 2020: A disease with a new face. Acta 
Paediatrica, 2020. 109(5): p. 893-899. 

20. Bobadilla, J.L., et al., Cystic fibrosis: a worldwide analysis of CFTR mutations--
correlation with incidence data and application to screening. Hum Mutat, 2002. 
19(6): p. 575-606. 

21. Farrell, P.M., The prevalence of cystic fibrosis in the European Union. J Cyst 
Fibros, 2008. 7(5): p. 450-3. 

22. McCormick, J., et al., Comparative demographics of the European cystic fibrosis 
population: a cross-sectional database analysis. Lancet, 2010. 375(9719): p. 
1007-13. 

23. Mehta, G., M. Macek, Jr., and A. Mehta, Cystic fibrosis across Europe: 
EuroCareCF analysis of demographic data from 35 countries. J Cyst Fibros, 2010. 
9 Suppl 2: p. S5-s21. 

24. ECFS. European Cystic Fibrosis Society (ECFS). 2016  [cited 2016 10/10/2016]; 
Available from: https://www.ecfs.eu/about_ecfs  

25. Burgel, P.-R., et al., Future trends in cystic fibrosis demography in 34 European 
countries. European Respiratory Journal, 2015. 46(1): p. 133. 

26. Salvatore, D., et al., An overview of international literature from cystic fibrosis 
registries. Part 4: update 2011. J Cyst Fibros, 2012. 11(6): p. 480-93. 

27. Singh, M., et al., Epidemiology and genetics of cystic fibrosis in Asia: In preparation 
for the next-generation treatments. Respirology, 2015. 20(8): p. 1172-81. 

28. Corey, M. and V. Farewell, Determinants of mortality from cystic fibrosis in 
Canada, 1970-1989. Am J Epidemiol, 1996. 143(10): p. 1007-17. 

29. Dodge, J.A., et al., Cystic fibrosis mortality and survival in the UK: 1947-2003. Eur 
Respir J, 2007. 29(3): p. 522-6. 

30. Quintana-Gallego, E., et al., Mortality from cystic fibrosis in Europe: 1994-2010. 
Pediatr Pulmonol, 2016. 51(2): p. 133-42. 

31. Ramalle-Gomara, E., et al., Cystic Fibrosis Mortality Trends in Spain among 
Infants and Young Children: 1981-2004. European Journal of Epidemiology, 2008. 
23(8): p. 523-529. 

http://www.genet.sickkids.on.ca/Home.html
https://www.ecfs.eu/about_ecfs


   

 

   

 

32. Reid, D., et al., Changes in Cystic Fibrosis mortality and persisting gender 
inequalities in Australia: 1979–2005. Journal of Cystic Fibrosis - J CYST FIBROS, 
2009. 8. 

33. Bellis, G., et al., Cystic fibrosis mortality trends in France. Journal of Cystic 
Fibrosis, 2007. 6(3): p. 179-186. 

34. MacKenzie, T., et al., Longevity of patients with cystic fibrosis in 2000 to 2010 and 
beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann 
Intern Med, 2014. 161(4): p. 233-41. 

35. Registry, C.C.F., Annual report 2013, Canadian Cystic Fibrosis Registry. 
36. NICE. Cystic fibrosis: diagnosis and management NICE guideline NG78. 2017  

[cited 2018 02/2018]; Available from: www.nice.org.uk/guidance/ng78. 
37. NHS. National Health Service: Cystic Fibrosis 2016  [cited 2017 31/02/2017]; 

Available from: https://www.nhs.uk/conditions/cystic-fibrosis/. 
38. Farrell, P.M., et al., Diagnosis of Cystic Fibrosis: Consensus Guidelines from the 

Cystic Fibrosis Foundation. J Pediatr, 2017. 181s: p. S4-S15.e1. 
39. Davies, J.C. and E.W. Alton, Monitoring respiratory disease severity in cystic 

fibrosis. Respir Care, 2009. 54(5): p. 606-17. 
40. Stanojevic, S. and F. Ratjen, Physiologic endpoints for clinical studies for cystic 

fibrosis. Journal of Cystic Fibrosis, 2016. 15(4): p. 416-423. 
41. Kerem, E., et al., Factors associated with FEV1 decline in cystic fibrosis: analysis 

of the ECFS Patient Registry. European Respiratory Journal, 2014. 43(1): p. 125. 
42. Liou, T.G., et al., Predictive 5-Year Survivorship Model of Cystic Fibrosis. 

American Journal of Epidemiology, 2001. 153(4): p. 345-352. 
43. Dill, E.J., et al., Longitudinal Trends in Health-Related Quality of Life in Adults With 

Cystic Fibrosis. Chest, 2013. 144(3): p. 981-989. 
44. Accurso, F.J., et al., Effect of VX-770 in Persons with Cystic Fibrosis and the 

G551D-CFTR Mutation. New England Journal of Medicine, 2010. 363(21): p. 
1991-2003. 

45. Kerem, E., et al., Effectiveness of PTC124 treatment of cystic fibrosis caused by 
nonsense mutations: a prospective phase II trial. The Lancet, 2008. 372(9640): p. 
719-727. 

46. Wainwright, C.E., et al., Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis 
Homozygous for Phe508del CFTR. New England Journal of Medicine, 2015. 
373(3): p. 220-231. 

47. Abbott, J., et al., Longitudinal impact of demographic and clinical variables on 
health-related quality of life in cystic fibrosis. BMJ Open, 2015. 5(5): p. e007418. 

48. Bradley, J.M., et al., Quality of life and healthcare utilisation in cystic fibrosis: a 
multicentre study. European Respiratory Journal, 2013. 41(3): p. 571. 

49. Abbott, J., et al., Longitudinal association between lung function and health-related 
quality of life in cystic fibrosis. Thorax, 2013. 68(2): p. 149-154. 

50. Keogh, R.H., et al., Dynamic Prediction of Survival in Cystic Fibrosis: A 
Landmarking Analysis Using UK Patient Registry Data. Epidemiology, 2019. 30(1): 
p. 29-37. 

www.nice.org.uk/guidance/ng78
https://www.nhs.uk/conditions/cystic-fibrosis/


   

 

   

 

51. Kerem, E., et al., Prediction of mortality in patients with cystic fibrosis. N Engl J 
Med, 1992. 326(18): p. 1187-91. 

