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Abstract

Serovars of the genus Salmonella are widespread enteric pathogens,
causing acute inflammatory gut infections. However, a subgroup of Salmonella
adapted to a systemic lifestyle instead of a mucosal one. A systems-level
understanding of how molecular level changes accompanying this adaptive
process potentially modify the behaviour of these invasive strains is crucial for

future intervention processes, and possible treatments.

In this thesis, I generated and analysed multi-layered interaction networks
for 20 strains in the genus Salmonella. I collated protein-protein, transcriptional
regulatory, and metabolic interaction data from low and high-throughput
experiments and performed predictive measures to add further connections to
the systems. The resulting networks culminated in the update to SalmoNet, the
first integrated network database for Salmonella serovars. Through comparative
network approaches, users can highlight elements under selection in these
invasive serovars, increasing our understanding of the host adaptation process
leading to their systemic lifestyle.

During the last year of my PhD, I redeployed for 6 months to work on
COVID-19 related research. This effort led to a systematic literature curation
highlighting different cytokine responses in patients caused by SARS-CoV-2
compared to other similar viruses. I also led the effort to establish a new network
resource, CytokineLink, aimed at highlighting avenues of cell-to-cell
communication mediated by cytokines, to better understand inflammatory and

infectious diseases.



Overall, the work presented in this thesis has increased our understanding
of the Salmonella host adaptation process, by highlighting specific elements
under selection, while also exhibiting how network information can be created,

and used for understanding such evolutionary processes.
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1. General introduction

The Salmonella genus consists of Gram-negative facultative anaerobic
pathogens belonging to the Enterobacteriaceae family, a member of the
Proteobacteria phylum. The majority of the serovars have broad host range and
cause a self-limiting intestinal inflammation (gastrointestinal serovars). The
gastrointestinal serovars use this process to modify the intestinal environment to
their advantage and facilitate their transmission. A small subset of the genus,
however, evolved alternative strategies of transmission, by adapting to an
invasive lifestyle instead of a mucosal one, restricting their host range in the
process, and colonising alternative sites in the host (extraintestinal serovars). In
this thesis, I generated and analysed multi-layered interaction networks of
multiple Salmonella strains, including both broad and narrow host range

serovars, to understand this process, known as host adaptation.

The host adapted serovars cannot be placed on a single monophyletic
lineage when attempting to map the phylogenetic relationships of Salmonella
serovars, because their emergence is a result of convergent evolution (Vazquez-
Torres, 2018). The host adaptation process usually involves the degradation of
key genes that are not used in the novel environments of the pathogen, or are
detrimental to them, and involves a change in infection phenotype, from an acute
inflammatory one, to a “stealth” phenotype that leads to bacteraemia and fever
(de Jong, Parry, van der Poll, & Wiersinga, 2012; Klemm et al., 2016; Uzzau et

al., 2000).
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While host adaptation is a process often coupled with genome degradation
and expansion, the over 700,000 SNP divergence that characterises the
phenotypically varied subspecies I. of Salmonella enterica is not purely a
comparative genomics problem (Desai et al., 2013). It could be further elucidated
by considering the way absent or newly acquired polymorphisms modify the
system that can eventually lead to changes that make Salmonella alter its
behaviour in the host organism, through formation or loss of regulatory
sequences affecting gene expression or metabolic pathways, or non-synonymous
SNPs altering the function of proteins. As such, the integration of multiple levels
of knowledge could provide insight into distinct and shared interaction patterns
that characterize Salmonella virulence and pathogenicity (Métris et al., 2017).
However, the availability of different levels of knowledge one would integrate to
carry out systems level analyses is scarce, especially for non-model organisms like
Salmonella, and the information present is scattered in various databases.

Motivated by the information above, I set out with the following hypothesis:

The difference in the host adaptation capabilities of gastrointestinal
and extraintestinal Salmonella enterica serovars can be
characterized by specific changes in the topology of their metabolic,

regulatory, or protein-protein interaction networks.

This thesis contributes to progress toward testing this hypothesis, through the
following aims:
e Generation of multi-layered interaction networks for extraintestinal and

gastrointestinal Salmonella enterica serovars.
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1.1.

1.1.1.

e Applying appropriate workflows and approaches to analyse evolutionary
processes such as host adaptation, by using interaction networks as a
medium.

The aims make progress toward addressing thes hypothesis, by generating a
high-quality network resource and knowledgebase of Salmonella interaction
information as the subject of analysis, and by involving network comparison
methods successfully applied in other similar studies published in the relevant
literature.

The following introduction chapter includes the literature and theory necessary
to understand Salmonella as a pathogen, the host adaptation process, and the

fundamentals of systems biology research.

History of Salmonella research and its

importance in public health

History of Salmonella research

Members of the Salmonella genus are motile enteric pathogens, capable
of causing a variety of diseases, from gastroenteritis to systemic infections. A
member of the genus was observed for the first time by Karl Joseph Eberth, in
the spleens of typhoid patients, who suspected it might be the cause of typhoid
fever (Eberth, 1880). The bacteria was isolated and grown into a culture just a
few years later by Gaffky (Gaffky, 1884). Around the same time Salmonella
enterica serovar Cholerasuis was first described by Theobald Smith during his

work at the Bureau of Animal Industry in Washington, DC., who worked in the
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1.1.2.

group of Daniel Salmon. The name of the pathogen was later given after him

(Mestrovi¢, 2018; Schultz, 2008).

Salmonella and public health

The Salmonella genus causes somewhere between 90 million to 1.3
billion cases of foodborne gastroenteritis, and up to 3 million deaths each year.
The gastroenteritis caused by these pathogens is one of the most common
foodborne illnesses, the incidence of intestinal disease caused by non-typhoidal
Salmonella species is the highest in the developing world, and is also considerable
in developed countries (Coburn, Grassl, & Finlay, 2007). A subgroup of strains
causing enteric fever affects 11.9 — 27.1 million patients globally, with over
100.000 of these infections leading to death (Coburn et al., 2007; GBD 2017
Typhoid and Paratyphoid Collaborators, 2019; Hohmann, 2001; Majowicz et al.,

2010).

The burden of disease caused by Salmonella is not new — these pathogens were
one of the most prevalent food poisoning organisms of the 20th century and were
most likely a constant foodborne threat in the past as well. A study went as far to
propose a Salmonella enterica subspecies enterica serovar Paratyphi C outbreak
to be one of the strong candidates for the epidemic causing the population decline
in the 16th century Aztec empire (Vagene et al., 2018). While microbiology
progressed a lot to understand their structure, relationships and natural history,
much of their qualities remain unclear (Hardy, 2004). As is the case with other
commonly occurring pathogens, there is an increased prevalence of multidrug

resistant Salmonella strains in recent years, further increasing the health risk and
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1.1.3.

public health cost associated with infections, including the health of livestock, as
food animals often serve as reservoirs of the pathogen (Branchu, Bawn, &

Kingsley, 2018; Hofer, 2019).

Salmonella nomenclature

Today, when we talk about Salmonella, we usually refer to Salmonella
enterica and its subspecies, most often subspecies 1., as the pathogens in this
subspecies are the ones responsible for most infections in warm blooded animals
(A. Baumler & Fang, 2013). Salmonella nomenclature has not always been this
clear cut. Salmonella was first recognised as a distinct group of organisms by
1900, and as research interest grew around them in North America and Europe,
different laboratories and methodologies led to the same organisms receiving

multiple names, and the same name given to multiple organisms.

As an example, Salmonella enterica subspecies enterica serovar Typhimurium,
one of the most well studied serovars today, was once known under multiple
aliases: Mutton type, Hatton strain, Breslau type, Freiburg type, Salmonella
aertrycke and Salmonella suipestifer, to name a few (Hardy, 2004). Salmonella
can be and was for a long time classified by its serotype. Serotypes are determined
by the Kauffman-White classification scheme, that can distinguish subsets of
microbes based on surface antigens they carry. In the case of Salmonella, this is
based on the O and H antigens, the former a part of the lipopolysaccharide (LPS)
coating, while the latter is a part of the flagellum. Based on the combination of
the small scale differences in these markers the isolated bacteria can be assigned

a serotype (Ibrahim & Morin, 2018).
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Today, there are two species in the genus: Salmonella bongori, and Salmonella
enterica. In 2005, the International Committee for Systematics of Prokaryotes
designated the type species of the Salmonella genus to be Salmonella enterica
(previously known as Salmonella choleraesuis) and its type strain to be LT2
(Salmonella enterica subsp. enterica serovar Typhimurium strain LT2) (Judicial
Commission of the International Committee on Systematics of Prokaryotes,
2005). As mentioned above, the majority of diversity and public health burden
comes from Salmonella enterica subspecies 1., also known as subspecies enterica.
There are six subspecies in total:
e I-enterica
e II-salamae
e Illa - arizona
e IIIb - diarizonae
e IV - houtenae
e VI -indica

The gap in numbering between houtenae and indica is caused by the
reclassification of Salmonella bongori into a separate species, formerly known as
subspecies V (Brenner, Villar, Angulo, Tauxe, & Swaminathan, 2000; Desai et al.,
2013). To shorten reports the names of serovars are often curtailed. For example,
one can find Salmonella enterica subspecies enterica serovar Typhimurium
shortened as Salmonella Typhimurium or S. Typhimurium (Brenner et al.,

2000).
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1.1.4.

Evolution of Salmonella enterica

The common ancestor of the Salmonella genus existed about 25-40
million years ago. The two Salmonella species are closely related to Escherichia
coli, a commensal and opportunistic pathogen bacterium commonly found in the
lower intestine. The divergence from the Escherichia coli lineage happened in
three to five major steps, depending on the model we apply (A. J. Baumler, Tsolis,
Ficht, & Adams, 1998; Winfield & Groisman, 2004), occurring approximately 100
to 160 million years ago (Doolittle, Feng, Tsang, Cho, & Little, 1996; Ochman &

Wilson, 1987).

In the first phase of divergence from the common ancestor, one branch of
speciation led to Escherichia coli, a commensal bacterium living in the gut of
mammals. The other, pathogenic subset acquired a set of genes needed to infect
the intestine, including the Salmonella Pathogenicity Island 1 (SPI-1), which
eventually gave rise to Salmonella bongori. The SPI-1 island is a 40-kb long
region encoding effector proteins, a type three secretion system (T3SS-1), and
elements required to regulate these. The T3SS is an intricate protein structure
that assembles into a syringe-like complex, a needle structure that can penetrate
the host epithelial cells and translocate SPI-1 effectors into it. There are more SPI
like genomic islands present in the genus, most of them acquired later on in the
speciation process (Lou, Zhang, Piao, & Wang, 2019); (Winfield & Groisman,

2004).

In later evolutionary steps the ancestral pathogen accumulated genes that are

required for the colonization of deeper tissues leading to Salmonella enterica
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subspecies II, IIIa, I1Ib, IV, VI, VII. The new set of genetic material includes
another large island called SPI-2, encoding a similar T3SS required for intra-
macrophage survival. In the last phase the Salmonella enterica subspecies I
formed, expanding the host range to warm blooded vertebrates, which includes
us, humans (A. J. Baumler, Tsolis, et al., 1998), and as such a majority of human
infections come from this subspecies. The acquisition of these genetic islands also
means that Salmonella serovars cause disease by very similar mechanisms,
utilising the same virulence genes (Tanner & Kingsley, 2018). Figure 1 depicts the

three major steps as outlined by Baumler et al in 1998.

Salmonella enterica
subspecies I

Phase IIT
expansion in host
range to include
warm-blooded
vertebrates

Phase IT
acquisition of genes
necessary for
colonization of deeper
tissues

Salmonella enterica
subspecies II, IIIa, IIIb,
1V, VI, VII

Phase I
acquisition of genes
required for the intestinal
phase of infection

Salmonella bongori

Escherichia coli

Figure 1. Phases of Salmonella evolution depicting the necessary steps which
granted the pathogen the ability to infect humans, and the formation of the new
species, subspecies. Source: (A. J. Baumler, Tsolis, et al., 1998).

Infections of most of the Salmonella serovars cause a self-limiting

gastroenteritis. The invasion induces an inflammatory event, that shapes the
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intestinal niche to one that favours the pathogen by releasing metabolites it is

suited to utilize better, and as such it can use to outcompete the local microbiome

(Rivera-Chavez & Baumler, 2015; Stecher et al., 2007; Tanner & Kingsley, 2018).

Salmonella enterica subspecies I harbours a large number of serovars, many of

them adapted to various host species. Figure 2 depicts the phylogenetic

relationships of the major Salmonella serovars in subspecies 1.

Schwarzengrund
Choleraesuis Agona Weltevreden
Typhi
Paratyphi C
Newport
Paratyphi A
ParatyphiB
Root L
Java
14028
Dublin
D23580
Enteritidis Typhimurium
SL1344
Gallinarium Heidelberg

Figure 2. Phylogenetic relationships of the major Salmonella enterica
subspecies I serovars. Image from (Branchu et al., 2018), licensed under CC-BY

4.0
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1.2.

1.2.1.

Host adaptation in Salmonella serovars

Defining host adaptation

The relationships between pathogens and the hosts they infect can vary
based on the level of co-evolution. Some pathogens have a broad host range,
capable of infecting many species, while others are more specialised, only
focusing on one or a few specific host species. Most pathogenic bacteria fall into
the first category, and this is the case with Salmonella as well. The typical
Salmonella infection leads to a self-limiting gastroenteritis shaping the intestinal

environment to one that favours the pathogen (Stecher et al., 2007).

Host adaptation is commonly assumed to be the ability of a serotype to cause
disease only in the subset of animal species it is adapted to. The reality, however,
is a bit more complicated when taking all available data into consideration (R A
Kingsley & Baumler, 2000). Defined in an article by (R A Kingsley & Baumler,
2000) host adaptation is the ’ability of a pathogen to circulate and cause disease
in a host population’. This ability is unrelated to its virulence for other host
species. For example, Salmonella enterica subsp. enterica serotype Choleraesuis
is not considered swine adapted because it causes a more serious disease in them
as in humans, but because it is able to persist in pig populations by direct

transmission (R A Kingsley & Baumler, 2000).

Although the incidence of human infection by serovars that are host adapted to

animals is rare, the infection can be quite invasive and cause a serious illness. The
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behaviour of host adapted strains can also be context dependent - for example
Salmonella enterica subspecies enterica serovar Typhimurium, which causes
gastroenteritis in a human host, but bacteraemia in rodents. The main difference
lies here - infection with a non-host adapted serovar usually leads to a self-
limiting illness, while a person getting infected with Salmonella enterica
subspecies enterica serovar Typhi might end up transmitting the disease to
others (Tanner & Kingsley, 2018). The self-limiting nature of a non-host adapted
infection can also be interpreted as beneficial from a public health point of view,

as multi-drug resistant serotypes become more prominent (Eng et al., 2015).

Changes accompanying host adaptation

Narrow host range serovars of Salmonella typically cause a systemic
disease, beyond the intestine, and exhibit increased virulence. The exact
mechanisms and reasons for specialization are still studied, but it has been
implicated that the potential to expand into new niches might be a strong driving
force, as the pathogen does not have to compete with as much local microbiota
outside of the intestine (A. J. Baumler, Tsolis, et al., 1998; Tanner & Kingsley,
2018). Other studies suggest that members of an ecological system equipped with
specialists can increase resource exploitation within the system, which could also

be potentially driving the process (A. Biumler & Fang, 2013).

Host adapted Salmonella variants have emerged on multiple occasions,
convergently (Hiyoshi et al., 2018; Vazquez-Torres, 2018). The pressure to
exploit available resources can be one of the potential drivers behind it, one of

the defining differences between pathogenic and commensal bacteria, is the
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ability of utilising niches commensals cannot. Gene inactivation caused by
genome degradation is one of the recurring features of host adaptation, even
though the events initiating it are not completely understood yet (Klemm et al.,
2016). One of the mechanisms thought behind this phenomenon, is that these
pathogens’ genes often degrade over time, when they affect pathways that are
non-essential in their new niches within the host, and neutral mutations slowly
accumulate in them. Biofilm formation is typically one of the functions that is less
effective in host adapted serovars, but there are other major biological functions
impacted as well, such as chemotaxis or anaerobic metabolism (Holt et al., 2009;
MacKenzie, Palmer, Koster, & White, 2017; Nuccio & Baumler, 2014). Another
reason for the emergence of loss of function mutations in certain genes is
antagonistic pleiotropy, that some of the pathways that were useful in one
environment might be counterproductive in the new niche. Genome size can
change quite dynamically in bacteria as they can utilize resources better by not
transcribing genes they are not using, and can outcompete individuals by dividing
faster than ones with larger genomes (Ilyas, Tsai, & Coombes, 2017; Nilsson et

al., 2005).

Host adaptation is not only driven by gene inactivation, many of the host adapted
serovars have also accumulated genes for which there are no orthologous
proteins in broad range serovars, in the form of additional Salmonella
pathogenicity islands, such as SPI-7, SPI-8 and SPI-10 (Winfield & Groisman,
2004)). The gain and loss of genes modulates the possible range of host microbe
interactions. For example, the expression of the S. Typhimurium effector gtgE in

S. Typhi allows it to survive and multiply in a mouse host by promoting survival
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inside mouse macrophages, which it would be unable to do, it being a human

restricted serovar normally (Spano & Galan, 2012).

Degrees of host adaptation, terminology

Going through the processes outlined above, within the Salmonella
enterica subspecies I some of the serovars became host adapted, and thus the
group can be divided into different categories, in a multitude of ways. Most often
we find two pairs of terms when talking about these pathogens: typhoidal -
nontyphoidal categories, and extraintestinal - gastrointestinal categories.
Although they mean similar things, the context in which they are used matters,
as the first two refers to the human disease they cause (typhoid fever), while the
latter refers to their relationship to the intestine as a niche. Table 1 highlights the

differences between the terms.

Pathovar Gastrointestinal Extraintestinal
Human disease Non-typhoidal Non-typhoidal Typhoidal
Typical serovars S. Typhimurium, S. S. Typhi,
S. Enteritidis, Choleraesuis, S. Paratyphi (A,B,C)
S. Heidelberg, S. Dublin
S. Newport
Disease Self-limiting gastroenteritis (intact Systemic (Para)typhoid fever
immune system), bacteraemia infection
(immunocompromised host)
Host range Broad Host adapted Host restricted (human)
(porcine,
bovine)

Table 1: Salmonella pathovars, and their relationships to human disease and host

range.
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The extraintestinal pathogens are a small group of specialists adapted to new
environments in their host. The most extensively studied member is Salmonella
enterica serotype Typhi (Rivera-Chavez et al., 2016). The level of host adaptation
in Salmonella enterica serotypes varies, with S. Typhi being generally considered
one of the most specialised member of the group, while (from a human disease
point of view) S. Typhimurium being a typically broad host range,
gastrointestinal serovar. Host adaptation can sometimes progress into host
restriction, where the pathogen limits itself to one single host species, and causes
a more severe illness (Klemm et al., 2016). Figure 3 details the host range of host

adapted serovars in Salmonella.
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S. Typhimurium DT2 Reptiles £
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Specialists

S. Typhi

Mammals,
birds, and
reptiles

Salmonella enterica subspecies |
generalists

Figure 3. Host range of pathogens in the Salmonella enterica subspecies.
Subspecies I mostly consist of generalists from which specialists emerge from
time to time. Source: (A. Baumler & Fang, 2013), with permission of the
copyrights holder Cold Spring Harbor Laboratory Press.
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S. Typhi is the causative agent of typhoid fever, a dangerous disease manifesting
as a high fever, with abdominal pain, and headaches. S. Paratyphi A can cause a
very similar condition which is why these two are often referred to as typhoidal
Salmonellae (J Parkhill et al., 2001). As outlined above, the host-adaptation of S.
Typhi happened via genetic degradation and the recruitment of many genes

associated with virulence (den Bakker et al., 2011; Klemm et al., 2016).

A prominent example of this is the Vi exopolysaccharide capsule of S. Typhi.
Generally speaking, broad and narrow host range serovars approach the infection
process from opposite ends of the spectrum - the former group evolved to elicit
inflammation to reduce competition and free up metabolites it can use in the
intestine (e.g. tetrathionate), while the latter evolved to avoid the immune system
for as long as possible in order to disseminate to organs of the reticuloendothelial
system (Vazquez-Torres et al., 1999). The Vi capsule, encoded by the viaB locus
on SPI-7 does that, by preventing the activation of the complement system
(Pickard et al., 2003; Wangdi et al., 2014). The pathogens often downregulate the
gene tviA as well for similar reasons, which is responsible for the regulation of
flagella expression (Winter, Raffatellu, Wilson, Riissmann, & Baumler, 2008). S.
Typhi and Paratyphi are host restricted, they do not cause disease in nonhuman
hosts (they can infect higher primates, but do not cause typhoid fever in them) (J
Parkhill et al., 2001). They express the typhoid toxin, a cytolethal distending
toxin, causing G2/M cell cycle arrest which leads to the apoptosis of the affected

cells (Galan, 2016).

Even though S. Typhi and Paratyphi share many similarities, they can be quite
different from other extraintestinal serovars which evolved alternative ways to
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disseminate in the host system. Extraintestinal serovars underwent convergent
evolution, reaching a similar systemic lifestyle through different mechanisms.
This convergence has been previously observed in the patterns of genome
degradation of extraintestinal Salmonella enterica serovars (Galan, 2016; Nuccio

& Baumler, 2014; J Parkhill et al., 2001).

Host adaptation is an ongoing process

Host adaptation is a constantly ongoing process, and recently S.
Typhimurium pathovariants emerged, that follow a host adapted lifestyle, and
share functional changes with other host adapted Salmonella. The Salmonella
enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to rock
pigeons (Columbia livia). These isolates form a distinct cluster within S.
Typhimurium but share a common ancestor with them in the recent past, and in
some ways represent a microcosm of Salmonella evolution. These isolates
adapted to the higher (42 °C) internal temperature of the avian host, and went
through many of the functional changes, such as downregulation of flagella and
motility one would see in other host restricted pathovariants such as S. Typhi
(Bawn et al., 2020; Robert A Kingsley et al., 2013; Tanner & Kingsley, 2018;

Winter et al., 2010).

Over the past decades, another group of host adapted Salmonella appeared as
one of the most commonly isolated pathogens from the blood of patients (Feasey,
Dougan, Kingsley, Heyderman, & Gordon, 2012). The invasive nontyphoidal
Salmonella (iNTS) strains cause a similar systemic infection as human adapted

extraintestinal serovars such as Typhi and Paratyphi, most often in
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immunocompromised individuals, e.g. young children, AIDS patients. The
infection often leads to bacteremia and meningitis, and multidrug-resistant
variants have caused epidemics in several African countries. Sub-Saharan Africa
is one of the worst impacted regions. The infection is most often caused by a
sequence type of Salmonella Typhimurium and of Salmonella Enteritidis
(Gilchrist & MacLennan, 2019). ST313, containing these iNTS strains, consists of
three lineages, the third of which was described very recently (Pulford et al.,

2021).

The variants causing this bacteraemia show similar molecular changes discussed
above with other host adapted variants and seem to be distinctly adapting to
infection in immunocompromised hosts. The iNTS strains can still cause
intestinal inflammation, but the genome degradation alters functions required
for survival in the intestine, for the environment outside the host, for serum
resistance, and human-to-human mode of transmission (Robert A Kingsley et al.,
2009; Okoro et al., 2015). Altogether, these sequence types evolved to have
reduced capability of intestinal pathogenesis, but increased systemic
dissemination (Carden et al., 2017; Okoro et al., 2012; Singletary et al., 2016).
The 10,000 (10k) Salmonella Genomes Project was launched specifically to
address and understand invasive non-typhoidal Salmonella infections, collecting
samples from Africa and South America (10K Salmonella Genomes Project,

2017).

In a well-documented case, there was an example of a bloodborne S.
Enteritidis infection showing signs of host adaptation in an

immunocompromised patient. Over the course of 15 years, the non-typhoidal
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Salmonella infection recurred, always resulting from a relapse rather than
reinfection, and it culminated in the pathogen slowly losing functionality in genes

that are not necessary for a systemic lifestyle (Klemm et al., 2016).

The events following host adaptation - genome size reduction, formation of
pseudogenes, acquisition of mobile/IS elements - are not unique to Salmonella
and have been described in multiple other bacterial clades, e.g. Shigella, another
group closely related to Escherichia coli (Hawkey, Monk, Billman-Jacobe,
Palsson, & Holt, 2020), or other groups such as Yersinia, Rickettsia, Bordetella

(Cole et al., 2001; Moran & Plague, 2004; Julian Parkhill et al., 2003).

Convergent evolution

A common result of natural selection is that sometimes similar
pressures result in similar solutions from relatively distant - or at least not
monophylatically related - organisms. With eukaryotes, especially animals and
plants this is something where many examples exist describing this process, both

including currently alive and fossil specimens.

The process is most obvious on a phenotypic level. Commonly used examples are
the similar anatomical solutions fish and other vertebrates came up with that
returned to water, or the flying apparatuses of bats and pterosaurs, the similarity
of the hummingbird hawk-moths (Macroglossum stellatarum) and

hummingbirds, the anatomy of the eye in humans and certain cephalopods.
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Convergent evolution occurs on a molecular level as well. A very timely example
is the identical single nucleotide polymorphism mutations collected by
geographically distant lineages of the currently ongoing SARS-CoV-2 pandemic.
There are select amino acid changes in the spike proteins of these variants of
concern, that have emerged independently of each other, and are responsible for

increased transmissibility.

Adapting to a host affects similar functions

In the case of the host adaptation process, Salmonella serovars go
through similar changes, both on a molecular and a phenotypic level. The
selection driven genome degradation in S. Typhi and S. Paratyphi associated with
loss of function events affects genes known to be important in gastroenteritis, and
effectors that are normally translocated into host cells (McClelland et al., 2004).
It also affects chemotaxis, virulence, motility, biofilm formation, and resistance

to antibiotics.

The affected functions are the same, but the way the individual serovars solve
them can be different: for example, S. Typhi and S. Paratyphi A can both avoid
the respiratory burst from phagocytes, but through different manners. The
former does this by preventing the antibody-mediated complement activation
utilising its Vi polysaccharide capsule, while S. Paratyphi A uses very long O-
antigen chains containing the O2 antigen to avoid the binding of the antigen.
These typhoidal Salmonella strains cause a very similar enteric fever, and both
are human adapted, and because of the similar pressures they came up with

solutions converging on the same problem — preventing complement activation
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— but through different means. Figure 4 shows the comparison of the

aforementioned structures.
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Figure 4. Typhoidal Salmonella serovars both avoid phagocyte respiratory
burst, but arrived at the solution through different means. S. Typhi uses its
polysaccharide capsule to prevent IgM binding, while S. Paratyphi A achieves
the same result using very long LPS chains. OM: outer membrane, CM: plasma
membrane, LPS: lipopolysaccharide. Image from (Hiyoshi et al., 2018) licensed
under CC BY-NC-ND 4.0

In a similar way, the aforementioned phage type DT2 S. Typhimurium

variants collated changes to their physiology to make them more fit to living in
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an avian host, but did it through the rewiring of their transcriptional profile
through accumulating point mutations in regulatory regions instead of the
acquirement of novel genes, such as tviA in S. Typhi (Bawn et al., 2020; Robert

A Kingsley et al., 2013; Winter et al., 2010).

1.2.5.2. Biofilm formation is hindered in host adapted Salmonella
strains

Biofilms of all kinds are produced by a large number of bacteria, serving
as a different mode of growth, usually on physical surfaces. They allow the
bacteria to create multicellular communities, resist antibiotics, protect the cells
from phagocytosis, and enhance their abilities to create slow growing persister
populations (Tursi et al.,, 2020). Salmonella biofilms are commonly
characterised by the so-called rdar phenotype, the red, dry, and rough

appearance of their colonies grown on agar plates stained by Congo red dye.

The main structural components of Salmonella biofilms are curli fimbriae,
a matrix of amyloid proteins, intermixed with cellulose. The two combined
produce a resistant extracellular matrix for the pathogens. Biofilm formation is
often one of the functions that degrades as Salmonella adapts to a systemic
lifestyle, and has been noticed in the iNTS strains that formed relatively recently

(MacKenzie et al., 2017).
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Cyclic di-GMP

One of the most important signals regulating biofilm formation is the
presence of cyclic di-GMP (c-di-GMP). C-di-GMP is a secondary messenger
metabolite commonly found in bacteria, where it, amongst others, regulates
motility, biofilm production and virulence. C-di-GMP is produced by diguanylate
cyclases, and can be degraded by phosphodiesterases (Romling, Galperin, &
Gomelsky, 2013). The activity of these two enzyme groups, the availability of
precursor molecules, and extracellular signals control the levels of c-di-GMP. The
decisions to reduce motility, and/or virulence and start producing biofilms are
quite important and severe from the bacteria’s point of view, and as such are
under tight control (Jenal, Reinders, & Lori, 2017; Petersen, Mills, & Miller,

2019).

C-di-GMP is commonly summarised as a sessile-motile switch in many
bacterial species, like Vibrio, where high intracellular c-di-GMP concentration
leads to reduced motility and biofilm formation, while a low concentration of the
metabolite promotes free swimming motile behaviour. The former instance
typically occurs, when the pathogen is outside the host, and wants to persist until
it can get taken up by another host organism, while the latter state is mostly
descriptive of the within host state (Tamayo, Pratt, & Camilli, 2007). An increase
in c-di-GMP in Salmonella leads to the same phenotype, regulated by CsgD, a
transcriptional regulatory protein. CsgD, and the regulatory network it controls
flows into the regulation of virulence as well further downstream, as the

formation of biofilms downregulates virulent traits in return.
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To sum up the process, environmental signals (e.g. L-arginine) promote the
production of c-di-GMP and biofilm formation separately, and culminate on the
CsgD master regulator. A low level of c-di-GMP leads to an inactive CsgD state,
and virulence (motility, chemotaxis, active T3SS-1), while increasing c-di-GMP
levels turns CsgD on, and suppresses virulence, while increasing curli and

cellulose production (MacKenzie et al., 2017).

The regulation of biofilm production and virulence intersect in Salmonella
in very interesting ways. While the process generally works as detailed above
(turning off during infection, and on in between), in a study the authors have
found, that during the intra-macrophage stage of infection of a mice model by S.
Typhimurium, the pathogen actually induces c-di-GMP signalling and cellulose
synthesis, deliberately suppressing its own virulence. They hypothesize that this
way the bacteria can exploit host resources slowly, prolonging the infection and

increasing the chance of transmission (Pontes, Lee, Choi, & Groisman, 2015).

Salmonella Pathogenesis

Salmonella strains apply a variety of strategies to infect their preferred
host species, depending on their host range. Non-typhoidal and typhoidal
Salmonella follows different strategies to ensure replication and transmission
success, but one of the key aspects of all Salmonella infections is how the
pathogen tries to hide itself from the immune system, and even hijack certain

aspects of it (Gut, Vasiljevic, Yeager, & Donkor, 2018; Ohl & Miller, 2001).
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Salmonella enters the host through contaminated food or water sources,
which is what makes them one of the most common foodborne pathogens. The
first goal of the bacterium is to reach the epithelial cells of the intestine, but there
are of course physical, chemical and biological barriers in the way that it has to
overcome first. For example, gastric acidity is one of the first lines of defence
against enteric pathogens, considering the pH of an empty stomach (in the case
of humans) can be as low as 2. The specific microenvironment, i.e. the surface of
the foodstuff can be protective for Salmonella, by temporarily raising the pH of
the stomach, and providing a source of amino acids for the pathogen to maintain
its acid resistance genes (Garai, Gnanadhas, & Chakravortty, 2012; Waterman &

Small, 1998).

Once Salmonella reaches the intestinal lining, it attaches to the epithelial
cells, activates its endocytic pathway, and its uptake into the epithelial cells of the
host. It specifically targets Peyer’s patch, the microfold or M-cells found here, and
the immune cells below. The pathogen accomplishes this by activating one of its
type I1I secretion systems. These systems, as mentioned previously, are a needle-
like protein structure that can pump effectors into the host cells, affecting its
behaviour. The genes that encode these T3SSs sit on the aforementioned SPIs
(Ehrbar & Hardt, 2005). The specific island required for this phase of the
infection is SPI-1, meaning this is the genomic region that is shared across the

entire genus, including Salmonella bongori (A. J. Biumler, Norris, et al., 1998).

Following the uptake of Salmonella into the intestinal epithelial cell, it
passes through towards the submucosa. The submucosa is rife with immune cells,

which Salmonella uses to its advantage. Once it reaches this layer it will be shortly
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engulfed by a macrophage in a phagocytosis-like process led by the genes of SPI-
2 (and other Salmonella Pathogenicity Islands), encoding for a similar T3SS. The
pathogen initiates the production of a special modified phagosome, the
Salmonella-containing vacuole (SCV), which it uses as a protective niche within
the macrophage (Dougan & Baker, 2014). Under normal circumstances there are
multiple antibacterial mechanisms the host can employ, but the effectors of SPI-
2 neutralises many of these, e.g. they block the fusion of acidifying lysosomes to

the SCV (Giannella, 1996).

This is where the pathogenic process bifurcates for non-typhoidal and
typhoidal Salmonella, from the viewpoint of an infected human. The former
group are eventually eliminated by an inflammatory cascade (Mayuzumi,
Inagaki-Ohara, Uyttenhove, Okamoto, & Matsuzaki, 2010). Typhoidal
Salmonella, despite having the same SPI-1 and SPI-2 virulence factors, have
gained additional tools that it can use to evade the innate immune system. S.
Tpyhi can downregulate its flagella using the gene tviA, it’s Vi capsule causes a
lower inflammatory response, and this Salmonella can effectively utilise the
macrophages as a safe niche within the host, where it can hide, replicate, and
propagate to different sites in the host, like the liver or the spleen. S. Typhi also
produces a toxin within host cells, called the typhoid toxin, which causes
cytoplasmic detention and cell cycle arrest. What the specific role of the toxin is
not currently known (Galdn, 2016; Tanner & Kingsley, 2018). Figure 5
summarises the main differences in the pathogenesis process between non-

typhoidal and typhoidal serovars.
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Figure 5. Differences in pathogenesis between nontyphoidal and typhoidal
serovars S. Typhimurium and S. Typhi. The self-limiting non typhoidal infection
is eventually stopped at the local lymph nodes, while the typhoidal pathogen can
hijack macrophages and disseminate further into the host system. Image

source: (Young et al. 2002) with permission of the rights holder, Springer
Nature.
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SARS-CoV-2 and COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
positive-sense single-stranded RNA (ssRNA) virus, and the causative agent of the
currently ongoing coronavirus disease 2019 (COVID-19) pandemic. This is the
third major outbreak linked to the members of the Coronaviridae family. The
family sits within the order of Nidovirales, and can be further divided into four
genera: alphacoronavirus, betacoronavirus, gammacoronavirus and
deltacoronavirus. While alpha-and betacoronaviruses only infect mammalian
species, the other two genera have a broader host range, and can infect avian
species as well. An epidemic of severe acute respiratory syndrome coronavirus
(SARS-CoV) broke out in 2002, and multiple times for the middle east
respiratory syndrome coronavirus (MERS-CoV). SARS-CoV-2 emerged in
Wuhan, China, due to a spillover of an animal coronavirus to humans, similarly
as it has happened in the cases of MERS-CoV and SARS-CoV (Andersen,
Rambaut, Lipkin, Holmes, & Garry, 2020; Coronaviridae Study Group of the

International Committee on Taxonomy of Viruses, 2020; Machhi et al., 2020).

SARS-CoV-2 consists of 29 proteins in total, 16 of which are non-structural
proteins. It shares 79% of its genome with SARS-CoV and 50% with MERS-CoV.
The observed outcomes following an infection differ between the three viruses,
with SARS-CoV-2 being the most transmissible, but having a lower mortality rate
(2.3% vs 9.6% of SARS-CoV and 35% of MERS-CoV) (Suryawanshi, Koganti,

Agelidis, Patil, & Shukla, 2021).
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Respiratory coronaviruses, including SARS-CoV-2, are transmitted
primarily through respiratory droplets. Because of this, the virus enters the host
most often through the respiratory tract, airway and alveolar epithelial cells
(Harrison, Lin, & Wang, 2020).. Capable of infecting cells carrying the
angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 surface receptors, they
enter the cells, and start replicating. It is important to mention, that there is a
possibility of faecal-oral route of transmission as well. Human coronaviruses
have been known to cause gastrointestinal infections, with varying degrees of

severity (Harrison et al., 2020; Lamers et al., 2020).

Most common coronaviruses tend to cause mild upper respiratory tract
(URT) illnesses, and occasionally attack the intestines. However, the highly
pathogenic coronaviruses, such as SARS-COV-2 or SARS-CoV cause severe
influenza-like symptoms that can progress to severe pathologies, such as acute
respiratory distress syndrome (ARDS), pneumonia, renal failure, and death

(Guan et al., 2020; Harrison et al., 2020).

The host response consists of aggressive inflammatory responses, in part
responsible for the damage done to the airways. In a subset of patients, the
inflammatory responses can progress to a hyper-inductive state, also known as
cytokine release syndrome (CRS) or cytokine storm. This occurs when a large
number of immune cells activate, and release inflammatory cytokines, activating
more cells in return. Although the process can resolve on its own after the
clearance of the virus, in severe cases it can persist for longer, and lead to tissue
damage, and the pathologies listed above. This process is responsible for an

increased level of mortality observed with COVID-19 for a subgroup of patients
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(Costela-Ruiz, Illescas-Montes, Puerta-Puerta, Ruiz, & Melguizo-Rodriguez,

2020; Jung, Potapov, Chillara, & Del Sol, 2021; P. Mehta et al., 2020).

How SARS-CoV-2, and other CRS-causing viruses modulate immune
responses is not completely understood. They have certain effector proteins they
can use to influence or delay the type-I interferon response, one of the first lines
of defence mounted against viral infections by the innate immune system

(Channappanavar et al., 2019; Murira & Lamarre, 2016).

How these viruses, especially focusing on SARS-CoV-2 alter intracellular
signalling and other networks in various tissues, is an area of active research
(Bouhaddou et al., 2020; D. E. Gordon et al., 2020; Trevelil et al., 2021; Zhou et
al.,, 2020). Global collaborative efforts, such as the COVID-19 disease map
consortium have been created to reconstruct the virus-host interactions aimed to
combat the underlying causes of the currently ongoing pandemic (Ostaszewski et

al., 2020).

Introduction to networks

Networks describe complex systems

Graph theory is a branch of mathematics that studies graph models
used to describe relationships between certain objects. They are widely applicable
and have found their way into many of the sciences, be they computer science,
social sciences or biology. The first study of graph theory was written by Leonhard

Euler, one of the most prominent mathematicians of all time. Euler tried to solve
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something that sounds quite simple at first. A city sits on both sides of a river,
and has two islands in the water, both connected to the riverbanks, and to each
other by a bridge. The problem was: can one cross the city in a way that only
involves crossing each bridge once? Euler’s abstraction of the problem laid the
fundamentals of graph theory, namely the establishment of what we know today
as vertices or nodes, points and edges, or links. The names are often used
interchangeably, but they are mostly used as vertices and edges when discussing

graphs, and nodes and links when talking about networks.

In the last few decades network science has grown into its own discipline,
dealing with complex problems from various fields. The true merit of this
approach is its ability to make sense of systems in a way that cannot be done
purely from knowledge of its constituents. Network science is interdisciplinary,
data-driven and computational at its heart.

Most systems can be described and analysed with networks. Biological
systems are no different. They can be described with networks where nodes
represent the constituents of a biological system (e.g. genes), and where edges
represent the relationships between them (e.g. inhibition). The specific types of

nodes, and edges of different qualities can further nuance these systems.

Nodes

The nodes in a network are the members we are looking to connect, be
they genes, proteins, metabolites or complete organisms. Their nature will
determine the type of interactions we can use to connect them to each other. A
phenomenon one can often encounter regarding nodes, is that often they can be

put into different sets, on some qualitative trait - e.g. gender, whether an animal
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is a predator or prey, or whether we are talking about a protein or RNA.
Connecting the members of these sets grants us a multipartite graph, i.e.

bipartite, tripartite etc. graphs.

Degree

Figure 6. An example network. Node b has a degree of 3, as it has three
immediate interactors.

One of the most commonly applied and important number used to describe
anode is its degree. Let D; be the degree of the i node in the network. It describes
the number of direct links a node has to its neighbours, e.g. in the example above
on Figure 6 node b has a degree of 3 (D = 3), node c has a degree of 2 (D, = 2),
while all other nodes have a degree of 1. To get the total amount of links in an

undirected network, one can take the sum of all degrees, and divide it by two, as
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to not count each interaction twice (e.g. between A and B, and B and A) (Barabasi,

2016).

Hubs

Hubs are the highest degree nodes in the network, and have a degree
larger than the average (Barabési, 2016). In biological networks they fulfil very
important roles, their mutations often becoming lethal. Typical biological
examples of hub nodes are chaperone proteins. They have a high degree, as they
interact with many other proteins to help them fold into the correct shape, and a
loss or mutation in a chaperone protein often leads to disorders, as the organism
becomes prone to producing misfolded proteins (Macario, Grippo, & de Macario,
2005). In this thesis, regulatory hubs are discussed in Chapter III, in the context

of correcting by degree during rewiring analysis.

Edges

Within network biology there are a few types of commonly used
networks. On a molecular level most commonly one can find protein-protein
interaction networks, where the links depict the physical interactions of proteins,
or regulatory networks, that show the relationships of transcription factors and
their regulated genes. There are supra individual level networks as well, depicting
dynamics in ecology, like food webs (Dunne, Williams, & Martinez, 2002). Edges
can be simple, showing an undirected interaction between two partners, but they
can become more complex with the addition of more meta-data. They can be
directed, determining the origin and target of the interaction, signed, signalling
whether the interaction is stimulatory/inhibitory, weighted, conveying the

importance or confidence in the interaction. Although we are only dealing with
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simple graphs, where an edge can only connect two nodes, it would be remiss of
me not to mention hypergraphs, where this is not the case. In these special
constructs an edge can connect any number of nodes, which we then call
hyperedges. They are less commonly used in biology, but there are certainly

examples of it (Klamt, Haus, & Theis, 2009).

