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Abstract 

Serovars of the genus Salmonella are widespread enteric pathogens, 

causing acute inflammatory gut infections. However, a subgroup of Salmonella 

adapted to a systemic lifestyle instead of a mucosal one. A systems-level 

understanding of how molecular level changes accompanying this adaptive 

process potentially modify the behaviour of these invasive strains is crucial for 

future intervention processes, and possible treatments. 

 

In this thesis, I generated and analysed multi-layered interaction networks 

for 20 strains in the genus Salmonella. I collated protein-protein, transcriptional 

regulatory, and metabolic interaction data from low and high-throughput 

experiments and performed predictive measures to add further connections to 

the systems. The resulting networks culminated in the update to SalmoNet, the 

first integrated network database for Salmonella serovars. Through comparative 

network approaches, users can highlight elements under selection in these 

invasive serovars, increasing our understanding of the host adaptation process 

leading to their systemic lifestyle. 

During the last year of my PhD, I redeployed for 6 months to work on 

COVID-19 related research. This effort led to a systematic literature curation 

highlighting different cytokine responses in patients caused by SARS-CoV-2 

compared to other similar viruses. I also led the effort to establish a new network 

resource, CytokineLink, aimed at highlighting avenues of cell-to-cell 

communication mediated by cytokines, to better understand inflammatory and 

infectious diseases. 
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Overall, the work presented in this thesis has increased our understanding 

of the Salmonella host adaptation process, by highlighting specific elements 

under selection, while also exhibiting how network information can be created, 

and used for understanding such evolutionary processes.  
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Structure of the thesis 

This thesis is organised into the following chapters: 

● Chapter I: General Introduction. An introductory chapter describing the 

necessary literature background of the topics covered in the thesis, and 

summarises the aims within. 

● Chapter II: Construction of a multi-layered network database for 

Salmonella research. This chapter presents the steps necessary to 

construct a multi-layered network database for a non-model organism, 

and describes the steps taken to improve and expand on the original 

version of it. 

● Chapter III: Network biology methods to study adaptation and 

evolution. Chapter III describes the approaches and network analysis 
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tools appropriate for the network level analysis of adaptation and 

evolution, through a study involving the adaptive radiation of cichlid fish 

species, and a comparison of typhoidal and gastrointestinal Salmonella 

strains. 

● Chapter IV: The role of cytokines in SARS-CoV-2 infection. In Chapter 

V, I detail the results of my 6-month redeployment into COVID-19 

research. It describes a study on the differences in cytokine responses 

from patients infected by various cytokine release syndrome causing 

viruses, and a network resource aimed at understanding how cell types 

communicate with each other using cytokines. 

● Chapter V: Final discussion, perspectives and future work. This final 

chapter describes the impact, conclusions, and perspectives of the work 

I presented in the thesis. 
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1. General introduction 

The Salmonella genus consists of Gram-negative facultative anaerobic 

pathogens belonging to the Enterobacteriaceae family, a member of the 

Proteobacteria phylum. The majority of the serovars have broad host range and 

cause a self-limiting intestinal inflammation (gastrointestinal serovars). The 

gastrointestinal serovars use this process to modify the intestinal environment to 

their advantage and facilitate their transmission. A small subset of the genus, 

however, evolved alternative strategies of transmission, by adapting to an 

invasive lifestyle instead of a mucosal one, restricting their host range in the 

process, and colonising alternative sites in the host (extraintestinal serovars). In 

this thesis, I generated and analysed multi-layered interaction networks of 

multiple Salmonella strains, including both broad and narrow host range 

serovars, to understand this process, known as host adaptation.  

 

The host adapted serovars cannot be placed on a single monophyletic 

lineage when attempting to map the phylogenetic relationships of Salmonella 

serovars, because their emergence is a result of convergent evolution (Vázquez-

Torres, 2018). The host adaptation process usually involves the degradation of 

key genes that are not used in the novel environments of the pathogen, or are 

detrimental to them, and involves a change in infection phenotype, from an acute 

inflammatory one, to a “stealth” phenotype that leads to bacteraemia and fever 

(de Jong, Parry, van der Poll, & Wiersinga, 2012; Klemm et al., 2016; Uzzau et 

al., 2000). 
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While host adaptation is a process often coupled with genome degradation 

and expansion, the over 700,000 SNP divergence that characterises the 

phenotypically varied subspecies I. of Salmonella enterica is not purely a 

comparative genomics problem (Desai et al., 2013). It could be further elucidated 

by considering the way absent or newly acquired polymorphisms modify the 

system that can eventually lead to changes that make Salmonella alter its 

behaviour in the host organism, through formation or loss of regulatory 

sequences affecting gene expression or metabolic pathways, or non-synonymous 

SNPs altering the function of proteins. As such, the integration of multiple levels 

of knowledge could provide insight into distinct and shared interaction patterns 

that characterize Salmonella virulence and pathogenicity (Métris et al., 2017). 

However, the availability of different levels of knowledge one would integrate to 

carry out systems level analyses is scarce, especially for non-model organisms like 

Salmonella, and the information present is scattered in various databases.  

Motivated by the information above, I set out with the following hypothesis: 

The difference in the host adaptation capabilities of gastrointestinal 

and extraintestinal Salmonella enterica serovars can be 

characterized by specific changes in the topology of their metabolic, 

regulatory, or protein-protein interaction networks. 

This thesis contributes to progress toward testing this hypothesis, through the 

following aims: 

● Generation of multi-layered interaction networks for extraintestinal and 

gastrointestinal Salmonella enterica serovars. 



18 
 

● Applying appropriate workflows and approaches to analyse evolutionary 

processes such as host adaptation, by using interaction networks as a 

medium. 

The aims make progress toward addressing thes hypothesis, by generating a 

high-quality network resource and knowledgebase of Salmonella interaction 

information as the subject of analysis, and by involving network comparison 

methods successfully applied in other similar studies published in the relevant 

literature. 

 The following introduction chapter includes the literature and theory necessary 

to understand Salmonella as a pathogen, the host adaptation process, and the 

fundamentals of systems biology research. 

1.1. History of Salmonella research and its 

importance in public health 

1.1.1. History of Salmonella research 

Members of the Salmonella genus are motile enteric pathogens, capable 

of causing a variety of diseases, from gastroenteritis to systemic infections. A 

member of the genus was observed for the first time by Karl Joseph Eberth, in 

the spleens of typhoid patients, who suspected it might be the cause of typhoid 

fever (Eberth, 1880). The bacteria was isolated and grown into a culture just a 

few years later by Gaffky (Gaffky, 1884). Around the same time Salmonella 

enterica serovar Cholerasuis was first described by Theobald Smith during his 

work at the Bureau of Animal Industry in Washington, DC., who worked in the 
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group of Daniel Salmon. The name of the pathogen was later given after him 

(Meštrović, 2018; Schultz, 2008).   

1.1.2. Salmonella and public health 

The Salmonella genus causes somewhere between 90 million to 1.3 

billion cases of foodborne gastroenteritis, and up to 3 million deaths each year. 

The gastroenteritis caused by these pathogens is one of the most common 

foodborne illnesses, the incidence of intestinal disease caused by non-typhoidal 

Salmonella species is the highest in the developing world, and is also considerable 

in developed countries (Coburn, Grassl, & Finlay, 2007). A subgroup of strains 

causing enteric fever affects 11.9 – 27.1 million patients globally, with over 

100.000 of these infections leading to death  (Coburn et al., 2007; GBD 2017 

Typhoid and Paratyphoid Collaborators, 2019; Hohmann, 2001; Majowicz et al., 

2010).  

 

The burden of disease caused by Salmonella is not new – these pathogens were 

one of the most prevalent food poisoning organisms of the 20th century and were 

most likely a constant foodborne threat in the past as well. A study went as far to 

propose a Salmonella enterica subspecies enterica serovar Paratyphi C outbreak 

to be one of the strong candidates for the epidemic causing the population decline 

in the 16th century Aztec empire (Vågene et al., 2018). While microbiology 

progressed a lot to understand their structure, relationships and natural history, 

much of their qualities remain unclear (Hardy, 2004). As is the case with other 

commonly occurring pathogens, there is an increased prevalence of multidrug 

resistant Salmonella strains in recent years, further increasing the health risk and 
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public health cost associated with infections, including the health of livestock, as 

food animals often serve as reservoirs of the pathogen (Branchu, Bawn, & 

Kingsley, 2018; Hofer, 2019). 

1.1.3. Salmonella nomenclature 

Today, when we talk about Salmonella, we usually refer to Salmonella 

enterica and its subspecies, most often subspecies I., as the pathogens in this 

subspecies are the ones responsible for most infections in warm blooded animals 

(A. Bäumler & Fang, 2013). Salmonella nomenclature has not always been this 

clear cut. Salmonella was first recognised as a distinct group of organisms by 

1900, and as research interest grew around them in North America and Europe, 

different laboratories and methodologies led to the same organisms receiving 

multiple names, and the same name given to multiple organisms. 

 

As an example, Salmonella enterica subspecies enterica serovar Typhimurium, 

one of the most well studied serovars today, was once known under multiple 

aliases: Mutton type, Hatton strain, Breslau type, Freiburg type, Salmonella 

aertrycke and Salmonella suipestifer, to name a few (Hardy, 2004). Salmonella 

can be and was for a long time classified by its serotype. Serotypes are determined 

by the Kauffman-White classification scheme, that can distinguish subsets of 

microbes based on surface antigens they carry. In the case of Salmonella, this is 

based on the O and H antigens, the former a part of the lipopolysaccharide (LPS) 

coating, while the latter is a part of the flagellum. Based on the combination of 

the small scale differences in these markers the isolated bacteria can be assigned 

a serotype (Ibrahim & Morin, 2018).  
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Today, there are two species in the genus: Salmonella bongori, and Salmonella 

enterica. In 2005, the International Committee for Systematics of Prokaryotes 

designated the type species of the Salmonella genus to be Salmonella enterica 

(previously known as Salmonella choleraesuis) and its type strain to be LT2 

(Salmonella enterica subsp. enterica serovar Typhimurium strain LT2) (Judicial 

Commission of the International Committee on Systematics of Prokaryotes, 

2005). As mentioned above, the majority of diversity and public health burden 

comes from Salmonella enterica subspecies I., also known as subspecies enterica. 