52. Liou, T.G., et al., Year-to-year changes in lung function in individuals with cystic 
fibrosis. J Cyst Fibros, 2010. 9(4): p. 250-6. 

53. Ferkol, T., M. Rosenfeld, and C.E. Milla, Cystic fibrosis pulmonary exacerbations. 
J Pediatr, 2006. 148(2): p. 259-64. 

54. Sanders, D.B., et al., Failure to recover to baseline pulmonary function after cystic 
fibrosis pulmonary exacerbation. Am J Respir Crit Care Med, 2010. 182(5): p. 627-
32. 

55. Zemanick, E.T., et al., Pulmonary exacerbations in cystic fibrosis with negative 
bacterial cultures. Pediatric Pulmonology, 2010. 45(6): p. 569-577. 

56. de Boer, K., et al., Exacerbation frequency and clinical outcomes in adult patients 
with cystic fibrosis. Thorax, 2011. 66(8): p. 680-5. 

57. Sanders, D.B., et al., Pulmonary exacerbations are associated with subsequent 
FEV1 decline in both adults and children with cystic fibrosis. Pediatr Pulmonol, 
2011. 46(4): p. 393-400. 

58. Marshall, B.C., Pulmonary exacerbations in cystic fibrosis: it's time to be explicit! 
Am J Respir Crit Care Med, 2004. 169(7): p. 781-2. 

59. Bilton, D., et al., Pulmonary exacerbation: towards a definition for use in clinical 
trials. Report from the EuroCareCF Working Group on outcome parameters in 
clinical trials. J Cyst Fibros, 2011. 10 Suppl 2: p. S79-81. 

60. Waters, V., et al., Effect of pulmonary exacerbations on long-term lung function 
decline in cystic fibrosis. European Respiratory Journal, 2012. 40(1): p. 61. 

61. Savi, D., et al., Relationship between pulmonary exacerbations and daily physical 
activity in adults with cystic fibrosis. BMC pulmonary medicine, 2015. 15: p. 151-
151. 

62. Britto, M.T., et al., Impact of Recent Pulmonary Exacerbations on Quality of Life in 
Patients With Cystic Fibrosis. Chest, 2002. 121(1): p. 64-72. 

63. Fuchs, H.J., et al., Effect of aerosolized recombinant human DNase on 
exacerbations of respiratory symptoms and on pulmonary function in patients with 
cystic fibrosis. The Pulmozyme Study Group. N Engl J Med, 1994. 331(10): p. 637-
42. 

64. Lewis, C., et al., Diabetes-related mortality in adults with cystic fibrosis. Role of 
genotype and sex. Am J Respir Crit Care Med, 2015. 191(2): p. 194-200. 

65. Kobelska-Dubiel, N., B. Klincewicz, and W. Cichy, Liver disease in cystic fibrosis. 
Prz Gastroenterol, 2014. 9(3): p. 136-41. 

66. Siano, M., et al., Ursodeoxycholic acid treatment in patients with cystic fibrosis at 
risk for liver disease. Dig Liver Dis, 2010. 42(6): p. 428-31. 

67. Boëlle, P.-Y., et al., Cystic Fibrosis Liver Disease: Outcomes and Risk Factors in 
a Large Cohort of French Patients. Hepatology, 2019. 69(4): p. 1648-1656. 

68. Singh, H., M.J. Coffey, and C.Y. Ooi, Cystic Fibrosis-related Liver Disease is 
Associated With Increased Disease Burden and Endocrine Comorbidities. Journal 
of Pediatric Gastroenterology and Nutrition, 2020. 70(6). 



   

 

   

 

69. Bell, S.C., K. De Boeck, and M.D. Amaral, New pharmacological approaches for 
cystic fibrosis: Promises, progress, pitfalls. Pharmacology & Therapeutics, 2015. 
145: p. 19-34. 

70. Pedemonte, N., et al., Small-molecule correctors of defective DeltaF508-CFTR 
cellular processing identified by high-throughput screening. J Clin Invest, 2005. 
115(9): p. 2564-71. 

71. Moran, O. and O. Zegarra-Moran, A quantitative description of the activation and 
inhibition of CFTR by potentiators: Genistein. FEBS Lett, 2005. 579(18): p. 3979-
83. 

72. Elborn, J.S., Cystic fibrosis. Lancet, 2016. 388(10059): p. 2519-2531. 
73. Elborn, J.S., Modulator treatment for people with cystic fibrosis: moving in the right 

direction. European Respiratory Review, 2020. 29(155): p. 200051. 
74. Shteinberg, M. and J.L. Taylor-Cousar, Impact of CFTR modulator use on 

outcomes in people with severe cystic fibrosis lung disease. European Respiratory 
Review, 2020. 29(155): p. 190112. 

75. Wise, J., NHS and Vertex remain deadlocked over price of cystic fibrosis drug. 
BMJ, 2019. 364: p. l1094. 

76. Lopes-Pacheco, M., CFTR Modulators: The Changing Face of Cystic Fibrosis in 
the Era of Precision Medicine. Frontiers in Pharmacology, 2020. 10(1662). 

77. Bitonti, M., L. Fritts, and T.Y. So, A Review on the Use of Cystic Fibrosis 
Transmembrane Conductance Regulator Gene Modulators in Pediatric Patients. J 
Pediatr Health Care, 2019. 33(3): p. 356-364. 

78. ERS. European Respiratory Society. European Lung White Book: The Economic 
Burden of Lung Disease. 2017  [cited 2017 14/04/2017]; Available from: 
https://www.erswhitebook.org/chapters/the-economic-burden-of-lung-disease/. 

79. Morris, S., N. Devlin, and D. Parkin, Economic Analysis in Health Care. 2007: John 
Wiley & Sons. 

80. Angelis, A., et al., Social and economic costs and health-related quality of life in 
non-institutionalised patients with cystic fibrosis in the United Kingdom. BMC 
Health Serv Res, 2015. 15: p. 428. 