Biological networks, especially on a molecular level, are most of the time
incomplete, they do not contain all interactions of the process they are attempting
to depict. There are multiple reasons for this. First, simply not all interactions of
all molecular constituents have been captured experimentally - either due to
chance, or caused by technical limitations, interactions of certain proteins are
harder to capture than others. Depending on the type of interaction, one can
establish high-throughput experiments to gain as many interactors as possible,
although these methods can have their blind spots as well, certain interactions
they are unable to capture, rooted in the specific methodology used. A commonly
used tactic to fill up these gaps, is to turn to the literature or network repositories,
where one can collect missing interactions to complete their network, that were
established by different experimental approaches (Tiirei, Korcsmaros, & Saez-

Rodriguez, 2016).

Another major tool in our kit is the ability to predict/infer interactions
between certain constituents, e.g. regulatory interactions where transcription
factors can bind to putative target sites. These interactions are based on a set of
heuristics or algorithms, and can fill in important gaps in the network, although
they can add considerable noise as well (Bailey et al., 2009; Nguyen et al., 2018).

As a rule of thumb, one should always strive to compile as complete of a network
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as one can, as long as it fits the biological question, and the scope of the study.
Having a more complete network can increase the predictive power of a network,
and can lead to increased insight on our part (Santolini & Barabasi, 2018). The
nature of the field is, however, that new kinds of interactions can arise as long as
there are meaningful relationships to analyse between things, and as such one

can always find new ways of interpreting system level problems.

Paths

Paths are a sequence of nodes connected by a sequence of edges; they
describe the steps needed to go from one node to another. An often-referenced
special path is the shortest path, which describes the shortest paths by which
nodes can be connected. This is an important attribute of the network, as it can
be used to quantify certain properties of the network, such as information flow.
Betweenness centrality is the measure of the shortest paths going through a given
node or edge — the higher the value, the more information flowing through that
specific node or edge. The diameter of the network is also quantified using the

shortest path measure: it is the longest shortest path in the graph.

Protein-protein interaction networks

The quality of our queried interactors determines the kind of
interactions one can distinguish. In biology, the most commonly used

interactions are protein-protein interactions or PPIs.

Protein-protein interactions are the purposeful, non-random, physical
interactions of proteins, occurring in or outside the cell. These interactions can

happen between standalone proteins, or in complexes, and are responsible for,
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amongst others, the signal flow in cells, and play a central role in the cellular
systems of all living organisms. The breakdown of PPI signalling patterns can be
indicative of a disease state (and thus, disease genes), play a fundamental role in
drug discovery, and when comparing different organisms, can shine a light on the
evolutionary path of those (Barabasi, Gulbahce, & Loscalzo, 2011; De Las Rivas

& Fontanillo, 2010; Kuzmanov & Emili, 2013).

Protein-protein interactions can be discovered by experimental techniques,
or be inferred by computational approaches. One of the most widely used
experimental approaches to describe interactions between proteins is the yeast
two-hybrid screening method (Terentiev, Moldogazieva, & Shaitan, 2009). This
approach permits the pairwise analysis of binding between two proteins, by
expressing them in a Saccharomyces cerevisiae model. The binding of the
proteins is inferred from the activation of the Gal4 reporter genes used. The yeast
is grown on limiting media, and the proteins in question are fused with parts of
the Galg transcription factor. If there is a close enough physical interaction
between the queried proteins, the halves of the fused transcription factor
combine, and Galg starts expressing, letting the microbe synthesize nutrients it
needs to survive. The method has its limitations, especially when post-
translational modifications have to be considered in the case of human proteins
for example, but it has remained one of the mainstays of the methodology
(Briickner, Polge, Lentze, Auerbach, & Schlattner, 2009); (Maple & Mogller,

2007).

Other experimental approaches, like the affinity purification mass
spectrometry (AP-MS) allow the detection of stable interactions, in a high-
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throughput way. In essence, in these experiments the protein we would like to
find partners for is tagged (thus becoming the bait) and is selectively purified
along putative interaction partners (the preys) from the in vivo source (i.e. cells
or tissue cultures). These purification steps are repeated for many sets of
potential preys, and each of them is analysed with a mass spectrometer. From the
results one can deduce the protein-protein interactions, and part of the
underlying protein-protein interaction network (Gavin et al., 2002; Ho et al,,
2002; Kim, Sabharwal, Vetta, & Blanchette, 2010; Rigaut et al., 1999; Tian, Zhao,

Gu, & He, 2017).

There are multiple computational approaches used to predict protein-
protein interactions (Obenauer & Yaffe, 2004). Methods using the amino acid
sequence data typically utilise machine learning methods, such as random forest
and support vector machines that attempt to predict interactions from pairs of
protein sequences. Approaches using comparative genomic data are similar, but
take sequence comparisons into account, and look at the conservation of gene
neighborhoods, gene fusion, and gene co-occurrence (Kotlyar, Rossos, & Jurisica,
2017). Other approaches use protein domain information, or even the tertiary
structure of proteins to infer interactions. Recently, approaches started
integrating these data types, and basing interaction predictions on the
combination of these (Q. C. Zhang, Petrey, Garzén, Deng, & Honig, 2013). Figure
7 shows an example protein-protein interaction network, from the seminal study
of Gordon et al. 2020, mapping the protein-protein interactome of SARS-CoV-2

proteins in the host.

51



RNA processing

PABPC4 _ LARP1
& . PABPC1
RRP9 @ b MOV10
UPF1® _®RPL36
.BBMZB
~@® DDX21
FAM98A

.SNIP1

CSNK2B

CSNK2A2 G3BP1

G3BP2
Stress granule regulation

Figure 7. A protein-protein interaction network showing a SARS-CoV-2
protein (protein N, in red) interacting with human proteins. Putative drug
targets are coloured in orange. Figure modified, from (D. E. Gordon et al.,

2020), with permission of the rights holder Springer Nature.

1.4.3. Gene regulatory networks

Gene regulatory networks (GRNs) describe the interactions of
molecular regulatory elements that control the expression of RNA, and in turn,
the levels of specific proteins. These regulators are most often proteins
themselves, transcription factors, that can act alone, or in complexes with other
proteins or nucleic acids. Gene regulatory networks control many of the cellular

decisions, responses to stimuli, and their nature also makes them the most
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dynamic of the commonly studied interaction times, from an evolutionary point
of view. The edges of GRNs therefore contain interactions between transcription

factors, and their regulated target genes.

Compared to eukaryotes, the genes of prokaryotes are organised in special,
co-regulated transcriptional units called operons. The genes contained in
operons are transcribed and controlled together, with the help of the regulatory
sequences found next to the transcribed units, in the so-called untranslated
regions (UTR), both up- and downstream from the structural genes (5°-UTR and
3°-UTR) (Mao, Dam, Chou, Olman, & Xu, 2009). The UTR contains the promoter
region, a specific region of the DNA that can bind the RNA polymerase, to initiate
the transcription of the genes into RNA (Kroger et al., 2012). The promoter region
transcription factors bind to is specific and sensitive to changes, which makes this
interaction layer dynamic, as even a small change, introduced by a point mutation
can affect the binding affinity (Shou et al., 2011). Recently, novel techniques have
been developed that can identify the first nucleotide of a transcript, termed the
transcriptional start site (TSS). The approach called differential RNA-sequencing
(dRNA-seq) can identify individual -10 and -35 promoter motifs (Sharma et al.,
2010). This approach was applied with great success to Salmonella, identifying
the TSS of major virulence regulators in Salmonella, such as phoP, slyA, and invF

(Kroger et al., 2013, 2012).

Novel regulatory interactions of transcription factors and target genes can
be uncovered in several ways. A commonly used experimental method is the
chromatin immunoprecipitation sequencing (ChIP-Sequencing or ChIP-Seq)

technology, which is a kind of sequencing method that looks for interactions of

53



proteins with DNA. In brief, following the binding of proteins to DNA by a
binding agent, DNA is sheared, and the target proteins (the transcription factors
of interest) are captured using specific antibodies against the protein. The bound
DNA is recovered, and sequenced, highlighting the genomic regions the

protein(s) bound to (Furey, 2012).

From a practical point of view, the binding sequences transcription factors
recognise are usually stored as position-specific scoring matrices. These are
matrices aligned from sequences representative of the binding region, and
contain the probability of each base occurring at each position in the sequence.
One way of visualizing them is by using sequence logos, where the size of the base
letters are proportionate to the probability of them occurring in the binding
region (Nguyen et al., 2018). Figure 8 shows the sequence logo for the binding

site recognised by the Fur transcription factor in Salmonella.
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Figure 8. Sequence logo of the binding site recognised by the Salmonella
transcription factor Fur, generated by the RSAT suite.

There are in silico ways of inferring or predicting regulatory interactions
between select transcription factors and target genes, based on gene expression
and other -omics data. For eukaryotes, there are a number of databases that

contain high quality regulatory interaction data for Homo sapiens, such as
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OmniPath, SignaLink from our group, and TRRUST or HTRI (Bovolenta,
Acencio, & Lemke, 2012; Fazekas et al., 2013; Han et al., 2018; Tiirei et al., 2016).
When studying bacteria, there are a few resources that are especially useful in
this regard. RegulonDB and CollecTF collect transcription factor binding site
data for Escherichia coli and other prokaryotes that can be used to predict and
infer regulatory interactions (Kilic et al., 2016; Santos-Zavaleta et al., 2019).
Through the principle of regulogs, the homology-based conservation of
transcription factors, target genes and transcription factor binding sites the
inference of regulatory interactions is made possible, provided the interacting
partners are well conserved, both on the level of proteins, and the interacting
protein-DNA interface (Rodionov, 2007; H. Yu et al., 2004). The RSAT suite is a
collection of on-line bioinformatic tools that make it possible to make the
predictions based on the data from RegulonDB and CollecTF for example, by
combining it with promoter data from the genomes of interest (Nguyen et al.,
2018; Rodionov, 2007; H. Yu et al., 2004).

Gene regulation does not only exist in the form of transcription factor —
target gene interactions, but other elements can also influence the expression of
genes as well, for example on a posttranscriptional level. Salmonella small RNAs
(sRNAs) have been identified previously and can alter the expression of a large
number of genes in the pathogen. There are multiple interaction databases
containing a posttranscriptional layer of regulation, and there is evidence of
conservation of sSRNAs within Enterobacteriaceae family (Kroger et al., 2012;
Van Assche, Van Puyvelde, Vanderleyden, & Steenackers, 2015). Due to the
amino-acid sequence based orthology of the database SRNAs were not added to
this release of SalmoNet, but their addition will be an important upcoming step
for the longevity of the database.
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Metabolic networks

The metabolic networks discussed in this work are derived from
genome-scale metabolic models (GEMs).

GEMs are computational models used to describe associations of genes and
proteins to reactions for entire metabolic pathways in an organism. They collect
existing knowledge of the metabolism for the organism, and most of the time they
are assumed to be complete. They can be used to simulate and predict metabolic
fluxes for various systems-level metabolic studies. The first GEM was created for
Haemophilus influenzae in 1999, shortly after its genome was sequenced, and in
the following years the number of GEMs for model and non-model organisms has
grown considerably. As of February of 2019, there were more than 6000 models
available, mostly for bacteria (Edwards & Palsson, 1999; Gu, Kim, Kim, Kim, &
Lee, 2019; E. J. O’'Brien, Monk, & Palsson, 2015). GEMs have many uses, and
have found their way into many fields of biology, as they can be used to redesign
aspects of the metabolism of a bacteria to enhance the production of certain
desired metabolites, can be applied to study the essentiality of genes, to find
oncogenes and biomarkers of cancer in systems medicine, and much more (Gu et
al.,, 2019; C. Zhang & Hua, 2015). One can find GEMs in specific online
repositories, such as BiGG or BioModels (King et al., 2016; Malik-Sheriff et al.,

2020).

GEMs, from a practical point of view, are networks, where nodes constitute

metabolites, and they are connected to each other by reactions, each associated
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with the necessary enzymes. To represent stoichiometric coefficients, GEMs use
a matrix (S matrix) in addition, to represent all the coefficients for all metabolic
reactions. A positive coefficient means the metabolite is produced, while a

negative means it is consumed (E. J. O’Brien et al., 2015; C. Zhang & Hua, 2015).

Flux Balance Analysis (FBA) is a type of constraint-based reconstruction
and analysis (COBRA) method used to calculate the flow of metabolites through
a genome scale metabolic network, from a network input to a network output.
The output of the analysis is essentially a map showing that under certain
parameters how the system must balance itself to achieve a homeostatic state.
The results obtained from the analysis can be used to predict the growth rate of
the organism as a whole, or a specific metabolite (E. J. O’Brien et al., 2015; Orth,

Thiele, & Palsson, 2010).

The curated metabolic model for Salmonella published by Thiele et al. has
been widely used since its release. Recently, a new set of metabolic
reconstructions has been released, generating 410 metabolic models for 64
serovars. The authors used these results to show how different nutrient
conditions showed the catabolic capacities of the studied strains, and what their

optimal growth environments are (Seif et al., 2018; Thiele et al., 2011).

Multi-layered networks

Multi-layered biological networks can show connections between
multiple networks belonging to the same system which can make them quite

descriptive. The analysis of integrated networks (ones that combine multiple
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levels of knowledge, e.g. regulation and protein-protein interactions) allows us to
gain new insight into regulation, signal transduction on multiple levels. We can
focus on specific processes without excluding complete levels of a biological
system, e.g. to see whether a signalling pathway changes anything on a metabolic
level with its downstream effectors. This is especially useful in this case, when we
know of two similar but very differently behaving groups (Csabai, Olbei, Budd,
Korcsmaros, & Fazekas, 2018). Figure 9 shows the schematic representation of a

multi-layered network.

Figure 9. Schematic representation of a multi-layered network. Specific
nodes connect different levels of information, leading to the multi-layered

structure. Figure from Csabai et al., 2018.
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Network properties

There are many ways of describing the properties of networks beyond
its constituents. The degree is one of the most important characteristics of a node,
and similarly, the degree distribution of a network can tell us a lot about the
system we are attempting to model. Looking at the entire network, if the degree
distribution of all nodes in the network follows a power law, we note these
networks as scale-free. Most real networks - e.g. many biological networks, social
networks, computational networks - fit or approach this distribution. Figure 9

shows the out-degree distribution of one of the networks from SalmoNet.
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Figure 10. Out-degree distribution of the consensus network from SalmoNet
1.0. This network captures interactions shared amongst all included strains.
The degree distribution approaches a power law (correlation: 0.96, R2: 0.82).

The largest interconnected, non-disjunct part of the network is called the
giant component. This is where most connections lie, and most analysis takes
place. Within these giant components one can often find modules. These are

subgraphs, whose elements are more connected to each other, than to nodes
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outside of it. They are often functional elements, and there are many approaches
for finding them. One I employed in my PhD studies was the MCODE software

developed for Cytoscape (Bader & Hogue, 2003).

Network resources

In computational biology, there are more and more options one can
acquire network information from. There are various network repositories
focusing on a specific types of interaction information, e.g. the Autophagy
Regulatory Network (ARN) contains information related to the regulation of core
autophagy proteins, ImmunoGlobe contains interactions occurring between
various elements of the immune system, while other resources collate data from
more specific databases like the ones mentioned previously (Atallah et al., 2020;
Tiirei et al., 2015). An example for the latter is OmniPath or STRING, both of
which contain multiple types of interaction data (e.g. protein-protein
interactions, regulatory interactions, intercellular interactions) (Szklarczyk et al.,

2019; Tiirei et al., 2016).

The structure and standardization of interaction data has made a lot of
progress in recent years. To make sharing and processing information easier,
more and more network resources utilize the PSI-MITAB system, a heavily
standardized tabular format, where every field has a set function and values it can

take.
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Databases and network repositories

One of the most well-known interaction resources is the STRING
database. It fills an important role in the ecosystem of network resources, as it
contains many interactions, for >5000 species, from a diverse array of sources,
ranging from very high quality, experimentally validated interactions, to
interactions based on co-expression, co-occurrence and text mining. As such, it
has a very large coverage of interactions, but importantly, it only focuses on

protein-protein interaction data (Szklarczyk et al., 2019).

IntAct is a molecular biology interaction database, focusing on protein-protein
interactions, curated from the literature, or directly from data depositions. The
developers established a curation tool, allowing the users to fine-tune the quality
of data they would like to work with, which is something I utilised in the

development of SalmoNet 2 (see chapter 2) (Orchard et al., 2014) .

OmniPath is a database of literature-curated human signalling interactions. It
was compiled of 34 resources, including both directed, signed and causal
interactions. Released in 2016, the resource covers 39% of the human proteome,
61% of disease-gene associations, >80% of cancer related genes and druggable

proteins.

OmniPath 2, its novel update now combines over 100 resources into a single
database, covering inter-and intracellular signal transduction, as well as

transcriptional and post-transcriptional regulation (miRNA-mRNA) (Tiirei et al.,
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2016). This is a database I have used extensively in my work related to SARS-
CoV-2 (see Chapter 5) and helped the publication of the updated manuscript by
adding a degree of quality control and authored workflows for the R and python

programming language access point libraries for the users of the resource.

Network analysis and visualization software

One of the most commonly used network analysis software in biology is
Cytoscape (Shannon et al. 2003). It is an easy to use, free graphical user interface
(GUI) application, capable of reading and writing multiple network file formats,
and can be used both as a network analysis and visual exploration tool. One of
the largest advantages of the software is its community, that develops additional
functionality for it in the form of Cytoscape apps. I have used a number of these
libraries during my PhD work, i.e. DyNet, MCODE, CHAT, ISMAGS (Bader &
Hogue, 2003; Goenawan, Bryan, & Lynn, 2016; Muetze et al., 2016; Van Parys et
al., 2017). The software also allows for automated analyses, through multiple
libraries in commonly used programming languages, such as R or python

(Otasek, Morris, Boucas, Pico, & Demchak, 2019).

More advanced network analysis and visualization tools exist as libraries in the R
and Python languages, e.g. igraph, networkx, RCy3. These allow for automated
and programmatic analysis of networks and are really important from the

standpoint of reproducibility.
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Primary research aims

My primary research aims in this thesis are the following;:

1.

Expanding the coverage of Salmonella enterica serovar strains found in the
SalmoNet database and increasing the information content of the individual

networks.

2. Validation of the SalmoNet approach: using experimental information to show

the biological relevance of the included interactions.

. Testing the scientific hypothesis set at the beginning of this thesis, that the

difference in the host adaptation capabilities of gastrointestinal and
extraintestinal Salmonella enterica serovars can be characterized by specific
changes in the topology of their metabolic, regulatory, or protein-protein
interaction networks, and highlighting how network comparison and network
analysis workflows can be used to identify elements of molecular interaction

networks under selection, stemming from their lifestyle or environment.

Added aims due to the COVID-19 pandemic:
Carry out a study comparing cytokine responses of patients infected by Cytokine
Release Syndrome causing viruses, including SARS-CoV-2.
Generate an interaction network of cell-cell communication mediated by

cytokines, aimed at uncovering leading intercellular interactions of CRS.
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2. Construction of a multi-layered

2.1.

network database for Salmonella

research

Introduction

Salmonella enterica is an important group of pathogens endangering
the health of humans and other animal species alike. Salmonella enterica
subspecies enterica houses over 2000 serovars, and is responsible for the
majority of Salmonella infections in warm blooded animals (A. J. Baumler,
Tsolis, et al., 1998). Most of the subspecies I. serovars have a broad host range,
and cause acute gastroenteritis in the host organism (Uzzau et al., 2000).
Gastrointestinal Salmonella serovars induce this self-limiting gastroenteritis to
engineer the gut luminal environment to one that benefits them, by inducing the
release of metabolites these pathogens can use as terminal electron acceptors,
and increasing the oxygen saturation of the gut lumen from the production of
reactive oxygen species by the cellular elements of the immune system (Nuccio &
Baumler, 2014). The latter, although still harmful to the pathogen, paradoxically,
enables the growth of gastrointestinal Salmonella, by reducing the anaerobic
stress on the pathogen (Nuccio & Baumler, 2014; Rogers, Tsolis, & Baumler,

2021). A smaller subgroup of Salmonella serovars has adapted to a systemic
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lifestyle, causing bacteremia and enteric fever. The adaptation to invasive disease
markedly alters the pathogenesis process, symptoms, and immune responses to
these Salmonella serovars. They are atypical bacteria, their virulence factors
focusing on inhibiting the generation of normal antibacterial responses, leading

to a "stealth" phenotype (Tsolis, Young, Solnick, & Baumler, 2008).

To understand the changes the genus and these host adapted serovars went
through, many studies have focused on genomic differences. Since one of the
hallmarks of host adaptation is a level of genome degradation, and genetic
content gain through horizontal gene transfer, these approaches have highlighted
the genetic elements that underwent selection, and consequently functions that
were lost or potentially gained through diversification (den Bakker et al., 2011;

Robert A Kingsley et al., 2013; Klemm et al., 2016).

Studying Salmonella host adaptation also means studying convergent
evolution, and there are a number of examples, detailed in Chapter I., where
different serovars arrived at similar solutions, through different molecular level
means. It stands to reason that to understand the underlying reasons and
mechanisms of host adaptation, we should also analyse functional convergence,
and compare these serovars on a systems level. Although the contraction and
expansion of genomes is the process that gives rise to the functional changes, it
is the way those absent or newly acquire genes modify and fit into the system,
that makes Salmonella alter its behaviour within the host organism, through the
emergence or loss of novel signalling, regulatory or metabolic pathways, or the
combination of them. The combination of this information via multi-layered

networks allows us to focus on specific processes important to the question at
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hand, e.g. to see whether a regulator can affect a metabolic pathway further

downstream (Csabali et al., 2018).

For Salmonella, the different levels of knowledge exist in separate data
resources, which makes complex, integrated analysis difficult. SalmoNet was
developed for Salmonella strains to circumvent this problem. SalmoNet is the
first multi-layered network database for Salmonella, combining regulatory,
metabolic and protein-protein interactions for 10 Salmonella serovars in the first
version, and 20 strains in the second one. In addition to being a tool for a specific
scientific purpose, the study of host adaptation in extraintestinal serovars of
Salmonella, it also aims to be a gap-filling knowledgebase for this non-model
organism. The networks contain manually curated Salmonella specific
interactions, and inferred interactions from Escherichia coli. Data was collated
from multiple sources: literature, primary and secondary databases, high-

throughput experiments.

This chapter describes how the first version of the database was built,
focusing on the workflow, principles and methods utilized to collate the networks,
and details the steps how I updated it with the release of the new version. The
work highlighted in the introduction of this chapter were carried out by: Aline
Métris who designed much of the work, Padhmanand Sudhakar who carried out
the construction of regulatory networks, David Fazekas, who created the protein-
protein interaction and metabolic layers and set up the web resource
(http://salmonet.org/). Amanda Demeter performed the manual curation of
interaction data sources, Eszter Ari, who contributed by inferring the

classification trees and dendrograms. Priscilla Branchu, Rob A. Kingsley, Tamas
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Korcsmaros and Jozsef Baranyi contributed to framing the biological basis of the
work, and supervised the project. My role in the first release was internal testing
and quality control, as this project finished not too long after I started my PhD

studies.

2.1.1. Construction of a multi-layered network for non-

2.1

model organisms

SalmoNet 1 was the first multi-layered network resource for the
pathogenic non-model organism Salmonella. To have a better chance of
understanding how members of this phenotypically diverse group differ from
each other, there was a need to combine various levels of information together,
to make integrated analysis possible.

The genus holds a lot of diversity, and ten well-studied strains were
selected to capture this, by including five host-adapted and five broad host range
serovars. Since the majority of Salmonella information used to exist in separate
repositories, the database fulfilled the important role of a Salmonella specific
knowledgebase for these strains, beyond being an interaction resource. We
achieved this through integrating various levels of knowledge from multiple data
sources and approaches: protein-protein, regulatory and metabolic information,
both predicted and experimental, from high-throughput and low throughput

experiments, and the available literature (Métris et al., 2017).

.1.1.  Strains included in SalmoNet 1

In SalmoNet 1, five broad host range, gastrointestinal serovars, and five

narrow host range, extraintestinal serovars were selected from subspecies
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enterica. Table 2 lists the included representative strains, and information

regarding their lifestyle.

Serovar Strain Taxonomy ID | Lifestyle

[ [ [ [

Typhi CT18 90370 Extaintestinal, causes
typhoid  fever in
humans

Paratyphi A ATCC 9150 295319 Extaintestinal, causes
paratyphoid fever in
humans

Choleraesuis SC-B67 321314 Extaintestinal, porcine
adapted

Dublin CT 02021853 439851 Extaintestinal, bovine
adapted

Gallinarum 287/91 550538 Extaintestinal, avian
adapted

Agona SL483 454166 Gastrointestinal

Enteritidis P125109 550537 Gastrointestinal

Heidelberg SL476 454169 Gastrointestinal

Newport SL254 423368 Gastrointestinal

Typhimurium SL1344 216597 Gastrointestinal

Typhimurium LT2 99287 Gastrointestinal

Table 2: list of serovars in the first version of SalmoNet.

2.1.1.2. Prediction of interactions across organisms, orthology

mapping

One of the challenges many face doing comparative (micro)biological
work is that despite our best efforts, name and various identifier usage can be
inconsistent across strains and serovars. Orthology mapping can provide a
common denominator, by homology-based clustering of the protein sequences
that serve as nodes in the final networks (Altenhoff et al., 2016; Remm, Storm, &
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Sonnhammer, 2001). Every node, regardless of which layer they belong to, is

therefore treated as a protein.

For SalmoNet 1, the standalone software version of InParanoid was used to
create orthologous relationships between the proteins of the Salmonella strains
listed above, and the model organism Escherichia coli K12 (K. P. O’Brien, Remm,
& Sonnhammer, 2005; Sonnhammer & Ostlund, 2015). The latter is a close
relative of Salmonella, and well-studied model organism. This makes it possible
to include orthologous interaction data based on conserved proteins and the
concept of interologs, the transfer of interaction annotation from one organism
to another, and E. coli can as such act as an important link in transferring more
established and well-studied information to a non-model organism, such as

Salmonella (H. Yu et al., 2004).

To begin the orthology mapping, the complete protein sequences of all
available genes belonging to the listed serovars were downloaded from the
UniProt database, in January of 2015. To identify homologous protein sequences,
InParanoid starts with an all-vs-all BLAST comparison of all protein sequences
in two species and following that applies a clustering rules to build ortholog
groups. As the authors of InParanoid summarize, “The purpose of the ortholog
detection algorithm is to find non-overlapping groups of orthologous sequences
using pairwise similarity scores. This is essentially a sequence clustering
problem.” (Remm et al.,, 2001). In brief, InParanoid first identifies the best
scoring sequence pairs bi-directionally (since it is always comparing two
proteomes at a time), and marks these as the main ortholog pair of a specific

ortholog group. The detection of the subsequent orthologs follows independently
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for each ortholog group, until the similarity scores reach the predetermined
cutoff value. For SalmoNet 1, a strict sequence similarity cutoff of >= 95% was set
to minimize false positives, as the comparison is made between strains of the
same species. Previously >= 80% was used in other works when creating
interologs between different species, e.g. Caenorhabditis elegans and Drosophila

melanogaster (Remm et al., 2001; H. Yu et al., 2004).

2.1.2. Reconstructing the interaction networks

2.1.2.1.  Protein-protein interactions

To create the protein-protein interaction layer, a guided literature
curation protocol was used, originally developed for SignaLink (Fazekas et al.,
2013) (Csabai et al., 2018). The workflow uses the tools iHop and ChiliBot in
addition to direct PubMed searches to look for signalling interactions between
Salmonella proteins (Chen & Sharp, 2004; Hoffmann & Valencia, 2005). In
addition, experimentally verified Salmonella protein-protein interactions were
included from the IntAct database (S Kerrien et al., 2007; Orchard et al., 2014).
To further increase the coverage of the networks, interactions were transferred
from a closely related model organism - Escherichia coli - based on the concept
of interologs. Interolog mapping is the process of transferring annotation data,
from one organism to another, based on orthologous relationships, established
through InParanoid for SalmoNet 1.0 (Métris et al.,, 2017). The source of
interologs were the Interactome 3D, IntAct, and BioGrid databases, and a high-
throughput yeast-2-hybrid screen of the Escherichia coli interactome (Mosca,
Céol, & Aloy, 2013; Oughtred et al., 2019; Sonnhammer & Ostlund, 2015; Stark

et al., 2011).
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2.1.2.2. Metabolic interactions

Genome-scale metabolic networks describe the interactions (reactions)
of metabolites, mediated by the various enzymes needed to process them. The
metabolic networks included in this work are essentially an inversion of these
genome-scale networks. They were defined as the following: if a metabolite is a
product of a reaction, and a substrate in another, the two proteins catalysing the
reactions are linked, with the exception for ones appearing in more than 10

reactions (Kreimer, Borenstein, Gophna, & Ruppin, 2008).

To construct these interactions the STM 1.0 model mentioned in Chapter I
(Thiele et al., 2011), and automatically generated data from the BioModels

database was used (BMID000000140711).

2.1.2.3. Regulatory interactions

SalmoNet 1 contains interactions based on both experimentally
validated and predicted regulatory interactions, that represent the binding of
transcription factors to promoter regions of specific target genes. As mentioned
previously in Chapter I, the promoter region is a specific sequence of the DNA
that can bind the RNA polymerase, to initiate the transcription of the genes into
RNA. The promoter region transcription factors bind to is specific, and sensitive
to changes,

To build the regulatory layer, first low throughput, experimentally
validated data was collected on transcription factor binding sites. This was done
similarly using ChiliBot and iHop as in the PPI layer, and relevant databases, such

as CollecTF, RegulonDB or Prodoric (Gama-Castro et al., 2016; Kilic et al., 2016;
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Miinch et al., 2003; Santos-Zavaleta et al., 2019). High-throughput experiment
data can also be used to infer binding sites from specific genomic locations, in the
case of SalmoNet 1 the results from Smith et al. 2016 were processed (Smith,
Stringer, Mao, Palumbo, & Wade, 2016). To get statistically significant binding
motifs from data like this, amongst others the MEME suite of tools can be used,
specifically the MEME-ChIP that can extract binding data from ChIP-chip or

ChIP-seq data (Bailey et al., 2009).

Taken together, the collected binding sites can be used to generate a
Position Specific Scoring Matrix containing the consensus binding signature for
that specific transcription factor. This was done with the consensus tool from the
RSAT suite of tools (now deprecated, see below). Once formatted to transfac
format (with RSAT convert-matrix), an input file format originally developed for
the TRANScriptio FACtor database, one can start the genome wide scan of
promoter regions (Wingender, 2008). The UTR regions were retrieved with
RSAT’s retrieve-sequence method, but can also be acquired using bedtools for
example(Nguyen et al., 2018). Prokaryotic transcription factors typically bind to
the noncoding regions starting upstream from the start codon of the fist gene
located in the operon. For SalmoNet 1, the first 5000 base pairs upstream from
the start codon were used, or smaller, should a gene sit in the overlapping region

upstream. (Browning & Busby, 2004)

For each PSSM optimal P-value thresholds can be determined using the
RSAT matrix-quality tool. This step, although not always necessary, can reduce
the amount of false positive hits when PSSMs were constructed from a few sites,

or have low information content otherwise. Finally, The RSAT matrix-scan

72



pattern matching tool synthesizes the results of the previous steps, and attempts
to match the PSSMs to the promoter sequences, assigning p-values to each hit.
Pattern matching is a computational process, during which predefined signatures
(the PSSMs in this example) are used to find putative copies of the signatures in
a target string (the promoter regions in this example) (Medina-Rivera et al., 2011;
Olbei, Kingsley, Korcsmaros, & Sudhakar, 2019; Turatsinze, Thomas-Chollier,

Defrance, & van Helden, 2008).

Orthologous information can also be used in the reconstruction of
regulatory networks. Regulogs are sets of coregulated genes with conserved
regulatory sequences across multiple organisms, which we can use to our
advantage when generating networks for non-model organisms (Rodionov,
2007; H. Yu et al., 2004). With SalmoNet 1, experimentally verified Escherichia
coli transcription factor - binding site pairs were downloaded from the
RegulonDB database and checked for orthologous proteins - both on the side of
the transcription factor and the target gene. If both are present, the downloaded
binding site is matched against the regulatory region of the target gene, and the
result is only included, if a hit is found. The presence of orthologous transcription
factors, target genes, and the matching binding sites are the three conditions for
regulog mapping, as introduced by H. Yu et al. (Cock et al., 2009; Rodionov,

2007; H. Yu et al., 2004).

2.1.2.4. Removal of pseudogenes

Salmonella strains when undergoing host-adaptation, tend to go
through a degree of genome degradation, leading to a loss of function in

numerous genes of importance (Bawn et al., 2020; Holt et al., 2009; Robert A
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Kingsley et al., 2013). The precise annotation, and subsequent removal of these
genes from our network is an important step, as otherwise we would keep false
positives in the data, leading to interactions that should not be there. To remove
all hypothetically disrupted coding DNA sequences (HDCs), the curation made

by Nuccio & Baumler was used to remove such entries (Nuccio & Baumler, 2014).

2.1.2.5. Data formats & Website

To make the interaction data widely accessible, an interactive website
was designed to showcase Salmonella interaction data: https://salmonet.org.
The website allows the users to query information from proteins of interest,
download these subgraphs directly, and look up orthologous proteins within
SalmoNet 1, and other resources.

The interaction data was made available in a custom .csv and .cys formats,
the latter being the input format for Cytoscape, a popular network visualization

analysis and platform.
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2.2. Aims

The aims of this project were the following:
e Assess the areas where the original SalmoNet database could be upgraded
and extended.
e Identify the required changes in methodology for the new version.
e Develop the second version of the SalmoNet database.

e Compare the information content of the two releases.
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2.3. Methods

The second half of this chapter describes the update resulting in the second
version of the database. All work detailed, including network reconstruction,
implementing changes in methodology, consequent analysis and interpretation

of the results were carried out by myself.

2.3.1. SalmoNet 2

2.3.1.1.

Motivations for the update

SalmoNet 1 contains a lot of information for Salmonella researchers,
and the database aimed to cover the most prevalent strains studied in the field.
By integrating regulatory, PPI, and enzyme-enzyme interaction information, the
networks can provide a more exhaustive view of signal transduction in the system
and could be used to highlight upstream regulators of genes involved in
establishing infection and metabolic functions. However, there are a number of
limitations to the resource, that I attempted to amend with the updated version.

First, the interaction database only contains information on proteins
that have interaction partners in at least one of the layers. As such, understudied
genes without any interactions captured can be left out of the study and bias the
usability of the networks to more studied nodes. While this is still a limitation of
the updated version, I reduced study bias in the networks to reflect the biological
system more accurately by increasing the coverage of proteins involved in the

networks through additional resources and quality control steps.

76



Secondly, the strains included in SalmoNet 1, while containing many
well studied organisms, were restricted to just the Salmonella enterica species,
and the enterica subspecies. With the update I wanted to make future studies
possible, where the users could investigate the effects of greater evolutionary
distance between the strains, made possible by the inclusion of more distantly
related pathogens, such as the species Salmonella bongori and the S. enterica
subspecies arizonae. This may provide further insight into the evolution of all
Salmonellae, by highlighting conserved pathways or interactions (Fookes et al.,
2011). Besides the interesting evolutionary questions made possible with the
inclusion of these more distant relatives, one of the main goals of the SalmoNet
project is to help researchers understand the very real problem of Salmonella
infection in humans. The first release of the database contained only two human-
adapted typhoidal strains, which I wanted to extend with other well understood
pathogens causing disease in humans. The addition of further human pathogens
could make more focussed research into host adaptation possible, as the most
prevalent extraintestinal strains are phylogenetically more distantly related to
each other, and the fact those included in SalmoNet 1 do not share host species
adds another layer of complexity and noise to the question and analysis.

From the release of SalmoNet 1, strain of particular recent interest was
omitted, S. Typhimurium D23580, associated with the invasive non-typhoidal
Salmonella (iNTS) disease. This serovar currently causes significant mortality in
many countries of sub-Saharan Africa, and as such is a subject of numerous
studies (Canals et al., 2019; Carden et al., 2017; Robert A Kingsley et al., 20009;
Owen et al., 2017; Singletary et al., 2016). The inclusion of D23580 could
certainly inform much of the currently ongoing research and help inform studies
on the specific differences arising in this novel pathogenic lineage.

77



Although the information in SalmoNet 1 can highlight elements under
evolutionary pressure, or indicate important interactions between regulators and
targets, especially the predicted interactions cannot be taken on face value alone
and should be used as a list of potential targets for molecular biology testing.
While this is still the case with the updated version of the database, I wanted to
increase the information content underlying interactions where this was possible,
to increase confidence in interactions as much as possible, and compare the
obtained results with published information to assess their reliability.

While including metabolic interactions was very important step, the
first release of this level of knowledge was incomplete. Due to a technical error,
SalmoNet 1 only contained enzyme-enzyme interactions derived from
irreversible reactions. I wanted to extend these to contain ones from reversible
reactions as well, and more importantly, use a now updated background model
as its basis. In their seminal work Seif et al. have developed strain specific
metabolic models for all of the Salmonella strains I planned on including and
more (Seif et al., 2018; Seif, Monk, Machado, Kavvas, & Palsson, 2019).

One of the key motivations for the new release of the database was the
Uniprot Proteome Redundancy project

(https://www.uniprot.org/help/proteome redundancy) that affected the utility

of SalmoNet 1. For various reasons, many primarily prokaryotic sequences in the
Uniprot database became redundant, or were assigned new accession numbers.
SalmoNet 1 was primarily UniProt based, and the Uniprot Proteome Redundancy
Project made parts of the SalmoNet 1 dataset progressively less user friendly as
time went by, as users had to look up deprecated IDs, and match them up with
new ones, which became more difficult going forwards. I therefore wanted to

improve the annotation data within the database, and add more strains, including
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other widely used lab strains, human pathogens and iNTS strains which were
requested from the members of the Salmonella community.

Although the main structure of the database remained the same, the underlying
workflow changed. Figure 11. details the sources of information and layers

contained in SalmoNet 2.
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Fig 11. Interaction sources and layers in SalmoNet 2.
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2.3.1.2.

Orthology mapping using the OMA database

In SalmoNet 2 I used the OMA (“Orthologous Matrix”) standalone
software to construct the orthologous relationships between the available
Salmonella strains from the OMA browser database. OMA is a large-scale
orthology database and toolkit, containing much of the information we need for
SalmoNet in one place, including the proteomes and genomes of the strains on

request, and important annotation data (Altenhoff et al., 2018).

The reason for this change was the ease of use, extra information provided by the
OMA database, and making it easier to generate minor and major releases for the
future. Relying on an external database for the maintenance of a seperate
database has advantages and disadvantages. The advantages are, an additional
level of quality control, and an extra resource to refer to when wanting to compare
or look for context on interaction data. Using a database that specialises on
orthologous data is especially useful, as OMA contains data on 1688 bacterial and
153 archaeal genomes (as of the August 2020 release), and as such any studies
wanting to look up how the results they obtained from SalmoNet compare to the
rest of the prokaryotes have an easier time doing so. The disadvantages are, that
databases are only as good as their maintenance, and if any of the pillars
supporting them (such as another database) stops being updated, it can hinder
the future of the resource (Merali & Giles, 2005). Seeing as OMA has gained
multiple releases since I started using it, I was confident in its future.

The OMA algorithm is similar to the previously employed InParanoid method, as
both use the pairwise amino acid sequence similarity to determine the

orthologous status of proteins from the compared species. Once all putative
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orthologs or stable pairs between all species or strains were found, OMA builds a
network from the pairwise orthologs. In this network, the authors defined “OMA
Groups” as cliques in the graph, where each node in that subgraph is connected
to all other nodes in the same subgraph, the resulting part containing groups in
which all the genes are connected to each other via pairwise orthologus
relationships. These OMA groups, where all genes are orthologous to each other,
were used as the template for orthologous relationships in SalmoNet 2. Although
the clique approach is quite stringent, as just the loss of one edge in the subgraph
can eject a gene from a group, the authors have implemented a tolerance
parameter to combat this, the resulting structures termed “quasi-cliques”
(Altenhoff et al., 2019; Train, Glover, Gonnet, Altenhoff, & Dessimoz, 2017; Zahn-
Zabal, Dessimoz, & Glover, 2020).