There are six subspecies in total: 

● I - enterica 

● II - salamae 

● IIIa - arizona 

● IIIb - diarizonae 

● IV - houtenae 

● VI - indica 

The gap in numbering between houtenae and indica is caused by the 

reclassification of Salmonella bongori into a separate species, formerly known as 

subspecies V (Brenner, Villar, Angulo, Tauxe, & Swaminathan, 2000; Desai et al., 

2013). To shorten reports the names of serovars are often curtailed. For example, 

one can find Salmonella enterica subspecies enterica serovar Typhimurium 

shortened as Salmonella Typhimurium or S. Typhimurium (Brenner et al., 

2000). 
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1.1.4. Evolution of Salmonella enterica 

The common ancestor of the Salmonella genus existed about 25-40 

million years ago. The two Salmonella species are closely related to Escherichia 

coli, a commensal and opportunistic pathogen bacterium commonly found in the 

lower intestine. The divergence from the Escherichia coli lineage happened in 

three to five major steps, depending on the model we apply (A. J. Bäumler, Tsolis, 

Ficht, & Adams, 1998; Winfield & Groisman, 2004), occurring approximately 100 

to 160 million years ago (Doolittle, Feng, Tsang, Cho, & Little, 1996; Ochman & 

Wilson, 1987).  

 

In the first phase of divergence from the common ancestor, one branch of 

speciation led to Escherichia coli, a commensal bacterium living in the gut of 

mammals. The other, pathogenic subset acquired a set of genes needed to infect 

the intestine, including the Salmonella Pathogenicity Island 1 (SPI-1), which 

eventually gave rise to Salmonella bongori. The SPI-1 island is a 40-kb long 

region encoding effector proteins, a type three secretion system (T3SS-1), and 

elements required to regulate these. The T3SS is an intricate protein structure 

that assembles into a syringe-like complex, a needle structure that can penetrate 

the host epithelial cells and translocate SPI-1 effectors into it. There are more SPI 

like genomic islands present in the genus, most of them acquired later on in the 

speciation process (Lou, Zhang, Piao, & Wang, 2019); (Winfield & Groisman, 

2004).  

 

In later evolutionary steps the ancestral pathogen accumulated genes that are 

required for the colonization of deeper tissues leading to Salmonella enterica 
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subspecies II, IIIa, IIIb, IV, VI, VII. The new set of genetic material includes 

another large island called SPI-2, encoding a similar T3SS required for intra-

macrophage survival. In the last phase the Salmonella enterica subspecies I 

formed, expanding the host range to warm blooded vertebrates, which includes 

us, humans (A. J. Bäumler, Tsolis, et al., 1998), and as such a majority of  human 

infections come from this subspecies. The acquisition of these genetic islands also 

means that Salmonella serovars cause disease by very similar mechanisms, 

utilising the same virulence genes (Tanner & Kingsley, 2018). Figure 1 depicts the 

three major steps as outlined by Bäumler et al in 1998. 

 

 

 

Figure 1. Phases of Salmonella evolution depicting the necessary steps which 
granted the pathogen the ability to infect humans, and the formation of the new 
species, subspecies. Source: (A. J. Bäumler, Tsolis, et al., 1998). 

 

Infections of most of the Salmonella serovars cause a self-limiting 

gastroenteritis. The invasion induces an inflammatory event, that shapes the 
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intestinal niche to one that favours the pathogen by releasing metabolites it is 

suited to utilize better, and as such it can use to outcompete the local microbiome 

(Rivera-Chávez & Bäumler, 2015; Stecher et al., 2007; Tanner & Kingsley, 2018). 

Salmonella enterica subspecies I harbours a large number of serovars, many of 

them adapted to various host species. Figure 2 depicts the phylogenetic 

relationships of the major Salmonella serovars in subspecies I. 

 

Figure 2. Phylogenetic relationships of the major Salmonella enterica 
subspecies I serovars.  Image from (Branchu et al., 2018), licensed under CC-BY 
4.0 
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1.2. Host adaptation in Salmonella serovars 

1.2.1. Defining host adaptation 

The relationships between pathogens and the hosts they infect can vary 

based on the level of co-evolution. Some pathogens have a broad host range, 

capable of infecting many species, while others are more specialised, only 

focusing on one or a few specific host species. Most pathogenic bacteria fall into 

the first category, and this is the case with Salmonella as well. The typical 

Salmonella infection leads to a self-limiting gastroenteritis shaping the intestinal 

environment to one that favours the pathogen (Stecher et al., 2007). 

 

Host adaptation is commonly assumed to be the ability of a serotype to cause 

disease only in the subset of animal species it is adapted to. The reality, however, 

is a bit more complicated when taking all available data into consideration (R A 

Kingsley & Bäumler, 2000). Defined in an article by (R A Kingsley & Bäumler, 

2000) host adaptation is the ’ability of a pathogen to circulate and cause disease 

in a host population’. This ability is unrelated to its virulence for other host 

species. For example, Salmonella enterica  subsp. enterica serotype Choleraesuis 

is not considered swine adapted because it causes a more serious disease in them 

as in humans, but because it is able to persist in pig populations by direct 

transmission (R A Kingsley & Bäumler, 2000).  

 

Although the incidence of human infection by serovars that are host adapted to 

animals is rare, the infection can be quite invasive and cause a serious illness. The 
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behaviour of host adapted strains can also be context dependent - for example 

Salmonella enterica subspecies enterica serovar Typhimurium, which causes 

gastroenteritis in a human host, but bacteraemia in rodents. The main difference 

lies here - infection with a non-host adapted serovar usually leads to a self-

limiting illness, while a person getting infected with Salmonella enterica 

subspecies enterica serovar Typhi might end up transmitting the disease to 

others (Tanner & Kingsley, 2018). The self-limiting nature of a non-host adapted 

infection can also be interpreted as beneficial from a public health point of view, 

as multi-drug resistant serotypes become more prominent (Eng et al., 2015). 

1.2.2. Changes accompanying host adaptation 

Narrow host range serovars of Salmonella typically cause a systemic 

disease, beyond the intestine, and exhibit increased virulence. The exact 

mechanisms and reasons for specialization are still studied, but it has been 

implicated that the potential to expand into new niches might be a strong driving 

force, as the pathogen does not have to compete with as much local microbiota 

outside of the intestine (A. J. Bäumler, Tsolis, et al., 1998; Tanner & Kingsley, 

2018). Other studies suggest that members of an ecological system equipped with 

specialists can increase resource exploitation within the system, which could also 

be potentially driving the process (A. Bäumler & Fang, 2013).  

 

Host adapted Salmonella variants have emerged on multiple occasions, 

convergently (Hiyoshi et al., 2018; Vázquez-Torres, 2018). The pressure to 

exploit available resources can be one of the potential drivers behind it, one of 

the defining differences between pathogenic and commensal bacteria, is the 
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ability of utilising niches commensals cannot. Gene inactivation caused by 

genome degradation is one of the recurring features of host adaptation, even 

though the events initiating it are not completely understood yet (Klemm et al., 

2016). One of the mechanisms thought behind this phenomenon, is that these 

pathogens’ genes often degrade over time, when they affect pathways that are 

non-essential in their new niches within the host, and neutral mutations slowly 

accumulate in them. Biofilm formation is typically one of the functions that is less 

effective in host adapted serovars, but there are other major biological functions 

impacted as well, such as chemotaxis or anaerobic metabolism (Holt et al., 2009; 

MacKenzie, Palmer, Köster, & White, 2017; Nuccio & Bäumler, 2014). Another 

reason for the emergence of loss of function mutations in certain genes is 

antagonistic pleiotropy, that some of the pathways that were useful in one 

environment might be counterproductive in the new niche. Genome size can 

change quite dynamically in bacteria as they can utilize resources better by not 

transcribing genes they are not using, and can outcompete individuals by dividing 

faster than ones with larger genomes (Ilyas, Tsai, & Coombes, 2017; Nilsson et 

al., 2005). 

 

Host adaptation is not only driven by gene inactivation, many of the host adapted 

serovars have also accumulated genes for which there are no orthologous 

proteins in broad range serovars, in the form of additional Salmonella 

pathogenicity islands, such as SPI-7, SPI-8 and SPI-10 (Winfield & Groisman, 

2004)). The gain and loss of genes modulates the possible range of host microbe 

interactions. For example, the expression of the S. Typhimurium effector gtgE in 

S. Typhi allows it to survive and multiply in a mouse host by promoting survival 
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inside mouse macrophages, which it would be unable to do, it being a human 

restricted serovar normally (Spanò & Galán, 2012). 

 

1.2.3. Degrees of host adaptation, terminology 

Going through the processes outlined above, within the Salmonella 

enterica subspecies I some of the serovars became host adapted, and thus the 

group can be divided into different categories, in a multitude of ways. Most often 

we find two pairs of terms when talking about these pathogens: typhoidal - 

nontyphoidal categories, and extraintestinal - gastrointestinal categories. 

Although they mean similar things, the context in which they are used matters, 

as the first two refers to the human disease they cause (typhoid fever), while the 

latter refers to their relationship to the intestine as a niche. Table 1 highlights the 

differences between the terms. 

 

Pathovar Gastrointestinal Extraintestinal 

Human disease Non-typhoidal Non-typhoidal Typhoidal 

Typical serovars S. Typhimurium, 
S.  Enteritidis, 
S. Heidelberg, 

S. Newport 

S. 
Choleraesuis, 

S. Dublin 

S. Typhi, 
S. Paratyphi (A,B,C) 

Disease Self-limiting gastroenteritis (intact 
immune system), bacteraemia 
(immunocompromised host) 

Systemic 
infection 

(Para)typhoid fever 

Host range Broad Host adapted 
(porcine, 
bovine) 

Host restricted (human) 

 

Table 1: Salmonella pathovars, and their relationships to human disease and host 

range. 
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The extraintestinal pathogens are a small group of specialists adapted to new 

environments in their host. The most extensively studied member is Salmonella 

enterica serotype Typhi (Rivera-Chávez et al., 2016). The level of host adaptation 

in Salmonella enterica serotypes varies, with S. Typhi being generally considered 

one of the most specialised member of the group, while (from a human disease 

point of view) S. Typhimurium being a typically broad host range, 

gastrointestinal serovar. Host adaptation can sometimes progress into host 

restriction, where the pathogen limits itself to one single host species, and causes 

a more severe illness (Klemm et al., 2016). Figure 3 details the host range of host 

adapted serovars in Salmonella. 

