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ABSTRACT 
 
Introduction: The intestinal microbiome is emerging as an important modulator of health 

and disease. The Gut-Brain axis has been implicated in Alzheimer’s disease (AD) and is 

associated with intestinal dysbiosis. It is unknown if the Gut-Brain axis is involved in the 

preclinical course of AD. Understanding the role of the Gut-Brain axis in an at-genetic risk 

AD (APOε4 carriers) may provide a microbial signature that can aid diagnosis and 

intervention strategies.  

 

Aims: To examine the role of the intestinal microbiome in AD development, I assessed 

APOε4 carriers and non-carriers neuropsychological, cardiovascular and brain integrity at 

baseline and longitudinally studied their intestinal microbiome at baseline, 6- and 12-

months. Finally, the APOE findings were contrasted against a cohort of clinical AD patients. 

 

Methods and Results: Baseline results showed that APOE groups did not differ on 

neuropsychological, cardiovascular and brain integrity measures, with the exception of LDL 

being elevated in the APOε4 carriers. The baseline measurements of the microbiome via 

whole-genome shotgun metagenomics highlighted ten differentially abundant taxa by 

genotype. Longitudinally, there was increased abundance of Prevotellaceae, Prevotella and 

Ruminococcus obeum in APOε4 carriers. Functionally, differences in 20 KEGG pathways 

existed, including changes in energy and nitrogen metabolism. Finally, shotgun 

metagenomics sequencing data, indicated that the intestinal microbiota of AD patients is 

characterized by large-scale and taxa-specific differences versus APOE groups, including 

reduced α-diversity, altered taxa abundances and changes in 63 metabolic pathways.   

 

Conclusion: Despite APOE groups being well-matched for neuropsychological, 

cardiovascular and brain integrity measures, except LDL, numerous taxa and functional 

pathways differed between the APOE cohorts on a cross-sectional and longitudinal level. 

Although diversity and global compositional measures were not consistently different, this 

indicates that microbiota changes are already present in at-genetic-risk of AD people. In the 

AD patient group, there was reduced diversity, distinct compositional profiles and altered 

taxonomy and function indicating increased intestinal microbial dysbiosis. 
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1. CHAPTER 1: INTRODUCTION 

Dementia: the biggest health challenge of the 21st century 

Today’s life expectancy is without a doubt a major achievement for humankind and a 

reflection of the progress made in medical and other sciences (Scholey, 2017). Whilst a girl 

born in 1901 in the United Kingdom (UK) was expected to live to age 52.4 years, born in 

2018, her life-expectancy would have climbed to 83.2 years – an increase of almost 31 years 

(Office for National Statistics, 2015; Public Health England, 2017). In the 21st century, the 

conditions and illnesses which dramatically reduced survival in early life stages, have been 

ameliorated and as a result, the numbers of child deaths in industrial nations are at their 

lowest point. It is particularly the later life stages that now confront society with new 

challenges in the form of age-related diseases (Scholey, 2017). 

 

The maintenance of health and well-being in our ageing population is a critical aspect, as 

people continue to live longer but often with poorer health. The percentage of people aged 

65 years or older in the UK was in 2000 was 15.9%, compared to 18.6% in 2019 and is 

predicted to reach 24% by 2040 (Office for National Statistics, 2019). Advanced age is a 

major risk factor for a range of neurodegenerative diseases, including dementia (Carone, 

Asgharian and Jewell, 2014).  

 

Dementia prevalence, social and economic considerations 

Dementia has become a global health challenge. In 2019, the worldwide prevalence of 

dementia was 50 million, with a current annual increase of 10 million cases per year. In the 

UK, more than 885,000 people were living with dementia in 2019 (Wittenberg et al., 2019; 

Lynch, 2020). Projections estimate that by 2050 the global prevalence for dementia will be 

152 million people (Lynch, 2020). In the UK is predicted to reach a prevalence of 1.6 million  

by 2040, which is a 8.8% of prevalence rate of the total UK population (Wittenberg et al., 

2019). 



 30 

 

The driving force behind this rise is increase in life expectancy. Age is a major factor for 

developing dementia. Between 65 to 90 years of age dementia prevalence doubles with every 

five-year age increment (Corrada et al., 2010). Dementia awareness is also rising, leading to 

higher rates of diagnosis. 

 

In 2019, there were 55.4 million death globally. From a global perspective, seven of the ten 

leading causes of death are noncommunicable disease (Figure 1.1). The top leading cause of 

death worldwide in 2019 was ischaemic heart disease (16% of all deaths, 8.9 million deaths), 

followed by stroke (11% of all deaths) and chronic obstructive pulmonary disease (6% of all 

deaths). In 2019, Alzheimer’s Disease (AD) and other dementias ranked 7th, compared to 

14th in 2000 (World Health Organization, 2019b). The most common form of dementia is 

AD accounting for 60 to 70 percent of the cases (Boutajangout and Wisniewski, 2013; WHO, 

2017). 
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Figure 1.1 Top 10 leading causes of death globally in 2019, figure taken from World Health 

Organisation Global Health Estimates (World Health Organization, 2019b) 

 

In high-income countries, all but two (ischaemic heart disease and stroke) of the top ten 

leading causes of death increased between 2000 and 2019. The rate of increase is by far the 

fastest for AD and other dementias, which ranked second in high-income countries in 2019 

and accounted for 814.000 deaths (World Health Organization, 2019b).  

 

Compared to other high-income countries, the picture of the top ten leading causes of death 

emerging in the UK is similar. Ischaemic heart disease and cerebrovascular disease (e.g. 

stroke) are following an overall downward trend as medical advances lead to considerable 

improvements in prevention and treatment of major diseases (Figure 1.2). This is reflected 

by a relative percentage decrease of 13.45% and 13.54% for ischaemic heart disease and 
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cerebrovascular disease, respectively, for both sexes between 2011 and 2018 (Office for 

National Statistics, 2020). Whereas AD and other dementias showed a relative percentage 

increase of 71.3% within the same timeframe in the UK.   

 

 

Figure 1.2 The main leading causes of deaths in England and Wales, from 2005 to 2017, 

shown in percentages of total deaths. Adapted from (England and Wales: Mortality 

Statistics, 2019) 

 

In the UK, the top ten causes of death in 2019 across females and males are led by AD and 

other dementias with 145.3 death per 100.000 (Figure 1.3). This is followed by ischaemic 

heart disease (106.2 death per 100.000) and lower respiratory infection (60 per 100.000). 

Stroke only ranks 4th with 55.7 death per 100.000 (World Health Organization, 2019a). 



 33 

 

Figure 1.3 Top 10 causes of death in the United Kingdom for 2019 for both sexes and all 

ages from (World Health Organization, 2019a)  

 

Although disease progression varies, dementia is ultimately fatal as it commonly leads to  

circulatory and respiratory system diseases (Brunnström and Englund, 2009; Boutajangout 

and Wisniewski, 2013; Mclaren, 2015). At present, dementia is incurable with 

pharmacologic treatments providing modest and transient symptomatic benefit but failing to 

cure or stop the progressive course of dementia. From a medical perspective, all currently 

licensed pharmacological drugs act to provide symptomatic alleviation for some period of 

time but ultimately do not improve the underlying pathophysiology. The management of 

dementia – “dementia care” is mostly restricted to improving the individuals’ and family’s 

ability to cope with symptoms, provide knowledge, and alleviate stress and depression.  

 

Dementia poses a huge challenge for the health care system, which is ill-equipped to 

adequately care for the amount of people with dementia. In 2009, 1 in 4 hospital beds were 

occupied by dementia patients in the UK (Alzheimer’s Society, 2009). Dementia care 

amounts to a total of £34.7 billion in 2015, of which 40% is privately funded. The cost of 
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social care for dementia in the UK is estimated to triple by 2040 (Wittenberg et al., 2019). 

With increasing prevalence, both the social and economic burden of dementia will continue 

to grow. Not surprisingly and in view of the limited treatment options available, there has 

been a renewed impetus for preventative approaches towards dementia. 

 

Dementia types  

‘Dementia’ is an umbrella term used to describe several diseases which all involve 

progressive cognitive impairment that may include symptoms of memory loss, difficulties 

in planning and problem-solving, language and communication problems, as well as changes 

in personality, behaviour, and mood (e.g. apathy, agitation, stereotypical behaviour, 

depression) (Takeda, Sato and Morishita, 2014; Alzheimer Association, 2016). Cognitive 

symptoms are commonly categorised into five main domains: memory, executive function, 

language, visuospatial abilities, personality and behaviour (Cunningham et al., 2015). 

During disease progression, symptoms (regardless of dementia subtype) broaden to affect 

multiple cognitive domains and intensify in later stages of the disease which consequently 

results in worsened functional impairment. Symptoms negatively affect daily activities and 

social functioning as well as the overall quality of life (Opara, 2012). The most common 

four subtypes of dementia are Alzheimer’s disease (~50-75%), vascular dementia (VaD, 

~20%), dementia with Lewy bodies (DLB, ~5%) and frontotemporal dementia (FTD, ~5%) 

(Cunningham et al., 2015). In addition, the pathophysiology of dementia types can overlap, 

termed mixed dementia. Because of the heterogeneity of symptoms and underlying 

pathological changes, it can prove difficult to establish a clinical diagnosis. Hence all 

estimates for subtypes frequencies need to be interpreted with caution (WHO, 2012).  

 

AD is typically divided into three stages. In the early preclinical stage clinical symptoms are 

not apparent but underlying brain changes (increase of amyloid load, neuronal injury, 

oxidative stress, etc.) are ongoing. In the middle stage, people present with concerns about 
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their cognition (most commonly memory problems) and this is substantiated with objective 

evidence of mild cognitive impairment (MCI) which does not affect people’s ability to go 

about their everyday activities (Albert et al., 2011). Symptoms worsen progressively for 

many years and have an increasingly negative affect on daily living, until in the final stage, 

symptoms are so severe that the person requires full-time care.  

 

Diagnostic criteria for AD are complex. For a diagnosis of AD, a patient needs to present 

with insidious onset of cognitive deficits that are supported by report or observation. 

Cognitive deficits need to clearly noticeable using objective test measures and the cognitive 

deficit needs to affect memory and at least one other cognitive domain for amnestic AD. For 

non-amnestic (memory intact) presentations, the main cognitive deficit affect language or 

visuospatial abilities or executive functioning and one other cognitive domain (McKhann et 

al., 2011). The most common supportive features include measurements of Ab deposition 

(cerebrospinal fluid [CSF] levels of Ab42, or positron emission tomography [PET] imaging) 

or neuronal injury (CSF tau, rate of brain atrophy [hippocampal/ medial temporal areas], 

PET imaging) (Jack et al., 2010; Albert et al., 2011). These features are not only suggested 

to precede clinical symptoms but might also be predictive for future cognitive decline 

(Sperling et al., 2011).  

 

Alzheimer’s Disease pathophysiology  

For the past quarter of a century, the amyloid (cascade) hypothesis, first proposed by Hardy 

and Higgins in 1992, has been the dominant theory to explain the major pathological events 

that take place in AD. According to this model, the accumulation and deposition of amyloid 

beta (Aβ) peptides, which are derived from amyloid precursor protein (APP), mark the initial 

event and are causal for AD neuropathology (Hardy and Higgins, 1992; Kametani and 

Hasegawa, 2018).  
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There are over 25 different proteins that can form so called “amyloids” by forming  

insoluble, unbranched fibres consisting of β-pleated sheets which exhibit similar molecular 

properties such as green birefringence (following binding of the dye Congo Red) and a 

characteristic cross-β fibre diffraction pattern (when subjected to X-rays) (Xing and Higuchi, 

2002; Eisenberg and Jucker, 2012). Some of the these amyloid-forming proteins are 

associated with pathology that spans a range of diseases, including AD (amyloid fibril 

protein: Aβ), spongiform encephalopathies (amyloid fibril protein: prion protein amyloid 

[APrP]), systemic amyloid light-chain (AL) amyloidosis (amyloid fibril protein: 

immunoglobulin light chain protein), systemic amyloid A (AA) amyloidosis (amyloid fibril 

protein: serum amyloid A [SAA]) and many other types of amyloidosis (Xing and Higuchi, 

2002).  

 

The amyloid fibril involved in the pathogenesis of AD is Aβ. Its precursor is APP, a type-1 

membrane glycoprotein, which is expressed in many tissues. Whilst it is best known for its 

role in AD, APP is suggested to have several important biological functions (Chen et al., 

2017). There are two main proteolytic processing pathways of APP: the non-amyloidogenic 

canonical pathway and the amyloidogenic pathway (Figure 1.4) which can be differentiated 

by the sequence and nature of different protease action on APP (Bergström et al., 2016).   

(1) In the non-amyloidogenic pathway, APP is cleaved by α-secretase within the Aβ domain 

and generates a membrane-bound 83-residue-long α-C-terminal fragment, αCTF (or 

C83), and soluble APP (sAPP)α. In fact, αCTF can subsequently be cleaved by γ-

secretase, thereby generating the extracellular peptide p3 and the APP intracellular 

domain (AICD). Processing by α-secretase is thought to inhibit Aβ formation (Zhang 

and Song, 2013; Bergström et al., 2016; Chen et al., 2017).   

(2) In the amyloidogenic pathway, the β-secretase ‘beta-site APP cleaving enzyme 1’ 

(BACE1) cleaves APP which produces soluble APP beta and the membrane-tethered 99-

residue β-C-terminal fragment, βCTF (or C99). Further cleavage of βCTF by γ-secretase 



 37 

generates an amyloid intracellular domain and a 38-42 amino acid long, soluble Aβ 

peptide (Zhang and Song, 2013; Bergström et al., 2016; Chen et al., 2017).  

 

 
 
Figure 1.4 Processing of amyloid precursor protein (APP) by the (1) non-amyloidogenic 

pathway and the (2) amyloidogenic pathway which results in the generation of amyloid beta 

(Aβ). AICD: amyloid intracellular domain, α-secretase: alpha-secretase, β-secretase: beta-

secretase, BACE1: beta-site APP cleaving enzyme 1, CTF: carboxy-terminal fragment, C83: 

83-residue C-terminal fragment, C99: 99-residue C-terminal fragment, sAPP: soluble APP, 

p3: peptide 3, γ-secretase: gamma-secretase.  

 

The sequence of events leading to AD begin with a decreased removal or degradation of Ab 

from the brain (failure of clearance mechanisms). As a result, levels of Ab (in particular 

Ab42) gradually rise and amyloid fibrils begin to form and eventually develop into senile 

plaques; a process termed Ab amyloidosis.  

 

These abnormal fibrous depositions initiate inflammatory responses through activated 

microglia and astrocytes, oxidative injury, and formation of neurofibrillary tangles (NFT) 

(tau pathology) resulting in widespread vascular damage and neuronal dysfunction and 
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neuronal cell loss (Selkoe and Hardy, 2016). NFTs, consisting mainly of 

hyperphosphorylated tau, has since become established as another fundamental 

neuropathological hallmark feature of AD, that leads to the progressive retrograde 

degeneration of affected neurons (Iqbal et al., 2005). A spatiotemporal pattern of affected 

brain regions emerges during disease progression showing an early involvement of 

entorhinal/perirhinal cortex, that extends to sub regions (C1,CA2-3) of the hippocampus, 

then spreads to subiculum amygdala, thalamus, and in later stages also extends to parts of 

the neocortex  (Braak et al., 2006; Serrano-Pozo et al., 2011).  

 

Inflammation is critical in AD pathogenesis. Glial activation leads to a neuroinflammatory 

response in AD which may play an important role in the induction of oxidative stress (Folch 

et al., 2018). Whilst microglia are usually suggested to have a protective role in the brain by 

degrading Aβ peptides through phagocytosis in early disease stages and thus help amyloid 

clearance, they may also add to the inflammatory response in later stages of the disease 

through release of cytokines, chemokines and free radicals which exacerbate AD disease 

pathology. Aβ in turn activates microglia activity. As a result, a positive feedback loop is 

created which drives inflammation in the brain (Cai, Hussain and Yan, 2014). The key role 

of neuroinflammation as a driving force in AD development has also emerged from 

epidemiological studies that show a sparing effect of non-steroidal anti-inflammatory drugs 

(NSAIDs), commonly used in arthritis patients, resulting in lowered AD prevalence in these 

patient cohorts (McGeer, Schulzer and McGeer, 1996; McGeer, Rogers and McGeer, 2016). 

Some evidence suggests that a main factor triggering AD is impairment of APP metabolism 

and that development and progression of AD are mainly attributed to tau and not Ab 

pathophysiology (Takashima et al., 1993; Roberson et al., 2007; Miao et al., 2009; Kametani 

and Hasegawa, 2018). 
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On a diagnostic level, one of the earliest and most typical symptoms in AD pathology is 

memory dysfunction, in particular impaired episodic memory. Neural correlates of episodic 

memory include the hippocampus, anterior thalamic nucleus, prefrontal cortex, and other 

regions of the medial temporal lobes. Thus, performance on neuropsychological tests may 

reflect the level of neurodegeneration in the central nervous system (CNS). However, recent 

evidence in patients suggest that brain changes might appear up to 10 years before the onset 

of memory deficits (Weston et al. 2016), which suggests that current cognitive factors are 

potentially not sensitive enough to detect earliest changes. A new approach has been to focus 

on spatial navigation deficits as an early diagnostic marker and to shift efforts towards pre-

memory diagnostics.   

 

Pharmacological management of Alzheimer’s Disease 

Approved drugs 

The number of licensed drugs for AD is limited to symptomatic treatment including three 

acetylcholinesterase (AChE) inhibitors (donepezil hydrochloride, galantamine 

hydrobromide, rivastigmine tartrate) and N-Methyl-D-aspartate (NMDA) receptor 

antagonist (memantine) that are recommended by the National Institute for Health and 

Clinical Excellence (NICE) guidelines for symptomatic treatment of AD (NICE, 2018). A 

monotherapy using an AChE inhibitor to address the cholinergic deficit that results from the 

progressive loss of cholinergic neurons is usually chosen for mild to moderate cases of AD 

(Mesulam and Geula, 1994; Tohgi et al., 1996; Ellis, 2005). Whereas memantine, which 

targets glutamatergic dysfunction by acting against NMDA receptor-induced toxicity that is 

involved in neuronal loss in AD, is prescribed for severe AD (Olin and Schneider, 2001; 

Areosa, Sherriff and McShane, 2005; Birks, 2006; Cunningham et al., 2015; Folch et al., 

2018). These drugs can have a beneficial effect on cognitive functioning, aberrant behavior 

(if present) and improve activities of daily living. Ultimately, they do not reverse or stop the 

progression of the disease. 
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Drug development 

In the 25 years since the amyloid hypothesis was postulated, over 200 clinical trials that 

mainly targeting different aspects of the Ab cascade have failed. With a failure rate of 99.6%, 

AD drug development is far below the probability of success rate for clinical drug 

development for diseases of the CNS, which was on average 15% between 2000-2015 

(Wong, Siah and Lo, 2019; Janak and Jenner, 2020). In 2020, there were a total of 33 

compounds in Phase III, 78 Phase II and 32 Phase I clinical trials in the pipeline for AD 

(Janak and Jenner, 2020). This includes 21 anti-Ab compounds (six in Phase I, eight in Phase 

II and seven in Phase III), next to several anti-tau immunotherapies, α/β/γ-Secretases and 

compounds targeting neurotransmission, inflammation and energy metabolism-based 

interventions (Janak and Jenner, 2020).  

 

Notably, there is also several compounds emerging that are considered antimicrobials. 

COR388 (Phase II/III) is an anti-microbial molecule that targets Porphyromonas gingivalis 

bacteria (known to cause periodontitis) (Dominy et al., 2019). The antibiotic Rifaxamin 

(Phase II) is suggested to counter-act inflammation. Its mechanistic action is suggested to 

occur via lowering ammonia levels and changing the intestinal microbiota (Kowalski and 

Mulak, 2019). The antiviral therapy Valaclovir (Phase II), which is already approved for the 

treatment of human herpes virus 6A and 7 (Readhead et al., 2018). As well as Elavirenz 

(Phase I), which is suggested to change cholesterol levels, which are a risk factor for AD 

and linked to Apolipoprotein E (APOE) variants (Janak and Jenner, 2020).  

 

Reviewing the current status of drug development for AD highlights that despite a great need 

and huge research effort, finding a clinically effective, disease-modifying treatment for AD 

is extremely difficult. We also observe a shift, away from traditional anti-amyloid 

treatments, to interventions which target a wide scope and have novel mechanisms of action. 
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This is reflected by an increasing number of compounds which are classed as 

‘neuroprotective/metabolic’ and newly emerging antimicrobial therapies. In China, sodium 

oligomannate (GV-971), which is suggested to act via altering the intestinal microbiota, was 

recently approved for the treatment of mild to moderate AD. The concept that AD is a 

disorder only of the CNS is outdated, and research and drug development are adopting a 

more holistic approach and are exploring many new avenues.  

 

Unmodifiable risk factors for developing Alzheimer’s Disease 

Ageing 

The prevalence and probability of onset for neurodegenerative diseases including AD, 

Parkinson’s disease (PD), or Amyotrophic Lateral Sclerosis (ALS), rises sharply at certain 

age-thresholds. No other factor in the general population has such a major impact on disease 

incidence. Consequently, age is considered the main risk factor for AD (Mattson and 

Magnus, 2006; Saxena and Caroni, 2011).  

 

The trajectories of healthy ageing and accumulation of health deficits vary between 

individuals and are determined by a multitude of factors of both genetic and environmental 

origin. Many domains of cognitive functioning decline as a function of increasing age, which 

can make it challenging to distinguish pathological from non-pathological cognitive ageing 

(see Figure 1.5).  
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Figure 1.5 Schematic representation of cognitive decline as a function over increasing age 

as observed in healthy ageing (grey solid line) and Alzheimer’s Disease (black solid line). 

Figure created by author, adapted from Sperling et al. (2011) 

 

Many aspects of cognition, which are affected in AD, decline during healthy ageing and to 

complicate matters further, there is an overlap with the symptomatic presentation of other  

cognitive phenotypes such as Subjective Memory Impairment (SMI) and MCI (Scholey, 

2017). Whilst SMI and MCI are not necessarily prodromal stages on the AD disease 

continuum, both cognitive phenotypes put people at considerably higher risk for developing 

AD in the future (Ward et al., 2013; Jessen et al., 2014). 

 

Age-related changes of the brain lead to a gradual decline of neuropsychiatric function. This 

is particularly true for cognitive domains of fluid intelligence – marked by reduced 

information processing speed, problem solving, reasoning, and memory function – and 

executive function. Other cognitive domains, such as semantic memory or emotional 

regulation, are age-invariant and remain stable over the lifespan (Grady 2012). Natural age-

related deterioration also leads to reduced cognitive reserve, diminished neuroplasticity, and 

moderate decline of grey matter volumes in several brain regions (Reuben et al. 2011). The 

co-occurrence of several interacting mechanisms is decisive in AD, including the emergence 
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of a population of neurons highly sensitive to stress and a disturbance of cellular homeostasis 

due to an overload of calcium which prompts a state of hyperexcitability in the glutamatergic 

neuronal system. The formation of neurofibrillary protein aggregates, enhanced levels of 

neuronal stress, calcium overload, and oxidative stress, negatively reinforce and interact with 

one another in a feed-forward cascade (Demuro, Parker and Stutzmann, 2010; Ghosh, 

Agarwal and Haggerty, 2011; Saxena and Caroni, 2011). Both genetic predisposition and 

advanced age are non-modifiable factors that put people at higher risk for developing 

dementia.  

 

Genetic risk 

There are also several genetic risk factors, which are non-modifiable and confer an increased 

risk for developing AD to its carrier. In the following, I am going to focus on the APOE gene 

and its role in AD.  

 

Apolipoprotein E genotype 

Overview of the Apolipoprotein E gene  

Allelic variants of the APOE gene are the most common susceptibility genes to confer 

differential genetic risk for AD (Reiman et al., 2020). APOE is a major glycoprotein 

responsible for the transport and delivery of lipids, particularly cholesterol, thereby playing 

a major role in lipid homeostasis and cholesterol metabolism. In the brain, APOE transports 

lipids from astrocytes to neurons (Liu et al., 2013). The vast majority of APOE is produced 

in the liver, with smaller amounts produced by astrocytes, microglia, and vascular smooth 

muscle cells within the brain (Kanekiyo, Xu and Bu, 2014). APOE is a multifunctional 

protein with a central role not only in lipid handling, but also in neuronal homeostasis, which 

includes dendritic morphology and functioning of mitochondria (Huang and Mahley, 2014) 
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The APOE gene, located on chromosome 19, is polymorphic at two single nucleotides 

resulting in three structurally distinct isoforms – ɛ2, ɛ3, and ɛ4 (Figure 1.6) that allow for six 

phenotypes. A single amino acid substitution in two locations (residues 112 and 158) leads 

to different biological function of the isoforms. APOɛ2 has been ascribed neuroprotective 

function whereas the ɛ4 allele is considered a susceptibility gene for late-onset dementia 

(Reiman et al., 2020). 

 

 

Figure 1.6 Schematic representation of the Apolipoprotein E gene on chromosome 19 and 

single nucleotide changes leading to the three isoforms e2, e3 and e4, SNP: single nucleotide 

polymorphism. Figure created by author 

 

Apolipoprotein ε4 genotype increases risk for Alzheimer’s Disease  

The risk for late-onset AD in individuals with APOε3/ε4 and APOε4/ε4 is increased three-

fold and 12-fold respectively. The APOε4 genotypes are also associated with lower age of 

disease onset (Verghese et al. 2011). Onset of AD is classified as either early (30-60 years 

old, often accounted for by an inherited single gene mutation of APP, Presenilin-1 (PS1) or 

PS-2 [familial AD]) or late-onset (>60 years old) (Bekris et al., 2010). With a frequency of 

less than one in 20 patients showing clinical symptoms before the age of 60, AD is 

dominantly late-onset (Verghese, Castellano and Holtzman, 2011).  
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Apolipoprotein E allelic distribution 

The APOɛ3 allele is the most prevalent isoform in the population, with Caucasians showing 

a 68-86% prevalence for this genotype (O’Donoghue et al., 2018). Allelic variation 

worldwide for ɛ2 and ɛ4 is 10-23% and 4-14%, respectively (Liu et al., 2013; O’Donoghue 

et al., 2018). Estimates for the frequency distribution of the six genotypes in the UK 

population extrapolated from findings of 621 individuals are as follows. 52% of the 

population are estimated to have the APOɛ3/ɛ3 genotype, 20% have APOɛ2/ɛ3 and another 

20% have APOɛ3/ɛ4, whereas only 4% have APOɛ2/ɛ4, 2% have APOɛ2/ɛ2 genotype and 

another 2% are homozygous for the APOɛ4/ɛ4 genotype (Singh, Singh and Mastana, 2006). 

 

Based on these numbers approximately 22% of the general population carry at least one 

APOɛ4 allele, compared to an estimated frequency of 40-60% of AD patients (Farrer et al., 

1997; Wisdom, Callahan and Hawkins, 2011; Liu et al., 2013), further highlighting that 

APOɛ4 confers a considerably higher risk for developing late-onset AD.  

 

Apolipoprotein E disease mechanisms 

Our understanding of the exact mechanisms underlying the association between APOɛ4 and 

AD is incomplete. APOE plays an important role in Ab metabolism and may contribute to 

cerebral deposition of amyloid plaques. APOE is important in proteolytic clearance of 

soluble Ab from the brain. In carriers of the APOɛ4 gene, this clearance mechanisms of Ab 

is altered, possibly due to APOɛ4’s lower binding affinity for amyloid (LaDu et al., 1994; 

Reiman et al., 2009; Castellano et al., 2011), and might thereby promote Ab fibril formation 

(Wisniewski et al., 1994). This is further strengthened by the fact that Ab depositions in the 

brain are significantly more abundant in APOɛ4 carriers (55-59 years old: 40.7%) compared 

to non-carriers (same age group: 8.2%) (Schmechel et al., 1993; Polvikoski et al., 1995; Kok 

et al., 2009).  
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The literature suggests that APOE synthesis in the brain can be induced in response to 

neuronal stress or injury in order to redistribute cholesterol in the brain for neuronal repair 

(Gregg et al., 1986). Due to its specific domain structure, APOɛ4 may be recognized as 

abnormal and may undergo proteolytic cleavage, resulting in small neurotoxic APOɛ4 

fragments which can in turn contribute to mitochondrial dysfunction and cytoskeletal 

disruptions such as tau phosphorylation (Mahley, 2012). This is supported by evidence of 

increased APOE N-terminal fragments in the brain of AD patients (Jones et al., 2011). The 

documented detrimental effects of APOɛ4 on neuronal cells are reported to include 

mitochondrial dysfunction, increased tau phosphorylation, intracellular trafficking of APOE,  

decreased dendric spine density (Brodbeck et al., 2008), and impairment of gamma-

Aminobutyric acid (GABA)ergic interneurons in the hippocampus (Andrews-Zwilling et al., 

2010). APOɛ4 impacts on neuronal plasticity via the above outlined mechanisms which in 

turn might contribute to synaptic loss and associated memory impairment observed in AD. 

Integrity of neuronal networks especially in the hippocampus of APOɛ4 transgenic mice, 

APOE knockout mice, and post-mortem human brain tissue exhibit reduced neuronal spine 

density and length equating to fewer neuronal connections (Ji et al., 2003). APOɛ4 was 

found to inhibit hippocampal neurogenesis in a transgenic APOE mouse model which is 

important in memory and learning (Li et al., 2009; Andrews-Zwilling et al., 2010).  

 

APOɛ4 might also play a role in the innate immune response, triggering inflammatory 

processes and that can negatively affect blood-brain barrier (BBB) integrity (Lynch et al., 

2003; Bell et al., 2012). In fact, APOɛ4 has been reported to trigger inflammatory cascades 

which contribute to increased dysfunction of brain vasculature and increase BBB 

permeability by causing disruption of pericytes, which are crucial in maintaining the barriers 

integrity (Bell et al., 2012; Halliday et al., 2016). Accelerated breakdown of the BBB in the 

hippocampus and medial temporal lobe clearly distinguishes between APOɛ4 carriers and 
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non-carriers, even in the absence of cognitive decline, but is more pronounced when 

cognitive dysfunction is apparent (Montagne et al., 2020). 

 

APOɛ4 has been linked to obesity possibly via mechanisms of increased insulin resistance 

and altered utilization of glucose in the brain resulting in increased cognitive deficits (Jones 

and Rebeck, 2019). There also appears to be an interaction between APOɛ4 and Type 2 

Diabetes (T2D), the presence of both was shown to confer risk for developing AD to a 

greater extent than if each risk factor contributed in an additive way (Peila, Rodriguez and 

Launer, 2002; Irie et al., 2008). APOɛ4 carriers show higher levels of low-density 

lipoproteins LDL and total cholesterol (Lahoz et al., 2001). Due to its role in cholesterol 

handling, APOɛ4 has also been associated with an increased risk for cardiovascular 

conditions, such as coronary disease (Mahley and Rall, 2000; Bennet et al., 2007; Mahley, 

Weisgraber and Huang, 2009; Zhang et al., 2015), ischemic cerebrovascular disease 

(McCarron, Delong and Alberts, 1999) stroke (Khan et al., 2013).  

 

Modifiable risk factors for developing Alzheimer’s Disease 

Dementia aetiology is multifactorial with several factors contributing to the disease onset 

and development over the life-course. A number of epidemiological studies found a decline 

in age-specific dementia incidence rates (despite an increase in the absolute number of cases) 

in higher-income countries (Manton, Gu and Ukraintseva, 2005; Prince et al., 2014; 

Satizabal et al., 2016). This trend was attributed to better levels of education and a paralleled 

improvement in the management of cardiovascular health, particularly due to improved use 

of anti-hypertensives (Satizabal et al., 2016). This is in-line with an increasing body of 

research which shows that the risk of developing dementia can be partially modulated by a 

relatively small number of factors (Livingston et al., 2020). According to this life-course 

model of dementia risk by the Lancet Commission, improvement of lifestyle factors could 

reduce and/or delay dementia cases by as much as 40% (Livingston et al., 2020). Worldwide 
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this translates to 20 million AD cases and in the UK 354,000 cases. The  proposed twelve 

‘modifiable lifestyle factors’ were identified to exert potentially reversible risk in different 

phases of life, accumulating to 40% modifiable risk, and are shown below (Livingston et al., 

2020). 

i) Early life (age <45 years): low-educational attainment  

ii) Midlife (age 45-65 years): hearing loss, hypertension, obesity, traumatic brain 

injury, alcohol consumption of 21 units or more per week 

iii) Later life (age > 65 years): smoking, depression, social isolation, physical 

inactivity, air pollution and diabetes. 

 

Weighted population attributable fraction (PAF) describes the percentage reduction in new 

cases if a particular risk factor were eliminated. Midlife obesity and hypertension, and late 

life T2D were calculated to have a weighted PAF of ~ 1%, 2%, and 1%, respectively, on the 

development of dementia (Livingston et al., 2020). Depression had a PAF of ~4%. Obesity, 

hypertension, and T2D portray risk factors for one another and are closely linked to diet. It 

is likely that shared mechanisms are underlying their pathology. 

 

In light of these models and the failure to find effective treatments, research efforts have 

changed their focus to finding prevention strategies. As research moves into prevention 

rather than cure, the APOE gene becomes a very interesting risk factor, as it is associated 

with AD and, hence, investigating how this common genotype impacts on the microbiota is 

important for future AD risk and intervention studies. 

 

Many of the modifiable risk factors in AD, such as hypertension, T2D, depression and many 

of the underlying mechanisms (inflammation, energy and lipid metabolism), are connected 

and modulated by another key player - the intestinal microbiota (Figure 1.7). The intestinal 

microbiota has received much attention recently across a broad range of conditions including 
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AD. Next, I will summarize the Gut-Brain axis and its potential role in AD. Of note, I was 

not able to investigate all modifiable risk factors within the scope of this thesis, but mainly 

adopted an exploratory approach. 

 

 

Figure 1.7 Schematic representation of suggested modifiable (circles) and non-modifiable 

(squares) risk factors of AD. Microbiota modulation indicated by arrows. List not 

exhaustive. Figure created by author 
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The Gut-Brain axis - an emerging key player in health and disease 

Overview 

The Gut-Brain axis describes a highly interactive, bi-directional communication system 

between the gastrointestinal (GI) tract and the brain whose key regulator is the intestinal 

microbiota. It integrates neural, hormonal, and immunologic signals and provides a direct 

route for intestinal microbes and microbiota-derived metabolites to influence brain signaling 

and function (Rhee, Pothoulakis and Mayer, 2009).  

Microbes are found all over the body. However, there are specific body sites that host a 

significantly large amount of distinct microbial communities, such as the gastrointestinal 

tract. The human intestinal microbiome describes the collective of microbial encoded genes 

contained within the constituents of its members. The intestinal microbiota consists of 

bacteria, archaea, viruses, fungi, and protozoa. The gastrointestinal tract is colonized by 500-

1,000 microbial species, amounting to a population of 1014 bacteria, of which the vast 

majority are found in the ileum and colon. Overall these species contribute to a diverse 

ecosystem or community consisting of trillions of microorganisms (Yatsunenko et al. 2012), 

with substantially more genetic diversity than the human genome (Whitman, Coleman and 

Wiebe, 1998). This genetic diversity exceeds that of the human genome by more than a 

hundredfold (Hill et al., 2014), as it contains approximately four million protein-encoding 

genes whereas the human genetic code has only 26,600 genes. This further illustrates the 

importance of the symbiotic relationship between the human body and the microorganisms 

inhabiting it (Craig Venter et al., 2001; Human Microbiome Project Consortium, 2012).  

 

Microbial diversity 

Intestinal microbial communities are particularly diverse when compared to other body 

habitats, as was shown by the large-scale Human Microbiome Project that found no one taxa 

to be present in each body habitat. Within body habitats, there appear to be certain genera 
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that make up 17% to 84% of communities in the respective habitat and might thus be 

considered ‘signature’ or core genera (Human Microbiome Project Consortium, 2012). 

Besides this, microbial communities of the same individual vary over time. This temporal 

intra-individual variation is called alpha diversity and it is notably smaller compared to the 

microbial variability between two different individuals at any given time (Human 

Microbiome Project Consortium, 2012). This inter-individual variation is also called beta 

diversity. Relative community stability might be indicative of a “healthy microbiome”, 

whereas a reduction in alpha diversity has been associated with dysbiosis and disease. The 

pronounced person-specific uniqueness of the intestinal microbiota highlights the 

importance of longitudinal sampling to account for the dynamics of the microbiome. The 

complex ecosystem of microbes is thus not only widely diverse, but also highly unique to 

each person and very dynamic.  

 

Host-microbiota functions   

Host-microbiota interactions are predominantly mutualistic with microorganisms 

performing vital, non-redundant, metabolic and non-metabolic functions such as complex 

carbohydrate-, lipid-, protein metabolism, synthesis of vitamins, immunomodulation, a 

range of regulatory functions, protection against pathogen overgrowth and maintaining 

intestinal barrier function. The human microbiota co-evolves with human development with 

microbial population diversity and composition changing over the life-course. The first 3-6 

years of life are a critical period in the development and maturation of the intestinal 

microbiota. During this time, the intestinal microbiota undergoes large-scale changes under 

the influence of diet and environmental factors, until it stabilizes in an adult-like 

configuration (Koenig et al., 2011). Thereafter, the composition of the intestinal microbiota 

is still subject to numerous lifestyle and behavioral factors (Falony et al., 2016).  
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The intestinal microbiota has a wide-range of imperative functions, that exceed our 

traditional understanding of metabolic functioning (maintenance of homeostasis or 

transformation of ingested food and xenobiotics). It has an immense functional spectrum and 

is inherently connected with host physiology on many levels, including the enteric and 

central nervous system and as such a growing body of literature is adding to its essential role 

in cognition, behaviour and immune functioning.  

 

Via bi-directional communication along the Gut-Brain axis with its many neuroimmune, 

neuroendocrine, neural pathways it is now thought that the intestinal microbiota plays a role 

in as many as 90% of all human diseases (Clemente et al., 2012), including depression 

(Sanada et al., 2020), anxiety (Hagerty et al., 2020), inflammatory bowel disease (IBS) 

(Zheng and Wen, 2021), PD (Romano et al., 2021), autism spectrum disorder (Fu, Lee and 

Wang, 2021), Multiple Sclerosis (Esmaeil Amini et al., 2020), obesity (Crovesy, Masterson 

and Rosado, 2020), T2D (Gurung et al., 2020), autoimmune diseases and allergies (Okada 

et al., 2010; Khan and Wang, 2020) and cardiovascular disease (Witkowski, Weeks and 

Hazen, 2020). The majority of these disease associations originally came from animal 

studies, most commonly transgenic mice and Germ-Free (GF) mouse models but have since 

been increasingly investigated also in humans. The exact mechanisms and the nature of the 

relationship, causality or effect, and our understanding of the complex interactions are still 

incomplete. Nonetheless, it has become clear that the human microbiota plays a key role in 

health and disease. This long-overlooked area, sometimes referred to as the ‘forgotten 

organ’, holds great potential and promises for understanding and improving human health.  

 

Gut-Brain axis interaction pathways 

There are four main pathways of bi-directional communication between the intestinal 

microbiota and the brain, namely neural pathways, endocrine pathways, immune pathways 

and microbial metabolites (Figure 1.8) (Strandwitz, 2018).  
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Neural pathways  

The vagal nerve (VN) lies at the heart of the parasympathetic nervous system, innervating 

all of the digestive tract, and is the main afferent pathway between the abdominal cavity and 

the brain. It is hence an important interface between the enteric nervous system (ENS) and 

the CNS (Sherwin et al., 2016; Bonaz, Bazin and Pellissier, 2018; Breit et al., 2018). The 

vast majority of fibres of the VN are afferent (80%) which means that the VN is heavily 

involved in signalling from the GI tract to the brain, for example via the detection of 

metabolites in the lumen by intestinal enteroendocrine cells (Forsythe, Bienenstock and 

Kunze, 2014). Afferent fibres are involved in various pathways that impact behaviour and 

physiological effects on the brain including activation of the hypothalamic–pituitary–adrenal 

(HPA) axis (anxiety-like behaviour) and modulation of the immune system response through 

attenuation of systemic inflammatory response (Collins and Bercik, 2009). 

 

Endocrine pathways  

Enteroendocrine cells in the intestinal epithelial release multiple peptide hormones upon 

binding of bacterial products to one of its diverse receptors. Peptide hormones then act 

locally on enteric neurons or enter the circulation from where they can activate the VN or 

travel to other organs (Parker, Fonseca and Carding, 2020). Intestinal microbiota can also 

influence the neuroendocrine system via changing the activity of the HPA axis which 

regulates various body processes in response to psychological as well as physiological 

stressors (Sudo et al., 2004; Farzi, Fröhlich and Holzer, 2018). Dysregulation and 

hypersensitivity of the HPA axis play an important part in mental health conditions, 

particularly depression (Liu, 2017). Studies have shown that intestinal dysbiosis causes 

imbalances in the HPA axis (changed levels of stress hormones) which can lead to anxiety-

like behaviour in mice (Huo et al., 2017). Another study demonstrated hypersensitivity of 

the HPA axis in GF mice that overexpressed stress hormones in response to stress: a process 

which was reversible through microbial re-colonization (conventionalization) (Rieder et al., 

2017) (Sudo et al., 2004). It has further been suggested that dysregulation of the HPA stress 
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response can increase permeability of the intestinal epithelial barrier. Increased intestinal 

permeability in turn favours microbiota dysbiosis and facilitates the translocation of bacteria 

and their products across the intestinal lumen into the blood circulation leading to chronic 

low-grade inflammation (De Punder and Pruimboom, 2015; J. R. Kelly et al., 2015; 

Slyepchenko et al., 2017).  

 

Immune pathways  

The intestinal microbiota acts on many immune mediators which can signal to the brain via 

the VN or via secretion of cytokines or other immunomodulatory molecules into the 

peripheral circulation (Sherwin et al., 2016; Fung, Olson and Hsiao, 2017).  

 

The intestinal microbiota is a key regulator for the immune system from early life onwards. 

Postnatal colonization of microbiota is vital for the maturation of the immune system 

(Shapiro et al., 2014). Studies using selective colonization of GF mice have greatly added 

to our understanding of the importance of bacteria for the development of the host immune 

response (Round and Mazmanian, 2009). GF mice have an immature and dysregulated 

immune system, reflected by numerous cellular defects and molecular deficiencies such as 

abnormal microglia morphology, altered levels of natural killers cells, natural killer T cells, 

mast cells, and cytokines, as well as abnormal immunoglobin (Ig) A production (Hansen et 

al., 2012; Girolamo, Coppola and Ribatti, 2017; Van Giau et al., 2018) - all of which can be 

restored upon conventionalisation. The exact mechanisms underlying microbiota-driven 

microglia maturation remain incompletely understood but a role for short-chain fatty acids 

(SCFAs) has been suggested (Erny et al., 2015).  

 

There is mounting evidence demonstrating how the intestinal microbiota can modulate the 

response of the innate and adaptive immune system during infection, inflammation and 

autoimmunity (Round and Mazmanian, 2009; Kamada et al., 2013). Lipopolysaccharides 
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(LPS) are primarily derived from gram-negative bacteria (particularly Bacteroidetes) and 

are a powerful pro-inflammatory endotoxin. LPS bind to toll-like receptor (TLRs), expressed 

on the surface of immune cells including macrophages, microglia, and monocytes, that 

trigger the production of proinflammatory cytokines such as interleukin (IL)-6 and IL-1b 

(Sherwin et al., 2016; Salguero et al., 2019). A high-fat diet increases the abundance of 

gram-negative bacteria and consequently leads to higher levels of bacteria-derived LPS 

which can result in endotoxemia and the development of metabolic diseases (Cani et al., 

2007; Ahola et al., 2017; Salguero et al., 2019). Abundance of gram-negative bacteria 

increases with age (Zhan, Stamova and Sharp, 2018). High levels of LPS can also activate 

microglia and compromise the integrity of the CNS by disrupting the blood-brain barrier 

(Slyepchenko et al., 2017). Overall, translocated LPS plays an important role in triggering 

systemic inflammation and possibly neuroinflammation through reducing barrier 

permeability of the intestinal and the brain and has been proposed to be a driving factor in 

the progression of AD. The important role of bacteria within this complex immunoregulatory 

network may have many wide-reaching effects on host health.    

 

Microbial metabolites  

Many bacteria produce or modulate host biosynthesis for a range of bioactive compounds 

which are central to a large number of important physiological processes (Liu et al., 2020). 

The major groups of microbial metabolites include SCFAs, bile acids, indole, 

trimethylamine N-oxide (TMAO), flavonoids, n-acyl amides, protein-derived metabolites, 

phenols (Nicholson et al., 2012) and neurotransmitters such as dopamine, noradrenaline, 

serotonin, GABA and histamine (Strandwitz, 2018). A large number of microbial-

metabolites are either solely derived from bacterial metabolism or from processing diet-

derived nutrients by bacteria. The intestinal microbiome-derived metabolites play 

widespread roles across cardiometabolic diseases, cancers, diabetes, obesity, hypertension 

and neurological disorders (Nicholson et al., 2012; Descamps et al., 2019).  
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The importance of understanding the role of microbial metabolites on human health has 

given rise to the field of microbial metabolomics - the study of the functional capacity of the 

microbial community. With advances in sequencing technology, the ability to infer the 

functional potential of a community, so-called predictive functional profiling, has become 

increasingly possible and provides a first step towards understanding the relationship 

between the intestinal and its function in human physiology (Mallick et al., 2019). 

Understanding the metabolic and immunomodulatory role of specific bacteria and their 

microbial metabolites in turn offers a wide range of potential therapeutic targets for a range 

of diseases.  

 

 

Figure 1.8 Schematic presentation of suggested Gut-Brain interaction pathways. Figure 

created by author 
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Mechanisms in Alzheimer’s Disease pathophysiology and the role of the 

intestinal microbiota 

In the following, I will discuss potential mechanisms by which the intestinal microbiota 

might contribute to AD pathophysiology by topics. Next, I will review evidence from 

observational studies in AD mouse models exploring the relationship between the intestinal 

microbiota and AD. Only a few studies have been undertaken investigating the role of the 

intestinal microbiota in AD pathology in humans, which I will review next. Finally, I will 

summarize the evidence for a link between APOE genotype and gut microbial alterations 

which might favour AD pathology.  

 

Although interconnected in nature, the conceivable microbial-related pathways and the 

associated mechanistic that might be involved in AD pathophysiology can be broadly 

categorized as follows: 

1) The intestinal microbiota modulates cognitive function via brain receptors and 

neurotransmitters 

2) The intestinal microbiota may promote aggregation of Ab in the brain  

3) Intestinal metabolites: neuroprotective and disease-promoting mechanisms  

4) Reduced protective barrier function at the BBB and intestinal epithelial barrier  

5) Intestinal microbiota and the inflammation hypothesis  

 

The intestinal microbiota modulates cognitive function 

Understanding the involvement and modulation of cognition by intestinal microbiota has 

received an increasing amount of interest in the past decade. Exploring the link between the 

composition of the intestinal microbiota and cognitive functioning was first approached with 

various animal models (including germ-free animals) and by using various modulation 

strategies, including food supplements (probiotics and prebiotics), antibiotics and faecal 

microbial transplant (FMT).    
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Intestinal dysbiosis disrupts the function of brain receptors 

Antibiotic-induced intestinal dysbiosis results in cognitive impairment for domains such as 

object recognition and working memory in mice, in the absence of neuroinflammatory 

processes. The impairment is partially reversible through the administration of probiotics or 

FMT (Cryan and Dinan, 2012). On a mechanistic level, intestinal dysbiosis leads to changes 

in the expression of brain-derived neurotrophic factor (BDNF), tight junction proteins, N-

methyl-D-aspartate (NMDA) receptors and other brain receptors, which in turn cause 

cognitive impairment (Froehlich et al. 2016). BNDF plays a central role in the mechanisms 

that underlie learning, such as neuroplasticity (Rattiner, Davis and Ressler, 2005; Maqsood 

and Stone, 2016). In a rodent model, NDMD receptors were  significantly less numerous in 

the hippocampus following antibiotic treatment (Wang et al., 2015). Reduced expression of 

BDNF and NMDA receptor unit 2A in the cortex and hippocampus, in particular, are 

associated with impaired non-spatial and working memory (Sudo et al., 2004; Maqsood and 

Stone, 2016) and were first established in a GF mouse model (Cryan and Dinan, 2012). 

Evidence from human-based studies show that BDNF levels in the serum and brain (post-

mortem) of AD patients are significantly lower compared to healthy controls (Carlino, De 

Vanna and Tongiorgi, 2013). This reduction in BDNF further correlates with increased 

burden of amyloid and may also negatively impact on NMDA receptors of the glutamatergic 

system which play an important role in synaptic plasticity and cognition (Francis et al., 

2012).  

 

Microbials species modulate several key neurotransmitters 

Healthy brain function and cognition depends on a delicate balance of neurotransmitter 

levels, such as GABA, serotonin and dopamine. Several microbial species might act on 

cognition through their direct or indirect involvement in the functioning and production of 

neurotransmitters (Dinan et al., 2015). Lactobacillus rhamnosus modulates mRNA 

expression of GABA receptors (Bravo et al., 2011). Bifidobacterium is also reported to be 

involved in the production of GABA (Pokusaeva et al., 2017). Impaired neuronal signalling 
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mediated by GABA is associated with depression, anxiety, impaired synaptogenesis and 

cognitive impairment (Paula-Lima, Brito-Moreira and Ferreira, 2013; Schmidt-Wilcke et al., 

2018). GABA levels were found to be significantly reduced in severe cases of AD (Solas, 

Puerta and Ramirez, 2015). In ageing mice, symptoms of heightened anxiety and spatial 

navigation cognition deficits were found to positively correlate with increased activation of 

pro-inflammatory cytokines and increased intestinal permeability. Besides these changes, 

mice also showed a shift in bacterial taxa including greater abundance of 

Porphyromonadaceae, Odoribacter, Clostridium, Oxalobacter and Butyricimonas towards 

a profile typically found in inflammatory bowel disease (Scott et al., 2017). These findings 

highlight that bacteria are an integral part of healthy brain functioning. 

 

The intestinal microbiota may promote aggregation of Amyloid beta in the brain 

A key event in AD pathology is the accumulation and deposition of Ab in the brain, which 

is caused either by increased production of amyloid into the CNS or decreased clearance of 

Ab from the CNS, or a combination of the two. The intestinal microbiota might contribute 

to this hallmark feature of AD pathology by, i) increasing systemic availability of microbial-

produced Ab and by, ii) increasing the transit of Ab into the CNS due to loss in barrier 

function. This might co-occur together with impaired clearing mechanisms of Ab out of the 

CNS. Collectively, these mechanisms would favour the accumulation of amyloid peptides 

in the brain and might hence represent mechanistic links between the intestinal microbiota 

and amyloid pathology in AD (Marques et al., 2013; Pistollato et al., 2016).   

 

i) Many bacterial species and fungi produce Ab in the intestine which can lead to an increase 

in systemic levels of Ab  (Hufnagel, Tükel and Chapman, 2013; Hill and Lukiw, 2015; Zhao, 

Dua and Lukiw, 2015). Bacteria species producing amyloid include Escherichia coli, 

Myobacterium tuberculosis, Salmonella enterica, Salmonella typhimurium, Staphylococcus 

aureus, and Bacillus subtilis (Pistollato et al., 2016). 



 60 

 

ii) Barrier permeability increases with advancing age but is also modulated by microbes 

(described in detail on pages 59 – 63). As a result, the protective barrier function of the 

intestinal epithelial barrier and BBB is reduced. This allows Ab to leak paracellularly from 

the intestine into in the circulatory system. From there Ab can travel to the brain and pass 

through the BBB, which may lead to increased accumulation and deposition of Ab in the 

brain (Hufnagel, Tükel and Chapman, 2013; Hill and Lukiw, 2015; Zhao, Dua and Lukiw, 

2015).  

 

Intestinal metabolites: neuroprotective and disease-promoting mechanisms 

Several microbiota-derived metabolites might be of particular importance in the context of 

AD pathophysiology. Here I highlight the role of SCFAs, TMAO, and bile acids.  

 

Microbiota-derived short-chain fatty acids have neuroprotective effects and maintain 

barrier function 

SCFAs, especially valeric, propionic and butyric acid, are suggested to have modulatory 

functions that might be protective against AD pathophysiology. This is supported by 

evidence from a mouse model in AD, which shows that selected SCFAs, including valeric 

and butyric acid, are able to partially inhibit or disrupt self-assembly of Aβ peptides (Ho et 

al., 2018). This process works by interfering with initial Aβ1-40 and Aβ1-42 protein-protein 

interactions of the assembly process, which in turn reduces the formation of AD-

characteristic Aβ plaques (Ho et al., 2018). A potential role of SCFAs in the context of AD 

is also supported by research findings from Zhang and colleagues (2017) who found 

significant reduced levels of butyric acid in the faecal matter of APP/presenilin 1 (PS1) AD 

mice as well as reduced levels of propionic, butyric, isobutyric, valeric acid in the brain of 

AD mice compared control mice (Zhang et al., 2017).  
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As mentioned before, SCFAs also play a vital role in maintaining the intestinal epithelial 

and BBB integrity. A lack in butyrate is associated with increased BBB permeability (Ma et 

al., 2018), whilst colonization with the butyrate-producing bacterium Clostridium 

tyrobutyricum or oral administration of butyrate are reported to lead to better BBB integrity 

via upregulation of tight junction proteins (Braniste et al., 2014; Parker, Fonseca and 

Carding, 2020). Reduced levels of the species Akkermanisa muciniphila, a producer of 

acetate and propionate, on the other hand, are associated with disruption of the mucus layer 

and dysfunction of the epithelial barrier (Belzer and De Vos, 2012).  

 

Prebiotics aimed at increasing  production of SCFAs are capable to restore BBB integrity in 

an APOε4-FAD mouse model of AD (Hoffman et al., 2019). Administration of a well-

studied prebiotic compound called ‘inulin’ (a high indigestible fibre diet) was found to 

increase levels of Prevotella and Lactobacillus. This in turn was significantly associated 

with elevated levels of SCFAs in the cecum and blood, as well as changes in the levels of 

bile acids and other microbial metabolites. The inulin-fed APOε4 mice further showed 

reduced expression of inflammatory compounds in the hippocampus compared to APOε4-

FAD control mice (Hoffman et al., 2019).  

 

Evidence from dietary intervention studies in individuals with MCI and biomarkers of AD 

show that a short-term dietary intervention had significant effects on SCFA levels. Six-week 

long adherence to a Mediterranean-ketogenic diet led to an increase in butyrate and 

propionate levels and a decrease in acetate levels compared to controls, whilst adherence to 

the American Heart Association Diet increased acetate and propionate levels and decreased 

butyrate levels compared to controls. The levels of propionate and butyrate in the faecal 

matter of MCI patients were negatively correlated with CSF Aβ-42 load (Nagpal et al., 

2019).  
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SCFAs are not only involved in important AD-related neurotoxic processes and barrier 

integrity, but they also play a major role in glucose homeostasis and mitochondrial function. 

Especially butyrate, but also propionate and acetate, can exert positive effects on 

mitochondrial functioning by restoring morphology and expression, by increasing glucose 

sensitivity in the brain (rescue hypometabolism), and by decreasing colonic inflammation 

and modulating lipid metabolism (Erny et al., 2015; Kobayashi et al., 2017; Zilberter and 

Zilberter, 2017; Hoffman et al., 2019).  

 

Trimethylamine-N-oxide (TMAO) 

TMAO is an intestinal metabolite. Its precursor, trimethylamine (TMA), is metabolized from 

dietary choline and β-/L-carnitine by Archaea (Gaci et al., 2014). Levels of TMAO in the 

CSF were found to be significantly elevated in AD patients and positively correlated with 

markers of tau pathology and Aβ42 load (Vogt et al., 2018). The literature also suggests an 

age-dependent increase of circulating TMAO levels, which is associated with AD-like 

behaviour in an APP/PS1 mouse model and could be reduced by blocking TMAO (Gao et 

al., 2019). Due to its role in cholesterol metabolism, insulin secretion and glucose tolerance, 

TMAO has been proposed as a biomarker for cardiometabolic risk (Roy et al., 2020). 

Besides its role in glucose and cholesterol metabolisms, the possible mechanisms underlying 

a relationship between TMAO and neurodegenerative diseases is multi-facetted, including 

stabilizing properties of amyloid aggregations, promotion of tau pathology, promotion of 

endoplasmic reticulum stress and increased inflammation through NLR family pyrin domain 

containing 3 (NLRP3) inflammasome activation (Janeiro et al., 2018).  

 

Bile acids 

Bile acids, the end products of cholesterol catabolism, have an important role in regulating 

lipid, energy and glucose homeostasis (Ramírez-Pérez et al., 2017). Increased levels of bile 

acids might have a range of effects, including compositional microbiota changes in favour 

of a less diverse and Firmicutes-dominated community (Islam et al., 2011) and disruption 
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of tight junctions (Liu et al., 2020). The bile acid ‘tauroursodeoxycholic acid’ (TUDCA), on 

the other hand, has been suggested to have neuroprotective properties, as it was found to 

positively correlate with a reduction of amyloid plaques in a target replacement (TR) 

APP/PSI AD mouse model (Ackerman and Gerhard, 2016). Hydrophilic bile acids, such as 

TUDCA, have been suggested to inhibit apoptosis through stabilization of mitochondrial 

membranes  (Rodrigues et al., 2000), whilst hydrophobic bile acids are known to have 

opposite effects (Rolo et al., 2000). A set of blood-based biomarkers, including the bile acid 

glycoursodeoxycholic acid, was used to predict the onset of AD/amnestic MCI (aMCI) 

within 2-3 years with a 90% accuracy in an observational human study with 525 elderly 

participants (Mapstone et al., 2014), further highlighting the important role of bile acids in 

AD.  

 

Reduced protective barrier function  

Structure and function of the blood-brain barrier 

Formerly viewed as a static and impermeable barrier, the BBB is nowadays considered to 

be part of a neurovascular-endothelial unit which consists of multiple cell types (Parker, 

Fonseca and Carding, 2020). The BBB is comprised of a monolayer of brain microvascular 

endothelial cells (BMEC) supported by astrocytes, pericytes, microglia, neurons and 

extracellular matrix. Gaps between BMEC are interconnected and physically sealed by tight 

junctions (multi-protein complexes ensuring structural integrity), preventing molecules with 

high molecular weight and low lipid solubility from diffusing paracellularly into the brain 

(Banks, 2009; Abbott et al., 2010; Marques et al., 2013). The main purpose of the BBB is 

to ensure selective transport and protect the brain from pathogens and exposure to other 

harmful molecules (Weiss et al. 2009).  

 

Ageing and loss of blood-brain barrier function 

Ageing induces physiological changes at the site of the BBB which lead to dysfunction of 

tight junctions, loss of pericytes as well as changes of transmembrane receptors (Lin et al., 
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2019). Healthy ageing also leads to a decrease in the phagocytotic activity of microglia and 

overall decline in immune surveillance, overall described as “immunosenescence” 

(Sochocka et al., 2019). As a result, the ability of the brain to eliminate pathogens and to 

maintain homeostasis is reduced in the later decades of life. It has been suggested that the 

expression of receptors responsible for the transport of Ab across the selective BBB is 

altered at advanced age, favoring the influx (over efflux) of Ab from the CNS.  

 

Diminished neuronal health in Alzheimer’s Disease 

Neuronal health, which is highly dependent on intact BBB function, is of particular 

importance in the context of AD. It is reported that over 80% of AD patients have 

pathologically cerebral vascular changes including amyloid depositions, also known as 

cerebral amyloid angiopathy (CAA), which leads to BBB impairment. Breakdown of the 

BBB is considered early biomarkers for cognitive decline irrespective of Ab and tau and 

independent of hippocampal or parahippocampal volumetric changes (Nation et al., 2019).  

 

Pericyte dysfunction in Apolipoproteinε4 decrease blood-brain barrier function 

Increased vulnerability and breakdown of the BBB, as well as risk for CAA, is also 

associated with APOε4 genotype. Evidence from animal work suggests that APOε4 carries 

have changes in the membrane proteins of cerebral blood vessels which lead to reduced 

perivascular drainage of Ab from the brain (Hawkes et al., 2012). Human APOε4 carriers 

further show increased BBB disruption in hippocampal and parahippocampal gyrus 

independent of amyloid or tau pathology and in the absence of inflammation (Montagne et 

al., 2020). The observed BBB breakdown is associated with activation of the cyclophilin A 

(Cypa)-MMP9 pathway in pericytes and correlates with pericyte injury and elevated 

neuronal stress (increase in neuron-specific enolase) in APOε4 carriers (Montagne et al., 

2020). Blocking of Cypa-MMP9 pathway in APOε4 knock-in mice restored BBB 

functioning (Bell et al., 2012). Dysregulation of calcineurin–nuclear factor of activated T 
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cells (NFAT–calcineurin) signaling pathway, another pathway in pericytes, is also 

associated with APOε4-mediated CAA pathology. It thus represents another potential target 

(calcineurin/NFAT inhibitors) to restore proper functioning of pericytes in APOε4 carriers 

(Blanchard et al., 2020). 

 

Several microbiota-targeted interventional approaches, including the administration of 

prebiotics and probiotics, are investigated for their neuroprotective effects on restoring 

cognition and behavior in AD mouse models.  

 

 

Figure 1.9 Schematic summarizing blood-brain barrier changes in disease states, neurotoxic 

and neuroprotective factors modulating blood-brain barrier integrity with respect to 

Alzheimer’s Disease pathophysiology. Figure created by author 

 

Structure and function of the intestinal epithelial barrier 

The intestinal epithelial barrier is a dynamic system consisting of a physical and an inner 

functional immunological barrier (Bischoff et al., 2014). A single layer of epithelial cells, 

connected by tight junctions and other proteins, lines the intestinal lumen and forms the 

physical barrier between the lumen and mucosal tissue. Homeostasis is maintained by the 
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interplay of this physical barrier (the mucosal surface of the epithelial cell lining) and an 

immunological barrier (antimicrobial products, IgA and defensins) (Bischoff et al., 2014). 

The main function of this barrier is to ensure strict regulation of molecules, which allows 

selective absorption of nutrient and fluids (Tran and Greenwood-Van Meerveld, 2013), but 

prevents the passage of pathogens, microbial organisms or toxins (Schoultz and Keita, 

2020). Intact barrier integrity thus prevents pathogenic as well as commensal 

microorganisms from leaking paracellularly into the circulatory system. A range of major 

conditions including in IBS (Camilleri and Gorman, 2007), T2D (Cheru, Saylor and Lo, 

2019), major depression (Maes, Kubera and Leunis, 2008), autism spectrum disorders (De 

Magistris et al., 2010), Parkinson’s disease (Forsyth et al., 2011) and AD (Megur et al., 

2021) have all been associated with increased intestinal permeability, also termed a ‘leaky 

gut’ (Schoultz and Keita, 2020). Even though the mechanisms for increased intestinal 

permeability are still not fully understood, it is generally agreed that increased intestinal 

permeability follows age-associated intestinal dysbiosis and remodeling of epithelial tight 

junction proteins (Tran and Greenwood-Van Meerveld, 2013; Thevaranjan et al., 2017) that 

may be associated with impaired innate immunity and chronic low-grade inflammation (Man 

et al., 2015). 

 

Consequences of increased permeability on both ‘ends’ of the Gut-Brain axis 

Structural integrity of the barriers is also reduced as a consequence of differential expression 

of occludin and claudin transmembrane proteins (main substituents of tight junctions) in the 

absence of intestinal microbes (Braniste et al., 2014), intestinal dysbiosis (Froehlich et al. 

2016) or in response to high levels of pro-inflammatory modulators following trauma or 

infection (Mabbott, 2015). Conventionalizing GF mice using faecal matter from specific-

pathogen free mice has shown to decrease BBB permeability which supports a 

fundamentally causal relationship between microbiota and BBB integrity (Braniste et al., 

2014). 
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Increased barrier permeability triggers a cascade of events, which are closely linked with 

inflammation, that tip the balance and may contribute to AD pathology (Arrieta, Bistritz and 

Meddings, 2006; Tran and Greenwood-Van Meerveld, 2013). Compromised barrier function 

creates a detrimental self-reinforcing loop marked by i) translocation of LPSs, commensal 

bacteria and pathogens, ii) activation of TLRs and iii) initiation of phagocytosis. When 

commensal bacteria including those containing LPS and other endotoxins leak into the blood 

circulation, they can upregulate the immune response through activation of TLRs - an 

integral part of the innate immune response. TLRs are activated upon recognition of antigens 

expressed by microbes (microbe-associated molecular patterns [MAMPs]). In a controlled 

manner, TLR-activation is a key mechanism for healthy immune function. In the context of 

AD, misfolded amyloid peptides are detected by TLR2 on glial cells. Recognition of amyloid 

by TLR2 occurs because amyloid shares structural homology with TLR2’s major ligand 

LPS. Activated glial cells then initiate phagocytosis (Arroyo et al., 2011) and activated 

microglia and astrocytes stimulate production of pro-inflammatory cytokines and 

chemokines (Boutajangout and Wisniewski, 2013; Zhao, Dua and Lukiw, 2015). Chronic 

neuroinflammation, which involves the overactivation and dysregulation of microglia and 

macrophages and associated increased secretion of pro-inflammatory molecules, is a 

characteristic of many neurodegenerative diseases including AD (Heppner, Ransohoff and 

Becher, 2015; Parker, Fonseca and Carding, 2020).  

 

The increase in barrier permeability renders the host (in general) and the CNS (in particular) 

more susceptible and vulnerable to insults. The facilitated transit of amyloids, LPSs, 

cytokines, and other immunogenic molecules into the circulatory system and across the BBB 

triggers a whole cascade of neuropathological events that are likely to contribute to AD 

pathology. 
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Intestinal microbiota and the inflammation hypothesis 

Neuroinflammation is a well-established and consistent feature of AD pathology (Beach, 

Walker and McGeer, 1989; Arends et al., 2000) and strongly correlates with cognitive 

decline (Cagnin et al., 2001). It has been suggested that the severity of neuroinflammation 

might regulate disease progression (Minter et al., 2016). Mounting evidence featuring 

impairment of the vasculature, oxidative stress, microgliosis and impaired neuronal 

proteolysis have called for a more integrative model to describe AD disease pathogenesis. 

Following this, the ‘inflammation hypothesis’ emerged as an alternative to the amyloid 

cascade hypothesis (Liu et al., 2020). In the following, I outline modulatory mechanisms of 

host innate immunity by intestinal microbiota in the context of AD (summarized in Figure 

1.10).  

 

Bacteria-produced endotoxins drive inflammation and exacerbate amyloid and tau 

pathology  

Bacteroidetes are gram-negative bacteria whose relative abundance increases with 

advancing age (Claesson et al., 2011). The major component of the outer cell wall of gram-

negative bacteria is LPS. As already described in the context of losing barrier function, LPS 

is a bacterial endotoxin, which is known to trigger inflammation in circulatory system and 

the CNS and is hence associated with low-grade inflammation and decreased insulin 

sensitivity (Cani et al., 2007; Vogt et al., 2017). The mechanistic role of endotoxins implied 

in AD pathology might be numerous, including a key role in causing inflammation of the 

intestine and promoting the formation of neurotoxic plaques – the hallmark feature of AD.  

 

Excessive production of LPS can cause intestinal inflammation, which in turn may increase 

the absorption of bacterial derived LPS into the blood stream. High peripheral levels of LPS 

cause both endotoxemia and colitis in mice (Jang et al., 2018). The literature suggests that 

once in the brain, LPS and other microbial endotoxins, activate microglia cells and trigger a 

series of processes which can result in hippocampal inflammation, reduced synaptic 
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plasticity (suppression of BDNF) and worsening integrity of the BBB (suppression of 

claudin-5 expression) (Lee et al., 2019).  

 

In a transgenic mouse model for AD, administration of LPS correlated with a marked 

elevation of pro-inflammatory IL-1b and was found to induce tau phosphorylation in the 

hippocampus and other brain areas through mediation of Cyclin-dependent kinase 5 (cdk5) 

enzymatic activity (a major tau kinase) (Kitazawa et al., 2005). Inflammation of the CNS 

has since been shown to exacerbate tau pathology in another model in transgenic mice (Sy 

et al., 2011). A model of transgenic mice that overexpress APP found that LPS-induced 

inflammation in the CNS led to increased level of Ab1-42 and Ab1-40 amyloidogenic 

species and higher total APP (precursor of Ab) (Sheng et al., 2003). In wild-type mice, 

repeated injections with LPS resulted in increased levels of IL-1b and IL-6 (pro-

inflammatory cytokines) and higher hippocampal levels of Ab1-42, as well as cognitive 

deficits (Kahn et al., 2012).  

 

Interestingly, the innate immune response to LPS exposure appears to be mediated 

differently depending on APOE status. A human study showed that APOε4 carriers were 

affected more negatively by an intravenous LPS challenge than APOε4 non-carriers (Gale 

et al., 2014). Exposure to LPS in APOε4 carriers led to significantly higher hyperthermia 

and higher serum levels of pro-inflammatory cytokines, including TNF-α and IL-6, 

compared to APOε3/ε3 subjects. This markedly augmented innate immune response in 

APOε4 carriers is also reflected by enhanced TLR signalling. An association between 

APOε4 genotype and exacerbated endotoxemia and enhanced MyD88-independent TLR4 

signalling has also been established in APOε4-TR mouse model (Gale et al., 2014). 

 

Apart from inflammation, bacterial endotoxins derived from gram-negative bacteria such as 

the abundant Bacteroidetes fragilis or E. coli, which occur at more prevalent levels in elderly 
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subjects (Mariat et al., 2009), may also contribute directly to AD pathology. An in vitro 

study found that co-incubation of Ab peptide with bacterial endotoxins promoted Ab fibril 

formation. Post-mortem investigations of AD brains show co-localization of Ab1-40/42 with 

LPS and fragments of gram negative E.coli (Zhan et al., 2016), as well as a 2- to 3-fold 

increased levels of LPS in hippocampus and superior temporal lobe neocortex (Zhao, Cong 

and Lukiw, 2017; Zhao, Jaber and Lukiw, 2017). These findings support the proposed 

mechanistic link between bacteria-derived endotoxins and AD pathology and suggest a key 

role in inflammatory-induced neurodegeneration.   

 

 
Figure 1.10 Schematic, simplified overview of suggested mechanisms underlying 

lipopolysaccharide-induced inflammation. LPS: lipopolysaccharide; TLR4: Toll-like 

receptor 4. Figure created by author 

 

Lactobacilli and Bifidobacterium strains are suggested to be potent inhibitors of LPS 

production. Administration of Bifidobacterium longum has indeed been shown to reduce 

excessive endotoxin production and subsequent inflammation-associated processes in an AD 

mouse model (Lee et al., 2019) 
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In the adult human intestine, Bifidobacterium is present at low but relatively stable 

abundance levels (Arboleya et al., 2016). Bifidobacterium is generally ascribed a health 

promoting role and commonly used as a probiotic. Accumulating evidence suggests that 

different species of Bifidobacterium are associated with increased colonization resistance 

against pathogens, improved intestinal permeability, production of beneficial metabolites 

such as short-chain fatty acids and bacteriocins and able to limit inflammatory responses 

(Fukuda et al., 2011; Underwood et al., 2015; Arboleya et al., 2016). Supplementation with 

Bifidobacterium was shown to promote increased intestinal barrier function and attenuate 

bacterial translocation (Wang et al., 2006). In AD patients, 12-week long probiotic 

supplementation containing three strains of Lactobacillus and Bifidobacterium was found to 

have significant positive effects on cognitive functioning (Akbari et al., 2016). 