Orthology mapping is the most computationally intensive step of the SalmoNet
workflow. The OMA standalone software can save a lot of time and resources
here. First, the all-against-all Smith-Waterman sequence alignments can be
parallelised, both on single computers or high-performance clusters. Adding a
new strain or species in the future is also made easier, as OMA Standalone does
not require an all-against-all recomputing of the orthologous relationships in
these cases, as the previously used pre-computed results can be submitted, in
which case only the new genomes require computation time. What this means in
practice, that a requested strain can be added, generated and compared much
quicker and easier than in the previous version. In this iteration I ended up using
the strains already in OMA, since they included all the requested strains, but from

the perspective of database longevity it is an important step for the future.
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It is important to note, that the outputs of the orthology prediction tools can be
slightly different: according to a study comparing these methods the OMA
standalone output OMA groups lead generally to more precise, but also more
strict mapping, leading to less false positives (and true positives as well)
(Altenhoff et al. 2016). I did however get very similar, and in cases better recall
than with SalmoNet 1.0 (between 69-75% overlap with the 4140 proteins from E.
coli) using InParanoid. The following table contains the list of included strains in
SalmoNet 2, and the overlap of their respective orthologous proteins with

Escherichia coli.
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Strain Five letter Orthologous Percentage match
code protein

overlap with E.

coli
Salmonella enterica subsp. SALA4 3016 72.8%
Enterica serovar Agona str.
SL483
Salmonella enterica subsp. | SALAR 2859 69.1%
Arizonae serovar 62:z4,z23:-
Salmonella bongori NCTC  SALBC 2961 71.5%
12419
Salmonella enterica subsp. | SALCH 2987 721%
Enterica serovar
Choleraesuis str. SC-B67
Salmonella enterica subsp. | SALDC 2983 72.1%
Enterica serovar Dublin str.
CT 02021853
Salmonella enterica subsp. SALEP 3092 74.7%
Enterica serovar Enteritidis
str. P125109
Salmonella enterica subsp. SALG2 3075 74.3%
Enterica serovar Gallinarum
str. 287/91
Salmonella enterica subsp. | SALHS 73.5%
Enterica serovar Heidelberg 3044
str. SL476
Salmonella enterica subsp. SALNS 3033 73.3%
Enterica serovar Newport
str. SL254
Salmonella enterica subsp. | SALPK 3006 72.6%
Enterica serovar Paratyphi A
str. AKU 12601
Salmonella enterica subsp.  SALPA 2960 71.5%

Enterica serovar Paratyphi A
str. ATCC 9150
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Salmonella enterica subsp.  SALPB 3077 74.3%
Enterica serovar Paratyphi B
str. SPB7

Salmonella enterica subsp. | SALPC 2996 72.3%
Enterica serovar Paratyphi C
str. RKS4594

Salmonella enterica subsp. SALSV 2993 72.3%
Enterica serovar

Schwarzengrund str.

CVM19633

Salmonella enterica subsp. SALT1 3109 75.1%
Enterica serovar

Typhimurium str. 14028S

Salmonella enterica subsp. SALT4 3110 75.1%
Enterica serovar
Typhimurium str. ST4/74

Salmonella enterica subsp. SALTS 3107 75%
Enterica serovar
Typhimurium str. SL1344

Salmonella enterica subsp. SALTD 3095 74.8%
Enterica serovar
Typhimurium str. D23580

Salmonella enterica subsp. SALTY 3013 72.8%
Enterica serovar Typhi str.
CT18

Table 3: List of strains in SalmoNet 2, and the overlap of the orthologous proteins
with that of Escherichia coli, used as a measure of recall.

Using OMA is not only beneficial for the orthology mapping, it is also really
helpful for the re-annotation of proteins. As mentioned before, the first version
of SalmoNet was essentially UniProt based, with UniProt IDs serving as the
primary identifiers of the database. Because of the UniProt Redundancy Project,
we found ourselves in a state where not all proteins of all strains have a matching,
active UniProt ID. This is where the OMA IDs come in as our new primary

identifier.
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2.3.1.3.

2.3.1.4.

Re-construction of network layers

Once I recreated the orthologous relationships of the Salmonella
strains listed above, I began reconstructing the network layers. I followed the
protocols described above, developed for SalmoNet 1, and as described in (Métris
et al., 2017; Olbei et al., 2019). The workflow for the transcriptional regulatory

and protein-protein interaction layers remained largely the same.

Protein-Protein Interaction layer

For the protein-protein interactions (PPI), when sourcing orthologous
relationships based on E. coli information from IntAct, I have used the scoring
IntAct has developed for their experimental interactions to filter the incoming
data, to increase reliable coverage. This scoring contains the weighted cumulated
value assigned to each interaction based on detection method (e.g. biochemical,
biophysical, imaging, etc.) and interaction type (association, physical association,
etc.). In the past, for the first version, only one specific kind of detection method
psi-mi:”MI:0096”(pull down) was used to filter interactions. Most
experimentally validated interactions are still captured by this method, but the
novel scoring system allows us to select the higher quality ones based on
additional information and use interactions from other methodologies that
would have been left out otherwise, such as tandem affinity purification (psi-
mi:”MI:0676”’). Tandem affinity purification (TAP) is a molecular biology
method for discovering physical interactions of proteins, through
immunoprecipitation. In short, the proteins of interest are tagged, and the tagged
fusion proteins are expressed as normal in the cell, where they may interact freely

with their normal interacting partners. Following that the tagged proteins are
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separated using beads coated with an antibody that specifically binds the tag

antigen (Gavin et al., 2002; Gully, Moinier, Loiseau, & Bouveret, 2003).

The following paragraph is an excerpt from the intact website, describing how the

IntAct scores are attained:

Houw is the intact-miscore calculated?

The IntAct MI score is based on the manual annotation of every
instance of a binary interaction (A-B) within the IntAct database.
First all instances of the A-B interacting pair are clustered by
accession number. Each entry has been annotated using the PSI-CVs
and we use this information to score by the interaction detection
method and by the interaction type. Additionally we count the
number of publications the interaction has appeared in, up to a
maximum of 8. Each of these variables is normalised between 0-1.
The cumulative score is also normalised between 0-1 across the
entire IntAct database, with 1 representing an interaction in which
we have the highest confidence. From:

https://www.ebi.ac.uk/intact/pages/faq/faq.xhtml

This increased the amount of Escherichia coli interactions I could
create interologs from, by using interactions that had an MI score > 0.50. Figure
12 shows the frequency distribution of PSI-Miscores of the Escherichia coli data

in IntAct.
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Figure 12. Frequency of PSI-Miscores in the Escherichia coli IntAct data.

2.3.1.5. Transcriptional regulatory layer

The establishment of the transcriptional regulatory networks was done

in an identical way to SalmoNet 1 but with updated input information. Figure 13

shows the workflow for the construction of the regulatory layer.
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Figure 13. Workflow for the construction of the regulatory layer, updated
for the second version of SalmoNet. Orange boxes contain information sources,
green boxes contain actions, italic text refers to the necessary software.
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The information content of PSSMs used to carry out the genome-wide scans was

enhanced with novel binding sites published since the first version of the

database, from the available literature and new data uploaded to the CollecTF

repository. The sources of TFBS information can be seen in Table 4. RSAT's

consensus is no longer available on the web server, info-gibbs took its place,

which is the tool that was used to construct the matrices. Similarly, as previously,

RSAT retrieve-sequence was used to gather the putative promoter regions for the

genomes included in SalmoNet, and matrix-scan was used to establish putative

transcription factor - target gene (promoter region) pairs.

TF Strain Method PMID

AraC | Salmonella enterica serovar High-throughput | 24272778
Typhimurium 14028s (HT

ArcA Salmonella enterica serovar Low-throughput 21144897
Typhimurium 14028s (LT

Crp Salmonella enterica serovar Low-throughput 9068635
Typhimurium LT2 (LT

CueR | Salmonella enterica serovar Low-throughput 20807206
Typhimurium 14028s (LT)

FimY | Salmonella enterica serovar Low-throughput 24462182
Typhimurium LB5010 (LT

Fis Salmonella enterica serovar Low-throughput 16777370,
Typhimurium SF530 (LT 17483226

FruR Salmonella enterica serovar Low-throughput 8230205
Typhimurium LT2 (LT)

Fur Salmonella enterica serovar Low-throughput 22017966
Typhimurium 14028s (LT

Fur Salmonella enterica serovar Low-throughput 21573071
Typhimurium SL1344 (LT

GolS Salmonella enterica serovar Low-throughput 20807206
Typhimurium 14028s (LT)

HilA Salmonella enterica serovar High-throughput | 17483226
Typhimurium SL1344 (HT

HilC Salmonella enterica serovar High-throughput | 27601571
Typhimurium 14028s (HT

HilD Salmonella enterica serovar High-throughput | 27601571
Typhimurium 14028s (HT

HypT | Salmonella enterica serovar Low-throughput 30733296

Typhimurium 4/74

(LT
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Inf Salmonella enterica serovar Low-throughput 1511875
Typhimurium LT2 (LT)

InvF Salmonella enterica serovar Low-throughput 11296219,
Typhimurium SL1344, Salmonella (LT), High- 27601571
enterica serovar Typhimurium throughput (HT)
14028s

LeuO | Salmonella enterica serovar Low-throughput 12871947
Typhimurium LT2 (LT)

MetR | Salmonella enterica serovar Low-throughput 2676984,
Typhimurium SL1344 (LT 7896708,

1904437

MntR | Salmonella enterica serovar Low-throughput 15659669
Typhimurium 14028s (LT

OmpR | Salmonella enterica serovar Typhi Low-throughput | 23190111
Ty2 and Typhimurium (LT

PhoP | Salmonella enterica serovar Low-throughput 20661307,
Typhimurium LT2 (LT) 15703297

PmrA | Salmonella enterica serovar Low-throughput 23690578
Typhimurium 14028s (LT

RamA | Salmonella enterica serovar Low-throughput 18577510
Typhimurium 14028s (LT

RamR | Salmonella enterica serovar Low-throughput 22123696
Typhimurium 14028s (LT)

RcsB | Salmonella enterica serovar Low-throughput 20724387
Typhimurium 14028s (LT

RpoN | Salmonella enterica serovar Low-throughput 24007446
Typhimurium LT2 (LT

RstA Salmonella enterica serovar Low-throughput 18790861
Typhimurium 14028s (LT

RtsA Salmonella enterica serovar High-throughput | 27601571
Typhimurium 14028s (HT

RtsB Salmonella enterica serovar High-throughput | 27601571
Typhimurium 14028s (HT)

SlyA Salmonella enterica serovar Low-throughput 11882648,
Typhimurium 14028s (LT 15208313,

15813739

SoxS | Salmonella enterica serovar Low-throughput 19460824
Typhimurium 14028s (LT

SprB | Salmonella enterica serovar High-throughput | 27601571
Typhimurium 14028s (HT

SsrAB | Salmonella enterica serovar Low-throughput 15491370,
Typhimurium 14028s, Salmonella (LT), High- 20300643
enterica serovar Typhimurium throughput (HT)

SL1344
YncC | Salmonella enterica serovar Low-throughput 20713450

Typhimurium 14028s

(LT
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Table 4. List of transcription factors and literature sources with their binding site

information.

2.3.1.6.

2.3.1.7.

Metabolic layer

The largest changes in terms of data sources occurred to the metabolic
layer of the database. As mentioned previously, version one used the STM 1.0
model generated by Thiele et al., and an automatically generated model
(BMID000000141143) to generate the enzyme-enzyme interactions. While this
was a good starting point, a better resolution is available using novel data.
In two studies Seif et al. have generated genome-scale metabolic models for
Salmonella, in a second work extending these to describe the metabolism of O-
antigens (Seif et al., 2018, 2019). The models used the same STM 1.0 model as a
starting point, but updated it with new genes and reactions, and were made strain
specific, leading to the metabolic models 410 Salmonella strains belonging to 64
serovars.
I used these models as an input to the metabolic networks replacing STM1.0, as
the collection contained the GEMs of each of my strains. Due to a technical
problem during the development of SalmoNet 1, only enzymes connected by
biochemically irreversible reactions were included in the database. By including
enzyme-enzyme interactions from reversible reactions as well, I could include
more interactions, despite the number of nodes not increasing significantly in the

layer.

Removal of pseudogenes

To remove all hypothetically disrupted coding DNA sequences (HDCs),

the curation made by Nuccio & Baumler was used to remove such entries (Nuccio
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and Baumler 2014) and HDCs in S. Typhimurium D23580 were removed based
on previously published analyses (Canals et al., 2019; Robert A Kingsley et al.,

2009).

2.3.1.8. Phylogenetic trees, network dendrograms and validation of
regulatory layer

Core genome SNPs were determined with snippy (version: 4.3.6), with
the snippy-multi and snippy-core functions, ran on the Earlham Institute High
Performance Cluster. MegaX was used to build a newick tree file from the
resulting core genome SNP alignment. All trees were visualized using the ggtree
R language package (Kumar, Stecher, Li, Knyaz, & Tamura, 2018; G. Yu, Smith,
Zhu, Guan, & Lam, 2016).

The network dendrograms were generated using a Metropolis coupling Markov
Chain Monte Carlo (MC3) from the MrBayes (version: 3.2.4) software with 10
million generations, and 25% of the samples were discarded during the MrBayes
run. To accommodate the binary data, the data type was set to restriction, and no
substitution model was used (Huelsenbeck & Ronquist, 2001). This is identical
to the approach that was used to generate network based dendrograms for the
first version of SalmoNet.

For assessing the relevance of regulatory interactions, the overlap of differentially
expressed genes for all applicable regulators from the Supplementary Table 3 of
(Colgan et al., 2016) were compared with the targets of the same transcription
factors in SalmoNet 2. Hypergeometric test was done with the phyper function of
R, and the adjustment for multiple testing was carried out via the p.adjust

function in R with the Benjamini-Hochberg method.
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2.3.1.9. Data formats and website

Users can query data from the Browse menu. The pages of individual

proteins show their interactors, the layer the interactions occur, and the

orthologous proteins of the selected node. Links lead to the OMAbrowser website,

where further phylogenomic analysis can be done.

SalmoNet  Home Browse Download Cite  Contact  Tutorial
Name STM1135
Locus STM1135
OMA Identifier SALTY01088
Protein sequence
Strain Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
Interactions
Interactor | Interactor Layer
Source @
STM1620 | STM1135 | PMID:314556{ Metabolic
STM1183 | STM1135 | Lit EcoliIntAc| PPI STM1620 STM1183
STM0518 | STM1135 | PMID:314556{ Metabolic
STM3646 | STM1135 | PMID:314556 Metabolic
STM4183 | STM1135 | PMID:314556{ Metabolic STMO0518
STM4183
STM3646

Download table Download image B a

(Download may not work in Safari)

Orthologs of STM1135

SALDC02047

SALPA01592

SALPB02311

SALHS01158

SALPC02493

SALBC00971

Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853
Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150
Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7
Salmonella enterica subsp. enterica serovar Heidelberg str. SL476
Salmonella enterica subsp. enterica serovar Paratyphi C str. RKS4594

Salmonella bongori NCTC 12419

Figure 14. User interface of the SalmoNet website.
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2.4,

2.4.1.

Results

Comparison of SalmoNet 1 and SalmoNet 2

SalmoNet 2 increases the amount of available Salmonella strains to 20,
including more widely used lab-strains, such as S. Typhimurium 14028S or S.
Typhimurium 4/74, and more distantly related strains, from other subspecies
(Salmonella enterica subspecies arizonae (strain ATCC BAA-731 / CDC346-86 /
RSK2980)) or other species in the genus (Salmonella bongori (strain ATCC
43975 / DSM 13772 /| NCTC 12419)). Figure 15 shows the comparison in the size

of networks between SalmoNet 1 and SalmoNet 2.
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Mean network size in SalmoNet and SalmoNet2

15000 SALTY
SALTD _SALTS
SALT1 SALT4
SALPB ; SALEP-SALHS
g,ﬁtg\? SALA4+SALDC
saLG2:saLpc AT
SALPK ' SALPA
SALBC “SALCH
SALAR
10000
SALTY_S1
SALTS_S1
SALNS 1. SALEP_S1
SALHS_S44SALA4_S1
SALCH_s1,SALDC_S1
SALPA ST SALG2_S1
SALTI_S1
5000
0
- N
2 9]
S z
£ o
= =
S ©
. (45}
Version

Figure 15. Comparison of SalmoNet 2 network sizes with the first version.
The new version increases the information content of the networks, for all
included strains.

SalmoNet 2 has increased the information content of all SalmoNet 1 and
novel networks, especially that of the protein-protein interaction layer. By using
the IntAct MI Score as the quality filter, instead of selecting just one experimental
method, I could cover more of the interactome, without losing the quality of
interactions. The regulatory layer increased in the number of nodes it connects,

and the metabolic layer, at least the mean size of the layers became ever so slightly
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smaller, as a result of the more specific metabolic interaction mapping, and the
inclusion of strains with smaller metabolic capabilities captured by the metabolic

models. Figure 16. shows the size of the layers by interactions, and the number of

nodes contained in them.

a Mean layer size in SalmoNet and SalmoNet2 b Mean number of nodes in SalmoNet and SalmoNet2
SalmoNet SalmoNet2 SalmoNet SalmoNet2
2000
6000
1500
[72]
=
0 @
H© 4000
té 'g 1000
o 4
£
2000 500
0 0
o ) (<} = o fa o fa
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Figure 16. Comparing the number of interactions (a) and nodes (b) between
SalmoNet 1 and SalmoNet 2. The inclusion of the new nodes increased the size

of the protein-protein interaction layer the most.

The total number of interactions increased from 81,514 to 270215, due to the
expansion of the PPI layer, and the increase in the number of strains included.
The composition of the consensus network, comprised of shared interactions
amongst all strains included in the database slightly changed from the first
version of SalmoNet. 24.4% of regulatory interactions (up from 16%), 68.1% of
PPI interactions (down from 72%), and 51.8% (down from 69%) of metabolic

interactions were shared amongst all strains, forming the core network of

Salmonella interactions.
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I built a core genome SNP based tree to determine the phylogenetic relationships
of the included Salmonella strains, under the assumption that the strains have
an approximately equal rate of mutation. The results are in accordance with
previously published phylogenies, such as the one in (Branchu et al. 2018),
although the latter publication only concerns subspecies I serovars. There is no
clear clustering of the pathovars in the phylogenetic tree. This is consistent with
observations in previous works in the literature, the extraintestinal and
gastrointestinal strains could not be distinguished based on genomic
dendrograms (Timme et al.,, 2013). This observation is consistent with the
hypothesis that extraintestinal, host adapted strains emerge independently from
gastrointestinal serovars, through a convergent evolutionary process,
accompanied by genome degradation in important functions (Nuccio & Baumler,
2014; Timme et al., 2013). The structure of the PPI, regulatory and metabolic
network dendrograms very closely resembles their phylogenetic relationships,
with the notable exception of S. Dublin, that does not cluster together with S.
Enteritidis and S. Gallinarum in the network structure-based strains. Figure 17

shows the phylogenetic tree and network structure based dendrograms.
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Figure 17 Core genome SNP based phylogenetic tree, and hierarchical
classification of network layers. Extraintestinal serovars labelled with red,
gastrointestinal serovars with blue labels. A., Neighbour-joining tree from core
genome SNPs of the strains. B-D., Hierarchical classification trees based on
matrix representation of protein-protein, requlatory and metabolic networks.

To resolve the largest bottleneck in the usability of the database caused by the
unfamiliar nature of network resources to most molecular microbiologists, I have
written detailed step-by-step tutorials on how to import and analyse network
data using Cytoscape, available from the SalmoNet 2 website

(https://salmonet.org).

To help computational biologists access network information from SalmoNet 2,

we now provide networks in the community standard PSI-MITAB format as well,
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2.4.2.

which contains a strictly regulated vocabulary for interaction data, helping
interoperability between network resources, and is a prerequisite for the resource
to be included in the PSICQUIC ecosystem as well. We also plan on sharing the
novel interaction resources in The Network Data Exchange (NDEx) repository
(Pratt et al., 2015). The latter is an open-source community driven framework,
where network information can be stored, shared and queried directly from
Cytoscape, solving one of the larger bottlenecks in the accessibility of our data

(Pillich, Chen, Rynkov, Welker, & Pratt, 2017; Pratt et al., 2017, 2015).

Assessing the reliability of SalmoNet 2 interactions using
experimental information

To ascertain the validity of regulatory interactions included in
SalmoNet 2 in an unsupervised analysis, I compared the overlap of TF-TG
associations with systematic regulatory knockouts from the SalComRegulon
database (Colgan et al., 2016). In this work, the authors have generated 18
regulatory knockouts of virulence-related global regulatory systems in S.
Typhimurium 4/74. Since the S. Typhimurium 4/74 strain is one of the newly
added strains included in SalmoNet 2, it is an appropriate candidate to test the
relevance of the regulatory interactions predicted for it, using an experimental
dataset that was not used to create the interaction networks.

Using the lists of differentially expressed genes provided for each
knocked out regulator shared by the authors of SalComRegulon in the
supplementary materials of their paper, I performed a hypergeometric test for

every transcription factor, to see if there is a significant association between the
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genes differentially expressed following a regulator knockout, and the genes
targeted by the same transcription factor in SalmoNet 2. Figure 18 shows the
rationale for this comparison.

SalComRegulon SalmoNet 2

TF, TF,

gene,

test for
significance

Figure 18. Schematic overlap of differentially expressed genes from
regulatory knockouts and predicted SalmoNet 2 regulatory interactions. By
comparing the sets of differentially expressed genes (as examples both
significantly downregulated in blue and upregulated in red) following
knockouts of infection relevant regulators with the predicted targets of each of
the kocked out regulators in SalmoNet 2, I was able to measure whether the

predicted interactions capture biologically relevant targets.

It is important to keep in mind that regulatory knockouts will not only
affect the genes they regulate directly, in the case of multi-step regulatory
mechanisms they might affect the expression of genes further downstream, as
shown in the example on Figure 18. The implication of this is that the performed

test does not test for the precision or coverage of TF-TG binding directly, but
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rather tests whether there exists a statistically significant relationship between
targets of regulatory interactions implemented in SalmoNet 2 and all
downstream affected genes of the SalComRegulon regulatory knockouts, under
the assumption that a portion of which the tested transcription factors can
regulate directly.

Out of the 18 knocked out regulators in SalComRegulon, the majority
were included in SalmoNet 2 (the HilD regulon was determined in three different
culture conditions). The regulators Dam, HilE, RpoS, RpoE, Hfq were not tested,
as binding information from these regulators was not included in SalmoNet 2.
Dam and Hfq regulate genes through post-transcriptional control, and as such
were outside the scope of SalmoNet 2 (Lopez-Garrido & Casadests, 2010; Vogel
& Luisi, 2011). RpoS and RpoE are alternative sigma-factors, while HilE interacts
with HilD to repress hilA transcription (Baxter, Fahlen, Wilson, & Jones, 2003;
Fang et al., 1992; Humphreys, Stevenson, Bacon, Weinhardt, & Roberts, 1999).
The addition of the necessary information regarding these regulators should be
considered in the next release of the database.

Following p-value adjustment with the Benjamini-Hochberg method

for multiple testing, the following associations were found, listed in table 5.

Regulator Adjusted p-value

fliz 1.16 x 10

fur 3.09 x 10™*

hilA 1.29 x 10

hilC 1.92 x 10

hilD (early stgt!onary phase 3.89 x 10
conditions)

hilD (late expgpentlal phase 308 x 10
conditions)

hilD (SPI-2 inducing conditions) 1.56 x 10

ompR 5.60 x 10"

phoBR 6.00 x 10®

phoPQ 518 x 10™
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slyA 1.15 x 10"
SSrA 2.94 x 10
ssrB 1.26 x 107
ssrAB 1.84 x 10%®

Table 5. Significance of the overlap between targets of transcription
factors as listed in SalmoNet 2, and differentially expressed genes following the
knockout of each individual transcription factor. Significance was determined
using a hypergeometric test, and the Benjamini-Hochberg method was used to

correct for multiple testing.

Using a significance cut-off of adjusted p-value <= 0.05, 9 out of 14 tests
have shown a significant relationship between the compared sets. This implies
that despite some of the differentially expressed genes measured following a
regulatory knockout might not be directly regulated by the knocked-out
transcription factor, the regulatory layer in SalmoNet 2 is able to capture
biologically relevant interactions using the regulatory prediction pipeline for
most of the regulators. Where the significance cutoff was not reached, it was due
to a lack or too small of an overlap between target genes and DEGs, indicating
regulators where further binding site information should be incorporated in the
future to enhance the effectiveness of the regulatory pipeline.

To assess the specificity of the individual transcription factors, I
compared the overlaps of their individual target genes in regulatory interaction
shared by all involved strains. In the SalmoNet 2 network model, the individual
transcription factors regulate a distinct set of genes, with relatively small
overlaps. Figure 19 shows the amount of overlapping target genes for the ten
highest degree transcription factors, and the enriched biological processes of the

shared target genes of the Fis and Crp regulons, containing the most shared
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targets across all comparisons. Both Fis and Crp function as global regulators of
transcription, involved in energy metabolism, amino acid and nucleotide
biosynthesis, nutrient transport, and many other housekeeping functions, and
the enriched terms of their shared target genes reflect this (El1 Mouali et al., 2018;

Rosu et al., 2007; H. Wang, Liu, Wang, & Wang, 2013).
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Figure 19: Evaluating the target specificity of transcription factors in SalmoNet

2. A: Overlap of target genes of the ten highest degree transcription factors in

regulatory interactions shared by all strains in SalmoNet 2. The vertical bars

on the top of the UpSet plot signify the size of the intersection between the

104



2.4.3.

individual transcription factors, the horizontal bars show the size of the sets (i.e.
the equivalent of a circle on a Venn-diagram), while the dots connected in the
matrix show the specific subset. Transcription factor — target gene relationships
are specific in SalmoNet 2, with only a few overlaps in the core regulatory
mechanisms. B: Enriched terms in the shared target genes of the Fis and Crp
transcription factors. The enriched Gene Ontology biological process terms
capture many of the roles Fis and Crp are known to regulate, such as transport
of sugars and catabolic functions. Figures generated with UpSetR and Revigo

[Supek et al 2011, Conway et al 2017]

Key predictions of SalmoNet 2 in the literature

Since SalmoNet 2 contains predicted regulatory interactions based on
genome-wide scans of putative regulatory regions, data published in the
literature that was not used in the construction of the database can serve as an
independent judge on the quality of some of these predictions. Since the
generation of these interactions, a number of studies have been published, where
regulatory interactions also predicted in SalmoNet 2 were confirmed
experimentally.

For example, in their study, Romero-Gonzalez and colleagues have
studied the effects of regulators downstream from the main SPI-1 regulators such
as HilD and HilA. One of these regulators is InvF, a transcription factor usually
bound to SicA, a T3SS associated chaperone. The two proteins regulate their
cognate genes as a complex. InvF can bind in vitro to the promoter region of
sopB, independently of SicA, although the transcriptional activation of sopB still

requires bonth InvF and SicA (Romero-Gonzalez et al., 2020). The latter
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interaction, the regulation of sopB by InvF has also been predicted by the
SalmoNet 2 pipeline, in 18 out of the 20 strains, where the upstream regulatory
regions of the gene sopB are essentially identical. In the two strains where the
interaction has not been predicted, S. Typhimurium strain D23580 and S.
Choleraesuis strain SC-B67 the upstream regulatory region is truncated and the
upstream gene pipD sits much closer to the sopB start site in their genomes.
Further work is required to elucidate what caused this rearrangement in these
two invasive strains, and whether it affects InvF binding.

In another example Choi and Groisman investigated the effects of the
horizontally acquired regulator SsrB, and its effects on the PhoP/PhoQ system
and a virulence gene called ugtL. They established that SsrB is required to
activate the ancestral regulatory PhoP/PhoQ system responsible for the
regulation of a large proportion of the Salmonella genes, and that SsrB binding
to ugtL is required for the activation of PhoP/PhoQ. Once again, the SalmoNet 2
pipeline predicted the SsrB — ugtL interaction in 18 out of 20 strains. The
interaction is missing in S. Heidelberg strain SL476, as it is lacking the
orthologous protein for UgtL, and it is missing from Salmonella bongori, which,
as Choi and Groisman have also demonstrated, lacks the gene ssrB and the SsrB
binding site in the ugtL promoter. This fascinating study also found, that the
regulator SsrB promotes the transcription of phoP by binding to the coding
region of the upstream gene (purB) of the phoP promoter (Choi & Groisman,
2020). As this was outside of the scope of the genome wide scans used to establish
putative regulatory interactions in SalmoNet 2, the interaction is not present in
the database.

In another example Lim et al. have been studying the iroBCDEN

operon, and verified that a binding site of the transcription factor Fur lies within

106



2.5.

the promoter region of the iroBCDE operon (Lim et al., 2020). The interaction is
once again present in all but two SalmoNet 2 strains. The lack of the interactions
can be explained by the fact that the orthologous proteins are missing from
Salmonella bongori, and in the case of S. Typhi, a small gene of unknown
function, STY2889 is present in the regulatory region of iroBCDE. However,
SalmoNet 2 does predict a Fur binding site in the upstream regulatory region of
the introgressing STY2889. More work is required to determine whether this

small gene could be coregulated with iroBCDE.

Discussion

Multi-layered network databases collate information from various
sources, and are useful knowledgebases of interaction information. With
SalmoNet 2 including additional important human pathogenic Salmonella
strains, both typhoidal and non-typhoidal, more targeted analysis is now possible
focusing on human disease. Since most of the included extraintestinal serovars
have adapted to different host species, eliminating the differences from the
acclimation of these pathogens to their specific microenvironments could help
specialists target the human-disease specific interactions and subgraphs.

By greatly increasing the number of available strains compared to
SalmoNet 1, SalmoNet 2 now extends beyond subspecies 1., and includes
information on members of another subspecies (subspecies arizonae), or an
entirely different species (Salmonella bongori). The larger evolutionary distance

between this additional subspecies and species can further help Salmonella
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researchers study the evolutionary history of the genus as as whole, and contrast
the differences to the more studied human pathogenic strains (Fookes et al., 2011;
Park & Andam, 2020).

The comparison of differentially expressed gens from SalComRegulon
and transcription factor target genes from SalmoNet 2 highlights that the
majority of the tested transcription factors capture biologically relevant target
genes, and where they do not, clearly points out areas if improvement, where
additional data should be included in the next iteration of the SalmoNet database
for the affected regulators (Colgan et al., 2016). Additionally, I found
experimental evidence for multiple regulatory interactions from the literature
that have been published since the generation of the interaction data, such as the
examples from the papers describing the interactions of InvF with sopB or the
regulation of ugtL via SsrB (Choi & Groisman, 2020; Romero-Gonzalez et al.,

2020).

Developing a more tight-knit structure between SalmoNet and other available
large-scale evolutionary genomics tools such as OMA, there is increased potential
to generate interaction networks for specific Salmonella strains on request, or
build similar data resources for other non-model organisms, similarly as to how
it is described in the work above. With the change to OMA as the backbone of
SalmoNet interactions, there is also a great untapped potential to study the
evolutionary history of proteins, and potentially even interactions. Although it
was largely outside the scope of this thesis, I did end up using OMA in a research
article we published, where we mapped the interaction differences of two
paralogous proteins affecting autophagy, and the OMA database provided the
missing information, pinpointing the specific genome duplication event giving
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rise to the studied proteins (Demeter et al., 2020). While this specific example is
not directly applicable to prokaryotes, the on-demand availability of orthologous
proteins from outside of our studied organism or clade could make larger scope
comparisons possible. The programmatic access interfaces implemented into
OMA make these integrated analyses reproducible, and scalable as well (Kaleb,

Warwick Vesztrocy, Altenhoff, & Dessimoz, 2019).

The availability of strain specific metabolic models, and the increased specificity
of PPI data, although still reliant on orthology mapping, increases the resolution
of the resulting network models, and the more interwoven interaction layers get,
the more valuable the information content of the database gets. Although there
are other resources containing Salmonella interaction data, such as STRING for
PPI interactions, RegPrecise for regulatory interactions, or BioCyc for metabolic
interactions, no other resource combines the listed connection types besides

SalmoNet (Caspi et al., 2019; Novichkov et al., 2013; Szklarczyk et al., 2019).

To increase the usability and interoperability of the generated interaction
information, I have generated the data files in the PSI-MITAB format as well,
quickly becoming a standard of biological network information (Samuel Kerrien
et al., 2007; Perfetto et al., 2019). Beyond their raw information content,
databases are as good as their usability and their availability, and the potential
for SalmoNet data to be found and utilised in as many ways as possible is crucial

for this effort to be useful for the scientific community (Merali & Giles, 2005).
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2.5.1.

Future research directions

The integration of SalmoNet into the OMA ecosystem makes the
possibility of genome-to-network pipelines feasible, and meaningful to generate
in the future. In the past, an addition of a novel strain would have meant the re-
computation of the all-against-all orthology mapping, which took weeks on the
Earlham Institute High Performance Cluster. The OMA standalone software cuts
down on this large computational bottleneck, by only requiring us to compute the
relationships of the novel genome. Although only those genomes were included
in this update that were already carried by OMA, the potential to generate
interaction networks on request, or to map Salmonella breakouts, not only
through genomics, but comparative network studies, could be a useful tool in the
future for Salmonella studies. While I have made every necessary precaution to
remove false-positive interactions from the resources, another argument for a
further increase in the amount of networks - to the scale of hundreds or
thousands - would be, that it would possibly give more statistical, and lineage

based backing to interactions.

In addition, the possibility of generating strain specific networks to characterize
the samples of a specific outbreak or epidemic strain could give us further
insights into the adaptation of Salmonella to specific environments and stressors.
In the future, statistics based methods could be involved when trying to
categorise Salmonella serovars into gastrointestinal or invasive phenotypes, such
as the machine learning assisted DeltaBS applied by Wheeler et al., that was able
to categorise the recently emerged iNTS strains as invasive purely based on

sequence data, or the approach used by Langridge et al, that assigns invasiveness
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to the individual serovars, by what percentage of the samples were isolated from
the blood, compared to the total amount of samples (Langridge, Nair, & Wain,

2009; Wheeler, Barquist, Kingsley, & Gardner, 2016).

To increase the reach of the resource as much as possible, the goal of future minor
and major updates should be to integrate the resource in the PSICQUIC web
service. The implementation of the PSI-MITAB interaction format already serves
this goal. The advantage of this integration would be, that potential users do not
have to query and process SalmoNet data from the website directly, but it would
be accessible directly from the PSICQUIC service as well, in combination with
any other compliant data, similarly to NDEXx, increasing accessibility (del-Toro et

al., 2013; Perfetto et al., 2019).

As mentioned above, the potential value and information content of each
interaction increases by their potential interconnections between layer types. As
such, in the future involving other information as additional layers could be an
important step to increase the specificity and usability of the interaction resource.
One such layer is the addition of protein complex information, such as the one
found in the Complex Portal (Meldal et al., 2015). Interactions between proteins
often occur in complexes, and the potential to include this information could lead

to novel modelling approaches, and insights into the studied systems as a whole.

To understand gene regulation in more detail, post-transcriptional regulatory
interactions could be included. The presence of small RNAs in Salmonella has
been described previously, and many contemporary interaction databases carry

and model with this kind of data - albeit not yet in interaction databases involving
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prokaryotes (Kroger et al., 2012) (Tiirei et al., 2016). Including this interaction
layer is one of the most important tasks for the future releases of SalmoNet.
Recently, there have been novel results of post-transcriptional modifications of
proteins as well, which could be a fruitful avenue in the future (Macek et al.,

2019).

Network biology methods to

study evolution and adaptation

Network resources

The underlying assumption of network analysis is that by putting
relationships to the individual interactors, we notice emergent patterns that
might better explain their behaviour than studying them in a vacuum or different
context. Hubs, for example, are such properties — without putting the interaction
data to genes or proteins, we would not know of their promiscuous nature, and
potentially heightened biological relevance. This is the case on any level we aim
to analyse networks, be they molecular or supra-individual networks (Miele,
Matias, Robin, & Dray, 2019). The availability of networks depends on the
subject, but in molecular biology, there are more and more repositories at our
disposal where we can query interactions from. These databases collect and
curate interaction data, often from individual research articles or from other

similar data resources.
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Most things that can be represented as matrices can be represented as networks
as well - which is why the most important step in network analysis is determining
whether networks are an appropriate tool for the study of the particular question
at hand, and one would not be more successful applying clustering methods, or
principal component analysis for example. While networks can be, for the most
part, intuitive, there are elements in their behaviour that are the opposite of that
— all interactions between two nodes are not only considered in the context of this
pair of interactors, but also the context of the global network as a whole (Miele et
al. 2019; Barabési et al. 2011; Barabasi and Oltvai 2004). This can become even
more complex when one starts comparing networks, to study evolutionary
processes, and has to assess whether an interaction is important on a local (i.e.
between a pair of interactors), global (i.e. on the scale of the entire network) and

an evolutionary (i.e. taking all compared networks into account) scale.

This chapter describes the theoretical background of network comparison
methods used in this thesis, and their applications. The first subject is a large-
scale study on the regulatory evolution of cichlid fish species, where I first
developed and applied my network rewiring approaches. Although the subject of
the analysis was different from what is the main topic of my PhD research, the
approaches developed for this work laid the foundation of my Salmonella studies.
The second half of the results section describes how network rewiring can be used
to study SalmoNet 2 networks of typhoidal and gastrointestinal Salmonella

strains for hypothesis generation.
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3.2. Aims

The aims of this project were the following;:

e Identify approaches in the literature applicable to the analysis of
molecular interaction networks.

e Application of one of these approaches (DyNet rewiring) on a study
involving the comparison of gene regulatory networks of East African
cichlid fish species.

e Highlight how network rewiring can be applied to interaction networks of
typhoidal and non-typhoidal Salmonella strains, and what downstream

analyses can be applied to help understanding the results of rewiring.
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3.3.1.

3.3.1.1.

3.3. Network comparisons

Network rewiring

The increasing availability of incredible amounts of biological data
enables us to build interaction networks such as the ones detailed in Chapter 2 of
this thesis. Using these resources, one can formulate questions that study how
the parts of these systems work together or differ in areas. These interaction
networks are difficult to compare naively due to their complexity. Thankfully,
there are a group of methods aimed at solving this problem (Han and Goetz
2019). The methodology I used most extensively in my PhD research belongs to
a group of approaches often categorised as “network rewiring” methods. Network
rewiring is a broad term used to describe many approaches aimed at quantifying

changes between interaction networks.

The specific tool I used most often is a third-party module for Cytoscape called
“DyNet” (Goenawan et al., 2016). The reason I chose this was its ease of use
thanks to its integration into the Cytoscape ecosystem, and since it was an

appropriate tool for the interaction networks I analysed.

The Dynet tool

DyNet identifies the most dynamically changing, or most rewired
neighbourhoods between the compared networks (Goenawan et al.,, 2016;
Salamon, Goenawan, & Lynn, 2018). The tool does this, by assigning a score, the

D, rewiring score to each node, that effectively sums up the quantitative (i.e. how

115



many interactors does the node have) and qualitative (i.e. what nodes is it
interacting with) differences between the same nodes across different networks,
so even a node that has the same amount of interactors in two networks, but some
of those interactors are different proteins entirely, will be assigned a rewiring

score.

The rewiring score is modelled as a weighted node adjacency matrix, where
instead of indicating the presence or absence of an edge with binary o-1 values,
one can supply any number, used to represent the weight or importance of that
edge, through some predefined process, like categorising them based on
interaction detection methods. In this model this weighted matrix is extended by
a third dimension, S. This describes the state-space, where states represent the
compared interaction networks, or in other words, every state has its own
weighted adjacency matrix. The rewiring score is calculated by first calculating
the mean of non-zero edge weights of all states (if using weighted data) and
following that standardizing the data through dividing by the previously
calculated means. Following that the centroids for each node over all states will
be calculated, by taking the average of the sum of standardized weights. The
Euclidean distance from the centroid is calculated for each node by taking the
value for the standardizes weights minus centroids, for each interaction (i.e. the
row in the adjacency matrix), and calculating the square root of the sum of their
squares. The final rewiring value of a node is calculated by dividing the sum of
distances with n-1, where n is the number of compared states.

Using these terms, the formula for the Dn-score is the following;:

™, [distance(V;, centroid)]?

n—1

D,, — score =
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Where Vi is each vector representing a node in each network (the compared

nodes), and n is the number of networks (states) being analysed. If using edge

weights, normalization is performed before, by dividing by the average (of non-

zero) values across all networks (Salamon et al. 2018).

Figure 20 shows a worked example included from the supplementary materials

of (Goenawan et al., 2016).

A worked example of DyNet’s dynamic node rewiring score(Dn) for a single node (Node A) within a five node (A,B,C,D,E) undirected dynamic
network over five network states. The dynamic network is represented as five weighted adjacency matrices, one per state. The absence (zero
value) of edges and nodes across states is also represented. Entries are first standardized by the mean across states (blue matrix) and then the
variance in the distance of the node compared to its centroid (green matrix) is calculated.