 

Figure 3. Host range of pathogens in the Salmonella enterica subspecies. 
Subspecies I mostly consist of generalists from which specialists emerge from 
time to time. Source: (A. Bäumler & Fang, 2013), with permission of the 
copyrights holder Cold Spring Harbor Laboratory Press.  
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S. Typhi is the causative agent of typhoid fever, a dangerous disease manifesting 

as a high fever, with abdominal pain, and headaches. S. Paratyphi A can cause a 

very similar condition which is why these two are often referred to as typhoidal 

Salmonellae (J Parkhill et al., 2001). As outlined above, the host-adaptation of S. 

Typhi happened via genetic degradation and the recruitment of many genes 

associated with virulence (den Bakker et al., 2011; Klemm et al., 2016).  

 

A prominent example of this is the Vi exopolysaccharide capsule of S. Typhi. 

Generally speaking, broad and narrow host range serovars approach the infection 

process from opposite ends of the spectrum - the former group evolved to elicit 

inflammation to reduce competition and free up metabolites it can use in the 

intestine (e.g. tetrathionate), while the latter evolved to avoid the immune system 

for as long as possible in order to disseminate to organs of the reticuloendothelial 

system (Vazquez-Torres et al., 1999). The Vi capsule, encoded by the viaB locus 

on SPI-7 does that, by preventing the activation of the complement system 

(Pickard et al., 2003; Wangdi et al., 2014). The pathogens often downregulate the 

gene tviA as well for similar reasons, which is responsible for the regulation of 

flagella expression (Winter, Raffatellu, Wilson, Rüssmann, & Bäumler, 2008). S. 

Typhi and Paratyphi are host restricted, they do not cause disease in nonhuman 

hosts (they can infect higher primates, but do not cause typhoid fever in them) (J 

Parkhill et al., 2001). They express the typhoid toxin, a cytolethal distending 

toxin, causing G2/M cell cycle arrest which leads to the apoptosis of the affected 

cells (Galán, 2016).  

 

Even though S. Typhi and Paratyphi share many similarities, they can be quite 

different from other extraintestinal serovars which evolved alternative ways to 
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disseminate in the host system. Extraintestinal serovars underwent convergent 

evolution, reaching a similar systemic lifestyle through different mechanisms. 

This convergence has been previously observed in the patterns of genome 

degradation of extraintestinal Salmonella enterica serovars (Galán, 2016; Nuccio 

& Bäumler, 2014; J Parkhill et al., 2001). 

1.2.4. Host adaptation is an ongoing process 

Host adaptation is a constantly ongoing process, and recently S. 

Typhimurium pathovariants emerged, that follow a host adapted lifestyle, and 

share functional changes with other host adapted Salmonella. The Salmonella 

enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to rock 

pigeons (Columbia livia). These isolates form a distinct cluster within S. 

Typhimurium but share a common ancestor with them in the recent past, and in 

some ways represent a microcosm of Salmonella evolution. These isolates 

adapted to the higher (42 °C) internal temperature of the avian host, and went 

through many of the functional changes, such as downregulation of flagella and 

motility one would see in other host restricted pathovariants such as S. Typhi 

(Bawn et al., 2020; Robert A Kingsley et al., 2013; Tanner & Kingsley, 2018; 

Winter et al., 2010).  

 

Over the past decades, another group of host adapted Salmonella appeared as 

one of the most commonly isolated pathogens from the blood of patients (Feasey, 

Dougan, Kingsley, Heyderman, & Gordon, 2012). The invasive nontyphoidal 

Salmonella (iNTS) strains cause a similar systemic infection as human adapted 

extraintestinal serovars such as Typhi and Paratyphi, most often in 
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immunocompromised individuals, e.g. young children, AIDS patients. The 

infection often leads to bacteremia and meningitis, and multidrug-resistant 

variants have caused epidemics in several African countries. Sub-Saharan Africa 

is one of the worst impacted regions. The infection is most often caused by a 

sequence type of Salmonella Typhimurium and of Salmonella Enteritidis 

(Gilchrist & MacLennan, 2019). ST313, containing these iNTS strains, consists of 

three lineages, the third of which was described very recently (Pulford et al., 

2021). 

 

The variants causing this bacteraemia show similar molecular changes discussed 

above with other host adapted variants and seem to be distinctly adapting to 

infection in immunocompromised hosts. The iNTS strains can still cause 

intestinal inflammation, but the genome degradation alters functions required 

for survival in the intestine, for the environment outside the host, for serum 

resistance, and human-to-human mode of transmission (Robert A Kingsley et al., 

2009; Okoro et al., 2015). Altogether, these sequence types evolved to have 

reduced capability of intestinal pathogenesis, but increased systemic 

dissemination (Carden et al., 2017; Okoro et al., 2012; Singletary et al., 2016). 

The 10,000 (10k) Salmonella Genomes Project was launched specifically to 

address and understand invasive non-typhoidal Salmonella infections, collecting 

samples from Africa and South America (10K Salmonella Genomes Project, 

2017).  

 

In a well-documented case, there was an example of a bloodborne S. 

Enteritidis infection showing signs of host adaptation in an 

immunocompromised patient. Over the course of 15 years, the non-typhoidal 
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Salmonella infection recurred, always resulting from a relapse rather than 

reinfection, and it culminated in the pathogen slowly losing functionality in genes 

that are not necessary for a systemic lifestyle (Klemm et al., 2016).  

 

The events following host adaptation - genome size reduction, formation of 

pseudogenes, acquisition of mobile/IS elements - are not unique to Salmonella 

and have been described in multiple other bacterial clades, e.g. Shigella, another 

group closely related to Escherichia coli (Hawkey, Monk, Billman-Jacobe, 

Palsson, & Holt, 2020), or other groups such as Yersinia, Rickettsia, Bordetella 

(Cole et al., 2001; Moran & Plague, 2004; Julian Parkhill et al., 2003). 

 

1.2.5. Convergent evolution 

 

A common result of natural selection is that sometimes similar 

pressures result in similar solutions from relatively distant - or at least not 

monophylatically related - organisms. With eukaryotes, especially animals and 

plants this is something where many examples exist describing this process, both 

including currently alive and fossil specimens. 

 

The process is most obvious on a phenotypic level. Commonly used examples are 

the similar anatomical solutions fish and other vertebrates came up with that 

returned to water, or the flying apparatuses of bats and pterosaurs, the similarity 

of the hummingbird hawk-moths (Macroglossum stellatarum) and 

hummingbirds, the anatomy of the eye in humans and certain cephalopods.  
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Convergent evolution occurs on a molecular level as well. A very timely example 

is the identical single nucleotide polymorphism mutations collected by 

geographically distant lineages of the currently ongoing SARS-CoV-2 pandemic. 

There are select amino acid changes in the spike proteins of these variants of 

concern, that have emerged independently of each other, and are responsible for 

increased transmissibility. 

1.2.5.1. Adapting to a host affects similar functions 

In the case of the host adaptation process, Salmonella serovars go 

through similar changes, both on a molecular and a phenotypic level. The 

selection driven genome degradation in S. Typhi and S. Paratyphi  associated with 

loss of function events affects genes known to be important in gastroenteritis, and 

effectors that are normally translocated into host cells (McClelland et al., 2004). 

It also affects chemotaxis, virulence, motility, biofilm formation, and resistance 

to antibiotics.  

 

The affected functions are the same, but the way the individual serovars solve 

them can be different: for example, S. Typhi and S. Paratyphi A can both avoid 

the respiratory burst from phagocytes, but through different manners. The 

former does this by preventing the antibody-mediated complement activation 

utilising its Vi polysaccharide capsule, while S. Paratyphi A uses very long O-

antigen chains containing the O2 antigen to avoid the binding of the antigen. 

These typhoidal Salmonella strains cause a very similar enteric fever, and both 

are human adapted, and because of the similar pressures they came up with 

solutions converging on the same problem – preventing complement activation 
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– but through different means. Figure 4 shows the comparison of the 

aforementioned structures. 

 

Figure 4. Typhoidal Salmonella serovars both avoid phagocyte respiratory 
burst, but arrived at the solution through different means. S. Typhi uses its 
polysaccharide capsule to prevent IgM binding, while S. Paratyphi A achieves 
the same result using very long LPS chains. OM: outer membrane, CM: plasma 
membrane, LPS: lipopolysaccharide. Image from (Hiyoshi et al., 2018) licensed 
under CC BY-NC-ND 4.0 

 

In a similar way, the aforementioned phage type DT2 S. Typhimurium 

variants collated changes to their physiology to make them more fit to living in 
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an avian host, but did it through the rewiring of their transcriptional profile 

through accumulating point mutations in regulatory regions instead of the 

acquirement of novel genes, such as tviA in S. Typhi (Bawn et al., 2020; Robert 

A Kingsley et al., 2013; Winter et al., 2010). 

 

1.2.5.2.  Biofilm formation is hindered in host adapted Salmonella 

strains 

Biofilms of all kinds are produced by a large number of bacteria, serving 

as a different mode of growth, usually on physical surfaces. They allow the 

bacteria to create multicellular communities, resist antibiotics, protect the cells 

from phagocytosis, and enhance their abilities to create slow growing persister 

populations (Tursi et al., 2020). Salmonella biofilms are commonly 

characterised by the so-called rdar phenotype, the red, dry, and rough 

appearance of their colonies grown on agar plates stained by Congo red dye.  

 

The main structural components of Salmonella biofilms are curli fimbriae, 

a matrix of amyloid proteins, intermixed with cellulose. The two combined 

produce a resistant extracellular matrix for the pathogens. Biofilm formation is 

often one of the functions that degrades as Salmonella adapts to a systemic 

lifestyle, and has been noticed in the iNTS strains that formed relatively recently 

(MacKenzie et al., 2017).  
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1.2.5.3. Cyclic di-GMP 

One of the most important signals regulating biofilm formation is the 

presence of cyclic di-GMP (c-di-GMP). C-di-GMP is a secondary messenger 

metabolite commonly found in bacteria, where it, amongst others, regulates 

motility, biofilm production and virulence. C-di-GMP is produced by diguanylate 

cyclases, and can be degraded by phosphodiesterases (Römling, Galperin, & 

Gomelsky, 2013). The activity of these two enzyme groups, the availability of 

precursor molecules, and extracellular signals control the levels of c-di-GMP. The 

decisions to reduce motility, and/or virulence and start producing biofilms are 

quite important and severe from the bacteria’s point of view, and as such are 

under tight control (Jenal, Reinders, & Lori, 2017; Petersen, Mills, & Miller, 

2019). 