 

Oral administration of Bifidobacterium was also shown to prevent cognitive dysfunction in 

transgenic mouse model for AD and suppressed the expression of immune-reactive genes in 

hippocampal tissue (Kobayashi et al., 2017). These effects might be associated with 

modulation of BDNF and acetate production (Kobayashi et al., 2017). The literature 

generally agrees that probiotics can have beneficial effects, possibly mediated by enhanced 

intestinal epithelial barrier integrity, reduction of the inflammatory cytokine Tumour 

Necrosis Factor alpha (TNF-a) and other pro-inflammatory mediators and modulation of 

oxidative stress (Divyashri et al., 2015; Musa et al., 2017; Azm et al., 2018; Kowalski and 

Mulak, 2019). 

 

Overall, there appear to be multiple potential mechanisms underlying microbial involvement 

in AD pathogenesis which are summarized in Figure 1.11.  
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Figure 1.11 Schematic presentation of the main microbial-driven pathways suggested to be 

involved in Alzheimer’s Disease. Figure created by author 

 

Existing microbiota-targeted treatment for AD 

The recent approval of GV-971 for the treatment of mild to moderate AD in China in 

November 2019 further corroborates the relevance of a microbial component in AD (Wang 

et al., 2019; Syed, 2020). Although our understanding of the exact mechanisms is 

incomplete, GV-971 which is an algae-derived oligosaccharide, is thought to modify the 

intestinal microbiota composition and thereby reduce bacteria-related peripheral and 

neuronal inflammation via the downregulation of Th1 cell differentiation and microglia 

activity in the brain (Wang et al., 2019). Its anti-neuroinflammatory properties might also 

inhibit the action of reactive astrocytes and lead to a reduction in pro-inflammatory TNF-α 

and IL-6  (Wang et al., 2007). It is suggested that GV-971, which is able to cross the BBB, 

can also directly inhibit the formation of amyloid fibrils in the brain as well as reduce tau 

pathology (Hu et al., 2004; Wang et al., 2019). On a metabolic level, GV-971 is suggested 
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to decrease the peripheral and faecal levels of phenylalanine and isoleucine. A 36-week-long 

Phase III clinical trial of 817 participants demonstrated sustained therapeutic effects on 

cognitive functioning (stabilization or improvement) of GV-971 with superiority to placebo 

(Xiao et al., 2021).  

 
Observational studies in Alzheimer’s Disease mice models  

The main observational studies that sought to explore intestinal microbiota alterations in AD 

using a murine model are summarized in Table 7.1 in the supplementary. Overall, the results 

from the here reviewed studies are heterogenous. Given the diversity in methods, seen in the 

mouse models, and considering the multitude of analysis methods, including 

immunohistochemistry, Western blotting, microscopy and 16S ribosomal RNA (16S rRNA) 

gene sequencing, it is difficult to directly compare the study results between each other. Even 

top-level results, such as assessing alpha diversity are not necessarily aligned, with some 

studies showing increased bacterial diversity in the AD mouse model compared to the 

control (Harach et al., 2017; Bäuerl et al., 2018), no difference between the groups (Peng et 

al., 2018; Honarpisheh et al., 2020) or a reduction in the disease model (Zhan et al., 2018). 

Most studies reported a clustering effect by group, indicative of global compositional 

changes. All studies found significant differences with respect to relative taxonomic 

abundances of specific taxa. And some groups went on to show correlations between 

microbial changes and amyloid levels, epithelial barrier dysfunction and levels of 

proinflammatory molecules. The sample size in some of studies was low (Bäuerl et al., 2018; 

Honarpisheh et al., 2020) with just two to three mice per study/age group. 

 

Despite widespread use of animal models, particularly mouse models, the question of 

translatability to humans remains. Whilst the human and mouse GI tract share some 

characteristics with respect to its anatomy and physiology, there is also a considerable degree 

of dissimilarity, which is not only true for morphology (such as the presence of a non-
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glandular forestomach as seen in mice) and at the cellular level (Loan et al., 2015). Whilst 

both the mouse and the human gut are dominated by the Bacteroidetes and Firmicutes 

phylum, Ley et al. showed that much less overlap can be found at a deeper taxonomic level, 

as over 85% of bacterial genera detected in the mouse intestinal microbiota were not present 

in humans (Ley et al., 2005). Major compositional differences were further confirmed by a 

meta-analysis of mouse and human faecal microbiota based on published 16S data, showing 

that the relative abundance for the majority of dominant genera is widely different between 

the two organisms (Loan et al., 2015). The genera Turicibacter for example, is one of the 

most abundant taxa in the murine intestinal microbiota, but is found only in very small 

abundances in the human intestine (Hugenholtz and de Vos, 2018). A large range of 

environmental factors, including housing, which has been shown to be an important 

confounder, but also large differences in diet and metabolic rate exert large modulating 

effects on the murine intestinal microbiota, which cannot be compared to the human 

intestinal microbiota. All of these differences, most importantly perhaps the divergence in 

host resident bacterial taxa, mean that findings from murine models are not necessarily 

translatable to humans. 

 

Despite these limitations, animal studies provide a unique opportunity to explore how 

microbial-modulated mechanisms may contribute to progressive cognitive impairment and 

AD. There are several different AD mouse models. The most commonly seen AD models of 

the here reviewed literature are the double transgenic APP/PS1 mouse model for AD which 

overexpress APP (Bittner et al., 2012; Mathias Jucker, 2020) and the senescence-accelerated 

mouse-prone 8 (SAMP8) model, which is a naturally occurring mouse line that exhibits a 

phenotype of accelerated ageing including cognitive dysfunction (learning and memory 

impairment) (Shimada and Hasegawa-Ishii, 2011). Whilst all of these mouse models aim to 

closely resemble key characteristics of the AD phenotype, there is variance between the 

models, which adds a further layer of variability to the results.  
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Human studies  

To my knowledge, only nine studies to date have explored a potential relationship between 

the intestinal microbiota and AD in human participants. A detailed summary of all studies 

is shown in Table 1.1. Of note, only one study was longitudinal (Haran et al., 2019) and used 

a shotgun metagenomic sequencing approach. All other studies are cross-sectional in nature 

and used predominantly 16S rRNA gene sequencing. All studies but one (Ling et al., 2021) 

had a relatively small sample size, with a patient population between 21-43 AD patients.  

 

The first study to investigate microbial compositional changes between patients with 

predominantly mild AD (n=25) and healthy controls (n=25) was conducted in 2017 using 

16S rRNA gene sequencing allowing for taxonomic assessment from faecal samples (Vogt 

et al., 2017). Vogt et al. observed significantly decreased richness and diversity in the AD 

patient cohort as well as significantly different compositional microbiomes between AD 

patients and controls as measured by beta diversity. They identified 82 differentially 

abundant taxa between patients and controls, which correlated to some extent with CSF 

biomarkers of AD pathology. At the phylum level, relative abundance of Firmicutes, one of 

the two main phyla of the GI tract, and Actinobacteria were significantly decreased in 

individuals with AD. Whilst Bacteroidetes, the second main phyla of the GI tract, was 

increased in the AD cohort. This was reflected by a reduction of relative abundances in 61 

operational taxonomic units (OTUs) at family- and genera-level belonging to the Firmicutes, 

as well as an increase in Bacteroidaceae (family) and Bacteroides (genus). These taxonomic 

shifts broadly mirror findings for individuals with T2D and are associated with insulin 

resistance (Ott et al., 1999; Larsen et al., 2010; Rawlings et al., 2014). Insulin resistance is 

a risk factor for developing AD and is also associated with impaired cerebral glucose 

metabolism and increased deposition of amyloid (Willette, Bendlin, et al., 2015; Willette, 

Johnson, et al., 2015). The group also used predictive functional profiling and identified 

several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were 
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significantly different between AD patients and controls. Enriched pathways in AD patients 

included energy-, carbohydrate-, amino acid metabolism, as well as an increased potential 

for oxidative phosphorylation, fructose and mannose metabolism, methane metabolism and 

many more. Whereas depleted pathways were characterized by pathways related to signal 

transduction, cell motility, bacterial chemotaxis, bacterial motility proteins and others. 

 

In the following year, a study by Zhuang et al. (2018) investigating the role of the intestinal 

microbiota composition in AD disease pathology was published. This study was as a single 

time point analysis of 43 Chinese AD patients and 43 age- and gender-matched healthy 

controls. In-line with the work of Vogt and colleagues, the group found significant large-

scale compositional differences (distinct β-diversity) between AD patients and healthy 

controls. The taxa which were identified to contribute to this separation of bacterial intestinal 

profiles were numerous. Zhuang and colleagues found a small but significant decrease in 

Bacteroidetes and an increase in Actinobacteria in the AD patient group compared to healthy 

controls. Whilst bacterial taxa at class-level belonging to Firmicutes showed both a 

significant increase (Bacilli) as well as significant decrease (Negativicutes) compared to 

healthy controls. Christensenellaceae and the gram-positive Ruminococcus were found to 

be increased in AD patients, whereas Lachnospiraceae were significantly decreased. 

 

In 2019, Haran et al. were the first group to conduct a study with longitudinal design 

(sampling once a month for up to five months) and to use shotgun metagenomic sequencing 

in a cohort of 24 AD patients, 33 patients with non-AD dementias and 51 healthy controls. 

Analysis of β-diversity showed that the intestinal microbiota compositions separated clearly 

between the group of AD patients and healthy controls, whereas samples from non-AD 

dementia patients clustered with both other cohorts. Differential abundance analysis 

identified an increase in Alistipes, Bacteroides, Barnesiella, Collinsella and Odoribacter, as 

well as a reduction in Lachnoclostridium using the AD group as a baseline in a general linear 
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mixed model regression analysis. Random forest classification algorithms identified 

increased frailty and malnutrition as well as several microbial taxa as the best predictors for 

AD.  

 

Predictive taxonomic changes were marked (amongst others) by lower abundances of 

Eubacterium and Butyrivibrio (butyrate-producing genera), a Clostridium strain, Roseburia 

hominis and Faecalibacterium prausnitzii. Whilst predictive taxa with higher relative 

proportions in AD were characterized by members of the Odoribacter splanchius, 

Bacteroides vulgatus, Adlercreutzia equolifaciens, Klebsiella pneumonia, Bacteroides 

fragilis and Eggerthella lenta. The group went on to test the ability of intestinal microbiota 

to modulate the P-glycoprotein/endocannabinoid(homeostasis)- Multidrug resistance-

associated protein-2 (MRP2)/ hepoxilin A3 (HXA3) (inflammatory) axis by incubating 

intestinal epithelial cells in the presence of faecal supernatants and quantifying levels of P-

glycoprotein and MRP2 protein expression. This analysis was done in a small subgroup (n=9 

per group) and showed lower expression of P-glycoprotein, which functionally correlated 

with inflammation of the GI tract in the samples of AD patients compared to the other two 

groups. 

 

Li et al. (2019) conducted a study in patients with AD (n=30), amnestic MCI (aMCI) (n=30) 

and healthy controls (n=30), to characterize the microbial communities of both faecal and 

blood samples using 16S rRNA gene sequencing. Analysis of α-diversity of the intestinal 

microbiota was significantly lower only for one of the tested α-diversity indices when 

comparing the AD patient group to the control group. Analysis of β-diversity demonstrated 

significant differences between microbial communities of the AD vs control group (faecal 

and blood samples) but did not differ between the aMCI and AD patients.  
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Univariate analysis identified numerous relative abundance differences between the groups. 

Faecal samples of AD patients were enriched in seven genera compared to healthy controls, 

including Acinetobacter, Dorea, Blautia, Akkermansia, Lactobacillus, Bifidobacterium and 

Streptococcus. In comparison, relative abundances in AD patients were significantly lower 

for 11 genera, including Bacteroides (supporting Zhuang et al. finding), Prevotella, 

Alistipes, Parabacteroides, and Sutterella. Blood samples of the AD patient group vs 

controls were particularly enriched in Pseudomonas, Escherichia, Acidovorax, 

Steotrophomonas and another six genera. Whereas blood samples from healthy controls 

were more abundant in Halomonas, Serratia, Acinetobacter baumannii, Enterobacter and 

another eight genera. The decreased abundance of Bacteroides and increased abundance of 

Escherichia and Lactobacillus in the faecal samples of AD (and aMCI) group compared to 

the healthy control group was also confirmed by quantitative PCR. Differences in relative 

abundances correlated with medial temporal atrophy (MTA) (increased Akkermansia), 

cognitive performance (increased Faecalibacterium, Butyricicoccus, decreased Blautia, 

Dorea), APOE status (increased Anaerotruncus, no further information given), age 

(increased Anaerotruncus, Ruminocccus) and disease duration (increased Megamonas).  

 

In the same year, Liu et al. (2019) presented their work on intestinal microbiome differences 

between AD patients (n=33), aMCI patients (n=32) and healthy controls (n=32). In-line with 

previous work, they found significantly reduced microbial diversity in the AD patient cohort 

compared to aMCI and controls, as well as distinct microbial compositional profiles between 

the groups. They further found numerous associations between disease pathology and 

differential abundance of bacteria, including a reduction in Firmicutes, Clostridia, 

Clostridiales, Clostridiaceae, Lachnospiraceae, Ruminococcaceae and Blautia, and an 

increase in Proteobacteria, Gammaproteobacteria, Enterobacteriales and 

Enterobacteriaceae in the AD patient group. Discriminating models based on these findings, 

particularly those based on enriched Enterobacteriaceae, were able to distinguish between 
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AD patients and healthy controls. Liu and colleagues also performed predicted functional 

potential, based on KEGG functional orthologs. This showed that AD patients had an 

enriched potential for glycan biosynthesis and metabolism compared to controls, protein 

folding and contrary to Vogt et al. also for signal transduction. The functional potential of 

other pathways, including those related to immune system and biosynthesis of N-glycan, 

phenylalanine, tyrosine, tryptophan, histidine and amino acids were found to be reduced in 

the AD patient cohort compared to controls.  

 

More insights on the relationship between AD and the gut microbiome also come from a 

Japanese study (Saji et al., 2019, 2020). This cross-sectional study which included 25 

dementia patients (classified based on cognitive scores: Mini-Mental State Examination 

[MMSE] <20 and/ or clinical dementia rating [CDR] ≥1) and 82 healthy controls, 

investigated taxonomic differences (Saji et al., 2019) as well as differences between 

intestinal-microbiota associated metabolites (Saji et al., 2020) between the two cohorts. 

Interestingly, contrary to previous findings, Saji and colleagues found that the patient group 

exhibited a higher microbial diversity compared to healthy controls. Of note, whilst using 

16S rRNA gene sequencing, the group adopted a special approach for the taxonomic 

classification. They assigned all detected taxa to one of ten microbiota groups. Depending 

on the dominating bacteria, every individual was then assigned to one of three enterotypes. 

This approach was based on work Arumugam et al. 2011, who originally designated 

enterotype I (dominant phyla: Bacteroides), II (dominant phyla: Prevotella) and III 

(dominant phyla: other phyla) based on preferred community compositions. Saji et al. (2019) 

found that dementia was associated with lower prevalence of the Bacteroides enterotype and 

higher prevalence of other bacteria (enterotype III). Dementia patients were also found to 

have a higher Firmicutes/Bacteroidetes ration compared to controls.  
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Saji et al. (2020) identified a range of metabolites with significantly different levels between 

the cohort of dementia patients and controls including formic acid, ammonia, iso-butyric 

acid, iso-valeric acid, b-butyric acid, phenol and p-cresol. However, upon adjusting for age, 

sex, education, APOε4 genotype and enterotypes, only ammonia concentration was 

significant between the groups. Ammonia levels were increased in the cohort of dementia 

patients with an odds ratio of 1.6.  

 

In January this year, Hou et al. (2021) investigated the intestinal microbiota in a Chinese 

cohort of AD patients, with a particular focus on genetic factors correlated with AD and 

associations with intestinal changes. Hou and colleagues sequenced twelve genetic loci 

(polymorphisms previously identified from genome-wide association studies) and 

confirmed that CC or CT genotype of susceptibility gene BIN1 (rs744373) as well as carriers 

with at least one APOε4 (rs42358/rs4512) allele had an increased for AD compared to non-

carriers. The group then investigated the intestinal microbiota in 21 AD patients and 

compared this against 40 healthy controls. They found no difference in a-diversity but 

distinct compositional clustering (b-diversity) between AD patients and controls. Univariate 

analysis identified 18 significant associations with AD, including an increase in the relative 

abundance of Escherichia Shigella, Enterobacteriales and its associated family of 

Enterobacteriaceae (supporting Liu et al.’ finding), Proteobacteria (in-line with Li and 

colleagues’ finding), Ruminococcaceae, Finegoldia, as well as a reduction in Megamonas, 

Enterococcaceae and Anaerostipes. Targeted multivariate linear modelling of the significant 

taxa between AD patients (n=10) and healthy controls (n=5) with APOε4 and BIN1 showed 

a significant association between APOε4 carriers and increased abundances of 

Proteobacteria and Enterococcaceae.  

 

The most recent work on the relationship between the intestinal microbiota and AD comes 

from Ling et al. (2021). This is the largest study of the reviewed work, with 100 AD patients 
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and 71 healthy controls. Cross-sectional comparison of the intestinal microbiota using 16S 

rRNA gene sequencing showed reduced a-diversity in the AD patient group and distinct 

compositional profiles. Univariate analysis of differential relative abundance identified over 

30 significant associations. The AD patient group was characterized by an increase in 

numerous taxa, including Actinobacteria (replicating the result of Zhuang and colleagues), 

Bacteroidetes, Verrucomicrobia, Coriobacteriaceae, Enterococcaceae (contrary to Hou et 

al. finding), Eubacterium, Akkermansia, Christensenellaceae (supporting Zhuang et al. 

finding) and Bifidobacterium (replicating Li et al. finding) compared to controls. The AD 

microbiota was shown to have a significant decrease in members of Proteobacteria (contrary 

to Liu et al. finding), Firmicutes, Clostridiaceae (supporting Liu et al. finding), 

Ruminococcaceae, Lachnospiraceae (supporting Zhuang et al. finding), Faecalibacterium 

and several other taxa. Functional analysis using KEGG demonstrated various changes in 

the functional potential of AD patients compared to healthy controls, of which the majority 

showed enrichment for the AD group. These included enrichment in folate biosynthesis and 

reduction in bacterial chemotaxis and flagellar assembly which replicated findings of Vogt 

and colleagues. AD patients were also enriched in glycolysis/gluconeogenesis, galactose 

metabolism, fatty acid metabolism and sphingolipid metabolism, etc., but showed a 

reduction for biosynthesis of ansamycins and glycerolipid metabolism.  

 

Whilst some findings, especially at higher taxonomic levels, were similar between these 

human studies, many of the detailed taxonomic changes were not the same. Possible reasons 

for discrepancies are numerous, including differences in study methodologies, geographical 

differences between study populations or lack of power due to small cohort sizes and noisy 

data. Nonetheless, overall these findings strengthen the postulated role of intestinal 

microbiota compositional changes in the context of AD.  
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Table 1.1 (Part 1) Human studies exploring the Gut-Brain axis in Alzheimer’s Disease 

 

 

Subjects Sequencing  Statistical analysis method Main findings Ref. 

25 AD,  
25 HC 

16S rRNA 
gene 
sequencing 
 

α-diversity: ACE, Chao1, 
Shannon, Faith’s PD, Inverse 
Simpson  

Reduced alpha diversity in AD patients for all indices except for Inverse Simpson (not 
significant) 
 

Vogt et 
al., 2017 

β-diversity: Bray Curtis, UniFrac Significant compositional differences between AD patients and HC  
Differential abundance analysis: 
DESeq2 
 

82 OTUs (14 more abundant and 68 less abundant in AD), including 
¯ Firmicutes, Actinobacteria, Ruminococcaceae, Bifidobacteriaceae, Clostridiaceae, 
Mogibacteriaceae 
­ Bacteroidetes, Bacteroidaceae, Riknellaceae, Gemellaceae, Blautia, Bacteroides, Alistipes, 
Gemella 

CSF biomarkers Differentially abundant taxa were correlated with CSF biomarkers of AD (positive and negative 
correlations between bacterial abundances and amyloid/tau markers) 

Functional analysis (KEGG) 
 

Level 2: ¯ signal transduction, cell motility ­ energy/carbohydrate/amino acid metabolism, etc.  
Level 3: ¯ bacterial motility proteins, bacterial chemotaxis, bacterial secretion system  
­ oxidative phosphorylation, fructose/mannose/methane metabolism, lysine/folate biosynthesis 
etc.   

43 AD,  
43 HC 

16S rRNA 
gene 
sequencing 
 
 

β-diversity: UniFrac Significant compositional differences between AD patients and HC Zhuang 
et al., 
2018 Differential abundance analysis: 

LEfSe 
64 associations with AD, including 
¯ Bacteroidetes, Negativicutes, Lachnospiraceae, Bacteroidaceae, Bacteroides, 
Lachnoclostridium  
­ Actinobacteria, Ruminococcaceae, Subdoligranulum, Christensenellaceae, Prevotella, 
Coprococcus 

24 AD, 
33 other 
dementias,  
51 HC 
 
 
 
 
Sub-
analysis 
n=9/group 

shotgun 
metagenomic 
sequencing,  
 
longitudinal 
 

β-diversity: Jaccard Significant compositional differences between AD patients and other two groups Haran et 
al., 2019 Generalized linear mixed model AD as baseline: ¯ Lachnoclostridium 

                          ­ Alistipes, Bacteroides, Barnesiella, Collinsella, Odoribacter  
Other dementias as baseline: ¯ Eubacterium, Roseburia, Lachnoclostridium, Collinsella 
                                               ­ Barnisiella, Odoribacter 

Random forest classification Identified increasing frailty and malnutrition and numerous microbial taxa, including 
Odoribacter splanchnicus, E. eligens, E. rectale, Faecalibacterium prausnitzii, etc. 

Culture of intestinal epithelial 
cells in faecal supernatant 

¯ expression of functional P-glycoprotein in AD cell cultures compared other two groups  
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Table 1.1 (Part 2) Human studies exploring the Gut-Brain axis in Alzheimer’s Disease 

 

 

Subjects Sequencing  Statistical analysis method Main findings Ref. 

30 AD,  
30 aMCI,  
30 HC 

16S rRNA 
gene 
sequencing 
 
 
 
 
 
 
 

α-diversity: Chao1, Faith’s PD, 
observed species, Shannon  

Reduced Faith’s PD in AD compared to HC (other alpha indices were not significant)  Li et al., 
2019 

β-diversity: UniFrac Significant compositional differences of bacterial communities in faecal and blood samples 
between AD and HC (but not between AD and aMCI) 

Differential abundance analysis: 
LEfSe for faecal samples 
(for blood samples not shown 
here) 

¯ Parabacteroides, Alistipes, Bacteroides, Alloprevotella, Haemophilus, Paraprevotella, 
Succinivibrio, Sutterella, Prevotella, Barnesiella, and Butyricimonas 
­ Lactobacillus, Akkermansia, Dorea, Bifidobacterium, Streptococcus, Acinetobacter, Blautia 

General linear model (covariates: 
age, BMI, gender, constipation) 

¯ Alistipes, Bacteroides, Parabacteroides, Sutterella, and Paraprevotella 
­Dorea, Lactobacillus, Streptococcus, Bifidobacterium, Blautia, and Escherichia 

qPCR for 
relative 
abundance  
 
PET scan  

Kruskal-Wallis, post-hoc Dunn’s 
test 

Confirmed ­ Escherichia and Lactobacillus and ¯ Bacteroides in AD and MCI faecal matter 
Negative relationship between Aβ burden and relative abundance of Lactobacillus 

Spearman’s rank-correlation 
analysis (adjusted for age and 
education) 

Clinical characteristics associated with differential abundances: 
- medial temporal atrophy correlated positively with Akkermansia 
- APOE status correlated positively with Anaerotruncus  
- cognitive performance correlated positively with Faecalibacterium, etc.; negatively with 
Blautia, etc. 
- age correlated positively with Anaerotruncus, Ruminococcus; negatively with Cetobacterium 
- disease duration correlated positively with Megamonas 

33 AD,  
32 aMCI,  
32 HC 

16S rRNA 
gene 
sequencing 
 

α-diversity: Shannon, Simpson, 
ACE, Chao1  

Reduced Shannon and Simpson in AD patients compared to aMCI&HC (other alpha indices 
were not significant) 

Liu et 
al., 2019 

β-diversity: Bray Curtis, UniFrac Significant compositional differences between AD patients and HC  
Differential abundance analysis: 
LEfSe 
 
PSL-DA 

¯ Clostridiaceae, Ruminococcus 
­ Enterobacteriales, Enterobacteriaceae, Gammaproteobacteria, Protebacteria 
¯ Firmicutes, Clostridia, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Blautia, 
Ruminococcus 
­ Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae 

Functional analysis (KEGG) 
 

Level 2: ¯ transcription, environmental adaptation, immune system, nervous system  
­ signal transduction, protein folding and associated processing, glycan biosynthesis and 
metabolism,   

  Other Significant correlation between AD clinical severity and altered abundance of taxa 
Model based Enterobacteriaceae abundance could distinguish AD from aMCI and HC 
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Table 1.1 (Part 3) Human studies exploring the Gut-Brain axis in Alzheimer’s Disease 

*AUC: Area Under the Curve 

 

Subjects Sequencing  Statistical analysis method Main findings Ref. 

25 dementia 
patients,  
82 HC  

16S rRNA 
gene 
sequencing 
(T-RFLP 
method) 

α-diversity: Shannon, Simpson  Increased in dementia patients vs HC (Shannon only) Saji et 
al., 2019 
 

Compositional differences: 
enterotypes*  
 
 

Dementia patients vs HC:  
¯ enterotype I (Bacteroides > 30%) 
no difference for enterotype II (Prevotella at >15%) 
­ enterotype III (‘other’ bacteria)  
­ Firmicutes/Bacteroidetes (F/B) ratio 
 
lower prevalence of Bacteroides and a higher prevalence of other bacteria are 
independently and strongly associated with dementia, and these associations are stronger 
than those for traditional dementia biomarkers (APOε4, SLI and high VSRAD score.) 

 
*is based on classifying gut microbiota into 10 groups: 
Prevotella, Bacteroides, Lactobacillales, Bifidobacterium, 
Clostridium cluster IV, Clostridium subcluster XIVa, 
Clostridium cluster IX, Clostridium cluster XI, Clostridium 
cluster XVIII, and ‘others’ 
Sub 
analysis 
of same 
cohort 

chromatograp
hy for 
metabolite 
levels from 
faecal water 

Wilcoxon signed-rank test and 
χ2 test 

Concentrations of ammonia (­), phenol (­), p-cresol (­), formic acid, iso-butyric acid (­), 
n-butyric acid (¯) and iso-valeric acid (­) in demented vs non-demented participants 

Saji et 
al., 2020 
 Multivariable logistic regression 

analysis 
Every 1 SD increment in faecal ammonia concentration = ~1.6-fold increased risk for 
dementia (independent of age, sex, education years, Apoε4, enterotypes) 

AUC Combination of a higher level of ammonia and a lower level of lactic acid = 0.69 AUC 
score (sensitivity 62%, specificity: 76%) * 

*compared to sensitivity, specificity, and AUC: Apoε4; 78%, 60%, 0.69; VSRAD score; 86%, 63%, 0.80 
21 AD 
patients, 
40 HC 
 
 
 
15 APOε4 
carriers 
(10 AD, 5 
HC) 

16S rRNA 
gene 
sequencing 

α-diversity: Shannon, Sobs 
index 

No significant difference between AD and HC Hou et 
al., 2021 

β-diversity: Bray Curtis, 
weighted and unweighted 
UniFrac 

Significant compositional differences between AD patients and HC for all dissimilarity 
indices 

Differential abundance analysis: 
LEfSe 
 

18 taxa, significant genera AD vs HC: 
­ Escherichia Shigella, Proteobacteria, Enterobacteriales, Enterobacteriaceae, 
Ruminococcaceae_UCG_002, Shuttleworthia, Anaerofustis, Morganella, Finegoldia, 
Anaerotruncus 
¯ Megamonas, Enterococcus, Anaerostipes 

BIN1 and APOE associates with 
targeted microbial taxa: 
MaAsLin2 

APOε4 was associated ­ in Proteobacteria and Enterococcaceae  
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Table 1.1 (Part 4) Human studies exploring the Gut-Brain axis in Alzheimer’s Disease 

 

Subjects Sequencing  Statistical analysis method Main findings Ref. 

100 AD 
patients, 
71 HC 

16S rRNA 
gene 
sequencing 

α-diversity: Shannon, Simpson, 
OTUs, ACE, Chao1 

Reduced alpha diversity in AD patients Ling et 
al., 
2021 β-diversity: Bray Curtis, 

Jaccard, weighted and 
unweighted UniFrac 

Significant compositional differences between AD patients and HC for all dissimilarity 
indices 

Differential abundance analysis: 
LEfSe 

Over 30 significant associations, AD vs HC: 
­ Actinobacteria, Bacteroidetes, Verrucomicrobia, Coriobacteriaceae, Enterococcaceae, 
Christensellaceae, Eggerthella, Eubacterium, Collinsella, Akkermansia, Bifidobacterium 
¯ Proteobacteria, Firmicutes, Ruminococcaceae, Lachnospiraceae, Gemmiger, 
Faecalibacterium, Roseburia, Dialister 

Functional analysis (KEGG) KEGG level 2 – AD patients vs HC: 
­ 3 pathways including carbohydrate metabolism, xenobiotics biodegradation and 
metabolism 
¯ 4 pathways including immune system, cell motility, environmental adaptation 
KEGG level 3 – AD patients vs HC: 
­ 15 pathways including folate biosynthesis, glycolysis/gluconeogenesis, galactose 
metabolism, fatty acid metabolism, sphingolipid metabolism 
¯ 15 pathways including bacterial chemotaxis, biosynthesis of ansamycins, glycerolipid 
metabolism 
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Whilst several lines of evidence support a microbial role in AD, the exact nature of this 

relationship and mechanisms of intestinal microbiota changes are not yet understood. 

Whether microbiome changes are present in preclinical AD or at-risk groups is virtually 

unknown. Carriers of the APOε4 genotype are a study group with a common, well-

established risk group for developing AD. Given the lack of treatment options to slow or 

reverse the disease trajectory once overt cognitive or behavioural impairment show, it is 

especially the early ‘silent’ preclinical phase that holds the highest potential for disease-

modifying interventions. APOε4 genotyped individuals have been studied with respect to 

their cognition, behaviour and brain health to better understand changes prior to the 

manifestation of clear AD symptomology (Caselli et al., 2007; Honea et al., 2009; Jones and 

Rebeck, 2019).  

 

In summary, albeit an emerging field in relation to neurodegenerative disease, the evidence 

for a microbial role in AD is becoming increasingly documented. With this the question 

arises whether intestinal changes are detectable prior to cognitive symptoms. Before turning 

to the aims and hypothesis of this work, I will next review the sparse literature for 

microbiome changes in APOε4 risk groups, which lays the foundation of the current 

knowledge to answer these important questions.  

 

Intestinal microbiota and Apolipoprotein E genotype in Alzheimer’s 

Disease 

The relationship between the APOε4 genetic risk factor and the intestinal microbiome for 

developing AD is largely unknown. So far, the evidence on this relationship is restricted to 

findings from one study by Tran et al. (2019), who investigated the intestinal microbiota in 

individuals with four APOE genotypes (ε2/ε3 n=14, ε3/ε3 n=18, ε3/ε4 n=18, ε4/ε4 n=6) in 

a cross-sectional comparison using 16S rRNA gene sequencing. Besides the human work, 
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Tran and colleagues also explored the relationship between APOε4 and the intestinal 

microbiota in transgenic homozygous APOε3 and APOε4 replacement mice (Tran et al., 

2019). Two more observational studies using EFAD (a human APOE expressing mouse 

model with five familial AD mutations [5xFAD]) homozygous APOε3 and APOε4 mice 

models have also investigated the role of APOE genotype and the murine microbiota 

(Maldonado Weng et al., 2019; Parikh et al., 2020). Further evidence is also provided by an 

interventional study in which the effect of prebiotic dietary inulin on the intestinal 

microbiota is investigated in EFAD APOε3 and APOε4 mice (Hoffman et al., 2019). The 

reviewed studies are summarized in Table 7.2 in the supplementary. 

 

Tran and colleagues demonstrated that there were no large-scale taxonomic differences in 

community richness or structure (a- and b-diversity) between individuals with different 

APOE genotypes. There were, however, taxa-specific changes. APOε3/ε3 carriers had 

significantly higher abundance of Prevotellacea compared to APOε4/ε4 (but not when 

compared to APOε2/ε3). Whereas APOε2/ε3 carriers had a significantly higher relative 

abundance of Ruminococcaceae than APOε3/ε3 and APOε3/ε4 (Tran et al., 2019). The 

phylum Firmicutes and its associated order Clostridiales were also significantly higher in 

APOε2/ε3 carriers compared to individuals with APOε3/ε4 or APOε4/ε4.  

 

In agreement with the human study, the murine intestinal microbiota of homozygous 

APOε4/ε4 and APOε3/ε3 TR mice showed no difference in a-diversity between the groups, 

but a-diversity was observed to decline significantly with age (18 months vs 4 months old 

mice). This is also supported by Weng et al. (2019), but not by Parikh et al. (2020). 

Compositional differences (b-diversity) were significant by genotype within age groups 

(Tran et al., 2019). Distinct intestinal microbiota profiles by APOE genotype were also 

shown by the other observational studies in mice. Tran and colleagues showed that this 

separation of the intestinal microbiota was reflected by numerous taxa specific differences. 
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Whilst the APOε4/ε4 mice had significantly greater abundance of Deferribacteres, 

Deferribacteraceae, Lachnospiraceae, Clostridium XIVa, Odoribacter, Mucispirillum, 

Enterorhabdus and Butyricicoccus compared to APOε3/ε3. On the other hand, their 

microbiota was significantly reduced in Bacteroidaceae and Bacteroides compared to 

APOε3/ε3 mice. Assessment of faecal metabolites also showed distinct clustering by APOE 

genotype and age group. Seven metabolites, including glucose, glycine, lactate, a-

ketoisovaleric acid were significantly different by age-genotype interaction. Enrichment 

analysis further identified a large number of significantly altered pathways, including 

ammonia recycling, alanine metabolism and urea cycle (Tran et al., 2019). 

 

Summary 

The intestinal microbiota is increasingly recognised to be a long-overlooked factor in human 

health and disease. The Gut-Brain axis is a contributing factor in age-related 

neurodegenerative diseases with wide-reaching medical implications for several reasons. 

Firstly, a growing body of evidence suggests that the Gut-Brain axis plays an important role 

in human health and is inherently connected to human well-being on many levels from the 

beginning of life onwards. Secondly, both the intestine and the brain are subject to age-

associated physiological changes which render individuals particularly vulnerable in later 

life stages. Numerous potential links between the intestinal microbiota and hallmark features 

of AD pathology (such as impaired immune function, increased inflammation, impaired 

cognition, augmented amyloid aggregation, etc.) present plausible mechanisms for disease 

modulation. It is thus conceivable that the intestinal microbiota may play a role in the 

development and progression of AD. Many converging lines of evidence coming from 

animal work and human studies in AD found associations with changes in intestinal 

microbiota community and function which support this notion.  

The nature of this microbiota-host interaction is both dynamic and bi-directional. 

Consequently, modulation of the human microbiota may offer many new and very promising 
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therapeutic angles. The general consensus is that detection and intervention in the early 

phases of AD (before cognitive symptoms and associated brain atrophy have manifested) 

present the best opportunity to alter the health trajectory of affected individuals. Identifying 

individuals who are at preclinical stages of AD is however very difficult. The above-

discussed APOε4 risk gene confers a considerably increased risk for developing AD to its 

carriers and is well-established as the most common genetic risk factor for AD. Carriers of 

the APOε4 genotype, thus represent a good study population of individuals who are at 

increased risk of developing AD in the future, and may be regarded as a proxy for preclinical 

AD.  

 

Characterizing Gut-Brain changes in healthy at-genetic-risk individuals might show 

significant microbiome changes in APOε4 carriers vs non-carriers, prior to AD-related 

cognitive, behavioral or neuroimaging changes. Such genetic-microbiome interactions could 

potentially be used as early marker for AD and further offer promising avenues for disease-

modifying treatments from a completely novel perspective. The literature can currently not 

answer the question whether microbiome changes precede AD symptomology. It is unknown 

whether the intestinal microbiome changes over time in at-genetic-risk for AD. If changes 

can indeed be observed in the at-risk group, does their microbial community signature 

progress towards AD-like microbial phenotypes? 

 

Overall, answering these questions, could provide further evidence to support a microbial 

role in the pathogenesis in AD and identify early changes in an at-risk cohort. This study 

aims to address these important questions. 
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Aims 

1. Following assessment of baseline cognitive, behavioural, cardiovascular and 

neuroimaging measures, the intestinal microbiota will be analysed cross-sectionally in AD 

patients and longitudinally in APOε4 carriers and non-carriers using whole metagenome 

shotgun sequencing. This will allow us to define taxonomic and functional differences of the 

intestinal microbiota cross-sectionally and over time between the groups. 

2. The functional potential of the intestinal microbiome will be assessed using de novo 

assembly of the sequenced metagenomics data.  

3. This work will provide proof-of-concept data for the ‘Microbiome of the ageing gut and 

its effect on human gut health and cognition’ (MOTION) study enabling further work into 

the field of the Gut-Brain axis is AD.  

 

Hypotheses 

1. Cross-sectionally and longitudinally, the intestinal microbiota composition will change 

between groups and over time in APOε4 carriers at increased genetic risk for AD vs non-

carriers, in the presence of normal cognitive, behavioural, cardiovascular and neuroimaging 

measures. Microbial profiles between the groups will show distinct changes in the 

abundance of specific taxa, which might indicate dysbiosis and increased vulnerability for 

disease-related mechanisms in the at-risk group of APOε4 carriers.  

2. Cross-sectionally, the intestinal microbiota composition will differ on global and taxa-

specific measures between people diagnosed with AD vs APOε4 non-carriers and vs APOε4 

carriers, in the presence of clear cognitive and behavioural impairments in the AD patient 

group.  

3. The above intestinal microbiome changes will be reflected on the level of functional 

pathways that are associated with potential AD disease-contributing functional changes.  
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2. CHAPTER 2: METHODS 

Ethical processes and funding 

The demenTia Research And Care Clinic (TRACC) study is a research study that has been 

running for nearly five years with the goal to become a centre of excellence in the field of 

dementia research. It received favourable opinion from the Research Ethics Committee 

(REC) on the 05.09.2016 (REC reference 16/LO/1366, London – Queen Square Research 

Ethics Committee). Health Research Authority (HRA) approval was given on the 7th 

September 2016. The study’s Integrated Research Application System (IRAS) ID is 205788. 

Since the beginning of the study start eight amendments (one minor, two non-substantial and 

five substantial amendments) were added. I was involved in preparing documents for the 

fourth substantial amendment which was given favourable REC opinion on the 26.10.2017 

and HRA approval on 03.01.2018. The documents added onto the TRACC protocol which I 

prepared in this process include: detailed visual instructions for stool sampling as well as the 

rationale for using a cardiovascular screening tool, the Norfolk Elderly and Later Life Cohort 

(NELLC) Health Questionnaire and General Health Questionnaire. My addition to the 

delegation log and the above described amendment enabled me to deliver this study under 

the TRACC research ethics.  

 

The funding for this study was enabled by Norwich Research Park (NRP) Science Links 

Seed Corn grant of £14,779, as well as faculty funding from the Faculty of Medicine and 

Health Science, University of East Anglia (UEA) and the Biotechnology and Biological 

Sciences Research Council (BBSRC) core funding of the Quadram Institute (QI).  
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Study design  

This study is a longitudinal, observational, multi-domain feasibility study examining the gut-

brain axis in healthy elderly at differential genetic risk for developing AD and comparing 

them to a small group of AD patients.  

 

Most of the study was conducted at the Bob Champion Building for Research and Education 

and the QI. Study visits took place in Norfolk and Suffolk, the Magnetic Resonance Imaging 

(MRI) was completed at the Norfolk and Norwich University Hospital (NNUH) and the 

metagenomics sequencing work was done by NOVOGENE UK, Ltd. in Cambridge. A 

flowchart of the study is shown below.  

 

Figure 2.1 Study design flow chart 
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Recruitment 

A major recruitment channel for this study was Join Dementia Research (JDR, 

www.joindementiaresearch.nihr.ac.uk), which is a national service that acts as a gateway 

between researchers who can register their studies and individuals from the public who 

register to give consent to be contacted. I also recruited from the NNET group database and 

used advertisement in the Eastern Daily Press and media channels (QI Facebook and 

homepage).  

 

Healthy participants were screened for their APOε4 status and placed accordingly either into 

group of APOε4 non-carriers or carriers, with the exception of the APOε2/ε4 genotype 

which was excluded. The patient group was made up of AD patients. The aim was to recruit 

35-40 participants per APOE group and use data from 10-15 AD patients. Given the 

longitudinal nature of the study, an attrition rate of 10-20% was expected for the APOE 

groups. The AD patient group was used for cross-sectional comparison and data was already 

readily available. 

 

Power calculation 

No formal power calculation was completed for this study as this study was intended to be 

hypothesis-generating only. With an anticipated 10-20% attrition and contemporary studies 

presenting around 30 participants per dataset. Given the prevalence of the APOε4 genotype, 

an estimated 140-160 participants would need to be screened in order to recruit the above-

mentioned 35-40 for both APOE groups, with the intention of 30 per group to complete to 

provide sufficient data for evaluation. 

 

Subject identification and consent 

All individuals who voiced an interest to participate in the study, were pre-screened in line 

with the inclusion/exclusion criteria (Table 2.1) and they were sent a copy of the participant 



 94 

information sheet. Following this, participants underwent genetic screening for the APOE 

genotype. All participants provided written consent. Because the frequency for APOε3/ε4 

carriers and homozygote APOε4 carriers in the general population is 23% and 2%, 

respectively, the aim was to genotype approximately 140 individuals and approach 

individuals with known APOε4 status from an existing study. Due to the low frequency of 

the APOε3/ε4 and APOε4/ε4 genotype, all participants who were identified to be 

homozygous or heterozygous ε4 carriers completed the cognitive testing, questionnaires and 

repeated faecal matter sampling timepoints. I selected a subset of participants with 

APOε2/ε3 and APOε3/ε3 genotype to match the ε4 carriers with respect to gender and age. 

The AD patient group was selected from the database and consisted of patients with a 

diagnosis of AD, who had provided at least one faecal sample as part of the TRACC study.  

 

Table 2.1 Study inclusion and exclusion criteria 

Inclusion criteria Exclusion criteria 

APOε4 non-carriers and APOε4 

carriers:  

- Healthy individuals aged 50-75 years  

  at study begin. 

- Absence of major psychiatric or  

  development disorder, other medical  

  condition affecting the gut or  

  cognition.  

- Presence of another major comorbid psychiatric   

  disorder (e.g. major depression, schizophrenia,  

  substance misuse, learning disability). 

- Previous history of high consumption of alcohol  

  or other substances that in the clinician’s  

  opinion is relevant to their disorder.  

- A major neurological condition not related to  

  the conditions listed in the inclusion criteria.  

- Significant comorbid medical illness or visual  

  loss likely to interfere with participation in  

  research activities.  

- Placement in residential care or nursing home. 

AD patient group:  

A clinical diagnosis of AD with readily 

available faecal matter. 

 



 95 

Apolipoprotein E genotyping  

Genetic APOE status was identified for all study participants. Buccal cheek swabs (Sigma 

Swab ‘MW941’ with a foam bud and plastic shaft in sterilized tube, Medical Wire & 

Equipment Co Ltd, Corsham, UK) were used for the specimen collection. Deoxyribonucleic 

Acid (DNA) was extracted within five days of collection using the ‘QIAamp DNA Blood 

kit’ (Qiagen GmbH, Germany) in accordance with the manufacturer’s protocol for ‘DNA 

Purification from Buccal Swabs (Spin Protocol)’ at the Bob Champion Research and 

Education Building (BCRE) laboratories. 

 

The extracted DNA was subsequently prepared for 7500 Fast Real-Time PCR (Applied 

Biosystems, USA) which was completed at the BIO laboratories. I used the TaqPath ProAmp 

Master Mix (Thermo Fisher Scientific Ltd, UK) and two pre-designed TaqMan® single 

nucleotide polymorphisms (SNPs) genotyping assays (Assay ID: C_904973_10, dbSNP ID: 

rs7412 and Assay ID: C_3084793_20, dbSNP ID: rs429358; Applied Biosystems) to 

determine the specific isoform present at the two single nucleotides (rs429358 and rs7412) 

which are polymorphic in the APOE gene. The APOE genotype of healthy participants was 

determined and they were assigned into the group of APOε4 non-carriers or APOε4 carriers 

in line with Table 2.2. Detailed information on the DNA extraction, PCR amplification and 

allelic discrimination are given on p.347-350 in the supplementary.  

 

Based on genetic risk, the APOE genotypes ‘ε2/ ε2’, ‘ε2/ ε3’, ‘ε 2/ ε4’, and ‘ε3/ε3 were 

collapsed to form the APOε4 non-carriers, whereas participants with the genotype ‘ε3/ ε4’ 

and ‘ε4/ε4’ formed the APOε4 carrier group. 
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Table 2.2 Apolipoprotein E genotype frequencies in the population of the United Kingdom 

and study group assignment.  

APOE genotype Frequency in the general 

population in the UK 

Study group 

ε2/ε2 1%  

APOε4 non-carriers ε2/ε3 11% 

ε2/ε4 2% 

ε3/ε3 61% 

ε3/ε4 23% APOε4 carriers 

ε4/ε4 2% 

 

Home visit 1  

For the cognitive and behavioural testing battery five tests were administered: 

Addenbrooke’s Cognitive Examination (ACE-III), Rey–Osterrieth Complex Figure 

(ROCF), Trail Making Test (TMT), Supermarket Task, Sea Hero Quest (SHQ). Participants 

also completed a series of questionnaires to assess their subjective cognitive change 

(Cognitive Change Index [CCI]), anxiety levels (Generalized Anxiety Disorder-7 [GAD-7]), 

depression levels (Patient Health Questionnaire-9 [PHQ-9]), behavioural changes 

(Cambridge-Behavioural-Inventory-Revised [CBI-R]), general lifestyle (Health 

Questionnaire) and diet (Food Frequency Questionnaire [FFQ]). Participants were provided 

a study pack with all necessary equipment and instructions to complete three faecal sample 

collections. The baseline cognitive and behavioural data (ACE-III, ROCF, TMT, CBI-R, 

GAD-7, PHQ-9) for the AD patients were administered by other members of the TRACC 

study and were available to me for data analysis. 

 

Home visit 2 

Participants provided their baseline faecal sample (T1) shortly after completing the first 

home visit. The filled-in questionnaires were collected. The baseline faecal samples of the 

AD patient group were already readily collected by other members of the TRACC study and 
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banked in the Biorepository from where I could access them for downstream processing and 

analysis. 

 

Follow-up samples at 6 months (T2) and 12 months (T3) 

Participants repeated faecal matter sampling two more times, with a six months interval 

between each sampling time point. If participants had taken antibiotics prior to their 

upcoming sampling time point, this date was rescheduled where possible to allow a 

minimum of three months without antibiotics.  

 

Cardiovascular risk assessment 

Risk factors for cardiovascular events, including mid-life hypertension and raised 

cholesterol levels are associated with brain atrophy, neurofibrally tangles, and lesions in 

white matter which are clinical symptoms underlying Alzheimer’s Disease pathology 

(Kivipelto et al., 2001). An increasing body of research shows that risk factors for 

cardiovascular events and - disease can play an important role in AD aetiology (de Bruijn 

and Ikram, 2014; Santos et al., 2017). A subgroup of participants completed the 

cardiovascular risk assessment. This assessment involved completing a questionnaire to 

establish medical history and previous cardiovascular health, taking blood pressure (M7 

Intelli IT, OMRON) and determining instantaneous non-fasting lipid results. 

 

Brain magnetic resonance imaging (MRI)  

A subgroup of 40 participants (20 APOε4 group) completed a clinic visit at the Norwich and 

Norfolk University Hospital (NNUH) to undergo MRI of their brain, after being deemed 

safe to do so (safety checklist Figure 7.2 on p.351 in the supplementary). At the clinic day, 

participants completed a structural and functional MRI imaging scan at the NNUH/UEA 3T 

MRI scanner. The 45-min research scanning protocol measures both macro- (T1) structural 

brain changes in participants. Details of the TRACC Brain Protocol scanning sequence are 
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given in the supplementary on p.352.  It is well-established that at-genetic-risk participants 

often show functional before structural brain changes. All research scans were checked by 

consultant radiologist, Dr Janak Saada, at NNUH. In case of an incidental finding, a report 

was issued, and the researcher sent it on to the participants’ GP.  17 out 40 study participants 

completed the MRI scanning with other members of the TRACC research team (five scans) 

or as part of the Spatial Navigation study (twelve scans). 

 

Cognitive, behavioural, lifestyle and clinical measures 

Addenbrooke’s Cognitive Examination-III 

The ACE-III is a standard screening test used to assess cognition and is well-validated for 

the detection of cognitive deficits as presented in AD or frontotemporal dementia (Hsieh et 

al., 2013). The ACE-III evaluates abilities in five cognitive domains (attention, memory, 

verbal fluency, language and visuospatial abilities) using multiple short tasks. Participants 

can get a maximum score of 100, with lower scores indicating worsened cognitive 

functioning. Normative benchmark data and respective cut-offs are available (Mathuranath 

et al., 2000; Mioshi et al., 2006; Hsieh et al., 2013, 2015; UK ACE-III and M-ACE 

Administration and Scoring Guide, 2014; So et al., 2018; Bruno and Vignaga, 2019). More 

information on the ACE-III different domains is given in the supplementary (p.352). 

 

The ACE-III has high reliability and construct validity. It is recommended that a cut-off 

score of 88 and 82 (from a total of 100) are used for suspicion of dementia. Using the lower 

cut-off of 82 points, the ACE-III has high specificity, meaning that those identified are very 

likely to have AD and reasonably high sensitivity (7% false negatives among a large majority 

of true positives). With the 88 cut-off the ACE-III has highest sensitivity (no one goes 

undetected), on the expense of slightly lower specificity (4% are false positives) (Lalkhen 

and McCluskey, 2008; UK ACE-III and M-ACE Administration and Scoring Guide, 2014).  
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Rey–Osterrieth Complex Figure test 

The ROCF is a simple measure that is widely used in both experimental as well as clinical 

settings to assess visual and spatial aspects of memory (visuoconstructional abilities and 

nonverbal memory), including recall and recognition memory as well executive functioning 

and episodic memory performance (Meyers and Meyers, 1995; Spreen and Strauss, 1998; 

Cherrier et al., 1999; Pelati et al., 2011; Melrose et al., 2013; Salvadori et al., 2019, Frank 

and Landeira-Fernandez, 2008). Neural correlates for visuospatial functioning include the 

parietal lobe; in early AD medial and lateral areas of this brain region show disease-

associated changes which might not be identifiable with other cognitive tests (Salimi et al., 

2018). Visual perception, construction and memory which form the basis of visuospatial 

function are highly complex processes. It is well-established that deficits in this domain 

result in spatial disorientation and that approximately 20-40% of patients manifest such 

deficits in early stages of AD (Mendez et al., 1990; Cronin-Golomb et al., 1991; Harciarek 

and Jodzio, 2005; Iachini et al., 2009; Quental, Brucki and Bueno, 2009). The ROCF uses a 

complex abstract geometrical figure that implies no semantic coding and perceptually be 

divided into global and local elements (Figure 2.2). Global elements give a structural 

framework to the figure and are thus essential for the organization of local elements  

(Salvadori et al., 2019). 

 

The tasks consist of two parts. In the copy condition, the ROCF is placed in front of 

participants in landscape orientation and participants are asked to copy the figure as 

accurately as possible onto a blank sheet of paper with help of a pencil and eraser. The time 

to complete the copy is recorded. Upon completing the copy, the ROCF stimulus and copy 

are taken out of sight. The recall is administered after a three-minute delay. For the recall, 

participants draw the ROCF from memory; with no recording of time. Higher points denote 

better accuracy and placement More information on the scoring of the task can be found in 

the supplementary (p.353). 
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Figure 2.2 ROCF figure with 18 global and local elements 

 

Trail Making Test 

The TMT provides insight into several domains of cognition, such as executive functions 

(planning and switching) as well as processing speed, visual search, scanning and mental 

flexibility, which are thought to relate to fluid cognitive abilities and thus naturally decline 

with age (Tombaugh, 2004; Salthouse, 2011). The TMT, which is widely used in clinical 

practice, was originally used as part of the Army Individual Test Battery as a divided 

attention test developed by Partington and Leiter in 1939 (Llinàs-Reglà et al., 2017). From 

a neuroanatomical perspective, the TMT was found to activate the dorsolateral prefrontal 

cortex, right inferior medial frontal cortex and several non-frontal brain regions including 

regions of the temporal gyrus and intraparietal sulcus (Zakzanis, Mraz and Graham, 2005; 

Llinàs-Reglà et al., 2017). The test consists of two parts, henceforth denoted as TMT-A and 

TMT-B. In the first part, TMT-A, participants need to draw a line to connect 25 encircled 

numbers in continuous and increasing order. The second part, TMT-B, is similar; however, 

participants must now alternate between numbers and letters by starting at number “1”, then 

drawing a line to letter “B”, then to number “2” and so forth (“C”, “3”, “D”, etc.) (Tombaugh, 

2004). A short practice trial (first 6 items of TMT-A and TMT-B) was administered to ensure 
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that participants understood the task before they were asked to complete the respective parts 

of the test.  

 

TMT-A is considered to be a baseline measure of visual search, motor functioning and 

psychomotor speed. TMT-B is the more difficult part of the test, as it requires the participant 

to continuously perceive and retrieve the correct response whilst switching from one set of 

stimuli to the other (switch from counting numbers to completing the alphabet). Executive 

functions, particularly working memory, set-switching and inhibition control are hence 

abilities specifically important for TMT-B performance. Successful set-shifting is 

influenced by a person’s ability to flexibly adapt and focus attention. Exerting such cognitive 

control and flexibility, allowing a person to effectively allocate cognitive resources, 

underpins all goal-directed behaviour (Jacobson et al., 2011). Increased demands on working 

memory might be reflected through activation of the precentral gyrus and left-temporal-

parietal lobe (Jacobson et al., 2011). 

 

Test performance is measured as the time (in seconds) taken to complete TMT-A and TMT-

B respectively. Errors are also recorded but don’t affect the score. The difference score, 

called TMT-d, is obtained by subtracting TMT-A from TMT-B. It gives a measure of 

executive functioning required for set-shifting. For this study, the TMT was administered as 

outlined by Spreen and Strauss (1998).  

 

Spatial navigation measures 

Spatial orientation is a fundamental cognitive ability which is often implicated to be 

impaired in early stages of AD (Weniger et al., 2011; Serino et al., 2015; Tu et al., 2015, 

2017) and shows promise to become a potential diagnostic marker for prodromal AD 

(Coughlan et al., 2018). This notion is further supported by the fact that brain areas affected 

in prodromal AD are also key nodes in the spatial navigation network (Morris et al., 1982; 
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Hartley et al., 2014; Spiers and Barry, 2015; Tu et al., 2017). Spatial navigation relies on the 

integration of egocentric, a body-based frame of orientation, and allocentric, a map-based 

frame of orientation (Coughlan et al., 2018) (Figure 2.3). 

 

Figure 2.3 Egocentric (left) and allocentric (right) coding. Figure from Coughlan et al. 

(2018) 

 

During everyday navigation, there is a fluid shift between both frames of orientation 

(McNaughton et al., 2006). Localising the position of objects relative to the body is a central 

process in egocentric orientation, which relies on activation of the prefrontal and parietal 

cortex (Milner and Goodale, 1992; Arnold et al., 2014). This information is then integrated 

together with self-motion cues in the precuneus (Wolbers and Wiener, 2014). The formation 

of maps, which is a fundamental process during allocentric orientation, makes use of grid, 

place and boundary cells of the medial temporal lobe (Lester et al., 2017). The retrosplenial 

cortex is an important interface that integrates egocentric and allocentric orientation. Grey 

matter changes in the retrosplenial cortex have been associated with switching problems 

between egocentric and allocentric orientation strategies in AD patients (Tu et al., 2015). 

The literature suggests that with old age people shift towards using predominantly allocentric 

navigation strategies and show an overall decline in spatial navigation (O’Keefe and Nadel, 
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1978; Lester et al., 2017). I use two tasks to measure spatial navigation processes in this 

study cohort.  

 

Sea Hero Quest 

The SHQ app was developed by Hugo Spiers and Michael Hornberger, funded by Deutsche 

Telekom and Alzheimer’s Research UK and supported by game developers from Glitchers 

Ltd. Since 2016, SHQ has been played by more than four million people worldwide across 

all ages and countries. SHQ primarily assesses spatial navigation and orientation 

performance. The app was designed to understand which factors support navigation abilities 

and which of these factors deteriorate over the lifespan and in disease. Age-range normative 

cut-offs are required to distinguish between age-related healthy decline and pathology-

driven decline in spatial navigation abilities (Hartshorne and Germine, 2015; Malek-Ahmadi 

et al., 2015; Coughlan et al., 2018).  

 

The game has two different types of levels which gather spatial navigation data on (i) goal-

oriented wayfinding and (ii) path integration (Coughlan et al., 2019). More details are given 

on p.355-356 in the supplementary. Level performance in goal-oriented wayfinding is 

divided into two main outcome measures: a) wayfinding distance and b) wayfinding 

duration. Wayfinding distance is the distance the player travelled to visit all checkpoints and 

can be seen as a measure of navigation efficiency. This distance will be closest to the 

required minimum if players succeed to retain the information retrieved from studying the 

level map and continuously update self-location within this ‘cognitive map’ based on self-

motion and environmental cues in the game. The second measure, wayfinding duration, is 

the time in seconds taken to complete the level. Whilst inefficient navigation will inevitably 

result in a longer time to visit all checkpoints, wayfinding duration is mainly determined by 

the amount of acceleration used by the player. Acceleration can be actively used by the 

player through “swiping up” which will temporarily speed up the boat. Depending on how 
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much acceleration is used, two players could be travelling the same distance at very different 

speeds and thus different times. Players who travel faster might be more confident or faster 

at processing visual cues to inform their wayfinding (Coughlan et al., 2019). Path integration 

levels, also referred to as flare accuracy levels, tap into the players ability to use and 

successfully integrate egocentric self-reference navigation over an accumulating distance 

travelled.  

 

In this study, participants completed level 1 and 2 as practice levels to learn how to use the 

game controls and to allow us to later on normalise the data for app interaction with player 

proficiency. Participants also completed three wayfinding levels (level 6, 8, 11) and four 

flare accuracy levels (level 4, 34, 49, 54). 

 

All SHQ data was pre-processed in MATLAB (R2017a). To account for the influence of 

player proficiency on digital devices, level performance was standardized against the 

proficiency on digital devices demonstrated in these first two levels by applying the 

following equation (Coughlan et al., 2019):	level	N	normalised = ln / 01210	3
01210	4501210	67. 

Subject performance on normalised levels could then be compared between subjects. I used 

multilevel linear mixed regression models with repeated measures (implemented with the 

lmer() package in R) for the goal-oriented way findings levels and mixed effects ordinal 

logistic regression (implemented with the clm() package in R) for the Path integration levels. 

Detailed information on the statistical analysis approach is given on p.355 in the 

supplementary. 

 

Supermarket Task 

The Supermarket Task is a computer-and tablet-based measure to evaluate spatial orientation 

within an ecological supermarket environment. Spatial orientation performance gained from 

the Supermarket Task can distinguish between AD and behavioural variant (bv)FTD patients 
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with 92.7% accuracy and has similarly high predictive power as memory tests (Tu et al., 

2015). The task has also been shown to identify important navigation differences in 

preclinical at-risk AD (Coughlan et al., 2020). Details of the task are given in the 

supplementary (p.356).  

 

The Supermarket task sets out to test spatial navigation abilities by the use of three main 

variables. These include (a) egocentric orientation, (b) allocentric orientation, and (c) 

heading direction. On top of that, I also split the map into central and peripheral areas along 

the half-width and half-length between the map centre point and outside border and counted 

the number of responses in the central area. This information was captured in a variable 

called (d) peripheral responses. More details on how I captured these four response variables 

are provided in the supplementary p.357-358.  

 

I investigated the effect of APOε4 status on all outcome measures by running multilevel 

mixed regression models with age, sex and educational attainment as fixed effects.  Due to 

the repeated nature of the task design (subjects completing 14 videos in the same 

supermarket environment), subject-level random effects were included in each regression 

model to account for the interdependence between repeated measures from playing multiple 

levels of the game. 

 

Cognitive Change Index 

The CCI is a questionnaire (self-report and/or informant-based) with the aim to assess a 

person’s subjective perception of their cognitive decline compared to their ability five years 

ago in three domains: memory, executive and language (Rattanabannakit et al., 2016). A 

subjective deterioration of cognition has been proposed as an early indicator for 

neurodegenerative disease as individuals often perceive a decline in their cognition over a 

decade before a diagnosis of AD or MCI (Rattanabannakit et al., 2016). Subjective cognitive 
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decline is acknowledged as a criterion for a diagnosis of MCI (Joie et al., 2016) and 

individuals with MCI show a higher rate of progression to dementia compared to a 

cognitively normal population (Roberts et al., 2014). This questionnaire which focuses on 

subjective cognitive decline complements the measures used here for objective cognitive 

deficits. 

 

The CCI is a questionnaire that consists of 20 items and asks participants (or informants) to 

rate the person’s ability to perform certain cognitive tasks (e.g. remembering names and 

faces of new people, recalling conversations a few days later, organizing daily activities, 

etc.) to test their memory performance, executive functioning and language abilities 

compared to the previous five years (Rattanabannakit et al., 2016). Detailed information on 

the CCI is given on p.358 in the supplementary. The resulting subscale scores are validated 

to highly correlate with scores of objective tests in same domain as well as other domains. 

Dementia patients scored highest but similar to a cohort of individuals with MCI. Both 

groups scored considerably higher compared to a cognitively healthy control group 

(Rattanabannakit et al., 2016).  

 

Cambridge Behavioural Inventory-Revised 

The CBI-R is a self-administered or informant-rated questionnaire filled out by the 

participant or carer to measure changes in behaviour across a range of functional and 

behavioural domains. The CBI-R questionnaire is comprised of 81 items assessing a wide 

range of symptoms which are part of 10 functional or behavioural domains and also 

evaluates activities of daily living. These include memory and orientation, everyday skills, 

self-care, mood, abnormal behaviour, beliefs, eating habits, sleep, stereotypic behaviour, 

motor abilities, and motivation. In the informant-based version of the questionnaire, the 

participant has to rate the frequency of a particular behaviour on a scale from 0-4 (0 = never, 

1= a few times per month, 2= a few times per week, 3= daily, 4=constant). On this scale a 
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rating of “0” denotes no impairment, whilst a score of “1” and “4” indicates an increasing 

degree of behavioural impairment. Particularly a score of “3” or “4” corresponding with 

“daily” or “constant” occurrence of the behaviour are a sign for a severe deficit.  

 

The CBI-R is widely used in neurodegenerative disease, particularly in order to distinguish 

different types of dementia, Parkinson’s disease, and Huntington disease (Wedderburn et al., 

2007; Wear et al., 2008). I used the CBI-R mainly to control for other neuropsychiatric 

problems which could otherwise confound of cognitive results.  

 

Generalized Anxiety Disorder-7 

The GAD is self-report measure is a validated questionnaire that is commonly used for 

measuring self-reported anxiety. The questionnaire consists of 7 items on a 4-point Likert 

scale (indicated frequency, “not at all” to “nearly every day”) related to feeling of anxiety 

(e.g. “Feeling nervous, anxious, or on edge”) experienced over the last 2 weeks (Spitzer RL 

et al., 2006). Participants can score a minimum of 0 and a maximum of 21, where a score ≤ 

4 indicates that the person is not anxious, whilst a score between 4-21 indicates that the 

person has experienced anxiety to some extent. The severity of anxiety is split into 3 stages; 

a score between 5-9 is considered ‘mild’, 10-14 is considered ‘moderate’, and 15-21 

indicates ‘severe’ levels of anxiety.      

 

Anxiety and depression are commonly displayed in patients with dementia but the exact 

nature of their relationship to dementia (causality, association or consequence) are not 

definitively answered. Having high trait anxiety correlates with a higher incidence for 

developing dementia (Mortamais et al., 2018). The main rationale for the use of this test, 

was to control for potentially confounding neuropsychiatric problems. 
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Patient Health Questionnaire-9 

The PHQ-9 is a self-report multipurpose instrument for screening the severity of depression 

symptoms in the participant (Löwe et al., 2004). Participants are asked to rate how often 

they have been bothered by a range of problems (9 questions) using a 4-point Likert scale 

with increasing frequency (0= ‘not at all’, 1= ’several days’, 2= ’more than half the days’, 

4= ’nearly every day’) based on their experience of the last two weeks. The problems 

presented in the questions address pleasure in daily activities, mood, appetite, sleep, energy 

levels, detrimental thoughts about oneself, and lethargy. Participants can score a maximum 

of 27 points. The higher the total score, the stronger is the depression experienced by the 

individual. Depression severity falls into one of 5 categories depending on the summary 

score: none (≤4), mild (5-9), moderate (10-14), moderately severe (15-19) or severe (20-27). 

 

A growing amount of evidence implies that depression, in particular in early life but also in 

late life, is associated with a greater increase in risk of dementia and is emerging as a risk 

factor for developing the disease. Major depressive disorder is present in a fifth of all patients 

with AD and half of all patients with VD (Byers and Yaffe, 2011). The mechanisms 

underlying the relationship between depression and dementia are complex. On a biological 

level, one suggested pathway is that of downregulation of the HPA-axis negative feedback 

loops and associated chronical elevation adrenal glucocorticoids levels and 

hypercortisolaemia leading to hippocampal atrophy and memory impairment that is 

observed in people with depression (Butters et al., 2008). As with the GAD-7, I employed 

this test to control for the potentially confounding effect that depression might have on any 

of the other test measures.  

 

Microbiome Questionnaire  

A self-report questionnaire used to collect demographic and behavioural metadata collected 

to explain variability among healthy human-associated microbial communities (Flores et al., 



 109 

2014). Environmental factors heavily influence the intestinal microbiome. The collection of 

microbiome-associated meta data is hence highly recommendable (Wu et al., 2019). 69 

factors were shown to correlate significantly with overall microbiome community variation, 

these covariates explained 1.5 to 14.7% of variation in genus abundance as stand-alone 

effect. Out of which 18 factors emerged to be non-redundant, including stool consistency, 

age, gender, intake of specific drugs, dietary information, BMI (Falony et al., 2016).    

 

I gathered information on many environmental and lifestyle factors, including age, gender, 

ethnicity, handedness, dietary habits, use of probiotics and antibiotics, food supplements, 

allergies, medication history and many more detailed questions such as mode of birth and 

feeding, co-habiting with pets, smoking status, exercise, use of pool, etc. All of these factors 

may influence the composition of the intestinal microbiota and are thus considered important 

metadata to control for potentially confounding factors.  

 

Health questionnaire 

The NELLC  health questionnaire is a short questionnaire, which was used to record any 

illnesses the participant may have experienced recently and was completed before each 

sampling time point (Flores et al., 2014).It was employed to ensure that participants had not 

suffered a gastric-related illness or had taken antibiotics, that would impact their normal 

intestinal microbiota, shortly before providing their faecal sample.  

 

Cardiovascular risk assessment – QRISK®3 

The QRISK® score is a well-established risk indicator for cardiovascular disease (CVD) that 

is used by the NHS. The QRISKÒ3 algorithm estimates the 10-year risk for a heart attack or 

stroke and is used across England’s health service, in occupational health settings, and 

internationally. Risk factors for the QRISK model include age, ethnic origin, systolic blood 

pressure, body mass index, total cholesterol, smoking status, family history of coronary heart 
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disease, corticosteroid use, treated hypertension, rheumatoid arthritis, and several others 

(Hippisley-Cox et al., 2007, 2008; Hippisley-Cox, Coupland and Brindle, 2017; Edwards et 

al., 2018). 

 

All lipid measurements were obtained using a handheld point-of-care device, “Mission 3-in-

1 Cholesterol Meter” (MissionÒ Cholesterol Monitoring System, ACON Lab. Inc., San 

Diego, CA, USA), which gives almost instantaneous lipid levels of total cholesterol 

(mmol/L), high-density lipoprotein (HDL) (mmol/L), Triglycerides (mmol/L), calculated 

LDL (mmol/L), and a cholesterol ratio (total cholesterol/HDL). The small and portable 

device allows to measure cholesterol levels fast and easily, has clinical proven accuracy and 

is CE0123 certified. More details on the lipid measurements are given in the supplementary 

(p.359). I also measured participants’ blood pressure using a clinically validated blood 

pressure monitor device (M7 Intelli IT, OMRON). All other information was self-reported 

by participants (height, weight, etc.). Using this information, the QRISKÒ3 risk was 

determined using the online calculator at https://qrisk.org/three.  

 

The QRISKÒ3 score presents the average risk of people with the same risk factors of having 

a heart attack or stroke within the next 10 years. The expected QRISKÒ3 score indicates the 

risk score a healthy individual matched for age, sex, ethnic group, who has no adverse 

clinical indication for cardiovascular disease (as defined by a cholesterol ratio of 4.0, stable 

systolic blood pressure of 125, a Body Mass Index (BMI) of 25, and no other adverse 

indication). The relative risk, describing the probability of an event to occur in the exposed 

group versus the that in the non-exposed group, is subsequently calculated through dividing 

the 10-year QRISKÒ3 by the matched healthy person’s QRISKÒ3 score (Poulton, 1990). A 

ratio of 1.0 denotes an equal risk between the groups, while a relative risk ratio <1.0 or >1.0 

indicates a respectively smaller or higher risk for the individual compared to a healthy 

person’s risk. 
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Dietary assessment – Food Frequency Questionnaire 

Gaining insight into participant’s diet allows to investigate whether specific dietary patterns 

cluster with microbiome enterotypes (Wu et al., 2011). Diet is considered to be a dominant 

force in shaping the composition of a person’s intestinal microbiota (Sonnenburg and 

Bäckhed, 2016) (De Filippo et al., 2010; Walker et al., 2011; Cotillard et al., 2013; David 

et al., 2014; Kovatcheva-Datchary et al., 2015; Oriach et al., 2016). Thus, dietary 

information should be an important component for any microbiome study. Insight into this 

relationship has sparked efforts for developing “microbiota-derived foods” and personalized 

nutrition to establish bacterial community profiles that will promote health (Green et al., 

2017).  

 

The FFQ is a validated tool to assess a persons’ food intake in terms of frequency during the 

last twelve months (Kroke et al., 1999). This study used a version of the European 

Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk FFQ which has been 

adapted to the UK diet and allows for a thorough breakdown of macro- and micronutrient 

intake (EPIC-Norfolk: nutritional methods; Mulligan et al., 2014). Frequency ratings from 

a 130 food items obtained by the FFQ were analysed using a nutritional analysis software 

called the ‘Food Frequency Questionnaire European Prospective Investigation into Cancer 

and Nutrition Tool for Analysis’ (FETA) (Mulligan et al., 2014). More information of the 

FFQ is given in the supplementary (p.359-360). In order to obtain accurate results about 

micro- and macronutrient intake, the food codes are mapped against the UK food 

composition database by McCance and Widdowson (Holland, Welch and Unwin, 1991; 

Chan, Brown and Church, 1996). The output created by FETA is composed of the average 

daily nutrient intake of 46 nutrients such as alpha carotene, carbohydrate, cholesterol, 

copper, folate, magnesium, Vitamin A, etc. and daily average intake from 14 food groups 

such as alcoholic beverages, fats and oils, meat and meat products, nuts and seeds.  
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The FFQ is based on self-report which means that participants can under- or overreport. It 

is hence difficult to establish accurateness of answers. In terms of outlier detection, I thus 

restricted this process to the evaluation of energy intake. Energy intake is measured by the 

FFQ by the variable energy in kilocalories (kcal) and kilojoule (kJ), and it is to some extent 

a summary variable for all reported nutrients as it incorporates the energy from all consumed 

nutrients. The recommended daily energy intake measured in kcal for women is 2,000 kcal 

and 2,500 kcal for men. To exclude extreme values, I decided to exclude FFQs from 

participants whose reported energy intake was below or above 1000 kcal of the 

recommended daily intake.  