Raw Data Standardized Data Rewiring of Node A
Distance (Euclidean) from
S Weighted Adjancency Matrices Representing Standardized Weights (divided by mean values in Calculation of Euciidean Distance from Node A to Centroid (green matrix) Nmu: Cznlrold)hr
Dynamic Network with S states® blue matrix) for each state each State
(0's represent edges not present in that state o
missing nodes)
State 1 A 8 C D E State 1 A B C D E A B C D E A B C D E d(Node A State 1,Centroid)
A 9.91 2.37 0.00 2.63 7.81 A 180 165 000 046 099 A 100 105 -0.40 -014 039 A 099 110 016 002 015 156
B 237 3.56 258 0.74 0.00 B 165 0.67 0.57 0.20 0.00
c 0.00 258 0.00 6.89 877 c 0.00 057 0.00 124 2.08
[ 2,63 0.74 6.89 2.01 0.00 [ 046 020 1.24 026 0.00
£ 7.81 0.00 877 0.00 384 E 0.99 0.00 2.08 0.00 0.97
State 2 A B C D E State2 A B C D E A B C D E A B C D E d(Node A State 2,Centroid)
A 114 0.00 499 0.00 £29 A 021 0.00 0.67 0.00 1.05 A -059 060 027 -060 045 3 035 036 0.07 036 021 116
B 0.00 1.46 2.24 0.77 159 B 0.00 027 0.50 021 1.79
c 4.99 2.24 567 6.01 2.00 c 0.67 050 148 1.08 0.48
D 0.00 0.77 6.01 0.00 192 [ 0.00 021 1.08 0.00 0.37
£ 829 159 2.00 1.92 221 E 105 1.79 048 037 056
State3 A B C D E State3 A B C D E A B [4 D E A B c D E d(Node A State 3,Centroid)
A 0.00 0.00 0.00 0.00 0.00 A 0.00 0.00 0.00 0.00 0.00 A -080 -0.60 -0.40 -0.60 -0.60 A 064 036 016 036 036 137
B 0.00 4.15 930 9.70 0.39 B 0.00 0.78 2.07 264 0.44
c 0.00 9.30 4.41 485 185 c 0.00 207 115 0.87 0.44
] 0.00 970 4.85 9.20 672 D 000 264 0.87 121 1.29
£ 0.00 039 185 6.72 184 E 0.00 0.44 0.44 129 046
Stated A B C D E Stated A B C D E B C D E A B C D E d(Node A State 4,Centroid)
A 800 175 0.00 8.12 7.50 A 145 122 000 142 095 A 065 062 -0.40 082 035 3 042 038 016 068 012 133
B 175 840 0.00 0.34 068 B 122 157 000 0.09 077
c 0.00 0.00 0.00 0.00 0.00 c 0.00 0.00 0.00 0.00 0.00
] 8.12 0.34 0.00 9.78 7.01 D 142 009 000 1.29 134
3 7.50 0.68 0.00 7.01 7.97 E 095 077 0.00 134 201
State § A 8 C D E States A B C D E A B C D E A B C D E d(Node A State 5,Centroid)
A 3.01 0.19 9.96 6.35 0.00 A 055 013 133 111 0.00 A -025 -047 093 051 -060 I3 006 022 087 026 036 133
B 0.19 9.10 3.86 6.85 0.00 B 013 171 0.86 186 0.00
c 9.96 3.86 1.45 4.49 0.00 c 133 086 038 0.81 0.00
D 6.35 6.85 4.49 9.41 0.00 [ 111 186 081 1.24 0.00
3 0.00 0.00 0.00 0.00 0.00 E 0.00 0.00 0.00 0.00 0.00
N
Mean of non-zero edge weights over all states ds of each nos sstat =1 d(xi,c
ge weig! Centroids of each node across states Dn(M(p,Q,5))) = Zi d(x,0)
A B C D E A B C D E N-1
A 552 144 7.48 5.70 7.87 A 0.80 0.60 0.40 0.60 0.60
B 144 533 450 3.68 089 0.60 1.00 0.80 60
c 7.48 450 3.84 556 4.21 c 0.40 0.80 0.60 60
D 5.70 3.68 556 7.60 5.22 D 0.60 1.00 0.80 0.80 0.60 iri
E 7.87 0.89 421 5.22 397 3 0.60 0.60 0.60 0.60 0.80 Revnﬂng Score (Dn) of Node A 1.69
*this is an undirected graph/i which yields a matrix but a directed network may be alsobya Y matrix

Figure 20. Worked example demonstrating the steps to calculate the rewiring
value using DyNet from (Goenawan et al., 2016). With permission of the rights
holder, Oxford University Press.
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3.4. Evolution of regulatory networks
associated with traits under selection

in East African cichlid species

In this work, my colleagues and I were studying how gene regulatory
changes can lead to changes in anatomy and phenotype of East African cichlid
fish species. The resulting findings highlighted how network rewiring approaches
can be used to study regulatory evolution in non-model organisms, one that I
applied in my studies related to Salmonella (while not a vertebrate, similarly a
non-model organism). My role in the work was to carry the out network rewiring

analysis, and help in the interpretation of its results.

Below is the summary of the background, approaches and main results of the
work, necessary to understand the importance and value of the network rewiring
analysis I applied. This half of the chapter is based on the peer-reviewed article
published in Genome Biology, which I am a co-author of (T. K. Mehta et al.,
2021). The detailed description of the study can be found in the paper. While I
cannot claim authorship over all parts of the project, as this has been an over five
year long endeavour altogether, it was important to include in this thesis, as the
parts I worked on fundamentally shaped my PhD research. Figure 21 shows the
main steps and approaches used in this project. My role in this project was to
measure and interpret regulatory network rewiring using DyNet in the generated

networks.
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Figure 21. Graphical abstract of the work on the evolution of regulatory networks associated with traits under selection in
East African cichlid species. The RNA-Seq data of five cichlid fish species was used to generate modules of co-expressing genes
using the Arboretum software. Additional data was integrated into the resulting expression modules, including ChIP-Seq, and
Gene Ontology data. Multiple approaches (RSAT, FIMO) were used to scan the UTR regions of coding genes for putative
transcription factor binding sites, using binding signature data from multiple databases. The resulting gene regulatory
networks were analysed with three distinct approaches aimed at quantifying network rewiring. Candidate targets containing

rewired, modified transcription factor binding sites were tested experimentally. Image modified, from (Brawand et al. 2014),
licensed under CC BY-NC-SA 3.0.
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3.4.1.

Background

Among all vertebrate species, ray finned fishes are among the largest of
any group, with East African cichlid species displaying one of the most striking
examples of adaptive radiation (Brawand et al., 2014). Over 1500 species exist
today in the Great Lakes of East Africa (Lake Tanganyika, Lake Victoria, and Lake
Malawi), which evolved in a relatively short amount of time. 250-500 species
formed in each lake, taking between 15,000-100,000 years in the case of Lake
Victoria, less than 5 million years for Lake Malawi, and approximately 10-12
million years for Lake Tanganyika, from just a few ancestral lineages of cichlid

fish species.

These novel species inhabit a wide range of ecotypes, exhibit a range of varying
behaviours and morphology. Sexual selection, indicated by colourful phenotypes
and elaborate bower building, and their ecological roles in terms of foraging
behaviour both converge on the cichlid visual systems, that have trichromatic
vision, with eight opsin genes. Altogether, the evolution of these species has been
shaped by cycles of population expansions, and shrinkage, as their environment
changed over the time (Brawand et al., 2014; T. K. Mehta et al., 2021). On an
evolutionary timescale, the fastest rewiring interaction layer is the gene
regulatory network (GRN) one (Shou et al., 2011). Mutations accumulating in the
cis-regulatory elements of genes (transcription factor binding sites of promoters
and enhancers), or trans regulatory changes leading to the levels of a regulator
can lead to phenotypic differences, stemming from GRN rewiring events.

As such, the study aimed at researching if evolutionary regulatory changes on the

level of whole gene regulatory networks can lead to phenotypic variation and
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3.4.2.

3.4.2.1.

3.4.2.2.

facilitate adaptation to a variety of ecological niches found in the great lakes of

East Africa, and the surrounding rivers.

Methods

Co-expression modules

The Arboretum software generates gene regulatory modules for
multiple species using expression data, and gene phylogenies. Modules of co-
expressed genes were identified using the software in five cichlid species
(Pundamilia nyererei (Pn), Maylandia zebra (Mz), Astatotilapia burtoni (Ab),
Neloamprologus brichardi (Nb) and Oreochromis niloticus (On)) (Roy et al.,
2013). Co-expression modules were generated for six tissues (brain, eye, heart,
kidney, muscle, testis), from RNA isolated from adult animals. As a result, 18,799

orthogroups including 69,989 genes and 34,220 1-to-1 orthologs were identified.

Gene regulatory networks

To establish putative transcription factor — target gene interactions,
transcription factor binding site information was retrieved from the JASPAR
database, and other similar resources such as HOCOMOCO or UniPROBE
(Hume, Barrera, Gisselbrecht, & Bulyk, 2015; Khan et al., 2018; Kulakovskiy et
al., 2013). ChIP-seq peaks were called from experiments of human and mouse
transcription factors, retrieved from GTRD (Yevshin, Sharipov, Valeev, Kel, &
Kolpakov, 2017). Similarly, as in the case of SalmoNet, position specific scoring
matrices (PSSMs) were generated using the info-gibbs module from the RSAT
suite (see 3.3.2.3 for details), and scanned 20kb upstream of the starting sites of

genes and conserved non-coding elements using RSAT’s matrix-scan and FIMO
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3.4.2.3.

from the MEME suite of tools (Bailey et al., 2009; Nguyen et al., 2018). The
optimal p-value cutoff for every putative TF-PSSM pair was calculated using
RSAT’s matrix-quality or a default value was used in cases where this could not

be determined.

Network rewiring

To study transcription factor — target gene rewiring between the five
species, three approaches were developed and used for this study. All three aim
at identifying differently interconnected parts of the compared networks. My role

was the implementation and interpretation of the DyNet approach.

The first method compares TF-TG edges to a selected species versus others in the
context of gene expression module assignment (e.g. module changing
transcription factors). In this metric a rewired interaction is present in when a
unique transcription factor - target gene edge is present in only one “focal”
species, but the transcription factor ortholog is state changed in module
assignment, and is present as a node in other TF-TG edges in any of the other

species.

The second approach collects TF rate of edge gain and loss in networks. This
method uses a continuous-time Markov process parametrized by transcription
factor - target gene gain and loss rates, and uses an expectation-maximization
based algorithm to estimate gain and loss rates. Regulators that have a degree >
25 were used, as less than 25 edges would greatly hinder statistical analysis (T. K.

Mehta et al., 2021).
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3.4.2.4.

Finally, the third approach utilised DyNet rewiring scores. In this approach, I
used the DyNet (version: 1.0) package implemented in Cytoscape (version:
3.7.1.). I calculated and visualized the degree-corrected rewiring (D,) score of
orthologous nodes across the five species. Following this, the D, score of each
orthogroups rewiring score was ordered, and the mean calculated. To measure
the significance of each orthogroups rewiring score against all others, the non-

parametric Kolmogorov-Smirnov test (KS-test) was applied.

Summary of molecular biology approaches used in this study

The DNA-binding domains of two cichlid proteins, NR2C2 and RXRB
were predicted using multiple sequence alignment and conversation with their
mouse and human orthologues. M. zebra and N. brichardi specimens were
sacrificed using triacine at the University of Hull, UK and at the University of
Basel, Switzerland. RNA was extracted and first strand cDNA synthesis of the
DNA-binding domain specific regions was done. The expression of the DNA-
binding domain was resolved by SDS-PAGE. The EMSA assay was carried out
using double-stranded DNA probes with in vitro expressed DNA-binding
domains as described above. The double-stranded DNA probes were generated
through annealing the sense and antisense oligonucleotides in an annealing
buffer. Further detail of the experiments can be found in (T. K. Mehta et al.,

2021).
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3.4.3.

Results

In this study five East-African cichlid fish species were used:
Pundamilia nyererei, Maylandia zebra, Astatotilapia burtoni, Neloamprologus
brichardi and Oreochromis niloticus, whose gene regulatory networks were
established as described in the Methods section of this chapter. Using the
Arboretum software, 10 modules of 12,051-14,735 coexpressed genes were

determined, that were represented in 18,799 orthogroups.

During the analysis of the gene regulatory networks of the aforementioned
species, using the Dynet degree corrected rewiring scores, we identified 60
candidate genes linked with phenotypic diversity based on previously published
literature. These genes have a few standard deviations higher degree-corrected
rewiring scores than the mean of all orthologs (0.23 + 0.007 SD; KS-test p-value
6 x 104). Figure 22 shows the violin plots detailing the distribution of degree-

corrected D, rewiring scores.
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Figure 22. Distribution of DyNet degree-corrected rewiring scores between 1-
to-1 (green) and 1-to-1 and many-to-many (blue) orthologs. Mean rewiring
shown as white diamond in the center. Non-candidate genes shown with black
dots through the center. Candidate genes linked with morphogenetic trait
diversity have a few standard deviations higher score, highlighted in orange.
Image modified from (Mehta et al. 2021), licensed under CC BY 4.0.

These highlighted phenotypic diversity genes are involved multiple
important functions, such as craniofacial development (dlxia, nkx2-5), tooth
morphogenesis (notchi) genes, telencephalon diversity (foxg1) and interestingly,
most visual opsin genes and genes associated with photoreceptor cell

differentiation and eye development (rho, swsi, sws2, actrib, paxé6a).

As a case study, we focused more in detail on the highly rewired nodes of the

visual system highlighted above. The changes in regulation can lead to large shifts

in the adaptive spectral sensitivity of adult cichlids, and as such we hypothesized
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that the diversity in opsin expression could be the result of adaptive gene
regulatory network evolution (Carleton, 2009).

Swsi is an ultraviolet opsin, responsible for the short-wavelength section of the
visual palette in N. brichardi and M. zebra, two of the lake representative species.
The two species share many regulators for this gene, but there are multiple
unique transcription factors associated with only one of them. Overall, the
analysis identified more unique significant TF regulators of sws1 in M. zebra,
than in N. brichardi (38 vs 6). Interestingly, the rewiring analysis also
highlighted that one of the causes of the rewiring is that M. zebra has a potentially
broken interaction caused by a mutation in the binding sites of the NR2C2 and
RXRB transcription factors, an interaction that is present in N. brichardi. Figure
23 shows the comparison of regulatory networks in the two species, the single-

nucleotide polymorphism (SNP) responsible for the loss of interaction.
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Figure 23. A: Regulatory networks of swsi in N. brichardi and M. zebra. Sws1
sits in the middle, nodes organized in a circular layout are shared regulators,
grid layout nodes are unique regulators in M. zebra. For node annotation please
see legend on the bottom left. Bottom right shows a violin plot of edge
significance, with highly significant edges highlighted in orange. B: A SNP in
the promoter region of the swsi gene leads to regulatory rewiring between two
species. Top: the SNP found at approximately -2kb from the transcriptional
start site of swsi. Bottom left: binding motif logos for the two TFs predicted to
bind to the region in N. brichardi, the species with intact interactions. A G> A
mutation potentially disrupts TF binding. Bottom right: protein alignment of
the DNA binding domain from the two predicted interacting transcription
factors in the two cichlid species, and their corresponding orthologues in Homo
sapiens and Mus musculus. Image modified from (Mehta et al. 2021), licensed
under CC BY 4.0.
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My colleague’s experimental validation using an EMSA assay confirmed
that NR2C2, but not RXRB can bind to the sws1 promoter in N. brichardi, and
that the variant in M. zebra has disrupted binding, and potentially regulation of
sws1 in the latter species. Results are shown on Figure 24. These results are
further supported by their better correlation with the expression values of the
regulators, meaning NR2C2 is better associated with sws1 than RXRB, especially

in the eye tissue.

Nb nr2c2/rxrb > sws1 probe + - - - + + - - - - Nb nr2c2/rxrb > sws1 probe + - + o+ o+
Mz nr2c2/rxrb > sws1 probe - + - - - - + + - - Mz nr2c2/rxrb > sws1 probe -+
Nb scrambled nr2c2/rxrb > sws1 probe - - + + - - - - - -
rxrb DBD - - - -
nr2c2DBD - - + - + - + - - - = 2 3
xbDBD - - - + - o+ - o+ - - x 2x 3x
nr2c2 DBD - -
Hs SP1probe - - - - - - - - + +
Hela Nuclear Extract - - - - - - - - - + Lane 1 2 3 4 5

lane 1 2 3 4 5 6 7 8 9 10

Dye frontI w Nb nr2c2:sws1 complex —p
Nb nr2c2:sws1 complex —p

Dye front
Free DNA

Free DNA |

Figure 24. EMSA assay to screen for DNA binding from the NR2C2 and RXRB
transcription factors. Left: Table on top contains the combinations of DNA
probe and expressed DNA binding domain in EMSA reactions. Lanes 1-4:
negative controls, 5-6 N. brichardi DNA binding assay, 7-8: M. zebra DNA
binding assay, 9: kit negative, 10: binding positive control. Right: EMSA
validation of increasing DNA binding domain concentrations and binding to
predicted transcription factor binding site in N. brichardi swsi promoter.
Image modified from (Mehta et al. 2021), licensed under CC BY 4.0.

The results show that the variations in nucleotides found in the binding sites of
transcription factors can drive regulatory divergence through the observed GRN
rewiring events. The elements identified by network rewiring highlighted traits
under natural or sexual selection, such as the visual system, possibly shaping

cichlid adaptation to a variety of ecological niches.
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3.4.4.

Discussion

In this work, a computational workflow was established to study gene
regulatory networks of non-model organisms. We applied this workflow on five
East African cichlid fish species to study examples of adaptive radiation through
the evolution of GRNs. By putting putative predicted regulatory interactions to
the genomes in a tissue specific manner, the approach has shown that network
comparison methods, more specifically network rewiring methods can highlight
regulatory hotspots in gene regulatory networks, in this case caused by selection
pressure, arising from natural or sexual selection. The combination of tissue-
specific expression data with reconstructed gene regulatory networks captures
lineage specific changes in a well-studied trait in the species of this group, the
visual system. Using the DyNet network rewiring approach I was able to highlight
a key regulatory variation in transcription factor binding sites of genes involved
in this system, that have been then shown experimentally to break specific
transcription factor — gene interactions, and as such drive gene regulatory
network evolution, and drive evolutionary innovations in the studied species, that
can help them adapt to different ecological niches. The generation and
subsequent comparison of regulatory networks, through the utilised workflows
can add functionality to the observed differences (e.g., regulation by a specific
transcription factor) as compared to multiple sequence alignments between the

species, for example.

While the biological system studied here is far removed from my main topic of
investigation, the network rewiring workflow and strategy developed and applied

in this study was also implemented in my investigation to analyse changes in
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Salmonella strains as well. Gene regulatory network rewiring has been
successfully shown to drive phenotypic diversity in other kingdoms of life as well,
from leaf shape to the emergence of pregnancy in mammals, showing how the
approach itself is agnostic of a model system (Ichihashi et al., 2014; Lynch,

Leclerc, May, & Wagner, 2011).

3.4.5. Future research directions

The approaches used in this study to construct regulatory networks
from tissue-specific RNA-Seq data for multiple species can serve as a general
guideline for other model organisms in the future. The majority of the results
captured by the network rewiring and other methods applied in this study have
not been verified experimentally, and further examination of these transcription
factor — (opsin) target gene interactions could shed further light on the variances

and sites under selection within the visual system in the studied cichlid species.

While this study focused finding divergent cis-regulatory elements involved in
adaptation to certain conditions, other levels of regulation could also be used for
this reason, with adequate changes to the methodology, e.g. post-transcriptional

regulation, studies of enhancer regions, tracking gene duplication events.
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3.5. Applications of SalmoNet 2 - Using
network rewiring to identify
functional differences in Salmonella

enterica

To explore the utility of a multi-layered network resource such as
SalmoNet, I compared the degree of interaction rewiring between the
interactomes of host adapted typhoidal Salmonella strains and gastrointestinal
Salmonella strains, captured the potential functional differences using Gene
Ontology enrichment analysis, and compared the rewired subgraphs to find the
causes of the rewiring. The approach outlined in this section could be used to
provide insight into the functional differences caused by differing interactions
between Salmonella pathovars, highlight key genes and proteins, and
importantly provide targets for hypothesis generation and experimental
validation.

SalmoNet 2 added three additional typhoidal Salmonella serotype
strains to the interaction resource, now containing four typhoidal pathogens in
total. Comparing the interactions patterns of these extraintestinal strains by
contrasting them with those of gastrointestinal Salmonella could be utilised to
show conserved or diverging subnetworks in these strains, related to their
invasive lifestyle, and help researchers better understand these important human

pathogens.
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3.5.1.

The results shown in this section indicate that SalmoNet 2 and the
enrichment analysis captures adequate biological information, and the
presence/absence of edges can pinpoint nodes under a level of selection pressure,

that could be subjects of future work and experimental testing.

Methods

To calculate network rewiring I used the DyNet app in Cytoscape to
calculate the rewiring value of the nodes in each group separately. Four typhoidal
strains (S. Paratyphi A (AKU 1261), S. Paratyphi A (ATCC 9150), S. Paratyphi C
(RKS4594), S. Typhi (Ty2) and four gastrointestinal strains (S. Agona (SL483),
S. Newport (SL254), S. Heidelberg and S. Typhimurium (LT2)) were compared
for interaction differences.

The level of rewiring was calculated across all strains, and the degree-
corrected rewiring values were ordered in a descending list, where the top 50 hits
were further analysed. Rewiring was also calculated within-group (i.e., between
the selected typhoidal, and between the selected gastrointestinal strains
separately), to allow for identifying which group is the source of variance comes
when comparing all strains. To alleviate the bias towards hub nodes, the degree
corrected Dy, value was used for the cutoff.

To calculate the enrichment of Gene Ontology terms in the identified
subgraphs I downloaded the up-to-date Gene Ontology annotation of the target
genes using the topGO library in R, and following that the R library clusterProfiler
was used to calculate Gene Ontology enrichment with the enricher() function,

from Biological Process terms (Alexa & Rahnenfuhrer, 2021; Wu et al., 2021). P-
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3.5.2.

value adjustment for multiple testing was done via the Benjamini-Hochberg
approach, using the p.adjust function in R.

The statistically significant enrichment results were compared side-by-
side between the groups, and the differences in enrichment were further studied
by comparing the sets of genes responsible for (underlying) the enriched terms,
i.e., if one group was enriched in a specific term, the presence/absence of the
orthologous genes responsible for the enrichment was analysed in the members
of the other group. Terms were deemed respective of a group if that term was
present in all members of a group, and simultaneously in one or none of the other.

To study the relationship of YreP and YjcS to the extraintestinal
pathovar, network rewiring was calculated in an identical manner as above, but
all extraintestinal and gastrointestinal strains from SalmoNet 2 were involved in
the comparisons.

BLAST searches for the YreP and YjcS genes was done through the
pubMLST website, with default parameters (Jolley, Bray, & Maiden, 2018). The
entire genomic sequence of the genes and their shared regulatory region was
queried, as taken from S. Gallinarum strain 287/91. The hits were filtered for
above 95% sequence identity, and the top 10% of bitscores to make sure the

compared sequences contain both the genes and the shared regulatory region.

Results

To evaluate whether the interaction networks in SalmoNet 2 can be
used to the study the effects of host adaptation in invasive strains of Salmonella,

I studied and compared the interaction networks of four typhoidal and four
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gastrointestinal strains using the DyNet network rewiring tool. In total, I
analysed the 50 highest D, nodes, and I highlighted the potential functional
relevance of these interaction differences using Gene Ontology enrichment
analysis.

In general, many of the top hits or most rewired nodes are important
global regulators, such as Crp, Fis and Fur, despite correcting for degree bias. The
significantly enriched functions are similar between the compared strains, with a
few key differences. For example, the gene Fur or ferric uptake regulator senses
metal concentration and the redox state of cells, and regulates many operons and
genes involved in these processes (Troxell, Fink, Porwollik, McClelland, &
Hassan, 2011). Fur is enriched in the GO function “iron ion homeostasis” in all
included gastrointestinal strains, while this enrichment is absent from the
typhoidal strains. Upon further inspection of the genes responsible for the
enrichment of the term and their orthologous status, Fur is missing interactions
present in GI strains towards the genes fhuA, fhuE, caused by the disruption of
coding sequences in these genes in the typhoidal serovars, as highlighted
previously in the literature (Nuccio & Baumler, 2014; Y. Wang et al., 2018).

Fur is similarly enriched in the term “cell adhesion” in all
gastrointestinal strains, whereas this function is not enriched in typhoidal
strains, except S. Paratyphi C. Once again, inspection of the genes underlying the
enrichment result reveals that the culprit behind the mismatch in functional
enrichment is the pseudogenization and subsequent missing interactions with
the genes stiH and stiA in the rest of the typhoidal Salmonella strains, two genes
responsible for the production of fimbriae, highlighted previously in the

literature (Nuccio & Baumler, 2014). Figure 25. shows the functional differences
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in Gene Ontology enrichment between the compared groups through examples

involving the Fur transcription factor.

a
fhuE e
fhUA A

gastrointestinal strains typhoidal strains

b
StiA stA
stiH O st
gastrointestinal strains typhoidal strains

Figure 25. The causes of different Gene Ontology enrichment between
gastrointestinal and typhoidal strains as highlighted by rewiring analysis. The
Fur regulon controls many genes that undergo pseudogenisation in invasive
strains of Salmonella. The rewiring analysis highlights two such examples for
the regulon, where genes involved in metabolic processes, such as iron ion
homeostasis (a), or fimbriae production (b) get disrupted, and the consequent

loss of interactions causes a loss in the enrichment of functions.
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The rewiring analysis has revealed many other examples like this, where
the cause of rewiring can be led back to the disruption of coding sequences and
thus loss of interactions as described by (Nuccio & Baumler, 2014). For example,
LyxK is enriched in “carbohydrate phosphorylation” and “C4-dicarboxylate
transport” in GI strains but not in typhoidal ones, or ‘nitrate assimilation’ in the
case of Fnr, showing the same split across groups. These examples highlight the
functional, phenotypical effects of genome reduction on the interaction networks
of extraintestinal strains as they adapt to their host, which has been well
documented in the literature (Hiyoshi et al., 2018; Langridge et al., 2015;
MacKenzie et al., 2019; Vazquez-Torres, 2018). As detailed in Chapter 1, gene
inactivation caused by genome degradation is one of the recurring features of
host adaptation. The specific changes captured by this analysis reflect two often
changing processes in extraintestinal strains, those of anaerobic metabolism and
cell adhesion (fimbrial genes) (Nuccio & Baumler, 2014). The rewiring analysis
highlights the magnitude of change genome reduction incurs on the interaction
networks of typhoidal strains, as most of the analysed genes were rewired due to
this phenomenon (Nuccio & Baumler, 2014). From the top 50 most rewired
nodes, on average 33 nodes had at least one pseudogene first neighbour in the
typhoidal serovars, and on average 4% of the first neighbours of the top 50 most
rewired nodes were pseudogenes. In the gastrointestinal strains on average 7
nodes had pseudogene first neighbours, and only 1% of their first neighbours
were pseudogenes.

While a large part of the rewiring was due to gene loss in typhoidal and
extraintestinal serovars, during my work I found examples where the cause of

rewiring was due to the exclusivity of genes to the invasive group. The following
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analysis is an example of how SalmoNet 2 can be used in conjunction with other
computational tools to make inferences regarding the role of previously unknown
or less known interactions and genes.

The two proteins, YreP and YjcS, are present in all extraintestinal
serovars of Salmonella in SalmoNet 2 but are missing from almost all
gastrointestinal strains. This interesting pathovar specific split led me to analyse
the genes in more detail, with the assumption that they could be involved with
the invasion process in a pathovar specific manner. The protein YjcS has an
orthologue in S. Enteritidis, but the protein is otherwise missing from the
gastrointestinal group. Since their presence is, except for the S. Enteritidis case,
is restricted to the host adapted serovars in SalmoNet 2, they only receive
interactions in these strains. The two genes get regulatory input from three
transcription factors: HilC and RtsA involved in the regulation of SPI-1 genes
amongst others, and the global regulator Fur. YjcS has an additional protein-
protein interaction in all strains where it is included, as the protein can interact
with itself. The source of the regulatory interactions are the genome wide scans
of the Salmonella strains included in SalmoNet 2.

The two genes have first been described together previously in
Escherichia coli, in two analysed strains: E. coli SMS-3-5, and environmental
pathogenic isolate with multiple antibiotic resistances, and E. coli NMEC) O7:K1
strain CE10, causing neonatal meningitis. The first gene, yreP (dgcY in E. coli),
encodes a diguanylate cyclase, its suggested function based on it carrying the
signature GGDEF domain. Diguanylate-cyclases facilitate the production of c-di-
GMP, a ubiquitous secondary messenger metabolite in prokaryotes (Povolotsky
& Hengge, 2016; Ryjenkov, Tarutina, Moskvin, & Gomelsky, 2005). The second
gene, yjcS (EcSMS35_1714 in E. coli), is an alkyl-sulfatase. This enzyme has been
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first described in Pseudomonas, where a strain carrying this enzyme was able to
grow on the surfactant sodium dodecyl sulfate (SDS), and the gene has been
characterised in E. coli as well (Liang, Gao, Dong, & Liu, 2014; Williams & Payne,
1964). The orthologous proteins exist in multiple other genuses within the
Enterobacteriaceae family, such as Enterobacter, or Klebsiella based on synteny
information in the OMA database (Altenhoff et al., 2020). Since SalmoNet 2 is
now based on orthologous information from the OMA orthology database, users
can very quickly look up the phylogenetic spread of proteins of interest, like in
this example with YjcS and YreP.

After noting their presence in the well-studied extraintestinal strains
included in SalmoNet 2, I expanded the search into a more expansive data source,
to see if this was representative of the serovars as a whole, not just the specific
strains in SalmoNet 2. BLAST searches were executed within the available
genomes of the pubMLST database (Jolley et al., 2018). PubMLST itself is a
collection of databases, containing 18638 Salmonella genomes (accessed on
09/10/2021). The entire gene sequences of YreP and YjcS were input as the
BLAST search query, including their shared regulatory region. Figure 26 shows

the results of the BLAST searches in the pubMLST database.
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Figure 26. Prevalence of the yreP + promoter + yjcS segment in Salmonella

serovars based on BLAST hits. Figure 26 A shows the total amount of hits in

each serovar. Figure 26 B shows the ratio of hits to all isolates in the serovar.

Serovars containing < 5 isolates were removed from this figure for clarity.

The distribution of BLAST hits from the genomes included in the

pubMLST database is for the most part in accordance with what I have found in

SalmoNet 2, the genomes of well-known extraintestinal serovars seem to contain

139



the sequence more often. In total 83% of hits come from well-known
extraintestinal serovars, dominated by S. Typhi strains. The top 10 serovars in
terms of number of hits are also mostly invasive serovars: S. Typhi, S. Paratyphi
A, and S. Paratyphi C are notable typhoidal serovars adapted to humans, S.
Dublin, S. Pullorum and S. Choleraesuis are well-known host adapted serovars of
cattle, poultry and pigs (Métris et al., 2017; Tanner & Kingsley, 2018). S. Napoli
is an emerging serovar in Europe, phylogenetically closely related to S. Paratyphi
A, carrying an almost identical pattern of typhoid-associated genes, and capable
of causing a form of invasive nontyphoidal disease (Gori et al., 2018; Huedo et
al., 2017). The invasive behaviour is not as clear cut with the rest of the serovars,
but there have been reports of it in the literature. S. Bovismorbificans is capable
of causing bloodstream infections, and has recently been described as an
emerging disease in Malawi, converging towards a phenotype resembling a
human adapted iNTS variant (Bronowski et al., 2013). Although not strictly an
extraintestinal serovar, S. Virchow has been known to cause invasive illness
(Eckerle, Zimmermann, Kapaun, & Junghanss, 2010; Mani, Brennand, &
Mandal, 1974; Messer, Warnock, Heazlewood, & Hanna, 1997; Todd & Murdoch,
1983). S. Weltevreden is an emerging cause of diarrheal and sometimes invasive
disease in humans in tropical regions, and is hypothesized to be adapted or
adapting to life in aquatic hosts (Hounmanou et al., 2020; Makendi et al., 2016).
While large in total numbers in the database, S. Enteritidis only makes up 2% of
the positive hits. Since S. Enteritidis is one of the most commonly isolated iNTS
strains, there exists a possible link to invasive behaviour (Feasey et al., 2016; M.
A. Gordon, 2011). However, more work is needed to uncover the cause and extent

of this curious split between pathovars.
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3-5-3-

This brief analysis above highlights how the information contained in
and linked with SalmoNet 2 can be used to form scientific questions relating the
functionality of genes to the behaviour and phylogenetics of Salmonella, based
on molecular interaction information. SalmoNet 2 contains example strains from
the most prevalent serovars, and the information can further be extended using
the easily accessible sequence data and homology information through OMA and

other computational resources.

Discussion & Future research directions

In this work I demonstrated how large-scale network rewiring analysis
can be applied to compare interaction networks of gastrointestinal and typhoidal
Salmonella serovars. The results highlights the effects genome degradation has

on host adapted Salmonella, as the loss of genes related to anaerobic metabolism,

chemotaxis and related functions were present behind the rewiring for the

majority of most rewired nodes in the analysed typhoidal strains (Holt et al.,

2009; Nuccio & Baumler, 2014).

In a second round of analysis, I demonstrated how downstream

investigations can be followed through using information gained from SalmoNet

2 through the example of the YreP and YjcS proteins, that seem to associate to

host adapted serovars, and do not have orthologous proteins in gastrointestinal

serovars barring S. Enteritidis. Querying their genomic sequence from the linked

OMA database and running BLAST searches against more than 18000

Salmonella genomes results in a similar picture.

However, the results shown here are inconclusive, and require further

functional analysis of the studied genes, and whether they are beneficial to the
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invasion process at any point. Based on available information we can only

hypothesize what their roles could be. The potential role of YjcS is in the invasive

lifestyle is difficult to assess, owing to the lack of relevant information of the alkyl-
sulfatase domain structure in this setting (Liang et al., 2014). YreP on the other
hand, a diguanylate-cyclase, can potentially affect host adaptation. The role of
diguanylate cyclases and c-di-GMP in bacteria has been mostly understood as a
sessile-motile switch, first shown in Vibrio, where low c-di-GMP levels
correspond to the host environment and increased motility, while high c-di-GMP
levels decrease motility in the aquatic environment, highlighting how the
potentially increased production of c-di-GMP can influence cell fate decisions
relating to virulence and sessility/biofilm formation (Ahmad et al., 2011; Jenal et
al., 2017; Tamayo et al., 2007). The decisions to reduce motility, and/or virulence
and start producing biofilms are quite important and severe from the bacteria’s
point of view, and as such are under tight spatial, temporal and multiple levels of
regulatory control, and there are often direct protein-protein interactions
occurring between the effectors and the signalling enzymes (Hengge, 2009).
However, host adapted serovars are for the most part weaker biofilm formers
than their gastrointestinal counterparts (MacKenzie et al., 2017). As parts of the
cellulose synthase operon are pseudogenized in many of the host adapted
serovars (Nuccio & Baumler, 2014), I hypothesize the consequences of increased
c-di-GMP levels may be different in terms of sessility-motility or virulence
attenuation in extraintestinal and gastrointestinal Salmonella serovars.
However, more future work is required to confirm whether the two
genes have any role in the invasion process, and to further solidify their link to
extraintestinal serovars. We have started a series of RNA-Seq experiments to

capture the differentially expressed genes between a wild-type and AyjcS/AyreP

142



knockout strain of S. Gallinarum, but unfortunately the experiments were halted
by the COVID-19 pandemic. The transcriptomics readout could potentially
answer what sets of genes are affected by the activity of the YreP and YjcS, and
the mutants could be used in further future experiments involving other
functions linked to c-di-GMP production, such as efflux pump activity (Holden &
Webber, 2020). While the latter half of this analysis could have been done
without network information, since SalmoNet 2 predicts multiple upstream
regulatory interactions to potentially control yreP and yjcS, future experimental
work could evaluate which one of these regulators, and under what circumstances

regulate these genes, which is the added value of the network biology approach.
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4. The role of cytokines in SARS-

CoV-2 infection

4.1. Introduction

The currently ongoing pandemic has mobilised scientists and people
around the world, to understand and resolve the infection caused by the novel
pathogen. Globally, as of the writing of this text (16th March 2021), there have
been 119,791,453 confirmed cases of COVID-19, including 2,652,966 deaths,
reported to the WHO (https://covidi9.who.int/). Major efforts now concentrate
on how severe acute respiratory syndrome [-coronavirus 2 (SARS-CoV-2)
changes the efficacy of normal antiviral immune responses, and why host
antiviral immune responses are unable to resolve it in a subgroup of patients. The
clinical symptoms of the disease range from asymptomatic, through mild (fever,
persistent cough, loss of taste and smell, gastrointestinal problems) to severe
pneumonia, organ failure, and even death (Pedersen & Ho, 2020). Although
SARS-CoV-2 appears to alter host inflammatory defences, similar modifications
have also been observed in the recent B-coronavirus epidemics caused by SARS-
CoV and MERS-CoV, and the ones responsible for the H5N1 and H7Ng influenza

A subtype outbreaks (Channappanavar et al., 2016, 2019).
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Although these viruses can cause similar symptoms, the specifics of the
pathogenesis may be caused by different factors. A shared trait is their effect on
the pro-inflammatory host immune response. One of the key characteristics of
these viruses, including SARS-CoV-2, is that they can lead to a Cytokine Release
Syndrome (CRS), or "cytokine storm", which can increase the mortality observed
for this illness in a subgroup of patients (P. Mehta et al., 2020). This phenomenon
occurs when a large number of innate and adaptive immune cells, such as B-cells,
T-cells, NK-cells, macrophages or dendritic cells activate, and start producing
pro-inflammatory cytokines, establishing a feedback loop of inflammation. This
process normally resolves after the antiviral response successfully clears the
pathogen from the host, but it can persist in serious cases. In these situations, the
inflammatory response can become so severe it damages organs and tissues, and

can eventually lead to death (Del Valle et al., 2020).

One of the first lines of defence against viral infections is the type-I interferon
response, carried out by the type-I interferons (IFN-q, -f3, -k, -€, -T, -® and -Q).
Produced by a large number of cell types, as part of the innate immune system
they are an ancient, very conserved evolutionary response against viruses. Their
role is activating a cascade of signalling that results in the expression of a cluster
of genes, called the Interferon Stimulated Genes. These cascades can attenuate
the inflammation to avoid tissue damage, lead to the production of cytokines such
as IL-12, and further carry the signal, eventually resulting in the activation of the
adaptive immune response through IFN-y (Betakova, Kostrabova, Lachova, &
Turianova, 2017; Kang, Brown, & Hwang, 2018; Makris, Paulsen, & Johansson,

2017).
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Due to the changed circumstances caused by the pandemic, I was re-deployed for
6 extra months during my PhD studies to work on COVID-19 related research,
working on these topics in the Korcsmaros Group, and as a member of the
COVID-19 Disease Map community (Ostaszewski et al., 2020). The results
presented in this chapter build on the biological and methodological knowledge
I acquired over the years as a postgraduate research student. While many studies
focus on the intracellular effects of the virus, from its entry into the cell through
TMPRSS2 and ACE2, to the downstream affected pathways, because of the
potential danger of CRS I wanted to map the pathogenic process backwards. My
goal was to trace and compare the cytokine responses caused by SARS-CoV-2 and
similar viruses, and highlight the affected, differently behaving source cell types.
The goal was to find conserved, and unique immune response patterns between
CRS-causing viruses to help specialists identify interventions that can alleviate
serious cases of COVID-19, and other illnesses that cause CRS, and potentially

pinpoint immune cell populations that behave differently than expected in CRS.

In this chapter, I am going to detail the results of two projects I led during my
redeployment. The first one, published in Frontiers in Immunology, is a
systematic literature curation of cytokine responses to CRS-causing viruses from
the relevant literature (Olbei et al., 2021). In the second project, I developed a
novel network resource, CytokineLink, aimed at highlighting how cell types can
communicate using cytokines, with the goal in mind that the established
networks can pinpoint specific cytokines that mediate intercellular
communication between important celltypes and tissues.

Although these were the main studies I worked on during this period, I was also

involved in two other works, led by other members of our group. The first such
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project was ViralLink, published in PLOS Computational Biology, a systems
biology workflow which reconstructs and analyses networks representing the
effect of viruses on intracellular signalling (Treveil et al., 2021).

The second such project, still in progress, has the working title of “Gut-COVID
project”, where we study the effects of the SARS-CoV-2 infection on the intestine,
which was shown to be productively infected by the virus earlier last year (Lamers

et al., 2020).

4.2. Aims

The aims of these projects were the following;:

e Collect the available patient derived cytokine response data for five
cytokine release syndrome causing viruses, including SARS-CoV-2,
through a systematic curation process.

e Compare the acquired cytokine data, and study the observed differences.

e Generate a novel network resource (CytokineLink) to map cytokine
mediated signalling using patient derived data in COVID-19 and other
inflammatory and infectious diseases, and assign validity to its
interactions through curation via systems immunology databases and the
published literature.

e Connect the two works by analysing the COVID-19 cytokine response data

we collected with CytokineLink.
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4.3. Methods

The results and approaches in the first half of this chapter (comparing
cytokine responses from five cytokine release syndrome causing viruses) were
developed by me, with the help of Isabelle Hautefort, who did one half of the
curation and worked on the interpretation of the data, as well as with support
from Dezso Modos, who helped in the formal analysis, hierarchical clustering,
and interpretation of the results. Claire Shannon-Lowe, Agatha Treveil, Martina
Poletti and Leila Gul contributed to the paper that forms the foundation of this

chapter.

The second half of the chapter details the construction of a novel network
resource aimed at understanding cytokine-mediated intercellular
communication. The resource was conceived of and developed by myself, with
the help of Dezso Modos, Isabelle Hautefort and Tamas Korcsmaros, who advised

me during the project.

4.3.1. Comparing cytokine responses from five cytokine release

syndrome causing viruses

4.3.1.1. Literature curation

We performed a mass literature search of 98 well-studied cytokines in the
PubMed resource using PubTator, and in the bioRxiv and medRxiv non-peer

reviewed pre-publication repositories (Wei, Allot, Leaman, & Lu, 2019). The
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targets include commonly studied interleukins, interferons, chemokines involved
in both anti- and pro-inflammatory responses, in particular those that are
involved in CRS. We only included studies where the direction of change in the
level of a cytokine was included. We could not meaningfully collect the amplitude
of change, only the presence or absence of change. We restricted the study to five
CRS-causing viruses, all of them responsible for an epidemic in the past few
decades. Three B-coronaviruses SARS-CoV, SARS-CoV-2 and MERS-CoV, and
two influenza A subtypes, H5N1 and H7N9. The names of each pathogen, and
each cytokine was used as search terms, e.g. "H5N1 CCL2". In ambiguous cases,
multiple forms ("IFN-b", " IFN-beta", "IFN b", "IFN beta") were tried. If the

search resulted in more than 50 hits "patient" was added to the search terms.