 

C-di-GMP is commonly summarised as a sessile-motile switch in many 

bacterial species, like Vibrio, where high intracellular c-di-GMP concentration 

leads to reduced motility and biofilm formation, while a low concentration of the 

metabolite promotes free swimming motile behaviour. The former instance 

typically occurs, when the pathogen is outside the host, and wants to persist until 

it can get taken up by another host organism, while the latter state is mostly 

descriptive of the within host state (Tamayo, Pratt, & Camilli, 2007). An increase 

in c-di-GMP in Salmonella leads to the same phenotype, regulated by CsgD, a 

transcriptional regulatory protein. CsgD, and the regulatory network it controls 

flows into the regulation of virulence as well further downstream, as the 

formation of biofilms downregulates virulent traits in return.  
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To sum up the process, environmental signals (e.g. L-arginine) promote the 

production of c-di-GMP and biofilm formation separately, and culminate on the 

CsgD master regulator. A low level of c-di-GMP leads to an inactive CsgD state, 

and virulence (motility, chemotaxis, active T3SS-1), while increasing c-di-GMP 

levels turns CsgD on, and suppresses virulence, while increasing curli and 

cellulose production (MacKenzie et al., 2017).  

 

The regulation of biofilm production and virulence intersect in Salmonella 

in very interesting ways. While the process generally works as detailed above 

(turning off during infection, and on in between), in a study the authors have 

found, that during the intra-macrophage stage of infection of a mice model by S. 

Typhimurium, the pathogen actually induces c-di-GMP signalling and cellulose 

synthesis, deliberately suppressing its own virulence. They hypothesize that this 

way the bacteria can exploit host resources slowly, prolonging the infection and 

increasing the chance of transmission (Pontes, Lee, Choi, & Groisman, 2015). 

1.2.6. Salmonella Pathogenesis 

Salmonella strains apply a variety of strategies to infect their preferred 

host species, depending on their host range. Non-typhoidal and typhoidal 

Salmonella follows different strategies to ensure replication and transmission 

success, but one of the key aspects of all Salmonella infections is how the 

pathogen tries to hide itself from the immune system, and even hijack certain 

aspects of it (Gut, Vasiljevic, Yeager, & Donkor, 2018; Ohl & Miller, 2001).  
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Salmonella enters the host through contaminated food or water sources, 

which is what makes them one of the most common foodborne pathogens. The 

first goal of the bacterium is to reach the epithelial cells of the intestine, but there 

are of course physical, chemical and biological barriers in the way that it has to 

overcome first. For example, gastric acidity is one of the first lines of defence 

against enteric pathogens, considering the pH of an empty stomach (in the case 

of humans) can be as low as 2. The specific microenvironment, i.e. the surface of 

the foodstuff can be protective for Salmonella, by temporarily raising the pH of 

the stomach, and providing a source of amino acids for the pathogen to maintain 

its acid resistance genes (Garai, Gnanadhas, & Chakravortty, 2012; Waterman & 

Small, 1998). 

 

Once Salmonella reaches the intestinal lining, it attaches to the epithelial 

cells, activates its endocytic pathway, and its uptake into the epithelial cells of the 

host. It specifically targets Peyer’s patch, the microfold or M-cells found here, and 

the immune cells below. The pathogen accomplishes this by activating one of its 

type III secretion systems. These systems, as mentioned previously, are a needle-

like protein structure that can pump effectors into the host cells, affecting its 

behaviour. The genes that encode these T3SSs sit on the aforementioned SPIs 

(Ehrbar & Hardt, 2005). The specific island required for this phase of the 

infection is SPI-1, meaning this is the genomic region that is shared across the 

entire genus, including Salmonella bongori (A. J. Bäumler, Norris, et al., 1998). 

 

Following the uptake of Salmonella into the intestinal epithelial cell, it 

passes through towards the submucosa. The submucosa is rife with immune cells, 

which Salmonella uses to its advantage. Once it reaches this layer it will be shortly 
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engulfed by a macrophage in a phagocytosis-like process led by the genes of SPI-

2 (and other Salmonella Pathogenicity Islands), encoding for a similar T3SS. The 

pathogen initiates the production of a special modified phagosome, the 

Salmonella-containing vacuole (SCV), which it uses as a protective niche within 

the macrophage (Dougan & Baker, 2014). Under normal circumstances there are 

multiple antibacterial mechanisms the host can employ, but the effectors of SPI-

2 neutralises many of these, e.g. they block the fusion of acidifying lysosomes to 

the SCV (Giannella, 1996).  

 

This is where the pathogenic process bifurcates for non-typhoidal and 

typhoidal Salmonella, from the viewpoint of an infected human. The former 

group are eventually eliminated by an inflammatory cascade (Mayuzumi, 

Inagaki-Ohara, Uyttenhove, Okamoto, & Matsuzaki, 2010). Typhoidal 

Salmonella, despite having the same SPI-1 and SPI-2 virulence factors, have 

gained additional tools that it can use to evade the innate immune system. S. 

Tpyhi can downregulate its flagella using the gene tviA, it’s Vi capsule causes a 

lower inflammatory response, and this Salmonella can effectively utilise the 

macrophages as a safe niche within the host, where it can hide, replicate, and 

propagate to different sites in the host, like the liver or the spleen. S. Typhi also 

produces a toxin within host cells, called the typhoid toxin, which causes 

cytoplasmic detention and cell cycle arrest. What the specific role of the toxin is 

not currently known (Galán, 2016; Tanner & Kingsley, 2018). Figure 5 

summarises the main differences in the pathogenesis process between non-

typhoidal and typhoidal serovars. 
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Figure 5. Differences in pathogenesis between nontyphoidal and typhoidal 
serovars S. Typhimurium and S. Typhi. The self-limiting non typhoidal infection 
is eventually stopped at the local lymph nodes, while the typhoidal pathogen can 
hijack macrophages and disseminate further into the host system. Image 
source: (Young et al. 2002) with permission of the rights holder, Springer 
Nature. 
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1.3. SARS-CoV-2 and COVID-19 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 

positive-sense single-stranded RNA (ssRNA) virus, and the causative agent of the 

currently ongoing coronavirus disease 2019 (COVID-19) pandemic. This is the 

third major outbreak linked to the members of the Coronaviridae family. The 

family sits within the order of Nidovirales, and can be further divided into four 

genera: alphacoronavirus, betacoronavirus, gammacoronavirus and 

deltacoronavirus. While alpha-and betacoronaviruses only infect mammalian 

species, the other two genera have a broader host range, and can infect avian 

species as well. An epidemic of severe acute respiratory syndrome coronavirus 

(SARS-CoV) broke out in 2002, and multiple times for the middle east 

respiratory syndrome coronavirus (MERS-CoV). SARS-CoV-2 emerged in 

Wuhan, China, due to a spillover of an animal coronavirus to humans, similarly 

as it has happened in the cases of MERS-CoV and SARS-CoV (Andersen, 

Rambaut, Lipkin, Holmes, & Garry, 2020; Coronaviridae Study Group of the 

International Committee on Taxonomy of Viruses, 2020; Machhi et al., 2020). 

 

SARS-CoV-2 consists of 29 proteins in total, 16 of which are non-structural 

proteins. It shares 79% of its genome with SARS-CoV and 50% with MERS-CoV. 

The observed outcomes following an infection differ between the three viruses, 

with SARS-CoV-2 being the most transmissible, but having a lower mortality rate 

(2.3% vs 9.6% of SARS-CoV and 35% of MERS-CoV) (Suryawanshi, Koganti, 

Agelidis, Patil, & Shukla, 2021). 
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Respiratory coronaviruses, including SARS-CoV-2, are transmitted 

primarily through respiratory droplets. Because of this, the virus enters the host 

most often through the respiratory tract, airway and alveolar epithelial cells 

(Harrison, Lin, & Wang, 2020).. Capable of infecting cells carrying the 

angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 surface receptors, they 

enter the cells, and start replicating. It is important to mention, that there is a 

possibility of faecal-oral route of transmission as well. Human coronaviruses 

have been known to cause gastrointestinal infections, with varying degrees of 

severity (Harrison et al., 2020; Lamers et al., 2020).  

 

Most common coronaviruses tend to cause mild upper respiratory tract 

(URT) illnesses, and occasionally attack the intestines. However, the highly 

pathogenic coronaviruses, such as SARS-COV-2 or SARS-CoV cause severe 

influenza-like symptoms that can progress to severe pathologies, such as acute 

respiratory distress syndrome (ARDS), pneumonia, renal failure, and death 

(Guan et al., 2020; Harrison et al., 2020). 

 

The host response consists of aggressive inflammatory responses, in part 

responsible for the damage done to the airways. In a subset of patients, the 

inflammatory responses can progress to a hyper-inductive state, also known as 

cytokine release syndrome (CRS) or cytokine storm. This occurs when a large 

number of immune cells activate, and release inflammatory cytokines, activating 

more cells in return. Although the process can resolve on its own after the 

clearance of the virus, in severe cases it can persist for longer, and lead to tissue 

damage, and the pathologies listed above. This process is responsible for an 

increased level of mortality observed with COVID-19 for a subgroup of patients 
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(Costela-Ruiz, Illescas-Montes, Puerta-Puerta, Ruiz, & Melguizo-Rodríguez, 

2020; Jung, Potapov, Chillara, & Del Sol, 2021; P. Mehta et al., 2020).  

 

How SARS-CoV-2, and other CRS-causing viruses modulate immune 

responses is not completely understood. They have certain effector proteins they 

can use to influence or delay the type-I interferon response, one of the first lines 

of defence mounted against viral infections by the innate immune system 

(Channappanavar et al., 2019; Murira & Lamarre, 2016).  

 

How these viruses, especially focusing on SARS-CoV-2 alter intracellular 

signalling and other networks in various tissues, is an area of active research 

(Bouhaddou et al., 2020; D. E. Gordon et al., 2020; Treveil et al., 2021; Zhou et 

al., 2020). Global collaborative efforts, such as the COVID-19 disease map 

consortium have been created to reconstruct the virus-host interactions aimed to 

combat the underlying causes of the currently ongoing pandemic (Ostaszewski et 

al., 2020). 