 

Statistical analysis of test results - generalized linear model (GLM) 

Unless stated otherwise, multiple linear regression models were used to assess the cognitive 

and behavioural performance outcome measures presented in this thesis. All of the 

regression models were run in R. The results presented in Chapter 3 include sum of squares 

(SS), degrees of freedom (df), F-test, standardized coefficients and the squared multiple 

correlation (R2). The latter describes the amount of variation explained by the model and can 

also be used to calculate Pearson correlation (√96). Beta (b) values are the regression 

coefficients of the predictors (X).  

 

Regression analysis involves running a series of steps (diagnostics) that assess whether the 

model is a good fit to the data before one can draw inferences about the output of the analysis. 

All regression models were assessed with several diagnostics to check whether assumptions 

for regression were met (Eberly, 2007).  

 

GLM models were used to assess the fixed effects of APOε4 status on the outcome variables 

of the above presented tests. Next to APOε4 status, I considered age, educational attainment 
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and sex as potential predictors, as all of these predictors have been shown to impact cognitive 

or behavioural results in the literature (Kenny et al., 2013; Murman, 2015; Coutrot et al., 

2018). The statistical analysis was carried out using RStudio (Version 1.2.5001) (RStudio 

Team, 2019).  

 

Magnetic Resonance Imaging analysis  

The anonymised MRI data was first converted from DICOM to NIFTI format. Following 

this, all the T1-weighted structural images were processed using FMRIB Software Library 

(FSL) voxel-based morphometry (VBM) tool (Smith et al., 2004; Douaud et al., 2007) 

(www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM). Support was provided by physicists Dr 

Donnie Cameron and Dr David Willis. In short, VBM analysis consists of 4 steps: 1) brain 

extraction, 2) creating the study specific grey matter (GM) template, 3) registration of native 

GM images to template and smoothing and 4) permutation-based non-parametric GLM 

testing and identification of significant clusters between groups (Good et al., 2001; 

Andersson, Jenkinson and Smith, 2007; Winkler et al., 2014).  

 

In a first step, all structural T1 MRI images were subjected to neck removal and brain 

extraction step. Large amounts of non-neuronal tissues such as neck or lower head area can 

result in overestimation of brain volumes. Thus, before setting the field of view, removal of 

neck voxels was implemented using automatic ‘robustfov’ algorithm, which cropped the 

images below the neck area. I then used vanilla Brain Extraction Tool (BET) to separate the 

brain from the non-brain structures. Using FSLeyes, all brain masks were visually inspected 

and BET parameters were adjusted individually if required to optimise the resulting brain 

masks.  

  

In the second step, all brain masks are segmented into white matter, GM and CSF. Then the 

study specific GM template was generated by applying affine-registration to the GM 
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Montreal Neurological Institute (MNI)-152 template, concatenation and averaging to all GM 

images. In the third step, the GM images were non-linearly registered to the study-specific 

template and smoothed with an isotropic Gaussian kernel (sigma 3mm). Lastly, I used the 

FSL randomize method with 5000 permutations to apply permutation-based voxel wise 

GLM and ran uncorrected as well as corrected testing for multiple comparisons to identify 

significant clusters between the APOE cohorts.  

 

Experimental design of microbiome study aspects  

Microbial DNA isolated from faecal matter is a powerful proxy for the distal colon 

microbiome. It enables us to explore the structure of microbial communities - predominantly 

bacteria, but fungi and viral DNA can also be obtained - and their associated function in the 

intestine (Gill et al., 2006; Gorzelak et al., 2015). The experimental design of the study can 

be largely divided into the following six steps as shown in Figure 2.4. 

  

                            

Figure 2.4 Flowchart of microbiome experimental design 

 

Sample collection, transfer and storage  

Participants collected the faecal matter from one bowel movement in a sterilized Fecotainer. 

They were instructed to take a small amount of faecal matter from the middle portion of their 

(6) Taxonomic and functional data analysis 

(5) Processing of sequenced data

(4) DNA sequencing

(3) Library preparation

(2) DNA extraction and quality control

(1) Sample collection, transfer and storage
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sample and to fill this into an OMNIgene gut tube in line with the manufacturers’ instructions 

(OM-200 DNA Genotek, Ottawa, Canada). The tubes contain a preservative that stabilises 

the sample at room temperature for 60 days. Samples were sent back to the research facility 

using Royal Mail. Special mailing equipment (including bubble wrap, biohazard bag with 

absorbent, cardboard envelope) was provided in accordance with International Air Transport 

Association (IATA) packaging regulations for exempt human specimen. At the research 

facility samples were stored for up to 60 days at room temperature or directly frozen before 

the DNA was extracted.  

 

The NELLC questionnaire allowed us to monitor if participants were sick since their last 

sampling time point. If participants took antibiotics up to three months before their follow-

up, this date was pushed back by three months to allow recolonization of the gut bacteria. 

Major and long-lasting reduction of bacteria following antibiotic treatment is well 

documented in the literature (Sullivan, Edlund and Nord, 2001; Palleja et al., 2018). 

 

Faecal matter from AD patients was collected as outlined by the TRACC protocol and was 

readily available as frozen matter in the Biorepository. Faecal matter of AD patient samples 

was subjected to the same processing steps and analysis as other faecal samples in this study. 

 

DNA extraction 

I used an adapted protocol of the FastDNA™ SPIN Kit for Soil (MP Biomedicals™LCC, 

Product code 11492400) to isolate genomic DNA from faecal samples. Much of the isolation 

process was conducted in a class two safety cabinet. The extraction was performed as 

instructed by the supplier with minor modifications which are given in detail in the 

supplementary material (p.361-362).  
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DNA quality control 

The concentration and quality of the extracted nucleic acids was determined for a subset of 

DNA samples to minimise loss of sample but to ensure protocol efficiency and most 

importantly to make sure high-enough quality for downstream analysis was available. The 

quality of the DNA was assessed using NanoDrop Spectrophotometer and Qubit (details 

given in the supplementary p.362) by myself. Both methods are used widely to quantify 

purity and concentration of extracted DNA. An independent thorough quality control (QC) 

of all samples was performed as part of the library preparation by Dr David Baker and Dr 

Steven Rudder (Sequencing Team in the QIB) and took place before samples were sent off 

to the sequencing institute where samples were subjected to an external round of in-depth 

QC. The external QC by NOVOGENE (Cambridge, UK) included library quality control 

and data quality control (distribution of sequencing quality/- error rate and distribution of 

A/T/C/G bases, filtering) which was sent back to us as a quality report. Detailed information 

of the QC by NOVOGENE on p.364-367 in the supplementary and excerpts shown in 

supplementary Figures 7.8-7.11 and Table 7.5 in the supplementary.  

 

Library preparation 

The library preparation for this study was performed by Dr David Baker and Dr Steven 

Rudder at the QI. The details for creating the libraries as outlined in the supplementary 

(p.363) were provided by Dr David Baker.  

 

DNA sequencing – whole metagenomic shotgun sequencing  

DNA pools were sent to NOVOGENE to be sequenced on the Illumina NovaSeq 6000 

platform and demultiplexed with Illumina Nextera XT v2 Set A indexes used to prepare the 

libraries. The number of samples submitted per run was aimed to provide an average of 10Gb 

per sample (deep shotgun sequencing) to ensure good enough sample coverage. Samples 

were submitted in batches to minimize the potential bias introduced by different sequencing 



 117 

runs, even though this bias was considered small (Caporaso et al., 2012). All methods related 

to sequencing of samples were kept consistent across the submitted batches (sequenced by 

NOVOGENE on the same sequencing platform).  

 

Processing of sequenced data  

The processing of the sequencing data before data was ready for analysis was performed by 

Dr Andrea Telatin and Dr Rebecca Ansorge (bioinformaticians at QI). The metagenomic 

analysis of Illumina Paired-End libraries can be broadly divided into three steps: (i) Quality 

control (QC) and low-quality filtering, (ii) Read-by-read analysis, (iii) De novo assembly. 

Detailed information of (i) – (iii) are given in the supplementary (p.367-368). All samples 

were subjected to the same processing steps to minimize potential technical bias. 

 

Taxonomic classification 

MetaPhlAn2 (Segata et al., 2012), which uses a clade-specific marker gene database, was 

used to assign a taxonomic identity to species level to each read in the filtered sequencing 

dataset and was thus used to determine taxonomic profiles from DNA. Since MetaPhlAn2 

generates relative abundances (it is normalised by the length of marker gene when assigned), 

rather than count data, the resulting community composition can be compared against 

another dataset regardless of sequencing depth.  

 

Predictive functional profiling 

Whilst taxonomic analysis (the study of the composition of species in the community) offers 

interesting insights, metagenomic shotgun sequencing can also be subjected to a gene-centric 

approach that further allows characterising the functional capacity of the microbial 

community as a whole. We thus subjected the metagenomics data to predictive functional 

profiling as described below. 

 

 



 118 

Homology-based functional annotation of short reads  

In predictive functional analysis, each read is mapped to a database of orthologous gene 

groups with the aim to identify matches to genes or proteins with known or annotated 

functions (Carr and Borenstein, 2014). Unambiguous mapping of short sequencing reads is 

critical for an accurate characterization of functional profile. A key consideration for the 

analysis and interpretation of the data is to understand whether the data at hand represents 

estimated relative abundances of functions in the community or whether it represents the 

presence or absence of gene families and functional modules (Carr and Borenstein, 2014). 

The counting of reads which map to each gene family or orthology group, together with the 

process of annotating functions, are the starting point of every functional analysis. The 

taxonomic identity of the identified homologous gene is secondary to the biological function 

which is the true target for such an analysis. Especially in comparative studies or longitudinal 

studies this approach is used to detect functional shifts that might occur as a function of time 

or that could be associated with a disease state. 

 

Gene orthology-based databases 

In this study, predicted genes were blasted against KEGGs databases (PATHWAY, BRITE, 

MODULE) to identify protein-coding genes and assign them to KEGG orthology (KO) 

accession numbers. KOs then build the foundation for KEGG modules, pathways and 

metabolisms. Of note, even for well-characterized genomes of bacteria strains only a fraction 

of all detected protein-coding genes can be successfully mapped to KOs and the amount to 

which this is possible varies substantially between different bacterial strains in the database. 

This in one of the major intrinsic limitations of the method.  

 

KEGG metabolism is a low-resolution overview of the global metabolic map which is 

broadly divided into 11 categories – ‘amino acid metabolism’, ‘energy metabolism’, 

‘metabolism of cofactors and vitamins’, ‘nucleotide metabolism’, ‘biosynthesis of other 

secondary metabolites’, ‘glycan biosynthesis and metabolism’, ‘metabolism of other amino 
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acids’, ‘xenobiotics biodegradation and metabolism’, ‘carbohydrate metabolism’, ‘lipid 

metabolism’, and ‘metabolism of terpenoids and polyketides’. It offers an overview of the 

predicted functional capacity of an entire sample, which in this case, is based on the gene 

counts of distinct organisms.  

 

Whereas KEGG metabolisms is a top-level approach, a greater amount information can be 

gained from looking at KEGG modules and pathways. KEGG modules, identified by an M 

number, are tighter functional units of genes or proteins which describe metabolic functions 

in the KEGG metabolic pathway map (Kanehisa and Sato, 2020). A module (i.e. ‘pathway 

modules’) consists of functionally related enzymes (K numbers), but can also involves 

metabolites and reactions, all of which are connected in an integrated way. As such they 

often correspond to a sub-pathway of the KEGG pathway map.  KEGG modules are based 

on a logical Boolean expression of K numbers which can automatically evaluate whether the 

gene set is complete, so that a module is present (Kanehisa, 2013). For example, module 

M00141 is defined by the following expression: K00600 (K00288,(K13403 K13402))  

where a space represents AND, and a comma sign represents OR. 

 

The KEGG PATHWAY database is comprised of manually drawn maps, as well as reference 

pathway maps and organism-specific pathway maps, which are representative of molecular 

interaction diagrams (Kanehisa et al., 2012, 2017) and hold information about KOs, 

reactions and compounds that make up a pathway.  

 

Metagenomic data was also functionally profiled by use of the HMP Unified Metabolic 

Analysis Network (HUMAnN3), which allowed to quantify genes and pathways and has 

become widely available (http://huttenhower.sph.harvard.edu/humann) and frequently used 

method to  infer the functional and metabolic potential of a microbial community 

metagenome (Abubucker et al., 2012; Abu-Ali et al., 2018). In brief, the previously 
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described tool MetaPhlAn is used to taxonomically assign the detected organisms and 

determine estimated relative abundances. Next the reads are functionally annotated by 

mapping them to sample-specific pangenomes and organism specific-gene hits are kept, 

whilst the unclassified reads are further processed including alignment against a universal 

protein reference database (UniRef90) and a translated search. Then several steps follow for 

gene family and pathway quantification. In the end, the functional profile is comprised of 

reads that were mapped against the MetaCyc database. Four possible mapping outcomes are 

possible, either the reads were mapped in a i) ‘species-specific’ manner (to a specific 

organism of a characterized gene family involved in known pathway(s)), ii) are mapped as 

‘unclassified’ (to characterized protein family, but no a specific organism), iii) remain 

‘unintegrated’ (mapped to uncharacterized gene family not involved in known pathways), 

or iv) were ‘unmapped’, if the read failed to map to any known sequences (following the 

nucleotide and translated search) (Abu-Ali et al., 2018). ‘UNINTEGRATED’ abundances 

represent the total abundance of genes of that community or species that did not contribute 

to a known pathway, whereas the other abundances are scaled against a constant that 

considers the total pathway abundance with respect to the total abundance of genes which 

contribute to those pathways. The community functional profiles were further differentiated 

between those that could be stratified by known organisms (‘STRATIFIED) and those that 

were stratified by unclassified organisms (‘UNSTRATIFIED’).  

 

Taxonomic and functional analysis of metagenomic sequencing data  

The taxonomic and functional analysis of the processed sequencing data was completed by 

me. The choice of appropriate analysis tools and statistical tests was guided by the literature 

and the expert input of Dr George Savva (statistician, QI) and Dr Andrea Telatin and Dr 

Rebecca Ansorge. 
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Diversity analysis  

Microbiome community structure is commonly assessed using alpha and beta diversity 

which are measures of within- and between sample diversity, respectively. Multiple 

ecological indices that fall into the category of alpha or beta diversity can be implemented 

using the R package vegan. Despite the fact that the intestinal microbiome exhibits an 

exceptionally high species diversity, it maintains a relatively stable state within individuals 

(Bäckhed et al., 2005; Lozupone et al., 2012; Faith et al., 2013). Diversity per se, however, 

does not necessarily mean stability, nor does reduced diversity always indicate ill-health as 

was previously suggested by the literature (Manichanh et al., 2006; Jiang et al., 2015; Falony 

et al., 2016). Nonetheless, it is generally agreed that diversity remains to be a fundamental 

concept providing important insights into the overall composition profile of complex 

communities. The choice of diversity index can significantly influence the results as they 

give different weight to different aspects of community structure (Johnson and Burnet, 

2016), which I address in this study by employing a range of different indices.  

 

Alpha diversity 

The Shannon diversity index (H’) and the Simpson diversity index (D1) are two commonly 

used alpha diversity measures that summarize the structure of the microbial community with 

respect to both species richness (number of different taxa present) and evenness (equitability 

of taxa frequencies) in a single sample (Wagner et al., 2018). The literature recommends the 

use of two distinct measures because richness and evenness appear to be two separate sub-

constructs of alpha diversity (Hagerty et al., 2020) 

 

H’ represents the uncertainty of an unknown species picked at random. The more species 

diversity is present in a community, the larger the uncertainty of the identity for any given 

species. Compared to the D1, H’ is more strongly influenced by its richness component 

(abundance of rare taxa) than its evenness component (Shannon and Weaver, 1949; DeJong, 
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1975). In most ecological studies, H’ ranges between values of 1.5 and 3.5. Whereas the 

Simpson index gives more weight to evenness within a community (more strongly 

influenced by the most abundant species in a community), but is rather insensitive to the 

relative contribution of rare species (Simpson, 1949; DeJong, 1975); which makes D1 mainly 

an index of evenness or dominance. 

 

I used the Inverse Simpson index (D2= inverse of D1), which is more intuitive than D1 since 

its value increases as diversity increases (Wagner et al., 2018). Due to the lack of an ideal 

diversity index, I herein report all three aforementioned indexes to provide a more complete 

understanding of community structure.  

 

Alpha diversity was calculated using the diversity function from the vegan package in R. 

Statistical test of between-group comparisons of alpha diversity were also implemented in 

R using Wilcox-rank summary test (non-normal distribution of data previously assessed).  

 

Beta diversity 

Beta diversity is a measure of variance in microbial community composition between 

samples, which is often calculated by comparing feature dissimilarity which creates a matrix 

of ecological distances between all pairs of samples. The most common beta diversity 

measures that quantify the difference between two communities fall into two main categories 

depending on whether they are based on presence/absence data or abundance data.  

 

The Jaccard index measures the degree of community similarity and dissimilarity based on 

the numbers of species shared by two communities as well as the number of species unique 

to each community (Hao et al., 2019). Because it considers only absence or presence it is a 

qualitative measure. It is an unweighted taxonomic metric which considers neither 

abundance nor phylogeny but is based purely on whether or not features (taxa in this case) 
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are shared. This also means that rare as well as abundant species will be given equal weight 

(Jaccard, 1912).   

 

The Bray-Curtis index is a quantitative non-phylogenetic metric, which is similar to the 

Jaccard index, but also considers species abundance. As such, the Bray-Curtis index is more 

heavily influenced by the most abundant species within a community (Sørensen, 1948). 

 

Beta diversity can be visualized using ordination plots, allowing us to identify possible data 

structures of the underlying compositional distance matrix. The most commonly used 

multivariate ordination methods in bacterial ecology are principal coordinates analysis 

(PCoA) and non-metric multidimensional scaling (nMDS) (Jovel et al., 2016). The overall 

objective of any ordination is to characterize a highly complex data structure in terms of a 

simplified structure by representing the relationship of samples in a small number of 

dimensions (typically two or three axes) (Legendre and Legendre, 2012).  

 

Permutational multivariate analysis of variance (PERMANOVA) is typically used to 

determine if the centroids of the cluster samples created by ordination are statistically 

different (Anderson, 2017). This function also estimates the amount of variance (R2) in the 

distance matrix attributable to the variable of interest.  

 

Bray-Curtis (quantitative) and Jaccard (qualitative) distance matrices were calculated using 

the vegdist function of the vegan package in R. Ordination methods were implemented in R 

by use of the metaMDS function from the vegan package and pcoa function of the ape. 

Statistical testing was implemented by running a PERMANOVA using the adonis function 

from the R package vegan with 999 permutations. A cross-sectional PERMANOVA was 

used to statistically determine the effect of group and also assess the effect of the covariates 
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(age, sex) based on between-group diversity (Bray-Curtis or Jaccard) at each taxonomic 

level.  

 

Univariate differential abundance analysis 

To identify the taxa which can discriminate best between the intestinal microbiota samples 

of participants with APOε4 non-carriers and APOε4 carriers based on differential relative 

abundance, univariate statistical tests was initially performed. LEfSe incorporates multiple 

statistical tests, including non-parametric Kruskal-Wallis sum rank test (p<.05), Wilcoxon 

rank-sum test (p<.05) and Linear Discriminant Analysis (LDA) with an effect size filter 

(Segata et al., 2011). The final output is a list of the identified features (taxa) discriminative 

between the groups, and their estimated effect sizes. Results are plotted in a horizontal bar 

chart and as cladograms. Cladograms capture phylogenetic relationships and saliency. Green 

and red denote detected group differences of the most abundant class, whilst yellow 

represents non-significance. The diameter of each circle in the cladogram is proportional to 

the relative abundance of the taxon (Segata et al., 2011). The analysis was implemented 

within the Galaxy framework of the Huttenhower lab 

(https://huttenhower.sph.harvard.edu/galaxy/).  

 

Multivariate differential abundance analysis  

Multivariate differential abundance analysis, which tests for difference in relative abundance 

of microbial taxa between groups whilst accounting for the effect of more than one covariate, 

was implemented using MaAsLin2 (Mallick et al., 2021). MaAsLin2 is a software which 

conducts multivariate analysis using linear modelling or linear mixed effect modelling and 

is suitable for cross-sectional comparisons as well as longitudinal data. It further allows 

covariate adjustments, as any given number of variables (categorically- or continuously-

scaled) can be used as fixed effects. This makes the method superior to non-parametric tests, 

such as the Wilcox rank summary test, which cannot take covariate data into account. 
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MaAsLin2 offers a range of options for different data pre-processing including different data 

normalisations and transformations. Due to the nature of metagenomic datasets (skewed, 

many zeros, compositionality), data pre-processing is an essential step, especially when 

trying to fit linear models. Zeroes become problematic, especially at the genus- and species-

level where many zeros are present (Nagarajan, 2018). In particular arcsine square root 

transformation (AST), suitable for data given in proportions or percent, is considered a 

variance-stabilizing data transformation well-equipped to handle zero data (De Muth, 2007). 

 

I ran several combinations of pre-processing options by building 4 models – ‘model 1’: a) 

normalisation = none, b) transformation = none; ‘model 2’: a) normalisation = none, b) 

transformation = AST; ‘model 3’: a) normalisation = centred log-ratio (CLR), b) 

transformation = none; ‘model 4’: a) normalisation = none, b) transformation = LOG. I 

further opted to set the minimum prevalence to 0.1 (taxa with at least 10% of non-zero values 

are kept in the model) and the minimum abundance threshold to 0.0001 (includes only taxa 

which reach a minimum relative abundance of 0.01%). I then investigated the residuals for 

the significant taxa (those showing an association with genotype) and report on those 

findings for which the models fit the distribution of each of those taxa best. 

 

I assessed the effect of genotype whilst accounting for age and sex for each taxonomic level 

running linear regression models in MaAsLin2, which was implemented in R using the 

package MaAsLin2. This was performed for each sampling time point individually. Linear 

mixed modelling, incorporating also ‘subject ID’ as random effect and ‘batch’ as fixed 

effect, was used for the combined datasets (T1, T2, T3).  

 

Functional analysis 

‘MicrobiomeAnalyst’ and R were used to implement the functional aspects of the data 

analysis. The Shotgun Data Profiling (SDP) functionality of the MicrobiomeAnalyst offers 
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a set of methods for pattern discovery and comparative analysis of gene abundance tables 

(Chong et al., 2020). MicrobiomeAnalyst (http://www.microbiomeanalyst.ca) is a web-

based program that incorporates a comprehensive suite of analysis and visualisation tools 

for different types of microbiome data, including 16S rRNA gene sequencing data and SDP 

(Dhariwal et al., 2017; Chong et al., 2020). The underlying R commands are displayed 

during each step and together with downloadable result tables this allows users to recreate 

or adjust analysis locally. A major limitation of MicrobiomeAnalyst, is the lack of 

functionality for repeated measures or time-series. I thus performed only cross-sectional 

comparisons within this platform and used R (particularly MaAsLin2) to investigate the data 

longitudinally and for differential multivariate analysis. An overview of the steps done 

within the MicrobiomeAnalyst workflow (prior to data analysis) are shown in Figure 2.5 and 

are described in detail in the supplementary (p.367-368).  

 

 
Figure 2.5 MicrobiomeAnalyst workflow of KEGG gene abundance data. Figure created 

by author 

 

After data processing, the following analyses were implemented on the KEGG gene 

abundance and the relative abundance pathways data (Figure 2.6). 

 

Graphical summary of Functional Diversity Profiles 

An analysis overview tool was used to visualize the data with stacked area plots comparing 

the functional profiles between the two genetic risk groups. Multiple functional categories 

 

Figure xx MicrobiomeAnalyst workflow from data uploading through to data normalization 
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visualization options are available, including KEGG metabolism, KEGG pathways, KEGG 

modules, which give different level of information and detail about the functional profiles. 

The stacked bar plots, recreated locally in R, help to visualise patterns of variation across 

different groups. The counts in the KEGG abundance table represent how often a KO 

(enzyme) was observed in a given sample, independent of how abundant the organism was 

that encoded for it. This data does not represent proper abundance counts. To make counts 

more comparable, I normalised the total hits (=counts) by the size of category (=how many 

enzymes/KOs are assigned to a given pathway) where possible. 

 

Differential abundance analysis on KEGG gene abundance tables and predicted functional 

pathways 

The normalized counts (but otherwise non-scaled or non-transformed counts) were 

transformed into relative values, so that they reflect the proportion of a specific KEGG 

metabolism/pathway/module category in a subject sample compared to the other KEGG 

categories in the same sample. This was done by summing the normalized counts per sample 

and dividing each KEGG category by this sample specific total number. Multivariate 

analysis was implemented using MaAsLin2 in R (as detailed before). The aim was to explore 

possible significant associations between KEGG metabolism categories/pathways/modules 

and genetic risk whilst controlling for the effect of age and sex.  

 

Multivariate abundance analysis on the HUMAnN3 data was carried out using MaAsLin2 

(as described before). I used unstratified and stratified relative abundance data on pathways 

which were generated with humann3. The stratified data shows pathway abundance per 

participant by the taxonomy in which a pathway was detected, whilst the unstratified data 

simply shows pathway abundance (in no particular order).  
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Beta diversity 

Ordination and PERMANOVA. Ordination was performed on beta diversity (using Bray-

Curtis and Euclidean distance) using NMDS and PCA. Statistical testing was carried out 

using PERMANOVA. 

 

Figure 2.6 Overall workstream of predictive functional profiling and analysis of gene 

abundance data. Blue: KEGG-based analysis carried out using MicrobiomeAnalyst tool and 

R. Green: Analysis based on HUMAnN3 relative abundance pathways, implemented in R. 

Figure created by author 
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3. CHAPTER 3: COGNITIVE, DIETARY AND HEALTH 

PROFILES 

 
Participant recruitment, enrolment and study completion 

A total of 306 individuals were identified between February and December 2018 via the 

aforementioned recruitment channels and screened for eligibility (see p.94). Of these, 241 

potential participants passed the eligibility screening and were asked whether they would be 

interested in receiving further information about the study. Finally, 130 participants were 

consented for genetic screening and 82 of the consented participants were successfully 

enrolled into the study. The study recruitment process is schematically shown in Figure 3.1.  

 

Figure 3.1 Flowchart of study recruitment process 

 

All participants were stratified into APOE groups based on their APOε4 status – to make up 

the APOε4 non-carriers (n=41) and the APOε4 carriers (n=41) (Figure 3.2). Three 

participants withdrew from the study at this stage (due to anxiety, too much time 

commitment, other personal reasons). The baseline cognitive assessment and first faecal 
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sample collection was completed by 79 (96%) participants. One participant of the APOε4 

carriers was excluded because of transient ischemic attack that occurred during the study 

and two APOε4 non-carriers withdrew before completing the second faecal sample, resulting 

in a total of 76 collected samples for T2 (93%). Two participants were unable to complete 

the third faecal sampling time point within the timeframe of this study due to repeated 

occurrence of antibiotic treatment which pushed their last sample collection past the study 

end date. The observed attrition of 10% is not inconsistent with other longitudinal studies. 

 

The COVID-19 pandemic and associated lockdown of facilities led to an earlier than planned 

collection of the last follow-up samples of nine participants. To mitigate the closure of 

laboratories and to keep participants safe, I collected all outstanding samples by the 23rd of 

March and closed the study. A subgroup of 20 participants from each group underwent MRI 

imaging. The cardiovascular risk assessment was completed by 15 participants of the APOε4 

non-carriers and 18 of the APOε4 carriers.  

 

 

Figure 3.2 Consolidated Standards of Reporting Trials diagram showing the flow of 

participants through the study 
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Demographic characteristics of Apolipoprotein E groups 

The most prevalent genotype in the APOε4 non-carrier group was ε3/ε3, whilst ε3/ ε4 was 

the most common genotype among APOε4 carriers. Nine participants were ε2/ε3 carriers 

and were assigned to the APOε4 non-carriers. Five participants of the APOε4 carriers were 

homozygous ε4 carriers and were thus at the highest genetic risk for AD and assigned to the 

at-risk group. The APOE genotype frequency in the given study and assigned APOε4 status 

can be found in Table 3.1. 

 

Table 3.1 Apolipoprotein E genotype frequency in participant cohort, genetic risk for 

developing Alzheimer’s Disease and assigned study group 

Genotype Cases (%) Genetic risk  Study group 

ε2/ε2 0 (0) low APOε4 non-carriers 

ε2/ε3 9 (11) low APOε4 non-carriers 

ε3/ε3 32 (39) low APOε4 non-carriers 

ε3/ε4 36 (44) high APOε4 carriers 

ε4/ε4 5 (6) high APOε4 carriers 

 

The mean age of the study participants at enrolment was 66.73 years of age (SD=5.93) in 

APOε4 non-carriers and 63.95 (SD=5.50) years of age in APOε4 carriers (Table 3.2). Both 

groups had a larger proportion of female compared to male participants. Educational 

attainment, defined as the highest completed level of education, was recorded as one of four 

categories: “no formal education”, “high school” (11 years), “college” (13 years), and 

“university” (16 years or more). The most frequently reported level of education in both 

groups was university level. Pearson's chi-squared test showed that the distribution of sex 

(χ2=1.81, p>.1) and educational attainment (χ2=1.07, p>.1) were not significantly different 

between the two groups. Three APOε4 carriers did not return information with respect to 

their educational attainment and are hence missing. Whilst the groups were not perfectly 

matched with respect to age, the age difference between the APOE groups was trending but 

not statistically significant (Wilcox rank sum test, p=0.051).  
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Table 3.2 Primary characteristics of the Apolipoprotein E groups 

Measure APOε4 non-

carriers (n=40) 

APOε4 carriers 

(n=39) 

χ2 (df) p-value 

Age (years) 

   Mean (SD) 

 

66.73 (5.93) 

 

63.95 (5.50) 

 

- 

 

0.051 

Sex 

   Female (%) 

   Male (%) 

 

25 (62.5%) 

15 (37.5%) 

 

30 (78.9%) 

8 (21.1%) 

 

1.81 (1) 

 

>.1 

Educational attainment 

   No formal education 

   High school 

   College 

   University 

   missing 

 

0 (0%) 

9 (22.5%) 

12 (30%) 

19 (47.5%) 

0 (0%) 

 

0 (0%) 

8 (21.1%) 

7 (18.4%) 

20 (52.6%) 

3 (7.9%) 

 

 

1.07 (2) 

 

 

>.1 
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Cognitive and behavioural results from administered tests 

An overview of all neuropsychological test results showing the group means and standard 

deviations for each of the administered tests is shown in Table 3.3. Group differences were 

investigated by fitting a separate multiple regression model for each outcome measure and 

subscales using APOε4 status as predictor and controlling for age and educational 

attainment.  

 

Table 3.3 Neuropsychological profile of the Apolipoprotein ε4 carriers and non-carriers 

Measure APOε4 non-carriers 

Mean (SD) 

APOε4 carriers  

Mean (SD)  

 

ACE-III  

Summary score (/100) 

  Attention subscale (/18) 

   Memory subscale (/26) 

   Fluency subscale (/14) 

   Language subscale (/26) 

   Visuospatial subscale (/16) 

[n=39] 

 

95.30 (3.95) 

17.55 (0.93) 

25.03 (1.48) 

12.35 (1.64) 

24.93 (1.38) 

15.45 (1.01) 

[n=38] 

 

95.34 (2.58) 

17.66 (0.85) 

25.08 (1.36) 

12.39 (1.49) 

25.21 (0.87) 

15.00 (1.04) 

 

ROCF  

Copy score (/36) 

Recall score (/36) 

Copying time (/300, in sec) 

[n=39] 

 

31.39 (2.95) 

18.72 (5.45) 

162.51 (56.10) 

[n=38] 

 

31.95 (2.69) 

18.86 (5.29) 

188.34 (67.92) 

 

TMT  

TMT-A (sec) 

TMT-B (sec) 

[n=38] 

 

34.92 (7.86) 

71.16 (23.20) 

[n=37] 

 

33.62 (12.61) 

62.78 (18.69) 

TMT-d (TMT-B – -A, sec) 36.24 (22.39) 29.16 (16.02) 

ACE=Addenbrooke’s Cognitive Examination, ROCF=Rey-Osterrich-Complex-Figure test, 

TMT = Trail Making Task 
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Addenbrooke’s Cognitive Examination-III 

In total, 79 study participants completed the ACE-III (for a detailed test description please 

see p.98). The summary ACE-III score ranged between 80-100 in the APOε4 non-carriers 

and 89-100 in the APOε4 carriers. In line with standard cut-offs, a score lower than 82 is 

used as a cut-off for dementia. One participant of the APOε4 non-carriers scored below 82 

on the ACE-III and was excluded from the analysis. One participant record from the APOε4 

carriers was excluded because of a transient ischemic attack. This resulted in a total of 77 

neuropsychological tests. On average, participants scored high on the ACE. The APOε4 non-

carriers had a mean summary score of 95.30 compared to 95.34 in the APOε4 carriers.  

 

Effect of Apolipoprotein ε4 status on Addenbrooke’s Cognitive Examination-III 

The ACE-III summary score (F(4,69)=0.83, p>.1, R2=0.17) was not significantly predicted 

by APOε4 status when keeping the influence of all other predictors on the model equal 

(Table 7.6 in the supplementary). Our multivariate analyses, generated from running a 

separate model for each of the subscales of the ACE-III, showed no effect of APOε4 status 

on memory, fluency, or language. There was, however, a significant effect of APOε4 status 

(ß=-0.51, p=0.032) on the visuospatial subscale (F(4,69)=3.25, p=0.017, R2=0.16), 

indicating that the APOε4 carriers performed -0.51 points less well on the visuospatial 

aspects of the ACE-III compared to the APOε4 non-carriers. The model explained 16% of 

the variance observed in the data. 

 

Rey-Osterrich-Complex-Figure test 

The APOE cohorts obtained similar mean scores on the copy condition and lower but 

comparable mean scores on the recall condition (Table 3.3, for a detailed test description 

please see p.99-100). Four participants of the APOε4 carriers and two participants of the 

APOε4 non-carriers needed longer than the allowed maximal copying time of 300 seconds 



 135 

(copying time recorded as 300 sec) for copying the ROCF. On average, the APOε4 non-

carriers took 26 seconds less than the APOε4 carriers for copying the ROCF.  

 

Effect of Apolipoprotein ε4 status on Rey-Osterrich-Complex-Figure test 

APOε4 status did not significantly predict ROCF copy score (F(4,69)=1. 62, p>.1, R2=0.09), 

recall score (F(4,69)=0.86, p>.1, R2=0.05), or copy time (F(4,69)=0.16, p>.1, R2=0.01) 

(Table 7.7 – 7.9 in the supplementary). Pearson product-moment correlation was calculated 

to explore the relationship between the three outcome variables by APOε4 status. There was 

a positive correlation of medium strength between copy score and recall score in the APOε4 

carriers (r=0.34, p=0.039) but not in the APOε4 non-carriers. None of the other ROCF 

performance measures were correlated (Table 7.10 in the supplementary).    

 

Trail Making Task 

As explained in Chapter 2, scores of the TMT denote the time (in seconds) taken to complete 

part A (TMT-A) and part B (TMT-B) of the task (for a detailed test description please see 

p.100-101). The difference score, TMT-d, was calculated by subtracting the TMT-A score 

from the TMT-B score. Participants of the APOε4 carrier group performed similarly well on 

the TMT-A but were faster when completing TMT-B, compared to the APOε4 non-carriers. 

Whilst errors don’t affect the overall score, they were also reported as per task protocol. 

Overall participants of both groups made errors infrequently during the TMT. The group 

means for errors combined from both parts are 0.42 (SD=0.76) and 0.32 (SD=0.63) in the 

APOε4 non-carriers and APOε4 carriers, respectively.  

 

Effect of Apolipoprotein ε4 status on Trail Making Test 

There was no effect of APOε4 status on TMT-A (F(4,67)=1.99, p>.1, R2=0.11) or TMT-B 

(F(4,67)=3.64, p=0.51, R2=0.01) performance (Table 7.11 – 7.12 in the supplementary). Nor 

did I find an effect of APOε4 status on the difference score, TMT-d, (F(4,67)=2.894, p=0.03, 

R2= 0.15).  
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Supermarket Task 

Descriptive performance scores of the Supermarket Task is presented in Table 3.4 (for a 

detailed test description please see p.104-105). The results of the multilevel mixed regression 

models conducted to investigate the effect of APOε4 status with age, sex, and educational 

attainment as covariates on egocentric orientation, allocentric orientation, heading direction 

and peripheral responses are summarized in the following and presented in Table 7.13 in the 

supplementary.   

 

Table 3.4 Effect of Apolipoprotein ε4 status on Supermarket Task performance  

Measure    APOε4 non-carriers 

Mean (SD) 

APOε4 carriers 

Mean (SD) 

 

Egocentric orientation  

[n=37] 

9.22 (3.8) 

[n=36]  

10.72 (3.3) 

 

Allocentric orientation  

[n=34] 

30.91 (13.0) 

[n=35] 

28.77 (9.6) 

 

Heading direction  

[n=34] 

11.44 (3.0) 

[n=35] 

11.54 (1.9) 

Central vs peripheral 

navigation preference 

[n=33] 

0.67 (0.5) 

[n=34] 

1.56 (1.7) 

Egocentric orientation: number of correct responses out of 14 trials, Allocentric orientation: 

displacement from correct location in mm, Heading direction: number of correct responses out of 14 

trials, Central vs navigation preference: N(central response)/ N(peripheral response) 

 

Effect of Apolipoprotein ε4 status on the Supermarket Task  

Neither egocentric orientation, allocentric orientation, nor heading direction were 

significantly predicted by APOε4 status. Only navigation preference (central vs peripheral 

navigation preference) showed a significant main effect of APOε4 status (ß=0.61, p=0.045), 

indicating that APOε4 non-carriers favoured navigating closer to the boundaries of the 

virtual Supermarket (see Figure 3.3). 
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Figure 3.3 Boxplot of “Central vs boundary navigation preference” ratio by Apolipoprotein 

ε4 status 

 

Sea Hero Quest 

The demographics questionnaire, accompanying the SHQ task, showed that participants in 

the given study were comparable with respect to their handedness, daily travel time, self-

perceived ability to navigate, sleep, upbringing environment, and activity level (non-

significant Pearson-chi squared test). For a detailed test description please see p.103-104. 

 

Wayfinding measures 

As outlined in Chapter 2, the SHQ has two types of levels: wayfinding levels and flare levels. 

The three outcome variables of wayfinding levels are distance, duration and distance to 

border. The means for wayfinding distance (in pixels), duration (in seconds), and distance 

to border (in pixels) per level by APOε4 status are shown in Table 3.5. Higher values of 

wayfinding distance and duration indicate poorer performance, whilst higher level of 

distance to border indicates better performance.  

 

I examined the relationship between these variables using Pearson correlation test, which 

showed a positive correlation between distance and duration (r=0.86, p<0.001). This means 
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that the further participants travel, the longer they needed to complete the level.  I also found 

a negative correlation between distance and distance to border (r=-0.64, p<0.001), as well 

as duration and distance to border (r=-0.58, p<0.001). These results indicate that as 

participants navigated further away from the map borders (more centrally), both the distance 

travelled, and the time spent to complete the level was shorter. 

 

On average, participants covered more distance and took longer with increasing level of 

difficulty. Interestingly, the distance to border was much smaller for both groups in level 11. 

This indicates that participants navigated closer to the game borders in the most difficult 

wayfinding level.  

 

Table 3.5 Wayfinding performance by Apolipoprotein ε4 status and task level 

Performance variable APOε4 non-carriers 

(n=38) 

APOε4 carriers  

(n=38) 

Mean wayfinding distance (SD) 

Level 06 

Level 08 

Level 11*  

 

0.88 (0.46) 

1.53 (0.53) 

2.28 (1.01) 

 

0.76 (0.35) 

1.67 (0.53) 

2.53 (1.24) 

Mean wayfinding duration (SD) 

Level 06 

Level 08 

Level 11* 

 

1.02 (0.74) 

1.73 (0.87) 

2.68 (1.35) 

 

0.85 (0.40) 

1.98 (0.86) 

3.38 (2.47) 

Mean wayfinding distance to border 

(SD) 

Level 06 

Level 08 

Level 11* 

 

20.65 (4.14) 

18.71 (4.18) 

5.79 (1.30) 

 

20.52 (3.73) 

18.96 (3.86) 

5.55 (0.94) 

*Level 11: missing 3 cases (APOε4 non-carriers: n=36, carriers: n=37)   

 

Effect of Apolipoprotein ε4 status on wayfinding distance 

Our overall multilevel mixed model showed that there was no effect of APOε4 status (ß=-

0.00, p>.1, Table 7.14 in the supplementary) on wayfinding distance. I further split the data 



 139 

by level and ran 3 separate multilevel mixed models in order to investigate the effect of 

APOε4 status on wayfinding distance at each individual wayfinding level whilst controlling 

for age, sex and educational attainment. These models further corroborated the previous 

finding, as I found no effect of APOε4 status for either of the level-specific data.  

 

Effect of other predictors on wayfinding distance 

Wayfinding distance was significantly predicted by age (ß=-0.01, p=0.017) and level ID 

([level 8] ß=-0.76, p<0.001, [level 11] ß=-0.95, p<0.001). The fixed effects of the model 

accounted for 63% of the variance in the data. The results indicate that distance travelled 

increased by 1 pixel with every one-year age increment. When comparing the more difficult 

levels, level 08 and level 11, to level 06, participants travelled a further 76 and 95 pixels, 

respectively. The level-specific models showed that age was a mildly significant predictor 

of wayfinding distance at level 06 (ß=-0.02, p=0.048). This result indicates that age has a 

negative effect on wayfinding performance at the easiest wayfinding level, as participants 

travelled longer distance to complete the level. Neither, sex, nor educational attainment 

significantly predicted wayfinding distance for any of the levels.  

 

Effect of Apolipoprotein ε4 status on wayfinding duration 

APOε4 status did not significantly predict wayfinding duration when investigating the 

combined data of all levels (ß=0.08, p=0.09, Table 7.15 in the supplementary) or when 

looking at each individual level separately whilst controlling for age, sex and educational 

attainment.  

 

Effect of other predictors on wayfinding duration 

Wayfinding duration was significantly predicted by age (ß=0.01, p=0.001), sex (ß=-0.15, 

p=0.005) and level ID ([level 08] ß=0.39, p<0.001, [level 11] ß=0.71, p<0.001). (ß=0.08, 

p=0.09). The fixed part of the model explained 55.6% of the variance observed in the data. 

On average, participants required one more second per one-year increment of age to 
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complete the levels. Male participants were 15 seconds faster than their female counterparts 

during wayfinding. Participants took 39 seconds and 1 min 11 seconds longer compared to 

level 06 to complete levels 08 and 11, respectively.  

 

Our analysis from the individual level data, also showed an effect of age on wayfinding 

duration (level 06: ß=0.10, p=0.04, level 08: ß=0.01, p=0.04, level 11: ß=0.02, p=0.02). The 

results indicate that participants needed longer to complete the levels with every one-year 

age increment. And this effect was greatest at level 06, with participants taking 10 seconds 

longer to complete the level with every one-year age increment. An effect of sex was 

observed only at the more difficult two levels (level 08: ß=-0.16, p=0.04, level 11: ß=-0.24, 

p=0.02) and was most pronounced at level 11, indicating a faster level completion of male 

participants compared to females on the more complex levels. There was no effect of 

educational attainment on wayfinding duration. 

 

Effect of Apolipoprotein ε4 status on wayfinding distance to border 

There was no effect of APOε4 status on the distance to border outcome variable when 

investigating all wayfinding levels (ß=-0.10, p>.1, Table 7.16 in the supplementary) or when 

looking at each level individually.  

 

Effect of other predictors on wayfinding distance to border 

Only sex (ß=1.29, p=0.02) and level ID ([level 08] ß=-1.67, p=0.001, [level 11] ß=-15.01, 

p<0.001) significantly predicted the outcome measure. This suggests that male participants 

navigated significantly more centrally (1.29 greater distance to border) compared to female 

participants, which is an indication of better navigation performance. When looking at each 

level individually, sex was only found to predict distance to border at level 08 (ß=2.15, 

p=0.04). The distance to border further decreased as a function of increasing difficulty level. 

Showing that participants tended to navigate significantly closer along the level borders of 

the game in the more difficult levels of the game. This was particularly true for the most 
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difficult level, which saw the greatest reduction (-15.01 pixels) in distance to border 

compared to level 06. Fixed effects explained 83.5% of the variance in the data. 

 

Path integration measured by flare accuracy levels 

The frequencies of flare accuracy by APOε4 status are displayed in Table 3.6. Person-chi-

squared test showed that there was only a significantly different distribution of flare accuracy 

between the APOε4-cohorts at level 54 (χ2=7.18, p=0.028).  

 

Table 3.6 Response frequencies of flare accuracy rates by Apolipoprotein ε4 status, 

frequency distribution Pearson-chi-squared test (χ2) 

Performance variable APOε4 non-carriers  APOε4 carriers  χ2 (df)  p-value 
Level 04 
 
Accuracy 1 counts (%) 
Accuracy 2 counts (%) 
Accuracy 3 counts (%) 

[n= 33] 
 

0 (0) 
10 (30.3) 
23 (69.7) 

[n = 25] 
 

2 (8) 
5 (20) 
18 (72) 

 
 
 

3.23 (2) 
 

 
 
 

0.20 

Level 34  
 
Accuracy 1 counts (%) 
Accuracy 2 counts (%) 
Accuracy 3 counts (%) 

[n= 36] 
 

8 (22.2) 
8 (22.2) 
20 (55.6) 

[n= 38] 
 

7 (18.4) 
7 (18.4) 
24 (63.2) 

 
 
 

0.44 (2) 
 

 
 
 

0.80 

Level 49  
 
Accuracy 1 counts (%) 
Accuracy 2 counts (%) 
Accuracy 3 counts (%) 

[n= 33] 
 

9 (27.3) 
9 (27.3) 
15 (45.5) 

[n= 37] 
 

18 (48.6) 
6 (16.2) 
13 (35.1) 

 
 
 

3.52 (2) 
 

 
 
 

0.17 

Level 54  
 
Accuracy 1 counts (%) 
Accuracy 2 counts (%) 
Accuracy 3 counts (%) 

[n= 34] 
 

13 (38.2) 
3 (8.8) 

8 (52.9) 

[n= 36] 
 

7 (19.4) 
12 (33.3) 
17 (47.2) 

 
 
 

7.18 (2) 
 

 
 
 

0.028* 

* p<0.05 
 

Effect of Apolipoprotein ε4 status on flare accuracy 

The mixed effect ordinal logistic regression showed that there was no effect of APOε4 status 

on flare accuracy for the overall dataset (β=0.01, p>.1, Table 7.17 in the supplementary), nor 

when evaluating individual level data  
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Effect of other predictors 

I found that sex (β=0.69, p=0.036) was a significant predictor of flare accuracy, suggesting 

that male participants had a better flare accuracy rate. This was further substantiated by an 

odds ratio of 2.01 (males are twice as likely than women to perform well on flare accuracy). 

Level ID significantly contributed to explaining variance in the observed flare accuracy rate 

and this was true for level 49 (β=-0.1.63, p<0.001) and level 54 (β=-1.23, p=0.004) also. 

Both levels indicate a decreased performance on flare accuracy (which might be suggestive 

of higher difficulty [double “right turn”]). Fixed predictors explained 12.7% of variance in 

the data (Marginal R2), whilst fixed and random effects taken together (Conditional R2) 

explained 19.5% of variance. Analysis by level showed an effect for sex (β=1.63, p=0.009) 

at level 54 only, indicating a better performance of male participants. At level 49, the time 

needed to complete the level was a significant predictor of the model (β=0.08, p=0.011). 
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Cognitive and behavioural results from questionnaires 

Mean summary scores and standard deviations of all self-reported cognitive and behavioural 

measures assessed in the given study are presented in Table 3.7 and explained in more detail 

in the following. As before, group differences with respect to APOε4 status were assessed 

by means of multivariate linear models, whilst accounting for the effects of age and 

educational attainment.  

 

Table 3.7 Secondary neuropsychological profile of the Apolipoprotein Ε groups  

Self-reported measure APOε4 non-carriers 

(n=39) 

APOε4 carriers  

(n=38) 

CCI (missing n=5) 

Summary score 

   Memory subscore 

   Executive function subscore 

   Language subscore  

 

27.62 (7.87) 

1.49 (0.46) 

1.17 (0.43) 

1.31 (0.47) 

 

28.70 (7.27) 

1.61 (0.46) 

1.17 (0.38) 

1.20 (0.32) 

GAD-7 (/21) (missing n=2) 0.87 (1.64) 0.92 (1.52) 

PHQ-9 (/27) 1.85 (3.08) 1.94 (2.16) 

CBI-R (missing n=4) 

Summary score 

  Memory subscore 

  Self-care subscore 

  Abnormal behaviour subscore 

  Everyday skills subscore 

  Belief subscore 

  Eating habits subscore 

  Sleep subscore 

  Stereotypic behaviour & motor    

  abilities subscore 

  Motivation subscore 

 

4.90 (5.46) 

7.15 (8.16) 

0 (0) 

2.87 (5.03) 

0.77 (3.54) 

0.21 (1.28) 

3.54 (7.72) 

21.08 (20.56) 

3.05 (7.56) 

 

4.10 (8.50) 

 

3.09 (2.67) 

6.18 (7.08) 

0 (0) 

1.71 (3.26) 

0.15 (0.86) 

0 (0) 

2.00 (5.49) 

14.18 (16.27) 

0.53 (1.73) 

 

1.47 (3.99) 

CCI = Cognitive Change Index, CBI-R = Cambridge Behaviour Inventory Revised, GAD-7 = 

Generalized Anxiety Disorder-7, PHQ-9=Patient Health Questionnaire-9 
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Cognitive Change Index 

The self-reported change in cognition was low in both cohorts (for a detailed test description 

please see p.105). There was no effect of APOε4 status on the CCI summary score 

(F(4,64)=0.14, p>.1, R2=0.01) (Table 7.18 in the supplementary), the memory subscale 

(F(4,64)=0.29, p=>.1, R2=0.02), the executive function subscale (F(4,64)=0.95, p>.1, 

R2=0.06), or the language subscale (F(4,64)=0.43, p>.1, R2=0.03), which means that overall 

there was no subjective memory difference between the groups. 

 

Generalized Anxiety Disorder-7 

The vast majority of participants in the APOε4 non-carriers (97.4%) and in the APOε4-

postive group (94.4%) had a GAD-7 score of ≤4 and are thus considered to experience no 

anxiety (for a detailed test description please see p.107). Only one participant of the APOε4 

non-carriers and two participants of the APOε4 carriers experienced mild anxiety. APOε4 

status did not significantly predict GAD-7 (F(4,60)=1.24, p=0.09, R2=0.12) (Table 7.19 –  

7.20 in the supplementary). 

 

Patient Health Questionnaire-9 

87.2% of participants in the APOε4 non-carriers and 80.6% in the APOε4 carrier group 

showed no signs of depression as measured by the PHQ-9 questionnaire (for a detailed test 

description please see p.108). Only one participant reported moderately severe depression 

levels. Pearson’s Chi-squared test showed that the frequency distribution of the PHQ-9 

scores was not statistically different between the groups (Table 7.21 in the supplementary). 

The multiple linear regression model (F(4,65)=0.95, p>.1, R2=0.06) showed that there was 

no effect of APOε4 status on depression levels (Table 7.22 in the supplementary). 
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Cambridge Behavioural Inventory-Revised 

The APOε4 non-carriers had higher mean scores in all subscales of the CBI-R than the 

APOε4 carriers (for a detailed test description please see p.106-107). Multiple linear 

regression models were used to individually assess the effect of APOε4 status, age and 

educational attainment on the CBI-R summary score (Table 7.23 in the supplementary) and 

its ten subdomain frequency scores. There was a significant main effect of APOΕ status (β=-

2.25, p=0.043) on the summary CBI-R frequency score, which suggests that APOε4 carriers 

experienced behavioural and functional changes less frequently compared to the APOε4 

non-carriers. This effect was likely driven by significant group difference on the motivation 

subdomain frequency score (F(4,65)=2.264, p=0.07, R2=0.21; β=-3.38, p=0.047), which 

was found to be significantly lower in APOε4 carriers. The motivation subdomain was also 

significantly predicted by age (β=-0.37, p=0.012), indicating that changes in motivation also 

occur less frequently with increasing age. Another multiple regression model returned a 

significant age x APOε4 status interaction (F(5,64)=3.342, p=0.01, R2=0.21; β=0.72, 

p=0.011) indicating different impact of age on CBI-R motivation between APOε4 non-

carriers and APOε4 carriers. Upon visualizing this interaction, Figure 3.4, it showed that 

motivation changes occur less frequently with increasing age in the APOε4 non-carriers, 

whilst the APOε4 carriers shows a slight increase in motivation changes with increasing age 

(opposite trends). It is to be noted that changes in functional and behavioural domains were 

quantitatively small across all participants, as is reflected by the low mean scores in Table 

3.7. None of the other subscales showed a significant association with APOε4 status. 
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Figure 3.4 Scatterplot with line of best fit showing age*motivation subdomain score 

interaction  

 

There was also an effect of age on the frequency score of the following three subdomains: 

mood (F(4,65)=1.71, p=>.1, R2=0.10; age: β=-0.37, p=0.026), beliefs (F(4,65)=3.04, p>.1, 

R2=0.09; age: β=-0.04, p=0.041), and eating habits (F(4,65)=2.17, p=.08, R2=.12; age: β=-

0.30, p=0.035). Results indicate more functional and behavioural changes occur with respect 

to motivation, beliefs and eating habits with increasing age across all participants.  

 

Dietary, cardiovascular and general health data 

Food Frequency Questionnaire 

As described in the methods, outlier detection was based on the self-reported mean daily 

energy intake (for a detailed test description please see p.111-112). Following this process, 

one female participant of the APOε4 non-carriers who self-reported intake was calculated to 

equal a daily energy intake of 4,755 kcal was excluded from the analysis.  
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Multiple linear regression was used to investigate the effect of APOε4 status on the different 

nutrients and food groups. Only one nutrient group showed a significant effect of APOε4 

status (β=-0.41, p=0.010), namely carbohydrate galactose (F(1,70)=7.11, p=0.01, R2=0.09), 

indicating the consumption of carbohydrate galactose among APOε4-carriers was on 

average -0.41g lower over the year than that of APOε4 non-carriers.  

 

It is to be noted that standard deviations from the mean intake were large with respect to 

many nutrient recordings. All results for the 46 nutrients and 14 food groups are summarized 

in Table 3.8 and 3.9 below, respectively.  
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Table 3.8 Average daily intake and standard deviation of nutrients  

 

 

 

 

Nutrients APOε4 non-carriers 
(n=38) 

Mean ± SD 

APOε4 carriers 
(n =33) 

Mean ± SD 
a-Carotene (mcg) 591.0 ± 500.0 611.1 ± 530.0 
Alcohol (g) 9.1 ± 9.7 8.7 ± 12.8  
b-Carotene (mcg) 3987.5 ± 2775.5 3867.1 ± 2237.0 
Calcium (mg) 880.9 ± 249.8 805.1 ± 233.5 
Carotene total carotene equivalents (mcg) 4490.2 ± 3063.3 4376.8 ± 2495.2 
Carbohydrate (g) 194.3 ± 65.3 190.1 ± 45.8 
Cholesterol (mg) 238.4 ± 95.4 226.0 ± 101.2 
Chloride (mg) 3828.0 ± 1243.9 3709.1 ± 1027.5 
Copper (mg) 1.2 ± 0.5 1.18 ± 0.4 
Englyst Fibre Non-Starch Polysaccharides (g) 18.5 ± 7.1 18.5 ± 6.0 
Iron (mg) 10.9 ± 3.1 11.0 ± 2.7 
Total folate (mcg) 318.3 ± 111.6 305.1 ± 74 
Carbohydrate fructose (g) 24.7 ± 11.4 23.1 ± 9.3  
Carbohydrate galactose (g) 0.86 ± 0.74 0.46 ± 0.52 
Carbohydrate glucose (g) 21.5 ± 9.9 20.7 ± 8.0 
Iodine (mcg) 142.6 ± 51.6 134.7 ± 45.7 
Potassium (mg) 3717.5 ± 1038.1 3526.6 ± 784.9 
Energy (kcal) 1738.6 ± 553.0 1618.1 ± 397.3  
Energy (kj) 7306.4 ± 2314.5 6809.4 ± 1663.1 
Carbohydrate lactose (g) 15.8 ± 7.9 15.0 ± 8.2 
Carbohydrate maltose (g) 1.8 ± 1.3 1.6 ± 1.0 
Magnesium (mg) 337.5 ± 103.8 318.6 ± 75.5 
Manganese (mg) 3.8 ± 1.5 3.5 ± 1.2 
Sodium (mg) 2536.6 ± 826.0 2456.3 ± 694.3 
Niacin (mg) 21.8 ± 6.7 21.3 ± 5.8 
Phosphorus (mg) 1329.6 ± 348.4 1275.1 ± 300.9 
Protein (g) 72.6 ± 18.2 71.2 ± 18.4 
Vitamin A retinol (mcg) 487.5 ± 433.3 495.7 ± 503.2 
Vitamin A retinol equivalents (mcg) 1250.0 ± 717.6 1235.4 ± 609.2 
Vitamin B2 riboflavin (mg) 2.0 ± 0.7 1.8 ± 0.6 
Selenium (mcg) 55.1 ± 19.3 57.1 ± 15.6 
Carbohydrate starch (g) 83.4 ± 37.1 86.5 ± 24.1 
Carbohydrate sucrose (g) 39.1 ± 17.7 36.2 ± 15.1 
Vitamin B1 Thiamin (mg) 1.5 ± 0.4 1.4 ± 0.3 
Nitrogen (g) 11.8 ± 2.9 11.5 ± 2.9 
Carbohydrate sugars total (g) 106.2 ± 40.4 99.5 ± 30.2 
Vitamin B12 Cobalamin (g) 6.0 ± 3.2  6.3 ± 3.0 
Vitamin B6 Pyridoxine (mg) 2.2 ± 0.6 2.2 ± 0.6 
Vitamin C Ascorbic acid (mg) 136.4 ± 63.9 128.7 ± 56.8 
Vitamin D Ergocalciferol (mcg) 2.8 ± 1.7 2.7 ± 1.6 
Vitamin E Alpha Tocopherol equivalents (mg) 13.5 ± 5.8 11.6 ± 3.4  
Zinc (mg) 8.3 ± 2.2 8.4 ± 2.2 
Fat total (g) 73.1 ± 34.0 62.4 ± 22.1 
Monounsaturated-fatty-acids total (g) 27.0 ± 16.0 22.6 ± 8.6 
Polyunsaturated-fatty-acids total (g) 14.5 ± 6.5 12.1 ± 4.4 
Saturated fatty-acids total (g) 25.5 ± 11.9 22.3 ± 9.7 
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Table 3.9 Average daily intake and standard deviation of food groups  

 

Microbiome Health Questionnaire 

The main purpose of this extensive self-reported questionnaire, as described in the methods 

chapter, was to characterize the study population and gain metadata which could explain 

variability in the microbiome data (for a detailed test description please see p.108-109). All 

the results are given in Table 7.24 in the supplementary. Pearson Chi-squared test was 

nonsignificant for all questions, indicating that there was no significant difference in the 

answer distribution between the APOE groups. The majority of participants classed their 

diet as omnivores, all participants are Caucasian, and two thirds live in the countryside.  

 

Cardiovascular Risk 

All participants who completed the cardiovascular risk assessment (for a detailed test 

description please see p.109-110) were of Caucasian ethnicity and over 60% in the APOε4 

non-carriers and 66.7% in the APOε4 carrier subgroups were female. No participant had 

diabetes, chronic kidney disease, rheumatoid arthritis or systemic lupus erythematosus. The 

majority of participants were non-smokers. 20% in the low and 16.7% in the APOε4 carrier 

subgroup reported a family history (first degree relative) of angina or heart attack. A third 

Nutrients APOε4 non-carriers 
n=38 

Mean ± SD 

APOε4 carriers 
n =33 

Mean ± SD 
Alcoholic beverages 135.1 ± 162.2 125.5 ± 198.5  
Cereals and cereal products (g) 191.8 ± 108.2 195.2 ± 72.6  
Eggs and egg dishes (g) 21.2 ± 17.4 20.9 ± 13.8 
Fats and oils (g) 19.9 ± 13.80 14.4 ± 9.2 
Fish and fish products (g) 41.8 ± 31.6 45.5 ± 26.3 
Fruit (g) 282.8 ± 177.6 288.3 ± 240.9 
Meat and meat products (g) 65.3 ± 44.3 75.1 ± 53.2 
Milk and milk products (g) 347.0 ± 158.4 314.6 ± 153.7 
Non-alcoholic beverages (g) 948.4 ± 442.5 807.1 ± 393.8 
Nuts and seeds (g) 18.3 ± 31.1 11.5 ± 13.3 
Potatoes (g) 73.5 ± 39.1 67.8 ± 35.3 
Soups and sauces (g) 72.2 ± 53.3 83.3 ± 66.9 
Sugars, preserves and snacks (g) 29.7 ± 23.1 32.9 ± 31.6 
Vegetables (g) 322.8 ± 196.7 304.2 ± 130.6 
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of participants in both groups were on blood pressure medication, but no participant took 

steroid tablets regularly.  

 

Table 3.10 Demographic information and clinical variables of the QRISKÒ3 risk prediction 

model by Apolipoprotein ε4 status 

QRiskÒ3 clinical variables APOε4 non-
carriers  
(n=15) 

Count (%) 

APOε4 
carriers  
(n=18) 

Count (%) 

χ2 (df) 

 

p-value 

Sex 
   Female 
   Male 

 
9 (60%) 
6 (40%) 

 
12 (66.7%) 
6 (33.3%) 

 
0.00 (1) 

 

 
0.97 

Ethnicity 
   Caucasian 

 
15 (100%) 

 
18 (100%) 

 
0.27 (1) 

 
0.60 

Smoking status 
   non-smoker 
   ex-smoker 

 
11(73.3%) 
4 (26.7%) 

 
16 (88.9%) 
2 (11.1%) 

 
0.49 (1) 

 
0.48 

Diabetes 0 (0%) 0 (0%) 0.27 (1) 0.60 
Angina or heart attack in first 
degree relative 

3 (20%) 3 (16.7%) 0.00 (1) 1 

Chronic kidney disease 0 (0%) 0 (0%) 0.27 (1) 0.60 
Atrial fibrillation 0 (0%) 1 (6%) 0.00 (1) 1 
On blood pressure medication 5 (33.3%) 6 (33.3%) 0.00 (1) 1 
Migraines 1 (7%) 4 (22.2%) 0.57 (1) 0.45 
Rheumatoid arthritis 0 (0%) 0 (0%) 0.27 (1) 0.60 
Systemic lupus erythematosus 0 (0%) 0 (0%) 0.27 (1) 0.60 
Severe mental illness 0 (0%) 0 (0%) 0.00 (1) 1 
Atypical antipsychotic medication 0 (0%) 0 (0%) 0.27 (1) 0.60 
On regular steroid tablets 0 (0%) 0 (0%) 0.27 (1) 0.60 
Erectile dysfunction 
    present     
    not present 
    not applicable  

 
0 (0%) 
6 (40%) 
9 (60%) 

 
1 (6%) 

5 (27.8%) 
12 (66.7%) 

 
 

1.26 (1) 

 
 

0.53 

 
Clinical measures 

 
APOε4 non-carriers  

(n=15) 
Mean (SD) 

 
APOε4 carriers  

(n=18) 
Mean (SD) 

BMI (kg/m2) 25.93 (3.9) 26.02 (5.8) 
Total Cholesterol (mmol/L) 5.79 (1.27) 7.04 (1.44) 
HDL (mmol/L) 1.89 (0.49) 1.89 (0.44) 
LDL (mmol/L) 2.50 (1.06) 4.04 (1.42) 
Cholesterol/HDL 3.30 (0.83) 4.17 (1.30) 
Triglycerides (mmol/L) 3.26 (1.02) 2.51 (1.10) 
Systolic blood pressure 136.47 (13.88)  139.22 (17.78) 
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Effect of Apolipoprotein ε4 status on clinical measures of the QRiskÒ3 

I ran several multiple regression models to investigate the effect of APOε4 status on the 

clinical measures that were obtained including BMI, total cholesterol, HDL, LDL, 

Triglycerides, whilst accounting for the effect of age and sex. Our analyses showed that there 

was a significant effect of APOε4 status (β=1.93, p=0.005) on LDL levels (F(3,21)=3.365, 

p=0.038, R2=0.325) with the model explaining 32.5% of the variance in the data. APOε4 

status (β=1.42, p=0.019) also significantly predicted total cholesterol levels (F(3,28)=2.395, 

p=0.089, R2=0.204). The model suggests that APOε4 carriers had a 1.93 mmol/L 

significantly increased average LDL (Figure 3.5 [A]) and a 1.42 mmol/L significantly higher 

total cholesterol (Figure 3.5 [B]) compared to the APOε4 non-carriers. There was no effect 

of APOε4 status on HDL levels (β=-0.07, p>.1) or on Triglycerides (β=-0.85, p=0.08) 

(Tables 7.25 – 7.26 in the supplementary). 
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Figure 3.5 Boxplot of (A) low-density lipoprotein levels and (B) total cholesterol levels by 

Apolipoprotein ε4 status  

 

In this subsample, the 10-year QRISKÒ3 score was 16.51 (SD=5.7) and 14.58 (SD=10.35) 

in the APOε4 non-carrier and carriers, respectively. The relative risk in the APOε4 non-

carriers was 1.07 (SD=0.25) and 1.35 (SD=0.49) in the APOε4 carriers. 40% of non-carriers 

had a relative risk smaller than 1, indicating that they were less likely to experience a 

cardiovascular event in the next 10 years compared to a group of matched healthy 

individuals. In the APOε4 carriers only 11% had a relative risk below 1. 53% and 78% in 

the APOε4 non-carriers and APOε4 carriers, respectively, were however at a greater risk 

(relative risk>1) to have a cardiovascular event compared against matched healthy 
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individuals. A similar picture emerged after closer investigation of heart age, with 60% in 

the APOε4 non-carriers and 78% in APOε4 carriers having a heart age that is greater than 

their actual age.  

 

Table 3.11 QRISKÒ3 risk scores by Apolipoprotein ε4 status 

Calculated cardiovascular risk scores APOε4 non-

carriers (n=15) 

Mean (SD) 

APOε4 carriers 

(n=18)  

Mean (SD) 

10-year QRISKÒ3 score (%) 16.51 (5.7) 14.58 (10.35) 

Expected QRISKÒ3 score (%)1 15.33 (4.1) 10.33 (4.3) 

Relative risk2 
   Relative risk <1.0 (count, [%]) 

   Relative risk =1.0 (count, [%]) 

   Relative risk >1.0 (count, [%]) 

1.07 (0.25) 
6 (40%) 

1 (7%) 

8 (53%) 

1.35 (0.49) 
2 (11%) 

2 (11%) 

14 (78%) 

Age (years) 70.93 (3.3) 65.77 (5.4) 

Heart age according to QRISKÒ3 score (years) 

   Heart health age older than actual age (count, [%]) 

   Heart health age equal to than actual age (count, [%])          

   Heart health age younger than actual age (count, [%]) 

72.13 (4.87) 
9 (60%) 

0 (0%) 

6 (40%) 

69.39 (7.79) 
14 (78%) 

2 (11%) 

2 (11%) 
110-year QRISKÒ3 score of a healthy person of the same age, sex and ethnic group (meaning no 

adverse clinical indicators, cholesterol ratio of 4.0, a stable systolic blood pressure of 125, a BMI of 

25). 2The relative risk is the 10-year QRISKÒ3 risk score divided by the healthy person’s risk 

(=expected QRISKÒ3 score)  

 

As the QRISKÒ3 model already accounts for the effect of many variables including age and 

sex, no covariates were added to the multiple linear regression model, when investigating 

the effect of genetic risk on relative risk. There was no significant effect of APOΕ status on 

10-year QRISKÒ3 score (F(1,31)=0.41, p>.1, R2=0.01), relative risk (F(1,31)=3.98, 

p=0.055, R2=0.11) or heart age (F(1,31)=1.40, p>.1, R2=0.04). 
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Neuroimaging 

Voxel based morphometry 

Having thoroughly investigated the cognitive, behavioural, dietary and cardiovascular 

profiles of the APOε4 carrier and non-carrier cohort, I next sought to explore potential 

volumetric differences in a subgroup of the two APOΕ cohorts.  

 

To this purpose, whole-brain characterization of differences in cerebral volume and brain-

matter tissue in structural MRI brain images was applied to the T1-weighted scans of 41 

participants, of which 20 were APOε4 carriers and 21 were APOε4 non-carriers from the 

larger study cohort (for a detailed description of the method please see p.113-114). The 

APOε4 carrier subgroup consisted of fourteen female and six male participants, whereas the 

APOε4 non-carrier subgroup was comprised of eleven female and ten male participants. 

With a mean age of 63.5 (SD = 4.7) in the carriers and 68.4 (SD= 5.0) in the non-carriers, 

the APOε4 carriers were significantly younger (p=0.003) than the APOε4 non-carriers. 

Given the role of age in brain health, I thus incorporated age as a covariate into the GLM 

model. An example of T1-weighted image processing steps showing (A) removal of large 

non-neuronal tissue (neck area) and (B) masking the brain area are shown in Figure 3.6.  
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Figure 3.6 Example of image-processing: (A) removal of neck voxels and (B) brain mask 

 

Multiple comparison corrected maps showed no clusters that would indicate a greater level 

of atrophy when contrasting the GM images of the APOε4 non-carriers against the APOε4-

positive subgroup. When investigating uncorrected maps at p<.001, however, several 

significant clusters were present. According to the Harvard probabilistic atlas significant 

clusters of uncorrected maps highlighted the following cortical areas: (A) lingual gyrus, (B) 

subcallosal cortex, (C) supramarginal gyrus (anterior division), (D) frontal operculum 

cortex, (E) frontal orbital cortex. 

 

Chapter Discussion 

Relationship between Apolipoprotein ε4 and cognition/behaviour   

The APOE cohorts presented here are overall well-matched for educational attainment, sex, 

age, and lifestyle factors, and had no obvious medical conditions. Consistent with the 

hypothesis, I found that the APOΕ genotyped cohorts did not differ significantly with respect 

to the vast majority of cognitive and behavioural domains.  

(A)

(B)
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Some empirical evidence has shown that APOε4 carriers show a decline for ‘global cognitive 

ability’ (Small et al., 2004; Wisdom, Callahan and Hawkins, 2011). I did not observe 

differences in the global cognitive functioning between the APOε4 carriers and non-carriers, 

apart from visuospatial ability subdomain (ACE-III), where APOε4 carriers had a small but 

significantly lowered performance compared to APOε4 non-carriers.  

 

A national survey of 1762 healthy individuals aged 68-69 years of age, using ACE-III as 

their primary outcome measure, found a small but negative association between APOε4 

carriers and the ACE-III score - driven largely by lowered performance in two subdomains: 

attention and memory (Richards et al., 2019). In light of the small effect sizes observed by 

other studies, it is possible that a significantly larger sample size would have been required 

to detect potential subtle differences.  

 

The next measure of the study, ROCF, showed that there was no difference with respect to 

visuospatial functioning or nonverbal memory between the groups. This is in line with 

results from a small longitudinal study, which showed no performance differences on 

visuospatial skills (ROCF copy) and visual memory (ROCF delay) between 20 cognitively 

healthy APOε4 carriers and 29 non-carriers at baseline (Lavretsky et al., 2003). The group 

did however see a decline over time as indicated by significantly worsened visuospatial skills 

in both groups at the two-year follow-up. Interestingly, the age-related decrease in visual 

memory was only observed in the group of APOε4 non-carriers. 