The resulting articles were then manually processed for cytokine data. We
only considered results valid for curation, if the results came directly from studies
including at least 10 patients, i.e. model-organism, or cell-line based results were
excluded. From the main text of the resulting articles the direction of change of
the listed cytokines was noted in a spreadsheet. We closed the curation on
03/06/2020. We estimated the size of the discarded literature using a shell
script, available in a GitHub repository
[https://github.com/korcsmarosgroup/CRS]. Figure 27 highlights the steps of

the curation process.
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Figure 27. The literature curation workflow applied in this study. Publications
were considered valid for inclusion into our data collection 1) if they contained
patient-derived data (model organisms and cell lines were excluded) and ii) the
study data were collected from cohorts of at least 10 participants per group iii)
if it included a directional change in cytokine levels. In the end 55 publications
were selected that matched the criteria above.
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4.3.1.2.

4.3.2.

Hierarchical clustering

The hierarchical clustering of the cytokine clusters was done using the
seaborn python package, with Jaccard index as the similarity measure, and the
complete linkage method. The former similarity measure is used to calculate the
dissimilarity of two sets, while the latter linkage method calculates each cluster's
distance from each other (the farthest point from each cluster). This approach is
sensitive for the furthest elements, and it does not join the furthest elements,
giving a clearer result. It performs well when applied to finding appropriate

clusters in synthetic studies. The code for the clustering method is available at

the GitHub repository. [https://github.com/koresmarosgroup/CRS]

Construction of an intercellular cytokine-cytokine
communication network resource, CytokineLink

The cytokine-cytokine interaction network resource was built between
tissues and blood cell types available in the Human Protein Atlas (Uhlén et al.,
2015).

The consensus RNA-Seq data for all cytokines and their receptors listed in
ImmuneXpresso and ImmunoGlobe, and a relevant literature source was
downloaded using a custom shell script, and processed using an R language script

(Atallah et al., 2020; Kveler et al., 2018).

To establish potential interactions between tissues and cell types mediated by
cytokines, I made the following abstraction. Using cytokine - receptor
interactions received from the appropriate literature and the OmniPath database

(Cameron & Kelvin, 2013; Tiirei et al., 2016), I created meta-edges between
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tissues and blood cell types expressing these cytokines, creating the meta-
network of tissue level cytokine communication. To uncover prospective cytokine
- cytokine interactions, I inverted the same dataset. In these cases, the
interactions signify what cell types can certain cytokines act on, and what
cytokines do these cell types produce. An example interaction, with all of the

subsequent steps involving IL-7 and IFN-y can be seen on Fig 28.

DATA COLLECTION
THE HUMAN
S~ .
Core
TN G PROTEINATLASS:
cytokine - receptor interactions network consensus expression data

l 24 tissues
U ¢ 18 blood cell types

META-NETWORK CONSTRUCTION

Cytokine
Tissue, Cytokine, Y

receptor
------ -3

Tissue / blood cell network Cytokine - cytokine network

Figure 28. Construction of CytokineLink. Data was downloaded from the
Human Protein Atlas, with cytokine-receptor data queried from OmniPath and
the relevant literature. The base networks contain tissue - cytokine - receptor
interactions, from which the abstracted meta-edges were created. These meta
cytokine - cytokine edges symbol the potential ways which the production of a
cytokine can alter the production of another, by binding to its receptor, carried
by a cell type expressing the secondary cytokine.

Tissue, Cytokine,
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These custom paths (i.e. Tissuej, Cytokine;, Receptor, Tissueo, Cytokineo) were

generated using the tissue-cytokine interactions as an input, with the
get_simple_paths() function of the NetworkX (version: 2.5) python library

(python version: 3.8.6).

Beyond containing important cytokine data, ImmuneXpresso and ImmunoGlobe
also curates interaction data collated from the literature, between cell types and
cytokines, both as sources and sinks (Atallah et al., 2020; Kveler et al., 2018).
These interaction annotations were included in the resource, assigning

confidence to the underlying edges.

To add further information to the network, a layer of regulatory interactions was
also integrated into the data resource. The interactions were included from a
recent publication, utilising enhanced yeast-one hybrid assays to collect
interactions between 265 transcription factors and 108 cytokines (Santoso et al.

2020).

The network can be instantiated using custom (e.g. single-cell RNA-Seq)
datasets, in these cases the presence/absence of cytokines is based on that of the

input data, instead of the Human Protein Atlas results.

For the COVID-19 use case, the elevated cytokine list contained: CCL2, CCL3,

CCL4, CSF2, CXCL10, CXCL11, IFNG, IL1B, while the complemented cytokine

list contained: IL2, IL4 and IL5. The networks were generated in Cytoscape
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(Shannon et al., 2003), by filtering down the cell-cell networks to ones only

containing interactions mediated by the above cytokines.

4.4. Results & Discussion

441. SARS-CoV-2 causes a different cytokine response
compared to other cytokine storm-causing respiratory
viruses in severely ill patients

In this work, we collected cytokine responses from patient-derived data
published in the literature that met our curation criteria listed above. The
curation protocol followed the steps shown on Figure 27.

We compared the amount of increased, decreased or mixed status cytokines from
the collected literature. Figure 29. shows the number of cytokines measured in

the studies for each of the five CRS-causing viruses.
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Figure 29. The number of cytokines measured in the included studies for each of
the five CRS-causing viruses. Each bar of the stacked barcharts represents how
many different cytokines were found increased (yellow), reported as both
increasing and not increasing (green) or not increasing (blue). The n number

on the bottom of the chart corresponds to the number of articles citing cytokine
changes during infection.

Out of the 98 queried cytokines, we found 38 that were included in the studies
matching the curation criteria. Only a small group of cytokines was measured for
all viruses (CXCLS8, IL-6, CXCL10, IL-2, FN-y, TNF-a). Figure 29. shows how
variable the number of different measured cytokines is across the different
viruses. This variation can be most likely attributed to the increased interest in
CRS-causing viruses over the recent years, in no small part due to the current

pandemic, and the increased availability and sensitivity of the detection methods.

One of the notable differences between influenza A subtypes and B-coronaviruses

is that the former group triggers an increase in almost all measured cytokine
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levels, while in the latter case, some cytokines were detected at levels normally
found in control groups (non-increased), or the data disagrees between different
studies (mixed results). This highlights the potential differences in the underlying

kinetics and pathogenesis process between the CRS-causing viruses.

Specificity Cytokines elevated at least in one study
(elevated & mixed)

Virus-specific 16
Shared between 2 viruses 5
Shared between 3 viruses 8
Shared between 4 viruses 2
Common to all five viruses 5

Table 6. Number of cytokines elevated in at least one study. Column 2 shows the
number of elevated (or mixed) measurements, and their overlaps between
viruses. Mixed observations occur when one or more studies show no change in

the level of a cytokine, whereas others show an increase.

Table 6. details the number of cytokines whose levels are increasing in one, two,
three, four or all viral infections, from the curated literature. Only five cytokines
are shared across all of the conditions (CXCLS8, IL-6, CXCL10, IL-2, IFN-y, TNF-
a), and 20 are shared to a lesser degree. 16 cytokine responses are unique to the

selected viruses.

A limitation of our study is that the amplitude of change for the measured
cytokines is not included, which can be different between the different diseases

and disease states. To examine the presence and absence of cytokine responses
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between the viruses more in detail, we constructed a heatmap of collected data,

shown on figure 30.
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Figure 30. Hierarchical clustering of cytokine responses from influenza A
subtype viruses and beta coronaviruses. The influenza viruses, SARS-CoV and
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MERS-CoV, and SARS-CoV-2 form separate clusters. Hierarchical clustering
results are based on Jaccard distance complete linkage.

Based on the results of the cluster analysis, eight clusters can be delineated. It is
important to highlight that the resulting grouping can be biased by the missing

information for certain cytokines.

With this in mind, cluster I. contains two anti-inflammatory cytokines IL-2 and
IL-10, and the pro-inflammatory cytokine TNF-a. The literature reports mixed
results for all three cytokines in the SARS-CoV-2 literature, but has all possible
outcomes in the f-coronavirus cluster, while they are predominantly increased in

the influenza viruses.

Clusters III and VI contain most of the increased pro-inflammatory cytokines,
elevated for almost all viruses, but not measured in every case. Among them the
cornerstones of the type I and type II interferon response, IFN-a and IFN- y, and
IL-6, one of the main pro-inflammatory cytokines, and target of many clinical

interventions.

Cytokines from Cluster IV measured during coronavirus infections do not
fluctuate, while most of them are elevated during influenza infection, e.g. IL-4
and IL-5 upon H7N9 infections. IL-4 is involved in Th2 differentiation, and the
Th2 cells can produce IL-5 to mitigate eosinophil infiltration (X.-Z. J. Guo &
Thomas, 2017). Such differences observed between virus-specific pathologies
reflect the strong alterations caused by coronavirus infections, especially SARS-

CoV-2 (Tan et al., 2020).
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The cytokines in cluster VII and VIII do not always respond to SARS-CoV-2: IL-
15 and CCL5 (also known as RANTES) are not elevated after SARS-CoV-2
infection. IL-15 is involved in natural killer cell differentiation as part of antiviral
response (Y. Guo, Luan, Patil, & Sherwood, 2017). Meanwhile, CCL5 mediates
eosinophil infiltration which is considered to be involved in the recovery after
SARS-CoV infection alterations observed in coronavirus infections, particularly

SARS-CoV-2 (Patterson et al., 2020).

Clusters II and V contain cytokines measured only in H7N9 and SARS-CoV2,
respectively, whereas TGF-b1 was measured only in SARS-CoV studies in cluster

IV.

To put the results more in context, we decided to focus on a small part of the
infection process, and focus on the differences in cytokine responses involved in
the type-I interferon response, and the cytokines involved downstream of it.
Figure 31 shows the presence/absence of key cytokines in the analysed viruses in

the process.
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Figure 31. Type I interferon response upon infection with the different CRS-
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Based on the data we collected, infection with either of the two influenza subtypes
seems to increase the levels of measured type-I IFN-relevant cytokines, resulting
in an antiviral immune response, with the appropriate cytokines showing
elevated levels in all influenza A studies. However, the responses given to the
coronaviruses show a more variable IFN-I response. In the case of SARS-CoV it
is active, including the downstream activation of IL-12 and IFN-y, which
indicates the involvement of mature dendritic cells based on the former, and the

activation of the type-II interferon response based on the latter signature.

For MERS-CoV, the type-I response is active, but there are some conflicts about
parts of it in the literature. In certain studies IL-12 does not increase, in line with
the inactivation of IFN-y. Despite this, the mostly anti-inflammatory IL-10 is
active, although caution should be taken as interpreting this cytokine as a solely
anti-inflammatory, as there are more and more studies now confirming its role

as a pro-inflammatory agent in certain scenarios (Miihl, 2013).

Based on the curated responses above we found that SARS-CoV-2 is
characterized by an apparent dysregulation of the type-I IFN response, and
consequently parts of the downstream cytokine machinery, involving 11.-4, IL.-12,

IL-2, IL-10, and the type-II IFN response.
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4.4.2.

CytokineLink: an intercellular cytokine-cytokine
communication network resource

To uncover how affected cytokines, such as the ones highlighted in the
previous section might disrupt intercellular communication, I built a new
network resource aimed at depicting all possible indirect interactions they can
have, and contextualised it using Human Protein Atlas consensus expression

data.

CytokineLink contains 24 tissues, 18 blood cell types, from which I generated two
meta-networks (cell to cell, cytokine to cytokine), containing 6573 meta edges. In
total, I included 115 cytokines, with 308 unique cytokine-receptor interactions.
The latter has a large, 95% overlap with the published literature. To add more
confidence to the interactions, I added annotation data from two systems
immunology databases, immuneXpresso, and ImmunoGlobe, assigning
literature references from research articles and textbooks, literature enrichment
cores and signage (i.e. stimulatory / inhibitory) data to the interactions (Atallah
et al. 2020; Kveler et al. 2018). 46% of interactions have at least one data point
of annotation attached to them, indicating the degree to which the resource

captures already known biology.

To demonstrate the applicability of the resource, I have selected the cytokines
found to be increased in SARS-CoV-2 patients from the previous results section.
While the optimal use case would be to apply it to single-cell RNA-Seq data
involving many of the involved immune cell types, at the time of carrying out this
project no such dataset was available. To help future studies utilising the resource
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with single-cell data, an additional layer of cytokine-specific regulation was
added, to add further context to up or downregulated cytokine responses. From
the results of the CytokineLink resource based analysis, an interesting pattern
emerges, as shown on Figure 31 A. The majority of cells that communicate using
the elevated cytokines are involved in innate immune responses. From the T-cell
elements MAIT T-cells generally show an innate-like behaviour, while gdT-cells
generally bridge the response between the innate and adaptive immune system.
The innate immune response, as recently shown, is the part of the COVID-19
disease process that might be the underlying cause of the large scale
heterogeneity observed in outcomes (Hinks et al., 2020; Holtmeier & Kabelitz,

2005; Schultze & Aschenbrenner, 2021).
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Figure 32. Cell-to-cell communication mediated by cytokines increased in
COVID-19 patients. A: Interactions involving cytokines elevated in COVID-19
patients (red). B: Interactions involving elevated cytokines in COVID-19
patients (red), and interactions with cytokines that are missing following a
SARS-CoV-2 infection, but are present in other CRS-causing viruses (blue).
Edge width corresponds to the amount of cytokines mediating the specific
interaction.

In part B of Figure 32, I attempted to model what the cell to cell
communication would look like, if cytokines that are elevated in some other CRS-
causing viruses were elevated. In other words, I "complemented" the system with
these cytokines, to show what parts of the communication seem to be missing
based on the literature data we curated. The complemented model shows three
novel cell types: naive-B-cells, memory B-cells, and the presence of myeloid DCs.
The latter cell type is responsible for the secretion of multiple cytokines, including
IL12, that also seems to be missing from the system, based on the literature
curation analysis (see 5.4.1). The presence (or lack of) memory B-cells and naive-
B-cell can be explained by a variety of factors. An explanation arising from the
bias of our methodology would be that much of the data we gathered from the
curation contained samples from the time of hospital admission, where these

responses could not form yet.

The CytokineLink based analysis gave a possible mechanistic link to the lack of
one of the key anti-inflammatory cytokines. IL12 is missing from the system,
potentially caused by an under-activation of myeloid DCs. This can be the result
of the missing edge between myeloid DCs and basophils, an interaction mediated
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4.5.

by IL4. Although there are other cell types capable of producing IL12 in the
model, its lack can be possibly caused by this missing cell type. The lack of IL12
can be seen in other patterns of the cytokine responses as well, as it is one of the
main stimulators of IFN-y (annotated as "mixed" in our curation) and the type II
interferon response, which is the key in leading the innate immune response into
the adaptive one, and eliminating the viral infection (Bhardwaj, Seder, Reddy, &

Feldman, 1996; Kang et al., 2018; Lee & Ashkar, 2018).

Future research directions

COVID-19 research moves at an incredible speed, and seems to
accelerate almost day by day. This makes following the literature an exciting and
daunting task, and as such systematic reviews as the one we performed provide
an important gap-filling function, summarising the state of the literature at the
point of curation. The data and literature collected for them can be useful on its
own, and can be further applied later down the line, systematically. I think
systematic reviews like the one summarised in this chapter should be an iterative
process, especially in a dynamically changing topic such as COVID-19 research.
To enable this, we put together a robust semi-automated workflow, that allows
periodic re-scanning of the literature, to fill gaps such as the ones seen in the
hierarchical clustering figure in the first half of the chapter. Although there is
always going to be a level of bias between the other compared viruses and SARS-
CoV-2, caused by the sheer amount of literature being released on the latter, a
functional comparison of these viruses can hopefully let us get a glimpse of the

underlying pathomechanisms undiscovered so far.
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The all-purpose version of CytokineLink, collated from Human Protein Atlas
consensus expression data can give an overview of the cellular and molecular
actors involved in certain infectious and inflammatory diseases. While it is well
annotated, using two external systems immunology databases in the form of
ImmunoGlobe and immuneXpresso, the trade-off is the relatively low level of
resolution we can analyse the data under. Although this is appropriate for
exploratory analyses and hypothesis generation, I think in the future, if
applicable single-cell RNA-Seq data resources exist, a second round of
CytokineLink analysis would provide much higher resolution results, especially
combined with the integrated regulatory layer further informing on the
expression status of the studied cytokines. Although I built the resource with the
COVID-19 research and effort in mind, it can be utilised in all situations involving
cytokines, such as autoimmune diseases, or even Salmonella infections. On the
latter point, I think there exists a yet undiscovered niche of Salmonella research,
wherein one could combine network data from both the host side (e.g. cytokine
responses and their upstream signalling), a mechanistic intermediary layer
established with tools such as MicrobioLink, and an intra-pathogen layer, such
as the ones generated for SalmoNet 2 (Andrighetti, Bohar, Lemke, Sudhakar, &
Korcsmaros, 2020). A complex model like this, generated from dual-RNA-Seq
experiments for example, could give further insight into host-microbe
interactions, by simultaneously uncovering the responses to the infection
process, from both the host and the pathogen side, and potentially allow for
previously unknown insight regarding the pathogenesis process and intervention

therapies.
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5. Final discussion

Network biology approaches are an appropriate tool to study infectious
diseases and interactions of the host and the pathogen. By involving interactions
between the genes or proteins of an organism, or between organisms, they
provide a way to study these organisms on a systems level (Mulder, Akinola,

Mazandu, & Rapanoel, 2014; Sudhakar et al., 2019).

Host adapted Salmonella serovars, or typhoidal Salmonella serovars when
focusing on human disease, cause between 200,000 to 600,000 deaths every
year (GBD 2017 Typhoid and Paratyphoid Collaborators 2019). Understanding
how these invasive serovars form and behave is crucial to developing better
intervention and surveillance strategies. In this thesis, I aimed to develop and
update a network resources that enables us to study extraintestinal and

gastrointestinal Salmonella serovars in this context.

Extraintestinal serovars are the products of convergent evolution, and are not
monophyletically related to each other, in most cases their closest relative is a
gastrointestinal serovar (Branchu et al., 2018). Because of this, many
comparative genomic approaches have been applied to the problem, with great
success: these led to the discovery of how S. Typhi and S. Paratyphi neutralise the
phagocyte respiratory burst, how hundreds of genes, often belonging to the same
functional categories degrade in these serovars, or how they collectively lose part
of their ability to form biofilms (Hiyoshi et al. 2018; Nuccio and Baumler 2014;
MacKenzie et al. 2017).
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Interaction information for non-model organisms are more difficult to acquire
than better studied models. SalmoNet 2, described in Chapter 2, describes the
need for molecular interaction network resources such as this, and the general
logic of how they can be constructed for any organism of importance. The utilised
data sources contain a lot of information for my Gram-negative bacterial species,
and there exist Gram-positive alternatives for the involved layers (Sierro, Makita,
de Hoon, & Nakai, 2008). The frameworks and workflows developed for
SalmoNet 1 & SalmoNet 2 can help other scientific communities which lack
integrated resources, and achieve the same goal of serving as a knowledge base
for understudied organisms, and simultaneously drive research by predicting
previously unknown interactions (Olbei et al., 2019).

The update to the database doubled the included serovars to cover more of the
Salmonella genus and aimed to make the information content more precise than
before. This was done through the involvement of novel data resources, such as
strain specific metabolic models for all involved Salmonella strains, the usage of
the IntAct scoring to involve high quality protein-protein interactions attained
from multiple types of experiments, and the involvement of novel transcription
binding sites used for genome wide scans. Through the inclusion of novel strains
and data sources total number of interactions in the database grew from 81,514
to 270,196, more than tripling that of the first version of the SalmoNet database.
Anecdotally, a second update in a database's lifecycle is an important
steppingstone, signalling to the scientific community that there is still work going
on, they can count on the data in it, and await further updates. This trust between
user and developer is very important for a tool and resource like this to better

integrate into the scientific community.
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Through the comparison of differentially expressed genes following the knockout
of infection relevant regulators and predicted regulatory targets of the same
regulators in SalmoNet 2, I was able to assess the validity to my predicted
regulatory interactions, insofar as they capture biologically relevant interactions
for the majority of analysed global regulators (Colgan et al., 2016). In addition,
the literature published since the generation of the interactions has
independently confirmed, and added function to multiple predicted regulatory
interactions in SalmoNet 2, such as the regulation of sopB through InvF, or the
regulation of ugtL via SsrB, and its lack of regulation in Salmonella bongori (Choi
& Groisman, 2020; Romero-Gonzalez et al., 2020). However, future releases will
have to strive for even greater precision regarding the quality of interactions, as
the included number of included strains and genomes grows, and include other
layers of information, such as posttranscriptional regulation mediated by small

RNASs (Van Assche et al., 2015).

Integrating network information into comparative genomics studies can further
highlight elements under selection and potentially even explain parts of the
organism’s behaviour. We showed an example of this, through a study involving
the adaptive radiation of East African cichlid fish species (T. K. Mehta et al.,
2021). The network rewiring analysis we applied highlighted the gene regulatory
network rewiring of the visual opsin apparatus in a number of species, caused by
a single nucleotide polymorphism in the 5° UTR transcription factor binding
region of the genes in question. This finding fits into the hypothesis that the fish
species adapted to different ecotypes and feeding behaviours utilise and require
different parts of the visible light spectrum. Although the authors of the DyNet

software used case-control experiments involving PPI networks and drug treated
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cell line data as their use case in the original publication, we showed that the
approach can be used to seek out and understand differences arising from the
pressures of evolution (Goenawan et al., 2016). By adding regulatory interactions
to the genes in the compared fish species, we were able to add functionality to the

regulatory mutations observed (T. K. Mehta et al., 2021).

Applying the same rewiring approach to the interaction networks generated for
SalmoNet 2 highlighted the effect genome degradation has on the interaction
networks of typhoidal Salmonella strains, as this pseudogenization process was
a large driving force behind the observed rewiring results of the most rewired
genes between the pathovars, as described previously in the literature (Holt et al.,
2009; Robert A Kingsley et al., 2013; Nuccio & Baumler, 2014; Tanner &
Kingsley, 2018). The large-scale comparison involving all serovars in SalmoNet 2
highlighted a pair of genes that seem to associate to invasive serovars. Due to the
extraordinary challenges we face in our current times, we were not able to carry
out our planned experiments to get a deeper understanding of the potential
functions of these genes, but the computational approaches attempted to
characterize the two proteins highlight how interaction information from
SalmoNet 2 can be used for hypothesis generation, and how downstream
analyses using the linked or external knowledgebases such as OMA or pubMLST
can help in understanding and describing novel characteristics, such as the
phylogenetic spread of the studied proteins (Altenhoff et al., 2018; Jolley et al.,

2018).

The COVID-19 pandemic is still ongoing all over the planet. Although many

countries have started vaccinating against the virus, hopefully indicating changes
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to come, the past year has really highlighted the need to understand not just the
virus itself, but how the immune system responds to it. In my 6-month
redeployment I attempted to uncover parts of this mechanism, by comparing the
cytokine responses from patients infected by functionally and phylogenetically
related viruses. What we have found here is that there exists a group of cytokines
that are not activating in response to a SARS-CoV-2 infection in the analysed

datasets, but are present in other similar viral infections.

To give a mechanistic explanation as to why some cytokines activate, and why
others do not, I built a novel network resource, called CytokineLink, aimed at
highlighting how cells can communicate using cytokines as a medium, and vice
versa, how cytokines can possibly affect each other's expression. I integrated
other systems immunology databases into this network resource, giving more
confidence to the individual links. When analysing the elevated and non-elevated
cytokine levels from the previous study with CytokineLink, I identified a potential
lacking cell signature from myeloid dendritic cells, that could explain why we

noticed the differences when comparing the cytokine responses of viruses.

While these were interesting and novel research projects, adequate for a 6-month
period, in the future I would like to see them iteratively refined, and scaled up,
respectively. Systematic analyses and reviews of the literature of a fast-moving
field such as COVID-19 research is important to sum up the current status of the

field, and identify potential blind spots that need to be addressed.

Although the all-purpose version of CytokineLink is an adequate, high-level

starting point for analyses involving cytokine responses, in my opinion the real
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power of the approach would lie in applying it to large scale single-cell datasets,
coming from infectious or inflammatory diseases, where both the regulatory
layer, and the cytokine interactions could be analysed simultaneously. To make
initial analyses easier, in the future I would like to prepare a simple web-based
access point to the data as well, where interested researchers could quickly

retrieve interactions certain cytokines or cells are involved in.

In this thesis I detailed the workflows and data resources I developed to create
and compare molecular biological interaction networks, to answer specific
biological questions. The methodologies I developed are, for the most part,
agnostic of biological system, as shown by the publications I have co-authored
involving other model (and non-model) organisms. The research presented in
this thesis shows what gaps the pairwise or multiple comparison analysis of

biological networks can fill.

In conclusion, this thesis has added to the understanding of Salmonella host
adaptation, by generating multi-layered molecular interaction networks and a
knowledgebase for multiple extra-and gastrointestinal Salmonella serovars
important in human health. The methods I applied to the networks can be used
in the future to identify rewiring hotspots in biological network comparisons, and
the results obtained with them can lead to validatory analyses and future
hypotheses. The results highlighted in this thesis lead to a framework that could
be used to study not just host adaptation, but any other phenotypic split in a

group of organisms in the future.
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available at the end of the article across ecologically diverse species. Here we use a novel approach for comparative

GRN analysis in vertebrate species to study GRN evolution in representative species
of the most striking examples of adaptive radiations, the East African cichlids. We
previously demonstrated how the explosive phenotypic diversification of East African
cichlids can be attributed to diverse molecular mechanisms, including accelerated
regulatory sequence evolution and gene expression divergence.

Results: To investigate these mechanisms across species at a genome-wide scale,
we develop a novel computational pipeline that predicts regulators for co-extant
and ancestral co-expression modules along a phylogeny, and candidate regulatory
regions associated with traits under selection in cichlids. As a case study, we apply
our approach to a well-studied adaptive trait—the visual system—for which we
report striking cases of network rewiring for visual opsin genes, identify discrete
regulatory variants, and investigate their association with cichlid visual system
evolution. In regulatory regions of visual opsin genes, in vitro assays confirm that
transcription factor binding site mutations disrupt regulatory edges across species
and segregate according to lake species phylogeny and ecology, suggesting GRN
rewiring in radiating cichlids.

Conclusions: Our approach reveals numerous novel potential candidate regulators
and regulatory regions across cichlid genomes, including some novel and some
previously reported associations to known adaptive evolutionary traits.

Keywords: Gene regulatory network, Co-expression, Cichlid, Opsin, Molecular
evolution

Background

Seminal studies by King and Wilson [1] analyzing protein evolution in vertebrates
speculated the importance of evolutionary changes in “regulatory processes” for mor-
phological diversity [2, 3]. These ideas were soon expanded on by Frangois Jacob [4],
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who suggested that the molecular “tinkering” of pre-existing systems is a hallmark of
evolution where, for example, regulatory processes can either be transformed or com-
bined for functional gain [4]. These theories underlie many studies on the divergence
of regulatory processes associated with morphological evolution, and broadly focus on
changes in gene regulatory networks (GRNs) that determine the expression patterns of
genes [5, 6]. Such changes can be mutations within transcription factor binding sites
(TFBSs) located in cis-regulatory elements (promoters and enhancers) of genes or trans
regulatory changes that are due to changes in the level of a regulator [6]. Alterations of
GRNs can lead to phenotypic divergence [7], and these GRN changes between species,
irrespective of direct and indirect functional consequence, are defined as GRN “rewir-
ing” events. This is characterized by regulatory interactions present in one or more spe-
cies but absent in another species, and potentially replaced by a new interaction
between the orthologous TF and a target gene. Several comparative studies of GRNs
underlying mechanisms of adaptation and evolution have been carried out in unicellu-
lar prokaryotes, E. coli [8] and several non-vertebrate eukaryotes, including yeast [9,
10], plants [11], fruit fly [12], and echinoderms [12, 13]. While there are efforts to col-
late and integrate several genomic datasets for vertebrates, including human and mouse
[14], comparative analysis of regulatory networks from these data alone remains a
major computational challenge and very little is known about the phenotypic effect of
genome-wide regulatory network rewiring events in non-model vertebrates [15].

In vertebrates, ray-finned fishes are the largest radiation of any group, and the East
African cichlids represent arguably the most speciose modern examples of adaptive ra-
diations. In the great lakes of East Africa (Tanganyika, Victoria, and Malawi) and within
the last few million years [16, 17], one or a few ancestral lineages of cichlid fish have in-
dependently radiated to collectively give rise to over 1500 species. These species occupy
a large diversity of ecological niches and differ dramatically in phenotypic traits, includ-
ing skeletal morphology, dentition, color patterning, and a range of behavioral traits.
We have previously demonstrated that a number of molecular mechanisms have
shaped East African cichlid genomes, e.g., rapid evolution of regulatory elements and
gene expression divergence [18], and the “evolutionary tinkering” of these systems [19]
has provided the necessary substrate for diversification [18]. This, coupled with the re-
cent origin of cichlid species and ongoing gene flow [20], suggests that evolutionary
regulatory changes have an important functional role in controlling gene expression
and, ultimately, phenotypic variation. However, very little is known about the genome-
wide evolution of regulatory networks that may underlie several traits of cichlid pheno-
typic diversity. Here we developed a novel computational framework to characterize
the evolution of regulatory networks and analyze the plausibility of whether the “tinker-
ing” of regulatory systems could contribute towards phenotypic diversity in closely re-
lated cichlids.

Results

Gene co-expression is tissue-specific and highlights functional evolutionary trajectories
We applied the Arboretum [9] algorithm to RNA-seq data of six tissues in five species
and identified 10 modules of 12,051-14,735 co-expressed genes (1205-1474 genes per
module per species) represented across 18,799 orthogroups (Fig. 1a). Modules of co-
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expressed genes across the five species show varying expression levels in specific tis-
sues, e.g., module 1 is eye specific, while module 3 is heart, kidney, and muscle specific
(Fig. 1a). Consistent with the phylogeny and divergence times, there are more (13,171/
18,799) orthologous genes that are conserved in module assignment (orthologous mod-
ules) in the three closely related haplochromines (Pundamilia nyererei, Maylandia
zebra, and Astatotilapia burtoni) and Neolamprologus brichardi, than with Oreochromis
niloticus (11,212/18,799 orthologous genes). Examples of modules where orthologs are
not conserved in module assignment (non-orthologous modules) include modules 2, 4,
and 6 (Additional file 1: Fig. Sla, blue off-diagonal elements) and are representative of
gene expression divergence across the species. Between the haplochromines alone,
4179/18,799 orthologous genes are distributed in either one of two modules, e.g., 0 or 8
(Additional file 1: Fig. Sla, blue off-diagonal elements in haplochromines), indicative of
gene expression divergence along the phylogeny.

The assignment of co-expressed gene modules by Arboretum [9] is inferred using a
probabilistic framework starting from the last common ancestor (LCA) in the phyl-
ogeny. This allows us to model the evolutionary trajectory of orthologous genes and
their co-expression along the species tree [9]. Orthologous genes of each species can be
assigned to non-orthologous modules (Fig. S-Rla), indicative of co-expression diver-
gence and potential transcriptional rewiring from the LCA; this is referred to as “state
changes” in module assignment. In total, 7587/18,799 (40%) orthologous genes exhibit
state changes in module assignment across branches. To ensure orthologous genes of
all branches are included in subsequent analysis, we focused on state changes of 6844
1-to-1 orthologous genes to assess convergent and unique state changes along the phyl-
ogeny (Fig. 1b). We identified convergent state changes of 732 genes along all ancestral
nodes versus Anc4 (Additional file 1: Fig. S2). This is made up of 772 genes in Anc3
and Anc2, 734 genes in Anc3 and Ancl, and 996 genes in Anc2 and Ancl (Add-
itional file 1: Fig. S2), including a few TFs (46 TFs—Anc3-2-1; 49 TFs—Anc3-2; 46
TFs—Anc3-1; 66 TFs—Anc2-1) such as thx20, nkx3-1, and hoxdl10. We identified
unique state changes and expression divergence of 655 genes along ancestral nodes
(Fig. 1b), including several cellular and developmental TFs (51 TFs—Anc4/3; 20 TFs—
Anc3/2; 34 TFs—Anc2/1) such as foxol, hoxall and [bxI. Several of these state chan-
ged regulatory TFs are also enriched (fold enrichment 1.1-1.7; false discovery rate,
FDR <0.05) in gene promoters of relevant tissue-specific modules; for example, pro-
moters of module 1 genes (eye-specific expression) are significantly enriched (fold en-
richment 1.1-1.6; FDR <0.05) for TF motifs involved in retina- and lens-related
development/functions, e.g., CRX, PITX3, and OTX1 [21] (Additional file 1: Fig. S3,
Additional file 2: Fig. S2). Further examination identifies that there are differences in
the levels of TF motif enrichment across species genes, including that of retina/lens-re-
lated TFs, e.g., RAR /B/y and RXR /B/y [22] of module 1 gene promoters in all species
except N. brichardi (Additional file 1: Fig. S3, Additional file 2: Fig. S2). Such differ-
ences in motif enrichment could be associated with changes in the level of TF expres-
sion, where state changes (Fig. 1b) reflect shifted domains of tissue expression and
imply differential regulatory control of target genes across tissues and along the phyl-
ogeny. We tested this by taking (1) the log expression ratio (as used for Arboretum in-
put), for all 337 expressed TFs in each species tissue; (2) the corresponding 2064 TF
motif enrichment scores (—log g-value, FDR <0.05) calculated across 12,051-14,735
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promoters regions of all species genes in the 10 modules; and (3) calculating the cross-
species Pearson correlation coefficient (r) between the motif enrichment score and ex-
pression value of each TF and in each tissue (Additional file 2: Fig. S3-S8) using the
n =5 species. We note different patterns of correlation between cross-species TF motif
enrichment and tissue-specific expression; in total, 102—-119/337 TFs had no correl-
ation (0 r 0.01, n=5) and included many TFs that had large shifts in motif enrich-
ment and/or expression in several species, representative of several phylogenetic state
changes, e.g., Kidney-Module2-FOXO1 (r=0.01, n = 5) (Extended Data S-R1F). On the
other hand, there is positive correlation ranging from small (0.1 r 0.3, n=5) for
161-197 TFs, medium (0.3 <r 0.5) for 161-186 TFs, and large values (0.5<r 1) for
226-262 TFs. The largely correlated TFs (0.5 <7 1) includes cases where there is com-
parable motif enrichment scores across species, as calculated by the variance distribu-
tion (see “Methods”), and either no shifts (no TF state changes), e.g., Brain-Module9-
FOXA2 (r =0.97, n =5, p value < 0.05) or focused shifts (TF state change in one or sub-
sets of species), e.g., Eye-Module2-CDX1 (r =0.98, n=5, p value <0.05) in TF tissue
expression (Additional file 1: Fig. S5, Additional file 2: Fig. S3-S8). Such patterns of fo-
cused shifts in expression are also observed in TFs of selected modules like, for ex-
ample, module 1 which contains eye-expressed genes. We find that retinal TFs that are
known to modulate opsin expression, e.g., CRX [23], have variable motif enrichment
(fold enrichment 1.2-1.4) in eye-expressed genes, and are associated (r=0.85, n=5, p
value <0.1) with a concurrent change (increase in four species or decrease in N. bri-
chardi) in TF eye expression along the phylogeny (Additional file 1: Fig. S6; see Add-
itional file 1 text). For most TFs (226-262/337 TFs) and tissues, motif enrichment is
largely correlated (0.5 <r 1) with TF expression. After calculating the variance of each
TF motif enrichment and categorizing the tails into either similar or dissimilar levels of
TF motif enrichment (see “Methods”), we note that similar motif enrichment (across
species) is associated with either expression conservation (across all species) or subtle
expression changes (in one or subsets of species) and is more stable (in expression dif-
ferences) than TFs with dissimilar/variable motif enrichment along the phylogeny
(Additional file 2: Fig. S3-S8). Gene co-expression differences and convergence between
species could therefore be driven by differences in TF motif levels in gene promoter
regions.

Fine scale nucleotide variation at TF binding sites drives regulatory divergence in cichlids
through GRN rewiring

Cis-regulatory elements, including promoters and enhancers, are central to gene ex-
pression regulation, largely acting through the binding of TFs to multiple transcription
factor binding sites (TFBSs). Therefore, mutations within TFBSs can alter target gene
transcription without affecting the expression pattern of other genes co-regulated by
the same TF, thus driving GRN evolution. In the five cichlid genomes however, there is
no significant increase in evolutionary rate at promoter regions compared to fourfold
degenerate sites (Additional file 1: Fig. S7). However, we identify a few outlier genes
with significantly higher evolutionary rate at promoter regions at ancestral nodes (12—
351 genes, Additional file 1: Fig. S7b) and within species (29-352 genes, Additional file 1:
Fig. S7d), indicative of small-scale changes in promoter regions (see Additional file 1
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text). Concurrently, of all the identified pairwise species variation (8 to 32 million vari-
ants), a large proportion (13-28%) overlap predicted TFBSs in promoter regions, and
this is higher than (8—9%) of variants that are present in flanking gene promoter re-
gions of the same length (Additional file 1: Table S2, Additional file 1: Fig. S8). GO en-
richment analysis of co-expressed genes with variation in their regulatory regions,
against a background of all genes in each genome, highlights associations with key mo-
lecular processes, e.g., signal transduction-promoter TFBSs (Additional file 1: Fig. S9).

To further investigate patterns of divergent regulatory programs that could be associ-
ated with discrete nucleotide variation at regulatory binding sites, we developed and ap-
plied a computational framework (see “Methods,” Additional file 1: Fig. S20) to
comparatively study regulatory interactions/relationships across the five cichlids. This
involved the reconstruction of species-specific GRNs through the integration of differ-
ent genomic datasets (Additional file 1: Table S3). We focused on regulatory interac-
tions/relationships of trans-acting factors (TFs) and DNA (gene promoter regions); this
involved integrating an expression-based network with in silico predictions of TF bind-
ing to target gene (TG) promoters using our cichlid-specific and vertebrate-wide TF
motif scanning pipeline (see “Methods,” Additional file 1: Fig. $20). We first used spe-
cies- and module-specific gene expression levels to infer an expression-based network
[24] (see “Methods,” Additional file 1: Fig. S20), generating 3180-4099 transcription
factor-target gene (TF-TG) edges across the five species (FDR < 0.05, Additional file 1:
Table S3). Next, based on our in silico TFBS motif prediction pipeline, we predicted
TFBS motifs up to 20 kb upstream of a gene transcription start site (TSS), and using
sliding window analysis of 100 nucleotides (nt), we retained TF motifs in the gene pro-
moter region, defined as up to 5kb upstream of a gene TSS (see “Methods,” Add-
itional file 1: Fig. S22). Each statistically significant TFBS motif (FDR <0.05) was
associated to its proximal target gene (TG) and represented as two nodes and one TF-
TG edge. Based on the integrated approach (see “Methods,” Additional file 1: Fig. $20),
we predicted a total of 3,295,212-5,900,174 TF-TG edges (FDR < 0.05) across the five
species that could be encoded into a matrix of 1,131,812 predicted TF-TG edges
(FDR < 0.05), where each edge is present in at least two species. To ensure accurate
analysis of GRN rewiring and to retain relevant TF-TG interactions, all collated edges
were then further pruned to a total of 843,168 TF-TG edges (FDR < 0.05) where (1) the
edge is present in at least two species; (2) edges are not absent in any species due to
node loss or mis-annotation; and (3) edges are based on the presence of nodes in mod-
ules of co-expression genes (see “Methods”).