1.4. Introduction to networks 

1.4.1. Networks describe complex systems 

Graph theory is a branch of mathematics that studies graph models 

used to describe relationships between certain objects. They are widely applicable 

and have found their way into many of the sciences, be they computer science, 

social sciences or biology. The first study of graph theory was written by Leonhard 

Euler, one of the most prominent mathematicians of all time. Euler tried to solve 
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something that sounds quite simple at first. A city sits on both sides of a river, 

and has two islands in the water, both connected to the riverbanks, and to each 

other by a bridge. The problem was: can one cross the city in a way that only 

involves crossing each bridge once? Euler’s abstraction of the problem laid the 

fundamentals of graph theory, namely the establishment of what we know today 

as vertices or nodes, points and edges, or links. The names are often used 

interchangeably, but they are mostly used as vertices and edges when discussing 

graphs, and nodes and links when talking about networks. 

 

In the last few decades network science has grown into its own discipline, 

dealing with complex problems from various fields. The true merit of this 

approach is its ability to make sense of systems in a way that cannot be done 

purely from knowledge of its constituents. Network science is interdisciplinary, 

data-driven and computational at its heart.  

Most systems can be described and analysed with networks. Biological 

systems are no different. They can be described with networks where nodes 

represent the constituents of a biological system (e.g. genes), and where edges 

represent the relationships between them (e.g. inhibition). The specific types of 

nodes, and edges of different qualities can further nuance these systems. 

1.4.1.1. Nodes 

The nodes in a network are the members we are looking to connect, be 

they genes, proteins, metabolites or complete organisms. Their nature will 

determine the type of interactions we can use to connect them to each other. A 

phenomenon one can often encounter regarding nodes, is that often they can be 

put into different sets, on some qualitative trait - e.g. gender, whether an animal 
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is a predator or prey, or whether we are talking about a protein or RNA. 

Connecting the members of these sets grants us a multipartite graph, i.e. 

bipartite, tripartite etc. graphs. 

 

1.4.1.2. Degree 

  

Figure 6. An example network. Node b has a degree of 3, as it has three 

immediate interactors. 

One of the most commonly applied and important number used to describe 

a node is its degree. Let Di be the degree of the ith node in the network. It describes 

the number of direct links a node has to its neighbours, e.g. in the example above 

on Figure 6 node b has a degree of 3 (Db = 3), node c has a degree of 2 (Dc = 2), 

while all other nodes have a degree of 1. To get the total amount of links in an 

undirected network, one can take the sum of all degrees, and divide it by two, as 
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to not count each interaction twice (e.g. between A and B, and B and A) (Barabási, 

2016).  

1.4.1.3. Hubs 

Hubs are the highest degree nodes in the network, and have a degree 

larger than the average (Barabási, 2016). In biological networks they fulfil very 

important roles, their mutations often becoming lethal. Typical biological 

examples of hub nodes are chaperone proteins. They have a high degree, as they 

interact with many other proteins to help them fold into the correct shape, and a 

loss or mutation in a chaperone protein often leads to disorders, as the organism 

becomes prone to producing misfolded proteins (Macario, Grippo, & de Macario, 

2005). In this thesis, regulatory hubs are discussed in Chapter III, in the context 

of correcting by degree during rewiring analysis. 

1.4.1.4. Edges 

Within network biology there are a few types of commonly used 

networks. On a molecular level most commonly one can find protein-protein 

interaction networks, where the links depict the physical interactions of proteins, 

or regulatory networks, that show the relationships of transcription factors and 

their regulated genes. There are supra individual level networks as well, depicting 

dynamics in ecology, like food webs (Dunne, Williams, & Martinez, 2002). Edges 

can be simple, showing an undirected interaction between two partners, but they 

can become more complex with the addition of more meta-data. They can be 

directed, determining the origin and target of the interaction, signed, signalling 

whether the interaction is stimulatory/inhibitory, weighted, conveying the 

importance or confidence in the interaction. Although we are only dealing with 
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simple graphs, where an edge can only connect two nodes, it would be remiss of 

me not to mention hypergraphs, where this is not the case. In these special 

constructs an edge can connect any number of nodes, which we then call 

hyperedges. They are less commonly used in biology, but there are certainly 

examples of it (Klamt, Haus, & Theis, 2009). 

 

Biological networks, especially on a molecular level, are most of the time 

incomplete, they do not contain all interactions of the process they are attempting 

to depict. There are multiple reasons for this. First, simply not all interactions of 

all molecular constituents have been captured experimentally - either due to 

chance, or caused by technical limitations, interactions of certain proteins are 

harder to capture than others.  Depending on the type of interaction, one can 

establish high-throughput experiments to gain as many interactors as possible, 

although these methods can have their blind spots as well, certain interactions 

they are unable to capture, rooted in the specific methodology used. A commonly 

used tactic to fill up these gaps, is to turn to the literature or network repositories, 

where one can collect missing interactions to complete their network, that were 

established by different experimental approaches (Türei, Korcsmáros, & Saez-

Rodriguez, 2016).  

 

Another major tool in our kit is the ability to predict/infer interactions 

between certain constituents, e.g. regulatory interactions where transcription 

factors can bind to putative target sites. These interactions are based on a set of 

heuristics or algorithms, and can fill in important gaps in the network, although 

they can add considerable noise as well (Bailey et al., 2009; Nguyen et al., 2018). 

As a rule of thumb, one should always strive to compile as complete of a network 
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as one can, as long as it fits the biological question, and the scope of the study. 

Having a more complete network can increase the predictive power of a network, 

and can lead to increased insight on our part (Santolini & Barabási, 2018). The 

nature of the field is, however, that new kinds of interactions can arise as long as 

there are meaningful relationships to analyse between things, and as such one 

can always find new ways of interpreting system level problems. 

1.4.1.5. Paths 

Paths are a sequence of nodes connected by a sequence of edges; they 

describe the steps needed to go from one node to another. An often-referenced 

special path is the shortest path, which describes the shortest paths by which 

nodes can be connected. This is an important attribute of the network, as it can 

be used to quantify certain properties of the network, such as information flow. 

Betweenness centrality is the measure of the shortest paths going through a given 

node or edge – the higher the value, the more information flowing through that 

specific node or edge. The diameter of the network is also quantified using the 

shortest path measure: it is the longest shortest path in the graph. 

1.4.2. Protein-protein interaction networks 

The quality of our queried interactors determines the kind of 

interactions one can distinguish. In biology, the most commonly used 

interactions are protein-protein interactions or PPIs. 

 

Protein-protein interactions are the purposeful, non-random, physical 

interactions of proteins, occurring in or outside the cell. These interactions can 

happen between standalone proteins, or in complexes, and are responsible for, 
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amongst others, the signal flow in cells, and play a central role in the cellular 

systems of all living organisms. The breakdown of PPI signalling patterns can be 

indicative of a disease state (and thus, disease genes), play a fundamental role in 

drug discovery, and when comparing different organisms, can shine a light on the 

evolutionary path of those  (Barabási, Gulbahce, & Loscalzo, 2011; De Las Rivas 

& Fontanillo, 2010; Kuzmanov & Emili, 2013).  

 

Protein-protein interactions can be discovered by experimental techniques, 

or be inferred by computational approaches. One of the most widely used 

experimental approaches to describe interactions between proteins is the yeast 

two-hybrid screening method (Terentiev, Moldogazieva, & Shaitan, 2009). This 

approach permits the pairwise analysis of binding between two proteins, by 

expressing them in a Saccharomyces cerevisiae model. The binding of the 

proteins is inferred from the activation of the Gal4 reporter genes used. The yeast 

is grown on limiting media, and the proteins in question are fused with parts of 

the Gal4 transcription factor. If there is a close enough physical interaction 

between the queried proteins, the halves of the fused transcription factor 

combine, and Gal4 starts expressing, letting the microbe synthesize nutrients it 

needs to survive. The method has its limitations, especially when post-

translational modifications have to be considered in the case of human proteins 

for example, but it has remained one of the mainstays of the methodology 

(Brückner, Polge, Lentze, Auerbach, & Schlattner, 2009); (Maple & Møller, 

2007). 

 

Other experimental approaches, like the affinity purification mass 

spectrometry (AP-MS) allow the detection of stable interactions, in a high-
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throughput way. In essence, in these experiments the protein we would like to 

find partners for is tagged (thus becoming the bait) and is selectively purified 

along putative interaction partners (the preys) from the in vivo source (i.e. cells 

or tissue cultures). These purification steps are repeated for many sets of 

potential preys, and each of them is analysed with a mass spectrometer. From the 

results one can deduce the protein-protein interactions, and part of the 

underlying protein-protein interaction network (Gavin et al., 2002; Ho et al., 

2002; Kim, Sabharwal, Vetta, & Blanchette, 2010; Rigaut et al., 1999; Tian, Zhao, 

Gu, & He, 2017).  

 

There are multiple computational approaches used to predict protein-

protein interactions (Obenauer & Yaffe, 2004). Methods using the amino acid 

sequence data typically utilise machine learning methods, such as random forest 

and support vector machines that attempt to predict interactions from pairs of 

protein sequences. Approaches using comparative genomic data are similar, but 

take sequence comparisons into account, and look at the conservation of gene 

neighborhoods, gene fusion, and gene co-occurrence (Kotlyar, Rossos, & Jurisica, 

2017). Other approaches use protein domain information, or even the tertiary 

structure of proteins to infer interactions. Recently, approaches started 

integrating these data types, and basing interaction predictions on the 

combination of these (Q. C. Zhang, Petrey, Garzón, Deng, & Honig, 2013). Figure 

7 shows an example protein-protein interaction network, from the seminal study 

of Gordon et al. 2020, mapping the protein-protein interactome of SARS-CoV-2 

proteins in the host. 
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Figure 7. A protein-protein interaction network showing a SARS-CoV-2 

protein (protein N, in red) interacting with human proteins. Putative drug 

targets are coloured in orange. Figure modified, from (D. E. Gordon et al., 

2020), with permission of the rights holder Springer Nature. 

 

1.4.3. Gene regulatory networks 

Gene regulatory networks (GRNs) describe the interactions of 

molecular regulatory elements that control the expression of RNA, and in turn, 

the levels of specific proteins. These regulators are most often proteins 

themselves, transcription factors, that can act alone, or in complexes with other 

proteins or nucleic acids. Gene regulatory networks control many of the cellular 

decisions, responses to stimuli, and their nature also makes them the most 
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dynamic of the commonly studied interaction times, from an evolutionary point 

of view. The edges of GRNs therefore contain interactions between transcription 

factors, and their regulated target genes. 