 

I found no differences between APOε4 carriers or non-carriers with respect to their executive 

functions, motor functions, or psychomotor speed, as assessed by the TMT. Age, on the 

other hand, was significantly associated with both parts of the TMT regardless of APOε4 

status. These results are largely congruent with the current literature. In a large-scale cohort 
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study with 7,526 participants (aged 40-79 years), performance on the TMT-B was negatively 

associated with smoking, less physical activity and lower occupational attainment but 

showed no association with APOΕ status (Rodriguez et al., 2018). The work of Reas and 

colleagues (2019) in 1,393 older adults who were followed for 27 years (tested seven times) 

further supports these research findings. Participants’ performance on a range of 

neuropsychological measures, including the TMT-B, could not be distinguished by APOε4 

status in a cross-sectional comparison, but significantly declined as a function of age (Reas 

et al., 2019). Their analysis further showed that performance on the TMT-B declined fastest 

in APOε4 carriers and slowest in APOε2 carriers compared to APOε3/ε3 participants. This 

is corroborated by further cohort studies(Wilson et al., 2002; Mielke et al., 2016). Evidence 

from neuroimaging studies (Caselli et al., 2011; Fennema-Notestine et al., 2011) also shown 

that executive functioning and processing speed are particularly susceptible to decline in 

normal ageing and this vulnerability might be exacerbated in APOε4 carriers.  

 

Contrary to expectations, I did not replicate findings that would support changes in 

navigation strategies or spatial navigation deficits in APOε4 carriers (Coughlan et al., 2018). 

Our spatial navigation measures, the Supermarket task and SHQ, showed that spatial 

navigation performance was similarly good in both APOΕ groups, with no obvious 

differences in their egocentric or allocentric navigation strategies.  

 

Self-reported interoception, which is emerging in frontotemporal dementia research as a new 

way of understanding reduced emotional reactivity (García-Cordero et al., 2016; Marshall 

et al., 2017), self-awareness and empathy, was similar between the APOΕ groups.  

 

I also found no differences between the two APOΕ cohorts with respect to their self-reported 

subjective cognitive decline as was measured by the CCI. Subjective cognitive decline 

(SCD) is a common condition amongst elderly with no clear prognosis and as such it has 
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lately gained increasing interest in the context of dementia research (Reisberg et al., 2010). 

Self-perceived worsening in cognition, in the absence of measurable, objective decline in 

cognitive functions, might present a risk factor for developing dementia and it has even been 

proposed to represent a preclinical stage of MCI and dementia, making it an interesting target 

for early detection of cognitive impairment (Reisberg et al., 2010). A meta-analysis of 36 

studies concluded that there is little evidence to support that APOε4 carriers are more likely 

to experience SCD (Ali, Smart and Gawryluk, 2018), which is in line with my findings. And 

yet, the same meta-analysis concluded that APOε4 status and SCD confer both an individual 

risk but also a multiplicative risk to individuals for future objective cognitive decline (Ali, 

Smart and Gawryluk, 2018), which is an interesting finding that requires further exploration.  

 

Whilst the literature supports an increased prevalence for neuropsychiatric symptoms in AD, 

such as anxiety and depression (Lyketsos et al., 2000; Porter et al., 2003; Bergh and Selbæk, 

2012), the relationship between APOε4 status and neuropsychiatric symptoms remains 

unclear. I found no neuropsychiatric differences with respect to anxiety (GAD-7) or 

depression (PHQ-9), between the APOE groups, apart from the fact that the APOε4 non-

carriers reported a lower motivation score (subdomain of the CBI-R). This reduced 

motivation, was a stand-alone finding, which was further negatively affected by increasing 

age in the APOε4 non-carriers. Other domains, such as memory, self-care, abnormal 

behaviour and other subdomains of the CBI-R were not associated with APOε4 status. 

 

All in all, the study population investigated here showed no salient signs of cognitive decline 

or impairment in behavioural or functional areas. Domain-specific group differences in 

cognition between the APOε4 carriers and non-carriers were largely non-existent, further 

adding to the mixed literature on the relationship between APOε4 status and cognition. 
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Relationship between Apolipoprotein ε4 status dietary, cardiovascular and general 

health profiles 

The APOε4 carriers showed a significantly lower consumption of galactose, which is a 

simple sugar gained from metabolising carbohydrates. This dietary finding cannot be 

explained. All other nutrients and food groups were the same across the two groups, 

indicating that the groups’ overall diet was very similar in nutritional content.  

 

The extensive health and demographic data captured by the microbiome health questionnaire 

showed that the here studied cohorts were very well matched across a wide range of lifestyle 

and behavioural criteria, such as eating habits and alcohol consumption, allergies, travelling 

habits, handedness, exercise, sleep behaviour, and medications.  

 

Sub-group analysis of cardiovascular risk showed that both subgroups, whilst considered 

overweight (BMI>25.0), were generally of good health, with low occurrences of diseases or 

other clinical conditions. The only medication that was taken by a relatively high percentage 

of participants (a third in both groups) was blood pressure lowering medication, which is 

representative for the observed prevalence of anti-hypertensive treatment within a 

population with comparable demographics (Joffres et al., 2013). The APOε4 carriers had 

significantly higher levels of LDL and total cholesterol compared to the APOε4 non-carriers. 

APOΕ plays a key role in lipid transport as a major ligand for LDL receptors with differential 

binding affinity depending on allelic expression (Mahley, 2012) which is reflected by altered 

lipoprotein metabolism in APOε4 carriers (Li et al., 2013) and leads to 3-15% increase of 

LDL and total cholesterol levels when comparing APOε4 carriers to non-carriers. This 

finding is thus congruent with my hypothesis that APOε4 carriers show a distinctly different 

lipid profile.  
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Relationship between Apolipoprotein ε4 status and brain health 

The literature regarding the role of APOE status is not only mixed with respect to cognitive 

and behavioural changes, but there is also conflicting evidence coming from neuroimaging 

studies (Reiman et al., 1996; Tohgi et al., 1997; Moffat et al., 2000; Lemaître et al., 2005; 

Lind et al., 2006; Wishart et al., 2006; Jak et al., 2007; Burggren et al., 2008; Cherbuin et 

al., 2008; Honea et al., 2009) which have tried to elucidate potential pre-clinical brain 

changes in APOε4 carriers.  

 

I found no volumetric differences after applying a correction for multiple comparisons. This 

finding is in line with the hypothesis that APOε4 carriers do not exhibit any gross structural 

brain changes. Although brain changes can precede overt cognitive decline by a decade or 

more, such changes, if present, are expected to be subtle. 

 

Uncorrected maps showed decreased volumes in five brain areas. Given the lack of 

correction for multiple comparisons, it is important to be cautious interpreting the findings 

from the uncorrected maps, as these are likely to be false positives. Nonetheless, it is possible 

these findings, particularly those showing large clusters as opposed to single clusters, are 

indeed an indication of an effect and that a study with a larger sample size might replicate 

findings of the relevant brain areas presented in the given study. In light of the fact that 

APOε4 carriers in this study do not represent with obvious cognitive or behaviour changes, 

failing to find significant volumetric differences is in line with my expectation.  

 

In summary, the literature suggests that volumetric brain changes in APOε4 carriers are, if 

present, subtle and associated with hippocampal differences and show faster rates of decline 

over time in APOε4 carriers (Tohgi et al., 1997; Moffat et al., 2000; Lind et al., 2006). Due 

to the effect exerted by inter-subject variability, which further increases with age, it might 

be difficult to reliably detect differences associated with APOε4 status, which is supported 



 161 

by my findings. In fact, a large-scale experimental design like that of Lemaître et al. (2005) 

including over 700 participants, showed to be insufficiently powered to detect any 

volumetric differences smaller than 2% (at a 0.05 threshold for type I errors) between APOε4 

heterozygotes and non-carriers (Lemaître et al., 2005).  

 

More work in this area is required to investigate whether neural pathological changes on a 

macroscopic level, such as the here investigated volumetric differences, are modulated by 

APOε4 and whether such global changes can be identified and distinguished from age-

associated changes before the onset of overt cognitive changes, thus potentially offering 

great diagnostic value. 

 

The findings demonstrate that the here studied participants performed equally well on a 

range of measures assessing their cognition, behaviour and neuropsychiatric functioning 

regardless of APOε4 status, with no signs of global or domain-specific impairment. This was 

further supported by the neuroimaging analysis, which did not identify noticeable 

macroscopic differences in volumes after applying multiple corrections. Sub-cohort 

evaluation of cardiovascular health corroborates the notion that APOε4 is associated with an 

altered lipid metabolism, which favours LDL and total cholesterol levels. This was the most 

striking difference between APOε4 carriers and non-carriers. The importance of these 

findings is that the two study groups are very well-matched, therefore, any microbiome 

changes observed between the two APOE groups is highly unlikely to be due to cognitive, 

clinical or behavioural differences between the groups, but instead represent a difference in 

microbial signature based on APOE genotype.  
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4. CHAPTER 4: CROSS-SECTIONAL AND LONGITUDINAL 

ASSESSMENT OF THE INTESTINAL MICROBIOTA 

PROFILES IN APOΕ4 CARRIERS AND NON-CARRIERS 

 

Faecal sample collection 

As outlined in the methods, participants provided a faecal sample at baseline (T1), as well 

as at approximately six months (T2) and at 12 months (T3) after baseline. The cross-sectional 

comparison with the AD patient cohort was based on readily collected and previously 

banked faecal samples. 

 

To characterize the intestinal microbiota of individuals over time, I collected faecal samples 

as described above between March 2018 and March 2020 (Figure 4.1). Samples were aimed 

to be provided within 183 days (± 15 days) after the last sample. The sampling time point 

had to be moved to an earlier or (most commonly) later time point for 16 samples for the 

following reasons: use of antibiotics (n=5), holidays abroad (n=2), or coronavirus disease of 

2019 (COVID-19) (n=9).  
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Figure 4.1 Scatterplot showing faecal sample collection throughout the study. Coloured dots denote sampling timepoints - red: T1, green: T2, 

blue: T3. Shapes denote events impacting sample collection – circle: none, triangle: sample collection affected by COVID-19, cross: antibiotics. 

Shaded areas denote the seasons; green = spring, yellow = summer, orange = autumn, blue = winter. Every subject keeps the same position 

along the y-axis 
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There were 79 faecal samples at baseline, 75 samples at T2 and 72 samples at T3 (Figure 

4.2), summing up to an overall total of 226 samples.  

 

 

Figure 4.2 Faecal samples analyzed at T1, T2, and T3 

△ Sequencing for the T2 sample of subject 28 failed.  

*Due to repeated antibiotics subjects 26 and 123 provided no T3 sample 

 
 
  

APOε4 non-carriers APOε4 carriers 

T1 – faecal samples 
(n=40)

T3 - faecal samples 
(n=36)*

T3 - faecal samples 
(n=36)*

*Due to repeated 
antibiotics occurrence 
the first follow-up 
sample from subject 
ID 26 (low genetic 
risk group) and from 
subject ID 123 (high 
genetic risk group) 
were analysed as part 
of the T3 samples.

△Sequencing for the 
T2 sample of subject 
28 failed 

T1 – faecal samples 
(n=39)

T2 – faecal samples 
(n=37)△

T2 – faecal samples 
(n=38)



 165 

Taxonomic analysis  

Descriptive summary of taxonomic profiles  

Phylum - Baseline (T1) 

A total of 10 phyla, including Actinobacteria, Euryarchaeota, and Verrucomicrobia were 

detected in the microbial profiles of the APOE groups and were dominated by Firmicutes 

and Bacteroidetes. Firmicutes accounted for 60.4% (SD=12.7) in the APOε4 non-carriers 

and 61.3% (SD=10.5) in the carriers on average, whereas Bacteroidetes made up 27.1% 

(SD=12.7) and 27.0% (SD=12.9) of the relative abundance in the community profile in the 

APOε4 non-carriers and carriers, respectively (Figure 4.3). These phyla dominate the human 

gastrointestinal tract (Human Microbiome Project Consortium, 2012; Ling et al., 2013). The 

third most abundant phylum was Actinobacteria, followed by Proteobacteria, 

Verrucomicrobia and Euryarchaeota. A graphical representation of the relative abundances 

per group are shown in Figure 4.3.  
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Figure 4.3 Relative abundances of phyla at baseline, Apolipoprotein ε4 non-carriers (left panel), Apolipoprotein ε4-carriers (right panel), shape 

showing kingdom affiliation, size represents relative abundances
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Phylum - 6-months follow-up (T2) 

I identified 12 phyla in the samples of the first follow-up. The 6-months follow-up intestinal 

microbiota composition at phylum-level was similar to that at baseline and was dominated 

by members of the Firmicutes (non-carriers: M=60.1%, SD=15.5; carriers: M=59.8%, 

SD=11.6) and Bacteroidetes (non-carriers: M=19.8%, SD=11.2; carriers: M=25.6%, 

SD=11.0) phyla with similar mean relative abundances compared to group means at T1. For 

an illustrative comparison see Figure 4.4 and associated Table 4.1. Compared to T1, 

Actinobacteria were almost twice as abundant at T2 in the group of APOε4 non-carriers 

(M=13.4, SD=13.9) but only slightly increased in the APOε4 carriers (M=7.7, SD=5.6). As 

already seen at baseline, the ‘core’ phyla present in the vast majority of subjects also 

included Verrucomicrobia, Proteobacteria, Euryarchaeota, and Viruses. However, different 

to T1, at T2 I saw the addition of three new phyla, namely Candidatus Saccaribacteria, 

Ascomycota and Cyanobacteria, but also the loss of the Fusobacteria phylum. All of these 

“dynamic” phyla were only present in up to five subjects and accounted for less than 0.01% 

of the total relative abundance.   

 

Phylum - 12-months follow-up (T3) 

The community profiles at T3 were comprised of 13 phyla and were dominated by the 

Firmicutes (non-carriers: M=60.0%, SD=10.5; carriers: M=60.0%, SD=12.0) and 

Bacteroidetes (non-carriers: M=27.5%, SD=9.6; carriers: M=28.1%, SD=12.7) with 

comparable relative abundances between the groups and similar to the other two timepoints. 

As already observed at T1 and T2, only five other phyla apart from the Firmicutes and 

Bacteroidetes inhabited the intestinal microbiota of all participants. Besides these core 

phyla, only a few community profiles were also inhabited by members belonging to rare 

phyla such as that of Spirochaetes, with very low relative mean abundances (M<0.001%).  
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Table 4.1 Relative abundances (%) of most abundant phyla across all timepoints 

 APOε4 non-carriers APOε4 carriers 
Mean (SD) T1 T2 T3 T1 T2 T3 

Firmicutes 60.39 
(12.66) 

60.06 
(15.46) 

59.98 
(10.26) 

61.27 
(10.48) 

59.81 
(11.62) 

60.00 
(11.99) 

Bacteroidetes 27.14 
(12.69) 

19.79 
(11.15) 

27.54 
(9.61) 

26.99 
(12.89) 

25.63 
(10.95) 

28.08 
(12.67) 

Actinobacteria 6.14 
(4.52) 

13.44 
(13.92) 

6.01 
(4.83) 

6.86 
(8.40) 

7.65 
(5.61) 

5.53 
(4.42) 

Verrucomicrobia 1.79 
(2.57) 

2.04 
(3.27) 

1.27 
(1.61) 

2.14 
(3.30) 

1.70 
(2.51) 

1.57 
(2.35) 

Proteobacteria 2.69 
(4.67) 

2.54 
(4.15) 

2.05 
(3.86) 

1.71 
(3.20) 

2.84 
(5.35) 

2.05 
(4.64) 

Euryarchaeota 1.76 
(2.96) 

2.01 
(4.29) 

3.10 
(4.43) 

0.76 
(2.46) 

1.58 
(4.82) 

2.69 
(7.76) 

Viruses 0.09 
(0.24) 

0.13 
(0.34) 

0.04 
(0.15) 

0.24 
(1.27) 

0.77 
(4.51) 

0.08 
(0.15) 

Others 0.00 0.03 0.00 0.02 0.01 0.00 
 
 

Overall, the intestinal community profiles are largely characterized by seven phyla (Figure 

4.4), which I found to stay relatively stable over time and showed similar relative abundances 

also between the two groups.  

 

 
 
Figure 4.4 Relative abundances (%) of phyla between Apolipoprotein E groups over time  
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Family - Baseline (T1)  

I identified 49 taxa at the family-level, of which the 15 most abundant families make up over 

95% of the overall community profile (Table 4.2). All of these families belong to the 

kingdom of Bacteria at the highest taxonomic level. A cross-sectional visualisation of the 

ten most abundant families (~90% coverage) showed dominance of the following taxa in 

decreasing order (Figure 4.5): Ruminococcaceae which was by far the most abundant family 

(non-carriers: M=24.2%, SD=8.6; carriers: M=25.6%, SD=8.5), Bacteroidaceae (non-

carriers: M=16.0%, SD=10.0; carriers: M=15.1%, SD=11.1), Lachnospiraceae (non-

carriers: M=14.3%, SD=9.0; carriers: M=14.5%, SD=6.8) and Eubacteriaceae (non-carriers: 

M=14.2%, SD=11.2; carriers: M=13.2%, SD=9.1). All following family have an abundance 

of below 5% Bifidobacteriaceae, Prevotellaceae, Rikenellaceae, Porphyromonadaceae, 

Verrucomicrobiaceae, and Veillonellaceae. The 10 most abundant families belonged to one 

of four phyla; Actinobacteria, Verrucomicrobia, Bacteroidetes or Firmicutes, with all but 

two families belonging to the latter two phyla (Figure 4.5). The family Coriobacteriaceae, 

Clostridiaceae, Enterobacteriaceae, Methanobacteriaceae and Streptococcaceae were the 

next five most abundant families.  

 

Mean relative abundances for the other 34 families make up the remaining 5%, indicating 

that the majority of the families are present in very small abundances and that the human 

intestinal microbiota community profile was diverse at this taxonomic rank. The large 

standard deviations further highlight the variability of intestinal microbiota composition 

between individuals.  
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Figure 4.5 Relative abundance of top 10 taxa at family-level at baseline, Apolipoprotein ε4 non-carriers (left panel), Apolipoprotein ε4-

carriers (right panel), shape showing kingdom affiliation, size represents relative abundances 
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Family - 6-months follow-up (T2) 

At family-level, I observed a total of 57 taxa. Whilst the majority of the ten most abundant 

families were present at similar relative abundances as before, the ranking changed for two 

taxa. The taxa Coriobacteriaceae and Methanobacteriaceae replaced Verrucomicrobiaceae 

and Veillonellaceae in the list of the ten most abundant species. Relative abundance of the 

Coriobacteriaceae family at T2 (non-carriers: M= 4.0% SD= 3.5; carriers: M= 2.7% SD= 

2.8) almost doubled compared to baseline for the group of APOε4 non-carriers (non-carriers: 

M= 2.1% SD= 1.3; carriers: M= 1.8% SD= 1.7). Whereas the relative abundance of 

Methanobacteriaceae increased most noticeably in the group of APOε4 carriers – now 

present at 1.58% (SD=4.8) compared to 0.8% (SD=2.5) at baseline (Table 4.2). Albeit still 

one of the top ten abundant families, there was a nominally large decrease in Bacteroidaceae 

in the group of APOε4 non-carriers (M= 9.5% SD= 5.4) and a small decrease in the carrier 

group (M= 12.1% SD= 7.8) at T2. The relative abundance of Bifidobacteriaceae, on the 

other hand, more than doubled in the APOε4 non-carriers (M= 9.4% SD= 12.2) but remained 

at similar abundance levels in the APOε4 carriers (M= 4.9% SD= 4.7) compared to baseline 

(Figure 4.6). 

 

Family - 12-months follow-up (T3) 

There were 43 distinct families identified at T3. Looking more closely at the ten most 

abundant families, there was a large overlap with previously seen taxa. As before, the family 

Ruminococcaceae was the most abundant family (non-carriers: M=23.5%, SD=8.5; carriers: 

M=23.9%, SD=9.3), followed by Bacteroidaceae which recovered to T1-like levels (non-

carriers: M=16.7%, SD=8.8; carriers: M=15.8%, SD=10.0) and Lachnospiraceae (non-

carriers: M=16.3%, SD=8.7; carriers: M=15.2%, SD=6.9). The family of 

Methanobacteriaceae remained in the list of ten most abundant families. 
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Considering the intestinal profiles at family-level, I observed a reasonably small number of 

families which made up the majority of the community profiles of both cohorts (Figure 4.6).  

 
 
Figure 4.6: Relative abundances (%) of families between Apolipoprotein E groups over time 

 
Table 4.2 Relative abundances (%) of most abundant families across all timepoints 

 APOε4 non-carriers APOε4 carriers 
Mean (SD) T1 T2 T3 T1 T2 T3 
Ruminococcaceae 24.22 

(8.61) 
25.90 
(9.81) 

23.46 
(8.51) 

25.59 
(8.53) 

26.32 
(9.25) 

23.91 
(9.28) 

Bacteroidaceae 15.95 
(10.04) 

9.46 
(5.42) 

16.74 
(8.79) 

15.14 
(11.14) 

12.12 
(7.81) 

15.79 
(10.02) 

Lachnospiraceae 14.25 
(9.03) 

13.66 
(6.01) 

16.32 
(8.66) 

14.54 
(6.83) 

14.03 
(6.99) 

15.16 
(6.88) 

Eubacteriaceae 14.21 
(11.24) 

14.28 
(12.81) 

13.99 
(8.77) 

13.21 
(9.08) 

12.60 
(9.69) 

12.76 
(7.96) 

Bifidobacteriaceae 4.06 
(3.79) 

9.43 
(12.23) 

3.90 
(4.20) 

5.05 
(7.64) 

4.94 
(4.67) 

3.80 
(3.59) 

Rikenellaceae  4.02 
(3.35) 

5.00 
(5.34) 

4.18 
(4.11) 

3.58 
(3.11) 

5.61 
(5.34) 

3.71 
(3.64) 

Prevotellaceae 3.06 
(6.03) 

1.77 
(4.11) 

2.48 
(4.58) 

4.94 
(10.58) 

4.80 
(10.53) 

4.91 
(10.88) 

Porphyromonadaceae 3.73 
(2.07) 

2.87 
(2.98) 

3.73 
(2.35) 

2.94 
(2.65) 

2.74 
(1.55) 

3.12 
(2.67) 

Verrucomicrobiaceae 1.79 
(2.57) 

2.04 
(3.27) 

1.27 
(1.61) 

2.14 
(3.30) 

1.70 
(2.51) 

1.57 
(2.35) 

Veillonellaceae 1.93 
(3.00) 

1.32 
(2.30) 

1.86 
(3.74) 

1.94 
(2.47) 

1.63 
(2.88) 

1.95 
(2.69) 

Coriobacteriaceae 2.07 
(1.28) 

3.95 
(3.48) 

2.10 
(1.11) 

1.78 
(1.74) 

2.68 
(2.83) 

1.72 
(1.51) 

Clostridiaceae 1.64 
(3.27) 

1.46 
(3.50) 

0.37 
(0.90) 

1.35 
(2.55) 

1.28 
(2.95) 

1.71 
(3.64) 

Enterobacteriaceae 1.83 
(4.74) 

1.35 
(3.73) 

1.37 
(3.87) 

1.03 
(3.25) 

1.90 
(5.23) 

1.38 
(4.66) 

Methanobacteriaceae 1.76 
(2.96) 

2.01 
(4.29) 

3.10 
(4.43) 

0.76 
(2.46) 

1.58 
(4.82) 

2.69 
(7.76)  
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Streptococcaceae 1.09 
(1.39) 

0.66 
(1.20) 

0.97 
(2.23) 

1.39 
(1.97)  

1.42 
(2.89)  

2.14 
(6.63) 

 
 
 
Genera/Species - Baseline (T1) 

At baseline, I identified a total of 108 genera. On average, the ten most abundant genera 

made up 63% of the community profiles. In-line with my observations made at higher 

taxonomic level, the community profiles of both APOE cohorts were dominated by genera 

belonging to the Firmicutes and Bacteroidetes phyla. Within the Firmicutes phylum, 

Eubacterium (non-carriers: M=14.2%, SD=11.2; carriers: M=13.2%, SD=9.1), 

Ruminococcus (non-carriers: M=9.2%, SD=6.4; carriers: M=10.2%, SD=5.8) and 

Subdoligranulum (non-carriers: M=8.4%, SD=6.43 carriers: M=8.2%, SD=7.9) were the 

most abundant genera. Whereas within the Bacteroidetes phylum, Bacteroides (non-carriers: 

M=16.0%, SD=10.0; carriers: M=15.1%, SD=11.1) and Alistipes (non-carriers: M=4.0%, 

SD=3.4; carriers: M=3.6%, SD=3.1) were the most abundant genera (Figure 4.7). The less 

frequently represented Actinobacteria phylum was mainly characterized by members of the 

Bifidobacterium (non-carriers: M=4.1%, SD=3.8; carriers: M=5.1%, SD=7.6) and 

Collinsella (non-carriers: M=1.9%, SD=1.2; carriers: M=1.5%, SD=1.7) genera. There was 

only one genus per phylum within the 20 most abundant genera which belonged to 

Proteobacteria or Verrucomicrobia, namely the genera Escherichia and Akkermansia, 

respectively, with relative abundances around 2%.  
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Figure 4.7 Relative abundances (%) of genera between Apolipoprotein E groups over time 

 

Table 4.3 Relative abundances (%) of most abundant genera across all timepoints 

 APOε4 non-carriers APOε4 carriers 
Mean (SD) T1 T2 T3 T1 T2 T3 
Eubacterium 14.21 

(11.24) 
14.28 
(12.81) 

13.99 
(8.77) 

13.21 
(9.08) 

12.60 
(9.69) 

12.76 
(7.96) 

Ruminoccocus 9.18 
(6.35) 

8.21 
(6.25) 

8.30 
(6.00) 

10.17 
(5.82) 

7.54 
(5.65) 

10.47 
(7.03) 

Bacteroides 15.95 
(10.04) 

9.46 
(5.42) 

16.74 
(8.79) 

15.14 
(11.14) 

12.12 
(7.81) 

15.79 
(10.02) 

Alistipes 4.02 
(3.35) 

5.00 
(5.34) 

4.18 
(4.11) 

3.58 
(3.11) 

5.61 
(5.34) 

3.71 
(3.64) 

Bifidobacterium 4.05 
(3.79) 

9.42 
(12.23) 

3.90 
(4.20) 

5.05 
(7.64) 

4.94 
(4.67) 

3.79 
(3.59) 

Collinsella 1.87 
(1.20) 

3.54 
(3.33) 

1.90 
(1.17) 

1.51 
(1.65) 

2.29 
(2.56) 

1.50 
(1.44) 

Escherichia 1.59 
(4.51) 

0.99 
(3.31) 

1.19 
(3.69) 

0.92 
(2.89) 

1.83 
(5.17) 

1.35 
(4.62) 

Akkermansia 1.79 
(2.57) 

2.04 
(3.27) 

1.27 
(1.61) 

2.14 
(3.30) 

1.70 
(2.51) 

1.57 
(2.35) 

Subdoligranulum 8.41 
(6.28) 

9.48 
(6.85) 

9.33 
(5.59) 

8.29 
(7.92) 

9.87 
(8.89) 

7.85 
(6.93) 

Prevotella 2.70 
(6.10) 

1.51 
(4.01) 

2.09 
(4.61) 

4.76 
(10.62) 

4.53 
(10.62) 

4.79 
(10.92) 

 
 

The microbial profiles at baseline consisted of 322 species, of which the 25 most abundant 

species are shown in Figure 4.8. The five most abundant species were Subdoligranulum 

unclassified (non-carriers: M=8.4%, SD=6.2; carriers: M=8.3%, SD=5.6), Eubacterium 

rectale (non-carriers: M=8.3%, SD=10.5; carriers: M=7.9%, SD=8.6), Faecalibacterium 

prausnitzii (non-carriers: M=6.6%, SD=4.0; carriers: M=7.1%, SD=4.3), Ruminococcus 
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bromii (non-carriers: M=5.7%, SD=5.9; carriers: M=4.9%, SD=5.7) and Prevotella copri 

(non-carriers: M=2.6%, SD=6.1; carriers: M=4.7%, SD=10.6). With the exception of P. 

copri, which is a gram-negative bacterium of the Bacteroidetes phylum, the top five species 

are all gram-positive bacteria belonging to the Clostridia class (phylum: Firmicutes). Due 

to high inter-subject variability, the standard deviations were particularly high at species-

level. Even the most abundant species were not present in all subjects. P. copri, for example, 

was absent in 12 samples, but occurred at a mean relative abundance of 30% in the 

community profiles of three participants.  
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Figure 4.8 Top 25 most abundant species at baseline, Apolipoprotein ε4 non-carriers (left panel), Apolipoprotein ε4-carriers (right panel), 

shape showing kingdom affiliation, size represents relative abundance
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Genera/Species - 6-months follow-up (T2) 

Relative abundances of the most abundant genera at T2 showed only a few differences 

compared to baseline. The group of APOε4 non-carriers saw an increase in genera of the 

Actinobacteria clade - Bifidobacterium (M=9.5, SD=5.4) and Collinsella (M=3.5, SD=3.3) 

compared to T1, but a considerable decrease in Bacteroides (M=9.5, SD=5.4). The taxa 

making up the 25 most abundant species, from a total of 395 identified species, were largely 

comparable to baseline. As before, an unclassified species of the genus Subdoligranulum 

was the most abundant species, followed closely by E. rectale and F. prausnitzii (Figure 4.9, 

Table 4.4). In comparison to baseline, the community profiles at T2 were nominally higher 

in Alistipes onderdonkii, Escherichia coli and Bacteroidetes stercoris, but had decreases 

abundances of Bacteroides dorei, Dialister invisus and Clostridum sp L2 50. 

 

Genera/Species - 12-months follow-up (T3) 

The taxonomic profile at genera and species-level at T3 was comparable to the two previous 

time points. The community profiles at T3, were dominated by the same species as already 

observed before. Interestingly, Methanobrevibacter smithii’s relative abundance increased 

in a stepwise manner over the three timepoints (Table 4.4). The relative abundance for P. 

copri was almost twice as high in the group of APOε4 carriers compared to the non-carriers 

across all timepoints, whereas the community profiles of APOε4 non-carriers were 

consistently more abundant in B. stercoris than those of the APOε4 carrier group. Despite 

the large number of species detected, about 50% of the community profiles can be described 

by the 16 most abundant species (Figure 4.9).    
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Figure 4.9 Relative abundances (%) of families between Apolipoprotein E groups over time 

 
Table 4.4 Relative abundances (%) of most abundant species across all timepoints 

 APOε4 non-carriers APOε4 carriers 
Mean (SD) T1 T2 T3 T1 T2 T3 
Subdoligranulum 
unclassified 

8.38 
(6.27) 

9.35 
(6.85) 

9.31 
(5.59) 

8.27 
(7.81) 

9.82 
(8.87) 

7.82 
(6.93) 

Eubacterium rectale 8.28 
(10.52) 

7.76 
(10.26) 

7.25 
(7.30) 

7.87 
(8.55) 

8.02 
(7.91) 

7.19 
(7.38) 

Faecalibacterium 
prausnitzii 

6.60 
(3.95) 

8.13 
(5.67) 

5.78 
(3.81) 

7.11 
(4.26) 

8.89 
(5.43) 

5.59 
(3.40) 

Ruminococcus bromii 5.69 
(5.92) 

4.73 
(5.05) 

4.65 
(4.78) 

4.94 
(5.68) 

3.60 
(5.53) 

6.07 
(7.00) 

Ruminococcus obeum 1.37 
(0.94) 

1.26 
(1.11) 

1.44 
(1.17) 

1.85 
(1.29) 

1.59 
(0.90) 

1.66 
(0.98) 

Prevotella copri 2.64 
(6.12) 

1.49 
(4.01) 

2.03 
(4.63) 

4.70 
(10.64) 

4.51 
(10.63) 

4.72 
(10.94) 

Alistipes onderdonkii 0.86 
(1.89) 

1.11 
(2.87) 

0.92 
(2.22) 

0.69 
(2.02) 

1.38 
(3.78) 

0.84 
(2.22) 

Alistipes putredinis 1.96 
(1.95) 

2.41 
(2.51) 

2.05 
(2.13) 

1,89 
(1.45) 

2.84 
(2.08) 

1.86 
(1.67) 

Escherichia coli 1.38 
(3.90) 

0.85 
(3.04) 

1.13 
(3.55) 

0.78 
(2.44) 

1.30 
(3.80) 

1.16 
(3.89) 

Bacteroides stercoris 1.31 
(2.61) 

1.36 
(2.31) 

1.31 
(2.56) 

0.69 
(1.44) 

0.95 
(2.01) 

0.70 
(1.51) 

Bacteroides dorei 2.47 
(5.79) 

0.61 
(0.78) 

1.98 
(4.88) 

1.90 
(3.54) 

1.30 
(1.90) 

1.46 
(2.17) 

Dialister invisus 1.27 
(2.78) 

0.65 
(1.41) 

1.18 
(3.17) 

1.30 
(2.20) 

0.98 
(2.58) 

1.33 
(2.41) 

Bacteroides uniformis 2.97 
(2.99) 

2.03 
(2.37) 

3.70 
(4.54) 

3.41 
(4.48) 

2.35 
(2.12) 

3.13 
(3.42) 

Akkermansia muciniphila 1.79 
(2.57) 

2.04 
(3.27) 

1.27 
(1.61) 

2.14 
(3.30) 

1.70 
(2.51) 

1.57 
(2.35) 
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Methanobrevibacter 
smithii 

1.64 
(2.84) 

1.56 
(3.32) 

3.00 
(4.32) 

0.73 
(2.46) 

1.37 
(4.12) 

2.54 
(7.09) 

Collinsella aerofaciens 1.85 
(1.23) 

3.41 
(3.16) 

1.87 
(1.20) 

1.41 
(1.64) 

2.17 
(2.61) 

1.38 
(1.42) 

Bifidobacterium longum 1.62 
(1.84) 

3.20 
(5.05) 

1.31 
(1.48) 

2.21 
(4.00) 

2.48 
(2.69) 

1.68 
(2.42) 

Bifidobacterium 
adolescentis 

1.60 
(2.28) 

4.23 
(8.03) 

2.07 
(3.77) 

1.33 
(1.93) 

1.69 
(2.66) 

1.15 
(1.51) 

Eubacterium siraeum 1.85 
(4.08) 

3.80 
(8.20) 

2.25 
(4.64) 

1.10 
(1.92) 

1.39 
(2.81) 

1.09 
(2.34) 

Dorea longicatena 1.67 
(1.19) 

1.64 
(1.35) 

2.21 
(1.98) 

1.85 
(1.27) 

1.78 
(1.06) 

2.01 
(1.43) 

Ruminococcus torques 1.22 
(1.23) 

1.49 
(1.59) 

1.58 
(1.70) 

1.26 
(0.98) 

1.19 
(1.17) 

1.44 
(1.55) 

Ruminococcus 
sp5_1_39BFAA 

2.36 
(1.77) 

2.21 
(1.86) 

2.58 
(2.64) 

3.78 
(3.49) 

2.58 
(2.12) 

3.16 
(2.65) 

Coprococcus sp ART55_1 2.79 
(5.50) 

2.77 
(4.37) 

2.36 
(5.23) 

2.31 
(5.51) 

2.69 
(5.49) 

3.37 
(5.65) 

 

Overall, the taxonomic profiles were comparable across the three timepoints and between 

the two groups, with some changes in the abundance of species. There was however marked 

individual variability as indicated by the large standard deviations. I next subjected the data 

to global measures of alpha and beta diversity to better understand the variability or stability 

of the taxonomic profiles of the APOE groups.   
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Alpha diversity: Between-group and intra-subject variability 

Between-group variability 

Baseline (T1) 

There was no significant difference in alpha diversity between the two APOE cohorts at any 

taxonomic level, except at the kingdom-level. At kingdom-level, APOε4 carriers had 

significantly lower Shannon (p=0.005) and Inverse Simpson (p=0.004) diversity indices 

compared to the APOε4 non-carriers.  

 

6-months follow-up (T2) 

The between-group comparison of species richness and evenness at the 6-months follow-up 

was non-significant for all taxonomic levels.   

 

12-months follow-up (T3) 

In agreement with the baseline results, I found a significant difference in community 

differences at kingdom-level, as indicated by significantly reduced Shannon (p=0.011) and 

Inverse Simson (p=0.012) diversity indices in the APOε4 carriers compared to the non-

carriers. Community richness was also significantly lower in the APOε4 carriers at species 

level, but only when assessed with the Shannon diversity index (p=0.044).  

 

Longitudinal comparison of alpha diversity indices (T1-T3)  

 At group-level, alpha diversity remained largely constant over time and between the groups 

apart from at T3. At the species level, the APOε4 non-carriers saw a reduction from 3.15 at 

baseline to 3.05 at T2, which then increased to 3.19 at T3. The mean alpha diversity of the 

APOε4 carriers remained stable (3.08-3.09) across all three sampling time points. All results 

of alpha diversity by APOE group are found in the Table 7.27 in the supplementary.
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Figure 4.10 Alpha diversity (measured as Shannon diversity at species-level) between the groups at T1, T2 and T3. Blue: Apolipoprotein ε4 

non-carriers, red: Apolipoprotein ε4 carriers. Statistical significance *<0.05

* 

APOε4 non-carriers APOε4 carriers 
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Intra-subject variability 

Alpha diversity varied to different degrees within subjects over time, with some exhibiting 

dynamic changes and others remaining stable over time (Figure 4.11).  

 

Within the group of APOε4 non-carriers, the community profiles of three subjects (20, 37, 

03) were among the ten least diverse at each time point. Another four samples of the APOε4 

non-carriers (subjects 35, 39, 29, 95) were also among the least diverse at two out of three 

sampling time points.  

 

Within the APOε4 carriers, subject 01 and 106 exhibited a low alpha diversity at all three 

time points. Subjects 123, 70, 13, 118 and 64 were amongst the ten least diverse at two of 

the three time points.  

 

Examining the most diverse communities within the APOε4 non-carriers, four subjects (4, 

10, 18 and 44) were seen amongst the top at three timepoints, whilst an additional four 

subjects (99, 27, 54, and 16) were amongst the most diverse at two time points. Within the 

APOε4 carriers, subjects 120, 69, 53 and 65 were amongst those with the most diverse 

communities at all three timepoints, and three subjects (101, 7 and 42) were amongst the top 

ten most diverse profiles at two time points.  

 

Eight APOε4 carriers (subjects 42, 7, 124, 98, 13, 40, 101, 45) and three APOε4 non-carriers 

(5, 2, 12) were part of the most diverse samples, as well as part of the least diverse samples 

at different time points, showing a substantial degree of intra-subject variability over time.
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Figure 4.11 Scatterplot of Shannon diversity index, labelling of the most and least diverse 

samples of individual subjects at T1 (A), T2 (B), and T3 (C) by Apolipoprotein ε4 status 

(A)

(B)

(C)

APOε4 non-carriers 
 

APOε4 carriers 

APOε4 non-carriers 
 

APOε4 carriers 

APOε4 non-carriers 
 

APOε4 carriers 
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Beta diversity: Between-group diversity comparison  

Beta diversity – Baseline (T1) 

To examine the effect of APOε4 status, as well as the effect of the covariates sex (female 

[n=56], male [n=23]) and age (groups: 52-60 [N=20], 61-69 [N=38], 70-75 [n=21]) on the 

composition of the intestinal microbiota profiles, I performed a PERMANOVA on the 

between-sample Bray-Curtis dissimilarity and Jaccard index at all taxonomic levels (Table 

7.28 in the supplementary). The PERMANOVA on the ordination at baseline showed that 

neither APOε4 status, or any of the covariates made a statistically significant contribution to 

the model, meaning that none of these factors significantly affected the overall composition 

of the intestinal microbiome (Figure 4.12).  
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Figure 4.12 Non-metric multidimensional scaling on Bray-Curtis dissimilarity between the 

species relative-abundance intestinal microbiota profiles at baseline by (a) Apolipoprotein 

ε4 status, (b) sex, (c) age group. With labels denoting the centroid of points  

 

Metric multidimensional scaling by PCoA of the same data (Figure 4.13) showed no 

graphical separation by genotype. On the contrary, the clusters were seen to be overlapping 

and further supported the finding that there were no large-scale compositional changes 

between the two APOE groups. 
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Figure 4.13 Principal component analysis on Bray-Curtis dissimilarity between the species 

relative-abundance intestinal microbiota profiles at baseline by Apolipoprotein ε4 status. 

Ellipse showing 95% confidence interval 

 

Beta diversity – 6-months follow-up (T2) 

APOε4 status and sex were the only factors able to explain significant differences in the 

intestinal microbiota profiles of participants at T2. APOε4 status was significant at phylum- 

(p=0.024), class- (p=0.023) and order-level (p=0.03, Figure 4.4), whereas sex was 

significant at the lower taxonomic level (family to species-level). APOε4 status was able to 

explain approximately 4% and sex 3% of the variation observed (Table 7.29 in the 

supplementary). 

 

APOε4 non-carriers 
APOε4 carriers 
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Figure 4.14 NMDS on Bray-Curtis dissimilarity on intestinal microbiota profiles at order-

level by Apolipoprotein ε4 status (light blue = Apolipoprotein ε4 non-carriers, red = 

Apolipoprotein ε4 carriers) at T2. Each point denotes a sample in a reduced dimensional 

space and is connected with a line to the group centroid 

 

I obtained similar results using Jaccard (rather than Bray-Curtis) as a dissimilarity index, 

with significant results for APOε4 status at phylum-level (p=0.018), class-level (p=0.027), 

and at order-level (p=0.030). Sex was significant at family-level (p=0.034), genus-level 

(p=0.021), and at species-level (p=0.007). Age groups did not cluster separately. 

 

Beta diversity – 12-months follow-up (T3) 

APOε4 status did not explain variation in the intestinal microbiota profiles at any of the 

taxonomic levels at T3 (Table 7.30 in the supplementary), which was also visually reflected 

by overlapping centroids (Figure 4.15). Age groups explained 7.9% of the variance at 

kingdom-level (p=0.038). In-line with the T2 results, sex explained approximately 3% of the 

variation at family- (p=0.013) and genus-level (p=0.023).   
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Figure 4.15 Non-metric multidimensional scaling on Bray-Curtis dissimilarity on intestinal 

microbiota profiles at order-level by Apolipoprotein ε4 status (light blue = Apolipoprotein 

ε4 non-carriers, red = Apolipoprotein ε4 carriers) at T3. Each point denotes a sample in a 

reduced dimensional space and is connected with a line to the group centroid 
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Differential abundance analysis 

Univariate differential abundance analysis (LEfSe) 

I next used univariate statistical tests to determine if specific bacterial taxa would be present 

at significantly different abundance levels between the two APOE groups at each of the 

timepoints.  

 

LEfSe – baseline (T1) 

In the absence of global differences at baseline, LEfSe identified a total of 24 taxa with LDA 

scores of 2.0 or above that were significantly enriched at p<.05 in the intestinal microbiota 

of the APOε4 non-carriers. By contrast, samples from the APOε4 carriers were significantly 

enriched for 12 taxa at p<.05 (Figure 4.16). Overall, 21 of the 36 discriminate features found 

by LEfSe were at species- or strain-level. A phylogenetic overview of the univariate analysis 

results is shown in Figure 4.17 (Table 7.31 – 7.32 in the supplementary). 

 

In the APOε4 non-carriers, one clade (with eight taxa belonging to it) in particular, was 

found to be significantly higher in relative abundance compared to the APOε4 carriers. This 

clade had associations at each taxonomic level, starting at the Archaea kingdom down to 

strain-level of the species Methanobrevibacter smithii, accounting for a third of all 

discriminative taxa detected within the APOε4 non-carriers (Figure 4.17 - (D)).  

 

Samples from APOε4 non-carriers were also enriched in several members down to strain-

level belonging to the genus Bacteroides which is part of the order Bacteroidales (phylum 

Bacteroidetes) (Figure 4.17 - (A)). Besides the Bacteroides, I also saw increased levels of 

bacteria belonging to the Alistipes genus and the Porphyomonadaceae family.  

 

The intestinal microbiota of APOε4 non-carriers was also more abundant in members of the 

Actinobacteria phylum, particularly a strain belonging to the species Collinsella aerofaciens 
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and an unclassified genus of the Propionbacteriaceae family (Figure 4.16 - (B)). APOε4 

non-carriers also had a significantly higher abundance of members of the Holdermania 

filiformis species (phylum Firmicutes) and was enriched with members of an unclassified 

genus belonging to the Sutterellaceae family (phylum Proteobacteria). 

 

The APOε4 carriers were characterized by higher abundance of the Firmicutes and 

Bacteroidetes phyla, with several members of the Lachnospiraceae family and 

Bacteroidaceae family being enriched (Figure 4.17 - (C)). Interestingly, different species of 

the Bacteroides genus were more abundant in both groups. Whilst B. eggerthii, B. uniformis 

and B. stercoris, were enriched in APOε4 non-carriers, APOε4 carriers had higher relative 

abundances of B. intestinalis and B. cellulosilyticus (Figure 4.17 - (A)).  

 

To reduce the alpha error (as indicated by permutation analysis) and obtain a more 

conservative identification of discriminating features I adjusted the p-value of the Kruskal 

Wallis and the Wilcoxon rank sum test for subclass comparison to p<0.01 (rather than 0.05). 

Following this adjustment, fewer discriminating taxa were significantly enriched in either 

APOε4 cohort. In the APOε4 non-carriers, only the eight members of the previously 

identified clade including the Methanobacteria class, Methanobrevibacter genus and M. 

smithii species survived the analysis. In the APOε4 carriers, only three significantly enriched 

taxa were identified. Beyond the kingdom level only the species B. intestinalis and its 

associated strain (GCF_000172175) were significantly enriched compared to the APOε4 

non-carriers.  

 

Collectively, these results highlight that whilst APOε4 status is not associated with global 

differences in the intestinal microbiota at baseline (as indicated by alpha and beta diversity 

measures), I am able to detect significant differences at the level of individual taxa and clades 

between the APOε4 non-carriers and carriers.   
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Figure 4.16 (A) Linear Discriminant Analysis effect size of discriminative taxa between Apolipoprotein ε4 non-carriers (green) and carriers 

(red) at baseline. Length of bar chart represents increasing abundance and associated Linear Discriminant Analysis scores are on a log10 scale. 

(B) Cladogram showing results using saliency and phylogenetic relatedness for a clearer visualisation. Figures generated by LEfSe 

APOε4 carriers 
APOε4 non-carriers 
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Figure 4.17 Phylogenetic overview of univariate analysis findings. (A) – (E) distinct clades. Green = significant enrichment of taxa in 

Apolipoprotein ε4 non-carriers, red = significant enrichment of taxa in Apolipoprotein ε4 carriers, grey = no significant association for taxa 

with Apolipoprotein ε4 status
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LEfSe – 6-months follow-up (T2) 

LEfSe identified two clades per group that characterized the differences between APOε4 

non-carriers (16 associations) and APOε4 carriers (four associations) at T2 (Figure 4.18).  

 

APOε4 non-carriers had a higher abundance of the Actinobacteria phylum and class, with 

enriched abundance for members of the Atinomycetaceae and Coriobacteriaceae families, 

including the species C. aerofaciens (non-carriers: M=3.41, SD=3.2; carriers: M=2.17, 

SD=2.6), Atopobium parvulum (average abundance <0.01%), Actinomyces graevenitzii 

(average abundance <0.01%) and associated strains.  

 

There were two associations with members of the class Clostridia (phylum Firmicutes) with 

opposite direction for the two APOE groups. Whilst samples of the APOε4 non-carriers were 

enriched in members of the species Clostridium methylpentosum, the APOε4 carrier cohort 

was characterized by increased relative abundance for members of the Ruminoccocus obeum 

species. It is however noteworthy, that C. methylpentosum was only present in very small 

abundances (<0.001% on average) and was absent in all but three participants. Mean relative 

abundance for R. obeum species was 1.26% (SD=1.1) in the APOε4 non-carriers and 1.59% 

(SD=0.9) in the APOε4 carriers. I further observed an association between APOε4 carrier 

status and Bacteroides plebeius and its associated strain which belongs to the genus 

Bacteroides and was significantly more abundant (albeit occurring at very low abundances) 

in samples of the APOε4 carriers (non-carriers: M=0.060, SD=0.2; carriers: M=0.064, 

SD=1.7). 
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Figure 4.18 Linear Discriminant Analysis effect size of discriminative taxa Apolipoprotein 

ε4 non-carriers (green) and carriers (red) at the 6-months follow-up. Length of bar chart 

represent increasing abundance and associated Linear Discriminant Analysis scores are on 

a log10 scale 

 

Upon further lowering the alpha value to p<0.01 for the Kruskal Wallis (and the Wilcoxon 

rank sum test) and re-running LEfSe analysis, six associations of the previously identified 

discriminating taxa remained statistically significant. All six taxa were enriched in the 

APOε4 non-carriers and were taxonomically related to the Actinobacteria clade. Five of the 

six associations were members belonging to the order of Coriobacteriales including the 

previously identified Coriobacteriaceae family, Collinsella genus, C. aerofaciens species 

and its associated strain. The only other association surviving the alpha value adjustment, 

was the genus Actinomyces. 
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LEfSe – 12-months follow-up (T3) 

LEfSe found a total of 52 associations with APOε4 status, 33 for the APOε4 non-carriers 

and 19 for the APOε4 carriers at T3. Of these 42% and 64% of associations in the APOε4 

non-carriers and carriers, respectively, were at species- or strain-level (Figure 4.19). APOε4 

carriers were significantly more abundant in members of the kingdom Bacteria and Viruses, 

whilst APOε4 non-carriers were enriched in Archaea. APOε4 carriers had higher abundance 

in Streptococcus vestibularis and Streptococcus australis and associated strains and were 

further enriched in the Clostridiaceae family and Clostridium genus of the Firmicutes 

phylum. 

 

Within the Actinobacteria phyla, APOε4 carriers had higher abundances of the genus 

Eggerthella and an unclassified related species. The APOε4 carriers were also enriched in 

the Escherichia genus (phylum Proteobacteria), as well as for members of the B. plebeius 

species (phylum Bacteroidetes). Interestingly, APOε4 carriers were significantly associated 

with an unspecified Virus phylum, identifying seven associations with this particular clade 

related to an unclassified species (non-carriers: M=0.02, SD=0.4; carriers: M=0.69, SD=1.5) 

of the C2likevirus genus (family Siphoviridae, order Caudovirales) at a lower taxonomic 

level. 

 

APOε4 non-carriers had significantly higher abundances of the Archaea clade, with enriched 

abundance at every taxonomic level down to the strain-level, including the class 

Methanobacteria, M. smithii species and an unclassified associated strain. APOε4 non-

carriers also had several associations with members belonging to the order of 

Coriobacteriales of the phylum Actinobacteria. Whilst APOε4 carriers were enriched in the 

Eggerthella genus related to this order, APOε4 non-carriers were enriched in the order 

Collinsella and Slackia, including the species C. aerofaciens and S. piriformis and associated 

strains. Similar to APOε4 carriers, APOε4 non-carriers also showed associations at species-
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level with the Bacteroides genus. Members of B. intestinalis and B. stercoris were enriched 

in APOε4 non-carriers. 

 

APOε4 non-carriers were also characterized by increased abundance of several species and 

strains belonging to the family of Lachnospiraceae, Eubacteriaceae and Clostridiales 

Family XI Incertae Sedis, which in turn are all part of the Clostridiales order. The species 

Dialister succinatiphilus and an unclassified Acidaminococcus species, which are also part 

of the Firmicutes phylum, but belong to the order of Selenomonadales, were also enriched.  

 

Upon further lowering the alpha value to p<0.01 for the Kruskal Wallis and the Wilcoxon 

rank sum test, only 12 associations of the previously identified discriminating taxa remained 

statistically significant. For APOε4 carriers, these associations included the species 

Bacteroides plebeius and Streptococcus vestibularis and their associated strains. For APOε4 

non-carriers, the entire Archaea clade, down to an unclassified strain of the 

Methanobrevibacter smithii species remained significant.  
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Figure 4.19 Linear Discriminant Analysis effect size of discriminative taxa between 

Apolipoprotein ε4 non-carriers (green) and carriers (red) at T3. Length of bar chart represent 

increasing abundance and associated Linear Discriminant Analysis scores are on a log10 

scale 
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Comparison of LEfSe results across all three timepoints  

Overall, there were considerably fewer discriminating taxa for APOε4 genotype (LDA score 

2.0 or more) identified at T2 (20 associations) compared to baseline (35 associations) and 

the T3 (52 associations). Across all three timepoints, the number of associations for taxa 

enriched in APOε4 non-carriers was greater than in APOε4 carriers. More specifically, over 

two thirds of all associations at baseline, 80% of all associations at T2, and 63% of 

associations at T3 represented significant enrichment of taxa for the APOε4 non-carriers.  

 

Increased abundance of Archaea, which includes the phylum Euryarchaeota and M. smithii 

species, characterised the intestinal microbiota of the APOε4 non-carriers at both T1 and T3. 

Within the Bacteria kingdom, I predominately found associations with APOε4 non-carriers 

and taxa from the Actinobacteria, Bacteroidetes, and Firmicutes phyla. At all three 

timepoints APOε4 non-carriers were also enriched in members belonging to the genus of 

Collinsella, C. aerofaciens species, and GCF_000169035 strain – all of which belong to the 

Actinobacteria phylum. I also identified an unclassified strain of the B. stercoris species at 

both T1 and T3 for APOε4 non-carriers.  

 

There were few replications of identical taxa identified at more than one time point in APOε4 

carriers. All associations for T1 and T2 belonged to Bacteroidaceae or Lachnospiraceae 

families, whereas T3 had associations with taxa also belonging to the Actinobacteria and 

Proteobacteria phyla, as well as several associations with an unnamed Virus phylum. 

APOε4 carriers were significant enriched in the Bacteria kingdom at both T1 and T3. I also 

identified significantly increased relative abundances in member of the species B. plebeius 

and the GCF_00187895 strain in samples at T2 and T3.  

 

I found no differentially abundant taxa when running the univariate analysis on the combined 

dataset including all timepoints. 
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Multivariate differential abundance analysis (MaAsLin2) 

Next, I attempted to gain an even better understanding for the role of APOε4 and to identify 

taxa associated with APOε4 status by accounting for the role of potentially confounding 

variables using multivariate linear modelling and adjusting the p-value for false positives.  

 

MaAsLin2 – Baseline (T1) 

After accounting for age and sex there were three taxa showing a significant difference in 

relative abundance between the two APOE cohorts (Table 7.33 in the supplementary). 

APOε4 carriers were significantly depleted in members of the Verrucomicrobia phylum (ß=-

0.30, false discovery rate [FDR]-corrected p-value=0.009) compared to APOε4 non-carriers 

(Figure 4.20). Out of the ten phyla that I identified and commonly occur in the human 

gastrointestinal tract, Verrucomicrobia was one of the less abundant phyla, with a mean 

relative abundance below 5%. 

 

 

Figure 4.20 Boxplot of Verrucomicrobia between the Apolipoprotein E cohorts  

 

The association between APOε4 genotype and Verrucomicrobia was also found to be 

significant at class level (ß=-0.30, FDR-corrected p-value=0.018), and order level (ß=-0.30, 

FDR-corrected p-value=0.025).  
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Comparison of differential analysis results (LEfSe vs MaAsLin2) for T1 

Our univariate analysis identified associations between differences in relative abundance of 

taxa and APOε4 status, spanning many of the large phyla with the majority related to 

members of the Bacteroidetes, Firmicutes or Actinobacteria phyla. Multivariate analysis 

detected three associations belonging to members of the Verrucomicrobia phyla, which was 

not identified by the univariate analysis.  

 

MaAsLin2 – 6-months follow-up (T2) 

At T2, the multivariate differential abundance analysis identified two taxa that were 

significantly associated with APOε4 status, after accounting for the effect of sex and age and 

FDR-adjustment (Table 7.34 in the supplementary, Figure 4.21).  

 

The relative abundance of the Bacteroidetes phylum (ß=3.42, FDR-corrected p-

value=0.046), was significantly increased in APOε4 carriers, which was also reflected by its 

mean relative abundance of 25.6% (SD=10.9) in the APOε4 carriers to 19.8% (SD=11.2) in 

the non-carrier group. I also observed reduction in relative abundance of the phylum 

Actinobacteria (ß=-0.76, FDR-corrected p-value=0.033) in APOε4 carriers (M=7.65% 

SD=5.61) compared to the APOε4 non-carriers (M=13.44% SD=13.9).  
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Figure 4.21 Boxplot of (A) Bacteroidetes and (B) Actinobacteria between Apolipoprotein E 

cohorts 
 

Comparison of differential analysis results (LEfSe vs MaAsLin2) for T2 

The univariate differential abundance analysis identified 20 significant associations between 

APOε4 status and taxa abundance. After further accounting for the effect of age and sex 

(multivariate analysis) only two taxa were associated with APOε4 status, after p-value FDR-

adjustment. Overall, LEfSe found associations at all taxonomic levels, with the majority of 

associations at genus-level or higher resolution, whilst MaAsLin2 found no associations 

between APOε4 status and relative abundance for any taxa below the phylum-level. 

 

Both analyses were consistent in identifying members of the Actinobacteria phylum being 

enriched in the APOε4 non-carriers compared to the APOε4 carriers. The Bacteroidetes 

phylum, which was depleted in the APOε4 non-carriers, was not identified by the univariate 

model. It did, however, identify B. plebeius species belonging to the Bacteroidetes phylum. 

 

MaAsLin2 – 12-months follow-up (T3) 

Participants were significantly distinct with respect to five phylogenetically related taxa 

following multivariate analysis at T3. APOε4 non-carriers had significantly higher relative 

abundances for the kingdom Archaea (ß=0.15, FDR-corrected p-value=0.002), the phylum 
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Euryarchaeota (ß=0.15, FDR-corrected p-value=0.005), its related class of 

Methanobacteria (ß=0.15, FDR-corrected p-value=0.01), Methanobacteriales order 

(ß=0.15, FDR-corrected p-value=0.014) and Methanobacteriaceae family (ß=0.15, FDR-

corrected p-value=0.03) compared to the APOε4 carriers (Table 7.35 in the supplementary, 

Figure 4.22). The overall group mean for Methanobacteriaceae at T3 was 3.10% (SD=4.43) 

in the APOε4 non-carriers and 2.69% (SD=7.76) in the APOε4 carriers, respectively.  

 

Figure 4.22 Boxplot of Methanobacteriaceae between Apolipoprotein E cohorts 

 

Comparison of differential analysis results (LEfSe vs MaAsLin2) for T3 

Whilst the number of taxa associated with APOε4 genotype was substantially smaller in the 

multivariate analysis (as seen for T1 and T2), the latter replicated the findings with respect 

to the Archaea clade. In the univariate analyses members of this clade were the only ones to 

survive further alpha error adjustment. The univariate analysis, did however, also identify 

members at genus-, species-, and strain-level. 

 

MaAsLin2 – Longitudinal mixed effect model analysis of T1-T3 

Using the combined datasets from all sampling timepoints, three taxa showed significant 

associations with APOε4 status at three taxonomic levels (Table 7.36 in the supplementary, 

Figure 4.23), belonging to two distinct bacterial clades. The family Prevotellaceae (ß=-6.08, 

FDR-corrected p-value=0.031) and its associated genus Prevotella (ß=-6.33, FDR-corrected 
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p-value=0.044), which both belong to the Bacteroidetes phylum, were significantly more 

abundant in APOε4 carriers compared to APOε4 non-carriers across all three timepoints. 

APOε4 status was also significantly associated with the species R. obeum (ß=-0.32, FDR-

corrected p-value=0.013), showing significant enrichment across all sampling timepoints in 

APOε4 carriers.  

 

Figure 4.23 Boxplot of (A) Prevotellaceae, (B) Prevotella, and (C) R. obeum between the 

Apolipoprotein E groups across T1-T3 

 

Interestingly, neither Prevotellaceae, nor Prevotella where identified by the univariate or 

multivariate models at any of the timepoints. R. obeum and an associated strain were detected 

to be significantly increased in the APOε4 carriers by the univariate analysis at T2. 
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Predictive Functional Profiling 

I next sought to gain a better understanding of the intestinal community profiles of the two 

APOE groups with respect to their functional capability.  

 

KEGG gene abundance data 

The KEGG gene abundance table of the 219 submitted samples showed an average read 

count of 413,488 counts per sample, with a minimum of 111,798 and a maximum of 790,733 

reads per sample. Data filtering (minimum count =1 in at least 10% of samples) removed a 

total of 2,661 low abundance features. This left 8,394 features for the ordination and 

multivariate analysis.   

 

Beta diversity of KEGG data 

The PERMANOVA on the beta diversity distance matrix for the KEGG metabolism, -

modules, and -pathways was not significant for APOε4 status (p>0.05 for all), whilst 

accounting for the effect of age and sex (Table 7.41 in the supplementary). Visualisation of 

the NMDS ordination for each of the levels further supported the lack of global functional 

differences as shown for the KEGG metabolism (KEGG module: Figure 4.24, KEGG 

modules and -pathways Figure 7.12 in the supplementary). 
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Figure 4.24 Non-metric multidimensional scaling of beta diversity (Jaccard index) between 

the predicted KEGG metabolism by group (light blue = Apolipoprotein ε4 non-carriers, red 

= Apolipoprotein ε4 carriers). Each point denotes a sample in a reduced dimensional space 

and is connected with a line to the group centroid 

 

Multivariate analysis of normalized KEGG data 

The multilinear mixed modelling of the KEGG data showed no significant association with 

APOε4 status at the level of KEGG metabolism. At the level of KEGG modules, I identified 

14 significant features, whereas analysis of the KEGG pathways revealed a total of six 

significant associations for APOε4 status. After subjecting the significant results to FDR 

adjustment for multiple testing, none survived. Here, I present all findings with a significant 

p-value before FDR adjustment (Table 7.37 – 7.38 in the supplementary). 

 

The predicted functional potential of the intestinal microbiota of the APOε4 carriers was 

significantly decreased for seven KEGG modules, comprising three KEGG modules 

involved in glycan metabolism including N-glycosylation by oligosaccharyltransferase 

(p=0.03) and N-glycan biosynthesis, complex type (p=0.039). Two modules involved lipid 

metabolism, namely aceylglycerol degradation (p=0.003) and the biosynthesis of 
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phosphatidylethanolamine (p=0.044). Microbiota of APOε4 carriers also had a decreased 

functional potential for formaldehyde assimilation (p=0.006), as well as reduced capability 

for uridine monophosphate (UMP) biosynthesis (p=0.038) and for one-carbon C1-unit 

interconversion (p=0.01). 

 

The microbial functional potential of the APOε4 carrier cohort was increased in seven 

KEGG modules compared to APOε4 non-carriers, of which five are related to energy 

metabolism. More specifically, one module involved sulphur metabolism (assimilatory 

sulphate reduction, p=0.002) and three modules involved in nitrogen metabolism and the 

reduction of nitrate to ammonia via the dissimilatory (p=0.0001) and via the assimilatory 

(p=0.027) pathway, as well as denitrification of nitrate to nitrogen (p=0.044). APOε4 carriers 

were also characterized by increased microbial functional ability of the pentose phosphate 

pathway (PPP) (p=0.001), the biosynthesis of monolignol (p=0.039) and the biosynthesis of 

capsaicin via L-Phenylalanine (p=0.039).  

 

At the level of KEGG pathways, the intestinal microbiota of APOε4 carriers had a 

significantly decreased functional potential for glycine, serine and threonine metabolism 

(p=0.014) and for the biosynthesis of ansamycins (p=0.028) compared to APOε4 non-

carriers. On the other hand, APOε4 carriers’ microbial functional capability was 

significantly enriched for four distinct KEGG pathways compared to the non-carrier group 

which included an increased potential for fructose and mannose metabolism (p=0.039), 

aflatoxin biosynthesis (p=0.040), linoleic acid metabolism (p=0.037), and sulphur 

metabolism (p=0.035).  

 

HUMAnN3 functional profiles 

All of the results reported here from the HUMAnN3 analysis were significant after 

Bonferroni correction for multiple comparison (Table 7.39 – 7.40 in the supplementary). 



 207 

The stratified output of the HUMAnN3 analysis showed that microbial communities of 

APOε4 carriers were significantly enriched in the relative abundance of the P. copri species 

(FDR-corrected p-value=0.011) and an associated strain (P. copri CAG:164, FDR-corrected 

p-value=0.002) compared to the microbiota of APOε4 non-carriers. Whereas the species B. 

adolescentis (FDR-corrected p-value=0.029) was significantly reduced in relative 

abundance in APOε4 carrier group compared to the non-carriers. All of the identified taxa 

were ‘unintegrated’, meaning that they did not contribute to a known pathway.  

 

The unstratified pathways analysis showed 15 features that were significantly associated 

with APOε4 status. The microbial functional profiles of APOε4 carriers was characterized 

by significantly increased relative abundances of genes involved in the biosynthesis of 6-

hydroxylmethyl-dihydropterin diphosphate (FDR-corrected p-value=0.012), which is 

important in folate biosynthesis. I further found enrichment in the superpathway of 

phospholipid biosynthesis (FDR-corrected p-value=0.045), as well as for two associated 

pathways, the plastidic and non-plastidic biosynthesis pathways of phosphatidylglycerol 

(PG) (FDR-corrected p-value=0.045). Apart from this, APOε4 carriers also showed 

increased microbial functional potential for the CMP-3-deoxy-D-mannose-octulosonate 

biosynthesis I pathway (FDR-corrected p-value=0.045) and for the superpathway of L-

aspartate and L-asparagine biosynthesis (FDR-corrected p-value=0.045). 

 

The intestinal microbiota of APOε4 carriers showed decreased functional expression for 

seven pathways compared to APOε4 non-carriers. The intestinal community of APOε4 

carriers were marked by a reduction in anaerobic energy metabolism (FDR-corrected p-

value=0.012), as well as gluconeogenesis (FDR-corrected p-value=0.031). APOε4 carriers 

were further shown to have decreased expression of two pathways responsible for the 

biosynthesis of inosine monophosphate (IMP) (FDR-corrected p-value=0.045). The data 

also showed a decrease in the functional potential of APOε4 carriers for L-proline 
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biosynthesis (FDR-corrected p-value=0.046), L-histidine degradation (FDR-corrected p-

value=0.046) and for a pathway involved in folate transformations (FDR-corrected p-

value=0.046).  

 

Chapter discussion  

Key findings  

Neither alpha- nor beta diversity measures indicated the presence of consistent large-scale 

differences between APOε4 non-carriers and carriers. Differential abundance analysis 

identified numerous taxa significantly associated with APOε4 status. Members of 

Bacteroidetes, the Prevotella genus and the species R. obeum were enriched in the APOε4 

carriers compared to the non-carriers. Whereas the community profiles of APOε4 non-

carriers showed higher relative abundances for Verrucomicrobiales, Actinobacteria and 

several members of Archaea including Methanobrevibacter smithii. Functional profiling of 

the intestinal microbiota identified several interesting pathways associated with APOε4 

genotype, including a shift in energy metabolism, with a notable reduction of 

gluconeogenesis and an upregulation of the PPP and fructose and mannose metabolism in 

the APOε4 carriers’ microbiota compared to that of non-carriers. The intestinal microbiota 

of APOε4 carriers further showed an upregulation in nitrogen metabolism, indicative of 

increased production of neurotoxic ammonia. 

 

Detailed discussion  

Besides this study, there is only the aforementioned study by Tran et al. (2019) that has 

investigated the impact of APOE genotypes on the intestinal microbiota. Comparing their 

study methodology to the methodology of this work, there are multiple important differences 

in the overall study design (cross-sectional vs repeated sampling), in the group assignment 

of subjects based on APOE genotype (four APOE genotypes vs presence or absence of the 

APOε4 allele), sequencing approaches (16S rRNA gene sequencing vs whole-genome 
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shotgun metagenomics sequencing) and other differences which make a direct comparison 

of results difficult. 

 

Apart from Tran et al. (2019), I am only aware of two observational and one interventional 

study in mice which have investigated the relationship between APOE genotype and the 

murine intestinal microbiota. An overview of the main findings coming from these studies 

is summarized in Table 7.2 in the supplementary. Given the multitude of physiological 

differences between the human and murine intestinal tract, which are important determinants 

of microbiome constitution and function, any findings coming from mouse models have to 

be interpreted with caution and may not translate to humans.  

 

To assess the stability and community diversity of the intestinal microbiota, I evaluated 

between-group differences in alpha diversity. Our APOE groups exhibited little variation in 

community richness/evenness over time or between the groups. Nonetheless, I observed a 

small but significant shift in the taxonomic community composition of APOε4 carries at 

kingdom- (at T1, T3) and species-level (at T3) - indicating a loss in species richness 

compared to APOε4 non-carriers. Tran and colleagues (2019) found no significant 

difference in alpha diversity between the groups. A lack of consistent altered alpha diversity 

by APOE genotype is further supported by animal work (Maldonado Weng et al., 2019; 

Parikh et al., 2020). 

 

Descriptive analysis showed some perceptible differences in the compositional profiles over 

time. Whilst there was a certain level of similarity, especially at the low-resolution 

taxonomic levels, I also observed the presence of new taxa and small shifts among the most 

abundant taxa at higher taxonomic levels. This is in-line with the literature which suggests 

that each body habitat (such as the intestinal microbiota) is characterized by a small set of 

relatively stable ‘core’ taxa. Apart from these core taxa, the literature suggests that 
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communities exhibit marked variation between people (Huttenhower et al., 2012). 

Congruent with this, I observed large standard deviations with respect to relative abundances 

of taxa, which further supports the notion of large between-subject-variation.  

 

Statistical investigation of the compositional profiles (beta diversity) between the APOE 

cohorts at the three sampling time points showed mixed results. At baseline and at the 12-

months follow-up, APOε4 status did not affect the overall composition of the intestinal 

microbiota. At 6-months, however, APOε4 status was significantly associated with global 

differences in community structure at the phylum-, class- and order-level (3.7 % explanatory 

power). Thus, even when considering the combined effects of general demographic 

information (age and sex) and APOε4 status, I was unable to explain the majority of variation 

observed in the compositional profiles of the two APOE groups. Tran et al. (2019) showed 

no compositional differences by APOE genotype between their human subjects but show 

distinct clustering by APOE genotype in the murine intestinal microbiota. This is congruent 

with the work by Weng et al (2019) and Parikh et al. (2020) who reported significant 

compositional differences by APOE status between the two EFAD mice models.  

 

I conclude that a significant association between APOε4 status and large global differences 

in the human intestinal microbiota structure cannot be supported by this study. Given that 

the intestinal microbiota is influenced by numerous factors and changes dynamically over 

time, it is difficult to detect a signal on a global measure (such as alpha and beta diversity). 

It is thus possible that large compositional differences are indeed present but are 

overpowered by the effect of other factors and can hence not be shown consistently. 

 

Despite the absence of large-scale differences in the overall community structure by APOE 

genotype, there are numerous individual taxa whose relative abundances differed 

significantly between the two APOE cohorts. Our longitudinal multivariate assessment 
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identified the genus Prevotella and its associated family Prevotellaceae, which both belong 

to the phylum of the Bacteroidetes, to be increased in the APOε4 carriers compared to the 

APOε4 non-carriers. Tran et al. (2019) showed that their APOε3/ε4 carriers as well as their 

APOε3/ε3 had a greater abundance in Prevotellaceae compared to APOε2/ε3 carriers. A 

significant association of Prevotellaceae with APOE genotype is also supported by animal 

studies. However, whilst Parikh and colleagues did not report directionality of the 

association, Weng et al.’ observation is contrary to this study’s and Tran’s results as they 

reported depletion of Prevotella in APOε4 homozygous mice. Although Prevotella has been 

ascribed largely health-promoting properties, some evidence supports a potential 

pathological role (Iljazovic et al., 2021). Overabundance of members belonging to this genus 

has been associated with insulin resistance, T2D, intestinal inflammation, and rheumatoid 

arthritis (Pedersen et al., 2016; Leite et al., 2017; Stoll, 2020; Iljazovic et al., 2021). And 

whilst the immunomodulatory action of Prevotella is incompletely understood, Prevotella 

overabundance may cause a decrease in colonic IL-18 levels and stimulate the release of 

inflammatory mediators, which in turn may promote intestinal inflammation and dysbiosis, 

and lead to a reduction of acetate-producing bacteria (Larsen, 2017; Iljazovic et al., 2021). 