We used three metrics to study large-scale TF-TG network rewiring between species
that included: (1) state changes in module assignment; (2) DyNet [25] network rewiring
scores; and (3) TF rate of edge gain and loss in networks. The first metric compares
TE-TG edges of a single “focal” species versus the other species in the context of gene
co-expression, while the second and third metric compute a likelihood score for the
overall extent of edge changes (across all species) associated with single nodes of inter-
est. We first focused on 6844 1-to-1 orthologous genes represented in 215,810 TF-TG
interactions, termed “TF-TG 1-to-1 edges,” along the five cichlid tree. Using a back-
ground set of all module genes (18,799 orthogroups), the TF-TG 1-to-1 edges are asso-
ciated with morphogenesis and cichlid traits under selection, e.g, eye and brain
development (FDR < 0.05, Additional file 1: Fig. S10a). There are 379 TFs represented
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and their targets (TGs). a Rewiring events linked to module assignment state changes of TFs in 215,810 TF-
TG 1-to-1 edges (FDR < 0.05) of each species in the cichlid phylogeny compared to the other four species
(see Additional file 1 for other FDR thresholds). b GO term enrichment of the 50-70 TFs that are rewired
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fold enrichment (legend on right, FDR < 0.05). ¢ Violin plots of DyNet (D,,) rewiring score (degree-corrected)
from 6844 1-to-1 orthologs in 215,810 TF-TG network edges (green, left violin) and 14,590 1-to-1 and many-
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each plot (white diamond). Degree-corrected rewiring score shown for non-candidate genes (black dots
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the mean, and selected candidate examples are demarcated within. d Rewiring events linked to module
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in the TF-TG 1-to-1 edges, and we focus on their interactions/relationships to deter-
mine whether TFs with (state) changes in module assignment have altered regulatory
edges. In the first metric, rewiring is characterized as a unique TF-TG edge present in
only one “focal” species, where the TF node is (1) state changed in module assignment
and (2) present as a node in different TF-TG edges in any/all of the other species.
Using this metric, 50-70 out of the 379 TFs (13-18%) are rewired (spanning 4060—
9423/215,810 edges, FDR < 0.05, Fig. 2a; see Additional file 1 text) and change module
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assignment across the five species (in one focal vs all four other species). The gene
nodes connected by the rewired edges are associated with signalling pathways and pro-
cesses such as cell differentiation and embryonic development (FDR < 0.05, background
of all module genes, Fig. 2b). Further examination of rewiring rates in the networks of
6844 1-to-1 orthologous genes (in 215,810 TF-TG interactions) using the DyNet [25]
degree-corrected rewiring (D,) score (Fig. 2¢, Additional file 3: Table S1) identifies
rewired networks of nine teleost and cichlid trait genes associated with morphogenesis
from previous studies (Fig. 2c, Additional file 3: Table S2). These genes have a few
standard deviations higher degree-corrected rewiring (D,) score than the mean (0.17 +
0.03 SD), and their rewiring scores are comparatively higher (Kolmogorov—Smirnov
KS-test p value =6 x 10~ *) than all 1-to-1 orthologs (Fig. 2c, left violin plot, orange
dots; Additional file 3: Table S3; see Additional file 1 text). Examples of these rewired
1-to-1 genes include gdf10b associated with axonal outgrowth and fast evolving in cich-
lids [18] and the visual opsin gene, rh2 (Fig. 2c, left violin plot; Additional file 3: Table
S3 S-R3C). To enable a genome-wide study of network rewiring, we extend our ana-
lyses beyond the 6844 1-to-1 orthologs only, by including an additional 7746 many-to-
many orthogroups (see “Methods”) resulting in a set of 843,168 “TF-TG all edges”
across the five species. Using a background set of all module genes (18,799
orthogroups), the gene nodes in the 843,168 TF-TG all edges are associated with mor-
phogenesis, e.g., retina development (FDR < 0.05, Fig. SR3aB). These edges include in-
teractions of 783 TFs of which 13-18% (100-140 TFs) are predicted to be rewired (in
20,716-37,590/843,168 edges, FDR <0.05, Fig. 2d) and change module assignment
across the five species (in one focal vs all four other species), indicating their associated
transcriptional programs (FDR < 0.05, background of all module genes) are also altered
(Fig. 2e). By examining the network rewiring rates of 14,590 orthogroups (in 843,168
TF-TG interactions, Additional file 3: Table S4) using DyNet [25], we identify 60 candi-
date teleost and cichlid trait genes associated with phenotypic diversity from previous
studies (Fig. 2¢, right violin plot; Additional file 3: Table S5). These genes have a few
standard deviations higher degree-corrected rewiring (D,) score than the mean (0.23 +
0.007 SD) of all orthologs, and their rewiring score is comparatively higher (KS-test p
value =6 x 10”14 (Fig. 2c, right violin plot, orange dots; Additional file 3: Table S4).
These genes include those associated with craniofacial development, e.g., dlxla and
nkx2-5 [21], telencephalon diversity, e.g., foxgl [26], tooth morphogenesis, e.g., notchl
[27], and strikingly, most visual opsins, e.g., rho, sws2, and swsl, as well as genes associ-
ated with photoreceptor cell differentiation, actrib [28], and eye development, pax6a
[21] (Fig. 2c, right violin plot; Additional file 3: Table S5). We then focus on the gain
and loss rates of 186/783 TFs with >25 TF-TG edges along the five cichlid tree (see
“Methods”). Out of the 186 TFs, 133 (72%) are predicted to have a higher rate of edge
gain than loss, e.g., DLX5 and NEUROD2, possibly acting as recruited regulators of
gene expression in each branch from their last common ancestor (LCA) (Additional
file 3: Table S6), whereas 53/186 TFs (28%) have a higher loss of edges than gains, e.g.,
OLIG2 and NR2C2, implying loss of gene expression regulatory activity from their
LCA (Additional file 3: Table S6). In general, TFs and their binding sites are evolving
towards gaining, rather than losing regulatory edges from their LCA.

To further characterize the role of the observed changes in cis-regulatory elements
and their potential association with cichlid traits, we extended our analyses to include
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several radiating cichlid species. We screened all predicted TFBS (see “Methods”) vari-
ants between M. zebra (a Lake Malawi species) and the other four cichlids, with their
corresponding positions in 73 phenotypically distinct Lake Malawi species [20], to iden-
tify between-species variation at regulatory sites along the phylogeny (Additional file 1:
Fig. S11). As expected, the majority of variation at regulatory sites is identified between
M. zebra and distantly related Lake Malawi species clades, e.g., NKX2.1 TFBS in swsl
gene promoter, whereas shared ancestral sites are found with mainly same/closely re-
lated Lake Malawi clades, e.g., EGR2 TFBS in cntn4 gene promoter. Genes that are as-
sociated with traits under selection, e.g., visual systems [29] (swsl) and morphogenesis
[18] (cntn4), harbor between species regulatory variants that segregate according to
phylogeny and ecology of radiating lake species.

is-regulatory changes lead to GRN alterations that segregate according to phylogeny
and ecology of radiating cichlids
Through our comparative approach, we can examine the regulatory network top-
ology of several genes that are important for cichlid diversification [30, 31] and
represented by our six tissues. As a case study, we focus on the cichlid visual sys-
tem; the evolution of cichlid GRNs and diverse palettes of co-expressed opsins can
induce large shifts in adaptive spectral sensitivity of adult cichlids [29], and thus,
we hypothesize that opsin expression diversity is the result of rapid adaptive GRN
evolution in cichlids. Indeed, by focusing on species utilizing the same wavelength
visual palette and opsin genes, we note that several visual opsin genes (rh2b, swsl,
sws2a, and rho) have considerably rewired regulatory networks (Additional file 3:
Table S6). Across the predicted transcriptional networks of cichlid visual opsins,
there are several visual-system-associated regulators (TFs) of opsin genes (sws2a,
rh2b, and rho) that are either common, e.g, STAT1A, CRX, and GATA2, or
unique to each species, e.g., IRF1, MAFA, and GATA2A (Additional file 1: Fig.
S12-14). These patterns of TF regulatory divergence could therefore contribute to
differential opsin expression.

Swsl (ultraviolet) opsin is utilized as part of the short-wavelength sensitive palette in N.
brichardi and M. zebra. While there are common regulators associated with retinal gan-
glion cell patterning in both species networks, e.g, SATB1 [32], there are also several
unique regulators associated with nuclear receptor signalling, e.g., RXRB and NR2C2 [33],
and retinal neuron synaptic activity, e.g., ATRX [34] (Fig. 3a). Overall, using a significance
threshold of FDR < 0.05 for predicted TF-TG edges, there are more predicted unique TF
regulators of swsI in M. zebra (38 TFs) as compared to N. brichardi (6 TFs) (Fig. 3a, bot-
tom right). Furthermore, we identify that a candidate regulatory variant has likely broken
the M. zebra NR2C2/RXRB shared motif that is otherwise predicted 2 kb upstream of the
N. brichardi swsl TSS (Fig. 3b). Functional validation via EMSA confirms that NR2C2
and not RXRB binds to the predicted motif in the N. brichardi swsl promoter, forming a
complex, and the variant has likely disrupted binding, and possibly regulation of M. zebra
swsl (Fig. 3¢, d). This is further supported by correlating expression values of these regu-
lators and swsl, where NR2C2 is better associated with swsl than RXRB, particularly
when focusing on eye tissue (Additional file 1: Fig. S16a on right; Additional file 1: Fig.
S16b; see Additional file 1 text).
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Fig 3 Evolution of the swsT opsin regulatory networks in N. brichardi and M. zebra. a Reconstructed
regulatory networks of sws1 opsin shown for N. brichardi (left) and M. zebra (right : circular layout nodes are
common regulators (unless missing); grid layout nodes are unique regulators in M. zebra. Node shape,
annotation and edge color denoted in legend to left bottom. Violin plot of significance (FDR < 0.05) of
unique TF-swsT edges in N. brichardi (green violin) and M. zebra (blue violin) to bottom right—mean edge
significance score shown within each plot (white diamond); edges more than the mean (less significant) are
shown as gray dots, and edges less than the mean (more significant) are shown as orange dots; selected
example TFs are demarcated within. b On the left, NR2C2 and RXRB motif logos and motif prediction in
negative orientation N. brichardi sws1 gene promoter (red box) and variant in M. zebra sws1 gene promoter
(red arrow). On the right, NR2C2 and RXRB partial protein alignment showing DNA-binding domain (DBD)
annotation in human, mouse, M. zebra and N. brichardi. ¢ EMSA validation of NR2C2 and RXRB DBD binding
to N. brichardi and M. zebra sws1 gene promoter. Table denotes combinations of DNA probe and expressed
DBD in EMSA reactions that include negative controls (lanes 1 to 4); N. brichardi protein: DNA-binding assay
(lanes 5 and 6); M. zebra protein: DNA-binding assay (lanes 7 and 8); kit negative (lane 9) and binding
positive control (lane 10). Protein:DNA complexes, dye front and free DNA are indicated by arrowhead and
bracket within. d EMSA validation of increasing NR2C2 DBD concentrations and binding to predicted TFBS
in N. brichardi sws1 gene promoter
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Fig 4 Evolution of the rhodopsin regulatory networks in O. niloticus, A. burtoni and M. zebra. a On the feft,
GATA2A motif prediction in reverse orientated O. niloticus and A. burtoni rhodopsin gene promoter (red
box) and substitution demarcated in M. zebra rhodopsin gene promoter (red arrow). On the right, GATA2A
partial protein alignment showing DNA-binding domain (DBD) annotation in human, mouse, O. niloticus, A
burtoni and M. zebra. b EMSA validation of GATA2A DBD binding to O. niloticus and A. burtoni rhodopsin
gene promoter. Table denotes combinations of DNA probe and expressed DBD in EMSA reactions that
include negative controls (lanes 1 to 5); O. niloticus (lane 6), A. burtoni (lane 7) and M. zebra (lane 8) protein:
DNA-binding assays. GATA2Arho complex formed in O. niloticus (lane 6) and A. burtoni (lane 7) as
confirmed by band shift (red box) and no complex formed in M. zebra (lane 8)

In another example, riodopsin rho), associated with dim-light vision, is predicted to
be regulated by GATA2 in O. niloticus, A. burtoni, and M. zebra but not its duplicate
gene, GATA2A only in M. zebra (Additional file 1: Fig. S14). We identify a candidate
variant (red arrow, Fig. 4a) that has likely broken the M. zebra GATA2A motif that is
otherwise predicted 1.8 kb and 1.9 kb upstream of the O. niloticus and A. burtoni rho
TSS (Fig. 4a). Functional validation via EMSA confirms that GATA2A binds to the pre-
dicted motif in the O. niloticus and A. burtoni rho promoter, and the variant is likely to
have disrupted binding, and possibly regulation of M. zebra rho (Fig. 4b). Species-
specific expression correlations with the r/o target gene are supportive of GATA2’s
possible conserved role in all three species (O. niloticus r = 0.89; A. burtoni r = 0.39; M.
zebra r=0.28, n=6 Additional file 1: Fig. S17c), while a more divergent role of
GATA2A (O. niloticus r=0.79 and A. burtoni r=0.21, n = 6) and negative correlation
in M. zebra (r=-0.18, n=6) is supportive (Additional file 1: Fig. S17c) of the EMSA
validation (Fig. 4). This further supports the notion that discrete point mutations in
TFBSs could be driving GRN evolution and rewiring events in traits that are under se-
lection in radiating cichlids.

Finally, we studied GRN rewiring as a result of between species TFBS variation in the
context of phylogeny and ecology of lake species. Owing to the variability and import-
ance of spectral tuning of visual systems to the foraging habits of all cichlid species, we
focused on variants at regulatory sites of rewired visual opsin genes in the Lake Malawi
species, M. zebra, as a reference to compare GRN rewiring (through TFBS variation)
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that could be associated with the ecology of sequenced Lake Malawi species [20]. If in-
deed the TFBSs are likely functional, we hypothesize that radiating species with similar
foraging habits would share conserved regulatory genotypes, to possibly regulate and
tune similar spectral sensitivities, whereas distally related species with dissimilar for-
aging habits would segregate at the corresponding regulatory site. For this, we started
with 157,232 sites that (1) have identified variation between the five cichlid species and
(2) are located in TFBSs of M. zebra candidate gene promoters. We identified 5710/
157,232 sites with between species variation across 73 Lake Malawi species (Add-
itional file 1: Fig. S11) that also exhibited flanking sequence conservation, representative
of shared ancestral variation. The homozygous variant (T|T) that breaks binding of
NR2C2 to M. zebra swsl promoter (Fig. 3 and Fig. 5 blue arrow) is (1) conserved with
the fellow algae eater, Tropheops tropheops, that also utilizes the same short-
wavelength palette; (2) heterozygous segregating Petrotilapia genalutea—C|T and
lodotropheus sprengerae—T|C) in closely related Mbuna species; and (3) homozygous
segregated (C|C) in distantly related Mbuna species (Cynotilapia afra, Corydoras axel-
rodi, and Genyochromis mento) and most other Lake Malawi species of which some
utilize the same short-wavelength palette and are algae eaters, e.g., Hemitilapia oxy-
rhynchus (Fig. 5). This suggests that in species closely related to M. zebra, and with a
similar diet and more importantly, habitat, swsI may not be regulated by NR2C2,
whereas in other species it could be, similar to N. brichardi (Fig. 3 and Fig. 5 red
arrow). In another example, regulation of rho by GATA2, and not its duplicate,
GATA2A (Fig. 4), could be sufficient for regulating dim-light vision response in rock
dweller species (M. zebra and possibly Petrotilapia genulatea, Tropheops tropheops and
ITodotropheus sprengerae), but both gata2 copies could be required to regulate /0 in
many other Lake Malawi species (79% with C|C genotype that otherwise predicts the
GATA2A TFBS in rho gene promoter), as well as A. burtoni and O. niloticus (Add-
itional file 1: Fig. S14—15). This highlights the potential differential usage of a duplicate
TF in dim-light vision regulation. Phylogenetic independent contrast analysis [37] of
the NR2C2-sws! (Additional file 1: Fig. S18a-f) and GATA2A-rho (Additional file 1:
Fig. S19a-f) genotypes against visual traits and ecology of each of the 73 Lake Malawi
species highlights very little change in correlation once the phylogeny is taken into ac-
count and a regression model fitted. Based on these examples of TFBS variants that
segregate according to phylogeny and ecology of lake species, GRN rewiring through
TFBS variation could be a key contributing mechanism of evolutionary innovation, es-
pecially visual systems, in East African cichlid radiations.

Discussion

The evolutionary “tinkering” of regulatory systems through GRN divergence can facili-
tate the evolution of phenotypic diversity and rapid adaptation [19]. Various mecha-
nisms underlie these events, including horizontal gene transfer and regulatory
reorganization in bacteria [38]; gene duplication in fungi [39]; cis-regulatory expression
divergence in flies [40]; variable gene co-expression in worms [41]; dynamic rewiring of
TFs in plant leaf shape [11]; coding and non-coding evolution in stickleback fish [42];
alternative splicing [43], and differential rate of gene expression evolution shaped by
various selective pressures [44, 45] in mammals. However, since very little is known
about the combined effect of some of these mechanisms; in-depth analyses of
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(right): a species foraging/diet habit (color) [35] and phased SNP genotype (shape) [20]; b adult opsin
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regulatory network evolution can shed light on the key contributing mechanisms asso-
ciated with phenotypic effect across ecologically diverse species in a phylogeny.

The three great lakes of East Africa (Tanganyika, Victoria, and Malawi) have inde-
pendently experienced rapid radiations and explosive diversification of well over 1500
cichlid species. Alongside ecological opportunity [17], East African cichlid diversifica-
tion has been shaped by complex evolutionary and genomic forces, including divergent
selection acting upon regulatory regions [18] that is largely based on a canvas of low
genetic diversity between species [20]. All of these findings imply the rapid evolution of

Page 13 of 28
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regulatory networks underlying traits under selection; however, little is known about
the genome-wide evolution of regulatory networks that may underlie several traits of
cichlid phenotypic diversity [46]. Here we developed a novel approach to identify and
compare gene regulatory modules and networks across six tissues of five East African
cichlid species.

Along the phylogeny, our analyses identified gene co-expression modules with tissue-
specific patterns and differential trajectories across six tissues of five cichlids. Between
the haplochromine species alone, nearly a quarter of all orthologous genes are distrib-
uted in either one of two modules. Considering the smaller divergence time of the three
haplochromines (~ 6 MYA) and the three haplochromines vs O. niloticus (~ 19 MYA)
[47], this indicates gene expression divergence over different evolutionary timescales
and co-expression of different clusters of genes across species. Given that the volumes
and, hence, representation of region-specific cell types of selected organ, e.g., brain re-
gions can be different, even between closely related cichlids [48], it is plausible that the
observed expression differences between species are driven by changes in cell type
abundances. However, given that expression data was generated from the organs of
multiple similarly sized adult individuals and the identification of conserved tissue-
specific patterns across all tissues and species, e.g., module 1 is eye specific (Fig. 1a), we
suspect that the majority of observed co-expression differences are connected to gene
regulatory differences. Indeed, these genes are predicted to be regulated by divergent
suites of regulators, including TFs that are state changed in co-expression module as-
signment. This suggests that gene co-expression differences and convergence between
species could be driven by differences in TF motif levels in gene promoter regions and
could be associated with gene regulatory changes underpinning traits under selection
in cichlids, such as the visual system [29]. In the five cichlids, transcriptional rewiring
events and differential gene expression could therefore contribute to phenotypic diver-
sity of the six studied tissues.

Cis-regulatory elements (including promoters and enhancers) are central to cichlid
gene expression regulation [18], and in this study, we show that discrete nucleotide
variation at binding sites drives regulatory edge divergence through GRN rewiring
events. Comparative analysis of GRNs across species identifies that TFs and their bind-
ing sites are evolving towards gaining, rather than losing regulatory edges, and possibly
regulatory activity of genes from their LCA. Comparative GRN analysis also identified
striking cases of rapid network rewiring for genes known to be involved in traits under
natural and/or sexual selection, such as the visual system, possibly shaping cichlid
adaptation to a variety of ecological niches. While there are common regulators of the
swsl visual opsin in two species (N. brichardi and M. zebra) sharing the same short-
wavelength palette, the sws! networks of these two species have substantially diverged.
Such tight TF-based regulation of N. brichardi swsl could induce rapid shifts in expres-
sion and spectral shift sensitivities between a larger peak .« of 417 nm in N. brichardi
single cones [49] compared to 368 nm of M. zebra SWS1 [50]. Also, diverse regulation in
M. zebra can increase swsl expression and, in turn, increase spectral sensitivity to UV
light and the ability for M. zebra to detect/feed on UV-absorbing phytoplankton and algae,
as previously shown for Lake Malawi cichlids [35]. In regulatory regions of swsl, in vitro
assays confirm that variations in TFBSs NR2C2) have driven network structure rewiring
between the two species N. brichardi and M. zebra) sharing the same visual palette.
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Since the modulation of cichlid visual sensitivity occurs through heterochronic shifts in
opsin expression [51], our results are consistent with recent findings that visual tuning dif-
ferences between cichlid species require regulatory mutations that are constrained by muta-
tional dynamics [52].

Gene duplications have also been implicated in cichlid evolutionary divergence, in-
cluding differences in duplicate TF gene expression [18]. However, due to incomplete
lineage sorting (ILS) and variability in duplicates identified by three separate methods
(gene trees, read-depth analyses and array comparative genomic hybridization) [18], we
instead focus on particular examples of gene duplication associated with network rewir-
ing of visual system genes. We predict that the dim-light vision gene, rho, is regulated
by GATA2 and potentially common to regulating dim-light vision in M. zebra, A. bur-
toni, and O. niloticus but a duplicate TF, GATA2A, is predicted to be a unique regula-
tor of rho in A. burtoni and O. niloticus only, owing to a variant in the GATA2A TFBS
of the M. zebra rho gene promoter. Furthermore, M. zebra variants overlapping TFBSs
in gene promoter regions, e.g., swsl (NR2C2) and rho (GATA2A) segregate according
to phylogeny and ecology of Lake Malawi species [20], suggesting ecotype-associated
network rewiring events could be linked to traits under selection in East African cichlid
radiations. This is consistent with the adaptive potential of visual system evolution in
cichlid species, where changes in spectral tuning of visual signals are likely to lead to
dramatic species evolution and possibly speciation events [53]. Given that single regula-
tory mutations of 7hx2a can cause heterochronic shifts in opsin expression and visual
tuning diversity between two distinct cichlid species [52], it is likely that the regulatory
variation at opsin gene promoter TFBSs that we have predicted and experimentally val-
idated, is a contributing mechanism of evolutionary innovation across many cichlid
species. Furthermore, the identification (in predicted TFBSs) of segregating sites across
several Lake Malawi species, with conservation of flanking regions, is indicative of
shared ancestral variation and functional evolutionary constraint. The differences we
identify at opsin gene promoter TFBSs and their implications in visual tuning could
correspond to species variation of habitat choice, foraging habits, diet, and male nuptial
coloration. Phylogenetic independent contrast analysis [37] shows that fitting the Lake
Malawi phylogeny has little effect on the correlation between regulatory genotypes, vis-
ual traits, and ecology, suggesting possible covariance between these genotypes and
traits. However, given the weak correlation (low adjusted * and p values), the impact
of ecotype-associated network rewiring events requires further testing. This analysis
would further benefit from (1) the addition of any missing data (wavelength palette,
habitat, and/or foraging habit/diet) in the phylogeny; (2) the addition of further vari-
ables, e.g., average water depth measurements; (3) additional species data from lowly
represented clades, e.g, Mbuna; and (4) further experimental testing, particularly in
phenotypically divergent species pairs. Beyond the visual systems, we also identify net-
work rewiring of genes associated with several cichlid adaptive traits like, for example,
runx2 associated with jaw morphology [54]; ednrbl in pigmentation and egg spots [18,
55]; and egrl implicated in behavioral phenotypes [56]. These also represent case stud-
ies that can be validated in species pairs that diverge for the trait of interest.

The regulatory networks generated here represent a rich scientific resource for the
community, powering further molecular analysis of adaptive evolutionary traits in cich-
lids. As an example, further examination of the vast regulatory factors that we have

228



Mehta et al Genome Biology [HEEH2021)R2:25K Page 16 of 28

predicted for the visual systems that could both up- and downregulate opsin expression
diversity and could further shed light on preliminary studies of SWS1 [57], LWS, and
RH2 [52] in other cichlid species. This could involve further functional validation to de-
fine a definitive link to trait variation by (1) high-throughput protein-DNA assays to
confirm binding of hundreds of sites; (2) reporter and/or cell-based TF-perturbation as-
says to show that the regulatory variants indeed affect transcription; and (3) genome
editing, e.g., CRISPR mutations of TFBS variants followed by phenotyping to observe
trait effect. Nonetheless, this study is the first genome-wide exploration of GRN evolu-
tion in cichlids, and the computational framework (Additional file 1: Fig. S20) is largely
applicable to other phylogenies to study the evolution of GRNS. In this study, we largely
focus on cis-regulatory mechanisms of GRN rewiring. However, given the potential im-
pact of other genetic mechanisms (protein coding changes, small RNAs, and posttrans-
lational modifications) towards cichlid phenotypic diversity [18, 46], our framework can
be extended by the inclusion of relevant datasets to allow for studies on the regulatory
effect of other mechanisms, e.g., miRNAs, enhancers, and gene duplications on network
topology during cichlid evolution. While many of the predicted TF-TG interactions/re-
lationships could be false positives, our integrative approach ensured that we could
apply rigorous filtering at each step, including stringent statistical significance mea-
sures, co-expression-based pruning, and all while accounting for gene node loss and
mis-annotations in selected species (see “Methods”).

While it appears that cichlids utilize an array of regulatory mechanisms that are also
shown to drive phenotypic diversity in other organisms [11, 39-42, 58], we provide ex-
perimental support of selected TF-TG rewiring events in regulatory regions of genes asso-
ciated with adaptive traits in cichlids [18]. This is further supported by large-scale
genotyping studies of the predicted sites in radiating cichlid species [20]. This potential
link between GRN evolution and genes associated with adaptive trait variation in cichlids
requires additional experimental verification and support by further studies on cichlid
species that largely focus on large-scale genotyping [20]; whole-genome analysis and
transgenesis assays [18]; behavioral and transcriptomic assays [59]; population studies and
CRISPR mutant assays [60]; and transcriptomic/cis-regulatory assays [35, 49, 52, 57].

Conclusions

We present a novel computational framework to study the evolution of regulatory net-
works in representative species of the rapid adaptive radiations of East African cichlids.
Using six tissues from five species, our approach identified tissue-specific gene expression
divergence between the five cichlid species that is likely associated with gene regulatory
changes. As a case study, we focus on a well-studied trait—the visual system—for which
we identified regulatory variation at TFBSs and demonstrate how the functional disrup-
tion of TFBSs abrogates binding of key regulators and, thus, can drive GRN evolution.
Our approach revealed hundreds of novel potential regulatory regions and regulators of
the five cichlid genomes, many of which have been previously associated with evolutionary
traits. In conclusion, we show that regulatory network evolution can be driven by discrete
changes at regulatory binding sites, and network rewiring events are likely to be a contrib-
uting source to evolutionary innovations in radiating cichlid species. This approach, with
further functional validations, has the potential to identify novel genes linked to other evo-
lutionary traits in cichlids and other evolutionary systems.
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Methods

A comparative framework to study the evolution of tissue-specific regulatory networks in
cichlids

We developed a comparative framework (Additional file 1: Fig. S20) to infer gene regu-
latory networks across five representative East African cichlid species—O. niloticus
(On), N. brichardi (Nb), A. burtoni (Ab), P. nyererei (Pn), and M. zebra (Mz). Our
framework comprises (1) identifying modules of co-expressed genes from multi-tissue/
multi-species and single-tissue/multi-species data; (2) integrating several datasets (gene
expression and cis regulatory regions) to reconstruct gene regulatory networks (GRNs)
to find fine-grained tissue-specific network modules; (3) examining factors driving evo-
lutionary innovation in cichlids, i.e. nucleotide divergence within regulatory binding
sites and determining their mechanistic roles towards regulatory network and module
divergence; and (4) using an integration of the reconstructed networks, co-expression
modules, and enrichment of curated biological processes to interpret GRN evolution of
genes in the context of cichlid adaptive traits.

Inference of multi- and single-tissue transcriptional modules in five cichlids

We ran Arboretum [9], an algorithm for identifying modules of co-expressed genes on
gene expression values of six tissues (brain, eye, heart, kidney, muscle, testis) from five
cichlid species—O. niloticus (On), N. brichardi (Nb), A. burtoni (Ab), P. nyererei (Pn), and
M. zebra (Mz) [18]. Tissues were isolated and RNA extracted from several adult individ-
uals as described previously [18] and summarized here: O. niloticus tissues were isolated
from Swansea stock individuals in the laboratory of Dr. Gideon Hulata (Volcani Center,
Bet Dagan, Israel) and RNA extracted in the lab of Dr. Micha Ron (Volcani Center, Bet
Dagan, Israel) using the mirVana miRNA Isolation Kit (Ambion); N. brichardi tissues
were isolated from individuals inbred for ~ 10 generations in the laboratory of Prof. Wal-
ter Salzburger (University of Basel, Basel, Switzerland) and RNA extracted using TRIzol”
(Invitrogen, USA); A. burtoni tissues were isolated from individuals inbred for ~ 60 gener-
ations in the laboratory of Dr. Hans Hoffman (University of Texas, Austin, TX, USA) and
RNA extracted using TRIzol" (Invitrogen, USA); P. nyererei tissues were isolated from in-
dividuals inbred for ~ 5 generations in the lab of Prof. Ole Seehausen and RNA extracted
using the QIAGEN RNeasy Plus Universal mini kit; M. zebra tissues were isolated from
wild individuals in the laboratory of Dr. Karen Carleton (University of Maryland, College
Park, MD, USA) and RNA extracted using the QIAGEN RNeasy Kit. In brief, the gene ex-
pression values used here were obtained from [18], and as described previously, this in-
cluded (1) confirming RNA integrity on Agilent 2100 Bioanalyzer; (2) construction of
RNA-seq libraries using a strand-specific dUTP protocol; (3) sequencing of RNA-seq li-
braries on HiSeq2000 (Illumina), yielding > 35 million 76 bp paired-end reads per tissue;
(4) de novo transcriptome assembly using Trinity [61] and splice junction database from
PASA gene models; (5) read alignment with TopHat2 [62]; and (6) calculating gene ex-
pression values (FPKM) with Cufflinks [63] using the protein-coding gene annotation as
reference [18]. To ensure equality in #n-fold change of expression, the gene expression
values were log-transformed as: log(x + 1), where x is the raw expression value [18], and
“log” is the natural logarithm, and then expression was normalized across each gene to
have mean zero to be used as input for Arboretum [9]. The log expression ratio shown
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across modules is each gene expression relative to the mean expression across all tissues.
Selection of the six tissues allowed us to study tissue-specific associated traits under nat-
ural and/or sexual selection in cichlids: brain (development, behavior and social inter-
action); eye (adaptive water depth/turbidity vision); heart (blood circulation and stress
response); kidney (hematopoiesis and osmoregulation associated with water adaptation);
muscle (size, shape, and movement associated with dimorphism and agility); and testis
(sexual systems associated with behavior and dimorphism).

In total, 18,799 orthogroups, including 69,989 genes, and 34,220 1-to-1 orthologous
genes (see “Cichlid gene trees”), and their associated expression data and gene tree in-
formation were inputted into Arboretum [9]. In total, this represents 59-68% of all
protein-coding genes in the five cichlid genomes [18]. Certain annotated cichlid genes
could not be included for a few reasons: (1) lack of tissue expression data for all five
species; (2) no mapped reads for selected tissues; (3) Lack of co-expression with other
genes; and (4) use of single development stage (adult). We selected the number of mod-
ules using a combination of strategies. First, we tried to identify the optimal number of
multi-tissue modules k) automatically from the data by scoring the Arboretum learned
model based on the penalized log likelihood and silhouette index for k = 7—14 modules
in increments of 1 (Additional file 1: Fig. S21a). This gave us k=10 and 12 as the set-
tings were local maxima for silhouette index. Second, we manually inspected the mod-
ules to see if increases of k yield patterns of expression that we have not seen before or
generate recurring patterns (k=12 is shown in Additional file 1: Fig. S21b). Based on
our strategy, we found k= 10 modules to be optimal. Finally, we devised a metric for
the top three random initializations, based on a silhouette index, orthology overlap, and
cross-species cluster mean dissimilarity, selecting the optimal k stable to the
initialization. Using a similar approach, this time for single tissues clustering, we found
k=5 modules to be optimal. The single-tissue modules were only initially used to as-
sess tissue-specific gene expression divergence.

Handling ILS in arboretum

The Arboretum algorithm internally tries to reconcile a tree that is not obeying the
species tree by adding additional duplication and loss events. An alternate approach is
to use a different species trees each representing the different ILS types and estimating
the parameters of each such tree. However, there are many different cases of ILS, as
identified previously [18], and the number of gene trees in each category varied signifi-
cantly. Estimating the conditional distributions for each branch in each ILS type would
not be feasible as there are not enough example trees.

Cichlid gene trees

By considering the gene tree of 18,799 orthologous groups (orthogroups), Arboretum
[9] is able to generate module assignments reflecting many-to-many relationships be-
tween orthologs resulting from gene duplication and loss. To construct gene trees with
different levels of duplication, we obtained the protein sequences of the longest tran-
scripts from five cichlids as well as stickleback, spotted gar, and zebrafish as outgroups.
Spotted gar was added as it predates the teleost-specific genome duplication event (3R)
and zebrafish, as a model teleost to leverage known molecular interactions as an initial
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prediction of functional relationships in cichlids based on orthology. We applied
OrthoMCL-1.4.0 [64] followed by TreeFix-1.1.10 [65] to learn the reconciled gene trees.
We noticed that several of the trees exhibited incomplete lineage sorting (ILS) for the
cichlid-specific subtree but disappeared once the tree was relearned using the cichlid
only species. We therefore relearned gene trees for the cichlid only species—in total,
we reconstructed 17,858 gene families of which 108 had gene duplication events. A
fraction of these (29 gene families) also exhibited ILS. We also observed ILS for gene
groups without gene duplications: of the 17,756 gene families that had no duplication,
810 exhibited ILS.

Functional and transcription factor binding site TFBS) enrichment in modules

We use the false discovery rate (FDR) corrected hypergeometric p value (g-value) test
to assess enrichment of Gene Ontology (GO) terms and TFBSs (motifs) in a given gene
set. In all cases, enrichment is tested using a set-based approach where a set of candi-
date genes is compared to a background (control set) of either all genes in species mod-
ules (18,799 orthogroups) or each genome (stated within figure legend for each test).
We summarize the enrichment of terms/motifs with g < 0.05 statistical significance and
conservation in all extant and ancestral species. GO terms for the five cichlids were
from those published previously [18]. To study cis-regulatory elements likely driving
tissue-specific expression patterns, we defined promoter regions for all genes in each of
the five genomes. For this, we used the following published assemblies and associated
gene annotations [18] for each species: P. nyererei PunNyel.0, NCBI BioProject:
PRJNA60367; BROADPN2 annotation; M. zebra MetZebl.1, NCBI BioProject:
PRJNA60369; BROADMZ2 annotation; A. burtoni AstBurl.0, NCBI BioProject:
PRJNA60363; BROADAB2 annotation; N. brichardi NeoBril.0, NCBI BioProject:
PRJNA60365; BROADNB2 annotation; O. niloticus—Orenill.1 (NCBI BioProject:
PRJNA59571; BROADON?2 annotation. Gene promoter regions were defined as up to
5 kb upstream of the transcription start site (TSS) of each gene. This gene promoter re-
gion is based on analyzing the distribution of motifs in 100-nt window regions up to
20 kb upstream of each gene TSS, and observing a plateau of motifs (and distribution
of CNEs) after ~5kb in each species (Additional file 1: Fig. $22). Motif enrichment in
cis-regulatory regions was carried out using TFBSs obtained by the method below, with
a background (control set) of all motifs (FDR <0.05) predicted within module gene
promoters.

Transcription factor TF) motif scanning

TFBSs of known vertebrate transcription factors (TFs) were obtained from the JASPAR
vertebrate core motif (2018 release) [66]. Binding peak information from ChIP-seq ex-
periments of various human and mouse TFs were retrieved from GTRD v17.04 [14]
and associated to protein-coding genes within a vicinity of 10 kb. Using core motif se-
quences available from JASPAR [66] or alternative databases like UniPROBE [67] and
HOCOMOCO [68], sequences matching these motifs were identified within the TF
binding peaks. In cases where the core motifs were not available for specific TFs with
ChIP-seq data, they were predicted de novo from the sequences under peaks them-
selves using MEME [69] with default settings. The aforementioned steps provided a list

232



Mehta et al Genome Biology [HEEH2021)R2:25K Page 20 of 28

of transcription factor-target gene (TF-TG) interactions with the exact coordinates of
the corresponding binding site(s). Cichlid sites were extrapolated based on (1) gene-
level orthology; (based on gene trees above), (2) minimum 70% sequence similarity [70,
71] between the vertebrate motif sequence and a sequence within the cichlid promoter,
and (3) functional domain overlap as derived using Interpro scan 5 [72] to both source
organisms (human, mouse). Extrapolated sites from the promoters of each cichlid spe-
cies were used to construct cichlid species-specific (CS) Position Specific Scoring
Matrices (PSSMs) for each TF using the info-gibbs script from the RSAT tool suite
[73]. In cases where the number of extrapolated sites per species was less than three,
we aggregated the sites to construct generic cichlid-wide (CW) PSSMs. Using the
PSSMs for each TF, we scanned up to 20 kb upstream of a genes TSS and conserved
non-coding elements (CNEs) with FIMO [74] using either (1) an optimal calculated p
value for each TF PSSM, calculated using the matrix quality script from the RSAT tool
suite [73], with 1000 matrix permutations, or (2) FIMO [74] default p value (1e-4) for
JASPAR [66] PSSMs and PSSMs for which an optimal p value could not be determined.
Based on the distribution of motifs in 100-nt windows of up to 20 kb upstream of gene
TSSs (Additional file 1: Fig. S22), we only retained motifs up to 5kb upstream of a gene
TSS as the gene promoter region (Additional file 1: Fig. S22). Statistically significant
motifs were called using a g-value (FDR) < 0.05 and grouped in confidence levels and
scores of (1la) overlap of mouse and human to cichlid extrapolated—0.3; (1b) mouse to
cichlid extrapolated—0.2; (1c) human to cichlid extrapolated—0.15; (2a) FIMO [74]
scans using extrapolated CS matrices—0.125; (2b) FIMO [74] scans using extrapolated
CW matrices—0.110; and (2c) FIMO [74] scans using JASPAR [66] matrices—0.115.
To assess whether motifs are predicted by chance, we also scanned randomized pro-
moter sequences using the same PSSMs.

Calculating tissue specificity index tau)

As a measure for tissue specificity of gene expression, we calculated 7 (Tau) [75]
using log-transformed and normalized gene expression data (as inputted to run
Arboretum):

a1-x) Xi

T max(x)
1in

n-1

Here, n is the number of tissues and x; is the expression profile component normal-
ized by the maximal component value [75]. The values of tau vary from 0 to 1: ubiqui-
tous or broad expr (r 0.5); intermediate expr (0.5<7<0.9); and tissue-specific or
narrow expr (72 0.9) [75]. Amongst existing methods, 7 has been shown to be a reliable
method for calculating tissue specificity [76]. Testes normally express far more genes
than any other tissue, generally displaying a tissue-specific pattern of expression. As tau
was used to assess genome-wide expression levels across all tissues, but between spe-
cies, testis expression data was included for each species to obtain a true representation
of variation in transcriptional programs.
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Variation and evolutionary rate at coding and non-coding regions
We noticed several anomalous start site annotations of genes in M. zebra, P. nyererei,
A. burtoni, and N. brichardi when compared to O. niloticus. Owing to these anomalies,
we re-defined gene start sites to extract putative promoter regions. For each gene, we
used the 1st exon (+ 100 bp) of the longest protein-coding sequence in O. niloticus to
identify, via BLAT-35 [77], corresponding orthologous start sites in the other four cich-
lid genomes. We filtered the output based on coherent overlap with original annota-
tions [18] and orthogroups in cichlid gene trees. We re-annotated gene start sites (M.
zebra—10,654/21,673; P. nyererei—10,030/20,611; A. burtoni—10,050/23,436; N. bri-
chardi—8464/20119) based on BLAT orthology and end sites based on original annota-
tions [18], which was otherwise used for annotating the remaining genes. Based on new
annotations, for all 1:1 orthologs where gene expression data is available and there is
no overlap of gene bodies, we extracted putative promoter regions, taken as up to 5kb
upstream of the transcription start site (TSS) as per methods above. Using mafft-7.271
[78], we aligned 1:1 orthologous promoter, cds and protein sequences based on ortho-
grouping in gene trees (see “Cichlid gene trees”). We estimated the number of nonsy-
nonymous substitutions per nonsynonymous site (dN) and synonymous substitutions
per synonymous site (dS) in the 1:1 protein alignments using the codeml program in
the PAML-4.9 package [79] for each branch and ancestral node in the species tree.
Otherwise, we estimated evolutionary rate for each branch and ancestral node in the
species tree at promoter regions and fourfold degenerate sites, using 1:1 promoter and
cds alignments in baseml and codeml programs in the PAML-4.9 package [79], requir-
ing that at least 10% of the alignment contains nucleotides and that at least 100 nucleo-
tides are present for each species.

By using the published “cichlid-Sway.maf’ [18], we categorized pairwise substitutions
for all species and intersected with annotated genomics regions (see Additional file 1:
Table S2) using bedtools-2.25.0 intersect [80].

Reconstructing regulatory networks

To infer essential drivers of tissue-specific expression in cichlids, we constructed regulatory
and functional interaction/association networks through the integration of several datasets
and approaches (Additional file 1: Fig. $20). This approach was largely centered on the inte-
gration of expression-based and in silico TFBS motif prediction-based networks.

We first used species- and module-specific gene expression levels to infer an
expression-based network. For this, we merged the cichlid gene expression data into a
single 30 (five species, six tissues) dimensional dataset to learn cichlid-specific tran-
scription factor (TF)-target gene (TG) interactions using the Per Gene Greedy (PGG)
approach, a prior expression-based network inference method [24]. We projected the
network into species-specific networks by considering edges that would not be present
due to gene loss. We then integrated in silico-predicted TF-TG edges (see “Transcrip-
tion factor (TF) motif scanning”) based on TFBS predictions in gene promoter regions.
To ensure accurate analysis of GRN rewiring through an integrative approach, all col-
lated edges were then pruned to ensure edges were (1) not absent in at least one spe-
cies due to gene loss/poor annotation and (2) based on the presence of genes in co-
expression modules.

234



Mehta et al Genome Biology [HEE2021)R2:25K Page 22 of 28

To maintain a structured and connected network approach, we analyzed network
topology using two methods; firstly, and to ensure suitable integration of co-expression
data with all TF-TG predicted edges, one set of all gene nodes and their edges were
constrained by Arboretum module assignments to correlate to their respective patterns
of tissue-specific expression and co-expression module analysis. Secondly, since all in-
cluded genes will not necessarily exhibit tissue-specific co-expression (and cluster ac-
cordingly) due to (1) differences in cell type abundance, (2) cell heterogeneity; and (3)
small development stage differences, and as well as despite not being co-expressed, the
fact that TFs are trans-acting factors able to regulate any gene, we also analyzed all net-
work edges for selected candidate genes without constraining based on module assign-
ment (co-expression). Accordingly, for candidate genes with rewired networks, we also
analyzed network topology without constraining edges based on same module assign-
ment (co-expression) and, instead, analyzed the Pearson correlation coefficient (r) be-
tween cross-species significant TF motif enrichment (FDR <0.05), taken as —log(q-
value), in all module genes and expression (zero-mean log expression ratio) in each tis-
sue. Similar or dissimilar levels of TF motif enrichment were determined by calculating
the variance over each TF motif enrichment, taken as —log(g-value) across the five spe-
cies, and then by plotting the density distribution of the variance, categorizing TFs in
each of the tails into similar or dissimilar fold enrichment (FE).

Functional landscape of reconstructed regulatory networks

We use the FDR-corrected hypergeometric p value to assess enrichment of GO terms
for genes in reconstructed networks. We used GO terms for the published five cichlids
[18] and carried out enrichment analysis as previously done for Arboretum module

genes (see “Methods” above).