 

Compared to eukaryotes, the genes of prokaryotes are organised in special, 

co-regulated transcriptional units called operons. The genes contained in 

operons are transcribed and controlled together, with the help of the regulatory 

sequences found next to the transcribed units, in the so-called untranslated 

regions (UTR), both up- and downstream from the structural genes (5`-UTR and 

3`-UTR) (Mao, Dam, Chou, Olman, & Xu, 2009). The UTR contains the promoter 

region, a specific region of the DNA that can bind the RNA polymerase, to initiate 

the transcription of the genes into RNA (Kröger et al., 2012). The promoter region 

transcription factors bind to is specific and sensitive to changes, which makes this 

interaction layer dynamic, as even a small change, introduced by a point mutation 

can affect the binding affinity (Shou et al., 2011). Recently, novel techniques have 

been developed that can identify the first nucleotide of a transcript, termed the 

transcriptional start site (TSS). The approach called differential RNA-sequencing 

(dRNA-seq) can identify individual -10 and -35 promoter motifs (Sharma et al., 

2010). This approach was applied with great success to Salmonella, identifying 

the TSS of major virulence regulators in Salmonella, such as phoP, slyA, and invF 

(Kröger et al., 2013, 2012).  

 

Novel regulatory interactions of transcription factors and target genes can 

be uncovered in several ways. A commonly used experimental method is the 

chromatin immunoprecipitation sequencing (ChIP-Sequencing or ChIP-Seq) 

technology, which is a kind of sequencing method that looks for interactions of 
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proteins with DNA. In brief, following the binding of proteins to DNA by a 

binding agent, DNA is sheared, and the target proteins (the transcription factors 

of interest) are captured using specific antibodies against the protein. The bound 

DNA is recovered, and sequenced, highlighting the genomic regions the 

protein(s) bound to (Furey, 2012). 

 

From a practical point of view, the binding sequences transcription factors 

recognise are usually stored as position-specific scoring matrices. These are 

matrices aligned from sequences representative of the binding region, and 

contain the probability of each base occurring at each position in the sequence. 

One way of visualizing them is by using sequence logos, where the size of the base 

letters are proportionate to the probability of them occurring in the binding 

region (Nguyen et al., 2018). Figure 8 shows the sequence logo for the binding 

site recognised by the Fur transcription factor in Salmonella. 

 

Figure 8. Sequence logo of the binding site recognised by the Salmonella 
transcription factor Fur, generated by the RSAT suite. 

 

There are in silico ways of inferring or predicting regulatory interactions 

between select transcription factors and target genes, based on gene expression 

and other -omics data. For eukaryotes, there are a number of databases that 

contain high quality regulatory interaction data for Homo sapiens, such as 
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OmniPath, SignaLink from our group, and TRRUST or HTRI (Bovolenta, 

Acencio, & Lemke, 2012; Fazekas et al., 2013; Han et al., 2018; Türei et al., 2016). 

When studying bacteria, there are a few resources that are especially useful in 

this regard. RegulonDB and CollecTF collect transcription factor binding site 

data for Escherichia coli and other prokaryotes that can be used to predict and 

infer regulatory interactions (Kılıç et al., 2016; Santos-Zavaleta et al., 2019). 

Through the principle of regulogs, the homology-based conservation of 

transcription factors, target genes and transcription factor binding sites the 

inference of regulatory interactions is made possible, provided the interacting 

partners are well conserved, both on the level of proteins, and the interacting 

protein-DNA interface (Rodionov, 2007; H. Yu et al., 2004). The RSAT suite is a 

collection of on-line bioinformatic tools that make it possible to make the 

predictions based on the data from RegulonDB and CollecTF for example, by 

combining it with promoter data from the genomes of interest (Nguyen et al., 

2018; Rodionov, 2007; H. Yu et al., 2004). 

Gene regulation does not only exist in the form of transcription factor – 

target gene interactions, but other elements can also influence the expression of 

genes as well, for example on a posttranscriptional level. Salmonella small RNAs 

(sRNAs) have been identified previously and can alter the expression of a large 

number of genes in the pathogen. There are multiple interaction databases 

containing a posttranscriptional layer of regulation, and there is evidence of 

conservation of sRNAs within Enterobacteriaceae family (Kröger et al., 2012; 

Van Assche, Van Puyvelde, Vanderleyden, & Steenackers, 2015). Due to the 

amino-acid sequence based orthology of the database sRNAs were not added to 

this release of SalmoNet, but their addition will be an important upcoming step 

for the longevity of the database. 
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1.4.4. Metabolic networks 

The metabolic networks discussed in this work are derived from 

genome-scale metabolic models (GEMs).  

GEMs are computational models used to describe associations of genes and 

proteins to reactions for entire metabolic pathways in an organism. They collect 

existing knowledge of the metabolism for the organism, and most of the time they 

are assumed to be complete. They can be used to simulate and predict metabolic 

fluxes for various systems-level metabolic studies. The first GEM was created for 

Haemophilus influenzae in 1999, shortly after its genome was sequenced, and in 

the following years the number of GEMs for model and non-model organisms has 

grown considerably. As of February of 2019, there were more than 6000 models 

available, mostly for bacteria (Edwards & Palsson, 1999; Gu, Kim, Kim, Kim, & 

Lee, 2019; E. J. O’Brien, Monk, & Palsson, 2015). GEMs have many uses, and 

have found their way into many fields of biology, as they can be used to redesign 

aspects of the metabolism of a bacteria to enhance the production of certain 

desired metabolites, can be applied to study the essentiality of genes, to find 

oncogenes and biomarkers of cancer in systems medicine, and much more (Gu et 

al., 2019; C. Zhang & Hua, 2015). One can  find GEMs in specific online 

repositories, such as BiGG or BioModels (King et al., 2016; Malik-Sheriff et al., 

2020). 

 

GEMs, from a practical point of view, are networks, where nodes constitute 

metabolites, and they are connected to each other by reactions, each associated 
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with the necessary enzymes. To represent stoichiometric coefficients, GEMs use 

a matrix (S matrix) in addition, to represent all the coefficients for all metabolic 

reactions. A positive coefficient means the metabolite is produced, while a 

negative means it is consumed (E. J. O’Brien et al., 2015; C. Zhang & Hua, 2015).  

 

Flux Balance Analysis (FBA) is a type of constraint-based reconstruction 

and analysis (COBRA) method used to calculate the flow of metabolites through 

a genome scale metabolic network, from a network input to a network output. 

The output of the analysis is essentially a map showing that under certain 

parameters how the system must balance itself to achieve a homeostatic state.  

The results obtained from the analysis can be used to predict the growth rate of 

the organism as a whole, or a specific metabolite (E. J. O’Brien et al., 2015; Orth, 

Thiele, & Palsson, 2010). 

 

The curated metabolic model for Salmonella published by Thiele et al. has 

been widely used since its release. Recently, a new set of metabolic 

reconstructions has been released, generating 410 metabolic models for 64 

serovars. The authors used these results to show how different nutrient 

conditions showed the catabolic capacities of the studied strains, and what their 

optimal growth environments are (Seif et al., 2018; Thiele et al., 2011).  

1.4.5. Multi-layered networks 

Multi-layered biological networks can show connections between 

multiple networks belonging to the same system which can make them quite 

descriptive. The analysis of integrated networks (ones that combine multiple 
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levels of knowledge, e.g. regulation and protein-protein interactions) allows us to 

gain new insight into regulation, signal transduction on multiple levels. We can 

focus on specific processes without excluding complete levels of a biological 

system, e.g. to see whether a signalling pathway changes anything on a metabolic 

level with its downstream effectors. This is especially useful in this case, when we 

know of two similar but very differently behaving groups (Csabai, Ölbei, Budd, 

Korcsmáros, & Fazekas, 2018). Figure 9 shows the schematic representation of a 

multi-layered network. 

 

Figure 9. Schematic representation of a multi-layered network. Specific 

nodes connect different levels of information, leading to the multi-layered 

structure. Figure from Csabai et al., 2018. 
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1.4.6. Network properties 

There are many ways of describing the properties of networks beyond 

its constituents. The degree is one of the most important characteristics of a node, 

and similarly, the degree distribution of a network can tell us a lot about the 

system we are attempting to model. Looking at the entire network, if the degree 

distribution of all nodes in the network follows a power law, we note these 

networks as scale-free. Most real networks - e.g. many biological networks, social 

networks, computational networks - fit or approach this distribution. Figure 9 

shows the out-degree distribution of one of the networks from SalmoNet. 

 

Figure 10. Out-degree distribution of the consensus network from SalmoNet 
1.0. This network captures interactions shared amongst all included strains. 

The degree distribution approaches a power law (correlation: 0.96, R2: 0.82). 

 

 

The largest interconnected, non-disjunct part of the network is called the 

giant component. This is where most connections lie, and most analysis takes 

place. Within these giant components one can often find modules. These are 

subgraphs, whose elements are more connected to each other, than to nodes 
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outside of it. They are often functional elements, and there are many approaches 

for finding them. One I employed in my PhD studies was the MCODE software 

developed for Cytoscape (Bader & Hogue, 2003). 

1.5. Network resources 

In computational biology, there are more and more options one can 

acquire network information from. There are various network repositories 

focusing on a specific types of interaction information, e.g. the Autophagy 

Regulatory Network (ARN) contains information related to the regulation of core 

autophagy proteins, ImmunoGlobe contains interactions occurring between 

various elements of the immune system, while other resources collate data from 

more specific databases like the ones mentioned previously (Atallah et al., 2020; 

Türei et al., 2015). An example for the latter is OmniPath or STRING, both of 

which contain multiple types of interaction data (e.g. protein-protein 

interactions, regulatory interactions, intercellular interactions) (Szklarczyk et al., 

2019; Türei et al., 2016). 

 

The structure and standardization of interaction data has made a lot of 

progress in recent years. To make sharing and processing information easier, 

more and more network resources utilize the PSI-MITAB system, a heavily 

standardized tabular format, where every field has a set function and values it can 

take.  
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1.5.1. Databases and network repositories 

 

One of the most well-known interaction resources is the STRING 

database. It fills an important role in the ecosystem of network resources, as it 

contains many interactions, for >5000 species, from a diverse array of sources, 

ranging from very high quality, experimentally validated interactions, to 

interactions based on co-expression, co-occurrence and text mining. As such, it 

has a very large coverage of interactions, but importantly, it only focuses on 

protein-protein interaction data (Szklarczyk et al., 2019). 