Increased Prevotella abundance may thereby shift the intestinal microbiota towards a pro-

inflammatory state, which in turn could trigger a series of events that might contribute to 

developing AD.  

 

APOε4 carriers were also enriched in R. obeum (longitudinal multivariate analysis, 

univariate analysis at T2). Despite its name, this species belongs to the genus Blautia and 

not Ruminococcus (Lawson and Finegold, 2015). The Blautia genus (family 

Lachnospiraceae, order Clostridia) is comprised of over 20 species of strict anaerobes which 

are generally considered to have probiotic properties. In the human intestinal microbiota, 

Blautia species are the main producers of the SCFA propionate via succinate and 

propanediol pathways from fructose and rhamnose (Vacca et al., 2020). R. obeum has been 
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suggested to produce acetate from hydrogen gas and carbon dioxide. Members of the genus 

Blautia are associated with lower levels of indole-propionic acid, which plays an important 

role in host gut barrier function and antioxidant activity (Menni et al., 2019). Blautia 

overabundance is however also associated with IBS (Rajilić-Stojanović et al., 2011; Nishino 

et al., 2018). Collectively, this suggests pleiotropic effects of Blautia on host health. 

The intestinal microbiota of APOε4 non-carriers at T1 and T3 was characterized by 

increased relative abundance of an Archaea clade down to strain-level, including the 

Methanobacteriaceae family and M. smithii species. This is the most robust finding 

generated by the univariate analysis as it also survived strict filtering for type I errors. An 

association between APOε4 status and this clade is also supported by the multivariate 

analysis, which identified five members of this clade at T2. Members of this clade are 

methanogenic archaea which play a key role in host metabolism by converting dihydrogen 

(H2), an end-product of bacterial fermentation, and carbon dioxide to methane (Camara et 

al., 2021). M. smithii is a common colonic commensal, which protects against oxidative 

stress by reducing carbon dioxide to methane (Garcez, Jacobs and Guillemin, 2019). Build-

up of H2, on the other hand, inhibits fermentation of polysaccharides. Methane production 

is thus associated with altered SCFA metabolism and increased abundance of methanogenic 

archaea favours increased production of acetate (Fernandes et al., 2013). In the context of 

ageing, methanogenesis may represent a protective mechanism to counteract oxidative 

stress, which is a major contributor to AD pathogenesis (Emerit, Edeas and Bricaire, 2004; 

Sharma et al., 2019). As such the reduction of this species in APOε4 carriers might 

compromise the protective action of methanogenic archaea, and impact on the production of 

acetate and other SCFAs. 

 

B. plebeius, B. intestinalis and B. cellulosilyticus were enriched in APOε4 carriers whereas 

the group of non-carriers had increased abundances of B. eggerthii, A. onderdonkii and 

strains of the Bacteroidetes phylum. Tran et al. also support modulation of the Bacteroides 
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by APOE genotype – the murine community profiles of APOε4 homozygous mice were 

marked by increased relative abundances of Bacteroides and Bacteroidaceae compared to 

controls. As the second most abundant phylum in the human intestinal microbiota, 

Bacteroidetes are obligate anaerobes with a wide range of beneficial and health promoting 

functions (Zafar and Saier, 2021). However, if translocated outside of the gastrointestinal 

tract Bacteroidetes can contribute to systemic infections. Future work is needed to better 

understand the specific role and potential relevance of Bacteroidetes and its many different 

species. 

 

The intestinal microbiota of APOε4 non-carriers showed increased relative abundances for 

several families of the Actinobacteria compared to APOε4 carriers across all three sampling 

time points. This enrichment included the family of Coriobacteriaceae, its associated genus 

Collinsella and the species C. aerofaciens (and a related strain). A corresponding decrease 

in the phylum Actinobacteria in APOε4 carriers was also supported by the multivariate 

analysis. Collinsella ferment a large range of carbohydrates producing H2, lactate, ethanol 

and SCFAs, and can modulate bile acid metabolism and peripheral cholesterol levels 

(Rajilić-Stojanović and de Vos, 2014). Several strains, including the here found C. 

aerofaciens, are considered pathobionts, whose increased abundance is linked with IBS 

(Kassinen et al., 2007) and rheumatoid arthritis (Chen et al., 2016). This association is 

inconsistent with the health promoting properties and functions ascribed to C. aerofaciens, 

which is also a producer of butyric acid (Qin et al., 2019). A potential mechanistic role for 

C. aerofaciens and other Actinobacteria members in APOε4 carriers should be addressed in 

future work. 

 

Our multivariate abundance analysis at baseline showed that APOε4 carriers are 

significantly depleted in members of the order Verrucomicrobiales, its’ associated class and 

phylum. The evidence regarding Verrucomicrobiales is limited. The best-studied member 
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of this clade is the species A. muciniphilia, a mucin-degrading bacterium, which plays a role 

in maintaining the mucus layer of the intestinal epithelial barrier (Hoffman et al., 2019). A. 

muciniphilia is also suggested to mediate glucose tolerance (Haikal, Chen and Li, 2019). 

Decreased abundances of A. muciniphilia have been identified in a range of metabolic 

conditions, such as obesity, dyslipidaemia and T2D. In the context of PD, however, an 

increase in abundance for members of the Akkermansia genus is considered a defining 

feature of the PD microbial signature (Baldini et al., 2019; Haikal, Chen and Li, 2019). 

Future work is needed to investigate what potential role members of these taxa may have in 

the context of APOε4 genotype. 

 

The functional potential of the intestinal microbiota in Apolipoprotein ε4 carriers and 

non-carriers 

The functional potential of the intestinal microbiota in APOε4 carriers was reduced with 

respect to several modules relating to lipid-, glycan-, methane- and pyrimidine metabolism. 

Regarding lipid metabolism, I observed a decreased potential for the breakdown of the 

acylglycerol (esters of glycerol and fatty acids) as well as reduced potential for the 

biosynthesis of ethanolamine (EA) to phosphatidylethanolamine (PE) (Weete, 1980). Little 

is known about acylglycerol apart from its fundamental role in lipid membranes (Blanco and 

Blanco, 2017). PE synthesis deficiency is suggested to have negative effects on intestinal 

membrane barrier integrity and is associated with metabolic and inflammatory diseases, 

including IBD (Brown et al., 2019; Zhou et al., 2020). The synthesis of sphingolipids, such 

as EA and PE, is restricted to members of Bacteroidetes.  

 

The functional potential of the intestinal microbiota of APOε4 carriers was also significantly 

decreased with respect to N-glycan biosynthesis and N-glycosylation. N-linked 

glycosylation is mediated by oligosaccharyltransferase and may play a role in AD 

development, negatively affecting tau protein and APP (Schedin-Weiss, Winblad and 
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Tjernberg, 2014; Kizuka, Kitazume and Taniguchi, 2017). In the brain, protein 

phosphorylation and glycosylation may be an early biomarker for AD (Lassen et al., 2017). 

The notion that glycan metabolism is impaired in AD is supported by the work of Liu and 

colleagues (2019), who showed that N-glycan biosynthesis in the intestinal microbiota was 

decreased in a cohort of AD patients compared to healthy controls and patients with aMCI 

(Liu et al., 2019). The intestinal epithelial glycome also plays a role in IBD aetiology, where 

alterations to glycosylation processes contribute to inflammation and compromising the 

mucus barrier (Kudelka et al., 2020). Although there is no data available on glycan 

metabolism in APOε4 besides this research, this pathway might represent an interesting 

target for future research.   

 

Knowledge of the uridine monophosphate biosynthesis, which was reduced in the intestinal 

microbiota community of APOε4 carriers, is incomplete. It has been suggested that UMP 

maintains intestinal health and is important in the development and apoptosis of enterocytes 

(Sato et al., 1999). Supplementation with oral UMP in an animal model of pigs had positive 

effects on the permeability of the intestinal epithelial barrier (G. Li et al., 2019).  

 

There was also a reduction in the microbial functional ability of APOε4 carriers for 

ansamycin biosynthesis. This pathway describes the production of small compounds with 

potent anti-bacterial and anti-inflammatory properties and is inherent to Actinomycetes 

strains (Vardanyan and Hruby, 2016). This is in line with the observation of a decrease in 

Actinomycetales in APOε4 carriers compared to non-carriers. Even though ansamycins 

might be a potentially promising target with suggested inhibitory action again LPS-induced 

nitric oxide (NO) production (Tang et al., 2018), I found no evidence of their use as an anti-

inflammatory therapeutic.  
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An accumulating body of evidence suggests that APOε4 genotype is connected with 

impaired glucose and insulin pathways (Janak et al., 2020; Koren-Iton et al., 2020), which 

is strengthened by the fact that glucose hypometabolism in the brain is a hallmark feature of 

AD (Hammond et al., 2020; Janak et al., 2020). In this study, the intestinal microbiota of 

APOε4 carriers showed a decrease in gluconeogenesis. Community profiles of APOε4 

carriers also showed a downregulation in anaerobic energy metabolism pathways but an 

increased potential for the PPP compared to the intestinal microbiota of APOε4 non-carriers. 

The latter pathway counteracts oxidative stress and is an alternative pathway for glucose 

metabolism (Riganti et al., 2012) as is explained in detail later p. 280.  

 

In a study investigating the metabolome of hippocampal tissue from APOε3 and APOε4 

homozygous mice, fed a high-fat or low-fat diet, the PPP was shown to be significantly 

associated with APOε4 status regardless of diet (Johnson et al., 2017). This supports a 

relationship between PPP and APOε4 albeit in eukaryotic rather than microbial cells.  

 

The microbiota of APOε4 carriers was characterized by enrichment of several microbial 

pathways related to nitrogen metabolism, including denitrification and nitrate reduction to 

ammonia via the dissimilatory and assimilatory pathway. Ammonia, with its powerful 

neurotoxic effects, may play a role in the disease progression of AD, giving rise to the 

ammonia hypothesis of AD in 1993 (Seiler, 2002; Adlimoghaddam, Sabbir and Albensi, 

2016). This hypothesis is supported by the evidence discussed on p.279 suggesting a strong 

link between intestinal-related production of ammonia and AD pathology. In the context of 

APOε4 carriers, the relationship between APOE genotype and ammonia agrees with Tran 

and colleagues’ (2019) animal work showing an association with ammonia recycling. 

 

The intestinal microbiota of APOε4 carriers showed an increased sulphur metabolism and 

reduction in assimilatory sulphate function, a process by which sulphate is converted to 
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hydrogen sulphide (H2S) by sulphate-reducing bacteria. H2S is linked to IBS via mechanisms 

of perturbing the intestinal mucosa and lowering luminal pH (Dordević et al., 2021). In the 

context of AD, H2S metabolism is dysregulated (Vandini et al., 2019). It has however been 

shown that H2S can counteract pathological processes in AD by preventing 

hyperphosphorylation of Tau by inhibiting Tau kinase activity and exerting anti-

inflammatory effects (Vandini et al., 2019; Giovinazzo et al., 2021).  

 

I also observed an enrichment in linoleic acid (LA) metabolism when comparing the 

intestinal microbial functional potential of APOε4 carriers against that of APOε4 non-

carriers. The polyunsaturated omega fatty-acid, LA, has negative effects on many bacteria 

and is able to inhibit bacterial growth and induce metabolic stress (Senizza et al., 2020). 

Excessive intake of LA via the diet is associated with metabolic disease (Miyamoto et al., 

2019) and whilst certain polyunsaturated fatty acids, such as Docosahexaenoic acid (DHA) 

and Eicosapentaenoic acid (EPA), are considered protective for AD, the metabolites related 

to LA are associated with increased risk for AD pathology (Snowden et al., 2017; Gustafson 

et al., 2020). 

 

The fructose and mannose metabolism were increased in the microbiota community of 

APOε4 carriers. As explained in detail later, upregulation of this pathway is closely 

connected with glycolysis and the PPP and may hence represent an interesting functional 

target for future research and intervention strategies. 

 

The microbiota of APOε4 carriers showed increased relative abundances for three pathways 

related to the biosynthesis of phospholipids, particularly phospholipid PG. Phospholipids are 

a large class of diverse lipids, with key roles in membrane structures. Elevated levels of PGs 

are also associated with many metabolic diseases (Kayser et al., 2019). Although the exact 

mechanisms are yet to be elucidated, the literature suggests a strong relationship between 
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circulating phospholipids, gut dysbiosis and low-grade inflammation. There further appears 

to be a positive correlation between the levels of LPS and PGs and subsequent upregulation 

of inflammatory pathways (Kayser et al., 2019). PGs might promote low-grade 

inflammation in APOε4 carriers.  

 

Taken together, this work shows that APOε4 status is associated with various taxonomic and 

functional changes of the microbiota, which require further exploration but may play a role 

in promoting AD disease-mediated mechanisms. 

  

In light of the altered microbiota composition in the two studied APOE groups, the next 

logical assessment was to see if changes observed in the at-genetic risk group related to the 

microbiome changes in patients diagnosed with AD. If there was a link between the 

microbial community in the APOε4 carrier group and the AD group, this may enable the 

identification of an ‘at risk’ microbial signature. Particularly novel and largely 

underexplored are also functional changes in AD patients, which can be predicted with 

shotgun metagenomics sequencing data, and may provide more insights into disease 

associated mechanisms that may link microbial changes to AD pathophysiology.   
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5. CHAPTER 5: AD PATIENT GROUP COMPARISON 

 
Demographic profile of Alzheimer’s Disease patient cohort 

The small group of clinically diagnosed AD patients was comprised of nine individuals with 

a mean age of 73 years. All AD patients had undergone extensive cognitive and behavioural 

testing as part of the TRACC testing protocol and had readily banked faecal samples, were 

included in this study. This patient cohort was made up of two females and seven males. The 

majority of patients attained a high school or college level of education. The average time 

since symptom onset was approximately six years (Table 5.1).  

 
Table 5.1 Primary characteristics of the Alzheimer’s Disease patient group compared against 

the two Apolipoprotein E cohorts 

Measure AD patient 
group (n=9) 

APOε4 non-
carriers (n=40) 

APOε4 
carriers (n=39) 

AD vs APOε4 non-
carriers1 

AD vs APOε4 carriers2 

p-value 

Age (years) 
   Mean (SD) 

 
73.1 (5.9) 

 
66.73 (5.9) 

 
63.95 (5.5) 

 
<0.0011,2 

Sex 
   Female (%) 
   Male (%) 

 
2 (22.2%) 
7 (77.8%) 

 
25 (62.5%) 
15 (37.5%) 

 
30 (78.9%) 
8 (21.1%) 

 
<0.0011,2 

Educational 
attainment 
   No formal education 
   High school 
   College 
   University 
   missing 

 
0 (0%) 

4 (44.4%) 
4 (44.4%) 
1 (11.2%) 

0 (0%) 

 
0 (0%) 

9 (22.5%) 
12 (30%) 

19 (47.5%) 
0 (0%) 

 
0 (0%) 

8 (21.1%) 
7 (18.4%) 
20 (52.6%) 
3 (7.9%) 

 
 

>.11,2 

1Group comparison between AD patient group and APOε4 non-carriers, 2Group comparison 
between AD patient group and APOε4 carriers 
 

In comparison to the demographics of the two the APOE groups, the AD patient cohort had 

a significantly higher mean age (p<0.001) and a significantly different sex distribution 

(p<0.001) with a higher ratio of males to females. All three groups were matched for 

educational attainment (p=0.167). 
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Cognitive test performance of Alzheimer’s Disease patient cohort  

The cognitive results from the ACE-III, ROCF and TMT of the AD patient cohort are 

summarized in Table 5.2 and are described in the following. I used multiple regression 

models to investigate the effect of ‘group’ (AD patients, APOe4 carriers or non-carriers) on 

the measures’ performance outcomes whilst accounting for the effect of age and educational 

attainment.  

 

Table 5.2 Neuropsychological profile of the Alzheimer’s Disease patient group compared 

against the two Apolipoprotein E cohorts 

Measure AD patient 

group 

Mean (SD) 

APOε4 non-

carriers  

Mean (SD) 

APOε4 carriers  

 

Mean (SD)  

AD vs APOε4 non-

carriers1 

AD vs APOε4 

carriers2 

p-value 

 

ACE-III  

Summary score (/100) 

   Attention sub. (/18) 

   Memory sub. (/26) 

   Fluency sub. (/14) 

   Language sub. (/26) 

   Visuospatial sub. (/16) 

[n=9] 

 

70.33 (11.86) 

13.33 (4.15) 

14.44 (3.64) 

7.11 (1.83) 

22.78 (3.7) 

12.67 (4.36) 

[n=39] 

 

95.30 (3.95) 

17.55 (0.93) 

25.03 (1.48) 

12.35 (1.64) 

24.93 (1.38) 

15.45 (1.01) 

[n=38] 

 

95.34 (2.58) 

17.66 (0.85) 

25.08 (1.36) 

12.39 (1.49) 

25.21 (0.87) 

15.00 (1.04) 

 

 
p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

 

ROCF  

Copy score (/36) 

Recall score (/36) 

Copying time (sec) 

[n=9] 

 

25.22 (10.10) 

6.17 (6.49) 

288.33 (141.80) 

[n=39] 

 

31.39 (2.95) 

18.72 (5.45) 

162.51 (56.10) 

[n=38] 

 

31.95 (2.69) 

18.86 (5.29) 

188.34 (67.92) 

 

 

p<0.0011,2 

p<0.0011,2 

p<0.011,2 

 

TMT  

TMT-A (sec) 

TMT-B (sec) 

[n=7] 

 

56.71 (31.62) 

209.43 (105.68) 

[n=38] 

 

34.92 (7.86) 

71.16 (23.20) 

[n=37] 

 

33.62 (12.61) 

62.78 (18.69) 

 

 

p<0.0011,2 

p<0.0011,2 

TMT-d (TMT-B – -A, sec) 152.71 (94.33) 36.24 (22.39) 29.16 (16.02) p<0.0011,2 
1Group comparison between AD patient group and APOε4 non-carriers, 2Group comparison between 

AD patient group and APOε4 carriers, ACE=Addenbrooke’s Cognitive Examination, ROCF=Rey-

Osterrich-Complex-Figure test, TMT = Trail Making Test 
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Addenbrooke’s Cognitive Examination-III 

The AD patients performed significantly lower on the ACE-III, indicating an overall 

impairment in cognition, compared to the APOe4 carriers (ß=-23.98, p<0.001) and non-

carriers (ß=-23.59, p<0.001) (Table 7.42 in the supplementary). As outlined in the methods, 

the threshold for a diagnosis of suspicion for AD is 82 (with high specificity).  These results 

indicate that the AD patient group scored ~24 points less than the APOE cohorts (Figure 

5.1). Our regression model accounted for 74% of the observed variance in the data.  

 

This was also reflected by a significant decline in all five cognitive domains evaluated by 

the ACE-III, namely attention, memory, verbal fluency, language and visuospatial abilities. 

 

Figure 5.1 Boxplot of summary Addenbrooke’s Cognitive Examination-III score between 

the three groups, ** p<0.001 

 

Rey-Osterrich-Complex-Figure test 

AD patients performed significantly less well on visuoconstructional abilities and non-verbal 

abilities such as executive functioning, as measured by ROCF copy score. AD patients took 

significantly longer to complete the copy drawing, compared to the APOe4 carriers (β= 6.74, 

p<0.001) and non-carriers (β= 6.34, p<0.001) (Table 7.42 and Figure 7.43 in the 

supplementary).  
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Nonverbal (recall and recognition) memory, which I further evaluated using the three-minute 

delayed recall of the ROCF, was also significantly impaired in AD patients compared to the 

both APOE cohorts (Figure 5.2). AD status explained 36.4% of the observed data variance, 

whereas neither age nor educational attainment added significantly to the performance 

prediction. On average participants of the AD group scored 11.58 (p<0.001) and 11.22 

(p<0.001) less well on the recall drawing, compared to the APOe4 non-carriers and carriers, 

respectively (Table 7.44 in the supplementary).  

 

 

Figure 5.2 Boxplot of Rey-Osterrich-Complex-Figure recall score by participant group, ** 

p<0.001 

 

The model for ROCF copy time significantly predicted 13.6% of variance in the data, with 

a significant effect of group, but no effect for age or educational attainment. Results indicate 

that the AD patient group took 1 min 42 sec and 1 min 26 sec longer compared to the APOe4 

non-carriers (p<0.01) and APOe4 carriers (p<0.01), respectively, to complete the ROCF 

copy drawing (Table 7.46 in supplementary).  
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Trail Making Test 

Analyses of the TMT results showed that AD patients had a significantly reduced ability for 

visual scanning and psychomotor speed (TMT-A) compared the APOe4 non-carriers (ß=-

20.29, p<0.001) and the APOe4 carriers (ß=-21.28, p<0.001) (Table 7.47 in supplementary). 

This was also reflected by the mean TMT-A scores.  

 

The AD patient group performed also significantly less well in important domains of 

executive functioning (working memory), including stimuli-shifting and inhibition control 

as indicated by significantly lowered performance on the TMT-B (Figure 5.3), compared to 

the APOe4 groups (non-carriers: ß=-129.75, p<0.001, carriers: ß=-135.60, p<0.001) (Table 

7.48 in supplementary). Increasing age was also found to be positively associated with 

worsened performance on the TMT-B (ß=1.65, p=0.019). This association reflects the well-

established decrease in fluid cognitive abilities that occurs in healthy ageing. The results 

suggest that when keeping the influence of all other predictors constant, participants needed 

an extra 1.65 seconds with every one-year increment of age. Furthermore, AD patients took 

2 min 9 seconds or 2 min 15 sec more than the APOe4 non-carriers and APOe4 carriers 

respectively, to complete part B of the TMT. 

 
 
Figure 5.3 Boxplot of Trail Making Test-B performance by participant group, ** p<0.001  
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Cognitive and behavioural results of Alzheimer’s Disease patients from 

questionnaires 

The patients’ self-reported anxiety (GAD-7) and depression (PHQ-9) levels, as well as the 

frequency of behavioural changes (CBI-R) were compared against the APOE groups. The 

data from these questionnaires is given in Table 6.3.  

 

Table 5.3 Secondary neuropsychological profile of the Alzheimer’s Disease patient group 

compared against the two Apolipoprotein E cohorts 

Self-reported measure AD patient 

group (n=9) 

Mean (SD) 

APOε4 non-

carriers (n=39) 
Mean (SD) 

APOε4 carriers  

(n=38) 
Mean (SD) 

AD vs APOε4 

non-carriers1 

AD vs APOε4 

carriers2 

p-value 

GAD-7 (/21)  4 (4.61) 0.87 (1.64) 0.92 (1.52) p<0.0011,2 

PHQ-9 (/27) 4.89 (4.01) 1.85 (3.08) 1.94 (2.16) p<0.0011 

p=0.0012 

CBI-R (/180) 

Summary score 

  Memory subscore 

  Self-care subscore 

  Abnormal beh. subscore 

  Everyday skills subscore 

  Belief subscore 

  Eating habits subscore 

  Sleep subscore 

  Stereotypic beh. &   

  motor abilities subscore 

  Motivation subscore 

 

26.33 (17.72) 

52.22 (17.33) 

17.44 (22.74) 

15 (17.66) 

30.56 (21.75) 

6 (12.49) 

18.11 (21.46) 

36.33 (32.25) 

27.78 (34.07) 

 

38.89 (24.47) 

 

4.90 (5.46) 

7.15 (8.16) 

0 (0) 

2.87 (5.03) 

0.77 (3.54) 

0.21 (1.28) 

3.54 (7.72) 

21.08 (20.56) 

3.05 (7.56) 

 

4.10 (8.50) 

 

3.09 (2.67) 

6.18 (7.08) 

0 (0) 

1.71 (3.26) 

0.15 (0.86) 

0 (0) 

2.00 (5.49) 

14.18 (16.27) 

0.53 (1.73) 

 

1.47 (3.99) 

 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p<0.0011,2 

p =0.0551, p<0.012 

p<0.0011,2 

 

p<0.0011,2 

1Group comparison between AD patient group and APOε4 non-carriers, 2Group comparison between 

AD patient group and APOε4 carriers, CBI-R = Cambridge Behaviour Inventory Revised (all scores 

are given as frequency scores), GAD-7 = Generalized Anxiety Disorder-7, PHQ-9=Patient Health 

Questionnaire-9 
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Generalized Anxiety Disorder-7 

Anxiety was not prevalent in either of the three groups. On average, the AD patient group 

reported a GAD-7 score of 4.00, indicating that they experienced no anxiety with anything 

below a score of “5.00” denoting no anxiety. The mean GAD-7 scores in the APOE cohorts 

were even lower, with a mean of 0.87 in the APOe4 non-carrier and 0.92 in the APOe4 

carrier group. The difference between the numerical scores of the AD patient group and 

APOe4 groups, albeit below the threshold to signify the presence of anxiety, were 

statistically significant. The AD patient group had significantly higher scores compared to 

the two APOE cohorts (APOe4 non-carriers: ß=-3.21, p<0.001, APOe4 carriers: ß=-3.18, 

p=0.001) (Table 7.49 in the supplementary). 

 

Patient Health Questionnaire-9 

The number of participants who were identified to be mildly or moderately depressed was 

small across all three groups. The group mean score of the AD patients indicated mild levels 

of depression, whilst the APOE cohorts showed no levels of depression with PHQ-9 scores 

of 1.85 (APOε4 non-carriers) and 1.94 (APOε4 carriers). The AD patient group had 

significantly higher PHQ-9 scores than the APOe4 non-carriers (ß=-3.21, p<0.001) and 

carriers (ß=-3.18, p=0.001) (Table 7.50 in the supplementary). 

 

Cambridge Behaviour Inventory-Revised 

There were evident changes when comparing AD patients to the APOE cohorts on the 

outcome measures of the CBI-R. With a group average of 26.33 for the CBI-R summary 

score, the AD patient group scored 22.13 and 24.19 points higher compared to the APOe4 

non-carriers (p<0.001) and APOe4-carries (p<0.001), respectively (Figure 5.4). This 

indicates noticeable changes in the overall behaviour and functioning of AD patients. The 

regression model was able to explain 51.6% of the variance in the data (Table 7.51 in the 

supplementary). 
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Figure 5.4 Boxplot of Cambridge Behaviour Inventory-Revised summary frequency mean 

by group, ** p<0.001 

 

The AD patient cohort scored significantly worse in nine out of the ten functional and 

behavioural domains measured by the CBI-R. This was marked by a significant decline in 

memory, everyday skills, self-care, abnormal behaviour, mood, beliefs, eating habits, 

stereotypic and motor behaviour, and motivation in the AD patient cohort. The variation in 

the data that could be explained by group (APOe4 carriers, APOe4 non-carriers, AD patient 

group) in the regression models was high. In particular for the memory, everyday skills and 

motivation frequency domains, for which group explained 72.4%, 62.8% and 57.5% of the 

data, respectively. The only exception was the sleep subscale, for which only the group 

contrast of AD vs APOe4 carriers was significant (ß=-23.29, p<0.008), whilst comparing 

the AD patients to the APOe4 non-carriers did not reach significance (ß=-15.60, p=0.055). 
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Taxonomic profile 

Descriptive summary 

In order to mitigate against the introduction of potential bias inherent to different sequencing 

runs, which can be a source of technical noise, and thus to maximise the ability to detect a 

true signal, the below presented cross-sectional comparison is based on sequencing data 

from the same sequencing run. The AD patient data was not collected prospectively and was 

not available longitudinally. I extracted the genomic DNA from the banked samples using 

the same methods as for the samples of the APOE groups. Next, the AD patient samples 

were pooled and sequenced together with the APOE group data gathered at T2. Thus, to 

avoid adding further variability from the sequencing run, this means that I herein compare 

AD patient data against the T2 time point of the APOE groups. 

 

The intestinal microbiota of the AD patient group was made up of nine phyla and was 

characterized predominantly by Firmicutes (M=51.43%, SD=21.3) and Actinobacteria 

(M=23.90%, SD=19.2). The mean relative abundances of the phyla Euryarchaeota and 

Bacteroidetes were also high compared to other phyla, contributing to a further 11.44% 

(SD=24.8) and 9.11% (SD=10.1), respectively. The remaining 4.12% of the total relative 

abundances, were mainly accounted for by Verrucomicrobia, Proteobacteria, and Viruses. 

I also observed the occurrence of Candidatus Saccariabacteria in three patient samples with 

very low relative abundance (<0.01%), as well as one occurrence of Ascomycota (Figure 

5.5).  

 

There were several pronounced numerical differences when comparing the intestinal 

composition of AD patients to those of the APOE cohorts (Figure 5.5 and 5.6, Table 5.4).
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Figure 5.5 Relative abundances of phyla by group: Apolipoprotein ε4 non-carriers (left panel), Apolipoprotein ε4 carriers (middle panel), 

Alzheimer’s Disease patient group (right panel), shape showing kingdom affiliation, size represents relative abundances 
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Firstly, whilst Firmicutes were the most abundant phylum in all three groups, the relative 

abundance in the AD patient group was about 10% smaller compared to the relative 

abundance of Firmicutes observed in the two APOE cohorts (both approximately 60%). 

Next, whereas Bacteroidetes was the second most abundant phylum in the microbial profiles 

of the APOE groups, this phylum ranked only fourth in the AD patient group. On the other 

hand, microbiota communities of AD patients showed comparatively much greater 

abundance of Actinobacteria and Euryarchaeota (the latter phylum belonging to the 

kingdom of Archaea) compared to those of the APOE groups. Whilst only present at overall 

low abundances, Proteobacteria were observed to be more than twice as abundant in the 

profiles of APOE groups than AD patients, whereas Verrucomicrobia occurred at similar 

relative abundances between the three groups. The relative abundance of Viruses was 

smallest in the APOε4 non-carriers and increased in a stepwise manner, via the APOε4 

carriers to the AD patient group, which had the highest relative mean abundance.  

 

 

 Figure 5.6 Relative abundance of phyla by group (2): Apolipoprotein ε4 non-carriers (left), 

Apolipoprotein ε4 carriers (middle), Alzheimer’s Disease patient group (right) 
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Table 5.4 Relative abundances (%) of most abundant phyla by group 

 APOε4 non-
carriers 

APOε4 carriers AD 

 Mean (SD) T2  T2  
Firmicutes 60.06 (15.46) 59.81 (11.62) 51.43 (21.34) 
Bacteroidetes 19.79 (11.15) 25.63 (10.95) 9.11 (10.11) 
Actinobacteria 13.44 (13.92) 7.65 (5.61) 23.90 (19.24) 
Verrucomicrobia 2.04 (3.27) 1.70 (2.51) 2.06 (2.99) 
Proteobacteria 2.54 (4.15) 2.84 (5.35) 1.14 (1.24) 
Euryarchaeota 2.01 (4.29) 1.58 (4.82) 11.44 (24.77) 
Viruses 0.13 (0.34) 0.77 (4.51) 0.91 (1.47) 
Others 0.03 0.01 0.01 

 

Overall, the intestinal microbiota composition at phylum-level was very similar between the 

two APOE groups. The intestinal microbiota composition of the AD patient cohort, however, 

showed some clear numerical differences in the group means of relative abundances, with 

notable increases in Actinobacteria and Euryarchaeota, coupled with decreases in the 

relative abundance of Firmicutes and Bacteroidetes. Nonetheless, Firmicutes remained the 

dominant phyla in all three compositional profiles (Figure 5.6, Table 5.4).  

 

There were 45 distinct taxa at family-level within the AD patient cohort. The 15 most 

abundant families made up 91.5% of the total compositional profile. With a mean relative 

abundance of 19.84% (SD=15.65) and 19.41% (SD=18.0), the families of Ruminococcaceae 

and Bifidobacteriaceae, respectively, were by far the most abundant families in the AD 

patient group. The ten most abundant families besides the already mentioned also included 

the following: Methanobacteriaceae and Lachnospiraceae (with relative abundance above 

10%), Eubacteriaceae and Bacteroidaceae (with relative abundances above 5%), and lastly 

the families Coriobacteriaceae, Streptococcaceae, Lactobacillaceae and Verrucomicrobia 

(with relative abundances below 5% but above 2%) (Figure 5.7).  
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Figure 5.7 Relative abundances of top ten families within Alzheimer’s Disease patient group. Apolipoprotein ε4 non-carriers (left panel), 

Apolipoprotein ε4 carriers (middle panel), Alzheimer’s Disease patient group (right panel), shape showing kingdom affiliation, size represents 

relative abundances 
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There was a relatively large overlap with respect to the ten most abundant families between 

the APOE groups and the AD patient group. However, neither members of the 

Porphyromonadaceae, Prevotellaceae, or Rikenellaceae which belonged to the ten most 

abundant families in the APOE groups, were part of the top ten most abundant families 

within the AD intestinal profiles. In their place, the AD patient group saw high abundances 

in members of Bifidobacteriaceae, Methanobacteriaceae, Streptococcaceae, and 

Verrucomicrobiaceae compared to the APOE groups. Whilst Ruminococcaceae, 

Eubacteriaceae, and Bacteroidaceae occurred at lower abundances in the AD patient group 

(Figure 5.8, Table 5.5).  

 

 

Figure 5.8 Relative abundance of families by group (2), Apolipoprotein ε4 non-carriers 

(left), Apolipoprotein ε4 carriers (middle), Alzheimer’s Disease patient group (right) 
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Table 5.5 Relative abundances (%) of most abundant families by group 

 APOε4 non-carriers APOε4 carriers AD 

Mean (SD) T2 T2  

Ruminococcaceae 25.90 (9.81) 26.32 (9.25) 19.84 (15.65) 

Bacteroidaceae 9.46 (5.42) 12.12 (7.81) 6.68 (9.33) 

Lachnospiraceae 13.66 (6.01) 14.03 (6.99) 10.71 (5.94) 

Eubacteriaceae 14.28 (12.81) 12.60 (9.69) 8.50 (9.34) 

Bifidobacteriaceae 9.43 (12.23) 4.94 (4.67) 19.41 (17.99) 

Rikenellaceae  5.00 (5.34) 5.61 (5.34) 1.49 (1.42) 

Prevotellaceae 1.77 (4.11) 4.80 (10.53) 0.18 (0.25) 

Porphyromonadaceae 2.87 (2.98) 2.74 (1.55) 0.67 (0.80) 

Verrucomicrobiaceae 2.04 (3.27) 1.70 (2.51) 2.06 (2.99) 

Veillonellaceae 1.32 (2.30) 1.63 (2.88) 0.54 (0.90) 

Coriobacteriaceae 3.95 (3.48) 2.68 (2.83) 4.20 (2.61) 

Clostridiaceae 1.46 (3.50) 1.28 (2.95) 0.64 (1.28) 

Enterobacteriaceae 1.35 (3.73) 1.90 (5.23) 0.97 (1.22) 

Methanobacteriaceae 2.01 (4.29) 1.58 (4.82) 11.44 (24.77) 

Streptococcaceae 0.66 (1.20) 1.42 (2.89) 4.12 (5.20) 

 

At the species-level, there were 395 taxa. However, 67% of the compositional profile in the 

AD patient group was made up by the 20 most abundant species (Figure 5.9). Taking a closer 

look at these top 20 species across all groups, showed that half of the species belonged to 

the Firmicutes phylum, thus well reflecting the compositional picture already seen at a 

higher taxonomic level, and overall spanned across five main phyla (Figures 5.9 and 5.10, 

Table 5.6).  

 



 234 

 

Figure 5.9 Relative abundance of species by group (2), Apolipoprotein ε4 non-carriers (left), 

Apolipoprotein ε4 carriers (middle), Alzheimer’s Disease patient group (right) 
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Table 5.6 Relative abundances (%) of most abundant species by group 

 APOε4 non-
carriers 

APOε4 carriers AD 

Mean (SD) T2 T2  
Subdoligranulum unclassified 9.35 (6.85) 9.82 (8.87) 9.15 (9.96) 

Eubacterium rectale 7.76 (10.26) 8.02 (7.91) 5.92 (8.41) 

Faecalibacterium prausnitzii 8.13 (5.67) 8.89 (5.43) 2.43 (2.48) 

Ruminococcus bromii 4.73 (5.05) 3.60 (5.53) 5.18 (6.35) 

Ruminococcus obeum 1.26 (1.11) 1.59 (0.90) 1.46 (1.69) 

Prevotella copri 1.49 (4.01) 4.51 (10.63) 0.10 (0.18) 

Alistipes onderdonkii 1.11 (2.87) 1.38 (3.78) 0.10 (0.19) 

Alistipes putredinis 2.41 (2.51) 2.84 (2.08) 0.47 (0.72) 

Escherichia coli 0.85 (3.04) 1.30 (3.80) 0.80 (0.95) 

Bacteroides stercoris 1.36 (2.31) 0.95 (2.01) 0.17 (0.51) 

Bacteroides dorei 0.61 (0.78) 1.30 (1.90) 0.27 (0.44) 

Dialister invisus 0.65 (1.41) 0.98 (2.58) 0.48 (0.89) 

Bacteroides uniformis 2.03 (2.37) 2.35 (2.12) 1.91 (4.23) 

Akkermansia muciniphila 2.04 (3.27) 1.70 (2.51) 2.06 (2.99) 

Methanobrevibacter smithii 1.56 (3.32) 1.37 (4.12) 11.07 (24.59) 

Collinsella aerofaciens 3.41 (3.16) 2.17 (2.61) 2.34 (2.53) 

Bifidobacterium longum 3.20 (5.05) 2.48 (2.69) 11.06 (9.49) 

Bifidobacterium adolescentis 4.23 (8.03) 1.69 (2.66) 5.36 (8.90) 

Eubacterium siraeum 3.80 (8.20) 1.39 (2.81) 0.58 (1.45) 

Dorea longicatena 1.64 (1.35) 1.78 (1.06) 1.36 (1.50) 

Ruminococcus torques 1.49 (1.59) 1.19 (1.17) 2.03 (2.07) 

Ruminococcus sp5_1_39BFAA 2.21 (1.86) 2.58 (2.12) 2.01 (2.00) 

Coprococcus sp ART55_1 2.77 (4.37) 2.69 (5.49) 1.19 (2.36) 

 

The ten species belonging to the phylum of Firmicutes were all found to be part of the order 

Clostridiales. Within this order classification, they can further be sub-classified to belong to 

one of three families – Lachnospiraceae, Ruminococcaceae, Eubacteriaceae – which are 

part of the ten most abundant families. Abundance of the species E. siraeum was reduced in 
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a stepwise fashion from APOε4 non-carriers (M=3.8%, SD=8.2), over APOε4 carriers 

(M=1.4%, SD=2.8), to AD patients (M=0.6%, SD=1.5). E. rectale was similarly abundant 

between the APOE groups (M=8-8.3%, SD=7.9-10.5), but nominally less abundant in the 

AD patient group (M=5.9%, SD=8.4). Another striking difference between the APOE 

groups and the AD patient group, was the 3- to 4-fold reduction in the mean relative 

abundance of F. prausnitzii (non-carriers: M=8.1%, SD=5.7; carriers: M=8.9%, SD=5.4; 

AD patients: M=2.4%, SD=2.5). 

 

The five species belonging to the Bacteroidetes phylum, are part of five different families, 

of which only the Bacteroidaceae (M=10.7%, SD=5.9) is represented in the top ten families. 

These five species were P. copri (M=0.1%, SD=0.2), Barnesiella intestinihominis (M=0.2%, 

SD=0.3), B. vulgatus (M=0.4%, SD=0.8), B. uniformis (M=1.9%, SD=4.2), and Alistipes 

putredinis (M=0.5%, SD=0.7). Particularly P. copri was nominally distinctly different, with 

a 15- to 45- fold reduction in AD patients compared to the APOε4 non-carriers (M=1.5%, 

SD=4.0) and APOε4 carriers (M=4.5%, SD=10.6), respectively.  

 

Three species belonging to the Actinobacteria clade were also found to rank among the 20 

most abundant species, namely C. aerofaciens (non-carriers: M=3.4%, SD=3.2; carriers: 

M=2.2%, SD=2.6; AD patients: M=2.3%, SD=2.5), B. longum (non-carriers: M=3.2%, 

SD=5.0; carriers: M=2.5%, SD=2.7; AD patients: M=11.1%, SD=9.5) and B. adolescentis 

(non-carriers: M=4.3%, SD=8.0; carriers: M=1.7%, SD=2.7; AD patients: M=5.4%, 

SD=8.9). On a higher taxonomic level, these species belong to the families 

Coriobacteriaceae and Bifidobacteriacea. Both Bifidobacterium species had considerably 

higher relative abundances in AD patients than the APOE groups. This was especially true 

for B. longum which was over three times more abundant in the AD patient group compared 

to the APOE cohorts. 
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The two-remaining species of the 20 most abundant species, belong to the phyla 

Verrucomicrobia (Verrucomicrobiaceae family) and the Euryarchaeota (family 

Methanobacteriaceae). Within the Euryarchaeota, the archaea species M. smithii was 

considerably more abundant in the AD patient group with at mean relative abundance of 

11.07% (SD=24.59), compared to the below 2% average abundance of the APOE groups.  
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Figure 5.10 Relative abundances of top 20 species. Apolipoprotein ε4 non-carriers (left panel), Apolipoprotein ε4 carriers (middle panel), 

Alzheimer’s Disease patient group (right panel), shape showing kingdom affiliation, size represents relative abundances  



 239 

Overall, the descriptive summary indicates that there are some noticeable numerical 

differences in the intestinal taxonomic composition between the groups. These 

differences were observed to be particularly perceptible when making the comparison 

between the AD patient group and the APOE cohorts. Whether the observed 

differences in relative abundances are indeed able to distinguish between the groups, 

will be addressed in the following by subjecting the compositional profiles to diversity 

and differential abundance analysis.   

 

Alpha diversity 

The between-group comparison of alpha diversity indices, comparing the AD patient 

group to the APOε4 carriers, was significant at kingdom-level (Shannon p=0.017, 

Inverse Simpson p=0.017), at genus-level (Shannon p=0.039, Inverse Simpson 

p=0.042) and at species-level (Shannon p=0.012, Inverse Simpson p=0.029). At the 

kingdom-level, the AD group exhibited a larger species richness and diversity than the 

APOε4 carriers. At genus- and at species-level community diversity was reduced in 

the AD patient group (Figure 5.11, Table 7.52 in the supplementary).  

 

When comparing the AD patient group to the APOε4 non-carriers, I observed a 

significant difference only at species-level. Here, the AD group had a mean Shannon 

diversity index of 2.72 and an Inverse Simpson index of 9.97 which was significantly 

smaller compared to that of the APOε4 non-carriers (Shannon=3.05, p=0.028; Inverse 

Simpson=12.73, p=0.033) (Figure 5.11, Table 7.52 in the supplementary).  

 

There was no statistically significant difference in alpha diversity at any of the 

taxonomic levels between the APOE groups.   
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Figure 5.11 Alpha diversity (measured as Shannon diversity index) at (A) genus-level 

and (B) species-level between the groups; *p<0.05. Blue: Apolipoprotein ε4 non-

carriers, red: Apolipoprotein ε4 carriers, yellow: Alzheimer’s Disease patient group 

 

The significantly lower alpha diversity in the AD patient group compared to both 

APOE cohorts at species-levels indicates that the intestinal microbiota community of 

AD patients is characterized by a lower species richness and evenness.  

 

Beta diversity 

Large-scale compositional differences were further assessed by determining beta 

diversity indices and assessing them for statistical significance between the three 

groups with a PERMANOVA, using age and sex as covariates. The stratification of 

participants was implemented as follows. Participants were classified to belong to 

either of three groups depending on their health and APOε4 status: the APOε4 non-

* (A) 

(B) 

* 

APOε4 non-carriers APOε4 carriers AD patients 

APOε4 non-carriers APOε4 carriers AD patients 

* 
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carriers (n=36), the APOε4 carriers (n=37), or the AD patient group (n=9). They were 

further stratified into three age groups: 52-60 years old (n=14), 61-69 years old (n=42), 

and 70+ years old (n=26). Sex was used as a second covariate (female: n=53, male: 

n=29).  

 

Participant group was the most significant factor to drive variation in the intestinal 

microbiota, showing a significant effect at every taxonomic level (p<0.001, Table 7.53 

in the supplementary), except for at kingdom-level, and contributing to 5.3%-12.3% 

of the variance observed in the data (Figure 5.12 (A)). The largest effect of group was 

observed at class-level, explaining 12.3% of the variation in beta diversity. The 

different age groups did not explain variation in the community distance profiles 

(Figure 5.12 (C)). The effect of sex was not significant, except for at genus- (p=0.029) 

and at species-level (p=0.023, Figure 5.12 (B)). Here, sex could explain 2.2% of 

variance in the beta diversity profiles.  
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Figure 5.12 Non-metric Multidimensional Scaling on Bray-Curtis dissimilarity 

between the species relative-abundance intestinal microbiota profiles by (A) group 

(light blue = Apolipoprotein ε4 non-carriers, red = Apolipoprotein ε4 carriers, yellow 

= Alzheimer’s Disease patients), (B) sex (orange = female, blue = male), (C) age group 

(light blue = 52-60 years old, middle blue = 61-69 years old, dark blue = 75+ years 

old). Each point denotes a sample in a reduced dimensional space and is connected 

with a line to the group centroid 

 

Pairwise comparison for all pairs of groups with FDR-correction (AD vs APOε4 

carriers, AD vs APOε4 non-carriers, APOε4 carriers vs non-carriers) showed that 

group differences were significant when comparing the AD patient group to either the 

APOε4 non-carriers or carriers. However, beta diversity was not different when 

comparing the two APOE cohorts to each other (Table 7.54 in the supplementary).  

 

Similar results were obtained when repeating the analysis using Jaccard distance 

instead of Bray-Curtis dissimilarity index to build the distance matrices.  
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Differential abundance analysis  

Univariate abundance anlysis (LEfSe) 

LEfSe analysis identified a total of 42 significant (p<.05) associations (Figure 5.13;  

Table 7.55 in the supplementary). All three groups were enriched in members of 

several taxa. The APOε4 non-carriers was the group with the smallest number of 

discriminating taxa.  

 

Figure 5.13 Linear Discriminant Analysis effect size of discriminative taxa between 

Apolipoprotein ε4 non-carriers (green), Apolipoprotein ε4 carriers (red) and the 

Alzheimer’s Disease patient group (yellow). The length of bar charts represents 

increasing abundance. Associated Linear Discriminant Analysis scores are on a log10 

scale 
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The AD patient group was broadly characterized by increased abundances for bacteria 

belonging to two clades – the Actinobacteria and Firmicutes phyla. Within the 

Firmicutes phylum, the intestinal microbiota of the AD patient group was enriched in 

members belonging to either of three orders - Bacillales, Lactobacillales, or 

Clostridiales. Only the AD patient group showed any associations for the Bacillales 

order, which at a higher taxonomic level included members of the genus Gemella. 

Distinct members of the Lactobacillales order were found to be enriched in the AD 

group, as well as in the APOε4 carriers. The AD cohort showed an increased relative 

abundance in L. casei paracasei with a mean abundance of 1.97% compared to 0.03% 

and 0.04% in the APOε4 non-carriers and carriers, respectively. The APOε4 carriers, 

on the other hand, had a higher abundance in Streptococcus cristatus and 

Streptococcus australis. The latter two species overall occurred at very low 

abundances (<0.02%). 

 

All three groups showed enrichment in members of the Clostridiales order, with the 

majority of associations found for the APOε4 carriers. The AD patient group had only 

two associations within this order, namely for the species Clostridium methylpentosum 

and an associated strain. It is, however, noteworthy that this species was very rare, 

showing a mean relative abundance of 0.01% in the AD patient group and was 

completely absent from the two APOE cohorts. Altogether LEfSe detected seven 

discriminating taxa within the APOε4 carriers for the Clostridiales order, which at a 

higher taxnomic resolution belonged to the Ruminococcaceae, Lachnospiraceae, 

Eubacterium families – including Ruminoccocus callidus, a strain of the F. prausnitzii 

species, Ruminococcus obeum and Eubacterium eligens. All of these taxa were 

significantly more abundant  in the APOε4 carriers compared to the other two groups. 

Of the detected species, E. eligens, was most prevalent (mean relative abundance 

APOε4 carriers: 1.57%, APOε4 non-carriers: 0.92%, AD patients: 0.10%). The 
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APOε4 non-carriers were also enriched in members of the Eubacterium family -

namely for the species E. ramulus and an associated strain. 

 

The intestinal microbiota of the AD patient group was also characterized by increased 

abundance of several members of the Actinobacteria clade. Broadly, the associations 

belonged to members of two families – Coriobacteriaceae or Actinomyetaceae. Within 

the latter family, there were two associated species Actinomyces viscosus and 

Actinomyces johnsonii species and associated strains.  Whereas the Coriobacteriaceae 

family was enriched in members of the Atopobium parvulum species. The APOε4 non-

carriers also had an association with a species of the Coriobactericacea, however, this 

increase was related to the C. aerofaciens species.  

 

LEfSe analysis also found discriminating features within the Bacteroidetes phylum. 

The APOε4 carriers were enriched in Bacteroidetes, Bacteroidia and Bacteroidales, 

and the species B. plebeius. The APOε4 non-carriers, one the other hand, showed 

increased abundance in members of B. stercoris and an associated strain, but not other 

taxa of the Bacteroidetes.  

 

Upon lowering the alpha value to <0.01, LEfSe analysis only returned three significant 

associations. All of these were for the AD patient group, namely for three closely 

related members of the already described Actinobacteria clade – the order 

Actinomycetales, the family Actinomycetaceae, and the Actinomyces genus.   
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Multivariate analysis (MaAsLin2) 

Per-feature testing in MaAsLin2 was used to identify taxa associated with ‘group’, 

whilst adjusting for potential confounders (age and sex). There were 52 significant 

associations with group (Table 7.56 in the supplementary). The identified features 

spanned over two kingdoms and five phyla and included 14 associations at species-

level. Within the model, the AD patient group was used as a baseline contrast against 

which the APOε4 carriers and APOε4 non-carriers were compared against.  

 

Of the 52 distinct taxa identified by MaAsLin2, 47 were found for both comparisons 

(Figure 5.14, taxa in black). One association was only significant in the AD vs APOε4 

non-carrier comparison (Figure 5.14, taxa in blue), whereas four associations were 

found to be present only between the AD patient and APOε4 carrier comparison 

(Figure 5.14, taxa in red).  

 

The vast majority of taxa associations were found for the kingdom of Bacteria and 

belonged to four phyla, namely Actinobacteria, Bacteroidetes, Firmicutes and 

Proteobacteria. Overall, about a third of all associations were related to the 

Bacteroidetes phylum, approximately 27% were related to the phylum Firmicutes, one 

in four were related to the Actinobacteria phylum, and 11.5% belonged to phylum of 

Proteobacteria. The remaining associations were linked to members of an unnamed 

phylum of the Virus kingdom. 

 

All associations within the Actinobacteria clade (Figure 5.14, [A]) showed a 

significantly reduced abundance of taxa in the two APOE cohorts compared to the AD 

patient group. More specifically, this significant reduction in abundance was found for 

members belonging to three distinct orders: Actinomycetales, Bifidobacteriales, and 

members of the Coriobacteriales. At the highest taxonomic resolution four species, 
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Actinomyces viscosus, Actinomyces oris, B. longum and an unclassified Eggerthella 

species, were significantly enriched in AD. B. longum was 10.02% and 8.90% less 

abundant in the APOε4 carriers and non-carriers, respectively, compared to the AD 

patient group (Figure 5.14, [B]). Whereas A. oris and A. viscosus mean relative 

abundances were approximately 2% higher in the AD patient group. The unclassified 

Eggerthella species was only half as abundant in the APOE cohorts compared to the 

AD patient group (Figure 5.14, [A]).   

 

The Bacteroidetes clade, had the largest number of significant associations. On the 

contrary to the Actinobacteria clade, I found that all identified taxa were present at 

significantly higher relative abundances in the APOE cohorts compared to the AD 

patient group. This was reflected by increased mean relative abundances for the 

Bacteroidales order (AD: M= 9.11%, SD = ±10.11; non-carriers: M=19.79%, SD = 

±11.15; carriers: 25.63%, SD = 10.95) as well as for three associated families and their 

members- Bacteroidaceae, Porphyromonadaceae and Rikenellaceae. At even higher 

taxonomic resolution, I found six species enriched within these three families - B. 

stercoris. Parabacteroides merdae, Barnisiella intestinihominis, Odoribacter 

splanchnicus, and two species of the Alistipes genus (Figure 5.14 [B]).  

 

The third clade, which had several associations with group was that of the Firmicutes 

phylum (which in itself was not significant). In contrast to the Actinobacteria clade for 

which all significant members were significantly enriched in AD patients, and the 

Bacteroidetes clade for which all significant members were depleted in the AD group, 

I observed both reduction and enrichment in taxa within the Firmicutes compared to 

the APOE groups (Figure 5.14 (C)).   
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The class of Bacilli and its associated order Lactobacillales, as well as several 

members belonging to this order, were all significantly reduced compared to the AD 

group. With mean relative abundances for Lactobacillales increasing in a stepwise 

manner from 0.97% (SD = 1.91) in the APOε4 non-carriers, 1.79% (SD = 3.49) to in 

APOε4 carriers, and 7.53% (SD = 6.17) in the AD group. 

 

Whereas the class of Clostridia, its order Clostridiales and six related members were 

significantly enriched compared to the AD group. Here I observed a stepwise reduction 

from the APOε4 non-carriers, over the APOε4 carriers, to the AD patient group for the 

Clostridia order. Within the Clostridia order, I found four associated families: 

Clostridiales Family XIII Incertae Sedis (enriched in AD), Eubacteriaceae (depleted 

in AD), Ruminococcaceae (depleted in AD) and Lachnospiraceae (depleted in AD). 

The species F. prausnitzii of the Ruminococcaceae was over three times as abundant 

in both APOE cohorts (non-carriers: 8.13%, SD=5.67; carriers: 8.89%, SD=5.43) 

compared to the AD patient group (2.43%, SD=2.48).  

 

There were also several associations with a fourth bacterial clade, namely with 

members of the Proteobacteria phylum, which included associations for the order of 

Burkholderiales and Pasteurellales. Within the Pasteurellales, the species 

Haemophilus parainfluenza was significantly more abundant in the APOε4 non-

carriers (0.07%, SD=0.13) and APOε4 carriers (0.06%, SD=0.10) compared to the AD 

patient group (0.002%, SD=0.003). 

 

Lastly, I also observed significant associations with an unnamed phylum of the Virus 

kingdom, that belonged to the order of Caudovirales at lower taxonomic levels. 
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Figure 5.14 Significant associations identified by MaAsLin2 analysis grouped by phylogeny, Clades: (A) Actinobacteria, (B) Bacteroidetes, 

(C) Firmicutes, (D) Proteobacteria, (E) Viruses. Black: associations with Alzheimer’s Disease group and both Apolipoprotein E cohorts, blue: 

Alzheimer’s Disease only with Apolipoprotein ε4 non-carriers, red: AD only with Apolipoprotein ε4 carriers, grey: no associations. Upward 

(increased) and downward arrow (decreased) indicate relative abundance in Alzheimer’s Disease patient group compared to the APOE groups.

o__Bifidobacteriales

f__Bifidobacteriaceae

g__Bifidobacteria

o__Coriobacteriales

f__Coriobacteriaceae

g__Eggerthella

o__Actinomycetales

s__Bifidobacterium_ 
longum

p__Bacteroidetes

c__Bacteroidia

o__Bacteroidales

f__Bacteroidaceae f__Rikenellaceae

g__Bacteroides g__Alistipes

s__Alistipes_
putredinis

k__BACTERIA

k__BACTERIA

f__Actinomycetaceae

g__Actinomyces

s__Bacteroides
_stercoris

f__Porphyromonadaceae

g__Parabacteroides g__Odoribacter

s__Parabacteroides
_merdae

g__Barnesiella

s__Barnesiella_ 
intestinihominis

s__Odoribacter_
splanchnicus

s__Alistipes_
onderdonkii

p__Actinobacteria

c__Actionbacteria

c

in AD

in AD

(A)
Group comparison:
AD vs APOε4 carriers
AD vs APOε4 non-carriers
AD vs both groups
no associations

Change in relative abundances:
taxa reduced in AD patient group
taxa enriched in AD patient group

(B)

s__Actinomyces_
viscosus

s__Actinomyces_
oris

s__Eggerthella_ 
unclassified

c



 251 

 

Figure 5.14 (continued) Significant associations identified by MaAsLin2 analysis grouped by phylogeny, Clades: (A) Actinobacteria, (B) 

Bacteroidetes, (C) Firmicutes, (D) Proteobacteria, (E) Viruses. Black: associations with Alzheimer’s Disease group and both Apolipoprotein 

E cohorts, blue: Alzheimer’s Disease only with Apolipoprotein ε4 non-carriers, red: AD only with Apolipoprotein ε4 carriers, grey: no 

associations. Upward (increased) and downward arrow (decreased) indicate relative abundance in Alzheimer’s Disease patient group compared 

to the APOE groups.
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Comparison of differential analysis results (LEfSe vs MaAsLin2)  

Both analyses identified numerous associations at different taxonomic levels. However, whilst 

the majority of discriminating taxa identified with LEfSe analysis were at species-level or 

strain-level, MaAsLin2 analysis identified associations that more equally distributed across 

all taxonomic levels.  

 

In both analyses numerous significantly associated taxa belonged to the Actinobacteria, 

Bacteroidetes and Firmicutes (dominating in LEfSe analysis) clade. I found that eight taxa 

were identified by both analyses: the phylum and class of Actinobacteria, one associated 

order, family, genus (Actinomyces), and the species A. viscosus. Both analyses also identified 

the phylum Bacteroidetes, the Bacteroidia, Bacteroidales order, and the species B. stercoris 

and E. eligens.  

 

Whilst the number of exact taxa detected by both analyses was limited, there was a striking 

overlap in phylogenetic lineages that were identified. Besides the already mentioned, both 

analyses also returned significant associations for members belonging the Streptococcaceae, 

Lactobacillaceae, Ruminococcaceae, and Lachnospiraceae families belonging to the 

Firmicutes phylum.
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Predictive Functional profiling  

In a next step, I used predictive functional profiling in order to gain a better insight into 

changes of the functional potential that might be associated with AD pathology. 

 

The KEGG gene abundance table had an average read count of 479,229 reads per sample, 

ranging between a minimum of 111,787 reads per sample to a maximum of 790,719 reads 

per sample. A total of 1,962 low abundance features were removed based on prevalence 

(minimum count =1 in at least 10% of samples) during data filtering, leaving an overall of 

8,544 features.  

 

The functional potential was defined by 11 KEGG metabolisms, 210 KEGG modules and 

148 KEGG pathways. Of note, the here investigated KEGG data represents the predicted 

functional potential of distinct organisms or genes encoding for enzymes or KOs involved 

in a certain metabolism, module or pathway, irrespective of the abundance for these 

organisms. Whereas the HUMAnN3 data also shows relative abundances.  

 

Beta diversity 

Beta diversity (Jaccard diversity index) of the predictive functional potential of the microbial 

communities was significant for the effect of group for KEGG metabolism (p=0.027), 

KEGG module (p=0.026) and KEGG pathway (p=0.028), whilst accounting for the effect of 

age and sex (Table 7.66 in the supplementary). Pairwise PERMANOVA showed that the 

comparison between the groups driving the group effect was only significant when 

comparing the APOε4 non-carriers against the AD patient group (FDR-corrected p-value = 

0.018) and explained approximately 12% of the observed variance in the data (Table 7.67 in 

supplementary). Importantly, the microbial functional potential of the APOε4 carriers and 

AD group was not statistically different, implying a greater degree of similarity between 

these two groups. 
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A visualisation of the NMDS ordination on the level of KEGG metabolism is shown below. 

The NMDS plots of KEGG modules and pathways can be found in the supplementary Figure 

7.14.  

 
 
5.15 Non-metric Multidimensional Scaling on Jaccard index between the predicted KEGG 

metabolism by participant group (light blue = Apolipoprotein ε4 non-carriers, red = 

Apolipoprotein ε4 carriers, yellow = Alzheimer’s Disease patients). Each point denotes a 

sample in a reduced dimensional space and is connected with a line to the group centroid 

 

Multivariate analysis of normalized Kyoto Encyclopedia of Genes and Genomes count 

data 

Kyoto Encyclopedia of Genes and Genomes - metabolism 

Our multivariate general linear model showed that the intestinal microbiota of the AD group 

had a significantly larger number of distinct genes involved in ‘carbohydrate metabolism’ 

compared to the APOε4 carriers (ß=-0.0039, corrected p-value=0.009) and APOε4 non-

carriers (ß=-0.0039, corrected p-value=0.007). The predictive functional potential of distinct 

organisms involved in ‘metabolism of cofactors and vitamins’ was reduced in the microbial 

community of AD patients compared to that of APOε4 carriers (ß=0.0040, corrected p-



 255 

value=0.04), but was increased in comparison to that of APOε4 non-carriers (ß=-0.0017, 

corrected p-value=0.014). For a full overview of the KEGG results please refer to Table 

7.57-7.61 in the supplementary. 

 

Kyoto Encyclopedia of Genes and Genomes - modules 

I then investigated the KEGG modules, which are small functional unit of organisms that 

encode for KOs that correspond to conserved sub-pathways in the KEGG pathway network, 

to assess the intestinal metabolic potential on a more granular level. There were 21 modules 

with a significantly larger and an equal number of modules with a significantly lower 

microbial functional potential in the AD patient group compared to the APOE cohorts.  

 

Of the modules enriched in the microbial community of AD patients, nine modules belong 

to the ‘carbohydrate metabolism’ on a higher functional level, five modules are part of 

‘energy metabolism’, and three modules belong to ‘lysine biosynthesis’. The ‘metabolisms 

of cofactors and vitamins’, ‘nucleotide metabolism’, and ‘xenobiotics biodegradation and 

metabolism’ were each increased for one module.  

 

The enriched modules involved in carbohydrate metabolism were glycolysis (M00001), the 

PPP (M00004, M00006, M00007), Entner-Doudoroff pathway (M00008) and the 

glucoronate pathway (uronate pathway) (M00014). Via their central biochemical role in 

carbon metabolisms, these modules were also closely linked with two modules belonging to 

KEGG energy metabolism (carbon fixation), namely reductive pentose phosphate cycle 

(Calvin cycle, M00165) and reductive pentose phosphate cycle (glyceraldehyde-3P => 

ribulose-5P, M00167). Within the bracket of KEGG energy metabolism, I also found an 

increased microbial functional potential for formaldehyde assimilation via the xylulose 

(M00344) and via the ribulose (M00345) monophosphate pathway, as well as increased 

metabolic potential for nitrogen fixation (nitrogen => ammonia, M00175).  
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The intestinal microbiota of AD patients also had a significantly larger predicted functional 

potential for three pathways of lysine biosynthesis, namely the succinyl- diaminopimelic 

acid (DAP) pathway (M00016), DAP aminotransferase pathway (M00027) and the acetyl-

DAP pathway (M00525). Modules of lysine biosynthesis belong to the KEGG amino acid 

metabolism on a higher level, just like GABA biosynthesis (eukaryotes, M00135), which 

was also increased in AD.  

 

Besides these associations, I also found an increased microbial potential for guanine 

ribonucleotide biosynthesis (M00050), tocopherol/tocotrienol biosynthesis (M00112), and 

carbazole degradation (M00544).  

 

As outlined, there were also several modules for which the predicted functional potential of 

distinct organisms in the microbial community in the AD group was reduced compared to 

the APOE cohorts. A third (seven modules) of the reduced modules belong to the 

‘metabolism of cofactors and vitamins’, whereas all other KEGG metabolisms had a 

maximum of four associated modules (glycan biosynthesis and metabolism) or less. The 

only KEGG metabolism for which I found no related modules was the ‘metabolism of other 

amino acids’. The modules related to the ‘metabolism of cofactors and vitamins’ were all 

associated with synthesis of vitamins of the B family and included pyridoxal phosphate 

(vitamin B6) biosynthesis (M00124), riboflavin (vitamin B2) biosynthesis (M00125), three 

modules involved in the biosynthesis of biotin (vitamin B7) including biotin biosynthesis, 

pimeloyl-ACP/CoA (M00123), biotin biosynthesis, BioI pathway (M00573), biotin 

biosynthesis, BioW pathway (M00577), as well as pantothenate (vitamin B5) biosynthesis 

(M00119) and the closely linked coenzyme A (CoA) biosynthesis (M00120). The latter 

module is also linked to the sub-pathway of β-oxidation, acyl-CoA synthesis (M00086), 

which belong to ‘fatty acid metabolism’. Four modules (M00060, M00063, M00064, 
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M00080) who are all involved lipopolysaccharide metabolism and belong to ‘glycan 

biosynthesis and metabolism’ were also found to be decreased in AD.   

 

Kyoto Encyclopedia of Genes and Genomes - pathways 

Several of the findings at the level of KEGG modules, were also reflected on the level of 

KEGG pathways (including glycolysis/gluconeogenesis, pentose phosphate pathway, 

fructose and mannose metabolism as well as lipopolysaccharide biosynthesis, riboflavin 

metabolism and biotin metabolism). I identified a total of 21 metabolic pathways after FDR-

correction for multiple testing comparison, of which 16 were significantly increased and five 

were significantly decreased in AD compared to the APOE cohorts.  

 

The majority of KEGG pathways with a predicted increased microbial functional potential, 

included pathways related to ‘carbohydrate metabolism’ such as glycolysis/gluconeogenesis 

(ko00010), pentose phosphate pathway (ko00030), fructose and mannose metabolism 

(ko00051), galactose metabolism (ko00052) and ascorbate and aldarate metabolism 

(ko00053). Pathways belonging to ‘xenobiotics (aromatics) biodegradation and metabolism’ 

included chloroalkane and chloroalkene degradation (ko00625), naphthalene degradation 

(ko00626), metabolism of xenobiotics by cytochrome P450 (ko00980), drug metabolism – 

cytochrome P450 (ko00982) and steroid degradation (ko00984). For a full list of all 

associated KEGG pathways please see Table 7.60-7.61 in the supplementary.  

 

There were overall fewer KEGG pathways with a reduced microbial functional potential in 

AD compared to the APOE cohorts. Three of those pathways belong to the ‘metabolism of 

cofactors and vitamins’, namely one carbon pool by folate (ko00670), riboflavin metabolism 

(ko00740), and biotin metabolism (ko00780). Apart from this, there was also a decreased 

functional potential of lipopolysaccharide biosynthesis (ko00540) and terpenoid backbone 

biosynthesis (ko00900) in the AD group.  
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HUMAnN3 functional profiles 

The HUMAnN3 analysed data returned functional community profiles that were either 

stratified by known organisms or unstratified pathways. The stratified output showed 

increased relative abundances in the AD patient group for four species, namely Actinomyces 

naeslundii, Bifidobacterium dentium, Streptococcus thermophilus and Bifidobacterium 

bifidum, and decreased relative abundance for Roseburia intestinalis (Table 7.62 – 7.63 in 

the supplementary). Unfortunately, the here listed species were all assigned 

“UNINTEGRATED” abundances, which means that they did not contribute to a known 

pathway and are hence not further discussed. 

 

The unstratified functional profiles returned 45 pathways with significantly increased 

relative abundance and two pathways with significantly reduced relative abundances when 

comparing the microbial profiles of the AD against the APOE groups (Table 7.64 – 7.65 in 

the supplementary). All differences are based on relative abundances for genes in the 

described pathway. 

 

Congruent with the KEGG analyses, many of the pathways shown here were already 

identified previously. This overlap in results between the KEGG and HUMAnN3 data 

analysis includes: the succinylase variant of the L-lysine DAP pathway (DAPLYSINESYN-

PWY), as well as the dehydrogenase variant (PWY-2942) and the related superpathway 

which integrated the biosynthesis of L-lysine but also of L-aspartate, L-theronine and L-

methionine (P4-PWY). I also found an overlap with respect to four pathways describing 

glycolysis from glucose and sucrose (PWY-5484, GLYCOLYSIS, ANAGLYCOLYSIS-

PWY, PWY66-400). Albeit not identified in the KEGG analysis, glucose fermentation is 

also closely linked to the here found ‘Bifidobacterium shunt’ pathway (P124-PWY), which 

is also known as the ‘fructose-6-phophate pathway’, that produces acetate and lactate from 

glucose (whilst discovered in Bifidobacterium this pathway is also found in other 
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organisms), the sucrose degradation pathway (PWY-5384) and starch biosynthesis (PQY-

622). Glycolysis is closely connected to the glycogen degradation (GLYCOCAT-PWY), 

which provides glucose-6-phospate for glycolysis, and was statistically the most significant 

pathway in this analysis.  

 

In keeping with the KEGG analyses, the microbiota of AD patients was enriched in the 

ribulose monophosphate (RuMP) pathway of formaldehyde assimilation (PWY-1861). The 

analysis further identified several pathways that were not seen with the KEGG count data, 

including five pathways that are involved in the biosynthesis of pyrimidine 

deoxyribonucleotides (PWY-7198, PWY-7211, PWY0-166, PWY-7187) and the related 

superpathway of pyrimidine ribonucleotides biosynthesis (PWY0-162). Notably, the second 

most significant increase was observed for a superpathway that synthesises O-antigen. 

Besides lipid A and the core oligosaccharides, O-antigen (a polysaccharide) is a fundamental 

component of lipopolysaccharides.   

 

In-line with the KEGG pathway findings, the intestinal microbiota of AD patients was 

reduced in the relative abundance of pathways related to vitamins of the B family. This was 

supported by a decrease in the pathway of riboflavin biosynthesis in the microbial functional 

potential of the AD patient group (RIBOSYN2-PWY: flavin biosynthesis I [bacteria and 

plants]) and by a reduction of a pathway (THISYN-PWY: superpathway of thiamine 

diphosphate biosynthesis I) that synthesizes thiamine diphosphate (vitamin B1). 
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Chapter Discussion 

Key findings 

The intestinal microbiota in the AD patients studied here was characterized by global and 

specific differences in taxonomy and function compared to healthy individuals, with and 

without APOE genetic risk for AD. This work identified significant differences in the overall 

community composition, and a significant reduction in community richness and evenness in 

the AD patient group compared to the two APOE cohorts. Taxa-specific changes in the AD 

patient group were numerous and included increased abundance of members belonging to 

the Actinobacteria (Coriobacteriaceae, Actinomyces, Bifidobacterium), an increased 

abundance in Lactobacillus and Streptococcus species, as well as decreased abundance of 

Bacteroidetes members (Bacteroides, Barnesiella, Odoribacter, Alistipes) and decreased 

abundance of SCFA-producers of the Clostridiales order (E. eligens, F. prausnitzii, 

Lachnospiraceae) in the AD patient group compared to the APOE groups. The functional 

analysis revealed various differences in the predicted potential of the microbial community 

function. Notable differences included that in the AD group, there was upregulation in 

glucose and alternative glucose pathways (notably the PPP), methane metabolism, pathways 

of ammonia production and methionine biosynthesis and was downregulated for the 

synthesis of B-vitamins (incl. riboflavin). Overall, the findings from this study support the 

notion of a microbial component in AD pathology. 