81. van Gool, K., et al., Understanding the Costs of Care for Cystic Fibrosis: An 
Analysis by Age and Health State. Value in Health, 2013. 16(2): p. 345-355. 

82. England, N. NHS England concludes wide-ranging deal for cystic fibrosis drugs. 
2019  [cited 2019 12/11/2019]; Available from: 
https://www.england.nhs.uk/2019/10/nhs-england-concludes-wide-ranging-deal-
for-cystic-fibrosis-drugs/. 

83. Drummond, M.F., et al., Methods for the Economic Evaluation of Health Care 
Programmes. 2015: Oxford University Press. 

84. Botchkarev, A., Toward Development of a New Health Economic Evaluation 
Definition. 2016. 

85. NICE; National Institute for Health and Care Excellence: Guide to the methods of 
technology appraisal: Process and methods [PMG9]. 2013. 

https://www.erswhitebook.org/chapters/the-economic-burden-of-lung-disease/
https://www.england.nhs.uk/2019/10/nhs-england-concludes-wide-ranging-deal-for-cystic-fibrosis-drugs/
https://www.england.nhs.uk/2019/10/nhs-england-concludes-wide-ranging-deal-for-cystic-fibrosis-drugs/


   

 

   

 

86. NICE. Guide to the methods of technology appraisal 2013: Process and methods 
[PMG9]. 2013  [cited 2017 02/2017]; Available from: 
https://www.nice.org.uk/process/pmg9/chapter/foreword. 

87. O'Sullivan, A.K., D. Thompson, and M.F. Drummond, Collection of health-
economic data alongside clinical trials: is there a future for piggyback evaluations? 
Value Health, 2005. 8(1): p. 67-79. 

88. Weinstein, M.C., et al., Principles of Good Practice for Decision Analytic Modeling 
in Health-Care Evaluation: Report of the ISPOR Task Force on Good Research 
Practices—Modeling Studies. Value in Health, 2003. 6(1): p. 9-17. 

89. NICE. National Institute for Health and Care Excellence: Colistimethate sodium 
and tobramycin dry powders for inhalation for treating pseudomonas lung infection 
in cystic fibrosis: Technology appraisal guidance [TA276]. 2013  [cited 2016 
08/10/2016]; Available from: https://www.nice.org.uk/guidance/ta276. 

90. NICE. National Institute of Health and Care Excellence: Mannitol dry powder for 
inhalation for treating cystic fibrosis: Technology appraisal guidance [TA266]. 2012  
[cited 2016 08/10/2016]; Available from: https://www.nice.org.uk/guidance/ta266. 

91. EMA. European Medicines Agency: Report of the workshop on endpoints for cystic 
fibrosis clinical trials 2012  [cited 2017 June 2017]; Available from: 
http://www.ema.europa.eu/docs/en_GB/document_library/Report/2012/12/WC50
0136159.pdf. 

92. Mohindru, B., et al., Health economic modelling in Cystic Fibrosis: A systematic 
review. Journal of Cystic Fibrosis, 2019. 18(4): p. 452-460. 

93. Mohindru, B., et al., Health State Utility Data in Cystic Fibrosis: A Systematic 
Review. PharmacoEconomics - Open, 2020. 4(1): p. 13-25. 

94. ICER, Modulator Treatments for Cystic Fibrosis: Effectiveness and Value Final 
Evidence Report and Meeting Summary. 2018, Institute for Clinical and Economic 
Review (ICER). 

95. Drummond, M.F., et al., Key principles for the improved conduct of health 
technology assessments for resource allocation decisions. Int J Technol Assess 
Health Care, 2008. 24(3): p. 244-58; discussion 362-8. 

96. Husereau, D., et al., Consolidated Health Economic Evaluation Reporting 
Standards (CHEERS) statement. BMJ : British Medical Journal, 2013. 346. 

97. Ofman, J.J., et al., Examining the value and quality of health economic analyses: 
implications of utilizing the QHES. J Manag Care Pharm, 2003. 9(1): p. 53-61. 

98. Sanders, G.D., et al., Recommendations for conduct, methodological practices, 
and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness 
in health and medicine. JAMA, 2016. 316(10): p. 1093-1103. 

99. Moher, D., et al., Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA statement. PLoS Med, 2009. 6(7): p. e1000097. 

100. CRD. Centre for Reviews and Dissemination: Guidance for undertaking reviews in 
health care. 2009  [cited 2016 December 2016]; Available from: 
https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf. 

https://www.nice.org.uk/process/pmg9/chapter/foreword
https://www.nice.org.uk/guidance/ta276
https://www.nice.org.uk/guidance/ta266
http://www.ema.europa.eu/docs/en_GB/document_library/Report/2012/12/WC500136159.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Report/2012/12/WC500136159.pdf
https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf


   

 

   

 

101. Panguluri, S., et al., Economic Evaluation of Tobramycin Inhalation Powder for the 
Treatment of Chronic Pulmonary Pseudomonas aeruginosa Infection in Patients 
with Cystic Fibrosis. Clinical Drug Investigation, 2017. 37(8): p. 795-805. 

102. Tappenden, P., S. Sadler, and M. Wildman, An Early Health Economic Analysis of 
the Potential Cost Effectiveness of an Adherence Intervention to Improve 
Outcomes for Patients with Cystic Fibrosis. Pharmacoeconomics, 2017. 35(6): p. 
647-659. 

103. McGirr, A.A., et al., The cost-effectiveness of palivizumab in infants with cystic 
fibrosis in the Canadian setting: A decision analysis model. Human Vaccines & 
Immunotherapeutics, 2017. 13(3): p. 599-606. 

104. Dilokthornsakul, P., R.N. Hansen, and J.D. Campbell, Forecasting US ivacaftor 
outcomes and cost in cystic fibrosis patients with the G551D mutation. European 
Respiratory Journal, 2016. 

105. Schechter, M.S., et al., Inhaled Aztreonam Lysine versus Inhaled Tobramycin in 
Cystic Fibrosis. An Economic Evaluation. Annals of the American Thoracic 
Society, 2015. 12(7): p. 1030-1038. 