 

IntAct is a molecular biology interaction database, focusing on protein-protein 

interactions, curated from the literature, or directly from data depositions. The 

developers established a curation tool, allowing the users to fine-tune the quality 

of data they would like to work with, which is something I utilised in the 

development of SalmoNet 2 (see chapter 2) (Orchard et al., 2014) . 

 

OmniPath is a database of literature-curated human signalling interactions. It 

was compiled of 34 resources, including both directed, signed and causal 

interactions. Released in 2016, the resource covers 39% of the human proteome, 

61% of disease-gene associations, >80% of cancer related genes and druggable 

proteins.  

 

OmniPath 2, its novel update now combines over 100 resources into a single 

database, covering inter-and intracellular signal transduction, as well as 

transcriptional and post-transcriptional regulation (miRNA-mRNA) (Türei et al., 
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2016). This is a database I have used extensively in my work related to SARS-

CoV-2 (see Chapter 5) and helped the publication of the updated manuscript by 

adding a degree of quality control and authored workflows for the R and python 

programming language access point libraries for the users of the resource. 

1.5.2. Network analysis and visualization software 

One of the most commonly used network analysis software in biology is 

Cytoscape (Shannon et al. 2003). It is an easy to use, free graphical user interface 

(GUI) application, capable of reading and writing multiple network file formats, 

and can be used both as a network analysis and visual exploration tool. One of 

the largest advantages of the software is its community, that develops additional 

functionality for it in the form of Cytoscape apps. I have used a number of these 

libraries during my PhD work, i.e. DyNet, MCODE, CHAT, ISMAGS (Bader & 

Hogue, 2003; Goenawan, Bryan, & Lynn, 2016; Muetze et al., 2016; Van Parys et 

al., 2017). The software also allows for automated analyses, through multiple 

libraries in commonly used programming languages, such as R or python 

(Otasek, Morris, Bouças, Pico, & Demchak, 2019). 

 

More advanced network analysis and visualization tools exist as libraries in the R 

and Python languages, e.g. igraph, networkx, RCy3. These allow for automated 

and programmatic analysis of networks and are really important from the 

standpoint of reproducibility. 
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1.6. Primary research aims 

My primary research aims in this thesis are the following: 

1. Expanding the coverage of Salmonella enterica serovar strains found in the 

SalmoNet database and increasing the information content of the individual 

networks. 

2. Validation of the SalmoNet approach: using experimental information to show 

the biological relevance of the included interactions. 

3. Testing the scientific hypothesis set at the beginning of this thesis, that the 

difference in the host adaptation capabilities of gastrointestinal and 

extraintestinal Salmonella enterica serovars can be characterized by specific 

changes in the topology of their metabolic, regulatory, or protein-protein 

interaction networks, and highlighting how network comparison and network 

analysis workflows can be used to identify elements of molecular interaction 

networks under selection, stemming from their lifestyle or environment. 

 

 Added aims due to the COVID-19 pandemic: 

1. Carry out a study comparing cytokine responses of patients infected by Cytokine 

Release Syndrome causing viruses, including SARS-CoV-2. 

2. Generate an interaction network of cell-cell communication mediated by 

cytokines, aimed at uncovering leading intercellular interactions of CRS.  
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2. Construction of a multi-layered 

network database for Salmonella 

research 

2.1. Introduction 

Salmonella enterica is an important group of pathogens endangering 

the health of humans and other animal species alike. Salmonella enterica 

subspecies enterica houses over 2000 serovars, and is responsible for the 

majority of Salmonella infections in warm blooded animals (A. J. Bäumler, 

Tsolis, et al., 1998). Most of the subspecies I. serovars have a broad host range, 

and cause acute gastroenteritis in the host organism (Uzzau et al., 2000). 

Gastrointestinal Salmonella serovars induce this self-limiting gastroenteritis to 

engineer the gut luminal environment to one that benefits them, by inducing the 

release of metabolites these pathogens can use as terminal electron acceptors, 

and increasing the oxygen saturation of the gut lumen from the production of 

reactive oxygen species by the cellular elements of the immune system (Nuccio & 

Bäumler, 2014). The latter, although still harmful to the pathogen, paradoxically, 

enables the growth of gastrointestinal Salmonella, by reducing the anaerobic 

stress on the pathogen (Nuccio & Bäumler, 2014; Rogers, Tsolis, & Bäumler, 

2021). A smaller subgroup of Salmonella serovars has adapted to a systemic 



65 
 

lifestyle, causing bacteremia and enteric fever. The adaptation to invasive disease 

markedly alters the pathogenesis process, symptoms, and immune responses to 

these Salmonella serovars. They are atypical bacteria, their virulence factors 

focusing on inhibiting the generation of normal antibacterial responses, leading 

to a "stealth" phenotype (Tsolis, Young, Solnick, & Bäumler, 2008). 

 

To understand the changes the genus and these host adapted serovars went 

through, many studies have focused on genomic differences. Since one of the 

hallmarks of host adaptation is a level of genome degradation, and genetic 

content gain through horizontal gene transfer, these approaches have highlighted 

the genetic elements that underwent selection, and consequently functions that 

were lost or potentially gained through diversification (den Bakker et al., 2011; 

Robert A Kingsley et al., 2013; Klemm et al., 2016).  

 

Studying Salmonella host adaptation also means studying convergent 

evolution, and there are a number of examples, detailed in Chapter I., where 

different serovars arrived at similar solutions, through different molecular level 

means. It stands to reason that to understand the underlying reasons and 

mechanisms of host adaptation, we should also analyse functional convergence, 

and compare these serovars on a systems level. Although the contraction and 

expansion of genomes is the process that gives rise to the functional changes, it 

is the way those absent or newly acquire genes modify and fit into the system, 

that makes Salmonella alter its behaviour within the host organism, through the 

emergence or loss of novel signalling, regulatory or metabolic pathways, or the 

combination of them. The combination of this information via multi-layered 

networks allows us to focus on specific processes important to the question at 
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hand, e.g. to see whether a regulator can affect a metabolic pathway further 

downstream (Csabai et al., 2018). 

 

For Salmonella, the different levels of knowledge exist in separate data 

resources, which makes complex, integrated analysis difficult. SalmoNet was 

developed for Salmonella strains to circumvent this problem. SalmoNet is the 

first multi-layered network database for Salmonella, combining regulatory, 

metabolic and protein-protein interactions for 10 Salmonella serovars in the first 

version, and 20 strains in the second one. In addition to being a tool for a specific 

scientific purpose, the study of host adaptation in extraintestinal serovars of 

Salmonella, it also aims to be a gap-filling knowledgebase for this non-model 

organism. The networks contain manually curated Salmonella specific 

interactions, and inferred interactions from Escherichia coli. Data was collated 

from multiple sources: literature, primary and secondary databases, high-

throughput experiments. 

 

This chapter describes how the first version of the database was built, 

focusing on the workflow, principles and methods utilized to collate the networks, 

and details the steps how I updated it with the release of the new version. The 

work highlighted in the introduction of this chapter were carried out by: Aline 

Métris who designed much of the work, Padhmanand Sudhakar who carried out 

the construction of regulatory networks, David Fazekas, who created the protein-

protein interaction and metabolic layers and set up the web resource 

(http://salmonet.org/). Amanda Demeter performed the manual curation of 

interaction data sources, Eszter Ari, who contributed by inferring the 

classification trees and dendrograms. Priscilla Branchu, Rob A. Kingsley, Tamas 
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Korcsmaros and Jozsef Baranyi contributed to framing the biological basis of the 

work, and supervised the project. My role in the first release was internal testing 

and quality control, as this project finished not too long after I started my PhD 

studies. 

2.1.1. Construction of a multi-layered network for non-

model organisms 

SalmoNet 1 was the first multi-layered network resource for the 

pathogenic non-model organism Salmonella. To have a better chance of 

understanding how members of this phenotypically diverse group differ from 

each other, there was a need to combine various levels of information together, 

to make integrated analysis possible. 

The genus holds a lot of diversity, and ten well-studied strains were 

selected to capture this, by including five host-adapted and five broad host range 

serovars. Since the majority of Salmonella information used to exist in separate 

repositories, the database fulfilled the important role of a Salmonella specific 

knowledgebase for these strains, beyond being an interaction resource. We 

achieved this through integrating various levels of knowledge from multiple data 

sources and approaches: protein-protein, regulatory and metabolic information, 

both predicted and experimental, from high-throughput and low throughput 

experiments, and the available literature  (Métris et al., 2017).  

2.1.1.1. Strains included in SalmoNet 1 

In SalmoNet 1, five broad host range, gastrointestinal serovars, and five 

narrow host range, extraintestinal serovars were selected from subspecies 
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enterica. Table 2 lists the included representative strains, and information 

regarding their lifestyle.  

Serovar Strain Taxonomy ID Lifestyle 

Typhi CT18 90370 Extaintestinal, causes 
typhoid fever in 
humans 

Paratyphi A ATCC 9150 295319 Extaintestinal, causes 
paratyphoid fever in 
humans 

Choleraesuis SC-B67 321314 Extaintestinal, porcine 
adapted 

Dublin CT 02021853 439851 Extaintestinal, bovine 
adapted 

Gallinarum 287/91 550538 Extaintestinal, avian 
adapted 

Agona SL483 454166 Gastrointestinal 

Enteritidis P125109 550537 Gastrointestinal 

Heidelberg SL476 454169 Gastrointestinal 

Newport SL254 423368 Gastrointestinal 

Typhimurium SL1344 216597 Gastrointestinal 

Typhimurium LT2 99287 Gastrointestinal 
Table 2: list of serovars in the first version of SalmoNet. 

2.1.1.2. Prediction of interactions across organisms, orthology 

mapping 

One of the challenges many face doing comparative (micro)biological 

work is that despite our best efforts, name and various identifier usage can be 

inconsistent across strains and serovars. Orthology mapping can provide a 

common denominator, by homology-based clustering of the protein sequences 

that serve as nodes in the final networks (Altenhoff et al., 2016; Remm, Storm, & 
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Sonnhammer, 2001). Every node, regardless of which layer they belong to, is 

therefore treated as a protein.  

 

For SalmoNet 1, the standalone software version of InParanoid was used to 

create orthologous relationships between the proteins of the Salmonella strains 

listed above, and the model organism Escherichia coli K12 (K. P. O’Brien, Remm, 

& Sonnhammer, 2005; Sonnhammer & Östlund, 2015). The latter is a close 

relative of Salmonella, and well-studied model organism. This makes it possible 

to include orthologous interaction data based on conserved proteins and the 

concept of interologs, the transfer of interaction annotation from one organism 

to another, and E. coli can as such act as an important link in transferring more 

established and well-studied information to a non-model organism, such as 

Salmonella (H. Yu et al., 2004). 