 

Neuropsychological and behavioural analysis 

Neuropsychological testing was used to validate cognitive and behavioural impairment in 

the AD patient cohort. As expected AD patients showed clear, objectively measurable, 

cognitive impairment as they performed consistently less well on all of the measures 

compared to the cognitively healthy APOE groups. AD patients scored significantly lower 

on the ACE-III, reflected by a significant decline in all five cognitive domains evaluated by 

the ACE-III, namely attention, memory, verbal fluency, language and visuospatial abilities 
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(Bruno and Vignaga, 2019). In-line with the literature, the AD patient cohort is significantly 

impaired on measures for visuoconstructional abilities, executive functioning and non-

verbal abilities (recall and recognition memory) (Melrose et al., 2013) as was shown by 

significantly worse performance on the ROCF compared to the APOE cohorts. Reduced 

ability in visual scanning, psychomotor speed and executive functioning, known to be 

impaired in AD (Ashendorf et al., 2008), were also evidently impaired in the AD patient 

group as was shown by their poor TMT performance. Anxiety and depression, both prevalent 

in AD pathology (Kuring, Mathias and Ward, 2018), albeit low in all study participants, 

were significantly elevated in the AD group. The functional and behavioural domains that 

affect AD patients (Wear et al., 2008) and that can be reliably measured by the CBI-R, such 

as memory, everyday skills, self-care, mood, beliefs and motivation, were all noticeably 

impaired in the AD patient cohort.  

 

Diversity analysis 

The community structure of the AD patient cohort was marked by significantly fewer 

distinct kinds of species (richness) and by less evenly distributed species (evenness) at the 

lower taxonomic levels, as measured by Shannon and Inverse Simpson indices, compared to 

the APOE groups. This decrease in alpha diversity broadly parallels results by Vogt et al. 

(2017) who report decreased alpha diversity on several measures in AD patients, including 

a significantly lower Shannon diversity index (but no significant difference with respect to 

their Inverse Simpson index). This also agrees with Liu et al. (2019), who found a 

significantly reduced Shannon and Simpson index, but no difference on the Chao1 or ACE 

diversity indices. Li et al. report a reduction on the Faith’s PD, but no difference when 

measuring alpha diversity with the Chao1 or Shannon index. A decrease in diversity is also 

supported by the work of Ling et al. (2021), who show a significant reduction across several 

alpha diversity metrices in the AD cohort. Contrary to these findings, Saji et al. (2019) are 

the only group to report increased community richness (Shannon diversity) in their AD 
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patient cohort but show no difference for the Simpson index. Hou et al. (2021) show no 

difference between their groups as measured by the Shannon and Sobs metric. At large, the 

majority of studies advocate the notion of reduced community diversity in AD. The majority 

of  evidence from animal work also supports the notion of reduced microbial diversity in 

AD mice (D. Chen et al., 2017; Zhang et al., 2017; Lee, Hwang and Kim, 2018; Xin et al., 

2018; Lee et al., 2019). Importantly, when comparing the APOE groups against each other 

(T2 data), there were no differences between the group of APOε4 carriers and non-carriers, 

indicating a comparable richness and evenness in their compositional microbiota profiles. 

At T1 and T3, however, alpha diversity of the APOε4 carriers was reduced at the kingdom 

and species-level, which indicates a shift towards a lower diversity, as also observed for the 

AD patient group.   

 

Reduced diversity is widely associated with intestinal dysbiosis, and it is hypothesized that 

reduced diversity might indicate an unstable microbial ecosystem, that is at greater risk for 

opportunistic pathogens and vulnerable to a loss of equilibrium between species (Mosca, 

Leclerc and Hugot, 2016). Dysbiosis is also linked to intestinal and systemic inflammation 

(Mosca, Leclerc and Hugot, 2016). Congruent with this, many diseases that are associated 

with reduced diversity, share an inflammatory disease component. Although understanding 

the cause and effect of reduced microbial diversity in the context of AD requires further 

investigation, mounting evidence indicates that changes in alpha diversity may indeed be 

associated with AD pathology. 

 

Microbial community profiles, assessed using beta diversity measures, were distinctly 

different between the AD patients and the APOE groups. AD disease status was a significant 

driver of community structure at each taxonomic level. Among all factors considered in the 

analysis, AD status accounted for the largest proportion of variation in the community 

profiles. There was however no difference between the compositional profiles of the APOε4 
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carriers and non-carriers, which indicates that the compositional profiles are 

undistinguishable between APOE cohorts at this top-level view.  

 

These large-scale compositional differences are in-keeping with previous findings showing 

community structure differences between AD patients and controls (saji et al., no date; Vogt 

et al., 2017; Zhuang et al., 2018; B. Li et al., 2019; Haran et al., 2019; Liu et al., 2019; Hou 

et al., 2021; Ling et al., 2021). Although the studies used a variety of dissimilarity metrices, 

which in turn use different approaches to determine the ecological distance between all pairs 

of samples, they largely show significant community variation between AD patients and 

controls. All studies using Bray Curtis dissimilarity (used also in the present study) and all 

but two accounts using weighted and unweighted UniFrac found compositional differences. 

Taken together, these studies show that AD status explains between 9-12% of the observed 

variation in the data, depending on the dissimilarity metric used and taxonomic level 

presented. Comparable to this, I found a mean explanatory power of 8.2% (range: 5.3%-

12.3%) across all taxonomic levels.  

 

These global changes in taxonomic structure are indicative for a microbial role in AD 

pathology but it requires more well-conducted, longitudinal and large-cohort studies to 

explore this potential two-way relationship of the Gut-Brain axis in AD further. 

 

Descriptive community analysis 

On a descriptive level, I observed noticeable numerical differences in the intestinal 

microbiota abundance profiles of AD patients compared to the APOE cohorts. Whilst the 

human intestinal microbiota in healthy individuals were dominated by bacteria of the 

Firmicutes and Bacteroidetes phyla, as was the case for the APOE groups, the intestinal 

community of the AD patient cohort was dominated by Firmicutes and Actinobacteria. In 

fact, Bacteroidetes was only the fourth most abundant phylum (Euryarchaeota is the third) 
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in the given AD patient group. This observation is consistent with Saji et al. (2019) and Hou 

et al. (2021) who report an inverse relationship in the ratio of Bacteroidetes (Hou et al.: 

18%, this work: 9%) to Firmicutes (Hou et al.: 52%, this work: 51%) in AD patients. This 

top-level shift in the distribution of phyla was seen throughout the community structure at 

all taxonomic levels and is supported by numerous significant taxa-specific differences 

between the AD group and the APOE groups but not when comparing the APOE groups 

against each other.  

 

Differential abundance analysis 

Univariate analysis of different relative taxonomic abundances 

The lack of a gold standard with respect to the data collection, DNA extraction process, 

downstream processing and analysis method, particularly in light of the wealth of an ever-

growing number of new methods in a fast-moving field, leads to a huge amount of 

heterogeneity between studies on any given number of methodological or study design 

aspects. This heterogeneity may represent a source of bias. Microbiome studies, which are 

subject to a large degree of inherent noise (inter- and intra-subject variability), are potentially 

at even greater risk of confounding factors due to inconsistent methodology.  

 

There are currently nine human research studies that have investigated the role of the 

intestinal microbiota in AD patients (Table 1.1). A range of statistical models and methods 

can be chosen to implement differential abundance analysis. Given the technical bias, it is 

recommendable to make comparisons across studies that have used a similar methodology. 

Thus, I will compare the differential abundance results gained from LEfSe against those 

studies employing the same statistical approach.  

 

LEfSe determined 19 significantly enriched taxa for the AD patient group, compared to 32 

enriched taxa in AD by Ling et al. (2021), 21 taxa by Zhuang et al. (2018), 14 taxa by Hou 
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et al. (2021), seven taxa by Li et al. (2019) and four taxa by Liu et al. (2019). The majority 

of results from LEfSe analysis are at high taxonomic resolution, with the exception of Li et 

al. who identified taxa that were all above genus-level. In this study 64% of associations are 

at genus-level or below, which is comparable to the results by Zhuang et al. (67%), Hou et 

al. (63%) and Ling et al. (64%). Liu et al. only report associations at genus-level. 

Importantly, this study was the only study to employ shotgun metagenomic sequencing 

(apart from Haran et al. [2019] who did not use LEfSe), which allows us to investigate taxa 

abundances down to strain-level.  

 

Here, I reported increased abundances for several members of the Actinobacteria and 

Firmicutes phyla in AD patients. On a phylum-level, this finding is congruent with Ling et 

al. and is broadly mirrored by Zhuang et al. and Li et al., whose majority of associations 

were members belonging to these two phyla. Most notably, this study and the study of 

Zhuang et al. as well as that by Ling et al. showed that faecal samples of the AD patient 

group are significantly enriched in members of Actinobacteria. Within the Actinobacteria, I 

identified members of the Coriobacteriaceae and Actinomycetaceae families. This replicates 

Ling et al.’ finding, who also find enrichment for Coriobacteriaceae and is further supported 

by Zhang and colleagues who identified members of the Coriobacteriaceae family. At 

species-level, I found increased prevalence of A. parvulum and an associated strain.  

 

Members of the Coriobacteriaceae, which is a family of ‘pathobionts’ (defined as 

potentially pathological organisms), can metabolize cholesterol-derived substances such as 

bile acids and are hence important in bile acid metabolism (Just, 2017). Coriobacteriaceae 

are also regulators of lipid metabolism and have been suggested to mediate insulin resistance 

(Clavel et al., 2014). The latter has long been associated with AD pathophysiology and is 

still investigated by many studies that are trying to disentangle the links between metabolic 

disease and AD (Janak and Jenner, 2020). 
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A. parvulum, previously classified Streptococcus parvulum, is a gram-positive obligate 

anaerobic bacterium. It is considered a common pathobiont in the oral microbiota which is 

closely linked to periodontal disease (Mizutani, Yamada and Yachida, 2020). In the 

intestine, A. parvulum metabolizes glucose to lactose, formic and acetic acid, and is a key 

producer of toxic H2S. Excessive H2S has been shown to activate autocrine T-cells, thereby 

triggering inflammation (Miller et al., 2012; Mottawea et al., 2016). A. parvulum has also 

been shown to promote degradation of the mucus layer of the intestinal barrier and is 

associated with a range of diseases, including Crohn’s disease, IBS, colorectal cancer and 

cirrhosis (Mizutani, Yamada and Yachida, 2020).  

 

Increased abundance of Coriobacteriaceae, particularly A. parvulum, might contribute to 

AD pathology, which is characterized by increased systemic inflammation, which in turn is 

likely to be (at least in part) the result of impaired intestinal barrier function that allows for 

the of translocation of inflammation-inducing components from the lumen to the peripheral 

system. Similar to the proposed mechanism of action in Crohn’s disease, the host defense in 

AD patients appears to be weakened, which may be influenced by a reduction of SCFA-

producing bacteria, as I will discuss in more detail later.  

 

The data also showed enrichment for several members belonging to the Actinomyces genus 

(Actinobacteria) in AD samples. Like the Atopium genus, the Actionmyces genus also classes 

as a genus of gram-positive, obligate, anaerobic bacteria, which are considered pathogenic 

commensals. In the oral cavity, certain species of Actinomyces participate in the formation 

of biofilm and dental plaques and have been linked to periodontal disease (Li et al., 2018). 

This is interesting in the context of AD because it was recently shown that certain microbes 

are good clinical markers of periodontitis and that presence of these bacteria is strongly 

associated with incident for AD and for all-cause dementia (Beydoun et al., 2020). Another 

large cohort study supporting a microbial role in periodontitis, identified a series of bacteria 
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that are involved in periodontitis, including a species of Actinomyces, which also correlated 

with elevated serum IgG levels (Noble et al., 2014).  

 

On a species-level, A. viscosus and A. johnsonii were enriched in the faecal samples of the 

AD patient cohort. Pathogenicity of A. viscosus is mediated by its lipoproteins (lipophilic 

fraction of the bacterium) which act as ligands of TLR2 and are thus responsible for inducing 

an inflammatory response via the production of cytokines (Shimada et al., 2012), further 

adding to potential mechanisms of increased inflammation in AD. Of note, members of the 

family Actinomycetales and Porphyromonas gingivalis (order Bacteroidales) have been 

repeatedly found in AD brain tissue (Emery et al., 2017; Siddiqui et al., 2019). This evidence 

further supports a potential role for Actinobacteria and periodontitis-related bacterial 

pathogens in AD. Interestingly, an antimicrobial agent that acts against an enzyme secreted 

by P. gingivalis is being tested in a Phase II/III clinical trial in AD patients (NCT03823404, 

expected completion in 2022), further supporting a potential association. Whilst the picture 

is still incomplete, there is mounting evidence that implicates Actinomyces as a potential 

driver of pathogenic processes which may be of relevance in the context of AD. 

 

Within the Firmicutes phylum, I observed enrichment for the genus Gemella, the species 

Lactobacillus casei paracasei (genus Lactobacillus) and C. methylpentosum (genus 

Clostridium) in the AD patient group. This is broadly mirrored by Liu et al. who report 

enrichment of Lactobacillus and by Ling et al. who demonstrate increased abundance for 

several members of the Clostridium genera. Gemella are gram-positive cocci (opportunist 

pathogens), that inhabit mucosal membranes and can cause serious infections, but are 

otherwise sparsely documented in the literature (Jayananda, Gollol-Raju and Fadul, 2017). 

Interestingly, L. casei and L. paracasei are some of the most studied species, that are 

commonly used as probiotics due to their wide-reaching health promoting properties (Hill 
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et al., 2018). Increased prevalence of Lactobacillus bacteria in AD patient samples cannot 

be explained.  

 

Albeit not directly comparable, certain taxa emerged to be significantly different in the 

comparison of APOE cohorts against the AD group as well as in the APOE groups-only 

comparison over time. The APOε4 carriers were repeatedly enriched in the species R. obeum 

and an associated unclassified strain when compared to the APOε4 non-carriers. They also 

showed increased abundance for B. plebeius and a strain belonging to this species. The 

APOε4 non-carriers on the other hand were repeatedly enriched in Collinsella, C. 

aerofaciens and an unclassified strain of the species B. stercoris. The group of APOε4 non-

carriers was enriched in many members of the Actinobacteria clade, including the 

Coriobacteriales and Actinomyces, which were also enriched but to a much larger degree in 

the AD patient group.  

 

Overall, the degree of overlap between LEfSe results from this study and the other AD 

studies results is small. The discrepancy between the findings might partly reflect the level 

of noise introduced by environmental factors, such as diet, lifestyle or medication, between 

the AD patient groups in the different studies. Notably, the majority of studies compared 

against were all conducted in Chinese populations who are likely to be differentially 

influenced with respect to a large number of environmental factors (such as diet) from this 

UK cohort. Univariate analyses cannot account for the effect of covariate factors. This 

presents an inherent and considerable limitation of the method and is of particular 

importance for microbiota studies. Thus, I also employed a multivariate approach, using 

linear mixed modelling, allowing for covariate adjustment. Multivariate models are 

generally more flexible than univariate approaches, as they also offer a large number of 

possibilities to transform or normalize the data, which given the compositionality problem 

of microbiome data is another noteworthy strength.  
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Multivariate analysis of different relative taxonomic abundances 

Only three of the nine previous studies subjected their taxonomic data to GLM modelling. 

Haran et al. performed GLM modelling adjusting for age, malnutrition, frailty, medication 

(PPIs and antipsychotics), and dementia status (no dementia, AD, or other dementia). Li et 

al. on the other hand, adjusted for the effect of age, sex, BMI, and constipation in their GLM. 

Hou et al. used GLM modelling to explore the relationship of selected microbial taxa with 

genetic risk variants (APOE genotype and BNI1), adjusting for age and sex, in a small 

subgroup of AD patients. Of note, Hou et al. report abundance changes only for genus-level 

but did not consider changes on other taxonomic levels. 

 

I performed GLM modelling adjusting for the possible effects of age and sex, as these were 

the two covariates that were most consistently adjusted for in other studies. Given the small 

sample size, I further recognized that adding additional covariates would reduce power.  

 

In-line with the univariate findings and congruent with the results from Li et al., AD samples 

were enriched in members belonging to the phylum Actinobacteria. The genus 

Bifidobacteria is identified by us as well as by Li and colleagues. I also observed enrichment 

for the Actinomyces (hereby further supporting the univariate findings from this study) and 

Eggerthella genera. On a species-level this corresponds to increased abundance of B. 

longum, A. viscosus (as also identified by LEfSe), A. oris, and an unclassified Eggerthella 

species. Members of the Eggerthella genus have potential pathogenic properties and are 

associated with bacteraemia (due to translocation of the bacteria into the circulatory system). 

Increased abundances of this genus have also been reported to predict rheumatoid arthritis 

status (Chen et al., 2016). 

 

In this study, all discriminant taxa identified within the Bacteroidetes phylum were 

decreased in relative abundance when comparing the AD patient group to the APOE groups. 
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This loss in Bacteroidetes has to be interpreted with caution as it may have been influenced 

by the presence or absence of a cryoprotectant and is discussed in more detail in the 

limitations section. The observation mirrors the findings of Li et al. who report a decrease 

in members of this phylum in AD patients compared to healthy controls. Especially a 

decrease in the genera of Alistipes, Bacteroides and for members of the Porphyomonadaceae 

family marked intestinal changes in both this work and that of Li and colleagues. Whilst Li 

and colleagues only report changes at genus-level, I demonstrated associations on all 

taxonomic levels, including the identification of seven discriminant species, namely B. 

stercoris, P. merdae, B. instestinihominis, O. splanchnicus, A. onderdonkii and A. putredinis. 

Contradictory to this, Haran and colleagues showed increased abundances for Bacteroides, 

Alistipes, Odoribacter and a Barnesiella species. Contrary to Haran et al. but congruent with 

this study’s results, Saji et al. (2019) demonstrated that a lower prevalence of Bacteroides is 

strongly associated with dementia. This is turn is contrary to the findings by Vogt et al. who 

report increased prevalence for Bacteroides in dementia patients. This inconsistency with 

respect to members of the Bacteroidetes phylum may be a testament to the variable nature 

of the intestinal microbiota.  

 

Several Bacteroides species correlated with increased expression of membrane protein ZO-

1 and are thus thought to improve intestinal barrier integrity. The literature further suggests 

that several species of the Bacteroides genus, including B. stercoris, occur at significantly 

lower abundances in patients with Multiple Sclerosis (Miyake et al., 2015) and suggest that 

a reduction of this phylum is linked with inflammation-induced colorectal cancer (Polimeno 

et al., 2019). B. intestinihominis is an important regulator of immunomodulatory cells and 

confers resistance against the colonization of antibiotic-resistant pathogens (Ubeda et al., 

2013). The species has sparked interest as an ‘oncomicrobiotic’ due to its essential role in 

cyclophosphamide cancer treatment, whose efficacy is dependent on modulatory functions 

of certain intestinal microbiota (Daillère et al., 2016). Despite its important 
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immunomodulatory role (on regulatory T (Treg) cells and T helper cell type 1 [Th1] cells) 

very little is known about this species. I can thus only speculate about its role in the context 

of AD. A reduction in the relative abundance of B. intestinihominis could potentially lead to 

altered immunomodulation and a weakened response against the potential domination of 

opportunistic pathogens. More research is required to test this hypothesis. B. stercoris has 

not been studied as extensively as some of the other Bacteroides species (e.g. B. fragilis, -

uniformis). Therefore, more research is needed to gain insights into these species’ role in 

human health.  

 

O. splanchnicus, a common member of the intestinal microbiota, is a producer of SCFAs 

and as such lower abundance of this bacterium are associated with cystic fibrosis, IBD, 

Crohn’s disease and other diseases (Hiippala et al., 2020). A decrease in Bacteroides species 

and O. splanchnicus in AD may contribute to reduced barrier protection and decreased anti-

inflammatory ability.   

 

The Alistipes genus, comprised of thirteen species, may have both detrimental or beneficial 

effects on human health. Bacteria of this genus are capable to produce acetate and propionate 

(Parker et al., 2020). In the context of liver disease (non-alcoholic fatty liver disease and 

liver cirrhosis), Alistipes may play a protective role via its anti-inflammatory properties 

(Parker et al., 2020). Reduction in the abundance of this genus significantly correlates with 

disease state and worsening of the liver disease. Using a functional approach, Alistipes were 

also reported to have the highest number of putrefaction pathways (fermentation of 

undigested proteins) compared to other commensal bacteria. Products of these pathways are 

considered deleterious and include products such as ammonia, H2S, cresol, indole and 

phenol (Windey, De Preter and Verbeke, 2012; Yao, Muir and Gibson, 2016). The 

contradictory evidence for Alistipes’ role in host health highlights the need for future 

research.  
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In this study, taxa belonging to the Firmicutes phylum, such as several members of the 

Clostridiales order, including F. prausnitzii and its associated order, E. eligens, the genera 

Roseburia and Coprococcus (Lachnospiraceae) were significantly depleted in the AD 

patient group. Whilst I observed no direct overlap with the findings of Haran and colleagues 

with respect to the Firmicutes phylum, they also reported a decrease in a genus that belongs 

to the Lachnospiraceae family. The Lachnospiraceae and the closely related 

Ruminococcaceae families consist of several butyrate-producing bacteria. There is ample 

evidence for a health promoting role of F. prausnitzii, as this anaerobic bacterium is a 

common inhabitant of the human colon and the key producer of the SCFA butyrate and 

salicylic acid (Louis and Flint, 2009; Ferreira-Halder, Faria and Andrade, 2017). Species of 

the Roseburia genus are also important SCFAs producers (Tamanai-Shacoori et al., 2017) 

and E. eligens might contribute to the production of SCFAs via fermentation of non-

digestible fibre (particularly pectin) (Chung et al., 2016). Butyrate is essential to the 

maintenance of intestinal barrier integrity (used by colonocytes) as it is required for 

epithelial proliferation as well as for the production of mucin. Butyrate has also been shown 

to suppress inflammatory responses (induces differentiation and expression of Treg which 

supresses inflammation). As such F. prausnitzii and the Roseburia species are important 

modulators of inflammatory processes, able to inhibit the pro-inflammatory actions of NFκB 

and IL-8. They are further able to induce the production of anti-inflammatory IL-10 

(Hakansson and Molin, 2011). The depletion of F. prausnitzii and/or Roseburia species is 

associated with a range of pathological processes and conditions, including ulcerative colitis 

(Machiels et al., 2014), T2D (Karlsson et al., 2013), colorectal cancer (Balamurugan et al., 

2008) and others. In the context of AD, it is possible that the depletion of these SCFA 

producers contributes to chronic intestinal inflammation, which may lead to decreased 

integrity of the intestinal barrier. Overall, this may feed into a perpetuating loop of 

inflammatory responses resulting in increased systemic inflammation in AD. Future work is 
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required to understand these complicated dynamics. Particularly, evidence from human 

studies and interventional studies aimed at increasing the levels of SCFAs could provide 

valuable insights into the complex relationship between SCFAs, barrier permeability and 

inflammation in AD. This line of work is already investigated in animal models with 

promising results (Bonfili et al., 2017; Kobayashi et al., 2017; Hoffman et al., 2019).  

 

Not all members of the Firmicutes phyla were reduced in AD. Taxa belonging to the order 

Selenomondales and Lactobacillales were enriched in AD compared to compared to the 

APOε4 carriers. In agreement with previous work by Li and colleagues, I report increased 

abundance in members of the Lactobacillus and Streptococcus genera (Streptococcus 

thermophilus). Lactic-producing bacteria from the Lactobacillales genus or Streptococcus 

thermophilus are generally ascribed health-promoting properties and are widely considered 

and used as probiotics to improve health (Turroni et al., 2014; Vitetta, Llewellyn and 

Oldfield, 2019) with reduced abundance reported in patients with obesity, T2D, cancer 

(Heeney, Gareau and Marco, 2018) and in Crohn’s disease (Wang et al., 2014; Lewis et al., 

2015). Of note, the abundance of Firmicutes in the AD patient samples may have been 

affected by the absence of using a cryoprotectant prior to DNA extraction for the AD patient 

samples. Due to this possible technical bias, results need to be interpreted with caution (more 

details are given in the limitations).  

 

The phylum of Proteobacteria showed significant changes for members belonging to the 

classes of Betaproteobacteria and Gammaproteobacteria, which was marked by decreased 

abundances of Haemophilus parainfluenza and Burkholderiales in this AD patient cohort. 

This finding broadly mirrors the work by Li and colleagues, who demonstrate a decrease in 

the relative abundance of Sutterella, which on a higher taxonomic level belongs to the here 

detected Burkholderiales. The literature generally suggests that an increase in 

Proteobacteria, which occur at low abundances in the human intestine, is associated with 
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high-fat diets, obesity and might play a negative role (cause gut dysbiosis) in human health 

(Shin, Whon and Bae, 2015; Méndez-Salazar et al., 2018). Evidence regarding members of 

the Proteobacteria is sparse and more work is required to gain a better understanding of this 

bacteria’s relationship with the host and its potential involvement in the context of AD.  

 

Another important finding in the given work, which has not been replicated by other work, 

was the increase in the abundance of Caudovirales of the Viruses kingdom. The order of 

Caudovirales is considered the most abundant and heterogenous group of viruses, with 

remarkable diversity that call for a major reclassification. This is testament of our poor 

understanding of these viruses and their potential role in human health (Barylski et al., 

2020). 

 

When comparing the multivariate results in the APOε4 group-only models to those 

comparing the AD patient group against the APOE groups, the most striking difference was 

the large number of significantly different taxa that were identified by the latter comparison. 

All but five of the detected taxa were significantly different for both the AD vs APOε4 carrier 

and the AD vs APOε4 non-carrier comparison. This also implies a large degree of similarity 

between the APOE groups, which is supported by the comparatively small number of 

differentially abundant taxa identified in the APOε4 group-only comparisons. Besides the 

number of differences, there was also a noticeable difference in the magnitude of effect size, 

quantifying the abundance differences. Effect sizes were small for significant taxa between 

the APOε4 carriers and non-carriers, but large in the AD patient to APOE groups 

comparisons. Collectively, these two observations provide further evidence that the 

intestinal microbiota profiles of the APOE groups can only be distinguished by a few small 

changes in taxa but are not clearly separable by large-scale measures. When compared to the 

AD patient group, the compositional profiles of the APOE cohorts appear almost 
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undistinguishable. Whereas microbiota changes clearly separated the AD patient from the 

other participants regardless of APOε4 genotype.   

 

In summary, the taxonomic findings from this work strengthen the notion of a bacterial 

component in AD pathology. The relative abundance changes in the intestinal microbiota of 

AD patients largely relate back to mechanisms of inflammation.  
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Microbiota functional potential  

Of the previously reviewed human work investigating the role of the Gut-Brain axis in AD, 

only Liu et al., Vogt et al. and Ling et al. used predictive functional profiling to gain insights 

into the functional capability of the AD microbiome, whereas Saji et al. performed metabolic 

analysis from faecal water. Given the limitations of the data and methods as well as the lack 

of power, all presented findings should be considered as hypothesis-generating.  

 

A series of KEGG modules and pathways were significantly associated with AD, with the 

majority demonstrating enrichment rather than reduction of metabolic potential in the AD 

patient group. This is congruent with the work by Vogt et al. and by Liu et al..  

 

On KEGG level 2 (low resolution), I observed an increased functional potential of 

carbohydrate metabolism in the microbiota of the AD group, which is consistent with the 

work of Vogt et al. and Ling et al.. Whilst I did not replicate any of the findings by Liu et 

al. for an increased potential for glycan biosynthesis and metabolism. The microbiota of AD 

patients was however enriched in four modules that relate back to this metabolism. The 

predicted functional differences of Liu and colleagues do not go beyond the resolution of 

KEGG level 2, and I can thus not confirm an overlap with respect to more specific pathways.  

 

KEGG level 3 and 4 data shows the functional capabilities at the level of KEGG modules 

and pathways. This study replicated the findings by Vogt and colleagues of a greater 

functional potential for fructose and mannose metabolism and for lysine biosynthesis in the 

microbiota of the AD patient group. Congruent with Ling et al., the AD patients’ microbiota 

was further characterized by increased glycolysis/gluconeogenesis, galactose metabolism 

and a decrease in riboflavin metabolism. The findings are discussed in more detail below.  
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Increased fructose metabolism might drive Alzheimer’s Disease pathogenesis 

High-fructose consumption is associated with negative health outcomes, including obesity, 

non-alcoholic fatty liver disease and metabolic syndrome. Fructose is fermented by 

Lactobacilli either via the Embden-Mayerhof pathway or the 6-

phosphogluconate/phosphoketolase (6-PG/PK) pathway and is particularly prevalent in 

Western diets. Excessive fructose intake is associated with a decrease in Bacteroidetes and 

increase in Firmicutes and causes reduced mucus thickness and epithelial barrier 

dysfunction, thereby favouring bacterial translocation and endotoxemia (Volynets et al., 

2017; Kawabata et al., 2019; Beisner et al., 2020). In the context of AD, high consumption 

of fructose is linked with worsened memory performance and hippocampal reduction 

(Johnson et al., 2020). It has been hypothesized that chronically elevated fructose 

metabolism in the brain might be a key driver in AD aetiology. According to this hypothesis, 

increased availability and metabolism of fructose initiates a cascade of events including the 

upregulation of fructose metabolism in the brain, mitochondrial oxidative stress, increased 

glycolysis (a compensatory mechanism meant to counteract decreased ATP) and 

upregulation of the PPP to counteract oxidative stress that result in neurodegenerative 

processes (Johnson et al., 2020).  

 

Lysine an underexplored pathway with links to Herpes Simplex Virus-1 infection 

There were significant functional changes related to L-lysine biosynthesis in the microbiota 

of the here studied AD patients. Lysine metabolism comprises nine L-lysine biosynthesis 

pathways. Two distinct L-lysine pathways have evolved separately - the DAP pathway and 

aminoadipic acid (AAA) pathway. The former synthesizes lysine from aspartate and 

pyruvate and has four variations. It is mostly used by bacteria. Our AD patient groups’ 

microbiota had a greater functional potential and increased abundance for several variations 

of this pathway. The AAA pathway, on the other hand, produces lysine from alpha-

ketoglutarate and acetyl-CoA and is largely restricted to fungi (Rodionov et al., 2003; Liu, 
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White and Whitman, 2010). The AD group had a decreased functional capability for the 

AAA pathway. 

 

In the context of AD lysine supplementation has been suggested as a potential treatment for 

herpes simplex type 1 virus (HSV-1) infection (Rubey, 2010). HSV-1 is associated with AD 

via several mechanisms such as inflammation and formation of amyloid and it has further 

been suggested to confer a particular high risk for developing AD to APOε4 carriers (Itzhaki 

et al., 2004). Given the evidence for a potential role of HSV-1 infection in AD, an antiviral 

therapy using Valacyclovir is currently being tested in an ongoing interventional Phase II 

trial in patients with AD (NCT03282916, estimated completion in 2022).  

 

Neurotoxic effects of increased formaldehyde production in Alzheimer’s Disease 

Vogt et al. showed enrichment for methane metabolism. This finding is broadly mirrored by 

this study’s findings, which identified two important KEGG modules belonging to methane 

metabolism. The microbiota of the AD patient group had a greater functional potential and 

significantly increased relative abundances for formaldehyde assimilation- a process by 

which methanotrophs and methylotrophs oxidize methane to produce formaldehyde. Within 

the large and complex pathway of methane metabolism this last conversion step can be 

performed via three pathways, of which I see two significantly associated with AD. Elevated 

levels of formaldehyde are associated with changes in energy metabolism and cognitive 

impairment (Lu et al., 2013; Tulpule and Dringen, 2013). Increased expression of 

formaldehyde-generating enzymes has been associated with AD, MS, diabetes and a range 

of other diseases. In the brain, formaldehyde has a range of negative effects (e.g., stimulating 

the rate of glycolysis in astrocytes and increased efflux of the antioxidant glutathione from 

the brain) that may lead to cerebral acidosis, impaired energy metabolism, increased 

oxidative stress and excitotoxicity. Animal work shows that formaldehyde can induce 

hyperphosphorylation of tau protein in N2a brain cells, which provides another mechanistic 
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link with AD  (Lu et al., 2013). Notably, the polyphenol anti-oxidant Resveratrol, which has 

shown promising effects in the phase II clinical trials for AD (Sawda, Moussa and Turner, 

2017), may in part exert its neuroprotective effects by acting on formaldehyde as Resveratrol 

was shown to effectively decrease formaldehyde-induced cytotoxicity and tau 

hyperphosphorylation in N2a cells (Li et al., 2012; He et al., 2017).  

 

Microbiota of Alzheimer’s Disease patients shows increased functional capability to 

produce ammonia  

Our AD patient cohort was further characterized by increased metabolic capability for 

nitrogen fixation and the reduction of nitrogen to ammonia. This agrees with the metabolic 

insights gained from Saji et al. (2020) who demonstrated that ammonia levels were 

significantly elevated in their AD patient cohort. Saji and colleagues further reported a strong 

relationship between faecal ammonia concentration and the risk for developing AD (with 

every 1 SD increment in faecal ammonia concentration, the risk for AD is increased 1.6-

fold). This finding is in-line with the assumption that ammonia is neurotoxic and linked to 

AD aetiology and progression (Adlimoghaddam, Sabbir and Albensi, 2016). It has been 

suggested that the health-promoting effect of dietary interventions such as the Mediterranean 

Diet or that of certain probiotics, containing large amounts of Lactobacilli, are mediated by 

lowering systemic levels of ammonia (Jin et al., 2018). In addition, the antibiotic Rifaximin, 

may reduce peripheral levels of ammonia by altering the intestinal microbiota and is 

currently tested in an ongoing clinical Phase II trial in patients with mild-to-moderate AD 

(NCT03856359, completion of study expected in 2021). 

 

Methionine and Alzheimer’s Disease 

Increased biosynthesis of methionine is congruent with reported increases in methionine 

levels in AD (Kaddurah-Daouk et al., 2013). Methionine is a precursor of homocysteine. 

The latter is associated with neurofibril pathology and was found at elevated levels in CSF 

and the serum of AD patients (Popp et al., 2009; Vogel et al., 2009). The reduced functional 
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potential of the microbial community for pyridoxal phosphate synthesis that I also observed 

in this AD patient cohort might aggravate this even further, as a decline in pyridoxal 

phosphate is associated with elevated homocysteine levels. 

 

Increased glucose metabolism - compensatory action in Alzheimer’s Disease 

Notably, I observed an increase in relative abundances of the microbial functional potential 

for glycolysis and alternative central carbon pathways, particularly the PPP, which are 

involved in the metabolism of glucose. This finding of a change in energy metabolism is 

supported by Ling and colleagues. Functional differences for two of the six identified 

pathways involved in the metabolism of glucose were only distinctly different in the 

microbial community of AD patient vs APOε4 non-carrier comparison, indicating a more 

similar microbial functional potential between APOε4 carriers and AD patients.  

 

The majority of evidence regarding the role of the PPP in cell metabolism comes from 

research in eukaryotic cells. It is however suggested that the pathway is ubiquitous and 

present also in most prokaryotic cells (Bräsen et al., 2014; Masi, Mach and Mach-Aigner, 

2021). As in eukaryotes, the PPP represents a main pathway for central carbon metabolism 

in bacteria. Importantly, in bacteria the PPP provides the necessary precursor to initiate LPS 

biosynthesis and is thus essential to its production. It is additionally the only pathway in 

bacteria that is able to breakdown sugars including D-ribose and D-xylose (Stincone et al., 

2015). 

 

Research from eukaryotic cells identifies the PPP as a very dynamic pathway, which adapts 

flexibly to varying nutrient supply and stress conditions. Changes in the hosts’ PPP have 

been linked to several diseases, including AD, cardiovascular disease, T2D, cancer and 

metabolic syndrome (Orešič et al., 2011; Riganti et al., 2012; Ge et al., 2020). In addition 

to the biosynthesis of nucleic acids and amino acid sugar phosphate precursors, the PPP has 

several regulatory processes such as the maintenance of redox homeostasis through the 
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production of NADPH and interactions with oncogenic signalling pathways (Stincone et al., 

2015). Through its involvement in reducing glutathione (via NADPH), PPP is a first-line 

defense response for cells to oxidative stress (Janak and Jenner, 2020). Limited evidence 

exists regarding the role of PPP of the intestinal microbiota and oxidative stress in human 

disease. In patients with Crohn’s Disease with ileal involvement it was observed that 

microbial PPP was increased in the presence of increased oxidative stress in the intestine 

(Morgan et al., 2012).  

 

Oxidative stress, particularly in the brain, is well-established as a contributor in AD 

pathology, but to what extent the microbiota might mediate or react to the increase in reactive 

oxygen species (ROS) levels requires future work. The evidence suggests that in a state of 

oxidative stress, involvement of PPP may reflect an increase in antioxidant activity (Palmer, 

1999). Increased production of enzymes crucial to the PPP’s activity (glucose-6-phosphate 

dehydrogenase and 6-phosphonogluconate dehydrogenase) was found in neocortex tissue of 

AD patients (Palmer, 1999). Several studies have since documented an upregulation of 

glucose-6-phosphate dehydrogenase of the PPP in the context of AD pathology, which is 

suggested to represent a compensatory response mechanism to maintain redox homeostasis 

(Yan et al., 2020). Metabolic impairment of pentose and glucoronate pathway-dependent 

conversions of glucose were also shown to be involved in an APP/PS1 mouse model of AD 

(Yu et al., 2017). Whilst a decline in the cerebral glucose metabolism is a well-established 

early feature of AD (Cunnane et al., 2011; Croteau et al., 2018), it is unclear if changes in 

the metabolic functioning of the intestinal microbiota, such as the here observed 

upregulation of glucose metabolism, are linked to AD pathology. There is however 

increasing evidence to support interrelated functioning of the intestinal microbiota and host 

health. Whilst speculative, increased PPP activity of the intestinal microbiota in AD remains 

an intriguing observation which may indicate the presence of increased oxidative stress. 
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Reduced synthesis of B-vitamins might lead to loss of protective functioning in Alzheimer’s 

Disease 

The predicted functional potential of several modules and pathways related to the synthesis 

of B-vitamins were decreased in the microbiota of the AD patient cohort. Vitamin B6, B2 

and other vitamins are ascribed a protective role against cognitive decline and AD (Morris, 

Schneider and Tangney, 2006; Tao et al., 2019). A reduced ability to produce these vitamins 

has potentially wide-reaching effects on many metabolic processes that could contribute to 

AD pathology. 

 

Here I report a downregulation in the predicted functional potential of CoA, its precursor 

Vitamin B5 and the aerobic mitochondrial synthesis pathway via acyl-CoA. Interestingly, 

this was only observed when comparing the AD patients’ microbiota against the microbiota 

of APOε4 carriers. Changes in the levels of CoA are associated with neurodegenerative 

diseases, cancers, diabetes and other conditions (Czumaj et al., 2020). CoA biosynthesis is 

an essential cofactor that is important in a large number of metabolic reactions, including 

the synthesis of phospholipids which are fundamental components of structural barrier 

function, synthesis of bile acids and for the synthesis and degradation of fatty acids. Notably, 

it is also required for the formation of acetyl-CoA which is in turn a key substrate in many 

other metabolic processes. Importantly, acetyl-CoA is involved in the synthesis of 

cholesterol and it also constitutes the most prevalent pathway of butyrate production. Due to 

its important role in lipid biosynthesis and butyrate synthesis, CoA and related substrates 

provide a myriad of possible mechanistic link to AD. CoA was suggested as a therapeutic 

target for AD to ensure proper mitochondrial homeostasis (Currais et al., 2019).  

 

The predicted functional profile of AD microbiota was also characterized by reduced 

potential of biotin synthesis (Vitamin B7), also only significantly different between AD 

patients’ and APOε4 carriers’ microbiota. Studies investigating the role of biotin in animal 

models of AD have shown that biotin may contribute to tau pathology in the AD brain (via 
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reduced carboxylase biotinylation levels) and lead to impaired mitochondrial functioning 

(Lohr et al., 2021). Conversely, high-dose supplementation of biotin has been shown to have 

neuroprotective effects in MS (McCarty and DiNicolantonio, 2017). Biotin is considered to 

have good tolerability and might present a feasible pharmacological target for AD that 

remains to be further explored.  

  

The functional potential for the biosynthesis of riboflavin (vitamin B2) and pyridoxal 

phosphate (vitamin B6) was reduced in the microbiota of the AD patient cohort. The former 

is supported by the work of Ling et al.. Both coenzymes play important roles in numerous 

metabolic pathways and are considered neuroprotective agents. The wide-reaching 

antioxidant properties of riboflavin are well-established and include counteracting of 

oxidative stress, neurogenic inflammation, mitochondrial dysfunction, homocysteine 

neurotoxicity, and glutamate excitotoxicity (Marashly and Bohlega, 2017). Treatment with 

riboflavin in a mouse model of AD protected against cognitive and behavioural decline and 

led to a significant reduction in the level of ROS and malondialdehyde (MDA) (indicators 

of free radicals) (Zhao et al., 2018). Riboflavin is also the major cofactor of the oxidase 

which synthesises pyridoxal phosphate. Pyridoxal phosphate is important in the tryptophan-

kynurenine pathway and homocysteine metabolism. Deficiency in pyridoxal phosphate is 

linked to increased homocysteine levels, which is considered a risk factor in cerebrovascular 

disease and has also been implicated as a possible mechanism in the development of AD 

(Malouf and Grimley Evans, 2003). 

 

Comparing the functional potential of the microbiota of AD patients to that of the APOE 

cohorts showed a large number of distinctly different pathways. The beta diversity analysis 

on the KEGG metabolism, modules and pathways was only significant between the AD 

patients and the APOE4 non-carriers, indicating a greater similarity in the functional 

potential of APOε4 carriers and AD patients. However, when only comparing the APOε4 
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carriers against the APOε4 non-carriers, none of the identified KEGG pathways were 

significant after BH-correction. This observation supports the notion that intestinal 

functional potential of APOE participants could not be distinguished reliably by APOε4 

genotype. Whereas that of AD patients clearly separated them from the APOE groups. The 

analysis of the microbial functional potential of the AD patients highlighted different 

possible mechanistic links with AD pathophysiology. 
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6. CHAPTER 6: GENERAL DISCUSSION, LIMITATIONS AND 

FUTURE DIRECTIONS 

General discussion 

Key outcome:  APOε4 carriers cannot be distinguished from non-carriers using 

neuropsychological, cardiovascular or brain imaging measures, but can be distinguished by 

an altered lipid metabolism. 

 

APOε4 carriers showed no salient signs of cognitive or behavioural dysfunction or 

volumetric differences in brain structures compared to the APOε4 non- carriers. These 

findings adds to the body of mixed literature (Jorm et al., 2007; Wisdom, Callahan and 

Hawkins, 2011; Alfred et al., 2014; Bunce et al., 2014). The evidence suggests that if 

neuropsychological performance differences can be detected between APOε4 carriers and 

non-carriers, that these differences have small to middle effect sizes, which become less with 

increasing age and are modulated by APOε4 genotype (no ε4 > ε4 > ε4/ε4) (Caselli et al., 

2007; Wisdom, Callahan and Hawkins, 2011). Considering these points, it is likely that a 

larger sample size is required to reliably detect differences with only small or medium effect 

sizes (discussed more in the limitations). This also highlights the fact that traditional markers 

of cognitive decline are poor markers to detect preclinical stages of AD. APOε4 carriers had 

significantly increased levels of LDL and total cholesterol, in the absence of an overall 

increased cardiovascular risk. This finding adds to the existing body of evidence (Chen et 

al., 2021).  

 

Key outcome:  APOε4 status is not associated with large-scale compositional changes of the 

intestinal microbiota, but significantly differs with respect to specific taxa abundances and 

microbiota function. 
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There were no consistent large-scale changes in the microbial community between the 

APOE groups. When considering individual taxa however, rather than the whole 

community, it was noted that numerous taxa that were differentially abundant by APOε4 

status. In particular, changes in microbiota with immunomodulatory properties (such as 

Prevotella), bacteria involved in the production of SCFAs and other key metabolites (R. 

obeum, Coriobacteriales) or microbiota regulating oxidative stress (Methanobrevibacter) 

emerged as key findings. Metabolic differences, particularly increased functional reliance 

on alternative pathways to the traditional glucose metabolism in APOε4 carriers (such as the 

PPP), may be indicative of heightened levels of oxidative stress as the PPP is known as a 

first-line defense pathway of oxidative stress. Upregulation in nitrogen metabolism and 

associated ammonia production in APOε4 carriers represent increased production of 

neurotoxic compounds. Although hypothesis-generating in nature, these APOE-associated 

changes in the microbiota community composition and its function are indicative of 

intestinal dysbiosis that may promote a community profile more vulnerable to AD-related 

mechanism. 

 

Key outcome: The Gut-Brain axis, with the intestinal microbiota as its main modulator, 

appears to be involved in AD pathology. Insights from this work point towards mechanisms 

of inflammation and reduced homeostasis. 

 
The number of studies investigating the role of the intestinal microbiota in AD patients is 

limited to nine studies (Vogt et al., 2017; Zhuang et al., 2018; F. Li et al., 2019; Haran et 

al., 2019; Liu et al., 2019; Saji et al., 2019, 2020; Hou et al., 2021; Ling et al., 2021), the 

general consensus is that AD pathology is associated with microbial dysbiosis.  

 

This work showed large-scale changes in microbiota community composition and a decrease 

in community richness which clearly distinguished the AD patients from the non-patient 

APOE groups, thereby further adding to the literature (Vogt et al., 2017; F. Li et al., 2019; 
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Liu et al., 2019; Ling et al., 2021). The intestinal microbiota of there here studied AD 

patients is characterized by a decrease in several bacteria that typically inhibit inflammation 

in a state of homeostasis (Clostridiales members: Lachnospiraceae, F. prausnitzii, 

Roseburia, Coprococcus, E. eligens; Bacteroidetes members: Barnesiella, Odoribacter, 

Alistipes, Bacteroides). These inflammation-suppressing mechanisms act via the production 

of microbial metabolites (such as SCFAs), via direct stimulation of anti-inflammatory 

components of the immune system, or via modulation of the GI barrier. Of note, abundance 

changes in members belonging to the Bacteroidetes and Firmicutes may have been 

influenced by the absence of cryoprotectant for the preservation of the AD patient samples. 

In particular the loss of Bacteroidetes in the microbiota of AD patients, observed in this 

study, should thus be interpreted with caution. A reduction of these bacteria might shift the 

host to an inflammation-prone state. Functional changes of the intestinal microbiota in AD 

indicate an increased activation of first-line defense responses to oxidative stress 

(upregulation of glucose and alternative glucose pathways, notably the PPP), increased 

availability of pro-inflammatory compounds (increased production of formaldehyde and 

ammonia) and a reduced potential for vitamins with anti-inflammatory action 

(downregulation of B-vitamins synthesis, including riboflavin). Many of these findings are 

functionally interrelated calling for a systems approach to gain a deeper understanding of 

the role of taxonomic and functional microbiota changes in AD pathophysiology. 

 

Key outcome: Existing literature highlights the role of certain microbiota including 

Actinobacteria, Clostridiaceae, Bifidobacterium, Akkermansia and Lactobacillus, which 

could potentially serve as diagnostic aid for AD. Inflammation emerges as a common theme 

across the studies.  

  

Only considering findings that have been replicated by at least one other study using the 

same statistical method, the intestinal microbiota of AD patients is enriched in 
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Actinobacteria, Proteobacteria, Enterobacteriales, Coriobacteriales, Enterobacteriaceae, 

Christensenellaceae, Akkermansia, Bifidobacterium and Lactobacillus. A decrease of 

relative abundances in the AD group is observed for Bacteroidetes, Lachnospiraceae, 

Clostridiaceae, Parabacteroides, Bacteroides, and B. plebeius (Figure 6.1). These 

abundance changes are particularly interesting as Ling et al. (2021) showed that combining 

information of six abundant genera could support AD diagnosis. These genera include three 

of the above-mentioned taxa Bifidobacterium, Akkermansia and Lactobacillus, as well as 

Faecalibacterium, Roseburia, and Enterococcus. Overall, these data suggest that intestinal 

microbiota of AD patients is characterized by an increase in lactate-producing and mucin-

degrading bacteria, as well as a reduction of anti-inflammatory and butyrate-producing 

bacteria. It also shows that differential relative abundance of microbiota genera could be 

used to distinguish AD patients from healthy individuals which offers exciting and novel 

targets for therapeutic interventions. The intestinal microbiota of the AD patient cohort is 

further characterized by several metabolic differences, which include an increase in the 

microbial functional potential for carbohydrate metabolism, folate biosynthesis, 

glycolysis/gluconeogenesis, galactose metabolism and fructose and mannose metabolism, 

and downregulation of the immune system, cell motility, bacterial chemotaxis and riboflavin 

metabolism (Figure 6.1). Taken together, the upregulation of these pathways may also be 

involved in increased oxidative stress and inflammatory processes and a dysregulation of the 

intestinal epithelial barrier function. At the same time, I observe a downregulation in the 

intestinal microbiota of pathways involved in anti-inflammatory processes, such as the 

biosynthesis of anti-inflammatory agents (riboflavin), indicating that there is an overall shift 

of metabolic pathways which might increase vulnerability to AD and promote disease-

associated processes.   



 289 

 
Figure 6.1 Graphical summary of the evidence for a microbial component in Alzheimer’s Disease based on the current literature, findings for 

taxonomy and function only shown if replicated by at least one other study, ­ = increase, ¯ = decrease, X = no association, ✓ = differences 

exist
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Conclusion 

AD pathological changes often precede disease symptomology by a decade or more. By the 

time that cognitive decline presents itself, brain changes are irreversible. Thus, it is thought 

that the preclinical stages of AD offer the greatest opportunity for intervention, prevention, 

and disease-course modification. The APOε4 gene confers a three- to 12-fold increased to 

its carriers for developing AD in the future and they thus represent a good study population. 

Although our understanding of APOE has been growing over four decades of research, the 

exact relationship between isoform structure and function, as well as the exact nature of 

associated mechanisms in the context of AD, are still incompletely understood (especially 

in vivo). In this work, I performed a comprehensive baseline assessment of several health 

areas related to AD in APOε4 carriers and non-carriers. The hallmark cognitive and 

behavioural symptoms associated with AD present later in the disease progression and are 

thus likely to be preceded by other physiological changes and are poor markers for 

preclinical stages of AD.  

 

In light of inconclusive amyloid- and tau-centric clinical trials, investigating the Gut-Brain 

axis in AD pathogenesis is an exciting new perspective with the potential to offer novel 

insights and treatment avenues. How exactly microbiota changes affect host health or 

whether they precede AD symptomology and could be used as potential biomarkers to 

identify early stages of the disease is virtually unknown. Yet, given the shift in the AD 

research community to focus more on preventative and early approaches, these questions are 

particularly relevant and have here been explored further via longitudinal characterisation of 

the intestinal microbiota in APOε4 carriers and non-carriers. This work identified numerous 

taxonomic and functional findings. This is the second study to investigate the relationship 

of APOE on the Gut-Brain axis in humans and because of the limitations discussed later, the 

findings presented here should be considered hypothesis-generating.  
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Although causality cannot be determined on the basis of the current observational evidence, 

this work supports the hypothesis for a microbial component in AD and provides further 

evidence for a role of the Gut-Brain axis in AD. The findings from this work strengthen the 

notion that relative abundance changes and up-/downregulation of pathways favour a state 

of dysbiosis and mechanisms that underlie inflammation. I propose that the lowered 

abundances of the above described bacteria may downregulate inflammation-suppressing 

actions of the intestinal microbiota and thereby shift the host to an inflammation-prone state. 

Future work is essential to gain a better understanding of bacteria-related mechanisms in AD 

and interventional study designs will be necessary to test cause-effect relationships.  

 

Despite consolidated efforts, the lack of treatment options for AD persists. Particularly in 

light of the over 200 of clinical trials that have failed to modulate the disease trajectory by 

targeting the Aβ cascade, a new perspective is needed. The approval of GV-971 is 

particularly exciting as it is the first therapeutic intervention in AD which works via 

modulation of the microbiome, which in turn strengthens the notion that targeting the Gut-

Brain axis is a promising avenue with great potential.  

 

Limitations 

Study-specific limitations  

This study has several limitations. Firstly, I did not assess the subjects’ cognitive or 

behavioural performance in the long-term and can thus not infer rates of decline over time. 

As outlined above, the literature strongly suggests that APOε4 carriers exhibit accelerated 

rates of decline in some cognitive domains in midlife to early old age compared to non-

carriers in the absence of clinical cognitive impairment (Whitehair et al., 2010; Rawle et al., 

2018). Given the accelerated decline in APOε4 carriers, a longitudinal design might have 

also been better equipped to detect volumetric changes with small effect sizes that cannot be 

uncovered in cross-sectional studies. Also, although a genetic risk, this was not an event 
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driven study and I do not know which participants from the APOε4 carriers will develop 

AD. Vice versa, I also do not know which participants from the non-carrier group might 

develop AD. This is a major limitation, which is difficult to overcome given that preclinical 

AD is ill-defined and remains difficult to detect. 

 

Secondly, the study population is relatively homogenous with respect to their socioeconomic 

background, ethnicity, access to healthcare, and has an above-average level of education. 

Whilst this limits the generalisability to the general public, it also minimizes the amount of 

bias introduced by confounding variables.  

 

And lastly, the small effect sizes of differences between APOε4 carriers and non-carriers, 

raises the question of using different measures for similar cognitive functions and pooling 

effects across several measures that tap into the same cognitive domain (Mielke et al., 2016). 

Administering multiple standardized measures, that have a high correlation, has indeed been 

suggested as a means to avoid any potential losses in validity (Wisdom, Callahan and 

Hawkins, 2011). 

 

With respect to the AD patient group, I recognise that the sample size is very small and that 

the patient group was not matched with respect to age or sex against the APOE groups. 

Whilst I am going to address the topic of sample size in the following, I acknowledge that 

any findings coming from the AD patient group should be considered hypothesis-generating 

and need to be validated in a study with a larger cohort.  

 

In the following, I am going to describe limitations that concern all microbiome studies and 

need to be considered carefully when deciding on an experimental design and procedures. A 

significant challenge for every microbiome study is the amount of variability in the data, 

which is intrinsic to the nature of intestinal microbiota communities but is further increased 
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by a large range of external factors. Ultimately this leads to a low signal-to-noise ratio that 

makes it difficult to detect differences between groups and to reliably discern a true signal 

from noise. Each step, from sample size, participant selection, gathering of metadata, sample 

collection, sample transport and storage, over to DNA extraction, sequencing technology 

and subsequent data processing and analysis, are crucial steps in the experimental design. 

Each step can introduce variation in the final results, which may easily overpower true 

differences in intestinal microbiota communities, particularly in study settings where the 

signal of interest (effect size) is considered small to medium. The heterogeneity of study 

designs adds a further level of complexity with respect to comparing and interpreting 

findings between studies and remains a pervasive challenge (Vujkovic-Cvijin et al., 2020). 

After reviewing the major challenges of microbiome studies, I will discuss how this study 

addressed each of the limitations.   

 

Sample size 

An important limiting factor which applies to the majority of microbiota studies, is that of 

insufficient samples size. Statistical power calculations and the associated estimates for a 

sample size sufficient to detect an effect and derive meaningful conclusions which are 

generalizable beyond the study population, are dependent on the level of specificity and 

sensitivity (type I and II errors) considered acceptable (Casals-Pascual et al., 2020). This in 

turn is dependent on the effect size, that the variable of interest exerts on the dependent 

variable. In microbiome studies, this question often takes the shape of differences within the 

microbial communities which are associated with a certain disease phenotype. 

Unfortunately, it is often unknown how large a change in community needs to be in order to 

be considered relevant. To perform power calculations, one must also quantify the expected 

within-group variance (B. Kelly et al., 2015). Both effect size and the distribution of 

microbial diversity are difficult to estimate and will further depend on the statistical test used 

to determine a difference in community profiles (e.g. alpha or beta diversity measures), 
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which makes power calculations difficult, particularly without preliminary data to inform 

estimates on effect size (Casals-Pascual et al., 2020). In the study by Vujikovic-Cvijin et al. 

(2020), beta diversity was strongly associated with sample size with most variables showing 

a performance plateau in the Random Forest model around n=400-500 participants. Another 

paper suggests that even after matching participants for numerous factors, the sample size 

of each group should be no less that 100 subjects for a reliable detection of differences which 

are small in magnitude (McDonald et al., 2015). The calculation of a sufficient sample size 

for repeated-measures or longitudinal studies is further complicated by the fact that variances 

(mean and standard deviation of the response variable) and correlations between the 

measures must be determined for each measurement time point (Guo and Pandis, 2015).   

 

With a sample size of 82 participants at enrolment, this study is comparable to a large number 

of other microbiome research studies. With a prevalence of approximately 22% for the 

APOε4 genotype, identifying 100 APOε4 carriers requires the screening of over 450 people 

who are eligible and willing to participate. Although the AD patient group is very small, the 

other human studies report patient numbers in the range of 21-43 participants (with one 

exception 100 AD patients in Ling et al. [2021] study).  

 

Given the lack of preliminary data, I was not able to perform a power calculation and I thus 

cannot not assume to have statistical power. Consequently, results coming from this study 

should be interpreted with caution and are hypothesis-generating. This study was able to test 

feasibility of protocols, determine estimates for effect size and prevalence of features, 

evaluate temporal variation and collect considerable amount of preliminary data which can 

be utilized to design trial protocols, generate hypotheses and guide future work.  

 

Intersubject-, intrasubject- and temporal variability of the human intestinal microbiome 
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Research has repeatedly shown that the human intestinal microbiota forms a dynamic and 

diverse community, which is unique to an individual, and can differ considerably between 

people (Eckburg et al., 2005; Turnbaugh et al., 2009; Qin et al., 2010; Human Microbiome 

Project Consortium, 2012). This breadth in compositional differences among individuals, 

and the absence of a reference set of taxa shared by all healthy people, add to the difficulty 

to reliably discern intestinal microbiota differences associated with a phenotype from those 

of spurious correlations caused by chance. Intersubject variability is markedly more 

pronounced than intrasubject variability (Human Microbiome Project Consortium, 2012). 

 

Temporal dynamics add another dimension to the existing variation of an individual’s 

intestinal microbiota. Our understanding of the temporal variation within the taxonomic or 

functional composition of the human intestinal microbiota is still limited (Faust et al., 2015). 

Only a few longitudinal studies have tried to address this gap, and findings have been 

inconsistent, with some evidence arguing for considerable variability within body sites 

among a small core of stable microbial taxa (Caporaso et al., 2011) and others suggesting 

long-term stability of the intestinal microbiota at strain-level (Faith et al., 2013). Temporal 

variation within the intestinal microbiota of adults is considered relatively stable (Costello 

et al., 2009).  

 

Cross-sectional studies are inherently subject to between-subject variability and are only 

able to provide a snapshot picture of the intestinal community at a particular time. 

Longitudinal studies are able to reduce variability by using repeated measures of the same 

individuals. Most importantly, longitudinal designs allow the assessment of shifts in 

community profiles over time (Guo and Pandis, 2015), which adds valuable insights into the 

temporal dynamics of intestinal microbiota changes. When trying to establish causality, 

longitudinal studies are considered superior to a cross-sectional studies (Allaband et al., 
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2019). Extensive metadata collection, to allow controlling for confounding variables, 

remains of utmost importance in any study design. 

 

Confounding variables 

Confounding variables spuriously increase variation in intestinal microbiota profiles and can 

thus erroneously lead to interpreting differences between controls and patients as disease-

associated microbiota differences, when in reality they are independent of disease. The 

amount of noise introduced by confounding variables can be considerable. Vujikovic-Cvijin 

et al. (2020) applied a machine-learning framework to the largest known publicly available 

human intestinal microbiota dataset to identify sources of variability and to assess their 

impact and found that confounder-matched analyses significantly reduced the number of 

apparent ‘disease-associated’ intestinal microbiota differences in 13 out of 19 diseases 

(Vujkovic-Cvijin et al., 2020). Age, sex, BMI, alcohol consumption and bowel movement 

quality (BMQ) in particular were determined to exert a large confounding impact on study 

results in a range of conditions. The impact of microbiota covariates, especially sex, age, 

and BMI has become well-established in the field (Yun et al., 2017; de la Cuesta-Zuluaga et 

al., 2019; Van Soest et al., 2020). In this study, I accounted for the effect of age and sex in 

the multivariate differential abundance analysis. Other studies that employed multivariate 

approaches were found to use a range of covariates, but consistently controlled for age and 

sex. I thus decided to use sex and age as the main covariates. Of note, exhaustive testing and 

gathering large amounts of metadata, as well as in-depth information on lifestyle and dietary 

self-reported questionnaires, demonstrated that APOE groups showed no significant 

differences across any of the assessed areas. This allowed us to minimize the risk of false-

positive associations. I suggest that future study designs need to carefully consider which 

confounding factors are likely to have an effect and gather a large amount of metadata. 

Careful participant selecting, and matching are very important in microbiome studies. If 

matching cannot be achieved, statistical adjustment for confounding covariates can reduce 

the number of spurious observations. 
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Technical source of variation  

Another key source of variation and potential bias can be introduced by faecal matter 

collection, storage and processing, as well as sequencing. The sampling procedure is 

arguably one of the most important steps in any microbiome study because of its critical 

impact on all downstream analyses. Sample collection methods and storage of the sample 

have big effects on the quality and accuracy on metagenomics results, as their effect size on 

the microbial community can exceed the effect size of the biological variables of interest 

(Quince et al., 2017).  

 

Being able to stabilize faecal matter for extended periods of time at room temperature and 

mailing samples back to the research facility is practical and advantageous in particular for 

longitudinal studies. I thus decided to use OMNIgene Gut tubes OM-200, which are storage- 

and mailer-friendly. OMNIgene Gut tubes are designed to collect a small and fixed amount 

of faecal matter, which is subsequently homogenized through shaking of the tube and 

preserved in the stabilizing buffer. OMNIgene tubes are well-validated alternatives, yielding 

comparable DNA quality to fresh samples, where rapid freezing of faecal matter or DNA 

isolation from fresh samples is not possible (Choo, Leong and Rogers, 2015; Anderson et 

al., 2016; Song et al., 2016; Abrahamson et al., 2017; Kim et al., 2017). One key limitation 

of OMNIgene Gut tubes and an important factor in any study is cost. The tubes used in this 

study are considerably more expensive than collection devices for fresh faecal matter.   

 

Faecal matter samples of the AD patient group were readily banked at -80 degrees Celsius 

and contrary to the OMNIgene tubes, the DNA of these samples was not preserved by use 

of a cryoprotectant prior to the DNA extraction. It has been shown that certain bacteria, such 

as members of the gram-negative Bacteroidetes show considerable loss in non-cryoprotected 

samples, which conversely leads to a proportional increase of other microbial species such 

as that of the Firmicutes and overall results in a higher Firmicutes to Bacteroidetes ratio 
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(Bahl, Bergström and Licht, 2012; McKain et al., 2013). Whether a change in the abundance 

profiles also results in a statistically meaningful distortion of the community composition is 

not unequivocally supported (Fouhy et al., 2015).  

 

I acknowledge that the lack of using a cryoprotectant to equally preserve microbiota of the 

AD patients’ samples may have had a negative effect on the inferred community 

composition. The results thus need to be considered with caution, which is further 

compounded by the fact that the samples of the APO E cohorts were collected and preserved 

with a different method, which decreases comparability. 

 

DNA processing and isolation 

The yield and quality of extracted DNA from faecal matter using different kits can vary 

(McOrist, Jackson and Bird, 2002; Kennedy et al., 2014). Commercial kits for isolation of 

microbial DNA have become increasingly popular. They allow for the extraction of 

numerous samples at once, are less time consuming than traditional methods, internally 

reliable and easy-to-use. They are also useful for standardizing methods and comparing 

results of different research studies. The here used MP Biomedicals™ FastDNA™ SPIN Kit 

for Soil showed to be superior in yield and purity compared to 14 manual and four automated 

commercial kits (Burbach et al., 2016) and demonstrated high DNA quantity and quality 

(Panek et al., 2018). Of note, commercial kits are predominately able to capture bacterial 

genomic information but are less good at extracting the DNA of fungi or viruses. Another 

limitation is cost. A third limitation is “kitomes”, which describes the contamination 

introduced by the reagents of a DNA extraction kit (Stinson, Keelan and Payne, 2019). 

 

The focus of this work is to characterize the bacteria in the intestinal microbiota, however, I 

acknowledge that archaea and viruses are also present. The study of the intestinal microbiota 

is still evolving, and the tools currently available are best suited to characterize the role of 
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bacteria (e.g. technical limitations in extracting non-bacterial DNA). However, future work 

should also examine the role of fungi, viruses and archaea more closely.  

 

Library preparation and metagenomics sequencing platforms 

There are many different platforms for sequencing. Whole shotgun metagenomic sequencing 

has considerably better resolution and is able to identify more species, particular those at 

low prevalence, compared to 16S rRNA gene sequencing (Durazzi et al., 2021).  The high-

throughput more expensive Illumina NovaSeq sequencing platform by NOVOGENE 

showed superior performance to MiSeq (Besser et al., 2018; Singer et al., 2019) and was 

chosen for this study.  

 

Statistical methods 

A systematic literature review of the statistical methods used by studies using 16S rRNA 

gene sequencing or metagenomic shotgun sequencing on human samples published between 

June 2018 and June 2019, resulted in the review of 419 studies (Bardenhorst et al., 2021). 

Besides the biological and technical variability outlined above (noisy data), microbiome data 

presents several other challenges to statistical analyses methods. Microbiome data is highly-

dimensional, sparse (zero-inflated), skewed and compositional in nature, with many 

hundreds of taxa occurring at small abundances and sometimes only in a few participants 

(low prevalence). Phylogenetic relatedness and taxonomic levels mean that taxa are 

correlated (Moreno-Indias et al., 2021). There is a breadth of statistical methods available, 

spanning alpha diversity, beta diversity analysis and dimension reduction, as well as a 

considerable number of approaches for differential abundance analysis and an increasing 

number of predictive models – which leads to substantial heterogeneity in the field 

(Bardenhorst et al., 2021). Predicted functional profiling is further limited by a lack of 

sufficient available classification and annotation in reference databases which means that 

genes and organisms can often not be assigned a function (Thomas and Segata, 2019).  
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Even after applying carefully considered methods for the analysis, the interpretability of 

findings particularly for single taxonomic units or functional pathways is not 

straightforward. Whether the presence or specific relative abundances of a certain bacteria 

is ‘good’ or ‘bad’ for host health is often unknown. The complexity of microbial 

communities, which form a dynamic ecosystem, makes it even more difficult to identify 

individual species which are causally linked to disease states or have health-promoting 

effects. We thus need to be particularly cautious when interpolating the results from a study 

investigating microbial signatures in one disease-setting to another disease setting. The 

interconnectedness of the intestinal microbiota further calls into question whether 

considering a bacteria’s role in host health in isolation (rather than its contribution towards 

homeostasis in the overall network) is the best approach. I carefully evaluated existing 

approaches for diversity measures, differential abundance analysis and the functional 

analysis as outlined in the methods chapter. I adopted both a univariate and multivariate 

approach to explore differential taxa abundances, because the former was most commonly 

reported in studies (thus allowing to make direct comparisons to results). The latter was 

employed because of the aforementioned importance of controlling for covariates and 

because newer studies were frequently choosing GLM modelling. I recognise that there is 

not one best way to analyse microbiome data and that all currently existing methods have 

their strengths and weaknesses.  
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Future directions 

Despite the arguably many challenges, the microbiome field is rapidly evolving and offers 

novel and exciting avenues for research and future diagnoses and treatment options, 

especially as most diseases are now assumed to have some microbiome component to it 

(Rackaityte and Lynch, 2020).  

 

Further detailed characterization is needed to improve our understanding of the role the Gut-

Brain axis plays in the context of AD and in at-risk cohorts such as APOε4 carriers. Given 

that AD lies on a continuum, it is particularly the ‘silent’ (potentially decades long) 

preclinical phase in which pathological processes are underway but individuals appear 

cognitively unimpaired and are hence often not identified, which offers the best opportunity 

to alter the disease trajectory. APOε4 carriers have an established genetic risk for developing 

AD and are thus a good study population, with a clearly defined and non-modifiable risk.  

 

Having tested and validated the methods used here, future work should firstly focus on 

scaling. A statistically powered multi-omics study (combining for example genomics, 

microbiomics and metabolomics) with repeated measures in APOε4 genotyped individuals 

and AD patients matched for age and sex would be the logical next step in better 

understanding the role of the intestinal microbiota in preclinical and clinical AD and in 

identifying therapeutic targets for future intervention studies.  

 

The intestinal microbiota is closely linked to many mechanisms of inflammation. As such I 

suggest that future studies in AD gather insights on the inflammatory status on a systemic 

and intestinal level by assessing the levels of serum inflammatory cytokines as well as faecal 

markers such as calprotectin, lactoferrin and alpha-1-antitrypsin (Schwiertz et al., 2018). In-

line with this, a clear understanding of the metabolites produces by the microbiota 

(metabolomics) would not only compliment predicted functional profiling but give 
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important mechanistic insights on health-mediating metabolites (SCFAs, neurotransmitter, 

immunomodulators). Although more difficult to evaluate in humans, another key question 

is to what extent the intestinal epithelial barrier (for example via probe-based confocal laser 

endomicroscopy) and BBB (dynamic contrast-enhanced magnetic resonance imaging [DCE-

MRI]) promote disease-associated processes through increased permeability (Wallace et al., 

2014; Varatharaj et al., 2019). ‘Leaky’ barriers might be fundamental drivers in many 

disease settings and as such they offer great promise as therapeutic targets. Several of the 

above-mentioned microbiome-related targets are already being investigated in interventional 

studies using mice.  

 

In a next step, I suggest a placebo-controlled, double-blinded, event-driven intervention 

study in APOε4 carriers, powered for AD diagnosis as primary endpoint, that builds on the 

insights from the large cohort-study by targeting one of the identified disease mechanisms 

(e.g. administration of SCFAs producing bacteria to decrease intestinal barrier permeability). 

The suggested microbiota-intervention should aim to test the efficacy of a prebiotic/probiotic 

(previously shown to be safe for use in humans, otherwise safety would need to be shown 

first) on the incidence for AD in the intervention group vs placebo. Particularly interventions 

using oligosaccharides, like the aforementioned GV-971, have shown promising results in 

animal studies and in Chinese AD patients and might offer new treatment options for AD.  