106. Tappenden, P., et al., The cost effectiveness of dry powder antibiotics for the 
treatment of Pseudomonas aeruginosa in patients with cystic fibrosis. 
Pharmacoeconomics, 2014. 32(2): p. 159-72. 

107. Whiting, P., et al., Ivacaftor for the treatment of patients with cystic fibrosis and the 
G551D mutation: a systematic review and cost-effectiveness analysis. Health 
Technol Assess, 2014. 18(18): p. 1-106. 

108. Christopher, F., et al., rhDNase therapy for the treatment of cystic fibrosis patients 
with mild to moderate lung disease. J Clin Pharm Ther, 1999. 24(6): p. 415-26. 

109. McIntyre, A.-M., Dornase alpha and survival of patients with cystic fibrosis. 
Hospital Medicine, 1999. 60(10): p. 736-739. 

110. Robson, M., et al., A cost description of an adult cystic fibrosis unit and cost 
analyses of different categories of patients. Thorax, 1992. 47(9): p. 684. 

111. Bradley J, et al., Quality of life and health utility in patients with cystic fibrosis, in 
European Respiratory Society Conference. 2010: Barcelona, Spain. 

112. Ravasio, R., C. Lucioni, and G. Chirico, Costo-efficacia di palivizumab versus non 
profilassi nella prevenzione delle infezioni da VRS nei bambini pretermine, a 
diversa età gestazionale. PharmacoEconomics Italian Research Articles, 2006. 
8(2): p. 105-117. 

113. Anyanwu, A., et al., Assessment of quality of life in lung transplantation using a 
simple generic tool. Thorax, 2001. 56(3): p. 218-222. 

114. Busschbach, J.J., et al., Measuring the quality of life before and after bilateral lung 
transplantation in patients with cystic fibrosis. Chest, 1994. 105(3): p. 911-7. 

115. Ramsey, S.D., et al., The Cost-effectiveness of Lung Transplantation. CHEST, 
1999. 108(6): p. 1594-1601. 

116. Lieu, T.A., et al., The cost of medical care for patients with cystic fibrosis in a health 
maintenance organization. Pediatrics, 1999. 103(6): p. e72. 



   

 

   

 

117. Briesacher, B.A., et al., Nationwide trends in the medical care costs of privately 
insured patients with cystic fibrosis (CF), 2001–2007. Pediatric Pulmonology, 
2011. 46(8): p. 770-776. 

118. Ouyang, L., et al., Healthcare expenditures for privately insured people with cystic 
fibrosis. Pediatr Pulmonol, 2009. 44(10): p. 989-96. 

119. Bentley TS, H.S., U.S. organ and tissue transplant cost estimates and discussion. 
2014, Milliman. 

120. Tappenden, P., et al., Colistimethate sodium powder and tobramycin powder for 
inhalation for the treatment of chronic Pseudomonas aeruginosa lung infection in 
cystic fibrosis: systematic review and economic model. Health Technol 
Assessment 2013. 15(56). 

121. Brennan, A., S.E. Chick, and R. Davies, A taxonomy of model structures for 
economic evaluation of health technologies. Health Econ, 2006. 15(12): p. 1295-
310. 

122. Rubin, J.L., et al., Frequency and costs of pulmonary exacerbations in patients 
with cystic fibrosis in the United States. Current Medical Research and Opinion, 
2017. 33(4): p. 667-674. 

123. Beauchamp, K.A., K.A. Johansen Taber, and D. Muzzey, Clinical impact and cost-
effectiveness of a 176-condition expanded carrier screen. Genetics in Medicine, 
2019. 21(9): p. 1948-1957. 

124. Gini, A., et al., Cost Effectiveness of Screening Individuals With Cystic Fibrosis for 
Colorectal Cancer. Gastroenterology, 2018. 154(3): p. 556-567.e18. 

125. Hadjiliadis, D., et al., Cystic Fibrosis Colorectal Cancer Screening Consensus 
Recommendations. Gastroenterology, 2018. 154(3): p. 736-745.e14. 

126. Sharma, D., et al., Cost-effectiveness analysis of lumacaftor and ivacaftor 
combination for the treatment of patients with cystic fibrosis in the United States. 
Orphanet journal of rare diseases, 2018. 13(1): p. 172-172. 

127. Vadagam, P., et al., Cost-Effectiveness and Budget Impact of Lumacaftor/Ivacaftor 
in the Treatment of Cystic Fibrosis. J Manag Care Spec Pharm, 2018. 24(10): p. 
987-997. 

128. Warren, E., et al., Cost Effectiveness of Inhaled Mannitol (Bronchitol®) in Patients 
with Cystic Fibrosis. PharmacoEconomics, 2019. 37(3): p. 435-446. 

129. Dilokthornsakul, P., M. Patidar, and J.D. Campbell, Forecasting the Long-Term 
Clinical and Economic Outcomes of Lumacaftor/Ivacaftor in Cystic Fibrosis 
Patients with Homozygous phe508del Mutation. Value Health, 2017. 20(10): p. 
1329-1335. 

130. Aitken, M.L., et al., Long-Term Inhaled Dry Powder Mannitol in Cystic Fibrosis. 
American Journal of Respiratory and Critical Care Medicine, 2012. 185(6): p. 645-
652. 

131. McKone, E.F., et al., Long-term safety and efficacy of ivacaftor in patients with 
cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label 
extension study (PERSIST). Lancet Respir Med, 2014. 2(11): p. 902-910. 



   

 

   

 

132. Davies, J.C., et al., Efficacy and safety of ivacaftor in patients aged 6 to 11 years 
with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med, 2013. 
187(11): p. 1219-25. 

133. Konstan, M.W., et al., Clinical use of dornase alpha is associated with a slower 
rate of FEV1 decline in cystic fibrosis. Pediatr Pulmonol, 2011. 46(6): p. 545-53. 

134. Ramsey, B.W., et al., Intermittent Administration of Inhaled Tobramycin in Patients 
with Cystic Fibrosis. New England Journal of Medicine, 1999. 340(1): p. 23-30. 