Regulatory rewiring analysis of gene sets
Regulatory rewiring of TF-TG interactions is based on predictions derived from TFBS
scanning and TF-TG co-expression relationships inferred by the PGG method [24]. To
ensure rewiring of TFs are correctly compared between species, and not based on gene
loss/poor annotation, we only included edges for analysis where the TF had a 1-to-1
orthologous relationship in species where the TF-TG relationship or non-directed rela-
tionship exists. Also, we filtered out any TGs and their TF interaction/relationships if,
based on orthologous gene tblastx [81], whether the gene was present in the genome but
not annotated. Of the 18,799 orthogroups used for generating modules of co-expressed
genes and network interactions, 4209 orthogroups had many-to-many genes actually
present in the genome of at least one of the five species. These 4209 orthogroups were fil-
tered out, retaining 843,168/1,131,812 predicted TF-TG edges across the five species; in
summary, these represent edges that are (1) present in at least two species, (2) not absent
in any species due to node loss or mis-annotation; and (3) based on the presence of nodes
in modules of co-expression genes. The 843,168/1,131,812 predicted TF-TG edges across
the five species were then used for network rewiring analysis.

Three metrics were used to study large-scale TF-TG network rewiring between spe-
cies that included (1) state changes in module assignment, (2) DyNet [25] network re-
wiring scores and (3) TF rate of edge gain and loss in networks.
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State changes in module assignment

In this metric, a rewired edge is where a unique TF-TG edge is present in only one
“focal” species, but the TF ortholog is state changed in module assignment and is a
node in other TF-TG edges in any of the other species.

DyNet network rewiring scores

The DyNet-2.0 package [25], implemented in Cytoscape-3.7.1 [82], was used for net-
work visualization and calculation of a degree-corrected rewiring (D,,) score of TF-TG
interactions in each orthogroup. The D, score for each orthogroup was ordered and
the mean calculated; the significance of difference of each orthogroups rewiring score
against all orthogroups was compared by calculating differences in the standard devi-
ation and applying the non-parametric Kolmogorov—Smirnov test (KS-test).

TF rate of edge gain and loss in networks

Gain and loss rate analyses were similar to that performed previously [10]. This ap-
proach uses a continuous-time Markov process parameterized by TF-TG edge gain and
loss rates and uses an expectation-maximization (EM)-based algorithm to estimate
rates [83, 84]. The input network comprised target genes of 783 individual regulator
genes mapped across the five cichlid species based on gene orthology. Each species
regulator required a minimum of 25 edges as <25 edges greatly hinder statistical ana-
lysis in this context. This resulted in a total of 345 regulators with 25 to 23,935 edges,
with an average of 2609. Gain and loss rate was estimated for each regulator using the
EM-based algorithm on the edge gain and loss pattern across the five cichlid phylogeny.
Rates were inferred using published five cichlid branch lengths [18] that described neu-
tral sequence evolution across the species. Stability analysis of rate estimations were
carried out as follows: (1) gain and loss rate input values were scanned from 0 to 400
in intervals of 5 for each regulator matrix, and (2) from each scan, rates with the great-
est likelihood were chosen as the recommended gain and loss rate (< 100), defining a
final set of inferred rates for 186/345 regulators.

Identification of segregating sites in TFBSs

Species pairwise variation was identified based on an M. zebra v1.1 assembly centered
8-way teleost multiz alignment [18]. Pairwise (single-nucleotide) variants were then
overlapped with TFBS positions as determined by TF motif scanning using bedtools-
2.25.0 intersect [80]. Pairwise variants of M. zebra were overlapped with single-
nucleotide polymorphisms (SNPs) in Lake Malawi species [20] using bedtools-2.25.0
intersect [80]. Both sets of pairwise variants overlapping motifs and lake species SNPs
were then filtered based on the presence of the same pairwise variant in orthologous
promoter alignments. This ensured concordance of whole-genome alignment-derived
variants with variation in orthologous promoter alignments and predicted motifs. At
each step, reference and alternative allele complementation was accounted for to en-
sure correct overlap. This analysis was not to distinguish population differentiation due
to genetic structure, but to instead map regulatory variants onto a number of radiating
cichlid species to link to phylogenetic and ecological traits.

Page 23 of 28
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Phylogenetic independent contrasts

Phylogenetic independent contrasts (PICs) were carried out to statistically test the ef-
fect of fitting the least controversial and all included 73 Lake Malawi species phylogeny
[20] on the covariance of segregating TFBSs, visual (wavelength palette) and ecological
traits (habitat and foraging habit/diet). This involved (1) categorically coding segregat-
ing TFBS genotypes (of NR2C2 > swsl and GATA2A > rho), visual trait and ecological
measurements for each of the 73 Lake Malawi species (119 individuals), and (2) using
the ape package (v5.4.1) in R (v4.0.2) to apply the PICs test [37] on all correlations with
the TFBS genotypes (genotype vs wavelength palette, genotype vs habitat, and genotype
vs foraging habit/diet). PICs assume a linear relationship and process of Brownian mo-
tion between traits, and thus, for each combination of data, a scatterplot was first gen-
erated. To test any change in the correlation (due to phylogenetic signal), the
regression model was compared between relationships excluding and including the
published Lake Malawi phylogeny [20].

Expression of protein DNA-binding domains DBDs)

DNA-binding domains (DBDs) of cichlid proteins (NR2C2 and RXRB) were predicted based
on alignment and conservation to annotated human and mouse orthologs. M. zebra and N.
brichardi individuals were sacrificed according to schedule 1 killing using overdose of MS-222
(tricaine) at The University of Hull, UK and University of Basel, Switzerland. Tissues were
stored in RNA later using a 1:5 ratio. RNA was extracted from brain, liver, and testis tissues of
adult M. zebra and N. brichardi using the RNeasy Plus Mini Kit (Qiagen), achieving RNA in-
tegrity (RIN) in the range of 8-10 (Agilent Bioanalyzer Total RNA Pico Assay). First-strand
cDNA synthesis of DBD-specific regions was carried out using RevertAid H Minus Reverse
Transcriptase (Thermo Scientific) and DBDs amplified (2-step RT-PCR) using Platinum Taq
DNA Polymerase (Invitrogen) and the primers listed in Additional file 1: Table S1. Resulting
cDNA was concentrated using Minelute PCR purification (Qiagen) and 700 ng used for
in vitro transcription/translation using TnT T7 Quick for PCR DNA (Promega) and the
Fluorotect GreenLys tRNA (Promega) labelling system. DBD expression was resolved by SDS-
PAGE and detection using the fluorescein filter in the ChemiDoc Touch (Bio-Rad) system.

Electrophoretic mobility shift assay EMSA) validation of predicted TF-TG interactions

EMSA was carried out using double-stranded Cy5 fluorophore 5'-modified (IDT) DNA
probes, in vitro expressed DBDs (see above) and the Gel Shift Assay Core System (Promega).
Double-stranded DNA probes were generated by annealing sense and antisense oligonucleo-
tides (see Additional file 1: Table S1) in annealing buffer (10 mM Tris pH 7.5, 1 mM EDTA,
50 mM NaCl) for 3 min at 96°C, 1 min at 90°C, 1 min at 85°C, 3 min at 72°C, 1 min at
65°C, 1 min at 57 °C, 1 min at 50°C, 3 min at 42°C, and 3 min at 25°C in a PCR thermocy-
cler. Binding reactions were carried out in a final volume of 9 1 composed of Gel Shift Bind-
ing 5x Buffer (20% glycerol, 5 mM MgCl,, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 50
mM Tris-HCl (pH 7.5), 0.25 mg/ml poly (dI-dC)epoly (dI-dC)); 0.01 M of Cy5-dsDNA probe
covering the motif and flanking region (28 nt); and either 23 ng (RXRB, 10.42 kDa) or 27 ng
(NR2C2, 10.73 kDa) of expressed DBD. For EMSA validation with increasing Nr2c2 DBD
concentrations, 1x =27 ng. For kit controls, 001 M of human SP1 DNA probe was com-
bined with 10,000ng HeLa nuclear extract. Binding reactions were incubated at room
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temperature for 20 min. Protein-DNA complexes were resolved on 1 mm NuPAGE 4-12%
Bis-Tris polyacrylamide gels (Invitrogen) in 0.5x TBE at 100V for 60 min. Protein-DNA com-
plexes were detected using the Cy5 filter on the ChemiDoc MP (Bio-Rad) system. Exposure
settings were adjusted in Image Lab v6.0.1_build34 (Bio-Rad) with same high (5608), low
(1152) and gamma (1.0) values set for all associated images.
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SalmoNet an integrated network of ten almonella enterica
strains reveals common and distinct pathways to host

adaptation

Aline Métris'>, Padhmanand Sudhakar'?, David Fazekas®?, Amanda Demeter'>3, Eszter Ari(®**, Marton Olbei'”?, Priscilla Branchu'*®,

Rob A. Kingsley', Jozsef Baranyi' and Tamas Korcsméros ('~

Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be
classi ed as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives
of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a
systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly,
in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and
computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-
protein interaction levels. SalmoNet provides the networks separately for ve gastro-intestinal and ve extra-intestinal strains. As a
multi-layered, multi-strain database containing experimental data, SalmoNet is the rst dedicated network resource for Salmonella.
It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory
mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at speci c loci in more detail.
Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network
modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new
pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org.

npj Systems Biology and Applications (2017)3:31; doi:10.1038/541540-017-0034-z

INTRODUCTION

The genus Salmonella includes pathogens associated with
syndromes ranging from gastroenteritis to bacteraemia and
enteric fever." Gastroenteritis caused by Salmonella is one of the
most common foodborne diseases, with nearly 100 million cases
per year occurring worldwide.> While enteric fever is rare in
developed countries, it is still associated with signi cant mortality
and morbidity in low income countries with over 90,000 deaths
worldwide in 2015.2Salmonella pathogenesis depends on a large
number of virulence genes including those located on large
pathogenicity islands encoding type Il secretion systems that
translocate effector proteins into the host cell cytoplasm.’
S. enterica subspecies includes over 1500 different serovars and
accounts for the vast majority of human infections.” Based on the
epidemiological record, disease symptoms and observations from
experimental infections has resulted in the classi cation of
serovars into two pathovars, namely gastro-intestinal and extra-
intestinal. Most serovars of subspecies | are of the former pathovar
and most often associated with gastro-intestinal infections.
Serovars of gastro-intestinal pathovars often exhibit a broad host
range. However, a small number of serovars are host-adapted and

are characterized by an extra-intestinal infection and dissemina-
tion beyond the intestinal mucosa followed by colonization of
systemic sites of the reticuloendothelial system. As most serovars
are of the gastro-intestinal pathovar type, the most parsimonious
explanation for the extra intestinal serovars is that they evolved
from a gastro-intestinal pathovar ancestor, most likely on multiple
occasions. The molecular basis of host adaptation has been
studied most extensively in S. enterica serovar Typhi (S. Typhi), the
causative agent of typhoid fever. Adaptation of S. Typhi is
characterized by the acquisition of a number of virulence
associated genes and the loss of coding capacity affecting over
200 genes.®’

Genes horizontally acquired by S. Typhi include a large
pathogenicity island (SP-7) encoding biosynthesis genes for the
Vi polysaccharide capsule and the TviA regulator protein,® and the
typhoid toxin that is encoded outside SPI-7.° Dissemination
beyond the intestinal mucosa is in part mediated by evasion of
detection by the host innate immune system by expression of the
Vi polysaccharide capsule,” and by the down-regulation of flagella
expression, a pathogen associated molecular pattern (PAMP),
mediated by TviA.'® The function of the typhoid toxin in
pathogenesis is not clear, however many of the symptoms of
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Table 1 Information about the numbers corresponding to the data sources and the reconstructed networks for the reference strain Salmonella
Typhimurium LT2
Network type Data source Number of interactions in
S. Typhimurium LT2
Metabolic Model validated by flux-balance analysis® 2312
BioModel database’” 754
Regulatory Experimental evidence in Salmonella Manual curation of low-throughput experiments 9
Datasets containing high-throughput 234
experiments
Genome-wide predictions Based on experimentally veri ed binding sites in 1189
Salmonella
Based on E. coli binding sites from RegulonDB'” 1865
PPI Experimental evidence in Salmonella Manual curation 27
IntAct database’” 29
Proteome-wide predictions Structure based predictions using the 290
Interactome 3D resource”
Orthology based predictions using E. coli PPl data 1846
from,”® IntAct’? and BioGRID®”

typhoid fever were induced by injection of the typhoid toxin into
mice."!

However, many of the extra-intestinal serovars of Salmonella do
not encode SPI-7 or the typhoid toxin. Therefore, alternative
mechanisms for the systemic dissemination are likely to have
evolved in these serovars. This reflects the convergent evolution
to an extra-intestinal lifestyle reflected in the phylogenetic
relationship of these pathogens. Convergence in genome
sequence polymorphisms of extra-intestinal serovars of S. enterica
has previously been observed in the form of loss of coding
capacity (genome degradation) due to deletions and pseudogene
formation.” Degradation of coding sequences corresponding to
genes associated with the intestinal phase of infection such as
anaerobic metabolism, motility and chemotaxis, and enteropatho-
genesis was over-represented in these serovars. A similar pattern
of genome degradation was also observed in a rapidly evolving
hypermutator strain of S. Enteritidis that was restricted to a
systemic site niche in an immunocompromised patient.'?

Serovars of S. enterica subspecies | exhibit divergence in their
nucleotide sequences that corresponds to approximately 737,000
SNPs.'® In some cases, non-synonymous SNPs alter the function of
proteins, and may alter the function of non-coding sequences
when the SNPs are present in regulatory sequences or small RNAs.
Serovars also encode hundreds of serovar-speci c genes, as well
as contain varying degrees of genome degradation that result in
considerable differences in coding capacities and gene expression
regulation. In light of this complexity, there is a need to apply a
systems biology approach to compile network information across
the metabolic, transcriptional regulatory and protein-protein
interaction (PPI) layers in order to address the hypothesis that
extra-intestinal serovars exhibit convergence in molecular
mechanisms of host adaptation. Integration of interaction
information from multiple layers is expected to provide insights
into the shared attributes that characterize Salmonella pathogeni-
city and virulence.

In order to gain further insight into how Salmonella host
adaptation has evolved there is a need to integrate different levels
of knowledge (e.g., metabolism and regulation) as current data
resources store the different layers separately, making complex
analysis dif cult. While a substantial amount of data on regulation,
metabolism and protein-protein interactions is available, much of
this is curated for model organisms, such as Escherichia coli.
Integrating different types of information into a complex network
remains a challenge for non-model organisms, like Salmonella.'*

npj Systems Biology and Applications (2017) 31

For example, in the case of transcriptional regulation, widely used
resources such as ORegAnno,'” PAZAR'®, or RegulonDB'” do not
contain information on Salmonella. Other resources such as
KEGG'® provides information only on metabolic pathways, and
even these reactions are not direct Salmonella connections but
orthology based inferences using E. coli. Furthermore, there are no
resources that combine curated and predicted interaction
information for Salmonella. Thus existing resources are either
not comprehensive enough to capture multi-layer information or
do not contain Salmonella speci ¢ interaction data.

We therefore compiled the metabolic, regulatory and PPI
networks of 10 representative strains of Salmonella comprising 5
gastro-intestinal and 5 extra-intestinal strains. In addition to the
interactions corresponding to the manually curated information
speci ¢ to Salmonella pathogenicity islands, the networks also
contain regulatory interactions derived from high-throughput
experiments and whole-genome motif scans apart from interac-
tions inferred from E. coli by orthology.

RESULTS AND DISCUSSION

Networks, data representation, and quality control

In this study, we have established a workflow to collect and infer
interaction information from three different network levels
(metabolic, regulatory and PPI) based on various sources (Table
1). We used data derived from literature, online databases, as well
as genome-wide predictions. To further enrich the dataset, we
performed this on the whole genome sequence assemblies of a
range of Salmonella strains (Table 2) representing two pathovars
(gastro-intestinal and extra-intestinal) that exhibit distinct life
styles. The resulting networks are available to the scienti c
community for further analysis and enhancement at http://
salmonet.org. The networks contain three layers (metabolic,
regulatory and PPI) for 5 gastro-intestinal and 5 extra-intestinal
strains (Supplementary Table 1).

The SalmoNet database consists of a total of 81,514 interactions
involving 30,870 genes across the studied strains (see the strain
speci ¢ distribution in Table 3). Considering all the annotated
genes for the strains (49,472 genes), SalmoNet therefore covers
62% of the coding capacity of all the strains. In terms of the
number of individual ortholog groups, SalmoNet contains
information on the interacting partners of 132 sets of transcription
factors (TFs) in the regulatory network, 1282 sets of proteins in the
PPI network, as well as information on 1196 sets of enzymes in the
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Table 2 Strains included in the study and their life-style
Serovar Strain Lifestyle N.p? Genome assembly IDP
Typhi cT18 Extra-intestinal, causes typhoid fever in humans 2 000195995.1
Paratyphi ATCC 9150 Extra-intestinal, second most prevalent cause of typhoid fever 0 000011885.1
Choleraesuis SC-B67 Extra-intestinal, causes swine paratyphoid 2 000008105.1
Dublin CT 02021853 Extra-intestinal, bovine-adapted serovar 1 000020925.1
Gallinarum 287/91 Extra-intestinal, causative agent of fowl typhoid in poultry 0 000009525.1
Agona SL483 Gastro-intestinal 1 000020885.1
Enteritidis PT4 P125109 Gastro-intestinal 1 000009505.1
Heidelberg SL476 Gastro-intestinal 2 000020705.1
Newport SL254 Gastro-intestinal 2 000016045.1
Typhimurium SL1344 Gastro-intestinal 3 000210855.2
Typhimurium LT2 Gastro-intestinal reference strain closely related to SL1344) 1 000006945.1
°N.p. number of plasmids
" GenBank database http://www.ncbi.nlm.nih.gov/genbank/)

Table 3 Number of genes/proteins and their interactions from the
networks for the different Salmonella strains
Strain name Number  Metabolic Regulatory PPl network
of network network
proteins

nodes links nodes links nodes links
Typhi 4718 1121 2348 1710 2595 1235 1949
Choleraesuis 4607 1137 2390 1650 2913 1223 1953
Dublin 4606 1170 2542 1583 2735 1247 2036
Gallinarum 3943 1140 2432 1484 2628 1200 1924
Paratyphi 4083 1136 2380 1565 2692 1202 1923
Agona 4592 1182 2584 1652 2845 1235 1978
Enteritidis 4192 1206 2653 1680 2921 1266 2062
Heidelberg 4757 1187 2590 1638 2736 1266 2072
Newport 4784 1189 2611 1582 2766 1256 2055
Typhimurium 4657 1228 2762 1735 3107 1287 2068
SL1344
Typhimurium 4533 1227 2763 1794 3288 1352 2213
LT2
Average 4497 1175 2550 1643 2838 1251 2021

metabolic network. Of the total 6070 unique connections in the
regulatory network, 16% were present in all the 10 strains
(Supplementary Figure 1) spanning the gastro-intestinal and extra-
intestinal pathovars, thus comprising a core subset of the
Salmonella regulatory networks inferred from our workflow
(Fig. 1). The edges in this core are those that represent higher
con dence since they follow the principle of cross-strain
conservation.'® This methodology has previously been used as a
basis for minimizing false positives. The ratio for PPIs and
metabolic interactions present in all the 10 strains were higher:
72.6% and 69.2%, respectively. Variation in the fraction of each
network represented by the core in regulatory and PPI/metabolic
networks supports the idea that transcriptional regulation evolves
at a faster rate than the PPl or metabolic levels,”® although the
noise arising from the heterogeneous sources used for the
reconstruction of the regulatory network cannot be ignored. The
use of the matrix quality tool®’ to determine customized P-values
for every TF-strain combination for the transcriptional regulatory
(binding site) predictions minimizes the high false positive rates
which could otherwise arise from using generic P-value thresh-
olds. Due to the low number of true positive sets, Precision-Recall
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calculations could not be inferred for most of the transcription
factors analyzed in the study. However, to exemplify the reliability
of the networks, we determined the target Recall rates (recovery
of known targets) for one of the transcription factors SsrB. SsrB
regulates the expression of multiple target genes including a
number of virulence factors including members of the Salmonella
pathogenicity islands.?*?* 24 instances of the 18 bp SsrB binding
motif in S. Typhimurium SL1344 have been reported,®”® By
performing a random and equal bifurcation of the known binding
sites into test and training sets, we were able to achieve recall
rates of 75% in the reconstructed regulatory network for S.
Typhimurium SL1344 (Supplementary Table 2). Furthermore,
swapping the test and training sets yielded a recall rate of 64%
suggesting that the reconstructed networks are robust in terms of
recovery of true positives. With this example, we show that the
predicted regulatory interactions in SalmoNet recover previously
reported binding sites due to the employed stringencies such as
an informed P-value. Besides, users can further enhance the
networks by choosing only those interactions which occur in
multiple strains of each serovar or all the strains in the study
depending on their use case.

The scienti ¢ community can access the database via the
aforementioned dedicated web resource in which the molecular
entities can be searched by their gene names, UniProt accession
IDs, and locus tags. The original source of the interactions that was
used during the data integration workflow is also displayed. To
enable the comparison of interactions across strains, the ortholog
clustering IDs (generated during this study) are also provided for
individual molecular entities. An easy-to-use option is provided for
users to download selected interaction sets from particular layers
of the network or for particular strains. The core Salmonella
network (the set of interactions conserved across all the strains)
can also be accessed similarly. The les are available for download
both in CSV and Cytoscape formats allowing straightforward
further Itering and visualization, respectively.

Network dendrograms for comparison among strains

To determine the evolutionary relatedness of the ten Salmonella
strains in SalmoNet, we constructed a phylogenetic tree based on
their nucleotide sequences. All the polymorphic sites found in the
common ortholog genes of all the strains were used to build a
Bayesian dendrogram (Fig. 2a). Four of the gastro-intestinal strains
(S. Typhimurium LT2, S. Typhimurium SL1344, S. Heidelberg SL476
and S. Newport SL254) were monophyletic on the polymorphic
site based phylogenetic tree but two of them were clustered
together with extra-intestinal strains: S. Enteritidis P125109 with
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Fig 1

S. Gallinarum 287 91; and S. Agona SL483 with S. Typhi CT18 and S.
Paratyphi A ATCC 9150. The tree was constructed assuming an
approximately equal rate of mutation in each strain, and based on
this assumption, the common ancestor of these strains is central
within the genome based tree. Strains from extra-intestinal and
gastro-intestinal serovars could not be distinguished based on the
topology of the genome based dendrogram as observed in
previous studies”® This is consistent with these pathovars
independently emerging as extra-intestinal pathogens and that
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clustering

Genome-wide
transcriptional regulatory
networks of the selected
Salmonella strains

Workflow depicting the steps followed in the reconstruction of the transcriptional regulatory networks of the Salmonella strains

their attributes arise multiple times during evolution by a process
of convergence in genome degradation in the anaerobic
metabolism as also described by Nuccio et al.”

Next, we compared the phylogenetic relationship of the extra-
intestinal and gastro-intestinal pathovars with their metabolic,
regulatory and PPI networks to determine if network adaptations
converge or if they reflect the evolutionary history of the strains.
We used the matrix representation of the networks to infer
Bayesian trees corresponding to hierarchical classi cations
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Fig 2 Genome-based phylogenetic tree and hierarchical classi cation of networks. To distinguish different serovar types, gastro-intestinal
serovars were colored to blue and extra-intestinals to red. Posterior probability values as percentages) are shown on each node. a Bayesian
phylogenetic tree based on the polymorphic sites of all common genes. b d Hierarchical classi cation trees based on the matrix
representation of protein-protein interaction networks b, regulatory networks ¢, and metabolic networks d. We note that four strains
Heidelberg, Agona, Newport and Dublin) form a cluster in all the three network based dendrograms due to technical reasons see details in

the main text)

(Fig. 2b—d). The dendrograms for each network were in all cases
well established with nearly all posterior probability percentages
at the nodes greater than 85. However, none of the networks
resulted in the clustering of the extra-intestinal and gastro-
intestinal strains. The hierarchical classi cation based on the
metabolic networks separate the two pathovar types most
pronouncedly, with only the S. Dublin metabolic network
exhibiting greater similarity to gastro-intestinal pathovars than
extra-intestinal pathovars. This is consistent with the loss of shared
metabolic pathways that can be dispensed with by all extra-
intestinal pathovars that have in common the loss of intestinal
colonization as a mode of pathogenesis. The loss of metabolic
pathways associated with the intestinal phase of infection is
relatively strongly indicated. There is no evidence for loss of PPIs
and regulatory sub-networks in the extra-intestinal pathovars. This
could reflect the absence of changes in these networks in
response to the dispensing of functions required speci cally for
the intestinal phase of infection or changes to these networks
associated with adaptation to the extra-intestinal environment
may be distinct in each extra-intestinal pathovar with weak or
absent convergence of mechanisms.

We note that four strains (Heidelberg, Agona, Newport, and
Dublin) form a cluster in all the three network based dendrograms
(see details in the main text). This is most likely due to the absence
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of particular genes having interactions to some key genes not
present in the data sources used in our pipeline. As SalmoNet only
contains genes with interaction data, if one of the interacting pair
is missing, and the other interactor has no other interactions,
SalmoNet does not contain that particular gene. For these four
strains, this methodological limitation resulted in leaving out 31
genes, and because of that, these strains were clustered together.

Functional enrichment analysis of regulons point to pathovar
speci ¢ transcription factor functions

Host adapted extra-intestinal pathovars are exposed to distinct
host environments and conditions compared to the gastro-
intestinal counterparts which are con ned to the environment
of the intestinal lumen and mucosa. Evolution to this alternative
lifestyle was likely accompanied by plasticity in the regulation of
functions in the extra-intestinal pathovars. Extra-intestinal patho-
vars mediating systemic infections are associated with increased
severity and distinct pathogenicity.” > Enrichment analysis of the
putative regulons revealed regulation of different functional
processes in the two pathovar types by the same orthologous
transcription factor (Fig. 3a-b). For instance, the virulence
modulating regulator (CsgD) is known to control the expression
of various pathogenicity related genes which are important for
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intestinal pathovars of regulatory relationships between cpxR and genes involved in the negative regulation of apoptosis and chemotaxis
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virulence, persistence and bio Im formation.>**" In our analysis,
the set of genes putatively regulated by CsgD were found to be
enriched with the speci c¢ functional process of ‘Biological
adhesion in gastro-intestinal pathovars. However, the functional
process of ‘Flagellum assembly was over-represented among the
putative CsgD targets in extra-intestinal pathovars while ‘Chemo-
taxis was over-represented in both extra-intestinal and gastro-
intestinal pathovars representing speci c differences and com-
monalities in the role of CsgD between the two pathovars.
Similarly, comparative analysis of the CpxR regulons revealed
pathovar-speci ¢ enrichment of functions within the regulons.
CpxR encodes a cognate response regulator and forms part of the
CpxAR two component system involved in the sensing of and
response to various cell envelope stresses and stimuli.**** In
accordance with already known information that CpxR regulates
motility and chemotaxis,>* the set of putative targets of the CpxR
regulon in gastro-intestinal pathovars was enriched with the
functional process of chemotaxis. In the extra-intestinal pathovars,
however, the functional process of regulation of apoptosis was
found to be over-represented as a result of distinct cis-regulatory
differences. For example, the gene encoding the YccA protein in
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the extra-intestinal serovar harbored a CpxR binding site in its
promoter region while the YccA ortholog in the gastro-intestinal
serovar was observed to have a complete loss of the CpxR binding
site due to truncation of its promoter (Supplementary Figure 2,
Fig. 3c). YccA is homologous to the human anti-apoptotic protein
BI-1 which represses the activity of the tumor suppressor protein
Bax.>® Due to the high conservation between E. coli YccA and the
human BI-1, the YccA protein was even able to protect yeast cells
against apoptosis induced by ectopically expressed human Bax
protein®® thus suggesting that YccA is associated with the
modulation of host apoptosis. Other apoptotic related factors
regulated by CpxR include genes or their orthologs encoding
proteins such as the periplasmic serine endoprotease DegP/
HtrA,*” Hemolysin expression-modulating protein Hha,*® and the
toxicity modulator TomB with which Hha forms a putative
toxin-antitoxin pair.>*> CpxR also modulates the expression of
members of two distinct classes of proteins namely porins (such
OmpF) and chemotaxis related proteins (such as CheA, CheW)
which are known to modulate apoptosis in the host cell upon
infection.***'

Published in partnership with the Systems Biology Institute

247



Apoptosis of macrophages is a common host response once
Salmonella has established an infection systemically but this is
tightly regulated as the over-induction of apoptosis is detrimental
to Salmonella.*? Hence, given that extra-intestinal pathovars cause
systemic infections, it may be bene cial for the extra-intestinal
pathovars to down-regulate apoptosis. This is one possible
explanation for the over-representation of apoptosis regulation
genes within the CpxR regulon in extra-intestinal pathovars and
could indicate that CpxR plays a role in modulating apoptosis in
extra-intestinal pathovars. The importance of CpxR in extra-
intestinal pathovars is also demonstrated by studies which point
out the use of CpxR as a safe and effective vaccine candidate
against fowl typhoid caused by Salmonella Gallinarum, an extra-
intestinal serovar. The results from the compositional analysis of
the regulons indicate that the regulons of the two pathovars may
have evolved to adapt to their respective pathogenic niches. The
differences with respect to the functional processes regulated by
Salmonella transcription factors could essentially be due to the
expected adaptive evolution of extra-intestinal pathovars in
contrast to the gastro-intestinal pathovars, which are mostly
con ned to the gut.

Applications of the database

The molecular interactions forming the biological interface
between Salmonella and its host play a signi cant role in the
colonization and infection process. Salmonella pathogenesis
depends on its ability to adhere to host epithelial cells and the
Type |l secretion system mediated injection of effector proteins,
which then cause the re-arrangement of the host cell cytoskeleton
and internalization.”*~*®Salmonella resides, survives and multiplies
in specialized membrane bound vacuoles.*’*® Various genes
known to be involved in Salmonella virulence and pathogenesis
have been implicated in the interactions of Salmonella with the
host cells.*** From the regulatory networks in SalmoNet, the
transcription factors, which potentially regulate the virulence
genes whose products are involved in the interactions with the
host, can be identi ed. Moreover, by merging the regulatory
networks with an increasing number of datasets such as the PPIs
between Salmonella and the human host,* it is expected to
enhance our understanding of the increasing number of
mechanisms employed by Salmonella to infect and survive inside
host cells.

Although the PPl and metabolic networks were inferred by
orthological extrapolation, the original sources of data from which
the extrapolation was performed are reliable due to their
experimental basis even though the source data for the PPI
networks were derived from high-throughput techniques. Hence,
given the lack of PPI data for these Salmonella strains in this study,
the inferred PPI and metabolic networks can be considered as a
primary starting point for hypothesizing and uncovering new
mechanisms. The PPls are very interesting in this regard since
previous studies have shown that Salmonella modulates many
post-translational modi cations such as ubiquitination of host
proteins in order to avoid host responses such as autophagy.”®
The multi-layered nature of the SalmoNet resource can also be
exploited in order to uncover potential biological insights by
which Salmonella subverts host mechanisms. Recent evidence
points to the modulation of metabolism (both of the Salmonella
and the host) as yet another mechanism employed by Salmonella
to acquire nutrients, evade host defense and survive under harsh
intracellular conditions.”’°

An integrative analysis of the regulatory and metabolic
networks has the potential to reveal new insights into the
transcriptional regulatory modulation of metabolic enzymes and
could identify new metabolic drug targets as an intervention
strategy. Integrating the PPl and regulatory networks not only
provides a combined view of signal transduction and gene
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regulation but also help us to shortlist upstream regulators of
genes involved in establishing infection and metabolic functions.
The activities of such individual regulators and transcription
factors can be taken up for testing and screened for inhibition by
small molecules/antibiotics.”° Besides, SalmoNet also provides
information on binding sites which can be used to design
transcription factor decoys (anti-sense nucleotides of the tran-
scription factor binding motif)°' that prevent the binding of
transcription factors to their targets. Anti-sense oligonucleotides
have been used to modulate gene expression in a wide variety of
intracellular bacterial pathogens such as E. coli,****Salmonella
Typhimurium,®*Enterococcus faecalis®* and Klebsiella pneumo
niae.® Clinical trials have also been performed using anti-sense
oligonucleotides for the treatment of human diseases®®®’ thus
suggesting that the potential of using anti-sense oligonucleotides
against bacterial infections looks promising. In addition, the
proteins and enzymes involved in critical PPls and metabolic
reactions respectively can also be subjected to the classical or
systems-based drug-discovery pipelines.®® The multi-layered net-
work of SalmoNet allows discovering new molecular targets and
strategies for therapeutic or prophylactic interventions based on
the emergent properties of the networks. Modern drug and target
discovery pipelines®®’® advocate a systemic approach, which
relies on the integration of various heterogeneous data such as
expression pro les and other multiple prior knowledge networks.
SalmoNet satis es this need by providing the prior knowledge
networks for various strains of Salmonella.

As a source of both experimental and predicted interactions,
SalmoNet contains information on the transcriptional regulatory
targets of various transcription factors based on genome-wide
motif scans. In addition, predicted targets of recently character-
ized transcription factors, such as RtsB,’° which regulates the
expression of invasion and flagellar genes, are also provided for
future experimental veri cation and validation. Similar experi-
mental testing and veri cation can also be performed on the
predicted PPIs as well given the importance of PPIs in the survival
of Salmonella inside the host cells.

From an epidemiological perspective, information on networks
of multiple strains and strain-speci c interactions further enriches
Salmonella epidemiology studies. Traditional epidemiological
approaches rely on tracking genetic polymorphisms and loss/gain
of virulence genes speci ¢ to certain contexts and conditions.
Hence, interaction networks could help to evaluate the effects of
genetic polymorphisms in a systematic way, and thus, help in

lling the gap between observed phenotypes of mutated strains

and their genotypes. For example, SalmoNet can be used to
further investigate the effect of cis-regulatory mutations on
interactions, as well as the network level properties which
determine the virulence characteristics of different strains of
Salmonella.

Benchmarking Salmonella network data
There is no single resource storing Salmonella-speci ¢ protein-
protein interactions (PPls) but they are captured in general
databases such as STRING”' and IntAct.”? In STRING, PPls are
based on different types of data such as genomic context, co-
occurrence, co-expression, data derived text-mining and imported
data from IntAct and other PPI resources. STRING contains only
237 experimentally veri ed interactions in addition to 1014634
predicted interactions based on criteria such as neighborhood,
gene-fusion, gene-co-occurence, co-expression, and text mining
among Salmonella proteins. In IntAct, which contains manually
curated and also imported PPl data from other databases, there
are only 31 PPIs for Salmonella proteins.

In the case of transcriptional regulatory networks, RegulonDB'”
stands out as one of the most comprehensive repositories for
prokaryotic gene regulation. However, RegulonDB is restricted to
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E. coli. RegPrecise’” contains information for multiple bacterial
species using genome-wide predictions based on manually
curated reconstruction of regulons (which are set of genes whose
expression is regulated by a transcription factor). Unfortunately,
RegPrecise does not provide the original source of data used for
the predictions, making further application of the data dif cult.
While well-known sources such as ORegAnno'® and PAZAR'® also
capture regulatory interactions for multiple species, they do not
contain any interactions for Salmonella.

As for the metabolic networks, there are numerous resources
such as KEGG,'® MetaCyc/BioCyc’* and the BioModels databases’”
containing seemingly Salmonella speci ¢ metabolic reactions.
However, these databases are either not curated systematically or
are not based on experimental results. KEGG for example contains
information on pathway reactions and their entities for a large
number of Salmonella strains but the Salmonella pathway
annotations are based on computational predictions and not on
experimental data. Similarly, coliBASE’® captures comparative
genomic data in terms of whole genome alignments and ortholog
gene lists for Salmonella. Further information on bacterial
metabolism can be found in specialized databases such as PATRIC
for pathogens’” or TRACTOR DB for Gamma proteobacteria.”®
However, most of the above mentioned resources contain limited
interaction information for Salmonella and do not enable
researchers for comparative network analysis or systems biological
modeling of processes other than metabolism (e.g., they do not
provide regulators of metabolic processes).

CONCLUSION

We present the rst public biological network resource for
Salmonella research. SalmoNet contains network data (metabolic,
regulatory, protein-protein interaction) for 10 representative
pathogenic Salmonella strains. To elucidate the virulence program
of Salmonella for either discovering knowledge on biological
mechanisms or for therapeutic interventions, it is rewarding to
integrate the different network layers that capture emergent
properties of the system. SalmoNet represents a resource which
contains information on interactions from multiple layers of
biological organization that can be analyzed as such, or as a
topological backbone to be integrated with new -omic datasets
for analyzing the dynamics. SalmoNet opens the possibility for
systems-level studies of the pathogen Salmonella with unprece-
dented details in a standardized and well documented format. The
resource can be browsed and downloaded as a whole or in user-
de ned interaction sets at http:/salmonet.org. The analysis of
SalmoNet could go far beyond fundamental biological and
systems biology research. SalmoNet can be applied by medical
microbiologists and epidemiologists to understand the strain
speci c differences of Salmonella and can serve as a starting point
for further experimental investigations and systems medicine
based drug discovery.

METHODS

Strains and orthology

Five strains of serovars with a predominantly gastro-intestinal
lifestyle of Salmonella and ve strains of serovars of extra-intestinal
lifestyle were selected (Table 2). We included Salmonella enterica
subsp. enterica serovar Typhimurium str. SL1344 as a sixth gastro-
intestinal strain since it is widely used as a reference strain. We
determined orthologous proteins among the selected strains, as
well as for the model organism E. coli K12 with InParanoid.”® We
used a reciprocal best hit approach using BLAST to identify
homologous protein sequences including those from plasmids
corresponding to the selected strains. The protein sequences were
downloaded from UniProt®® as of January 2015. The results from
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the comparison of proteins one by one among any pair of strains
were used to derive the ortholog clusters. Sequence similarity was
set at>=95% in order to minimize false positives given that the
chosen strains belonged to the same species. Clustered groups
contained both paralogs and orthologs (Supplementary Table 3).
We removed the pseudo-genes listed in 7 from the resultant
ortholog list.

Reconstruction of networks

We developed metabolic, regulatory and protein-protein interac-
tion networks for Salmonella, using complementary approaches
followed by merging the three layers into a uni ed Salmonella
network. We performed this process for the 10 strains separately
that resulted in 10 strain speci ¢ molecular networks.

Metabolic networks: We de ned the metabolic network as
follows: if a metabolite is a product of a reaction and substrate in
another, the two proteins catalysing the different reactions were
linked, as described in ref. 81 We did not consider the links for
metabolites appearing in more than 10 reactions as outlined in
ref. 81

We retrieved the metabolic reactions from two different sources
with different levels of curation: the manually curated metabolic
model of S. Typhimurium LT2 (referred to as STM),®? and
predictions from the BioModels database’> containing Enzyme
Commission (EC) numbers. In the latter, EC number assignments
are automatic and include predictions for enzymes present in
Salmonella spp and not necessarily present in E. coli. The STM
model was derived from an E. coli metabolic model and con rmed
by flux balance analysis. For the extrapolation of metabolic
reactions from the above mentioned models, we assumed that the
same reactions occur in the Salmonella strains when orthologous
protein(s) of the enzyme(s) involved in the reactions were found
to be present in the corresponding strains.

Regulatory networks: Regulatory interactions represent the
binding of transcription factors to gene promoters. They consist
of both predicted and experimentally veri ed interactions in our
study. We collected experimentally veri ed DNA-binding sites of
Salmonella transcription factors (Supplementary Table 4) from the
literature with manual curation, as well as information from
publicly available datasets. For the high-throughput datasets
retrieved from,®> peaks were identi ed as described else-
where#*®* For all the other high-throughput datasets, the
processed data (transcription factors, their targets and corre-
sponding binding motifs when available) was retrieved from the
cited sources (Supplementary Table 4). We then constructed
Position Speci ¢ Scoring Matrices (PSSMs) from the manually
inferred binding sites and sites corresponding to the signi cant
consensus motifs from the low- and high-throughput datasets
respectively using the consensus tool®® with default parameters.
PSSMs constructed from too few binding sites have low predictive
values. Hence, in instances where the number of binding sites
(according to published data) corresponding to a transcription
factor were less than three, we used corresponding sites from
orthologous targets present in one or more of the other
Salmonella strains under study for the PSSM construction. Since
the predictive capacity and information content varies among
PSSMs, we determined speci c¢ optimal P-value thresholds for
every PSSM-strain combination using the matrix quality tool*'
(Supplementary Table 5). We used the TRANSFAC-formatted
PSSMs via the matrix scan tool®” to scan the promoter regions
of all the genes from the genomes of the selected Salmonella
strains. We con ned the binding site search to 5000 bp upstream
of the start codon of every protein coding gene to capture
functionally active transcription factor binding sites in genomic
regions including intergenic sequences between convergent
genes.®® However, sequences which overlap with upstream
coding sequences were excluded. The promoters were retrieved
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using the “retrieve sequence” function of the RSAT tool suite. For
the background model, we used a Markov order of 1, and the
model was estimated individually for every strain. Both the strands
of the genome were scanned for the presence of putative binding
sites and the optimal P-value determined for every TF-strain
combination as described previously was used during the
corresponding scans. Putative hits with a P-value lower than the
corresponding optimal cut-off values were considered to be
signi cant. Based on the principle of “regulogs”>®® we also
inferred transcription factor-target gene relationships in Salmo
nella strains. Regulogs are regulatory interactions rst detected in
one species (in this case in E. coli) and then predicted to be
potentially present in another species (in this case in Salmonella)
based on sequence homology of the transcription factor, the
target gene and the transcription factor binding site. Accordingly,
we used the E. coli transcription factor - target gene binding site
information retrieved from RegulonDB'’ in conjunction with the
homolog clustering results to extrapolate regulatory interactions
from E. coli to the Salmonella strains. Operon information was
retrieved from DOOR.”' The workflow is presented in Fig. 1.