 

Studying the interplay of the intestinal microbiota and the brain, the Gut-Brain axis, is an 

underexplored but an exciting area of research and part of new conceptual era in which we 

approach human health from a truly holistic perspective, with the promise for novel 

therapeutic interventions for AD and many other diseases.  
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7. SUPPLEMENTARY INFORMATION 

Table 7.1 (Part 1) Observational mice studies investigating the relationship of Alzheimer’s Disease on the intestinal microbiota 
Mouse 
model 

Age Sequencing  Analysis  
method 

Main findings Reference 

APP/PS1, 
WT 
 
 
 
 
 
 
(n≥6/group) 

1, 3, 5 
and 8 

months  

16S rRNA 
gene 

sequencing  
 

α-diversity:  Rarefaction 
curves 

­ in 8M APP/PS1 compared to 8M WT mice Harach et al., 

2016 β-diversity: un/weighted 
UniFrac 

Significant clustering between groups at 8 months 

Differential abundance 
analysis: ANOVA 

8M APP/PS1 vs 8M WT: 
­ Bacteroidetes, Tenericutes, Rikenellaceae 
¯ Firmicutes, Verrucomicrobia, Proteobacteria, Actinobacteria, Allobaculum, 
Akkermansia 

immunohistochemistry, 
western blotting 

At 8 months, rel. abundance of several bacterial genera was correlated with 
levels of Aβ42 in the brain in APP/PS1 

GF-
APP/PS1, 
APP/PS1 
 
(n≥5/group) 

1, 3, 5 
and 8 

months  

 microscopy Reduction of cerebral Aβ load in young and aged GF-APP/PS1 compared to 
APP/PS1 

ELISAs No age-related increase in pro-inflammatory cytokine (IL-1β) in GF-APP/PS1 
mice, contrary to APP/PS1 
IFN-γ, IL-2 and IL-5 also significantly lower in GF-APP/PS1 mice 

4M GF-APP/PS1 mice faecal transplant 
from  
1) aged WT (COLOWT-APP/PS1)   
2) aged APP/PS1 (COLOAD-

APP/PS1) 
 
(n= 6/group) 

amyloid pathology Colonization of GF-APP/PS1 mice with microbiota increases Aβ pathology 
α-diversity:  Rarefaction 
curves 

COLOWT-APP/PS1 vs COLOAD-APP/PS1:  ­ diversity at day 1, 4 and week 
2,4,6 of colonization 

Differential abundance 
analysis: ANOVA 

Day 1: ¯ Rikenellaceae, Ruminococcus, Dorea in COLOAD-APPPS1 mice  
Day 4: ¯ Bacteroides in COLOAD-APPPS1 mice  

5xFAD,  
WT 
(n≥6/group) 

6, 9 and 
18 

weeks  

PCR of 
selected 
bacterial 

taxa 

Differential abundance 
analysis: 
unpaired Student t-test 

Few group differences of quantified bacterial taxa 
5xFAD at 9 weeks vs WT (but not at 6 or 18 weeks): ­ Firmicutes and 
Clostridium leptum, ¯ Bacteroidetes  

Brandscheid et 

al., 2017 
enzyme activity ¯ trypsin activity in 5xFAD mice (especially in young mice) 

APP/PS1, 
WT 
 
 
(n = 6/group) 

3,6, and 
8 

months  

16S rRNA 
gene 

sequencing   
 

α-diversity: Shannon, 
Simpson 

No difference between the groups 
¯ in α-diversity with increasing age in APP/PS1 mice (not in WT) 

Shen et al., 

2017 Differential abundance 
analysis 

APP/PS1 vs WT: 
­ Helicobacteraceae, Desulfovibrionaceae, Odoribacter, Helicobacter, 
Coriobacteriaceae 
¯ Prevotella, Ruminococcus 
Changes in APP/PS1 over time: ­ Prevotellaceae (no investigated in WT 
group) 
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Table 7.1 (Part 2) Observational mice studies investigating the relationship of Alzheimer’s Disease on the intestinal microbiota 

 

Mouse 
model 

Age Sequencing  Analysis  
method 

Main findings Reference 

APP/PS1 
(PAP), 
WT  
 
(n=6/group) 

1,3,5 
and 8 

months  

16S rRNA  
gene 

sequencing 

α-diversity: observed 
species (OTUs), Chao1, 
Shannon, Simpson, ACE 

Changes over time (all indices apart from Simpson): 
­ PAP8M vs PAP3M,  ­WT8M vs all WT groups 
Group comparison: ­PAP5M vs WT5M (Chao1), ¯PAP8M vs WT8M (Shannon) 

Zhang et 

al., 2017  
β-diversity:  weighted and 
unweighted UniFrac 

Significant clustering into 6 groups by age, PAP and WT distinct from 5 months 
onwards: (1) PAP8M; (2) WT8M; (3) PAP5M; (4) WT5M; (5) PAP3M&WT3M; 
(6) PAP1M&WT1M 
Variability explained PC1:  48.43%, PC2: 17.16% 

Differential abundance 
analysis: LEfSe 
 
 
Student T-test 

PAP8M vs WT8M: ­ Erysipelotrichaceae, Erysipelotrichales, Erysipelotrichales 
Several taxa differences within groups at different ages 
 
PAP8M vs WT8M: ¯Ruminococcus, Butyricicoccus, B. pullicaecorum  
PAP5M vs WT5M: ­ Desulfovibrio C21 c20 

Functional: KEGG  Upregulation of several pathways in PAP5M and PAP8M compared to WT 
   SCFAs Faecal matter: ¯ butyric acid in PAP5/8M vs WT 

brain: ¯ butyric acid (5/8M), isobutyric acid (5,8M), valeric (3M) and isovaleric 
(5M) in PAP vs WT 

 

APP/PS1 
(n=3 at 
3/6M,  
n=2 at 24M) 
WT  
(n=3 at 
3/6/24m) 

3, 6 
and 24 
months 

16S rRNA  
gene 

sequencing 

α-diversity: Shannon, Chao1 Diversity increased as a function of age and group (greatest in 24M-/6M-old 
APP/PS1, then 24M-/6M-old WT; lowest in younger mice)  

Bäuerl et 

al., 2018 β-diversity: un/weighted 
UniFrac 

3M-old and 6/24M-old mice cluster together regardless of group, PC1: 18%, 
PC2:12% 

Differential abundance 
analysis:  
ANOVA and Student t-test 

Changes over time: 
­ Rikenellaceae, Proteobacteria 
Group comparison: 
¯  Rikenellaceae compared to WT 24m, Clostridiales in TG 3m vs WT 3m,  
Bacteroidales, Ruminococcus, Oscillospira in TG 24m vs WT 24m 
­ Proteobacteria, particularly Betaproteobacteria and associated Sutterella in TG 
6m vs WT 3/6/24m, Erysipelotrichaceae in TG 24m vs WT  

SAMP8, 
SAMR1  

 
 

 
 
 
(n=13/group
) 
 

male 6 
months 

16S rRNA  
gene 

sequencing 
 
 
 
 

 
shotgun 

 

α-diversity: 
Shannon, Chao1, Ace 

no difference in alpha diversity  Peng et al., 

2018 β-diversity: un/weighted 
UniFrac 

Significant compositional differences 

Differential abundance 
analysis:  
LEfSe 

SAMP8: ­ Lachnospiraceae, Alistipes, Akkermansia, Odoribacter  
SAMR1: ­  Bacteroidales (S24_7_group), Prevotella_9, Parasutterella, 
Butyrivibrio 

Functional analysis:  
COG and KEGG (LEfSe) 

11 functional COG categories differed significantly 
Over 20 different functional groups at KEGG level 1-3 
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Table 7.1 (Part 3) Observational mice studies investigating the relationship of Alzheimer’s Disease on the intestinal microbiota 

 
 

Mouse 
model 

Age Sequencing Analysis 
method 

Main findings Reference 

SAMP8,  
SAMR1  
 
 
number of 
mice not 
given 

7 months 
 

 

16S rRNA 
gene 

sequencing 

α-diversity: 
Shannon, Chao1, 
Simpson 

significantly reduced Shannon and Chao1 in SAMP8 mice Zhan et al., 

2018 
β-diversity: 
Bray-Curtis 
dissimilarity 

No statistical testing performed. Visual assessment: samples clustered within 
groups but were separate from each other 

Differential abundance 
analysis:  
Student t-test 

27 taxa significantly different (all but one taxon was reduced in SAMP8) 
¯ Deltaproteobacteria, Deferribacterales, Desulfovibrionales, Ruminococcaceae, 
and many more 
­ uncultured Bacteroidales bacterium 

Control WT,  
GF-WT,  
GF-
SAMR1,  
GF-SAMP8 

faecal transplant into 
pseudo GF mice 

α-diversity: Shannon, 
Chao1, PD whole tree 

Intestinal microbiota transplant from SAMR1 mice, but not from SAMP8 mice, 
significantly improved abnormality in α-diversity 

Differential abundance 
analysis: 
One-way ANOVA and 
Fisher’s exact test 

Several taxa changed abundance levels after faecal matter transplant 
GF-SAMP8 vs all other groups: 
­ Betaproteobacteria, Burkholderiales, Alcaligenaceae, Parasutterella  
Change as a function of group: Control, GF-Control, GF-SAMR1, -SAMP8 
¯ Firmicutes, Clostridiales, Lachnospiraceae  ­ Bacteroidales 

Tg2576, 
WT 
 
n=3.5 per 
group 

 

6 (Yg-
Tg:pre-
sympto
matic) 

and  
15 (Ag-

Tg) 
months  

16S rRNA 
gene 

sequencing 

α-diversity: Shannon, 
OTUs 

no difference in alpha diversity  Honarpish

eh et al., 

2020 

β-diversity: weighted 
UniFrac   

Ag-Tg vs WT: significant clustering, PC1: 54%  

Differential abundance 
analysis:  
Two-way ANOVA 

Firmicutes to Bacteroides ratio significantly higher in Ag-Tg 
¯ Ruminiclostridium in Yg-Tg and Ag-Tg vs Yg-WT 
­ Lactobacillus in Ag-Tg vs Ag-WT 

Immunohistochemical 
staining 

Intestinal epithelial barrier dysfunction before development of cerebral Aβ 
pathology in Yg-Tg (significant reduction of E-cadherin) 

Brain 
immunohistochemistry 

Significant reduction in the expression levels of claudin 11 in Ag-Tg 

Inflammatory markers Plasma levels of IL-9, VEGF-α, and IP-10 elevated in the plasma in Yg-Tg but not 
in Ag-Tg, MCP-1 elevated in Ag-Tg only 

  Aβ visualization intestinal (ileum and cecum) Aβ deposits in Yg-Tg and Ag-Tg 
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Table 7.2 (Part 1) Human and animal studies investigating the role of Apolipoprotein E genotype and the intestinal microbiota 

Subjects Sequencing  Analysis method 
 

Main findings Reference 

APOE human study 
 
N= 14 ε2/ε3 carriers 
N= 18 ε3/ε3 carriers 
N= 18 ε3/ε4 carriers 
N= 6 ε4/ε4 carriers 
 
 
 
 
 
 
 
 
APOE4 TR-mouse model 
 
young (4 months old, 
N=10/genotype) mice 
 
old (18 months old,  
N=6/genotype) mice 
 
• APO ε3/ε3-TR mice 
• APO ε4/ε4-TR mice  

16S rRNA gene 
sequencing 
 

α-diversity: 
Shannon, Chao1, 
phylogenetic diversity 

no difference in α-diversity Tran et al., 
2019 

ß-diversity: weighted and 
unweighted UniFrac 

no difference in ß-diversity 

Differential abundance 
analysis: 
LEfSe 

APOε2/ε3 vs APOε3/ε4 and APO ε4/ε4: 
     ­ Firmicutes, Clostridiales 
APOε2/ε3 vs APOε3/ε3 and APOε3/ε4: 
     ­ Ruminococcaceae, Clostridium IV 
APOε2/ε3 vs APOε3/ε3 and APOε4/ε4: 
     ¯ Prevotellaceae 
APOε2/ε3 vs APOε4/ε4: 
     ­ Gemmiger 

α-diversity: 
Shannon, Chao1, 
phylogenetic diversity 

no difference in α-diversity 

ß-diversity: weighted and 
unweighted UniFrac 

distinct clustering by genotype within each age group  

Differential abundance 
analysis: 
Mann-Whitney U test and 
BH correction 

APOε3/ε3 vs APOε4/ε4: (across both age groups): 
­ Lachnospiraceae, Deferribacteraceae, Clostridium XIVa, Odoribacter, 
Mucispirillum, Enterorhabdus, Butyricoccus 
¯ Bacteroidaceae, Bacteroides 

Metabolomic 
NMR analysis 

Metabolites 39 metabolites distinct between APOE genotypes, including Alanine, 
Glycine, Lactate, Propionate, Xylose, Urocanate 

  Enrichment analysis Distinct pathways between APOE genotypes: 
ammonia recycling, urea cycle, and alanine metabolism 
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Table 7.2 (Part 2) Human and animal studies investigating the role of Apolipoprotein E genotype and the intestinal microbiota 
Subjects Sequencing  Analysis  

 
Main findings Reference 

EFAD APOE4 mouse model 
(homozygous APOE, 5x 
familial AD mutations, 4 
months-old) 
• APOE3-FAD mice (N=28) 
• APOE4-FAD mice (N=20) 

16S rRNA 
gene 

sequencing 
 

α-diversity: Shannon no difference in α-diversity Weng et 
al., 2019 ß-diversity: Bray-Curtis 

dissimilarity 
significant clustering at OTU level, family- and genus-level 

Differential abundance 
analysis: 
Mann-Whitney U test and 
BH correction 

APOE3-FAD vs APOE4-FAD mice: 
­ Prevotella, Ruminococcus, Sutterella 
¯ Anaeroplasma 

EFAD mice 
4 months-old 
• APOE2-FAD mice (N=33) 
• APOE3-FAD mice (N=55) 
• APOE4-FAD mice (N=51) 
 
6 months-old 
• APOE2-FAD mice (N=24) 
• APOE3-FAD mice (N=16) 
• APOE4-FAD mice (N=51) 

 α-diversity: Shannon no difference in α-diversity Parikh et 
al., 2020 ß-diversity: Bray-Curtis 

dissimilarity, weighted 
and unweighted UniFrac 

consistent and robust association with APOE genotype with all three 
measures, explaining 8.9% - 22.2% 

Differential abundance 
analysis: 
LEfSe 

Taxa associated with APOE: 
Prevotellaceae, Riknellaceae, Gastranaerophilales, Lactobacillaceae, 
Peptococcaceae, Turibacter, Desulfovibrionlaes, Mollicutes, 
Ruminococcaceaea 

Random Forest analysis Identified same bacterial families as LEfSe, best predictor: Muribaculaceae 
(only present in the murine microbiome) 

EFAD APOE4 mouse model 
 
Intervention study: 
Dietary inulin 
 
E4FAD-Control 
E3FAD-Control 
E4FAD-Inulin 
 
(N = 15/group) 

16S rRNA 
gene 

sequencing 
 
mass 
spectrometry 

α-diversity: Shannon E4FAD-Inulin significantly lower than E4FAD-Control  Hoffman 
et al., 
2019 

ß-diversity: Bray-Curtis 
dissimilarity 

distinct clustering between E4FAD-Inulin and control groups 

Differential abundance 
analysis: 
ANOVA 

E4FAD-Inulin vs E4FAD-Control mice: 
­ Prevotella, Lactobacillus  
¯ Escherichia, Turicibacter, Akkermansia 

Cecum: SCFAs ­ acetate, butyrate and propionate in E4FAD-Inulin vs E4FAD-Control 
Periphery: microbial 
metabolites 

E4FAD-Inulin vs E4FAD-Control mice: 
­ acetate ­ tryptophan metabolites (indolepropionate and indoleacrylate), ­ 
bile acids (cholate, deoxycholate)  
  
E4FAD-Inulin vs E3FAD-Control:  
­ metabolites involved in TCA cycle (mitochondrial dysfunction), PPP 
associated metabolites (reduced oxidative stress) 

Hippocampus: metabolites 
and inflammation  
 

Metabolites: E4FAD-Inulin vs E4FAD-Control mice: ­ scyllo-inositol 
(inhibitor of Aβ) ¯ myo-inositol (decreased inflammation) 
Inflammation: Enriched inflammatory gene expression in the hippocampus 
of APOE4 mice with FAD mutation.  
E4FAD-Inulin decreased expression of 2 pro-inflammatory genes 
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Genomic DNA extraction from saliva samples 

The buccal samples were processed using the QIAamp Blood DNA Mini Kit (Qiagen) in 

accordance with the manufacturer’s protocol for ‘DNA Purification from Buccal Swabs 

(Spin Protocol)’ as follows. First the foam tip was cut off from its shaft with sterilized 

scissors and placed into a 2ml microcentrifuge. 400µL of PBS were added, followed by 20µl 

of QIAGEN Protease stock solution and 400µL of Buffer AL (contains chaotropic salt). The 

mixture was then mixed by vortexing for 15s. All samples were transferred into a heat block 

and incubated at 56 °C for 10min. Following this, all samples were centrifuged for 5s and 

400µL of ethanol (96-100%) were added. The samples were vortexed and centrifuged again 

as described before. Next, 700µL of the mixture were transferred to the QIAamp Mini spin 

column and centrifuged at 8000rpm for one minute. The filtrate was discarded, the remaining 

mixture was added to the spin column and subjected to another round of centrifugation. For 

the washing steps, 500µL of Buffer AW1 was added and the samples were centrifuged at 

8000rpm for 1 min. After discarding the filtrate, 500µL of Buffer AW2 were added and the 

samples were centrifuged at 14000rpm for 3 min. The collection tube containing the filtrate 

was discarded and another round of dry spinning was performed (centrifuge at 14000rpm 

for 2min) to eliminate possible carryover from Buffer AW2. Lastly, the purified DNA bound 

in the spin column was eluted with AE buffer by adding 150µL of the buffer to the sample 

and incubating at room temperature for 1 min. Following this, the sample was centrifuged 

at 8000rpm for 1min. The eluate at the bottom of the collection tube was added to the spin 

filter again and centrifugation was repeated. Repeating the elution step without adding 

further buffer was performed to increase the yield of DNA.  

 

DNA quality control  

According to the manufacturer’s instructions the resultant DNA should have a total 

concentration of 0.5-3.5ug of DNA in 150uL of buffer (3-23ng/µL) with purity measurement 

(absorbance ratio at A260/A280) between 1.7-1.9. Following the extraction, the purified 
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genomic DNA samples were quantified using NanoDrop™ spectrophotometer (Thermo 

Fisher) and diluted with RNase/DNase free water to be in a range of 1-20ngAll samples were 

subsequently stored at -80°C until further processing.  

 

DNA amplification  

The APOE genotype was determined using two RT-PCR SNP Genotyping Assays, which 

determine the 112 T/C (rs429358) APOE4 polymorphism and 158 C/T (rs7412) APOE2 

polymorphism. The two SNP genotyping assays were diluted to a 20x working stock with 

1x TE buffer and aliquoted into many smaller volumes to prevent deleterious freeze-thaw 

cycles. These assays featured into either of the two master mixes (“MM112” for the APOE4 

polymorphism, and “MM158” for the APOE2 polymorphism). Each of the Master Mixes 

contained TaqPath ProAmp MasterMix (5µL per sample), RNase and DNase free water 

(2.5µL per sample) and the respective primer (0.5µL per sample) for master mixes. The 

primers were kept on ice and wrapped up in aluminium foil to protect from light. 

96-well PCR reaction plates (MicroAmp Fast 96-well reaction plate, 0.1mL, Applied 

Biosystems) were prepared as follows: add 8ɥL of the prepared mastermix and 2µL of DNA 

(containing 1-20 ng purified genomic DNA either for the external/ internal controls or 

samples of interest) or 2µL of RNase/DNase free water for the negative template controls 

(NTC’s) to each well resulting in a total volume of 10µL per well. Each reaction plate had 3 

NTC’s, four external controls with known APOE genotype (see Table 3) from the ‘Cognitive 

Ageing, Nutrition and Neurogenesis’ (CANN) trial (Irvine et al., 2018) and two internal 

controls from previously genotyped samples.  

 

Table 7.3 External controls to determine Apolipoprotein E allelic discrimination  

SAMPLE GENOTYPE 112 158 
S025 ε3/ε3 2/2 (TT) 1/1 (CC) 
S013 ε2/ε4 1/2 (CT) 1/2 (CT) 

COB349 ε2/ε2 2/2 (TT) 2/2 (TT) 
S112 ε4/ε4 1/1 (CC) 1/1 (CC) 
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After the reaction plate set-up was completed, an adhesive optical cover (MicroAmp Optical 

Adhesive Film, Applied Biosystems) was applied to the top of the plate. The plate was 

vortexed to mix the plates and centrifuged for 2 min at 1,000rpm to spin down the contents 

and eliminate any air bubbles. Then the reaction plate was loaded in the Applied Biosystems 

7500 Fast Real-Time PCR system (Thermo Fisher Scientific, Ashford, UK). In between 

steps the reaction plate was kept on ice. The PCR plate experimental design was set-up on 

the computer to reflect “unknowns”, “positive controls”, “negative control” properties 

before running the plate for 90 min.  

 

The PCR cycling conditions on the 7500 Fast Real-Time PCR machine system were as 

follows: one cycle of denaturation at 95°C for 10 min, 50 cycles of denaturation at 92°C 

for 15 s and annealing at 60°C for 60 s, and soak at 4°C until use. The fluorescence signals 

were detected during the annealing/extension step. After the PCR step was completed, the 

data was visually inspecting with help of allelic discrimination plots (Figure 1) and 

analysed in reference to the information presented in Table 4. Each PCR run produced two 

allelic discrimination plots, one for 112 T/C APOε4 polymorphism and 158 C/T APOε2 

polymorphism. After automatic calling and comparison against controls, the samples were 

automatically divided into one of four different clusters as shown in Figure 1: (1) Blue is 

homozygote allele 2 (TT),  (2) Green is heterozygote allele 2 (CT), (3) Red homozygote 

allele 1 (CC), (4) Black: no template control (note that negative control samples without 

any DNA in it will also fall into this cluster). 
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Figure 7.1 Representative printout of allelic discrimination plot 

 

Table 7.4 Reference table to determine Apolipoprotein E genotype  

APOE Genotype 112 158 
E3/E4 CT (1/2) CC (1/1) 
E2/E2 TT (2/2) TT (2/2) 
E2/E3 TT (2/2) CT (1/2) 
E2/E4 CT (1/2) CT (1/2) 
E3/E3 TT (2/2) CC (1/1) 
E4/E4 CC (1/1) CC (1/1) 
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Figure 7.2 Safety Checklist for Magnetic Resonance Imaging scanning 

 
 
 
 
 
 
 
 
 
 

 
 

Magnetic Resonance Imaging (MRI): Patient and Escort Safety Questionnaire 
 

To assess whether it is safe for you to have an MRI scan we need to know about any metal objects you may have in or 
on your body, therefore please complete and sign the following questionnaire. 

 
Name:                                                Hospital ID:                                  Date of birth: 
                                                                                 (If known) 
Address:                                                                                                  Weight: 
                                                                                                                                                       Height: 
 Yes No 
1.  Do you have or have you EVER had a cardiac pacemaker?   
2.  Have you EVER had heart surgery?   
3.  Do you have any aneurysm clip(s) in your head?   
4.  Do you have a hydrocephalus shunt?   
     If YES, is it a programmable shunt?   
5.  Have you had any operations on your head, brain, eye(s) or spine?   
6.  Have you EVER had metal dust/fragments go into your eye(s)?   
7.  Have you EVER sustained any metal injuries to any other part of your body  
     (e.g. shrapnel, bullets, pellets)? 

  

8.  Have you EVER had any other type of electronic, mechanical or magnetic 
     implants? (e.g. cochlear implant, neurostimulators, drug infusion pump)? 

  

9   Have you EVER had any operations involving the use of metal implants, plates,  
     pins, clips or stents including gastric bands or breast tissue expanders? 

  

10 Have you had any operations on your body in the last 8 weeks?   
11. Do you have any kidney problems?   
12. Have you had or are you waiting for a liver transplant?   
13. Have you ever had a previous reaction to an MRI contrast agent?   
14. Do you suffer from fits, blackouts or epilepsy?   
15. Do you have ANY piercing, hearing aids or dentures? If Yes, please remove them.        
16. Do you have any medication patches, tattoos or permanent eyeliner?   
Female patients only:   
17. Are you, or is there any chance you might be, pregnant?   
18. Are you breast-feeding?   
19. Do you have an Intrauterine Contraceptive Device (IUD)?   

 
Important Note: If you answer YES to questions 1 to 10 or 17 to 19 you MUST provide the details in the 
box below AND call the MRI Department on 01603 286107 to discuss. If you fail to do this your scan may be 
delayed or cancelled when you attend. 
 
 
 
 
DECLARATION: I take full responsibility for the information above and confirm that it is 
correct.  
 
SignaWXre«««««««««««««««««       DaWe«««««««««««««««« 
(Patient/Guardian/Escort/Representative) 
 
MR OperaWor¶s signaWXre««««««««««.  DaWe«««««««««««««««... 

 

Details: 
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Brain Protocol Magnetic Resonance Imaging Sequence 

The structural MRI data was obtained by using the TRACC Brain Protocol on a 3 tesla 

Discovery 750w wide bore system (GE Healthcare, Milwaukee, WI, USA) with a 12-

channel phased-array head coil for signal reception. Structural T1-weighted images were 

obtained using a whole-head three-dimensional inversion-recovery fast spoiled gradient 

recalled echo (IR-FSPGR) sequence. The parameters for this sequence were as follows: 

field-of-view (FOV) = 256mm, acquired matrix = 256 x 256, 196 sagittal sections of 1mm 

thickness, repetition time (TR) = 7.7ms, echo time (TE) =3.1ms, inversion time (TI) = 

400ms, flip angle = 11 degrees, ASSET acceleration with a factor of 2 in phase-encoding 

direction.  

 

Details on neuropsychological testing battery 

Addenbrooke’s Cognitive Examination-III – detailed test description 

The first subdomain, attention, can score up to 18 points. Participants need to give 

information about the date, season and current location. They also need to repeat back 3 

words and do a serial subtraction. Memory is tested by delayed recall, memorizing a name 

and address as well as recalling names and facts. A maximal subdomain score of 26 points 

can be achieved. For the fluency subdomain, with a maximum score of 14 points, participants 

are asked to generate as many words as possible starting with a specific letter in 1 minute 

and naming as many animals as they can in 1 min. The language subdomain consists of 

several smaller tasks, including repetition of polysyllabic words and two proverbs, reading 

out words which have a mismatch between their spelling and sound and naming 12 objects. 

Just like the memory domain, participants can score a maximum of 26 points in the language 

domain. Visuospatial ability, with a domain score of 16 points, is assessed by asking 

participants to copy an infinity look and a wire cube diagram as well as asking them to draw 

a clock face. They also need to count dots and recognize fragmented letters of the alphabet 

(Bruno and Vignaga, 2019).  
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Rey-Osterrich-Complex Figure test - scoring of the task 

Many scoring systems have been developed; in this study we adopted a widely used 36-point 

system by Lezak (1976, 1983, 1995) adapted by E. M. Taylor (1995) which breaks the figure 

down into 18 elements. Each element is awarded a score between 0 and 2 points depending 

on accuracy and placement. Age-stratified normative data is available and important for the 

correct interpretation of performance. The literature suggests that a longer copying time is 

associated with a poorer recall score (Tremblay et al., 2015). Longer copying time might 

indicate a poor organized strategy if accuracy of the copy is low, on the other hand, if the 

accuracy is high, it might reflect ‘effort’ and ‘care’ taken to complete the copy (Bennett-

Levy, 1984). Understanding copying strategy has been suggested to be a major determinant 

for copy and recall performance and it might help to differentiate between the type of recall 

deficit (organization vs forgetting) (Bennett-Levy, 1984). 

 

Sea Hero Quest – two types of level to assess spatial navigation 

(i) Goal-oriented wayfinding levels. In goal-oriented wayfinding levels, the player is at first 

presented with a map of the level which showing the starting location and checkpoints that 

need be found in a set order (Figure S.3). The checkpoints are buoys with flags which upon 

getting closer also show their checkpoint number. Participants can study the level map for 

as long as they wish but this time is being recorded. Upon leaving the map view, participants 

need to navigate the boat (third-person perspective) to the checkpoints under timed 

conditions. If a given time is exceeded, an arrow appears which helps the player navigation 

by pointing along the Euclidean line to the next checkpoint (Coughlan et al., 2019). 
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Figure 7.3 Maps presented in wayfinding levels 6 (A), 8 (B), 11 (C) adapted from 

Coughlan (2019) 

 

(ii) Flare accuracy levels. Contrary to wayfinding levels, the player is not presented with a 

map and hence has no information about the level’s size or shape which could inform a 

cognitive map. Instead, the player is immediately navigating along a river with the 

instruction to find a red flare gun located somewhere in the level and to shoot this flare back 

to the starting position. Upon successfully finding the flare gun, the boat rotates by 180 º and 

the player is asked to shoot the flare back to their initial starting point by choosing one of 

three options (A-left, B-front, C- right). 

 

Figure 7.4 Flare accuracy level modified from Coughlan (2019) 
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In order to find the flare gun, players need to keep track of where they have been whilst 

navigating through and searching this novel environment. As they travel through the level, 

players also need to keep an accurate representation of their current location with respect to 

their starting location as well as integrate this information during self-motion and after a 

180º rotation. 

 

Sea Hero Quest - Statistical analysis method 

(i) Goal-oriented wayfinding levels. Given the design of the experiment, with each 

participant repeatedly being tested on navigation performance by completing multiple levels 

of the SHQ game, we used “subject ID” as a random effect in our models to allow varying 

the intercept for subject. We then assessed the explanatory effect of various variables 

including sex, age, educational attainment and subjective navigation abilities on the SHQ 

outcome variables to identify and retain those predictors in the final model that would 

significantly contribute to the model/ increase the model fit. This decision was mainly guided 

by our research aim which was to investigate the effect of genotype whilst controlling for 

potential confounders (as suggested by the literature). Inclusion vs exclusion of fixed effects 

was further informed by Bayesian information criterion (BIC), Akaike information criterion 

(AIC), and Log-likelihood (logLik).  

 

Following this, multilevel mixed regression models were run to evaluate the effect of genetic 

risk on the three outcome measures: wayfinding distance, wayfinding duration, and flare 

accuracy. For wayfinding levels, we implemented multilevel linear mixed regression models 

with the lmer() package in R.  

 

(ii) Flare accuracy levels. For SHQ flare levels, we used mixed effects ordinal logistic 

regression, which is appropriate for ordinally-scaled observations with a finite set of 

categories, to model flare accuracy of “1”, “2”, or “3”. Where “3” denotes a correct answer, 
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shooting the flare back to the starting location. A flare accuracy of “2” and “1” however, 

indicate an increasing distance between the correct location and the chosen location, with 

“1” being furthest away from the target location. Flare accuracy can thus be order in terms 

of test performance (3 = best, 2= second best, 1 = worst) and are hence ordinally scaled. We 

implemented mixed effects ordinal logistic regression with genetic risk, age, sex, education 

and completion time as fixed effects and subject ID as random effects in R by using the 

“clmm” command from the “ordinal” package. We also investigated the individual level 

data, where each player has a single observation, thus excluding subject ID as random effect. 

This was implemented by running standard ordinal logistic regression (without random 

effects) with same fixed effects as before, using the clm() package in R.  

 

Supermarket Task – detailed test description 

In the Supermarket Task, participants watch 14 short clips on an iPad. These clips show how 

a person is navigating through a virtual supermarket environment making several 90° turns 

from a first-person perspective (Tu et al., 2015). Every clip starts from the same location, 

the entrance of the supermarket, and finishes at set locations in the supermarket. The number 

of turns taken, and distance travelled through the supermarket is longer for videos 8-14 (40 

sec, 5 turns) than for videos 1-7 (20 sec, 3 turns). After every clip, participants have to answer 

three questions. First, the participant is asked to indicate the direction of their starting point 

(=the entrance) whilst imaging that they are themselves in the supermarket at the position 

where the clip ended. This question taps into egocentric orientation as participants need to 

use an egocentric frame of reference to make the right answer. Next, participants are shown 

a map of the supermarket layout from birds-eye perspective and are asked to indicate their 

finish location on the map. This question taps into allocentric orientation. Lastly, participants 

are asked which direction they were facing when the video stopped which assesses heading 

orientation. A practice trial is completed to make sure that all instructions are understood. 

No feedback on task performance is provided. All trials were administered in sequence. 
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Figure 7.5 Example screenshots from the Supermarket Task 

 

 

Figure 7.6 Spatial layout of supermarket response sheet modified from (Tu et al., 2015) 

 

(a) Egocentric orientation gives the sum of correct answers to the question “Which way 

is the starting point?” (answer options are: front left, front right, back right and back 

left) with a minimum score of 0 and a maximum of 14. 

(b)  Allocentric orientation is the displacement (distance in mm) between the 

participant’s location as indicated by them after each trial and the correct location; 

1: Starting Location 2: Example of moving

3: Example of moving 4: Set finish location for a trial

Correct location for
trial number 

Peripheral zone (defined as a line of 
points at half distance between the 
center of the map and outside) 

Alleys

Centre of map

X Entrance of the supermarket

Figure legend
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here the smaller the distance, the better the performance. Displacement is also 

measured between the participants response and the centre of the map.  

(c) For heading direction, all correct heading questions for the 14 trials are summed up 

to form a final score with a minimum of 0 and a maximum of 14.  

(d) Central navigation preference was calculated as the number of central responses 

divided by the number of peripheral responses. With only 2 locations inside the 

central zone, a ratio of 0.17 is correct. A ratio higher than 0.17 indicates a preference 

towards central map areas whilst a ratio smaller than 0.17 indicates a preference 

towards peripheral map locations. A series of multiple regression models was fitted 

to explore the effect of genetic risk and other variables on the four outcome variables: 

egocentric orientation, allocentric orientation, heading direction, and central 

navigation preference.  

 

Cognitive Change Index – detailed information on the questionnaire 

The CCI is a questionnaire that consists of 20 items and asks participants (or informants) to 

rate the participant’s ability to perform certain cognitive tasks (e.g. remembering names and 

faces of new people, recalling conversations a few days later, organizing daily activities, 

etc.) compared to the previous five years (Rattanabannakit et al., 2016). Performance is rated 

on a 1 to 5-point Likert scale with higher scores indicating greater perceived decline (1=no 

change, 2= minimal change, 3= some change, 4= clearly noticeable change, 5= much worse). 

If no change is perceived a total minimum score of 20 is obtained, whilst the biggest self-

perceived change in cognition would result in a maximum of 100 points. Before answering 

all the questions, participants are also asked to give a general indication to whether they “feel 

like [their] memory is becoming worse”. The three options to choose from are “No”, “Yes, 

but this does not worry me”, and “Yes and this worries me”.  The 20 questions are tapping 

into three domains, with 12 questions evaluating memory performance, five questions 

assessing executive functioning and three questions focusing on language. 
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QRISK®3 – lipid measurements 

After sterilizing the fingertip with an alcohol swab, a safety lancet was used to prick the 

participants finger, then a small sample of venous blood (35µl) was transferred onto the 

cholesterol test strip (inserted into the device) with help of a capillary tube, and all the 

measurements given by the Mission-3-in-1 Cholesterol Meter were recorded. Participants 

were also asked to self-report their height and weight as well as fill in a questionnaire to 

provide information about risk factors important for the QRISK model.  

 

Food Frequency Questionnaire – detailed description 

The FFQ is eleven pages long and asks participants to give frequency ratings for food and 

drinks in nine categories: “Meat and Fish” (Figure S.7), “Bread and Savoury biscuits”, 

“Cereals”, “Potatoes, Rice and Pasta”, “Dairy Products and Fats”, “Sweets and Snacks”, 

Soups, Sauces and Spreads”, “Drinks”, Fruit” and “Vegetables”. The FFQ also gathers 

further information linking back to nutritionally important food items (e.g. milk type, cereal 

type, fat type for cooking and baking, etc.). All frequency ratings were coded as numerical 

values from 1 to 9 (1 for ‘never or less than once a month’, all the way to 9 for ‘6+ times per 

day; and ‘-9’ for missing answers) and more detailed information were assigned food codes 

using flowcharts and look-up lists. The resulting codes are saved in a comma-separated file 

and processed by the FETA programme. More details regarding how FFQ data is processed 

with FETA are published by Mulligan et al. (2014). 
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Figure 7.7 Example page from the Food Frequency Questionnaire 
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Shotgun metagenomic sequencing and analysis 

Genomic DNA extraction from faecal matter 

200-280µl of the faecal sample (either from frozen or preserved in liquid) was transferred to 

Lysing Matrix tube E (provided with kit). Lysing Matrix E consist of 1.4 ceramic spheres, 

0.1 mm silica spheres, and one 4 mm glass bead – this mixture of ceramic and silica particles 

is designed to efficiently lyse all organisms including gram positive bacteria, and fungi. First 

980µl Sodium Phosphate Buffer and then 120 µl of MT buffer were added to bead beating 

tubes containing the faecal sample. These two reagents were developed to protect and 

solubilize nucleic acids and proteins during the cell lysis step that followed.  

 

The mixture was homogenized, and cells were mechanically disrupted through extremely 

quick and vigorous mixing in the FastPrep instrument for 3 mins at a speed setting of 6.0. 

Mechanical lysis results in higher DNA yields than enzymatic lysis (Maukonen, Simões and 

Saarela, 2012). The bead-beating step improves the cell lysis step as it helps to recover DNA 

not only from gram-negative but also gram-positive bacteria. The latter of the two have a 

thick cell wall that requires rigorous mechanical disruption to free contained DNA (de Boer 

et al., 2010; Salonen et al., 2010). After homogenization, samples were centrifuged at 

maximum speed (14,000 rpm) for 15 min to pellet debris. Following centrifugation, 1 ml of 

the supernatant was transferred to a catch tube (=clean 2.0mL microcentrifuge tube) 

containing 250µl of Protein Precipitation Solution (PPS). Samples were mixed by inverting 

the tube 10 times by hand and centrifuged for 10 minutes at full speed to pellet the precipitate 

(a step to separate the solubilized nucleic acids from lysing matrix and cellular debris). 1ml 

of the sample supernatant was transferred to 5mL Eppendorf tubes that contained 1mL of 

resuspended Binding Matrix. In this step, nucleic acids bind to the silica matrix in the 

presence of chaotropic salts which allows to purify DNA.  
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Samples were inverted for 2 minutes allowing DNA to bind and placed aside for a minimum 

of 3min (and a maximum of one hour) to allow matrix to settle. Then 500µl of the supernatant 

were discarded and the remaining binding matrix now bound to the DNA was resuspended. 

700µl of the resuspended solution were transferred into SPIN filter tubes and centrifuged at 

14,000 rpm for 2 min. The catch tube was emptied, and the step was repeated until all of the 

mixture had been added to the SPIN filter which was binding the DNA. Then next step was 

washing; 500µl SEWS-M solution were used to resuspend the pellet that had formed in the 

SPIN filter. This step uses desalting ethanol and other detergents to remove impurities. The 

tubes were centrifuged at full speed for 5 min, the catch tubes were emptied, and this was 

followed by another dry spin centrifugation step of 5 min to get rid of residual ethanol. The 

SPIN filters were incubated at room temperature for 10 min and eluted in 80µl of 

DNase/Pyrogen-Free water (DES buffer) which is a low salt elution that leads to the collapse 

cation bridges and thus rehydrates the silica and DNA. During centrifugation (at 14,000rpm 

for 5 min) the DNA passes through the filter bucket and is collected in a clean tube. The 

eluted DNA was transferred to cryovial tubes and stored at -20°C.  

 

Quality control of DNA from faecal matter 

Qubit working solution was prepared by diluting 1µL (x n sample) of Qubit® dsDNA BR 

Reagent with 199µL (x n sample). Then the two standards (Standard 1 and 2) were prepared 

as follows. First, we added 190µL of the working solution to each thin-walled 500µL 

Eppendorf. Then we added 10µL of Qubit® dsDNA BR Standard #1 solution to “Standard 

1” and 10µL of Qubit® dsDNA BR Standard #2 solution to “Standard 2”, resulting in a final 

volume of 200µL. The samples that were to be tested were set up similarly, however, for the 

test samples we added 198uL of the working solution to individual assay tube and then added 

2µL of the respective test sample. All tubes were mixed by vortexing for 2-3 seconds and 

then briefly centrifuged to bring any liquid down. Next, all samples were incubated at room 

temperature and away from light for 2 minutes. We then proceeded to the Qubit 3.0 
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Fluorometer machine calibrated to BR assay with a total volume of 100µL and set up the 

machine to read first Standard 1 and then 2. Following this all samples were run one by one. 

Concentration results on the Qubit® 3.0 Fluorometer are automatically calculated and given 

in µg/mL.  

 

Library preparation 

The genomic DNA of all baseline samples (N=80) was normalised to 0.5ng/µl with EB 

(10mM Tris-HCl). 0.9 µl of TD Tagment DNA Buffer (Illumina Catalogue No. 15027866) 

was mixed with 0.09 µl TDE1, Tagment DNA Enzyme (Illumina Catalogue No. 15027865) 

and 2.01 µl PCR grade water in a master mix and 3ul added to a chilled 96 well plate. 2 µl 

of normalised DNA (1ng total) was pipette mixed with the 3 µl of the Tagmentation mix and 

heated to 55 ⁰C for 10 minutes in a PCR block. A PCR master mix was made up using 4 µl 

kapa2G buffer, 0.4 µl dNTP’s, 0.08 µl Polymerase and 6.52 µl PCR grade water, contained 

in the Kap2G Robust PCR kit (Sigma Catalogue No. KK5005) per sample and 11 µl were 

added to each well. 2 µl of each P7 and P5 of Nextera XT Index Kit v2 index primers 

(Illumina Catalogue No. FC-131-2001 to 2004) were added to each well. Finally, the 5 µl of 

Tagmentation mix was added and mixed. The PCR was run with 72⁰C for 3 minutes, 95⁰C 

for 1 minute, 14 cycles of 95⁰C for 10s, 55⁰C for 20s and 72⁰C for 3 minutes. Following the 

PCR reaction, the libraries were quantified using the Quant-iT dsDNA Assay Kit, high 

sensitivity kit (Catalogue No. 10164582) and run on a FLUOstar Optima plate reader. 

Libraries were pooled following quantification in equal quantities. The final pool was 

double-SPRI size selected between 0.5 and 0.7X bead volumes using KAPA Pure Beads 

(Roche Catalogue No. 07983298001). The final pool was also run MiSeq Nano V2 kit. The 

index distribution was checked, and samples were re-pooled on those values. The final pool 

was subjected to a second MiSeq Nano run. The final pool was quantified on a Qubit 3.0 

instrument and run on a High Sensitivity D1000 ScreenTape (Agilent Catalogue No. 5067-

5579) using the Agilent Taestation 4200 to calculate the final library pool molarity. 
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The pool was run at a final concentration of 1.8 pM on an Illumina Nextseq500 instrument 

using a Mid Output Flowcell (NSQ® 500 Mid Output KT v2(300 CYS) Illumina Catalogue 

FC-404-2003) following the Illumina recommended denaturation and loading 

recommendations which included a 1% PhiX spike in (PhiX Control v3 Illumina Catalogue 

FC-110-3001). Data was uploaded to Basespace (www. basespace.illumina.com) where the 

raw data for each sample was converted to 8 FASTQ files. 

 

Library quality control by NOVOGENE 

(1) Distribution of Sequencing Quality 

This shows the probability that the right base quality value was given during the 

sequencing. A quality score (Q-score) of 10 means has a probability of 90% for the 

right base, whilst Q-20, Q-30 and Q-40 have a probability of 99%, 99.9% and 

99.99% for right base, respectively.  

 
Figure 7.8 Example distribution of Sequencing Quality for submitted sample H09  
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(2) Distribution of Sequencing Error Rate 

Illumina SBS technology is subject to two sources of error. Error rates increase as 

more sequencing reagent is consumed and the first several bases have a higher 

probability for sequencing errors that others. The error rate for single bases along 

the read should be lower than 1%.  

 
Figure 7.9 Example error rate distribution along reads for submitted sample H09 

 
 

(3) Distribution of A/T/G/C Base 

Following the principle of complementary bases, the content of AT and GC bases 

should be constant during the sequencing. In reality, the distribution will vary for 

the first several nucleotides.  
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Figure 7.10 Example distribution of A/T/G/C content for submitted sample H09 

 
Data quality control by NOVOGENE 

(1) Raw Data Filtering 

The sequenced raw reads contain low quality reads (containing N = base cannot be 

determined with enough accuracy, Q-score below 5) and adapter sequences that need to 

be filtered out.  

 
Figure 7.11 Example composition of Raw Reads for submitted sample H09 
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Table 7.5 Excerpt of Summary of Sequencing Data information provided by NOVOGENE 

for three T2 samples 

Sample Raw Reads Clean Reads Raw 
Base 
(G)  

Clean 
Base 
(G) 

Effective 
Rate (%) 

Error 
Rate 
(%) 

Q20 
(%) 

Q30 
(%) 

GC 
content 
(%)10 

S7  84.866.496  84.848.308  25.5  25.5  99.98  0.03 96.28  90.75  47.59  
S45  109.735.347  109.712.030  32.9  32.9  99.98  0.03  96.78  91.72  49.23  
S53  65.154.518  65.141.296  19.5  19.5  99.98 0.03 96.05  89.97  49.38  

 

Processing of sequenced metagenomics data 

(i) QC involves to removing all human reads, which was performed using bbmap (Version 

28.76) and cleaning of the paired-end reads. For this Illumina adapters and phiX internal 

Illumina standards were removed and quality trimming with a minimum Phred quality score 

of 30 (=99.9% correct base calling) was carried out using fastp (version 0.21.0).    

 

(ii) Taxonomic classification and ‘read-by-read analysis’ were obtained using MetaPhlAn2 

(version 2.7.8, database: mpa_v20_m200). The resultant read, and relative abundance 

information were used in downstream taxonomic statistical analysis. 

 

(iii) The de novo assembly was performed using MEGAHIT (version 1.1.3). Functional gene 

prediction and annotation of the contigs was done with Metaprokka (v1.14.6c). Finally, a 

count matrix for KEGG was produced using eggnog mapper (v2.0.1; emapper database: 

v2.0) and custom scripts. Humann3 (v. 3.0.0.alpha.1; nucleotide database: uniref90; protein 

database: full_chocophlan. v296_201901) was used to create pathway abundance files 

presenting relative abundance of pathways in the community.    

 

Microbiome Analyst workflow – detailed description 

In a first step, the pre-processed KEGG gene abundance table and associated metadata file 

were uploaded using the SDP module of the Microbiome Analyst (this was done separately 

for each time point). The next step is data inspection. In this step, a summary of the submitted 
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gene abundance table, including the total gene number and average counts per sample, and 

a Library Size Overview which is a graphical summary of the read counts per sample are 

generated. The third step is data filtering. The low count filter parameters were set to include 

all features with a minimum count of “1” and a prevalence in samples of “10%”. The low 

variance filter for feature removal was set to 0%, as we are more concerned with losing data 

unnecessarily rather than with noise in this type of data. The final step before data can be 

analysed, is data normalization. Here, we opted to apply centred-log-ratio (CLR) for data 

transformation (as this is commonly used and recommended to overcome compositionality 

issues) but applied no other scaling or data rarefying steps. 

 

Results neuropsychological assessment of Apolipoprotein E groups 

Addenbrooke’s Cognitive Examination-III 

Table 7.6 Multivariate regression analysis results, Addenbrooke’s Cognitive Examination-

III summary score 

ACE III summary score 
Observations: 74,    R2: 0.17 
F(4,69)=0.83, p=0.51 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 92.28 89.42 –104.29  <0.001 
age -0.02 -0.13 – 0.09 -0.04 0.726 
educational attainment [college] -1.62 -3.42 – 0.18 -0.25 0.078 
educational attainment 
[university] 

1.17 -0.39 – 2.72 0.21 0.139 

APOε4 status [carriers] -0.63 -1.91 – 0.65 -0.11 0.327 
 

Rey-Osterrich-Complex Figure test 

Table 7.7 Multivariate regression analysis results, Rey-Osterrich-Complex Figure: Copy 
score 
Observations: 74,    R2: 0.086 
F(4,69)=1.62, p=0.179 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 32.86 25.10 – 40.62 0.00 <0.001 
age -0.00 -0.11 – 0.11 0.00   0.994 
educational attainment [college] -1.40 -3.26 – 0.46 -0.22   0.137 
educational attainment 
[university] 

-1.97 -3.60 – -0.35 -0.35   0.018 

APOε4 status [carriers] 0.55 -0.79 – 1.89 0.10   0.415 
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Table 7.8 Multivariate regression analysis results, Rey-Osterrich-Complex Figure: Recall 

score 

Observations: 74,    R2: 0.048 
F(4,69)=0.86, p=0.489 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 30.50 15.70 – 45.30 0.00 <0.001 
age -0.17 -0.39 – 0.04 -0.19   0.118 
educational attainment [college] -1.22 -4.76 – 2.33 -0.10   0.496 
educational attainment 
[university] 

-0.01 -3.12 – 3.10 -0.00   0.994 

APOε4 status [carriers] -0.53 -3.08 – 2.02 -0.05   0.678 
     

 
Table 7.9 Multivariate regression analysis results, Rey-Osterrich-Complex Figure: Copy 

time 

Observations: 74,    R2: 0.009 
F(4,69)=0.16, p=0.955 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 117.79 -130.25 - 365.82 0.00   0.347 
age 0.87 -2.75 – 4.48 0.06   0.633 
educational attainment [college] -6.05 -65.46 – 53.36          -0.03   0.840 
educational attainment 
[university] 

-0.66 -52.76 – 51.45 -0.00   0.980 

APOε4 status [carriers] 14.64 -28.08 – 57.37 0.08   0.496 
     

 

Table 7.10 Person Product-moment correlation coefficient (r) between Rey-Osterrich-

Complex Figure variables by group 

* denotes p<0.05 
 
 
 
 
 
 
 

 
(1) COPY SCORE (2) RECALL SCORE 

Apoε4 non-carriers 
(1) copy score   
(2) copying time  r=0.23, p=0.154  
(3) recall score r=0.13, p=0.420 r=0.05, p=0.755 

 
Apoε4 carriers 

(1) copy score   
(2) copying time  r=0.28, p=0.089  
(3) recall score r=0.34, p=0.039* r=-0.20, p=0.220 
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Trail Making Test 

Table 7.11 Multivariate regression analysis results, Trail Making Test-A 

 
Observations: 72,    R2: 0.106 
F(4,67)=1.99, p=0.105 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 1.65 -27.08 – 30.38 0.00 0.909 
age 0.45 0.03 – 0.86 0.26 0.034 
educational attainment [college] 6.34  -0.63 – 13.31 0.27 0.074 
educational attainment 
[university] 

3.79 -2.31 – 9.89 0.18 0.219 

APOε4 status [carriers] -1.14 -6.04 – 3.75 -0.06 0.643 
  

Table 7.12 Multivariate regression analysis results, Trail Making Test-B 

Observations: 72,    R2: 0.009 
F(4,67)=3.64, p=0.51 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 1.32 -54.36 –56.99 0.00    0.962 
age 1.11 0.30 – 1.91 0.32   0.008 
educational attainment [college] -4.66 -18.17 – 8.84 -0.10   0.493 
educational attainment 
[university] 

-5.53 -17.35 – 6.29 -0.13   0.354 

APOε4 status [carriers] -6.60 -16.09 – 2.89 -0.16   0.170 
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Supermarket task 

Table 7.13 Multivariate regression analysis results, Supermarket test 

Egocentric orientation 

Observations: 70 
Predictors ß 

coefficient 
CI SE p-value 

(Intercept) 18.70 9.17 – 28.23 4.99 <0.001 
age -0.12 -0.27 – 0.02 0.07 0.103 
APOε4 status [carriers] 0.89 -0.77 – 2.54 0.86 0.310 
sex 
educational attainment [college] 

0.41 
-3.06 

-1.36 – 2.19 
-5.37 – -0.75 

0.93 
1.21 

0.659 
0.014 

educational attainment [university] -1.04 -3.08 – 1.00 1.07 0.332 
Allocentric orientation (log transformed) 

Observations: 66  

Predictors ß 
coefficient 

CI SE p-value 

(Intercept) 2.51 1.55 – 3.48 0.51 <0.001 
age 0.01 -0.00 – 0.03 0.01 0.144 
APOε4 status [carriers] -0.04 -0.21 – 0.13 0.09 0.646 
sex 
educational attainment [college] 

-0.09 
0.23 

-0.27 – 0.09 
-0.00 – 0.46 

0.09 
0.21 

0.341 
0.064 

educational attainment [university] 0.23 -0.02 – 0.44 0.11 0.037 

Heading direction 

Observations: 66 

Predictors ß coefficient  SE p-value 
(Intercept) 12.66  3.82 0.002 
age -0.02  0.06 0.673 
APOε4 status [carriers] -0.03  0.67 0.962 
sex 
educational attainment [college] 

1.00 
-0.05 

 0.71 
0.90 

0.164 
0.574 

educational attainment [university] 0.38  0.81 0.644 
Central vs peripheral navigation preference 

Observations: 64 

Predictors ß coefficient  SE p-value 
(Intercept) 2.22  1.67 0.190 
age -0.02  0.03 0.410 
APOε4 status [carriers] 0.61  0.30 0.045 
sex 
educational attainment [college] 

-0.20 
-0.54 

 0.32 
0.41 

0.535 
0.199 

educational attainment [university] 0.17  0.37 0.647 
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Sea Hero Quest 

Table 7.14 Multilevel mixed model results, Sea Hero Quest: wayfinding distance 

Wayfinding distance 
Marginal R2: 0.630 

Fixed effects ß coefficient CI SE t-value p-
value 

(Intercept) 2.04 1.51 – 2.57 0.26 7.56 <0.001 
age -0.01 -0.02 – -0.00 0.00 -2.38 0.017 
sex [male] -0.07 -0.03 – 0.17 0.05 1.36 0.174 
APOε4 status [carriers] 
educational attainment [College] 

-0.00 
-0.07 

-0.09 – 0.09 
-0.20 – 0.05 

0.05 
0.06 

-0.00 
-1.11 

0.993 
0.269 

educational attainment 
[University] 

0.03 -0.08 – 0.14 0.06 0.49 0.625 

level [8] -0.76 0.86 – -0.65 0.05 -14.18 <0.001 
level [11] -0.95 -1.06 – -0.84 0.05 -17.63 <0.001 
Random effects      
σ2 
τ00 subject_id 

0.10 
0.00 

     

N subject_id 
N level_ID 

73 
3 

     

Marginal R2 = variance explained by fixed effects. Due to the inverse data transformation of 

the data, all coefficients have opposite signs.  

 
Table 7.15 Multilevel mixed model results, Sea Hero Quest: wayfinding duration 

Wayfinding duration 
Marginal R2: 0.514 
Fixed effect ß 

coefficient 
CI SE t-value p-

value 
(Intercept) -0.38 -0.95– 0.18 0.29 -1.33 0.183 
age 0.01 0.01 – 0.02 0.00 3.43 0.001 
sex [male] -0.15 -0.15 – -0.04 0.05 -2.79 0.005 
APOε4 status [carriers] 
educational attainment [College] 

0.08 
0.09 

-0.01 – 0.18 
-0.04 – 0.23 

0.05 
0.07 

1.71 
1.37 

0.088 
0.170 

educational attainment [Univer.] 0.07 -0.04 – 0.19 0.06 1.21 0.227 
level [8] 0.39 0.30– 0.48 0.05 8.43 <0.001 
level [11] 0.71 0.61– 0.80 0.05 15.16 <0.001 
Random effects      
σ2 
τ00 subject_id 

0.08 
0.01 

     

N subject_id 73      

Marginal R2 = variance explained by fixed effects 
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Table 7.16 Multilevel mixed model results, Sea Hero Quest: wayfinding distance to border 

Wayfinding distance to border 
Marginal R2: 81.7 
Fixed effect ß 

coefficient 
CI SE t-value p-

value 
(Intercept) 24.34 18.43– 30.26 3.02 8.07 <0.001 
age -0.06 -0.15–0.03 0.04 -1.39 0.165 
sex [male]  1.29 0.21 – 2.38 0.55 2.34 0.019 
APOε4 status [carriers] 
educational attainment [College] 

-0.10 
-0.38 

-1.10– 0.89 
-1.76–1.00 

0.51 
0.70 

-0.20 
-0.54 

0.840 
0.591 

educational attainment [Univer.] 0.19 -1.02–1.39 0.61 0.30 0.762 
level [8] -1.67 -2.66–-0.69 0.50 -3.34 0.001 
level [11] -15.01 -16.00–-14.02 0.51 -29.69 <0.001 
Random effects      
σ2 
τ00 subject_id 

8.89 
1.22 

     

N subject_id 73      

Marginal R2 = variance explained by fixed effects 

 
Table 7.17 Mixed effects ordinal logistic regression results, Sea Hero Quest: flare accuracy 

Flare accuracy 
 

Marginal R2=0.116   
Conditional R2=0.195 
Predictors ß 

coefficient 
Std. 
Error 

Odds 
Ratio 

95% CIs p-value 

age 0.01 0.02 1.01 0.97 – 1.07 0.551 
sex [male] 0.69 0.33 2.01 1.05 – 3.84 0.034* 
APOε4 status [carriers] 0.04 0.29 0.96 0.55 – 1.68 0.885 
educational attainment 
[College] 

-0.24 0.41 0.79 0.35 – 1.76 0.562 

educational attainment 
[University] 

-0.45 0.36 0.64 0.32 – 1.28 0.207 

level ID [34] -0.72 0.38 0.49 0.23 – 1.04 0.062 
level ID [49] -1.64 0.39 0.19 0.09 – 0.42 <0.001** 
level ID [54] -1.24 0.39 0.29 0.14 – 0.62 0.001** 
Random Effects      
σ2 
τ00 subject_id 
ICC 

3.29 
0.28 
0.08 
71 

   

N subject_id    
* p<0.05, **p<0.01, ***p<0.001 
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Cognitive Change Index 

Table 7.18 Multiple regression analysis results, Cognitive Change Index: summary score 
Observations: 69,    R2: 0.009 
F(4,64)=0.14, p=0.967 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 23.85 1.07 – 46.64 0.00 0.040 
age 0.05 -0.28 – 0.39 0.41 0.750 
educational attainment [college] -0.31 -5.63 – 5.01         -0.02 0.908 
educational attainment 
[university] 

0.62 -4.14 – 5.37 0.04 0.797 

APOε4 status [carriers] 1.14 
 

-2.78 – 5.06 0.07 0.565 

 
 

Generalized Anxiety Disorder-7 

Table 7.19 Percentage of participants experiencing anxiety by severity categories and by 

Apolipoprotein ε4 status  

 
Table 7.20 Multivariate regression results, Generalized Anxiety Disorder-7 
Observations: 65,    R2: 0.124 
F(4,60)=2.13, p=0.089 
Predictors ß 

coeffi
cient 

CI Standardized 
beta values 

p-value 

(Intercept) 7.02 2.61 – 11.44 0.00 0.002 
age -0.09 -0.15 – -0.02 -0.34 0.008 
educational attainment [college] -0.00 -1.07 – 1.06 -0.00 0.993 
educational attainment [university] -0-55 -1.52 – 0.41 -0.17 0.994 
APOε4 status [carriers] 0.00 -0.80 – 0.81 0.00 0.255 

 
 
Patient Health Questionnaire-9 

Table 7.21 Frequency distribution of depression severity by Apolipoprotein E genotype  

 
 

GAD-7 anxiety severity APOε4 non-
carriers  

(%) n=39  

APOε4 carriers 
(%) n=36  

χ2 (df) p-value 

none (≤4) 97.4 94.4  
12.50 (6) 

 
0.051 mild (5-9) 2.6 5.6 

moderate (10-14) 0 0 
severe (15-21) 0 0 

Depression severity APOε4 non-carriers 
(%), n=39  

APOε4 carriers 
risk (%), n=36  

χ2 (df) p-value 

none (≤4) 87.2 80.6  
 

13.70 (10) 

 
 

0.19 
mild (5-9) 10.2 19.4 
moderate (10-14) 0 0 
moderately severe (15-19) 2.6 0 
severe (20-27) 0 0 
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Table 7.22 Multivariate regression results, Patient Health Questionnaire-9 

Observations: 65,    R2: 0.060 
F(4,60)=0.95, p=0.440 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 7.27 -0.32 –14.85 0.00 0.060 
age -0.09 -0.20 – 0.03 -0.20 0.133 
educational attainment [college] 0.15 -1.68 – 1.99 0.03 0.869 
educational attainment 
[university] 

0.71 -0.94 – 2.36 0.13 0.392 

APOε4 status [carriers] -0.32 -1.69 – 1.06 -0.06 0.648 
 
Cambridge Behavioural Inventory-Revised 
 

Table 7.23 Multivariate regression results, Cambridge Behavioural Inventory-Revised: 
summary score 
Observations: 70,    R2: 0.090 
F(4,65)=1.61, p=0.182 
Predictors ß 

coefficient 
CI Standardized 

beta values 
p-value 

(Intercept) 15.82 3.16 – 28.49 0.00 0.015 
age -0.17 -0.35 – 0.02 -0.22 0.076 
educational attainment [college] 0.21 -2.74 – 3.16 0.02 0.887 
educational attainment 
[university] 

0.30 -2.34 – 2.93 0.03 0.882 

APOε4 status [carriers] -2.25 -4.43 – -0,07 -0.25 0.043 
 
 

Microbiome health questionnaire 

Table 7.24 Response frequencies of microbiome questionnaire by Apolipoprotein ε4 status, 

Pearson Chi-squared (χ2) and p-value 

Question Item  APOε4 non-
carriers 

n=39  

APOε4 
carriers, 

n=35  

χ2 (df) 

 

p-value 

1. How would you classify your diet? 
              Omnivore 

              Vegetarian 
              Vegan 

 
87.2% 
12.8% 

0% 

 
88.6% 
8.5% 
2.9% 

 
5.98 (4) 

 
0.20 

2. Taking a daily multivitamin? 20.5% 25.7% 0.06 (1) 0.80 
3. Taking any other nutritional/herbal supplements? 42.1% 45.7% 0.01(1) 0.94 
4. Lactose intolerant 5.1% 2.9% 0.00 (1) 1.00 
5. Gluten intolerant 5.1% 2.9% 0.00 (1) 1.00 
6. I am allergic to (missing n=1) 

Peanuts 
Shellfish 

Other 
No allergies 

 
5.1% 
5.1% 
2.6% 
87.2% 

 
0% 

5.9% 
5.9% 

88.2% 

 
 

2.25 (3) 

 
 

0.52 

7. Diabetes 0% 0% 0.22 (1) 0.64 
8. Do you follow any other special diet restrictions 
other than those indicated above? (missing n=2) 

Yes 

 
 

13.2% 

 
 

9.1% 

 
 

0.03 (1) 

 
 

0.87 
9. What is your race/ethnicity? (missing n=1) 

Caucasian 
 

100% 
 

100% 
 

0.34 (1) 
 

0.56 
10. When did you move to East Anglia (Norfolk, 
Suffolk)? (missing n=3) 

 
100% 

 
100% 

 
0.22 (1) 

 
0.64 
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I have lived in East Anglia for more than a year. 
11. I have travelled outside of the UK in the past … 
 
           I have not been outside the UK in the past year  

             1 month 
             3 months 
             6 months 

             1 year 

 
 

30.8% 
10.3% 
12.8% 
7.7% 
38.5% 

 
 

31.4% 
8.6% 

31.4% 
14.3% 
14.3% 

 
 
 

7.74 (4) 

 
 
 

0.10 

12. Where do you live? 
              In the city 

              In the countryside 

 
35.9% 
64.1% 

 
34.3% 
65.7% 

 
0.00 (1) 

 
1.00 

13. Do you live in your own home? 
   Yes 

 
100% 

 
100% 

 
0.22 (1) 

 
0.64 

14. Do you lived in a shared community housing 
such as a nursing home? 

    No 

 
 

100% 

 
 

100% 

 
 

0.22 (1) 

 
 

0.64 
15. Do you eat the majority of your meals in your 
place of residence? 

    Yes 

 
 

100% 

 
 

100% 

 
0.22 (1) 

 
0.64 

16. How many other people do you live with? 
       None 

       One 
       Two 

       Three 

 
28.2% 
56.4% 
10.3% 
5.1% 

 
22.9% 
65.7% 
11.4% 

0% 

 
 

2.29 (3) 

 
 

0.52 

17. Has dog(s)? 28.2% 28.6% 0 (1) 1.00 
18. Has cat(s)? 12.2% 20% 0.27 (1) 0.60 
19. Which is your dominant hand? 

Right-handed 
Left-handed 

Ambidextrous 

 
87.8% 
7.7% 
5.1% 

 
80% 

17.1% 
2.9% 

 
 

1.70 (2) 

 
 

0.43 

20. How often do you exercise? 
       Never 

       Rarely (few times/months) 
       Occasionally (1-2 times/week) 

       Regularly (3-5 times/week) 
       Daily 

 
2.6% 
5.1% 
20.5% 
33.3% 
38.5% 

 
5.7% 

14.3% 
14.3% 
28.6% 
37.1% 

 
 
 

2.64 (4) 

 
 
 

0.60 

21. Do you regularly exercise indoors or outdoors?  
Indoors 

Outdoors 
Both 
None 

 
10.3% 
33.3% 
43.6% 
2.6% 

 
2.9% 

48.6% 
40% 
5.7% 

 
 

4.55 (4) 

 
 

0.34 

22. Do you bite your fingernails? 
        Yes 

 
10.3% 

 
2.9% 

 
0.64 (1) 

 
0.42 

23. How often do you use a swimming pool/sauna? 
       Never 

       Rarely (few times/months) 
       Occasionally (1-2 times/week) 

       Regularly (3-5 times/week) 
       Daily 

 
46.2% 
25.6% 
17.9% 
10.3% 

0% 

 
60% 

31.4% 
5.7% 
2.9% 
0% 

 
 
 

4.65 (3)  

 
 
 

0.20 

24. How often do you smoke cigarettes? 
       Never 

       Rarely (few times/months) 

 
100% 

0% 

 
91.4% 
8.6% 

 
1.63 (1) 

 
0.20 

25. How often do you drink alcohol? 
       Never 

       Rarely (few times/months) 
       Occasionally (1-2 times/week) 

       Regularly (3-5 times/week) 
       Daily 

 
17.9% 
10.3% 
23.1% 
33.3% 
15.4% 

 
2.9% 

22.9% 
28.6% 
28.6% 
17.1% 

 
 

6.01 (4) 

 
 

0.19 

26. How often do you brush your teeth? 
       Regularly (3-5 times/week) 

       Daily 

 
5.1% 
94.9% 

 
5.7% 

94.3% 

 
0.00 (1) 

 
1.00 

27. How often do you floss your teeth? 
       Never 

       Rarely (few times/months) 

 
7.7% 
5.1% 

 
25.7% 
8.6% 

 
 
 

 
 
 



 377 

       Occasionally (1-2 times/week) 
       Regularly (3-5 times/week) 

       Daily 

12.8% 
28.2% 
46.2% 

11.4% 
17.1% 
37.1% 

5.39 (4) 0.25 

28. How often do you wear facial cosmetics? 
       Never 

       Rarely (few times/months) 
       Occasionally (1-2 times/week) 

       Regularly (3-5 times/week) 
       Daily 

 
46.2% 
12.8% 

0% 
23.1% 
17.9% 

 
37.1% 
17.1% 
8.6% 

17.1% 
20% 

 
 
 

4.29 (4)  

 
 
 

0.37 

29. Do you use deodorant or antiperspirant? (missing 
n=1) 

Antiperspirant 
Deodorant 

Not sure but I use some form of antiperspirant/deo 
Neither 

 
 

39.5% 
42.1% 
18.4% 

0% 

 
 

28.6% 
45.7% 
14.3% 
11.4% 

 
 

5.22 (3) 

 
 

0.16 

30. Approximately how many hours of sleep do you 
get in an average night? 

Less than 5 hours 
5-6 hours 
6-7 hours 
7-8 hours 

8 hours or more 

 
 

7.7% 
12.8% 
51.3% 
25.6% 
2.6% 

 
 

5.7% 
14.3% 
45.7% 
22.9% 
11.4% 

 
 
 
 

2.46 (4) 

 
 
 
 

0.65 

31. Do you use fabric softener when drying your 
clothes? (missing n=1) 

Yes 

 
 

36.8% 

 
 

51.4% 

 
 

1.04 (1) 

 
 

0.31 
32. I have taken antibiotics in the last… 

month 
6 months 

year 
I have taken no antibiotics in the past year 

 
2.4% 
5.1% 
20.5% 
71.8% 

 
0% 

14.3% 
11.4% 
74.3% 

 
 
 

3.49 (3) 

 
 
 

0.32 

33. I have gotten a flu vaccine in the last…  
week 

month 
6 months 

year 
I didn’t get the flu vaccine in the past year 

 
5.1% 
2.6% 
35.9% 
17.9% 
38.5% 

 
0% 

2.9% 
37.1% 
8.6% 

51.4% 

 
 
 

3.70 (4)  

 
 
 

0.45 

34. Are you currently taking any of the following 
medications? 

Yes, to control blood pressure. 
Yes, to control cholesterol. 

Yes, for gut symptoms such as constipation/ 
diarrhoea or irritable bowel syndrome. 
Yes, for other disorders or conditions. 

No. 