135. Brazier, J., et al., Measuring and Valuing Health Benefits for Economic Evaluation. 
2017: Oxford University Press. 

136. Wailoo, A.J., et al., Mapping to Estimate Health-State Utility from Non–Preference-
Based Outcome Measures: An ISPOR Good Practices for Outcomes Research 
Task Force Report. Value in Health, 2017. 20(1): p. 18-27. 

137. Sampson, C.J., et al., Health state utility values for diabetic retinopathy: protocol 
for a systematic review and meta-analysis. Systematic Reviews, 2015. 4(1): p. 15. 

138. Whitehead, S.J. and S. Ali, Health outcomes in economic evaluation: the QALY 
and utilities. British Medical Bulletin, 2010. 96(1): p. 5-21. 

139. Solem, C.T., et al., Impact of pulmonary exacerbations and lung function on 
generic health-related quality of life in patients with cystic fibrosis. Health and 
Quality of Life Outcomes, 2016. 14(1): p. 63. 

140. Chevreul, K., et al., Social/economic costs and health-related quality of life in 
patients with cystic fibrosis in Europe. Eur J Health Econ, 2016. 17 Suppl 1: p. 7-
18. 

141. Iskrov Georgi, G., et al., Economic Burden And Health-Related Quality Of Life Of 
Patients With Cystic Fibrosis In Bulgaria, in Folia Medica. 2015. p. 56. 

142. Chevreul, K., et al., Costs and health-related quality of life of patients with cystic 
fibrosis and their carers in France. Journal of Cystic Fibrosis, 2015. 14(3): p. 384-
391. 

143. Acaster, S., et al., Mapping the EQ-5D index from the cystic fibrosis questionnaire-
revised using multiple modelling approaches. Health and Quality of Life Outcomes, 
2015. 13(1): p. 33. 

144. DeWitt, E.M., et al., Resource use, costs, and utility estimates for patients with 
cystic fibrosis with mild impairment in lung function: Analysis of data collected 
alongside a 48-week multicenter clinical trial. Value in Health, 2012. 15(2): p. 277-
283. 

145. Fitzgerald, D.A., et al., A crossover, randomized, controlled trial of dornase alfa 
before versus after physiotherapy in cystic fibrosis. Pediatrics, 2005. 116(4): p. 
e549-54. 

146. Yi, M.S., et al., Health values of adolescents with cystic fibrosis. The Journal of 
Pediatrics, 2003. 142(2): p. 133-140. 

147. Suri, R., et al., Comparison of hypertonic saline and alternate-day or daily 
recombinant human deoxyribonuclease in children with cystic fibrosis: a 
randomised trial. Lancet, 2001. 358(9290): p. 1316-21. 



   

 

   

 

148. Selvadurai, H.C., et al., Randomized controlled study of in-hospital exercise 
training programs in children with cystic fibrosis. Pediatric Pulmonology, 2002. 
33(3): p. 194-200. 

149. Czyzewski, D.I., et al., Measurement of Quality of Well Being in a Child and 
Adolescent Cystic Fibrosis Population. Medical Care, 1994. 32(9): p. 965-972. 

150. Orenstein, D.M., et al., Quality of Well-Being Before and After Antibiotic Treatment 
of Pulmonary Exacerbation in Patients with Cystic Fibrosis. CHEST, 1990. 98(5): 
p. 1081-1084. 

151. Dolan, P., Modeling valuations for EuroQol health states. Med Care, 1997. 35(11): 
p. 1095-108. 

152. Perneger, T.V., C. Combescure, and D.S. Courvoisier, General Population 
Reference Values for the French Version of the EuroQol EQ-5D Health Utility 
Instrument. Value in Health, 2010. 13(5): p. 631-635. 

153. Kind, P., G. Hardman, and S. Macran, UK population norms for EQ-5D. 1999, 
Centre for Health Economics, University of York. 

154. MVP Group. The measurement and valuation of health. Final report on the 
modelling of valuation tariffs. 1995  [cited 2017 November]; Available from: 
https://www.york.ac.uk/media/che/documents/reports/MVH%20Final%20Report.p
df. 

155. Roberts, M., et al., Conceptualizing a Model: A Report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force–2. Medical Decision Making, 
2012. 32(5): p. 678-689. 

156. Heinemann Mitja, L., et al., Einführung des deutschlandweiten 
Neugeborenenscreenings für Mukoviszidose, in LaboratoriumsMedizin. 2016. p. 
373. 

157. Wang, L. and S.D. Freedman, Laboratory tests for the diagnosis of cystic fibrosis. 
Am J Clin Pathol, 2002. 117 Suppl: p. S109-15. 

158. European Respiratory Society. European Lung White Book: Chapter 14. European 
Lung White Book 2014  [cited 2016 October]; Available from: 
https://www.erswhitebook.org/chapters/cystic-fibrosis/. 

159. Taylor-Robinson, D., et al., Data Resource Profile: The UK Cystic Fibrosis 
Registry. International Journal of Epidemiology, 2017. 47(1): p. 9-10e. 

160. James Lind Alliance. Cystic Fibrosis Top 10. 2018  [cited 2018 January]; Available 
from: http://www.jla.nihr.ac.uk/priority-setting-partnerships/cystic-fibrosis/top-10-
priorities.htm. 

161. Giron, R., et al., 125 Influence of pulmonary exacerbations on health status of 
cystic fibrosis patients. Health UTIlities and Quality of Life Study (HUTIQOL). 
Journal of Cystic Fibrosis, 2016. 15: p. S82-S83. 

162. L’Abbe, J.M., et al., Quantifying health status and functional outcomes following 
lung transplant. The Journal of Heart and Lung Transplantation, 2004. 23(2): p. 
S72. 