PPl networks: We performed manual curation to retrieve
existing PPl information in Salmonella spp from the literature
using a curation protocol we developed for the SignaLink
eukaryotic signaling network resource as previously described.”>**
Briefly, we collected signaling interactions involving Salmonella
proteins from primary research articles identi ed by using iHOP®*
and ChilliBot® tools in addition to those articles directly found in
PubMed searches. The main text and the abstracts of these articles
were examined to retrieve the interactions between Salmonella
proteins. Experimentally veri ed Salmonella PPls were retrieved
from IntAct.”? Proteome-wide predictions to predict PPls were
carried out using 3D protein-based structure predictions of
Interactome 3D® and using E. coli PPIs for interolog predictions.
The interologs were inferred based on E. coli PPIs retrieved from
IntAct,”? BioGrid”” and a high-throughput, yeast-2-hybrid screen
of the E. coli interactome.”®

Phylogenetic tree construction

Gene sequences corresponding to the Salmonella strains con-
sidered in this study were downloaded using the retrieve sequence
tool from the Regulatory Sequence Analysis Tools.®” Out of the
2912 common ortholog gene sets from the strains in this study,
457 ortholog sets were discarded due to discrepancies such as
misconverted locus tags/IDs. Ortholog genes that had different
lengths across strains were aligned by using ClustalOmega®
implemented in the msa Bioconductor R package.'®® We identi ed
85 ortholog gene sets where one or more strains had more than
one sequences (due to gene duplication or misannotation). We
discarded these extra sequences after manual curation and the
sequences that were more similar to the sequences of other
strains were retained.

MrBayes v3.2.4'°'—which is a program for Bayesian inference
based selection of evolutionary models—was used to analyze the
phylogenetiic relationships of the strains using the polymorphic
sites from genes in the orthologous gene sets. The parameters of
the evolutionary model between the sequence sites were
unlinked. Gaps were not considered as polymorphisms since the
applied phylogenetic software treated them as missing data. Thus,
gaps did not contribute to the phylogenetic information. Ortholog
groups whose ratio of polymorphic sites to gene lengths was
more than 0.1 (100 genes) were discarded and consequently
polymorphic sites from potentially false orthologs that had low
sequence similarity were excluded. After applying the above Iter,
64,531 polymorphic sites from 2360 orthologous genes were used
to infer a genome based phylogenetic tree. Metropolis coupling
Markov Chain Monte Carlo (MC®) analysis was performed for 10
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million generations and 25% of the samples from the beginning of
the chain were discarded when applying MrBayes.

Network based dendrograms

The networks (Supplementary Table 6) were represented by
interaction matrices containing binary data, where “1"-s repre-
sented the presence of an interaction between the same pair of
nodes inferred by orthology across the strains and “0"-s stood for
missing interactions (Supplementary Table 6). In order to
represent the hierarchical classi cation of strains from network
data, we constructed dendrograms based on the metabolic,
regulatory and PPI interaction matrices using MrBayes v3.2.4. To
calculate network based dendrograms, the same MrBayes MC>
analyses were performed as for the genome-based tree except
that the datatype was set to “restriction” and no substitution
model was applied.

Functional analysis of the transcriptional regulatory network

In order to understand the biological context within the regulons
of the two serovars, functional enrichment analysis was performed
to infer the over-represented Gene Ontology (GO) Biological
Process Terms within the predicted regulons. Here, we considered
only those interactions that were predicted to occur in at least two
of the ten studied strains. This was performed to minimize the
chances of including possible false positives in our analyses. In
addition, we considered only the predicted regulons and GO
terms containing at least 10 entities across all the strains within
each pathovar. The background set comprised the entire
collection of genes with annotated GO terms in the genomes.
To determine the enriched GO Biological Process terms, the
hypergeometric test with the Bonferroni correction was applied.
The signi cance score for each enrichment event was calculated
as the -log10 function of the corrected P-value. Enriched terms
with a signi cance score greater than zero were considered as
signi cant. We retrieved TF-GO relationships, which were exclusive
to either of the two serovars. We restricted the analysis to TFs that
were predicted to contain different enriched GO Biological Process
terms within their putative regulons in extra-intestinal and gastro-
intestinal pathovars. We also performed a manual assignment of
functional processes derived from the Gene Ontology database for
every GO term identi ed in the previous step. Subsequently, we
replaced GO terms with their corresponding functional process(es)
in order to simplify the graph without losing information.

Data availability statement

The datasets generated in the study are freely available at http://
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Network Biology Approaches to Identify Molecular and
Systems-Level Differences Between Salmonella Pathovars

Marton Olbei, Robert A. Kingsley, Tamas Korcsmaros,
and Padhmanand Sudhakar

Abstract

The field of systems biology endeavors to map, study, and simulate cellular systems and their underlying
mechanisms. The internal mechanisms of biological systems can be represented with networks comprising
nodes and edges. Nodes denote the constituents of the biological system whereas edges indicate the
relationships among them. Likewise, every layer of cellular organization can be represented by networks.
Multilayered networks capture interactions between various network types, such as transcriptional regu-
latory networks, protein—protein interaction networks, and metabolic networks from the same biological
system. This property makes multilayered networks representative of the system while its internal mechan-
isms are investigated. However, there are not many multilayered networks containing integrated data for
nonmodel organisms including the bacterial pathogens Salmonelln. Here, we outline the steps to create
such an integrated network database, through the example of SalmoNet, the first integrated multilayered
data resource for multiple strains belonging to distinct Salmonelln serovars.

Key words Systems biology, Multilayered networks, Network reconstruction framework, Pathogen,
Salmonelln

1 Introduction

Salmonella enterica and its more than 1500 serovars is one of the
most common foodborne pathogens affecting human health. The
Salmonella genus consists of gram-negative bacteria belonging to
the Enterobacteriaceae family. They are related to Escherichia coli, a
species containing both commensal bacteria found in the gut and
pathogenic variants. Most Salmonelln enterica serovars cause gas-
troenteritis, one of the most common foodborne illnesses account-
ing for almost 100 million cases each year [1], or disseminated
(extraintestinal) diseases such as typhoid fever and bacteremia
[2, 3].

The outcome of infection with Salmonella enterica depends on
the genotype of the pathogen and the host species and immune
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status. As most Salmonelln enterica serovars are generalist intestinal
pathogens, it is thought that this is the ancestral state. A handful of
serovars evolved to become adapted to circulate in specific host
species, or indeed a single species and cause a more severe
disseminated disease. Thus, S. enterica can be further divided into
two pathovars: gastrointestinal and extraintestinal. Extraintestinal
pathovars are specialists adapted to new environments in their host.
The level of host adaptation in Salmonelln enterica serotypes varies,
with Salmonella enterica serovar Typhi being a specialist member of
the group, while Salmonella enterica serovar Typhimurium being a
generalist serovar.

Host adaptation is a complex evolutionary process and the
integration of different levels of information is needed. The analysis
ofintegrated networks (ones that combine many levels of data, e.g.,
regulation and protein—protein interactions) allows us to gain new
insights into regulation, signal transduction, and metabolism. We
can focus on specific processes important to the question at hand,
without excluding entire levels of a biological system, e.g., to see
whether a signaling pathway can alter anything on a metabolic level
with its downstream effectors.

The SalmoNet database (http://salmonet.org/) includes the
multilayered interaction networks of five well-known gastrointesti-
nal and extraintestinal serovars of Salmonelln enterica [4]. These
networks consist of three layers namely protein—protein interac-
tions, transcriptional regulation, and the metabolic layer. Every
layer requires a specific protocol to collate and evaluate external
data, the steps of which we outline in this chapter.

We provide a template for future studies intending to develop
similar network resources for pathogenic or other bacteria, and for
nonmodel organisms in general. The frameworks and workflows in
SalmoNet can help other scientific communities which lack
integrated network resources. By collecting information from the
studied organisms and inferring information from closely related
model organisms, they can serve as a knowledge base for less known
species, while at the same time driving research forward by predict-
ing interactions which were previously unknown.

2 Reconstruction of Transcriptional Regulatory Networks

1. Retrieve low throughput, experimentally validated data on
transcription factor binding sites. This information can be
retrieved either from manual curation of literature or from
databases. The most commonly used tools for text-mining
based literature searches include ChiliBot [5] and iHop [6]
(for more information on databases, see Note 1).
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. Datasets generated from high-throughput experiments can
also be used to infer binding sites from the genomic locations
of transcription factor binding peaks (sec Notes 1 and 2).

. From the corresponding resources (Collect TF [15], Regu-
lonDB [16], and Prodoric [17]), recover DNA binding sites
from the experimentally verified targets of transcription factors.

. For every transcription factor, use the recovered sites (from
step 1.3) to construct a binding signature in a matrix for-
mat—otherwise known as a Position Specific Scoring Matrix
(PSSM) using the consensus tool (see Notes 3-5).

. Convert the PSSMs into the transfac format (see Note 6) using
the convert-matrix tool.

. PSSMs constructed from too few binding sites can have a low
predictive power owing to their reduced information content
(see Note 7). In such cases, orthologous sites can be included
from closely related strains for transcription factors that have
less than three binding sites.

. Calculate optimal P-value thresholds (se¢ Note 8) for every
PSSM (generated in step 4) with the matrix-quality tool (see
Notes 9 and 10).

. Retrieve promoter sequences in the bacterial genome(s) of
interest. The length of the promoter sequences depends on
various factors such as the type of transcription factors being
investigated in addition to other aspects (se¢ Note 11). Pro-
moter sequences can be retrieved (see Note 12) using the
retrieve-sequence  tool  (http://embnet.ccg.unam.mx/rsat
retrieve-seq_form.cgi) within the RSAT tool suite. Alterna-
tively, if the genome is not supported by RSAT, use bedtools
(see Note 13) to extract promoter sequences of interest from
whole genome sequence.

. Predicting transcription factor binding sites using the PSSMs
generated in the previous steps (4-6), optimal P-values deter-
mined in step 7 and proomoter sequences retrieved in step 8.

— Promoter sequences from previous step 8 can be used as the
input for the subsequent step.

— With the pattern matching (se¢ Note 14) matrix-scan tool
(http: //embnet.ccg.unam.mx/rsat/matrix-scan_form.cgi)
(see Notes 15 and 16), scan the promoter sequences using
the constructed PSSMs to detect the presence of putative
transcription factor binding sites.

— Select the appropriate background model before the scan is
performed (see Note 16).

— Hits with a P-value less than the predetermined optimal P-
value (from step 1.7) are considered to be potentially true.
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10. Inferring cis-regulatory element enriched regions (CRERs) (see
Note 17).

— Follow all the preceding steps till step 1.9.

— Set the CRER window size. Default values are in the range
between 30 and 500 bp.

— Set the site P-value. Only those sites whose P-value is below
the chosen threshold at this step will be considered for the
prediction of the CRER. Other parameters such as the
CRER significance score and the CRER P-value can also
be used as options for filtering.

11. Extrapolate based on orthology the experimentally verified
transcriptional regulatory interactions from model prokaryotic
species like E. coli (in the case of gram-negative organisms) or
B. subtilis (in the case of gram-positive organisms) (sece Notes
18 and 19, Fig. 1).

Regulatory relationships
from literature in selected
Salmonelia strains

consensus

Construction of Position Specific
Scoring Matrices (PSSMs) for every
transcription factor

Determine optimal P-values
for every PSSM

ok pton J( e
scans

Whole
across all of the selected
Salmonella strains.

YES

Genome wide
Orthology based extrapolation transcriptional

gene reationships of the selected
Salmonella strains

Fig. 1 Graphical description of the workflow used to reconstruct transcriptional regulatory networks in
SalmoNet
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3 Reconstructing Protein—Protein Interaction Networks

1. Use the text-mining based tools ChiliBot [5] and iHop [6], to
extract organism specific protein—protein interaction informa-
tion from literature sources and publications.

2. Experimentally verified organism specific protein—protein
interactions from high-throughput experiments are added
from the IntAct database [7] (see Note 20).

3. Retrieve predicted protein—protein interactions for your organ-
ism of interest from the Interactome 3D database [8].

4. Additional predictions are inferred by extrapolation based on
orthology (see Note 18) from E. coli data obtained from the
IntAct and BioGrid databases, and from yeast-2-hybrid screens
of E. coli.

4 Reconstructing Metabolic Networks

1. Metabolic networks which are usually defined as a collection of
enzyme metabolite reactions can be reconstructed into a graph.
Generally, metabolites are represented as nodes and reactions as
edges. Since the desired representation is for macromolecular
components such as proteins and genes, a suitable approxima-
tion can be performed (see Subheading 3, step 2) by transform-
ing metabolic reactions into networks as described in [9].

2. If a particular metabolite is a product of a reaction and at the
same time a substrate in another, the two enzymatic proteins
catalyzing the different reactions are connected to each other
by an edge [9]. Metabolites appearing in more than ten reac-
tions are not considered to avoid bias.

3. Collect metabolic networks from manually curated sources.
For example, Flux Balance Analysis validated metabolic
resources such as [10], which provide genome scale metabolic
models for Salmonella, can be transformed.

4. For additional metabolic models, please refer to the BioModels
database [11] which contains metabolic model predictions
specific to the organism(s) in question.

5 Prediction of Interactions Across Organisms

1. Using InParanoid [12] or similar homology based clustering
tools [13], create groups of orthologous genes encoding pro-
teins (see Note 21).
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. Inference of the regulatory connections is based on the princi-

ple of regulogs [14] The principle of regulogs utilizes the
homology based conservation of the transcription factor, the
target gene as well as the transcription factor binding site on the
target gene [ 14] to extrapolate interactions across organisms.

. For the protein—protein interaction networks and the meta-

bolic networks, only the sequence level orthology of the inter-
acting components is used for the extrapolation of interactions.

6 Notes

. Information on the binding sites of bacterial transcription fac-

tors can be retrieved from various databases such as Collect TF
[15], RegulonDB [16], and Prodoric [17], among others.

. Various applications such as MEME-ChIP belonging to the

MEME suite of tools [18] can be used for extracting statisti-
cally significant motifs from high-throughput protein—-DNA
interaction profiling datasets (e.g., ChIP-chip, ChIP-seq).

. PSSMs represent an easy way to capture the position wise

frequency distribution of nucleotides which comprise the bind-
ing sites recognized by a particular transcription factor.

. The RSAT (Regulatory Sequence Analysis Tools) suite [19]

provides the users with a collection of different tools tailor-
made for various kinds of analysis using regulatory sequences.

. The consensus tool from within RSAT was used to construct

PSSMs from sites. As of the date of writing this chapter, the
consensus tool stands withdrawn from the RSAT tool suite.
Users are advised to implement analogous tools such as info-
Hibbs which can be found within the same tool suite.

. For more information on matrix formats, please refer to the

following address: http://floresta.cead.csic.es/rsat/help.con
vert-matrix.html.

. The information content of a PSSM is described in detail

in [20].

. Since the predictive capacity of a PSSM is dependent on its

information content, the statistical threshold for distinguishing
a true positive from a false positive needs to be determined in a
customized manner for every PSSM-strain combination.

. P-values provide an indication of the false positive rate. For

instance, a P-value threshold of 0.001 produces one false posi-
tive prediction for every kilobase. The optimal P-value thresh-
olds depend on the information content of the PSSM. By
determining over a range of P-values the weight-score distribu-
tions derived from both the original and permuted version of
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the PSSMs, matrix-quality [21] identifies the point of diver-
gence of the distributions which subsequently enables the
identification of the optimal P-value. More details regarding
the usage of the matrix-quality tool are described in [21].

The optimal P-value determination needs to be performed for
every PSSM-genome combination. For instance, if there are
m PSSMs which need to be scanned against 7 genomes,
[# x n] number of tests need to be performed with matrix-
quality.

Typically, bacterial transcription factors bind to noncoding
regions, which are immediately upstream to the start codon
of the first gene of the regulated operon. In such cases, any-
where up to 5000 bp upstream from the regulated gene can be
considered for scanning to detect the presence of a potential
transcription factor binding site (TFBS). However, recent
studies suggest that bacterial transcription factors especially
those with repressor activity are known to bind even within
the coding regions of the regulated genes in addition to the
noncoding regions [22]. Therefore, ideally, depending on the
type of transcription factor being studied, the promoter
regions need to be retrieved on a case-by-case basis.

Please refer to http: //embnet.ccg.unam.mx/rsat/supported-
organisms.cgi for the complete list bacterial genomes sup-
ported by RSAT.

bedtools (http: //bedtools.readthedocs.io /en /latest/) is a col-
lection of simple easy to use command-line tools for handling
large sequences especially nucleotides. It has multiple features
which enable users to perform various operations such as
manipulation and extraction of sequences based on annota-
tions. Bedtools utilities are also available via the galaxy platform
(https: //test.galaxyproject.org /) which is a user-friendly inter-
face targeted toward scientists without advanced level profi-
ciency in bioinformatics especially on the command-line.

Pattern-matching is a process by which predefined signatures
(in our case the PSSMs) are used to detect other potential copies
of the signature in a query string object (promoter sequences).

A detailed protocol describing the use of the matrix-scan tool
to detect putative TFBSs is outlined in [23].

In addition to the optimal P-value, there are other determin-
istic parameters which dictate the outcome of the pattern
matching procedure. These include the background model
whose Markov order and sequence specificity can be set accord-
ingly. Furthermore, depending on the type of sequences being
scanned (noncoding regions only or coding and noncoding
regions), the sequence type can also be customized for deter-
mining the background model. Options also exist to exclude
either of the strands or include both of them for the scan.
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17. Cis-regulatory element enriched regions or CRERs [24] are
short defined spans in the considered regulatory sequences and
which are overrepresented with overlapping or nonoverlapping
binding sites. They represent possible regulatory hot spots
governing gene expression to a higher extent than other
regions without a clustering of binding sites.

18. For most nonmodel organisms, experimental interaction infor-
mation is sparse for almost all the network layers discussed
herein. One of the strategies which have been suggested
recently to overcome this limitation is to use the already avail-
able molecular level interaction data derived from model
organisms [14]. Orthology information can be used to extrap-
olate the interactions from the model organism(s) to the spe-
cies of interest.

19. Various resources such as RegulonDB [16] and DBTBS [25]
contain experimentally verified transcriptional regulatory inter-
actions including binding sites for E. coli and B. subtilis
respectively.

20. The IntAct database (https://www.ebi.ac.uk/intact/) [7] is a
data resource which contains a vast array of protein—protein
interaction information from experiments.

21. It is generally recommended to use protein level information
for homology based clustering.
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Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm
or cytokine release syndrome (CRS), is one of the key aspects of the currently
ongoing SARS-CoV-2 pandemic. This process occurs when a large number of innate
and adaptive immune cells activate and start producing pro-inflammatory cytokines,
establishing an exacerbated feedback loop of inflammation. It is one of the factors
contributing to the mortality observed with coronavirus 2019 (COVID-19) for a subgroup
of patients. CRS is not unique to the SARS-CoV-2 infection; it was prevalent in most
of the major human coronavirus and influenza A subtype outbreaks of the past two
decades (H5N1, SARS-CoV, MERS-CoV, and H7N9). With a comprehensive literature
search, we collected changing the cytokine levels from patients upon infection with
the viral pathogens mentioned above. We analyzed published patient data to highlight
the conserved and unique cytokine responses caused by these viruses. Our curation
indicates that the cytokine response induced by SARS-CoV-2 is different compared to
other CRS-causing respiratory viruses, as SARS-CoV-2 does not always induce specific
cytokines like other coronaviruses or influenza do, such as IL-2, IL-10, IL-4, or IL-5.
Comparing the collated cytokine responses caused by the analyzed viruses highlights
a SARS-CoV-2-specific dysregulation of the type-l interferon (IFN) response and its
downstream cytokine signatures. The map of responses gathered in this study could
help specialists identify interventions that alleviate CRS in different diseases and evaluate
whether they could be used in the COVID-19 cases.

Keywords: SARS-CoV-2, cytokii
review

A, MERS- and SARS-CoV, literature analysis, systematic

INTRODUCTION

The current coronavirus 2019 (COVID-19) pandemic has focused its attention on viral infectious
diseases that the host antiviral immune response is unable to resolve. Major efforts are now
concentrating on how severe acute respiratory syndrome B-coronavirus 2 (SARS-CoV-2) alters
normal antiviral immune responses (1-3). SARS-CoV-2 causes a wide range of clinical symptoms
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from asymptomatic, through mild fever, persistent cough, loss
of taste and smell, to severe inflammation-driven pneumonia,
resulting in multiple organ failure and ultimately death
(4-6). SARS-CoV-2 induces an anti-inflammatory response
attacking both the upper and lower respiratory tracts (7, 8).
Although SARS-CoV-2 appears to modify host inflammatory
defenses, similar modifications are also observed in other
severe respiratory infections caused by viruses such as influenza
A, B-coronaviruses SARS-CoV and MERS-CoV (9-11). These
agents all constitute a global health threat with colossal economic
consequences (12, 13).

Although these different viruses cause similar clinical
symptoms, the pathogenesis may be driven by different triggers.
Multiple studies have described an increase in the pro-
inflammatory host immune response associated with severe
forms of the diseases, including cytokine storms or cytokine
release syndrome (CRS) (11, 14, 15). Although CRS usually
resolves following completion of the antiviral response, it
persists in severe cases (16). It can lead to tissue damage,
multiple organ failure and death in critically-ill patients if
the clinical intervention is not rapid (17, 18). In such
cases, concentrations of both pro- and anti-inflammatory
cytokines are significantly increased in blood and other
tissues, including the type-I interferons (IFNs) (IFN-a, -
B, -k, -&, -7, -w, and -f) (19-22). Type-I IFN signaling
cascades also attenuate inflammation to avoid tissue damage
during viral infection (23). The main effectors of the type-
I IFN signaling are IFN-a and IFN-B, which activate other
cytokines, such as IL-12 and the type-II IFN cytokine, IFN-
y (24, 25). However, cytokines such as IL-10 block the type-
I IFN response. Certain pathogens, including SARS-CoV and
MERS-CoV, encode proteins that can influence and delay
the type-I IEN response leading to various pathologies (26—
28). In the case of SARS-CoV, the build-up of activated
macrophages in the lungs can cause tissue damage, while
MERS-CoV can intensify engagement by neutrophils, leading
to an increase in the production of pro-inflammatory cytokines
(29-32). Furthermore, influenza A and coronavirus infections
can trigger increased levels of type-I IFN-a and IFN-,
reflecting the normal initiation of this signaling pathway
in response to viral infections (33-36). However, in severe
infections with SARS-CoV-2, the type-I IFN signaling is
impaired, culminating in an altered development of adaptive
immunity (15, 37-39).

The similar clinical symptoms and the range of disease
severity of different respiratory viral infections tend to blur the
accuracy of the initial diagnosis (40, 41). Capturing a clear picture
of the immune response triggered in each patient, early enough
in infection remains challenging. It impairs the prevention of the
severe form of the disease and, consequently, the potential onset
of CRS. Defining the overlap and/or specificity in the patient
immune cytokine signaling across CRS-causing viruses would
help clinicians to develop a more tailored treatment strategy
for future cases. Recent reviews have attempted to compare
diseases caused by influenza A and B-coronaviruses (42-45).
To provide mechanistic insight into the role of pro- and anti-
inflammatory cytokines in the development of severe diseases
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caused by SARS-CoV, SARS-CoV-2, MERS-CoV, and influenza
viruses, understanding the differences in cytokine responses
between the different viruses is vital.

To identify the similarities and differences in the cytokine
response, we collected and analyzed the patterns of cytokine
changes caused by these CRS-causing respiratory viruses. By
comparing available patient data from the literature, we were able
to show (i) where similarities lie between the immune responses
mounted against these pathogens, (ii) the differences between
influenza A subtypes and coronaviruses and (iii) the unique
aspects of the currently circulating SARS-CoV-2 virus.

METHODS

Literature Search

A mass literature search of 98 cytokines (46) was performed
in PubMed using PubTator and in bioRxiv (https://www.
biorxiv.org/) and medRxiv (https://www.medrxiv.org/) non-peer
reviewed pre-publication repositories (47). This included the
commonly studied interleukins, IFNs, tumor growth factors
and chemokines involved in pro-inflammatory and anti-
inflammatory responses, in particular, those associated with
disease-associated CRS manifestations. Only studies indicating
increase or no change in cytokine levels were included. The
amplitude of change was not measured, only the presence or
absence of it. We focused our study on five important CRS-
causing viruses: two influenza A virus subtypes, H5N1 and
H7N9, and three B-coronaviruses, SARS-CoV, MERS-CoV, and
SARS-CoV-2 (Figure 1). We used the names of each virus and
the cytokines and chemokines as search terms, e.g., “SARS-
CoV-2 + CXCL10” (Figure 1). The collected studies were then
screened to retain the studies using only patient-derived data,
measured in at least 10 patients. A second pass was done adding
“patient” to the search terms, e.g., “SARS-CoV-2 + CXCLI10
+ patient” in cases where the original search term yielded
more than 50 hits. We only considered articles valid if they
contained patient-derived data directly; the cell line or model
organism-based results (and reviews) were excluded. From the
main text of the resulting articles, we generated a table containing
the presence of the queried cytokines and their direction of
change in each disease. We closed the curation on March 06,
2020 (See Supplementary Table 2 for the full list of queried
cytokines). A script to generate the search URLs can be found
in the publication of GitHub repository (https://github.com/
korcsmarosgroup/CRS). The amount of discarded articles was
estimated using custom python and shell scripts, also available
in the publication repository.

Hierarchical Clustering

We clustered our data using the clustermap function from the
python package seaborn with Jaccard distance and the complete
linkage method (48). Jaccard distance calculates the distance
between two sets of objects (49). Complete linkage clustering
means that the distance from one cluster to another is calculated
based on the furthest members of the cluster (50). The used
clustering is sensitive for the furthest elements. Complete linkage
does not join together with the furthest clusters, producing a
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FIGURE 1 | The literature curation workflow applied in this study. Publications
were considered valid for the inclusion into our data collection if (i) they
contained patient-derived data (model organisms and cell lines were
excluded), (i) the study data were collected from cohorts of at least 10
participants per group and (iii) it included a directional change in cytokine
levels. Total hits to queries in bioRxiv, medRxiv, and PubTator are shown
separately in the second box from the top. In the end, 55 publications were
selected that matched our curation criteria listed above.
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clear picture. It performs well for finding the correct clusters in
synthetic studies (51). We used all cytokine categories as input.
The code is available at our GitHub repository (https://github.
com/korcsmarosgroup/CRS).

RESULTS

In order to capture the breadth of the relevant published
literature, we based our curation on a list of cytokines from
the book chapter titled “Cytokines, Chemokines and Their
Receptors” of the Madame Curie Bioscience Database (46)
(Figure 1). We only used studies that reported the directional
change of measured cytokines. Our curation approach allowed
us to highlight shared and differing cytokine responses between
influenza A and B-coronaviruses, contributing to further the
understanding of why SARS-CoV-2 in particular differs so much
not only from influenza A CRS-causing viruses but also from
other p-coronaviruses, also capable of inducing a cytokine storm
in severe cases.

B-coronaviruses and Influenza A Viruses
Show Marked Differences in Some

Cytokine Responses

Out of the nearly 100 cytokines measured across all initially-
collected studies, only 38 were retained as they matched our
criteria (See Methods section; Supplementary Table 1). Only a
small group of cytokines was commonly measured for all viruses
(CXCLS, IL-6, CXCL10, IL-2, IL-10, IFN-y, and TNF-a). Across
the 55 literature references used here (Figure 1), we first assessed
how comparable the number of different cytokines measured in
these studies was across the five CRS-causing viruses. Figure 2
shows how variable this number is between virus-specific studies
(e.g., 15 for H5N1 and 26 for SARS-CoV-2). This variation
reflects (i) the increasing interest developed for CRS-causing
pathologies over recent years (26 recent studies reported cytokine
measurement for SARS-CoV-2 against only 10 H5N1-related
studies) and (ii) the increased availability and sensitivity of the
multiplex detection method.

The influenza A viruses trigger an increase in all cytokine
levels measured (Figure 2, yellow). In contrast, during infection
with each of the B-coronaviruses, some cytokines were detected
at levels normally found in control groups (blue). This indicates
that -coronaviruses can subvert the immune response, reflecting
different kinetics and pathogenesis between the influenza-
and coronavirus-associated diseases. Of note, studies of H5N1
infections showed that a few cytokines were increased compared
with control groups, and no change was observed in other
studies (36, 52), illustrating the greater complexity of these
diseases, probably due to the multifactorial nature of the
mechanisms involved.

Table 1 shows the number of cytokines whose levels are
increasing in one, two, three, four or all five virus-related
infections from the interrogated literature. Only five cytokines
were modulated regardless of the virus-associated disease
concerned, with 20 other cytokines being shared to some degree.
Increased levels observed in 16 cytokines were unique to a
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FIGURE 2 | Number of cytokines measured in the studies for each of the five CRS-causing viruses. Each stacked bar indicates how many cytokines were found at
increased levels (yellow) in the blood/solid tissue of the patients, not changed (blue) or both increased and not changed across different studies of the same virus
(green). The n number shown at the bottom of the bar charts corresponds to the number of articles citing cytokine changes during infection.

TABLE 1 | Number of cytokines which were elevated in at least one study.

Cytokines elevated at least in one study
(elevated and mixed)

Virus-specific 16
Shared between 2 viruses 5
Shared between 3 viruses 8
Shared between 4 viruses 2
Common to all 5 viruses 5

Cytokines measured in one or more of the virus-induced infections. Column 2 indicates
the number of elevated or mixed measurements, and their overiap between viruses. Mixed
observations occur when one or more studies show no change in a cytokine level upon
infection, whereas others show an increase.

single virus at a time. It is important to keep in mind that the
amplitude of change in the cytokines is not considered, which
can be different between the different diseases, adding to the
heterogeneity of those severe respiratory infectious diseases. This
backs up the highly complex nature of the associated diseases as
well as the past and current struggles to develop efficient vaccines
and treatments.

To examine the presence of the measured cytokines and
directionality of their change, we constructed a heatmap of the
included viruses and cytokine responses.

The Cytokine Response to SARS-CoV-2
Sits in Between the Ones Given to Other

B-coronaviruses and Influenza A Viruses
We used a hierarchic clustering algorithm on the viruses
using Jaccard distance and complete linkage, clustering
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them based on the cytokine responses they cause. The
method groups the pathogens in three clusters. SARS-
CoV and MERS-CoV comprise the coronavirus cluster,
and H5N1 and H7N9 form the influenza cluster, while
SARS-CoV-2 sits in an individual cluster (Figure 3),
slightly closer to the two influenza A viruses than to the
two B-coronaviruses.

The cluster analysis of cytokines defines eight clusters, based
on the direction of their modulation upon infection with each
virus. It is important to note that the results of this cluster analysis
are biased by the missing information for some cytokines.
Bearing this in mind, it is worth looking into the detailed patterns
of cytokine responses of the various CRS-inducing viruses. The
cytokine cluster I includes the pro-inflammatory, TNF-a, and
two anti-inflammatory cytokines, IL-2 and IL-10. All of them
had mixed results in SARS-CoV-2, while encompassing all three
categories of results for the other two coronavirus infections,
which were predominantly increased during influenza infections.
Unfortunately, cluster II seems to be restricted to cytokines
measured only in H7N9-mediated infections, preventing us from
comparing influenza A viruses vs. with -coronaviruses. Clusters
III and VI carry the generally increased pro-inflammatory
cytokines, which are elevated for almost all of the viruses but
not measured in all of the cases of cluster VI. Among those
cytokines are IFN-a and IEN-y, typical representatives of the
general antiviral response (type-I and type-II IFNs), as well as IL-
6, one of the most prominent pro-inflammatory cytokines, along
various chemokines. Cytokines from Cluster IV measured during
coronavirus infections do not fluctuate, while most of them are
elevated during an influenza infection, e.g., IL-4 and IL-5 upon
H7N9 infections. IL-4 is involved in Th2 differentiation, and the
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Frontiers in Immunology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 629193

266



Olbei et al

Th2 cells can produce IL-5 to mitigate eosinophil infiltration (53).
Such differences observed between virus-specific pathologies
reflect the strong alterations observed in coronavirus infections,
particularly SARS-CoV-2 (54). The cytokines in Cluster VII and
VIII do not always respond to SARS-CoV-2: IL-15 and CCL5
(RANTES) are not elevated after SARS-CoV-2 infection. IL-15
is involved in natural killer cell differentiation as part of an
antiviral response (55). Meanwhile, CCL5 mediates eosinophil
infiltration which is considered to be involved in the recovery
after SARS-CoV infection (56). Clusters II and V contain
cytokines measured only in H7N9 and SARS-CoV-2, respectively,
whereas TGF-B1 was measured only in SARS-CoV studies
in cluster IV.

Type-I IFN Signaling Can Be More Strongly
Altered Upon Infection With SARS-CoV-2
Than in SARS-CoV- or

MERS-CoV-infections
Both type-I and type-II IFNs play an instrumental role in the
immune response to viral infection.

Our analysis indicates that early induction of type-I IFNs
occurs upon H5N1 and H7N9 influenza A infection as well as
upon the p-coronavirus SARS-CoV and MERS-CoV (21, 34, 57).
However, type-I IFN response is only weakly elicited following a
SARS-CoV-2 infection, if at all (37, 58).

Infection with either of the two influenza subtypes seems to
increase the levels of measured type-I IFN-relevant cytokines,
resulting in an antiviral immune response, with the appropriate
cytokines showing elevated levels in all influenza A studies
(Figure 4, Supplementary Table 1).

The B-coronavirus-mediated responses show a much more
variable IFN response: with SARS-CoV, we see that the type-I
IFN response is active, including the downstream-activated IL-
12 that reflects the involvement of mature dendritic cells. IL-12
also indirectly activates IFN-y further downstream. IL-10 is not
elevated, which potentially prevents the downregulation of the
type-I1 IFN response.

In MERS-CoV infections, the type-I IFN response is induced,
but not in all cases (59). In some studies, the levels of IL-12 do
not increase, in agreement with IFN-y also staying at low levels.
Yet, we see the involvement of the (mostly) anti-inflammatory
IL-10. However, caution needs to be applied when looking at
IL-10 in an inflammation context, as more and more clinical
evidence suggests that this cytokine displays pro-inflammatory
characteristics in vivo (60, 61).

We showed here that SARS-CoV-2-mediated infections are
characterized by a clear dysregulation of type-I IFN response and,
consequently, the downstream cytokine signatures, such as IL-4,
IL-12,1L-2,and IL-10s, and the downstream type-IT IFN response
(Figure 4).

DISCUSSION

In this study, we analyzed relevant cytokine levels measured in
patients, each infected with one of the five major respiratory viral
pathogens, through a comprehensive literature curation of the
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published patient data. We generated a map of such responses
to help specialists identify routes of interventions to successfully
alleviate CRS in different diseases and evaluate whether they
could be used in COVID-19 cases. Based on our literature
curation, the five investigated viruses cause atypical cytokine
responses in severely ill patients, reported here in Figure 3.

While most studies have focused on clinical or phylogenetic
parameters (virus genome, patient age, transmissibility, fatality
rate, creatinine, and coagulation among others), we aimed to
add a mechanistic understanding to the host immune response.
The cytokine response during viral infection is a dynamic
process, with multiple changes in the cytokine levels during
the course of the infection (62). During SARS and MERS
infection, a slow initial innate immune response accompanied
by the infection of alveolar macrophages leads to increased
severity of these lower respiratory tract diseases (63-66). In
contrast, SARS-CoV-2 seems to induce a number of cytokines
at a very early stage, possibly explaining why the symptoms of
severely ill patients deteriorate rapidly (67). A long-lasting pro-
inflammatory cytokine production results in high mortality due
to the development of severe conditions such as acute respiratory
distress syndrome (ARDS) or acute lung injury [9.5% fatality
rate for SARS and 34.4% for MERS compared to 2.3% for
COVID-19 (43)].

Severe SARS patients show particularly low levels of the anti-
inflammatory cytokine IL-10 (Figures 3, 4) (68). During MERS
infection, patients develop an expected increased production
of IL-10, yet the low levels of IFN-y-inhibiting IL-4 and IL-
2 lead to elevated IFN-y and the induction of type-II IFN
response (Figure 3) (59, 69, 70). In contrast, during influenza
A infection, the antiviral response activates without much delay
with the presence of an intact negative feedback loop. Both
viruses considered in our curation induce most of the pro-
and anti-inflammatory cytokines downstream of type-I IFN
response (Figure 3). Although influenza A viruses have effectors
that dysregulate IFN-I (e.g., NS1, PB1-F2, polymerase proteins),
the IFN-I response is nonetheless sustained, and its excessive
activation during severe illness can lead to increased mortality.
Furthermore, during H7N9 and H5N1 severe infections, TGF-
p fails to be activated, contributing to increased pathogenicity
(71-73). SARS-CoV-2 stands out from the other B-coronaviruses
and influenza A viruses, with a highly perturbed response
downstream of type-I IFN signaling, as reflected in the poor
balance of measured pro-and anti-inflammatory cytokines
(Figures 3, 4). Of note, IFN-a was found to be increased (similar
to the other viruses) only in one small (n = 4) patient study,
which did not match our inclusion criteria. Type-II IFN-y was
also only increased in patients placed in intensive care units
(ICUs), while it was within normal ranges in other studies (14,
74,75).

Although the cytokine signaling enabling the reduction of
the inflammatory environment is active (Figures3, 4), both
influenza viruses H5N1 and H7N9 can cause CRS. In severe
cases of infection, CRS could result from insufficient production
of important cytokines such as TGF-B (73). Furthermore,
the presence of impaired and less abundant effector CD4+
and CD8+ T cells was found to be a characteristic feature
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accompanying CRS in those diseases. Finally, monocytes that
normally would differentiate from a pro-inflammatory state to
an anti-inflammatory state with enhanced antigen presentation
activity as the infection progresses remain in a chronic pro-
inflammatory activation state, preventing the normal resolution
of the host response (16, 76, 77). In future studies, patient-
derived data including the size and activation status of
innate and adaptive immune cell populations would help
increase the understanding of CRS mechanisms in influenza-
mediated diseases.

In our study, we found resolution of the pro-inflammatory
immune response to be a key difference between coronaviruses
(MERS-CoV and SARS-CoV) and influenza viruses (H5N1 and
H7N9). Both MERS-CoV and SARS-CoV induce CRS, yet they
also appear to impair the normal resolution of the antiviral
immune response. In contrast, H5N1 and H7N9 induce high
levels of pro- and anti-inflammatory cytokine levels in severe
cases, leading to an inflammatory cytokine storm, yet leaving the
immune system unimpeded to move toward a general resolution
of the antiviral response appears in Figures 3, 4) (36). However,
SARS-CoV-2 induction of the CRS is eventually followed by a
resolution of the pro-inflammatory responses in 80% of the cases.

One limitation of this study is the lack of anatomical and
dynamic dimensions of the cytokine response. Firstly, the set of
cytokines measured in the peripheral blood of each patient across
the entire disease course or following recovery varied across
the studies analyzed. Patients were sampled at different stages
of the disease, which further add to the noise observed in the
data. Finally, systematic patient-based studies matching our strict
curation criteria could not be collected, leaving many gaps in our
comparisons (Figure 3, white cells).

While confirming many already reported disease traits, our
analysis has highlighted several new features that are shared
or different between the viral diseases analyzed, contributing
to filling the gap in the understanding of SARS-CoV-2 and
other CRS-causing viruses. Blockage of the cytokine response in
SARS-CoV-2 infection through IL-6 specific antibody has failed
during Phase 3 randomized clinical trial (NCT04320615), even
with promising results in earlier stages (78-80), suggesting that
further mechanistic investigation of the cytokine storms during
SARS-CoV-2 infection will be needed.

The ongoing accumulation of patient-derived large data
sets will inform the research community and clinicians of the
intricacy of host/virus interactions (81). Systematic reviews such
as this study should be part of an iterative process, increasing
the resolution of the comparisons listed above, by continuously
integrating novel data. Recently published data and literature
repositories, such as H2V and LitCovid, can further enhance
the effectiveness of this iterative process (82, 83). In this study,
we provided an example of this through a literature curation of
patient-derived data and a comparative map across CRS-causing
p-coronaviruses and influenza A viruses, linking shared or
specific changing cytokines and interferon signaling alterations
to those pathogens. In this study, we provided the methodology
and scripts to perform this iterative analysis easier in
the future.
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CONCLUSIONS

Using our literature curation workflow, we showed that based
on available patient data, SARS-CoV-2 generates a different
cytokine response compared to other CRS causing respiratory
viruses. SARS-CoV-2 does not elevate all of the expected
cytokines in patients as the other studied respiratory viruses,
e.g., the cytokines following an influenza infection such as
IL-2, IL-10, IL-4, or IL-5. Although for a subset of pro-
inflammatory cytokines, SARS-CoV-2 does induce a similar
response to the compared viruses, the literature reports
conflicting results for a few important cytokines such as IFN-
vy and IL-1B. Applying the collected data to the type-I IFN
cascade, the cytokine signature indicates a dysregulation of this
process and that of the downstream type-II IFN responses,
involving cytokines such as the aforementioned IL-10, IL-2, IL-4,
or IL-12.

In our systematic analysis, we collated a map of patient-
derived cytokine responses given to different CRS-causing
viruses. Our goal is that such a resource of unique and conserved
cytokine responses will aid specialists to identify interventions
that can alleviate serious cases of COVID-19 and other illnesses
that cause CRS.
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