 
 

20.5% 
10.3% 

 
7.6% 
33.3% 
28.2% 

 
 

25.7% 
5.7% 

 
2.9% 
20% 

45.7% 

 
 
 
 

4.25 (4) 

 
 
 
 

0.37 

36. In the last 6 months, my weight has… 
increased more than 4kg  
decreased more than 4kg 

remained stable 

 
7.7% 
2.6% 
89.7% 

 
5.7% 

11.4% 
82.9% 

 
 

2.35 (2) 

 
 

0.31 

37. Have you had your tonsils removed? 
Yes 

 
38.5% 

 
31.4% 

 
0.15 (1) 

 
0.70 

38. Have you had your appendix removed? 
Yes 

 
10.3% 

 
14.3% 

 
0.03 (1) 

 
0.86 

39. Have you had food poisoning?  
Yes 

 
30.7% 

 
37.1% 

 
0.11 (1)  

 
0.74 

40. Do you currently take prescription medication for 
any gut related symptoms? 

Yes 

 
 

17.9% 

 
 

14.3% 

 
 

0.01 (1) 

 
 

0.91 
41. Do you consume any probiotic based food 
products such as yoghurts? (missing n=1) 

Yes 

 
 

60.5% 

 
 

40% 

 
 
2.30 (1) 

 
 

0.13 
42. Do you currently take any over the counter or 
prescription medicine for other conditions? (missing 
n=2) 

Yes 

 
 
 

47.4% 

 
 
 

44.1% 

 
 
 
0.00 (1) 

 
 
 

0.97 
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43. Were you born via caesarean section (C-section) 
(missing n=1) 

Yes 
No 

Not sure 

 
 

5.1% 
89.7% 
5.1% 

 
 

2.9% 
94.1% 
2.9% 

 
 

0.46 (2)  

 
 

0.79 

44. As an infant were you breastfed? (missing n=4) 
Yes 
No 

Not sure 

 
75% 
25% 
0% 

 
70.6% 
26.5% 
2.9% 

 
 

1.12 (2)  

 
 

0.57 

45. Do you have asthma? 
Yes 
No 

Not sure 

 
15.4% 
82.1% 
2.6% 

 
11.4% 
85.7% 
2.9% 

 
 

0.25 (2)  

 
 

0.88 

46. Do you have seasonal allergies? 
Yes 
No 

Not sure 

 
23.1% 
76.9% 

0% 

 
22.9% 
74.3% 
2.9% 

 
 

1.13 (2) 

 
 

0.57 
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Cardiovascular Risk 
 
Table 7.25 Multivariate regression results, Low-density lipoprotein and total cholesterol  

LDL  

Observations: 25,    R2: 0.325 
F(3,21)=3.365 

 

Predictors ß coefficient Confidence 
Intervals 

Standardized ß 
coefficient 

p-value 

(Intercept) -2.95 -11.86–5.97  0.499 
APOε4 status 1.93 0.66 – 3.20 0.65 0.005** 
age 0.07 -0.05 – 0.20 0.27 0.220 
sex 0.38 -0.81 – 1.56 0.12 0.516 

Total cholesterol 
Observations: 32,    R2: 0.204 
F(3,28)=2.395 
Predictors ß coefficient Confidence 

Intervals 
Standardized ß 
coefficient 

p-value 

(Intercept) 3.31 -5.19–11.80  0.432 
APOε4 status 
[carriers} 

1.42 0.25 – 2.59 0.48 0.019* 

age 0.04 -0.08 – 0.15 0.12 0.533 
sex -0.26 -1.36 – 0.84 -0.08 0.634 

 

Table 7.26 Multivariate regression results, Triglycerides and High-density lipoprotein 

Triglycerides  

Observations: 31,  R2: 0.153 
F(3,27)=1.630 

 

Predictors ß coefficient Confidence 
Intervals 

Standardized ß 
coefficient 

p-value 

(Intercept) 4.60 -2.45 –11.66  0.192 
APOε4 status 
[carriers} 

-0.85 -1.81 – 0.11 -0.39 0.080 

age -0.02 -0.12 – 0.08 -0.08 0.220 
sex -0.43 -1.29 – 0.42 -0.19 0.516 

HDL 
Observations: 32,    R2: 0.08 
F(3,28)=0.531 
Predictors ß coefficient Confidence 

Intervals 
Standardized ß 
coefficient 

p-value 

(Intercept) 3.03 0.21 – 5.84  0.036 
APOε4 status 
[carriers} 

-0.07 -0.46 – 0.32 -0.07 0.720 

age -0.01 -0.05 – 0.02 -0.17 0.444 
sex -0.26 -0.62 – 0.11 -0.27 0.162 
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Microbiome results of Apolipoprotein E cohorts 

Table 7.27 Alpha diversity by taxonomic level between the Apolipoprotein E groups at baseline (T1), 6-months follow-up (T2), 12-months 

follow-up (T3) 

  T1 - Baseline T2 – 6 months T3 – 12 months 
Taxonomic 
level 

Measure – 
Alpha 
diversity 

APOε4 non-
carriers  
[n=40] 

mean (SD) 

APOε4 
carriers  
 [n=39]  

mean (SD) 

p-value 
(Wilcox 

rank sum 
test) 

APOε4 non-
carriers  
 [n=36] 

mean (SD) 

APOε4 
carriers  
 [n=37]  

mean (SD) 

p-value 
(Wilcox 

rank 
sum 
test 

APOε4 non-
carriers  
 [n=39] 

mean (SD) 

APOε4 
carriers  
 [n=37]  

mean (SD) 

p-value 
(Wilcox 

rank sum 
test 

Kingdom Shannon  
Simpson  
Inv. Simpson  

0.08 (0.10) 
0.03 (0.05) 
1.04 (0.07) 

0.04 (0.09) 
0.02 (0.05) 
1.02 (0.06) 

0.005** 
0.004** 

 

0.08 (0.12) 
0.04 (0.07) 
1.05 (0.10) 

0.07 (0.15) 
0.04 (0.10) 
1.05 (0.15) 

0.555 
0.574 

0.11 (0.13) 
0.06 (0.08) 
1.07 (0.10) 

0.07 (0.16) 
0.04 (0.10) 
1.06 (0.18) 

0.011* 
0.012* 

Phylum Shannon  
Simpson  
Inv. Simpson 

0.96 (0.18) 
0.52 (0.09) 
2.09 (0.42) 

0.91 (0.17) 
0.51 (0.08) 
2.09 (0.34) 

0.141 
0.382 

 

0.98 (0.23) 
0.52 (0.12) 
2.22 (0.56) 

0.97 (0.22) 
0.53 (0.10) 
2.26 (0.60) 

0.543 
0.730 

0.98 (0.17) 
0.53 (0.09) 
2.22 (0.40) 

0.98 (0.18) 
0.52 (0.10) 
2.15 (0.42) 

0.122 
0.495 

Class Shannon  
Simpson  
Inv. Simpson 

1.15 (0.21) 
0.58 (0.09) 
2.46 (0.56) 

1.09 (0.23) 
0.56 (0.09) 
2.40 (0.54) 

0.317 
0.473 

 

1.14 (0.26) 
0.56 (0.12) 
2.46 (0.68) 

1.14 (0.26) 
0.58 (0.10) 
2.55 (0.76) 

0.822 
0.713 

1.15 (0.21) 
0.58 (0.09) 
2.53 (0.60) 

1.10 (0.21) 
0.57 (0.09) 
2.43 (0.54) 

0.263 
0.482 

Order Shannon  
Simpson  
Inv. Simpson 

1.19 (0.23) 
0.58 (0.09) 
2.48 (0.58) 

1.13 (0.23) 
0.57 (0.09) 
2.42 (0.54) 

0.267 
0.575 

 

1.21 (0.28) 
0.57 (0.12) 
2.55 (0.77) 

1.18 (0.27) 
0.58 (0.10) 
2.57 (0.77) 

0.507 
0.935 

1.19 (0.22) 
0.59 (0.09) 
2.54 (0.61) 

1.13 (0.22) 
0.57 (0.09) 
2.44 (0.55) 

0.263 
0.476 

Family Shannon  
Simpson  
Inv. Simpson 

2.05 (0.21) 
0.82 (0.05) 
5.78 (1.47) 

1.98 (0.21) 
0.81 (0.04) 
5.47 (1.34) 

0.135 
0.263 

 

2.01 (0.25) 
0.81 (0.06) 
5.69 (1.63) 

2.01 (0.18) 
0.81 (0.04) 
5.57 (1.13) 

0.697 
0.713 

2.04 (0.21) 
0.82 (0.04) 
5.88 (1.32) 

2.04 (0.21) 
0.81 (0.04) 
5.46 (1.08) 

0.234 
0.115 

Genus Shannon  
Simpson  
Inv. Simpson 

2.52 (0.27) 
0.87 (0.05) 
8.85 (2.87) 

2.46 (0.25) 
0.87 (0.5) 
8.21 (2.67) 

0.263 
0.267 

 

2.48 (0.30) 
0.87 (0.07) 
8.69 (2.86) 

2.49 (0.22) 
0.87 (0.5) 
8.39 (2.20) 

0.926 
0.595 

2.54 (0.20) 
0.88 (0.03) 
8.93 (2.36) 

2.44 (0.22) 
0.87 (0.04) 
8.00 (2.12) 

0.103 
0.105 

Species Shannon  
Simpson  
Inv. Simpson 

3.15 (0.25) 
0.92 (0.04) 

13.90 (4.03) 

3.09 (0.24) 
0.92 (0.04) 

13.40 (4.25) 

0.157 
0.398 

 

3.05 (0.31) 
0.91 (0.05) 

12.73 (4.09) 

3.09 (0.31) 
0.91 (0.05) 

13.18 (4.66) 

0.507 
0.763 

3.19 (0.21) 
0.93 (0.02) 

14.81 (3.75) 

3.08 (0.29) 
0.91 (0.04) 

13.38 
(4.33) 

0.044* 
0.210 
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Table 7.28 Post-hoc analysis. Variance of between-sample diversity (Bray-Curtis 

dissimilarity distances, 999 permutations) explained by each variable assessed with cross-

sectional PERMANOVA for T1 samples 

Taxon. 
level 

Source Df Sums Sq R2 F-value p-value 
(Bray) 

Kingdom APOε4 status 1 0.001 0.012 0.769 0.394 
age group 2 0.000 0.008 0.257 0.869 
sex 1 0.000 0.006 0.357 0.653 
Residual 60 0.052 0.968   
Total 64 0.053 1.000   

Phylum APOε4 status 1 0.000 0.000 -0.008 0.975 
age group 2 0.025 0.017 0.536 0.736 
sex 1 0.016 0.011 0.685 0.499 
Residual 60 1.417 0.972   
Total 64 1.458 1.000   

Class APOε4 status 1 0.007 0.003 0.199 0.942 
age group 2 0.047 0.023 0.724 0.662 
sex 1 0.013 0.006 0.401 0.791 
Residual 60 1.963 0.966   
Total 64 2.033 1.000   

Order APOε4 status 1 0.007 0.004 0.221 0.944 
age group 2 0.044 0.021 0.651 0.727 
sex 1 0.016 0.008 0.487 0.727 
Residual 60 2.030 0.966   
Total 64 2.101 1.000   

Family APOε4 status 1 0.066 0.013 0.803 0.607 
age group 2 0.144 0.028 0.884 0.576 
sex 1 0.120 0.023 1.468 0.140 
Residual 60 4.893 0.938   
Total 64 5.216 1.000   

Genus APOε4 status 1 0.114 0.015 0.970 0.479 
age group 2 0.198 0.026 0.841 0.661 
sex 1 0.155 0.021 1.312 0.195 
Residual 60 7.077 0.940   
Total 64 7.532 1.000   

Species APOε4 status 1 0.161 0.013 0.817 0.720 
age group 2 0.316 0.025 0.804 0.809 
sex 1 0.229 0.018 1.167 0.242 
Residual 60 11.801 0.943   
Total 64 12.510 1.000   

Running PERMANOVA on Jaccard distance index generated similar results. 
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Table 7.29 Variance of between-sample diversity (Bray-Curtis dissimilarity distances, 999 

permutations) explained by each variable assessed with cross-sectional PERMANOVA for 

T2 samples 

Taxon. 
level 

Source Df Sums Sq R2 F-value p-value stress 
value 
of 
NMDS 

Kingdom APOε4 status 1 0.001 0.005 0.328 0.825 0.00 
age group 2 0.003 0.014 0.472 0.799 
sex 1 0.000 0.001 0.078 0.955 
residual 68 0.217 0.980  
total 72 0.222 1.000 

Phylum APOε4 status 1 0.108 0.039 2.889 0.024* 0.10 
age group 2 0.061 0.022 0.814 0.561 
sex 1 0.053 0.019 1.417 0.220 
residual 68 2.535 0.928  
total 72 2.731 1.000 

Class APOε4 status 1 0.127 0.038 2.778 0.023* 0.13 
age group 2 0.083 0.024 0.902 0.497 
sex 1 0.088 0.026 1.931 0.087 
residual 68 3.109 0.922  
total 72 3.371 1.000 

Order APOε4 status 1 0.120 0.034 2.505 0.030* 0.14 
age group 2 0.081 0.023 0.850 0.850 
sex 1 0.088 0.024 1.833 0.092 
residual 68 3.247 0.927   
total 72 3.502 1.000   

Family APOε4 status 1 0.118 0.017 1.239 0.245 0.21 
 
 

age group 2 0.150 0.022 0.779 0.700 
sex 1 0.190 0.028 2.003 0.033* 
residual 68 6.457 0.938   
total 72 6.887 1.000   

Genus APOε4 status 1 0.167 0.017 1.233 0.242 0.23 
 
 

age group 2 0.201 0.020 0.741 0.802 
sex 1 0.265 0.027 1.958 0.023* 
residual 68 9.206 0.939   
total  72 9.801 1.000   

Species APOε4 status 1 0.282 0.020 1.421 0.085 0.24 
 
 

age group 2 0.294 0.020 0.741 0.893 
sex 1 0.380 0.026 1.913 0.009** 
residual 68 13.491 0.936   
total 72 14.414 1.000   

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination 
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Table 7.30 Variance of between-sample diversity (Bray-Curtis dissimilarity distances, 999 

permutations) explained by each variable assessed with cross-sectional PERMANOVA of 

T3 samples  

Taxon. 
level 

Source Df Sums Sq R2 F-value p-value 
(Bray) 

stress 
value  

Kingdom APOε4 status 1 0.000 0.000 0.037 0.850 0.00 
 age group 2 0.023 0.079 3.064 0.038* 

sex 1 0.000 0.000 0.033 0.901 
Residual 71 0.270 0.920   
Total 75 0.294 1.000   

Phylum APOε4 status 1 0.010 0.005 0.399 0.752 0.10 
age group 2 0.050 0.027 0.997 0.420 
sex 1 0.004 0.002 0.151 0.933 
Residual 71 1.792 0.966   
Total 75 1.856 1.000   

Class APOε4 status 1 0.020 0.007 0.519 0.707 0.12 
age group 2 0.081 0.029 1.067 0.365 
sex 1 0.009 0.003 0.247 0.916 
Residual 71 2.679 0.961   
Total 75 2.786 1.000   

Order APOε4 status 1 0.027 0.009 0.697 0.572 0.12 
age group 2 0.082 0.029 1.064 0.364 
sex 1 0.008 0.003 0.195 0.953 
Residual 71 2.733 0.960   
Total 75 2.848 1.000   

Family APOε4 status 1 0.082 0.013 0.983 0.437 0.21 
age groups 2 0.136 0.022 0.816 0.683  
sex 1 0.201 0.032 2.418 0.013*  
residual 71 5.893 0.936    
total 75 6.299 1.000    

Genus APOε4 status 1 0.149 0.017 1.252 0.242 0.20 
age group 2 0.197 0.022 0.825 0.802  
sex 1 0.222 0.025 1.857 0.023*  
residual 71 8.473 0.940    
total 75 9.015 1.000    

Species APOε4 status 1 0.217 0.015 1.104 0.315 0.24 
age group 2 0.398 0.027 1.011 0.446 
sex 1 0.295 0.020 1.496 0.052 
Residual 71 13.982 0.940   
Total 75 14.867 1.000   

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination (k=2 unless 

otherwise indicated) 
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Table 7.31 Univariate differential abundance results of Apolipoprotein ε4 non-carriers for T1-T3. Significant associations in green 

* Associations that survived further lowering of alpha error in bold. Prefix indicates taxonomic level: ‘k__’: kingdom-level, ‘p__’: phylum-

level, ‘c__’: class-level, ‘o__’: order-level, ‘f__’: family-level, ‘g__’: genus-level, ‘s__’: species-level, ‘t__’: strain-level 

 

 

Time-

point 

Significant associations with APOε4 non-carriers 

Baseline 

(T1) 

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales|f__Methanobacteriaceae|g__Methanobrevibacter|s__Methanobrevibacter_smithii 
|t__Methanobrevibacter_smithii_unclassified 
 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Propionibacteriaceae|g__Propionibacteriaceae_unclassified 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Collinsella|s__Collinsella_aerofaciens|t__GCF_000169035 
 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_eggerthii|t__Bacteroides_eggerthii_unclassified 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_uniformis|t__GCF_000154205 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_stercoris|t__Bacteroides_stercoris_unclassified 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Rikenellaceae|g__Alistipes|s__Alistipes_onderdonkii|t__GCF_000374505 
 
k__Bacteria|p__Firmicutes|c__Erysipelotrichia|o__Erysipelotrichales|f__Erysipelotrichaceae|g__Holdemania|s__Holdemania_filiformis|t__GCF_000157995 
 
k__Bacteria|p__Proteobacteria|c__Betaproteobacteria|o__Burkholderiales|f__Sutterellaceae|g__Sutterellaceae_unclassified 

6-months 

follow-up 

(T2) 

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Actinomycetales|f__Actinomycetaceae|g__Actinomyces|s__Actinomyces_graevenitzii|t__Actinomyces_graevenitzii_unclassified 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Atopobium|s__Atopobium_parvulum|t__GCF_000024225 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Collinsella|s__Collinsella_aerofaciens|t__GCF_000169035 
 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_methylpentosum|t__GCF_000158655 

12-

months 

follow-up 

(T3) 

k__Archaea|p__Euryarchaeota|c__Methanobacteria|o__Methanobacteriales|f__Methanobacteriaceae|g__Methanobrevibacter|s__Methanobrevibacter_smithii|t__Methanobreviba
cter_smithii_unclassified 
 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Collinsella|s__Collinsella_aerofaciens|t__GCF_000169035 
k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Slackia|s__Slackia_piriformis|t__GCF_000296445 
 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_intestinalis|t__GCF_000172175 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_stercoris|t__Bacteroides_stercoris_unclassified 
 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiales_Family_XI_Incertae_Sedis|g__Finegoldia|s__Finegoldia_magna|t__Finegoldia_magna_unclassified 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Eubacteriaceae|g__Eubacterium|s__Eubacterium_siraeum | t_Eubacterium_siraeum_unclassified 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Dorea|s__Dorea_formicigenerans|t__Dorea_formicigenerans_unclassified 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Lachnospiraceae_noname|s__Lachnospiraceae_bacterium_8_1_57FAA|t__GCF_000185545 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Lachnospiraceae_noname|s__Lachnospiraceae_bacterium_2_1_58FAA|t__GCF_000218465 
k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Acidaminococcaceae|g__Acidaminococcus|s__Acidaminococcus_unclassified 
k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Dialister|s__Dialister_succinatiphilus|t__GCF_000242435 
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Table 7.32 Univariate differential abundance results of Apolipoprotein ε4 carriers for T1-T3. Significant associations in red 

* Associations that survived further lowering of alpha error in bold. Prefix indicates taxonomic level: ‘k__’: kingdom-level, ‘p__’: phylum-

level, ‘c__’: class-level, ‘o__’: order-level, ‘f__’: family-level, ‘g__’: genus-level, ‘s__’: species-level, ‘t__’: strain-level 

 

 

Timepoint Significant associations with APOε4 carriers 

Baseline 

(T1) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_cellulosilyticus|t__Bacteroides_cellulosilyticus_unclassified 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_intestinalis|t__GCF_000172175 
 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Anaerostipes|s__Anaerostipes_hadrus|t__GCF_000332875 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Lachnospiraceae_noname|s__Lachnospiraceae_bacterium_5_1_63FAA|t__GCF_000185525 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Lachnospiraceae_noname|s__Lachnospiraceae_bacterium_1_1_57FAA|t__GCF_000218445 
 

6-months 

follow-up 

(T2) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_plebeius|t__GCF_000187895 
 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Lachnospiraceae|g__Blautia|s__Ruminococcus_obeum|t__Ruminococcus_obeum_unclassified 

12-months 

follow-up 

(T3) 

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Coriobacteriales|f__Coriobacteriaceae|g__Eggerthella|s__Eggerthella_unclassified 
 
k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Bacteroidaceae|g__Bacteroides|s__Bacteroides_plebeius|t__GCF_000187895 
 
k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium 
k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_australis|t__Streptococcus_australis_unclassified 
k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus_vestibularis|t__Streptococcus_vestibularis_unclassified 
 
k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Escherichia 
 
k__Viruses_noname|p__Virus_noname|c__Viruses_noname|o__Caudovirales|f__Siphoviridae|g__C2likevirus|s__C2likevirus_unclassified 
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Table 7.33 Multivariate linear regression results showing features significantly associated 

with Apolipoprotein ε4 status, after accounting for the effect of gender and age at baseline 

Taxonomic level feature coef stderr N pval qval 

Phylum p__Verrucomicrobia -0.304 0.092 79 0.002 0.009 

Class c__Verrucomicrobiae -0.304 0.092 79 0.002 0.018 

Order o__Verrucomicrobiales -0.304 0.092 79 0.002 0.025 

coef = beta coefficient, stderr = standard error of the model, N= number of samples in this model, 
pval = nominal p-value (two-sided), qval = FDR-corrected p-values 
 
 
Table 7.34 Multivariate linear regression results showing features significantly associated 

with Apolipoprotein ε4 status, after accounting for the effect of gender and age at T2 

Taxonomic level feature coef stderr N pval 

 

qval 

Phylum  

 

p__Bacteroidetes 

p__Actinobacteria 

3.424 

-0.759 

1.347 

1.287 

73 

73 

0.013 

0.005 

0.046 

0.033 

coef = beta coefficient, stderr = standard error of the model, N= number of samples in this model, 
pval = nominal p-value (two-sided), qval = FDR-corrected p-values 
 
 

Table 7.35 Multivariate linear regression results showing features significantly associated 

with Apolipoprotein ε4 status, after accounting for the effect of gender and age at T3 

Taxonomic level feature coef stderr N pval qval 

Kingdom k__Archaea 0.148 0.042 76 0.001 0.002 

Phylum  p__Euryarchaeota 0.148 0.042 76 0.001 0.005 

Class  c__Methanobacteria 0.148 0.042 76 0.001 0.010 

Order  o__Methanobacteriales 0.148 0.042 76 0.001 0.014 

Family  f__Methanobacteriaceae 0.148 0.042 76 0.001 0.030 

coef = beta coefficient, stderr = standard error of the model, N= number of samples in this model, 
pval = nominal p-value (two-sided), qval = FDR-corrected p-values 
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Table 7.36 Multivariate linear regression results showing features significantly associated 

with Apolipoprotein ε4 status, after accounting for the effect of gender and age across all 

three timepoints, subject ID as random effect 

Taxonomic level feature coef stderr N pval qval 

Family f__Prevotellaceae -6.082 1.752 288 >0.001 0.031 

Genus g__Prevotella -6.333 1.771 288 >0.001 0.044 

Species s__Ruminococcus_obeum -0.321 0.077 288 >0.001 0.013 

coef = beta coefficient, stderr = standard error of the model, N= number of samples in this model, 

pval = nominal p-value (two-sided), qval = FDR-corrected p-values 
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Table 7.37 Kyoto Encyclopedia of Genes and Genomes modules associated with Apolipoprotein ε4 status 

related 
metabolism* KEGG modules value coef 

p-
value q-value 

decreased (↓) in APOε4 carriers compared to APOε4 non-carriers 
6 – Acylglycerol degradation M00098 carrier -0.00003 0.003 0.553 
4 –  Formaldehyde assimilation, serine pathway M00346 carrier -7.8E-05 0.006 0.650 
7 –  C1-unit interconversion, eukaryotes M00141 carrier -0.0002 0.010 0.670 
5 –  N-glycosylation by oligosaccharyltransferase M00072 carrier -1.5E-05 0.030 0.670 

10 –  Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP M00051 carrier -0.00016 0.038 0.670 
5 –  N-glycan biosynthesis, complex type M00075 carrier -3.1E-06 0.039 0.670 
6 –  Phosphatidylethanolamine (PE) biosynthesis, ethanolamine => PE M00092 carrier -7.2E-06 0.044 0.670 

 
enriched (↑) in APOε4 carriers compared to APOε4 non-carriers 

4 – Assimilatory sulfate reduction, sulfate => H2S M00176 carrier 0.0002 0.019 0.670 
3 – Pentose phosphate pathway, archaea, fructose 6P => ribose 5P M00580 carrier 0.0001 0.021 0.670 
4 –  Dissimilatory nitrate reduction, nitrate => ammonia M00530 carrier 0.0001 0.024 0.670 
4 – Assimilatory nitrate reduction, nitrate => ammonia M00531 carrier 6.04E-05 0.027 0.670 
2 – Monolignol biosynthesis, phenylalanine/tyrosine => monolignol M00039 carrier 3.04E-05 0.039 0.670 
9 – Capsaicin biosynthesis, L-Phenylalanine => Capsaicin M00350 carrier 7.29E-05 0.039 0.670 
4 – Denitrification, nitrate => nitrogen M00529 carrier 5.62E-05 0.044 0.670 

*1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis 

and metabolism, 6: Lipid metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and 

polyketides, 10: Nucleotide metabolism, 11: Xenobiotics biodegradation and metabolism 
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Table 7.38 Kyoto Encyclopedia of Genes and Genomes pathways associated with Apolipoprotein ε4 status 

related 
metabolism* KEGG pathways value coef p-value q-value 

decreased (↓) in APOε4 carriers compared to APOε4 non-carriers 
1 – Glycine, serine and threonine metabolism ko00260 carrier -0.0001 0.014 0.893 
9 –  Biosynthesis of ansamycins ko01051 carrier -0.0001 0.028 0.893 

       
enriched (↑) in APOε4 carriers compared to APOε4 non-carriers 

3 – Fructose and mannose metabolism  ko00051 carrier 0.0003 0.039 0.893 
2 – Aflatoxin biosynthesis ko00254 carrier 0.0000 0.040 0.893 
6 – Linoleic acid metabolism ko00591 carrier 0.0000 0.037 0.893 
4 – Sulfur metabolism ko00920 carrier 0.0001 0.035 0.893 

*1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis 

and metabolism, 6: Lipid metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and 

polyketides, 10: Nucleotide metabolism, 11: Xenobiotics biodegradation and metabolism 

 

Table 7.39 HUMAnN3 Stratified pathways in Apolipoprotein E cohorts 

 Feature coef stderr N p-value q-value 
enriched (↑) in  
APOε4 carriers  

UNINTEGRATED_g__Prevotella|s__Prevotella_copri_CAG_164 0.022 0.005 228 0.000 0.002 
UNINTEGRATED_g__Prevotella|s__Prevotella_copri 0.017 0.005 228 0.002 0.011 
      

decreased (↓)  
in APOε4 carriers  

UNINTEGRATED_g__Bifidobacterium|s__Bifidobacterium_adolescentis 
 

-0.006 
 

0.002 
 

228 
 

0.020 
 

0.029 
 

q-value = BH-corrected value 
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Table 7.40 HUMAnN3 Unstratified pathways in Apolipoprotein E cohorts 

 Feature coef stderr N p-value q-value 
 
 
 
enriched (↑) in  
APOε4 
carriers 

PWY-7539: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III 
(Chlamydia) 5.73E-05 1.7E-05 228 0.001 0.012 
PWY-6147: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I 5.69E-05 1.7E-05 228 0.002 0.012 
ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis 3.33E-05 1.3E-05 228 0.014 0.045 
PHOSLIPSYN-PWY: superpathway of phospholipid biosynthesis I (bacteria) 4.54E-05 1.8E-05 228 0.015 0.045 
PWY-1269: CMP-3-deoxy-D-manno-octulosonate (CMP-Kdo) biosynthesis I 2.36E-05 1E-05 228 0.022 0.045 
PWY4FS-7: phosphatidylglycerol biosynthesis I (plastidic) 4.08E-05 1.8E-05 228 0.025 0.045 
PWY4FS-8: phosphatidylglycerol biosynthesis II (non-plastidic) 4.08E-05 1.8E-05 228 0.025 0.045 

       
 
 
decreased (↓) 
in APOε4 
carriers 
 

PWY-7383: anaerobic energy metabolism (invertebrates, cytosol) -2.2E-05 6.2E-06 228 0.001 0.012 
PWY66-399: gluconeogenesis III -1.4E-05 5.1E-06 228 0.006 0.031 
PWY-6124: inosine-5'-phosphate biosynthesis II -2.4E-05 9.6E-06 228 0.016 0.045 
PWY-6123: inosine-5'-phosphate biosynthesis I -2.3E-05 9.4E-06 228 0.018 0.045 
PWY-4981: L-proline biosynthesis II (from arginine) -2.9E-05 1.3E-05 228 0.029 0.046 
HISDEG-PWY: L-histidine degradation I -1.8E-05 8.3E-06 228 0.030 0.046 
PWY-3841: folate transformations II -2.8E-05 1.3E-05 228 0.034 0.046 

q-value = BH-corrected value 
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Table 7.41 Variance of between-sample functional diversity (Jaccard dissimilarity distances, 

999 permutations) explained by each variable assessed with cross-sectional PERMANOVA  

KEGG 
level 

Source Df Sums Sq R2 F-value p-value 
(Jaccard) 

stress 
value 

KEGG 
metabolism 

APOε4 status 1 0.008 0.001 0.169 0.875 0.144 
age 1 0.070 0.007 1.466 0.193  
sex 1 0.026 0.002 0.535 0.544  
Residual 213 10.190 0.989    
Total 216 10.299 1.000    

KEGG 
modules 

APOε4 status 1 0.010 0.001 0.214 0.859 0.183 
age 1 0.068 0.007 1.401 0.205  
sex 1 0.028 0.003 0.567 0.529  
Residual 213 10.377 0.989    
Total 216 10.489 1.000    

KEGG 
pathways 

APOε4 status 1 0.008 0.001 0.169 0.875 0.197 
age 1 0.070 0.007 1.466 0.193  
sex 1 0.026 0.002 0.535 0.544  
Residual 213 10.190 0.989    
Total 216 10.299 1.000    

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination for k=2 
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Figure 7.12 Non-metric Multidimensional Scaling on beta diversity (Jaccard index) between 

the predicted (A) KEGG module and (B) KEGG pathways by group (light blue = 

Apolipoprotein ε4 non-carriers, red = Apolipoprotein ε4 carriers). Each point denotes a 

sample in a reduced dimensional space and is connected with a line to the group centroid 

 

(A) 

 

(B) 

 

Stress value: 0.183 
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Neuropsychological results of the Alzheimer’s Disease patient group 

Addenbrooke’s Cognitive Examination-III 

Table 7.42 Multivariate regression results, Addenbrooke’s Cognitive Examination-III 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 74.32 60.16 – 88.84  <0.001 
Age -0.04   -0.23 – 0.14 -0.03 0.638 
Group [APOe4 non-carriers] 23.98 20.20 – 27.76  1.31 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

     -23.59 
-1.99 
1.15 

19.55 – 27.62  
  -4.90 – 0.92  
  -1.53 – 3.83 

 1.28 
-0.10 
0.06 

<0.001 
0.177 
0.396 

F(5,78)=44.52, p<0.001, R2=0.74 
 

Rey-Osterrich-Complex Figure 

 
Table 7.43 Boxplot of Rey-Osterrich Complex Figure copy score by group 

 
Table 7.44 Multivariate regression results, Rey-Osterrich Complex Figure: Copy score 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 29.77 17.40 – 42.14  <0.001 
Age -0.05 -0.21– 0.11 -0.07 0.522 
Group [APOe4 non-carriers] 6.34 3.04 – 9.64 0.69 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

6.74 
-1.18 
-1.65 

3.22 –10.25 
-3.71 – 1.35 
-4.00 – 0.70 

0.73 
-0.12 
-0.18 

<0.001 
0.357 
0.167 

F(5,77)=4.319, Observations: 83, R2: 0.219  
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Table 7.45 Multivariate regression results, Rey-Osterrich Complex Figure: Recall score 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 16.33 0.15 – 32.51  0.048 
Age -0.14 -0.35– 0.08 -0.13 0.202 
Group [APOe4 non-carriers] 11.58 7.26 – 15.89 0.87 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

11.22 
-0.33 
0.13 

6.62 –15.82 
-3.64 – 2.99 
-2.95 – 3.21 

0.84 
-0.02 
0.01 

<0.001 
0.846 
0.934 

F(5,77)=8.798, Observations: 83, R2: 0.364 
 
Table 7.46 Multivariate regression results, Rey-Osterrich Complex Figure: Copy time 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept)    177.29 -103.02 – -457.60  0.212 
Age 1.65      -2.03 – 5.33 0.11 0.375 
Group [APOe4 non-carriers]  -102.79  -177.57 – -28.00  0.87 0.008 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

   -86.18 
   -18.47 
   -11.17 

 -165.88 – -6.48  
   -75.89 – 38.95  
   -64.49 – 42.16 

0.84 
-0.02 
0.01 

0.034 
0.524 
0.678 

F(5,77)= 2.426, Observations: 83, R2: 0.136 
 

Trail Making Test 

Table 7.47 Multivariate regression results, Trail Making Test-A 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 24.98 -14.46 – 64.42 0.00 0.211 
Age    0.45    -0.08 – 0.97 0.19 0.095 
Group [APOe4 non-carriers]      -20.29 -31.68 – -8.90  -0.69 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

-21.28 
 -1.19 
  1.61 

-33.24 – -9.31  
-9.73 – 7.36  
-6.14 – 9.36 

-0.72  
-0.04 
0.05 

<0.001 
0.783 
0.681 

F(5,73)=4.446, p=0.001, R2=0.233 
 

Table 7.48 Multivariate regression results, Trail Making Test-B 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 95.33     -7.69 – 198.34  0.069 
Age   1.65       0.28 – 3.02 0.19 0.019 
Group [APOe4 non-carriers]   -129.75 -159.50 – -100.00       -1.20 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

  -135.60 
-8.58 
-3.94 

-166.86 – -104.34  
-30.89 – 13.74  
-24.19 – 16.30 

      -1.25  
-0.07  
-0.04 

<0.001 
0.446 
0.699 

F(5,73)=23.18, p<0.001, R2=0.614 
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Generalized Anxiety Disorder-7 

Table 7.49 Multivariate regression results, Generalized Anxiety Disorder-7 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 7.09 0.71– 13.46  0.030 
Age -0.04 -0.12 – 0.05  -0.10 0.377 
Group [APOe4 non-carriers] -3.21 -4.90 – -1.53  -0.70 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

-3.18 
-0.62 
0.07 

-4.97 – -1.39  
-1.91 – 0.67  
-1.91 – 0.50 

 -0.68 
 -1.22  
 -0.15 

 0.001 
0.339 
0.250 

F(5,75)=3.773, p=0.005, R2=0.199 
 
Patient Health Questionnaire-9 

Table 7.50 Multivariate regression results, Patient Health Questionnaire-9 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept)  9.11     0.49 – 17.73  0.039 
Age -0.06 -0.17 – 0.05 -0.13 0.288 
Group [APOe4 non-carriers] -3.64 -5.92 – -1.37 -0.61 0.002 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

-3.79 
0.35 
0.71 

-6.21 – -1.36  
-1.39 – 2.09  
-0.92 – 2.34 

-0.63  
0.05  
0.12 

0.003 
0.688 
0.390 

F(5,75)=2.222, p=0.061, R2=0.129 
 

 
Figure 7.13 Patient Health Questionnaire-9 score by group, depression severity= none 

(<4), mild (5-9), moderate (10-14), moderately severe (15-19), severe (20-27)  

 



 396 

Cambridge Behavioural Inventory-Revised  

Table 7.51 Multivariate regression results, Cambridge Behavioural Inventory-Revised: 

Domain Frequency Score 

Predictors Estimates for 
beta values 

Confidence 
Intervals 

Standardized 
beta values 

p-value 

(Intercept) 34.19 12.35 – 56.02 0.00 0.003 
Age -0.11 -0.40 – 0.17 -0.07 0.434 
Group [APOe4 non-carriers] -22.13 -27.83 – 16.43 -1.11 <0.001 
Group [APOe4 carriers] 
Educational attainment [College] 
Educational attainment [University] 

-24.19 
0.92 
0.22 

-30.28 – -18.09 
-3.44– 5.28 
-3.90 – 4.35 

-1.18 
0.04 
0.01 

<0.001 
0.674 
0.914 

F(5,73)=15.55, p<0.001, R2=0.516 
 

Alpha diversity 

Table 7.52 Alpha diversity by taxonomic level between the two Apolipoprotein E cohorts 

and the Alzheimer’s Disease patient group 

      
Taxon-
omic 
level 

Measure – 
Alpha 
diversity 

APOε4 
non-

carriers 

 [n=36] 
mean (SD) 

APOε4 
carriers 

 [n=37]  
mean (SD) 

AD patient 
group 
 [n=9] 

mean (SD) 

p-value (Wilcox rank sum test)  
for each group comparison 

APOε4 
carriers vs 

non-
carriers 

AD vs 
APOε4 

non-
carriers 

AD vs 
APOε4 
carriers 

King-
dom 

Shannon  
Simpson  
Inv. Simpson  

0.08 (0.12) 
0.04 (0.07) 
1.05 (0.10) 

0.07 (0.15) 
0.04 (0.10) 
1.05 (0.15) 

0.19 (0.24) 
0.11 (0.16) 
1.17 (0.26) 

0.555 
0.574 

0.076 
0.072 

0.017 
0.017 

Phylum Shannon  
Simpson  
Inv. Simpson 

0.98 (0.23) 
0.52 (0.12) 
2.22 (0.56) 

0.97 (0.22) 
0.53 (0.10) 
2.26 (0.60) 

0.96 (0.20) 
0.52 (0.11) 
2.18 (0.53) 

0.543 
0.730 

0.665 
0.944 

0.935 
0.786 

Class Shannon  
Simpson  
Inv. Simpson 

1.14 (0.26) 
0.56 (0.12) 
2.46 (0.68) 

1.14 (0.26) 
0.58 (0.10) 
2.55 (0.76) 

1.25 (0.29) 
0.60 (0.13) 
2.80 (0.97) 

0.822 
0.713 

 

0.320 
0.442 

0.325 
0.531 

Order Shannon  
Simpson  
Inv. Simpson 

1.21 (0.28) 
0.57 (0.12) 
2.55 (0.77) 

1.18 (0.27) 
0.58 (0.10) 
2.57 (0.77) 

1.36 (0.28) 
0.63 (0.13) 
2.97 (0.98) 

0.507 
0.935 

0.191 
0.306 

0.129 
0.261 

Family Shannon  
Simpson  
Inv. Simpson 

2.01 (0.25) 
0.81 (0.06) 
5.69 (1.63) 

2.01 (0.18) 
0.81 (0.04) 
5.57 (1.13) 

1.87 (0.37) 
0.75 (0.13) 
4.80 (1.98) 

0.697 
0.713 

0.211 
0.191 

0.250 
0.238 

Genus Shannon  
Simpson  
Inv. Simpson 

2.48 (0.30) 
0.87 (0.07) 
8.69 (2.86) 

2.49 (0.22) 
0.87 (0.5) 
8.39 (2.20) 

2.19 (0.46) 
0.79 (0.15) 
6.43 (3.25) 

0.926 
0.595 

0.086 
0.054 

 

0.039 
0.042 

 
Species Shannon  

Simpson  
Inv. Simpson 

3.05 (0.31) 
0.91 (0.05) 

12.73 (4.09) 

3.09 (0.31) 
0.91 (0.05) 

13.18 (4.66) 

2.72 (0.59) 
0.85 (0.15) 
9.97 (5.28) 

0.507 
0.763 

 

0.028 
0.033 

 

0.012 
0.029 
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Beta diversity 

Table 7.53 Variance of between-sample diversity (Bray-Curtis dissimilarity distances, 999 

permutations) explained by each variable assessed with cross-sectional PERMANOVA 

Taxon. 
level 

Source Df Sums Sq R2 F-value p-value stress 
value  

Kingdom group 2 0.045 0.056 2.423 0.071 0.00 
age groups 2 0.011 0.013 0.577 0.564 
sex 1 0.001 0.001 0.066 0.929 
residual 76 0.703 0.890  
total 81 0.791 1.000 

Phylum group 2 0.390 0.099 4.337 0.001*** 0.12 
age groups 2 0.088 0.022 0.980 0.447 
sex 1 0.051 0.013 1.142 0.327 
residual 76 3.417 0.869  
total 81 3.931 1.000 

Class group 2 0.622 0.123 5.606 0.001*** 0.14 
age 2 0.117 0.023 1.055 0.395 
sex 1 0.082 0.016 1.472 0.180 
residual 76 4.216 0.835  
total 81 5.052 1.000 

Order group 2 0.626 0.118 5.322 0.001*** 0.15 
age 2 0.115 0.022 0.997 0.432 
sex 1 0.082 0.016 1.414 0.197 
residual 76 4.398 0.840   
total 81 5.236 1.000   

Family group 2 0.568 0.064 2.728 0.001*** 0.21 
 
 

age groups 2 0.203 0.023 0.977 0.454 
sex 1 0.158 0.018 1.518 0.133 
residual 76 7.907 0.889   
total 81 8.889 1.000   

Genus group 2 0.732 0.060 2.555 0.001*** 0.22 
 
 

age groups 2 0.256 0.021 0.894 0.585 
sex 1 0.268 0.022 1.871 0.029* 
residual 76 10.890 0.893   
total 81 12.189 1.000   

Species group 2 0.926 0.053 2.244 0.001*** 0.23 
 
 

age groups 2 0.332 0.019 0.805 0.838 
sex 1 0.380 0.022 1.838 0.023* 
residual 76 15.698 0.903   
total 81 17.379 1.000   

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination for k=2 
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Table 7.54 Post-hoc analysis, pairwise comparisons for all pairs of level for ‘group’ using 

PERMANOVA 

Taxon. 
level 

Pairwise comparison Sums 
Sq 

R2 F-value p-value p-value 
corrected 
(FDR) 

Kingdom AD patients vs carriers 0.069 0.097 4.700 0.041* 0.062 
AD patients vs non-carriers 0.065 0.105 5.026 0.034* 0.062 
non-carriers - vs carriers 0.001 0.006 0.422 0.745 0.745 

Phylum AD patients vs carriers 0.358 0.155 8.076 0.001*** 0.003** 
AD patients vs non-carriers 0.183 0.068 3.142 0.022* 0.033* 
non-carriers - vs carriers 0.086 0.032 2.314 0.073 0.073 

Class AD patients vs carriers 0.588 0.188 10.192 0.001*** 0.003** 
AD patients vs non-carriers 0.411 0.120 5.875 0.004** 0.006** 
non-carriers - vs carriers 0.096 0.029 2.088 0.077 0.077 

Order AD patients vs carriers 0.590 0.181 9.736 0.001*** 0.003** 
AD patients vs non-carriers 0.424 0.120 5.869 0.002** 0.003** 
non-carriers - vs carriers 0.091 0.026 1.893 0.095 0.095 

Family AD patients vs carriers 0.567 0.106 5.203 0.001*** 0.003** 
AD patients vs non-carriers 0.403 0.075 3.507 0.005** 0.008** 
non-carriers - vs carriers 0.091 0.013 0.949 0.481 0.481 

Genus AD patients vs carriers 0.682 0.100 4.652 0.001*** 0.003** 
AD patients vs non-carriers 0.429 0.068 3.134 0.003** 0.005** 
non-carriers - vs carriers 0.131 0.013 0.963 0.479 0.479 

Species AD patients vs carriers 0.775 0.079 3.750 0.001*** 0.003** 
AD patients vs non-carriers 0.552 0.055 2.480 0.002** 0.003** 
non-carriers - vs carriers 0.250 0.017 1.254 0.184 0.184 

Significance codes: 0 ***, 0.001**, 0.01* 
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Table 7.55 Significant associations from univariate differential abundance analysis per 

group 

Taxonomic 
level 

↑ in AD GROUP*  ↑ in APOΕ4 
CARRIERS *  

↑ in APOΕ4 NON-
CARRIERS *  

Phylum ↑ Actinobacteria ↑ Bacteroidetes 
 

Class ↑ Actinobacteria ↑ Bacteroidia 
 

Order ↑ Coriobacteriales 
↑ Actinomycetales 

↑ Bacteroidales 
 

Family ↑ Coriobacteriaeceae 
↑ Actinomycetacea 
↑ Baccilales_noname 

  

Genus ↑ Actinomyces 
↑ Gemella 

 
↑ Collinsella 

Species 
(strain)  

↑ Atopobium parvulum 
(GCF_000024225) 
↑ Actinomyces viscosus 
(GCF_000175315) 
↑ Actinomyces johnsonii 
(unclassified strain) 
↑ Lactobacillus casei 
paracasei (unclassified 
strain) 
↑ Clostridium 
methylpentosum 
(GCF_000158655)  

↑Streptococcus_cristatus 
(unclassified strain) 
↑Streptococcus australis 
(unclassified strain) 
↑ Eubacterium eligens 
(GCF_000146185) 
↑ Ruminococcus callidus 
(GCF_000468015) 
↑(GCF_000166035) 
↑ Ruminococcus_obeum 
(unclassified strain) 
↑ Bacteroides plebeius 
(GCF_000187895) 

↑ Eubacterium_ramulus 
(GCF_000469345) 
↑ Collinsella_aerofaciens 
(GCF_000169035) 
↑ Bacteroides_stercoris 
(unclassified strain) 

* compared to all other groups 
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Table 7.56 (Part 1) Multivariate analysis with significant associations for ‘group’, model accounts for the effect of ‘age’ and ‘sex’. 

Alzheimer’s Disease patient group as baseline contrast compared against Apolipoprotein ε4 carriers (contrast: carriers) and compared against 

the Apolipoprotein ε4 non-carriers (contrast: non-carriers) 

 

 

 

Taxonomic 
level 

 
feature N N.not.0 contrast coef stderr pval qvalue2 contrast coef stderr pval qval 

Kingdom k__Viruses 82 57 carriers -0.247 0.095 0.012 0.023 non-carriers -0.232 0.089 0.011 0.023 
 
 
Phylum 

p__Actinobacteria 82 82 carriers -21.533 5.239 0.000 0.001 non-carriers -14.28 4.815 0.004 0.014 
p__Bacteroidetes 82 82 carriers 20.686 4.897 0.000 0.001 non-carriers 13.602 4.501 0.003 0.014 
p__Viruses_noname 82 57 carriers -0.247 0.095 0.012 0.047 non-carriers -0.232 0.089 0.011 0.047 

 
 
 
Class 

c__Actinobacteria 82 82 carriers -21.533 5.239 0.000 0.001 non-carriers -14.28 4.815 0.004 0.016 
c__Bacteroidia 82 81 carriers 1.487 0.263 0.000 0.000 non-carriers 1.123 0.242 0.000 0.000 
c__Bacilli 82 28 carriers -0.852 0.316 0.009 0.035 non-carriers -1.067 0.291 0.000 0.003 
c__Betaproteobacteria 82 11 carriers 1.641 0.536 0.003 0.018 non-carriers 1.855 0.493 0.000 0.003 
c__Clostridia 82 82 carriers 0.180 0.071 0.013 0.039 non-carriers 0.185 0.065 0.006 0.024 

 
 
 
 
 
Order 

o__Actinomycetales 82 76 carriers -0.210 0.065 0.002 0.012 non-carriers -0.192 0.060 0.002 0.012 
o__Bacteroidales 82 82 carriers 20.686 4.897 0.000 0.001 non-carriers 13.602 4.501 0.003 0.013 
o__Bifidobacteriales 82 82 carriers -18.955 4.672 0.000 0.001 non-carriers -13.22 4.294 0.003 0.012 
o__Burkholderiales 82 62      non-carriers 0.470 0.161 0.005 0.030 
o__Caudovirales 82 56 carriers -0.251 0.096 0.011 0.038 non-carriers -0.233 0.089 0.011 0.038 
o__Clostridiales 82 82 carriers 0.438 0.173 0.014 0.043 non-carriers 0.438 0.159 0.007 0.033 
o__Lactobacillales 82 82 carriers -4.654 1.501 0.003 0.012 non-carriers -5.776 1.380 0.000 0.001 
o__Pasteurellales 82 57 carriers 0.146 0.053 0.007 0.021 non-carriers 0.143 0.049 0.004 0.015 
o__Selenomonadales 82 44 carriers -0.515 0.186 0.009 0.038      

 
 
 
 
Family 

f__Actinomycetaceae 82 72 carriers -0.197 0.061 0.002 0.032 non-carriers -0.182 0.056 0.002 0.032 
f__Bacteroidaceae 82 80 carriers 0.960 0.298 0.002 0.027      
f__Bifidobacteriaceae 82 82 carriers -18.955 4.672 0.000 0.009 non-carriers -13.22 4.294 0.003 0.035 
f__Clostridiales_Family_XIII_Incertae_Sedis 82 28 carriers -0.056 0.018 0.003 0.030 non-carriers -0.052 0.017 0.003 0.030 
f__Lactobacillaceae 82 44 carriers -2.087 0.657 0.002 0.032 non-carriers -2.328 0.604 0.000 0.009 
f__Pasteurellaceae 82 57 carriers 0.287 0.086 0.001 0.022 non-carriers 0.273 0.079 0.001 0.020 
f__Porphyromonadaceae 82 74 carriers 0.835 0.241 0.001 0.027 non-carriers 0.730 0.221 0.001 0.027 
f__Rikenellaceae 82 75 carriers 1.067 0.266 0.000 0.003 non-carriers 0.967 0.245 0.000 0.003 
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Table 7.56 (Part 2) Multivariate analysis with significant associations for ‘group’, model accounts for the effect of ‘age’ and ‘sex’. Alzheimer’s 

Disease patient group as baseline contrast compared against Apolipoprotein ε4 carriers (contrast: carriers) and compared against the 

Apolipoprotein ε4 non-carriers (contrast: non-carriers) 

 

 

 

 

 
 
 
 
 
Genus 

g__Actinomyces 81 71 carriers -0.220 0.063 0.001 0.018 non-carriers -0.206 0.058 0.001 0.018 
g__Alistipes 81 74 carriers 1.146 0.276 0.000 0.003 non-carriers 1.044 0.255 0.000 0.003 
g__Bacteroides 81 81 carriers 1.011 0.309 0.002 0.015 non-carriers 0.461 0.159 0.005 0.032 
g__Barnesiella 81 33 carriers 1.852 0.517 0.001 0.009 non-carriers 1.582 0.478 0.001 0.011 
g__Bifidobacterium 81 81 carriers -20.198 4.850 0.000 0.005 non-carriers -14.45 4.481 0.002 0.035 
g__Coprococcus 81 67 carriers 0.809 0.292 0.007 0.035      
g__Eggerthella 81 71 carriers -0.796 0.210 0.000 0.011 non-carriers -0.796 0.194 0.000 0.005 
g__Faecalibacterium 81 80 carriers 1.141 0.313 0.000 0.007 non-carriers 0.997 0.289 0.001 0.010 
g__Haemophilus 81 57 carriers 0.298 0.090 0.001 0.029 non-carriers 0.284 0.083 0.001 0.028 
g__Lactobacillus 81 43 carriers -2.338 0.677 0.001 0.019 non-carriers -2.575 0.625 0.000 0.005 
g__Odoribacter 81 65 carriers 0.520 0.140 0.000 0.027 non-carriers 0.518 0.130 0.000 0.022 
g__Parabacteroides 81 33 carriers 1.231 0.428 0.005 0.033 non-carriers 1.130 0.396 0.006 0.033 
g__Roseburia 81 81 carriers 2.468 0.794 0.003 0.044      

 
 
 
 
 
 
Species 

s__Actinomyces_oris 82 22 carriers -0.020 0.004 0.000 0.000 non-carriers -0.018 0.004 0.000 0.000 
s__Actinomyces_viscosus 82 42 carriers -0.023 0.005 0.000 0.002 non-carriers -0.021 0.005 0.000 0.002 
s__Alistipes_putredinis 82 57 carriers 2.099 0.557 0.000 0.010 non-carriers 1.809 0.512 0.001 0.014 
s__Alistipes_onderdonkii 82 16 carriers 1.663 0.455 0.000 0.012 non-carriers 1.784 0.418 0.000 0.003 
s__Barnesiella_intestinihominis 82 33 carriers 1.650 0.502 0.002 0.023 non-carriers 1.383 0.462 0.004 0.044 
s__Bacteroides_stercoris 82 21 carriers 2.126 0.671 0.002 0.029 non-carriers 2.655 0.617 0.000 0.003 
s__Bifidobacterium_longum 82 82 carriers -10.022 2.210 0.000 0.002 non-carriers -8.898 2.032 0.000 0.002 
s__Eggerthella_unclassified 82 70 carriers -0.487 0.120 0.000 0.006 non-carriers -0.479 0.110 0.000 0.002 
s__Eubacterium_eligens 82 32 carriers 1.573 0.398 0.000 0.007 non-carriers 1.400 0.366 0.000 0.010 
s__Faecalibacterium_prausnitzii 82 82 carriers 1.028 0.305 0.001 0.043 non-carriers 0.637 0.176 0.001 0.013 
s__Haemophilus_parainfluenzae 82 57 carriers 0.278 0.082 0.001 0.032 non-carriers 0.261 0.075 0.001 0.028 
s__Odoribacter_splanchnicus 82 60 carriers 0.513 0.140 0.000 0.016 non-carriers 0.504 0.129 0.000 0.009 
s__Parabacteroides_merdae 82 15 carriers 1.696 0.552 0.003 0.036 non-carriers 1.475 0.507 0.005 0.048 
s__Streptococcus_thermophilus 82 67 carriers -1.698 0.476 0.001 0.021 non-carriers -1.640 0.437 0.000 0.014 
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Table 7.57 KEGG metabolisms in Alzheimer’s Disease vs Apolipoprotein E cohorts  

KEGG metabolism  value coef p-value q-value value coef p-value q-value 

Carbohydrate metabolism ↑AD vs carriers -0.0039 0.001 0.009 ↑AD vs non-c. -0.0039 0.0003 0.007 
Metabolism of cofactors and vitamins ↓AD vs carriers 0.0040 0.013 0.040 ↑AD vs non-c. -0.0017 0.0018 0.014 

If the coef is a negative number, then the AD patient group has higher values than the controls, Apolipoprotein ε4 carriers = carriers, Apolipoprotein ε4 non-carriers = non-c. 
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Table 7.58 KEGG modules that are enriched (↑) in Alzheimer’s Disease vs Apolipoprotein E cohorts  

Related 
KEGG 
metabolism KEGG modules value coef p-value q-value value coef 

p-
value 

q-
value 

3 –  Glycolysis (Embden-Meyerhof pathway) M00001 carriers -0.0004 0.0003 0.0051 non-c. -0.000 0.001 0.015 

3 –   Pentose phosphate pathway (Pentose phosphate cycle) M00004 carriers -0.0008 0.0000 0.0013 non-c. -0.001 0.000 0.005 
3 –  

 
Pentose phosphate pathway, oxidative phase, glucose 6P => 
ribulose 5P  

M00006 
     

non-c. 
  

-0.001 
  

0.002 
  

0.020 
  

3 – 
  

Pentose phosphate pathway, non-oxidative phase, fructose 6P => 
ribose 5P  

M00007 
 

carriers 
  

-0.0014 
  

0.0001 
  

0.0035 
  

non-c. 
  

-0.001 
  

0.005 
  

0.034 
  

3 –  
 

Entner-Doudoroff pathway, glucose-6P, glucose-6P => 
glyceraldehyde-3P + pyruvate 

M00008 
     

non-c. 
  

-0.001 
  

0.009 
  

0.040 
  

3 –  Glucuronate pathway (uronate pathway) M00014 carriers -0.0009 0.0000 0.0014 non-c. -0.001 0.000 0.005 
1 –  Lysine biosynthesis, succinyl-DAP pathway M00016 carriers -0.0005 0.0002 0.0037 non-c. -0.000 0.001 0.011 

1 –  Lysine biosynthesis, DAP aminotransferase pathway M00027     non-c. -0.000 0.005 0.035 
10 – Guanine ribonucleotide biosynthesis  M00050 carriers -0.0007 0.0004 0.0059 non-c. -0.001 0.002 0.016 

7 –  Tocopherol/tocotrienol biosynthesis M00112 carriers -0.0002 0.0051 0.0344     
1 –  GABA biosynthesis, eukaryotes M00135 carriers -0.0005 0.0021 0.0189     
4 –  Reductive pentose phosphate cycle (Calvin cycle) M00165 carriers -0.0006 0.0034 0.0260     

4 –  Reductive pentose phosphate cycle, glyceraldehyde-3P => ribulose-
5P 

M00167 
 

carriers 
  

-0.0008 
  

0.0009 
  

0.0102 
      

4 –  Nitrogen fixation, nitrogen => ammonia M00175 carriers -0.0005 0.0000 0.0013 non-c. -0.0005 0.0000 0.0006 
4 –  Formaldehyde assimilation, xylulose monophosphate pathway M00344 carriers -0.0014 0.0000 0.0014 non-c. -0.0010 0.0014 0.0150 
4 –  Formaldehyde assimilation, ribulose monophosphate pathway M00345 carriers -0.0009 0.0003 0.0054 non-c. -0.0007 0.0009 0.0102 
1 –  Lysine biosynthesis, acetyl-DAP pathway M00525 carriers -0.0007 0.0004 0.0060 non-c. -0.0005 0.0038 0.0274 

11 –  Carbazole degradation M00544 carriers -0.0002 0.0001 0.0018 non-c. -0.0001 0.0004 0.0060 
3 –  Nucleotide sugar biosynthesis M00549 carriers -0.0011 0.0001 0.0035 non-c. -0.0009 0.0007 0.0088 
3 –  Ascorbate degradation M00550 carriers -0.0011 0.0000 0.0003 non-c. -0.0010 0.0000 0.0003 
3 –  D-Galacturonate degradation (fungi) M00630 carriers -0.0001 0.0001 0.0018 non-c. -0.0001 0.0002 0.0039 

1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis and metabolism, 6: 

Lipid metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and polyketides, 10: Nucleotide metabolism, 

11: Xenobiotics biodegradation and metabolism, Apolipoprotein ε4 carriers = carriers, Apolipoprotein ε4 non-carriers = non-c. 
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Table 7.59 KEGG modules that are decreased (↓) in Alzheimer’s Disease vs Apolipoprotein E cohorts  

1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis and metabolism, 6: Lipid 

metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and polyketides, 10: Nucleotide metabolism, 11: Xenobiotics 

biodegradation and metabolism, Apolipoprotein ε4 carriers = carriers, Apolipoprotein ε4 non-carriers = non-c. 

 

 

 

 
 

Related 
KEGG 
metabolism KEGG modules value coef 

p-
value 

q-
value value coef 

p-
value 

q-
value 

1 –  Lysine biosynthesis, AAA pathway, 2-oxoglutarate M00030 carriers 0.0002 0.0008 0.0096     
1 –  Histidine degradation, histidine  M00045 carriers 0.0006 0.0028 0.0215     

10 – Pyrimidine ribonucleotide biosynthesis M00052 carriers 0.0007 0.0022 0.0193 non-c. 0.001 0.002 0.016 
5 –  KDO2-lipid A biosynthesis, Raetz pathway M00060 carriers 0.0009 0.0002 0.0039 non-c. 0.001 0.001 0.008 
5 –  CMP-KDO biosynthesis M00063 carriers 0.0076 0.0048 0.0290     
5 –  ADP-L-glycero-D-manno-heptose biosynthesis M00064 carriers 0.0005 0.0076 0.0472 non-c. 0.001 0.003 0.022 
5 –  Lipopolysaccharide biosynthesis M00080 carriers 0.0002 0.0070 0.0442 non-c. 0.000 0.007 0.044 
3 –  Pectin degradation M00081 carriers 0.0018 0.0000 0.0001 non-c. 0.001 0.000 0.000 
6 –  beta-Oxidation, acyl-CoA synthesis M00086 carriers 0.0019 0.0082 0.0495 non-c. 0.002 0.004 0.026 
9 –  C5 isoprenoid biosynthesis, non-mevalonate pathway M00096 carriers 0.0011 0.0007 0.0094 non-c. 0.001 0.000 0.004 
7 –  Pantothenate biosynthesis M00119 carriers 0.0006 0.0041 0.0289     
7 –  Coenzyme A biosynthesis M00120 carriers 0.0004 0.0084 0.0498     
7 –  Biotin biosynthesis, pimeloyl-ACP/CoA M00123 carriers 0.0010 0.0028 0.0215     
7 –  Pyridoxal-P biosynthesis M00124 carriers 0.0004 0.0052 0.0344     
7 –  Riboflavin biosynthesis M00125 carriers 0.0008 0.0003 0.0054 non-c. 0.0007 0.0017 0.0161 
2 – Flavanone biosynthesis, phenylalanine => naringenin M00137 carriers 0.0000 0.0027 0.0215     
4 –  Assimilatory sulfate reduction M00176 carriers 0.0005 0.0083 0.0495     
4 –  F420 biosynthesis M00378 carriers 0.0053 0.0032 0.0239 non-c. 0.0048 0.0037 0.0262 

11 – Benzoyl-CoA degradation M00541     non-c. 0.0033 0.0038 0.0262 
7 –  Biotin biosynthesis, BioI pathway M00573 carriers 0.0008 0.0028 0.0215     
7 –  Biotin biosynthesis, BioW pathway M00577 carriers 0.0009 0.0019 0.0173     
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Table 7.60 KEGG pathways that are enriched (↑) in Alzheimer’s Disease vs Apolipoprotein E cohorts 

Related KEGG metabolism KEGG reference pathway value coef p-value q-value value coef p-value q-value 
3 –  Glycolysis/ Gluconeogenesis ko00010 carriers -0.0007 0.002 0.018 non-c. -0.0006 0.004 0.033 
3 –  Pentose phosphate pathway ko00030 carriers -0.0006 0.004 0.032     
3 –  Fructose and mannose metabolism ko00051 carriers -0.0013 0.002 0.016 non-c. -0.0013 0.001 0.013 
3 –  Galactose metabolism ko00052     non-c. -0.0010 0.002 0.020 
3 –  Ascorbate and aldarate metabolism ko00053 carriers -0.0005 0.000 0.006 non-c. -0.0005 0.000 0.002 
6 –  Steroid biosynthesis ko00100 carriers -0.0000 0.002 0.016 non-c. -0.0000 0.003 0.024 
2 –  Penicillin and cephalosporin biosynthesis ko00311 carriers -0.0003 0.002 0.020 non-c. -0.0003 0.001 0.007 
2 –  Neomycin, kanamycin and gentamicin biosynthesis ko00524 carriers -0.0005 0.000 0.004 non-c. -0.0004 0.001 0.007 
6 –  Glycerolipid metabolism ko00561 carriers -0.0006 0.000 0.004     

11 – Chloroalkane and chloroalkene degradation ko00625 carriers -0.0008 0.000 0.001 non-c. -0.0006 0.000 0.002 
11 – Naphthalene degradation ko00626 carriers -0.0005 0.001 0.007 non-c. -0.0004 0.002 0.017 

7 –  Retinol metabolism ko00830 carriers -0.0002 0.000 0.000 non-c. -0.0002 0.000 0.000 
11 – Metabolism of xenobiotics by cytochrome P450 ko00980 carriers -0.0003 0.000 0.000 non-c. -0.0003 0.000 0.001 
11 – Drug metabolism - cytochrome P450 ko00982 carriers -0.0005 0.000 0.000 non-c. -0.0004 0.000 0.000 
11 – Steroid degradation ko00984 carriers -0.0001 0.001 0.010     

9 –  Biosynthesis of ansamycins ko01051 carriers -0.0004 0.003 0.026     
1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis and metabolism, 6: Lipid 

metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and polyketides, 10: Nucleotide metabolism, 11: Xenobiotics 

biodegradation and metabolism, Apolipoprotein ε4 carriers = carriers, Apolipoprotein ε4 non-carriers = non-c. 

 

Table 7.61 KEGG pathways that are decreased (↓) in Alzheimer’s Disease vs Apolipoprotein E cohorts  

Related KEGG metabolism KEGG reference pathway value coef p-value q-value value coef p-value q-value 
5 –  Lipopolysaccharide biosynthesis ko00540 carriers 0.0012 0.000 0.004 non-c 0.0011 0.000 0.006 
7 –  One carbon pool by folate ko00670 carriers 0.0009 0.001 0.013 non-c 0.0009 0.000 0.005 
7 –  Riboflavin metabolism ko00740 carriers 0.0009 0.000 0.001 non-c 0.0007 0.000 0.004 
7 –  Biotin metabolism ko00780 carriers 0.0012 0.000 0.006 non-c 0.0009 0.005 0.038 
9 – Terpenoid backbone biosynthesis ko00900     non-c 0.0006 0.001 0.007 

1: Amino acid metabolism, 2: Biosynthesis of other secondary metabolites, 3: Carbohydrate metabolism, 4: Energy metabolism, 5: Glycan biosynthesis and metabolism, 6: Lipid 

metabolism, 7: Metabolism of cofactors and vitamins, 8: Metabolism of other amino acids, 9: Metabolism of terpenoids and polyketides, 10: Nucleotide metabolism, 11: Xenobiotics 

biodegradation and metabolism, Apolipoprotein ε4 carriers = carriers, Apolipoprotein ε4 non-carriers = non-c. 
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Table 7.62 HUMAnN3 Stratified pathways enriched in Alzheimer’s Disease vs Apolipoprotein E cohorts 

Note: UNITEGRATED means that the identified species did not contribute to a known pathway.  

 

Table 7.63 HUMAnN3 Stratified pathways decreased in Alzheimer’s Disease vs Apolipoprotein E cohorts 

 

Table 7.64 HUMAnN3 Unstratified pathways enriched Alzheimer’s Disease vs Apolipoprotein E cohorts 

feature value coef pval qvalue value coef pval qvalue 

GLYCOCAT-PWY: glycogen degradation I (bacterial) carriers -0.0002 0.000 0.000 non-c. -0.0001 0.000 0.000 
PWY-7328: superpathway of UDP-glucose-derived O-antigen building blocks biosyn. carriers -0.0001 0.000 0.000 non-c. -0.0001 0.000 0.000 
PWY-622: starch biosynthesis|unclassified carriers -0.0001 0.000 0.001 non-c. -0.0001 0.000 0.003 
PWY-5384: sucrose degradation IV (sucrose phosphorylase) carriers -0.0001 0.000 0.001 non-c. -0.0001 0.000 0.003 
PWY-7198: pyrimidine deoxyribonucleotides de novo biosynthesis IV carriers -0.0001 0.000 0.001 non-c. -0.0001 0.000 0.002 
DAPLYSINESYN-PWY: L-lysine biosynthesis I carriers -0.0001 0.000 0.001 non-c. -0.0001 0.001 0.010 
PWY-7234: inosine-5'-phosphate biosynthesis III carriers -0.0002 0.000 0.001 non-c. -0.0001 0.000 0.003 
P4-PWY: superpathway of L-lysine, L-threonine and L-methionine biosynthesis I carriers -0.0001 0.000 0.002 non-c. -0.0001 0.001 0.007 
PWY-6270: isoprene biosynthesis I carriers -0.0001 0.000 0.002 non-c. -0.0001 0.001 0.010 
PWY-7560: methylerythritol phosphate pathway II carriers -0.0001 0.000 0.002 non-c. -0.0001 0.001 0.010 
P124-PWY: Bifidobacterium shunt carriers -0.0001 0.000 0.002 non-c. -0.0001 0.003 0.022 
HOMOSER-METSYN-PWY: L-methionine biosynthesis I carriers -0.0001 0.000 0.005 non-c. -0.0001 0.000 0.002 
PWY-4041: γ-glutamyl cycle carriers -0.0001 0.000 0.002 non-c. -0.0001 0.000 0.005 
PWY0-781: aspartate superpathway carriers -0.0001 0.000 0.002 non-c. -0.0001 0.001 0.010 
PWY-5100: pyruvate fermentation to acetate and lactate II carriers -0.0001 0.000 0.003 non-c. -0.0001 0.003 0.019 
MET-SAM-PWY: superpathway of S-adenosyl-L-methionine biosynthesis carriers -0.0001 0.001 0.006 non-c. -0.0001 0.000 0.003 

feature value coef pval qvalue value coef pval qvalue 
UNINTEGRATED_g__Actinomyces.s__Actinomyces_naeslundii carriers -0.0003 0.000 0.034 non-c. -0.0003 0.001 0.044 
UNINTEGRATED_g__Bifidobacterium.s__Bifidobacterium_dentium     non-c. -0.0005 0.001 0.046 
UNINTEGRATED_g__Streptococcus.s__Streptococcus_thermophilus carriers -0.0072 0.001 0.046 non-c. -0.0070 0.001 0.044 
UNINTEGRATED_g__Streptococcus.s__Streptococcus_thermophilus_CAG_236 carriers -0.0030 0.001 0.044 non-c. -0.0028 0.001 0.044 
UNINTEGRATED_g__Bifidobacterium.s__Bifidobacterium_bifidum carriers -0.0152 0.002 0.046         
UNINTEGRATED_g__Bifidobacterium.s__Bifidobacterium_bifidum_CAG_234 carriers -0.0028 0.001 0.046         

feature value coef pval qvalue     
UNINTEGRATED_g__Roseburia.s__Roseburia_intestinalis carriers 0.0104 0.002 0.046         
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PWY-5484: glycolysis II (from fructose 6-phosphate) carriers -0.0001 0.000 0.003 non-c. -0.0001 0.002 0.018 
GLYCOLYSIS: glycolysis I (from glucose 6-phosphate) carriers -0.0001 0.000 0.003 non-c. -0.0001 0.006 0.034 
ANAEROFRUCAT-PWY: homolactic fermentation carriers -0.0001 0.000 0.005 non-c. -0.0001 0.005 0.034 
PWY-7117: C4 photosynthetic carbon assimilation cycle, PEPCK type carriers -0.0001 0.000 0.005 non-c. -0.0001 0.002 0.019 
NONMEVIPP-PWY: methylerythritol phosphate pathway I carriers -0.0002 0.000 0.006 non-c. -0.0001 0.008 0.045 
PWY-7220: adenosine deoxyribonucleotides de novo biosynthesis II carriers -0.0001 0.000 0.006 non-c. -0.0001 0.001 0.010 
PWY-7222: guanosine deoxyribonucleotides de novo biosynthesis II carriers -0.0001 0.000 0.006 non-c. -0.0001 0.001 0.010 
PWY-1861: formaldehyde assimilation II (RuMP Cycle) carriers -0.0001 0.001 0.006         
PWY-5913: TCA cycle VI (obligate autotrophs) carriers -0.0001 0.001 0.007 non-c. -0.0001 0.004 0.025 
PWY-5347: superpathway of L-methionine biosynthesis (transsulfuration) carriers -0.0001 0.003 0.021 non-c. -0.0001 0.001 0.008 
PWY0-162: superpathway of pyrimidine ribonucleotides de novo biosynthesis carriers -0.0001 0.002 0.016         
PWY66-400: glycolysis VI (metazoan) carriers -0.0001 0.002 0.018         
SER-GLYSYN-PWY: superpathway of L-serine and glycine biosynthesis I carriers -0.0001 0.002 0.018         
PWY-7211: superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis carriers 0.0000 0.002 0.019 non-c. 0.0000 0.002 0.019 
PWY-6124: inosine-5'-phosphate biosynthesis II carriers -0.0001 0.002 0.019         
PWY-2942: L-lysine biosynthesis III carriers -0.0001 0.003 0.019         
PWY-6123: inosine-5'-phosphate biosynthesis I carriers -0.0001 0.003 0.019         
UDPNAGSYN-PWY: UDP-N-acetyl-D-glucosamine biosynthesis I carriers -0.0001 0.003 0.019         
PWY-241: C4 photosynthetic carbon assimilation cycle, NADP-ME type carriers -0.0001 0.005 0.030         
PWY0-166: superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis 
(E. coli) carriers -0.0001 0.005 0.030         
THRESYN-PWY: superpathway of L-threonine biosynthesis carriers -0.0001 0.005 0.031         
PWY-7187: pyrimidine deoxyribonucleotides de novo biosynthesis II carriers -0.0001 0.006 0.035         
PYRIDNUCSAL-PWY: NAD salvage pathway I carriers -0.0001 0.006 0.035 non-c. -0.0001 0.005 0.032 
P461-PWY: hexitol fermentation to lactate, formate, ethanol and acetate carriers -0.0001 0.008 0.043 non-c. 0.0000 0.007 0.039 
PWY-7242: D-fructuronate degradation carriers -0.0001 0.007 0.039         
ANAGLYCOLYSIS-PWY: glycolysis III (from glucose) carriers -0.0001 0.008 0.043         
PWY-3001: superpathway of L-isoleucine biosynthesis I carriers -0.0001 0.008 0.043         

 

Table 7.65 HUMAnN3 Unstratified pathways decreased in Alzheimer’s Disease vs Apolipoprotein E cohorts 

feature value coef pval qvalue value coef pval qvalue 
RIBOSYN2-PWY: flavin biosynthesis I (bacteria and plants) carriers 0.0001 0.004 0.024 non-c. 0.0001 0.007 0.042 
THISYN-PWY: superpathway of thiamin diphosphate biosynthesis I carriers 0.0001 0.008 0.045      
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Table 7.66 Post-hoc analysis. Variance of between-sample functional diversity (Jaccard 

dissimilarity distances, 999 permutations) explained by each variable assessed with cross-

sectional PERMANOVA for T2 and Alzheimer’s Disease patient samples 

KEGG 
level 

Source Df Sums Sq R2 F-value p-value 
(Jaccard) 

stress 
value 

KEGG 
metabolism 

group 2 0.308 0.071 3.018 0.027* 0.159 
age 1 0.051 0.012 0.993 0.363  
sex 1 0.015 0.003 0.291 0.762  
Residual 78 3.980 0.918    
Total 82 4.335 1.000    

KEGG 
modules 

group 2 0.326 0.074 3.150 0.026* 0.155 
age 2 0.051 0.012 0.991 0.361  
sex 1 0.019 0.004 0.367 0.712  
Residual 78 4.032 0.913    
Total 82 4.415 1.000    

KEGG 
pathways 

group 2 0.303 0.070 2.978 0.028* 0.171 
age 1 0.050 0.012 0.984 0.365  
sex 1 0.017 0.004 0.336 0.743  
Residual 78 3.968 0.918    
Total 82 4.321 1.000    

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination for k=2 

 
 
Table 7.67 Post-hoc analysis, pairwise comparisons for all pairs of level for “group” using 

PERMANOVA  

KEGG level Pairwise comparison Sums Sq F-value R2 p-value p-value  
corrected  
(FDR) 

KEGG 

metabolism 

APOε4 non-carriers vs carriers 0.082 1.748 0.024 0.165 0.165 

AD patients vs APOε4 non-carriers 0.266 5.934 0.121 0.006** 0.018* 

AD patients vs APOε4 carriers 0.126 2.039 0.043 0.113 0.165 

KEGG  

modules 

APOε4 non-carriers vs carriers 0.081 1.697 0.023 0.174 0.174 

AD patients vs APOε4 non-carriers 0.289 6.320 0.128 0.006** 0.018* 

AD patients vs APOε4 carriers 0.147 2.357 0.050 0.089 0.134 

KEGG  

pathways 

APOε4 non-carriers vs carriers 0.082 1.748 0.023 0.164 0.164 

AD patients vs APOε4 non-carriers 0.262 5.864 0.120 0.006** 0.018* 

AD patients vs APOε4 carriers 0.124 2.017 0.043 0.113 0.164 

Significance codes: 0 ***, 0.001**, 0.01*; stress value indicates reliability of ordination for k=2 
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Figure 7.14 Non-metric Multidimensional Scaling (Jaccard diversity index) between the 

predicted (A) KEGG module and (B) KEGG pathways by group (light blue = Apolipoprotein 

ε4 non-carriers, red = Apolipoprotein ε4 carriers, yellow = Alzheimer’s Disease patients). 

Each point denotes a sample in a reduced dimensional space and is connected with a line to 

the group centroid 
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