163. Yarlas, A., et al., PRS55 - Measuring Generic Health-Related Quality Of Life And 
Impact Of Health Resource Utilization In Adults With Cystic Fibrosis. Value in 
Health, 2015. 18(7): p. A503. 

https://www.york.ac.uk/media/che/documents/reports/MVH%20Final%20Report.pdf
https://www.york.ac.uk/media/che/documents/reports/MVH%20Final%20Report.pdf
https://www.erswhitebook.org/chapters/cystic-fibrosis/
http://www.jla.nihr.ac.uk/priority-setting-partnerships/cystic-fibrosis/top-10-priorities.htm
http://www.jla.nihr.ac.uk/priority-setting-partnerships/cystic-fibrosis/top-10-priorities.htm


   

 

   

 

164. Ratnayake, I., S. Ahern, and R. Ruseckaite, Patient-Reported Outcome Measures 
in Cystic Fibrosis: Protocol for a Systematic Review. Jmir Research Protocols, 
2020. 9(5). 

165. McLeod, C., et al., Discrete choice experiment to evaluate preferences of patients 
with cystic fibrosis among alternative treatment-related health outcomes: a 
protocol. BMJ open, 2019. 9(8): p. e030348. 

166. Bell, S.C., et al., Patient-reported outcomes in patients with cystic fibrosis with a 
G551D mutation on ivacaftor treatment: results from a cross-sectional study. BMC 
pulmonary medicine, 2019. 19(1): p. 146. 

167. Gold, L.S., et al., Correspondence between symptoms and preference-based 
health status measures in the STOP study. Journal of cystic fibrosis : official journal 
of the European Cystic Fibrosis Society, 2019. 18(2): p. 251-264. 

168. Perez, A.A., et al., Improvements in frailty contribute to substantial improvements 
in quality of life after lung transplantation in patients with cystic fibrosis. Pediatric 
Pulmonology, 2020. 55(6): p. 1406-1413. 

169. Team, R., RStudio: Integrated Development for R. 2019, RStudio, Inc.,: Boston, 
MA. 

170. Newsome, S.J., et al., Investigating the effects of long-term dornase alfa use on 
lung function using registry data. J Cyst Fibros, 2019. 18(1): p. 110-117. 

171. Newsome, S.J., R.H. Keogh, and R.M. Daniel, Estimating long-term treatment 
effects in observational data: A comparison of the performance of different 
methods under real-world uncertainty. Stat Med, 2018. 37(15): p. 2367-2390. 

172. Stanojevic, S., et al., The impact of switching to the new global lung function 
initiative equations on spirometry results in the UK CF registry. J Cyst Fibros, 2014. 
13(3): p. 319-27. 

173. Taylor-Robinson, D.C., et al., The effect of social deprivation on clinical outcomes 
and the use of treatments in the UK cystic fibrosis population: a longitudinal study. 
The Lancet. Respiratory medicine, 2013. 1(2): p. 121-128. 

174. Adler, A.I., et al., Genetic determinants and epidemiology of cystic fibrosis-related 
diabetes: results from a British cohort of children and adults. Diabetes Care, 2008. 
31(9): p. 1789-94. 

175. Stanojevic, S., et al., Global Lung Function Initiative equations improve 
interpretation of FEV decline among patients with cystic fibrosis. European 
Respiratory Journal, 2015. 46(1): p. 262. 

176. Stanojevic, S., et al., Factors influencing the acquisition of Stenotrophomonas 
maltophilia infection in cystic fibrosis patients. Journal of Cystic Fibrosis, 2013. 
12(6): p. 575-583. 

177. Stanojevic, S., et al., Development and External Validation of 1- and 2- year 
Mortality Prediction Models in Cystic Fibrosis. European Respiratory Journal, 
2019: p. 1900224. 

178. Cystic Fibrosis Trust, C.T. Reporting and resources. 2019  [cited 2020 
22/05/2020]; Available from: https://www.cysticfibrosis.org.uk/the-work-we-do/uk-
cf-registry/reporting-and-resources. 

https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/reporting-and-resources
https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/reporting-and-resources


   

 

   

 

179. Cystic Fibrosis Trust, UK Cystic Fibrosis Registry: Annual Data Report 2017, in 
Registry reports. 2017: www.cysticfibrosis.org.uk. 

180. Cook, J.A. and G.S. Collins, The rise of big clinical databases. Br J Surg, 2015. 
102(2): p. e93-e101. 

181. Start;, C. CF START: A RANDOMISED REGISTRY TRIAL. 2017  [cited 2019 
14/08/2019]; Available from: http://www.cfstart.org.uk. 

182. Barton, P., S. Bryan, and S. Robinson, Modelling in the economic evaluation of 
health care: selecting the appropriate approach. J Health Serv Res Policy, 2004. 
9(2): p. 110-8. 

183. Kaltenthaler, E., Tappenden, P., Paisley, S., Squires, H. NICE DSU Technical 
Support Document 13: Identifying and reviewing evidence to inform the 
conceptualisation and population of cost-effectiveness models. 2011. 

184. Tabberer, M., et al., Development of a Conceptual Model of Disease Progression 
for Use in Economic Modeling of Chronic Obstructive Pulmonary Disease. Medical 
Decision Making, 2016. 37(4): p. 440-452. 

185. Tappenden, Conceptual Modelling For Health Economic Model Development. 
2012. 

186. Harun, S.N., et al., A systematic review of studies examining the rate of lung 
function decline in patients with cystic fibrosis. Paediatr Respir Rev, 2016. 20: p. 
55-66. 

187. Szczesniak, R., et al., Use of FEV(1) in cystic fibrosis epidemiologic studies and 
clinical trials: A statistical perspective for the clinical researcher. J Cyst Fibros, 
2017. 16(3): p. 318-326. 

188. EMA, European Medicines Agency (EMA): Public summary of opinion on orphan 
designation  Lumacaftor/ivacaftor for the treatment of cystic fibrosis  C.f.O.M. 
Products, Editor. 2017, European Medicines Agency. 

189. Burgel, P.R., D.W. Reid, and S.D. Aaron, A first step to STOP cystic fibrosis 
exacerbations. J Cyst Fibros, 2017. 16(5): p. 529-531. 

190. Higgins, M., et al., Real-World Outcomes Among Patients with Cystic Fibrosis 
Treated with Ivacaftor: 2012–2016 Experience. Pulmonary Therapy, 2020. 6(1): p. 
141-149. 

191. Byrnes, C.A., et al., Prospective evaluation of respiratory exacerbations in children 
with cystic fibrosis from newborn screening to 5 years of age. Thorax, 2013. 68(7): 
p. 643-51. 

192. VanDevanter, D.R., et al., Cystic fibrosis in young children: A review of disease 
manifestation, progression, and response to early treatment. J Cyst Fibros, 2016. 
15(2): p. 147-57. 

193. Taylor-Robinson, D., et al., Explaining the Sex Effect on Survival in Cystic Fibrosis: 
a Joint Modeling Study of UK Registry Data. Epidemiology, 2020. 31(6). 

194. Briggs, A. and M. Sculpher, An introduction to Markov modelling for economic 
evaluation. Pharmacoeconomics, 1998. 13(4): p. 397-409. 

195. Craig, B.A. and P.P. Sendi, Estimation of the transition matrix of a discrete-time 
Markov chain. Health Economics, 2002. 11(1): p. 33-42. 

196. Hilbe, J.M., Logistic Regression Models. 2009: CRC Press. 

www.cysticfibrosis.org.uk
http://www.cfstart.org.uk/


   

 

   

 

197. Prasetyo, R.B., et al., A comparison of some link functions for binomial regression 
models with application to school drop-out rates in East Java. AIP Conference 
Proceedings, 2019. 2194(1): p. 020083. 

198. Hardin, J.W., et al., Generalized Linear Models and Extensions, Second Edition. 
2007: Taylor & Francis. 

199. Montgomery, D.C., E.A. Peck, and G.G. Vining, Introduction to Linear Regression 
Analysis. 2012: Wiley. 

200. Harrison, D.A. and C.L. Hulin, Investigations of absenteeism: Using event history 
models to study the absence-taking process. Journal of Applied Psychology, 1989. 
74(2): p. 300-316. 

201. Agresti, A., An Introduction to Categorical Data Analysis. 2007: Wiley. 
202. Hu, F.B., et al., Comparison of population-averaged and subject-specific 

approaches for analyzing repeated binary outcomes. Am J Epidemiol, 1998. 
147(7): p. 694-703. 

203. Wang, M., Generalized Estimating Equations in Longitudinal Data Analysis: A 
Review and Recent Developments. Advances in Statistics, 2014. 2014: p. 303728. 

204. Borooah, V.K., Logit and probit : ordered and multinomial models / Vani K. 
Borooah. 2002, Thousand Oaks, California 

London : SAGE: Thousand Oaks, California 
London. 
205. Jung, J., Estimating Markov Transition Probabilities between Health States in the 

HRS Dataset. 2007. 
206. Baty, N., et al., S122 Is There a Gender Difference in the UK CF Population? 

Thorax, 2012. 67(Suppl 2): p. A59. 
207. Harness-Brumley, C.L., et al., Gender differences in outcomes of patients with 

cystic fibrosis. J Womens Health (Larchmt), 2014. 23(12): p. 1012-20. 
208. Sykes, J., et al., A standardized approach to estimating survival statistics for 

population-based cystic fibrosis registry cohorts. Journal of Clinical Epidemiology, 
2016. 70: p. 206-213. 

209. Christensen, R.H.B., Cumulative link models for ordinal regression with the R 
Package ordinal. 2018, Christensen, R.H.B: Journal of Statistical Software. 

210. Agresti, A., Foundations of linear and generalized linear models. 1 ed. 2015, New 
York: New York: Wiley. 

211. Fox, J. and S. Weisberg, An R Companion to Applied Regression. 2011: SAGE 
Publications. 

212. Højsgaard, S., U. Halekoh, and J. Yan, The R Package geepack for Generalized 
Estimating Equations. Journal of Statistical Software; Vol 1, Issue 2 (2006), 2005. 

213. Thompson, C.G., et al., Extracting the Variance Inflation Factor and Other 
Multicollinearity Diagnostics from Typical Regression Results. Basic and Applied 
Social Psychology, 2017. 39(2): p. 81-90. 

214. Neter, J., et al., Applied Linear Statistical Models. 1996: Irwin. 
215. Hosmer, D.W. and S. Lemeshow, Applied Logistic Regression. 2004: Wiley. 



   

 

   

 

216. Hosmer, D.W. and S. Lemesbow, Goodness of fit tests for the multiple logistic 
regression model. Communications in Statistics - Theory and Methods, 1980. 
9(10): p. 1043-1069. 

217. Fagerland, M.W., D.W. Hosmer, and H. Uno, How to test for goodness of fit in 
ordinal logistic regression models. Stata Journal, 2017. 17(3): p. 668-686. 

218. Lipsitz, S.R., G.M. Fitzmaurice, and G. Molenberghs, Goodness-Of-Fit Tests for 
Ordinal Response Regression Models. Journal of the Royal Statistical Society: 
Series C (Applied Statistics), 1996. 45(2): p. 175-190. 

219. A. Lee, E.M., S.C. Charman, S.B. Carr, Describing treatment burden in people with 
cystic fibrosis: Analysis of the UK Cystic Fibrosis Registry, in UK Cystic Fibrosis 
Conference 2017. Liverpool. 

220. Liao, T.F., Interpreting Probability Models: Logit, Probit and Other Generalized 
Linear Models. 1994: Sage. 

221. Christensen, R., Ordinal: Regression Models for Ordinal Data. R Package Version 
2011.08-11., 2012. 2013. 

222. Pharmaceuticals, V. A study of lumacaftor in combination with ivacaftor in cystic 
fibrosis subjects aged 12 years and older who are homozygous for the F508del-
CFTR mutation (TRAFFIC). 2015  [cited 2019 04/04/2018]; Available from: 
https://clinicaltrials.gov/ct2/show/results/NCT01807923. 

223. Pharmaceuticals, V. A Study of Lumacaftor in Combination With Ivacaftor in Cystic 
Fibrosis Subjects Aged 12 Years and Older Who Are Homozygous for the F508del-
CFTR Mutation (TRANSPORT). 2016  [cited 2018 04/04/2018]; Available from: 
https://clinicaltrials.gov/ct2/show/results/NCT01807949?term=NCT01807949&ran
k=1. 

224. Pharmaceuticals, V. A Study to Evaluate the Efficacy and Safety of Lumacaftor in 
Combination With Ivacaftor in Subjects With CF, Homozygous for the F508del-
CFTR Mutation. 2017  04/04/2018]; Available from: 
https://clinicaltrials.gov/ct2/show/results/NCT02514473. 

225. Pharmaceuticals, V. A Phase 3 Rollover Study of Lumacaftor in Combination With 
Ivacaftor in Subjects 12 Years and Older With Cystic Fibrosis. 2017  04/04/2018]; 
Available from: https://clinicaltrials.gov/ct2/show/NCT01931839. 

226. Konstan, M.W., et al., Assessment of safety and efficacy of long-term treatment 
with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis 
homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension 
study. Lancet Respir Med, 2017. 5(2): p. 107-118. 

227. Ratjen, F., et al., Efficacy and safety of lumacaftor and ivacaftor in patients aged 
6-11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, 
placebo-controlled phase 3 trial. Lancet Respir Med, 2017. 5(7): p. 557-567. 

228. Truven Health Analytics, I.W.H. Micromedex RED BOOK. Wholesale acquisition 
cost of lumacaftor/ivacaftor. 2017  [cited Not Accessed; Available from: 
https://truvenhealth.com/Products/Micromedex/Product-Suites/Clinical-
Knowledge/RED-BOOK. 

229. Bradley, J.M., et al., Quality of life and healthcare utilisation in cystic fibrosis: A 
multicentre UK study. European Respiratory Journal, 2012: p. erj02249-2011. 

https://clinicaltrials.gov/ct2/show/results/NCT01807923
https://clinicaltrials.gov/ct2/show/results/NCT01807949?term=NCT01807949&rank=1
https://clinicaltrials.gov/ct2/show/results/NCT01807949?term=NCT01807949&rank=1
https://clinicaltrials.gov/ct2/show/results/NCT02514473
https://clinicaltrials.gov/ct2/show/NCT01931839
https://truvenhealth.com/Products/Micromedex/Product-Suites/Clinical-Knowledge/RED-BOOK
https://truvenhealth.com/Products/Micromedex/Product-Suites/Clinical-Knowledge/RED-BOOK


   

 

   

 

230. Registry, U.C.F., Annual Data Report 2016. 2017. 
231. Turner, D., et al., The CHD challenge: Comparing four cost-effectiveness models. 

Value in Health, 2011. 14(1): p. 53-60. 
232. Philips, Z., et al., Review of guidelines for good practice in decision-analytic 

modelling in health technology assessment. Health Technol Assess, 2004. 8(36): 
p. iii-iv, ix-xi, 1-158. 

233. Cooper, B.G., et al., The Global Lung Function Initiative (GLI) Network: bringing 
the world’s respiratory reference values together. Breathe, 2017. 13(3): p. e56. 

234. health., D.o., DOH: Payment by Results Guidance for 2013-14. 2013. 
235. England, M.a.N. NHS National Tariff Payment System 2016/17. 2016  [cited 2018 

23/03/2018]; Available from: https://www.gov.uk/government/publications/nhs-
national-tariff-payment-system-201617. 

236. Cystic Fibrosis Trust. Apply for Data From the UK CF Registry. 2019  [cited 2019 
14/08/2019]; Available from: https://www.cysticfibrosis.org.uk/the-work-we-do/uk-
cf-registry/apply-for-data-from-the-uk-cf-registry. 

237. Committee, J.F., British National Formulary (online) London. BMJ Group and 
Pharmaceutical Press. 

238. Curtis, L.B., A., ed. Unit Costs of Health and Social Care 2019. 2018, Personal 
Social Services Research Unit: University of Kent, Canterbury. 

239. England, M.a.N. NHS National Tariff Payment System 2016/17. Statutory 
guidance 2016 6 June 2017 [cited 2019 22/05/2019]. 

240. Wilson, E.C.F., A Practical Guide to Value of Information Analysis. 
PharmacoEconomics, 2015. 33(2): p. 105-121. 

241. Thorn, J., J. Coast, and L. Andronis, Interpretation of the Expected Value of Perfect 
Information and Research Recommendations: A Systematic Review and Empirical 
Investigation. Medical Decision Making, 2015. 36(3): p. 285-295. 

242. Fenwick, E., et al., Value of Information Analysis for Research 
Decisions&#x2014;An Introduction: Report 1 of the ISPOR Value of Information 
Analysis Emerging Good Practices Task Force. Value in Health, 2020. 23(2): p. 
139-150. 

243. Bentley TS, P.S., U.S. organ and tissue transplant cost estimates and discussion. 
. 2017, Milliman. 
244. Smith, A. and M. Barry, Utilisation, expenditure and cost-effectiveness of cystic 

fibrosis drugs in Ireland: a retrospective analysis of a national pharmacy claims 
database. BMJ Open, 2020. 10(11): p. e040806. 

245. Newsome, S., R. Keogh, and R. Daniel, The effects of 3-year ivacaftor use on lung 
function and intravenous days seen in UK CF Registry Data. Journal of Cystic 
Fibrosis, 2018. 17: p. S54. 

246. Dreyer, N.A. and S. Garner, Registries for robust evidence. Jama, 2009. 302(7): 
p. 790-1. 

 

https://www.gov.uk/government/publications/nhs-national-tariff-payment-system-201617
https://www.gov.uk/government/publications/nhs-national-tariff-payment-system-201617
https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/apply-for-data-from-the-uk-cf-registry
https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/apply-for-data-from-the-uk-cf-registry

	OLE_LINK2
	OLE_LINK1
	OLE_LINK4
	OLE_LINK5
	RANGE!M2
	RANGE!N2
	RANGE!O2
	RANGE!P2
	RANGE!Q2
	RANGE!R2
	RANGE!S2
	RANGE!D2
	RANGE!D3
	RANGE!D4
	RANGE!D5
	RANGE!D6
	RANGE!D7
	RANGE!D8
	RANGE!D9
	RANGE!D10
	RANGE!D11
	RANGE!D12
	RANGE!D13
	RANGE!D18
	RANGE!D19
	OLE_LINK3
	OLE_LINK7
	OLE_LINK6