 

To begin the orthology mapping, the complete protein sequences of all 

available genes belonging to the listed serovars were downloaded from the 

UniProt database, in January of 2015. To identify homologous protein sequences, 

InParanoid starts with an all-vs-all BLAST comparison of all protein sequences 

in two species and following that applies a clustering rules to build ortholog 

groups. As the authors of InParanoid summarize, “The purpose of the ortholog 

detection algorithm is to find non-overlapping groups of orthologous sequences 

using pairwise similarity scores. This is essentially a sequence clustering 

problem.” (Remm et al., 2001). In brief, InParanoid first identifies the best 

scoring sequence pairs bi-directionally (since it is always comparing two 

proteomes at a time), and marks these as the main ortholog pair of a specific 

ortholog group. The detection of the subsequent orthologs follows independently 
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for each ortholog group, until the similarity scores reach the predetermined 

cutoff value. For SalmoNet 1, a strict sequence similarity cutoff of >= 95% was set 

to minimize false positives, as the comparison is made between strains of the 

same species. Previously >= 80% was used in other works when creating 

interologs between different species, e.g. Caenorhabditis elegans and Drosophila 

melanogaster (Remm et al., 2001; H. Yu et al., 2004). 

2.1.2. Reconstructing the interaction networks 

2.1.2.1. Protein-protein interactions 

To create the protein-protein interaction layer, a guided literature 

curation protocol was used, originally developed for SignaLink (Fazekas et al., 

2013) (Csabai et al., 2018). The workflow uses the tools iHop and ChiliBot in 

addition to direct PubMed searches to look for signalling interactions between 

Salmonella proteins (Chen & Sharp, 2004; Hoffmann & Valencia, 2005). In 

addition, experimentally verified Salmonella protein-protein interactions were 

included from the IntAct database (S Kerrien et al., 2007; Orchard et al., 2014). 

To further increase the coverage of the networks, interactions were transferred 

from a closely related model organism - Escherichia coli - based on the concept 

of interologs. Interolog mapping is the process of transferring annotation data, 

from one organism to another, based on orthologous relationships, established 

through InParanoid for SalmoNet 1.0 (Métris et al., 2017). The source of 

interologs were the Interactome 3D, IntAct, and BioGrid databases, and a high-

throughput yeast-2-hybrid screen of the Escherichia coli interactome (Mosca, 

Céol, & Aloy, 2013; Oughtred et al., 2019; Sonnhammer & Östlund, 2015; Stark 

et al., 2011).  
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2.1.2.2. Metabolic interactions 

Genome-scale metabolic networks describe the interactions (reactions) 

of metabolites, mediated by the various enzymes needed to process them. The 

metabolic networks included in this work are essentially an inversion of these 

genome-scale networks. They were defined as the following: if a metabolite is a 

product of a reaction, and a substrate in another, the two proteins catalysing the 

reactions are linked, with the exception for ones appearing in more than 10 

reactions (Kreimer, Borenstein, Gophna, & Ruppin, 2008).  

 

To construct these interactions the STM 1.0 model mentioned in Chapter I 

(Thiele et al., 2011), and automatically generated data from the BioModels 

database was used (BMID000000140711). 

2.1.2.3. Regulatory interactions 

SalmoNet 1 contains interactions based on both experimentally 

validated and predicted regulatory interactions, that represent the binding of 

transcription factors to promoter regions of specific target genes. As mentioned 

previously in Chapter I, the promoter region is a specific sequence of the DNA 

that can bind the RNA polymerase, to initiate the transcription of the genes into 

RNA. The promoter region transcription factors bind to is specific, and sensitive 

to changes, 

To build the regulatory layer, first low throughput, experimentally 

validated data was collected on transcription factor binding sites. This was done 

similarly using ChiliBot and iHop as in the PPI layer, and relevant databases, such 

as CollecTF, RegulonDB or Prodoric (Gama-Castro et al., 2016; Kılıç et al., 2016; 
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Münch et al., 2003; Santos-Zavaleta et al., 2019). High-throughput experiment 

data can also be used to infer binding sites from specific genomic locations, in the 

case of SalmoNet 1 the results from Smith et al. 2016 were processed (Smith, 

Stringer, Mao, Palumbo, & Wade, 2016). To get statistically significant binding 

motifs from data like this, amongst others the MEME suite of tools can be used, 

specifically the MEME-ChIP that can extract binding data from ChIP-chip or 

ChIP-seq data (Bailey et al., 2009). 

 

Taken together, the collected binding sites can be used to generate a 

Position Specific Scoring Matrix containing the consensus binding signature for 

that specific transcription factor. This was done with the consensus tool from the 

RSAT suite of tools (now deprecated, see below). Once formatted to transfac 

format (with RSAT convert-matrix), an input file format originally developed for 

the TRANScriptio FACtor database, one can start the genome wide scan of 

promoter regions (Wingender, 2008). The UTR regions were retrieved with 

RSAT’s retrieve-sequence method, but can also be acquired using bedtools for 

example(Nguyen et al., 2018). Prokaryotic transcription factors typically bind to 

the noncoding regions starting upstream from the start codon of the fist gene 

located in the operon. For SalmoNet 1, the first 5000 base pairs upstream from 

the start codon were used, or smaller, should a gene sit in the overlapping region 

upstream. (Browning & Busby, 2004) 

 

For each PSSM optimal P-value thresholds can be determined using the 

RSAT matrix-quality tool. This step, although not always necessary, can reduce 

the amount of false positive hits when PSSMs were constructed from a few sites, 

or have low information content otherwise. Finally, The RSAT matrix-scan 
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pattern matching tool synthesizes the results of the previous steps, and attempts 

to match the PSSMs to the promoter sequences, assigning p-values to each hit. 

Pattern matching is a computational process, during which predefined signatures 

(the PSSMs in this example) are used to find putative copies of the signatures in 

a target string (the promoter regions in this example) (Medina-Rivera et al., 2011; 

Olbei, Kingsley, Korcsmaros, & Sudhakar, 2019; Turatsinze, Thomas-Chollier, 

Defrance, & van Helden, 2008). 

 

Orthologous information can also be used in the reconstruction of 

regulatory networks. Regulogs are sets of coregulated genes with conserved 

regulatory sequences across multiple organisms, which we can use to our 

advantage when generating networks for non-model organisms (Rodionov, 

2007; H. Yu et al., 2004). With SalmoNet 1, experimentally verified Escherichia 

coli transcription factor - binding site pairs were downloaded from the 

RegulonDB database and checked for orthologous proteins - both on the side of 

the transcription factor and the target gene. If both are present, the downloaded 

binding site is matched against the regulatory region of the target gene, and the 

result is only included, if a hit is found. The presence of orthologous transcription 

factors, target genes, and the matching binding sites are the three conditions for 

regulog mapping, as introduced by H. Yu et al. (Cock et al., 2009; Rodionov, 

2007; H. Yu et al., 2004). 

2.1.2.4. Removal of pseudogenes 

Salmonella strains when undergoing host-adaptation, tend to go 

through a degree of genome degradation, leading to a loss of function in 

numerous genes of importance (Bawn et al., 2020; Holt et al., 2009; Robert A 
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Kingsley et al., 2013). The precise annotation, and subsequent removal of these 

genes from our network is an important step, as otherwise we would keep false 

positives in the data, leading to interactions that should not be there. To remove 

all hypothetically disrupted coding DNA sequences (HDCs), the curation made 

by Nuccio & Bäumler was used to remove such entries (Nuccio & Bäumler, 2014). 

2.1.2.5. Data formats & Website 

To make the interaction data widely accessible, an interactive website 

was designed to showcase Salmonella interaction data: https://salmonet.org. 

The website allows the users to query information from proteins of interest, 

download these subgraphs directly, and look up orthologous proteins within 

SalmoNet 1, and other resources. 

The interaction data was made available in a custom .csv and .cys formats, 

the latter being the input format for Cytoscape, a popular network visualization 

analysis and platform. 
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2.2. Aims 

The aims of this project were the following: 

● Assess the areas where the original SalmoNet database could be upgraded 

and extended. 

● Identify the required changes in methodology for the new version. 

● Develop the second version of the SalmoNet database. 

● Compare the information content of the two releases. 
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2.3. Methods 

The second half of this chapter describes the update resulting in the second 

version of the database. All work detailed, including network reconstruction, 

implementing changes in methodology, consequent analysis and interpretation 

of the results were carried out by myself. 

2.3.1. SalmoNet 2 

2.3.1.1. Motivations for the update 

SalmoNet 1 contains a lot of information for Salmonella researchers, 

and the database aimed to cover the most prevalent strains studied in the field. 

By integrating regulatory, PPI, and enzyme-enzyme interaction information, the 

networks can provide a more exhaustive view of signal transduction in the system 

and could be used to highlight upstream regulators of genes involved in 

establishing infection and metabolic functions. However, there are a number of 

limitations to the resource, that I attempted to amend with the updated version. 

First, the interaction database only contains information on proteins 

that have interaction partners in at least one of the layers. As such, understudied 

genes without any interactions captured can be left out of the study and bias the 

usability of the networks to more studied nodes. While this is still a limitation of 

the updated version, I reduced study bias in the networks to reflect the biological 

system more accurately by increasing the coverage of proteins involved in the 

networks through additional resources and quality control steps.  
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Secondly, the strains included in SalmoNet 1, while containing many 

well studied organisms, were restricted to just the Salmonella enterica species, 

and the enterica subspecies. With the update I wanted to make future studies 

possible, where the users could investigate the effects of greater evolutionary 

distance between the strains, made possible by the inclusion of more distantly 

related pathogens, such as the species Salmonella bongori and the S. enterica 

subspecies arizonae. This may provide further insight into the evolution of all 

Salmonellae, by highlighting conserved pathways or interactions (Fookes et al., 

2011). Besides the interesting evolutionary questions made possible with the 

inclusion of these more distant relatives, one of the main goals of the SalmoNet 

project is to help researchers understand the very real problem of Salmonella 

infection in humans. The first release of the database contained only two human-

adapted typhoidal strains, which I wanted to extend with other well understood 

pathogens causing disease in humans. The addition of further human pathogens 

could make more focussed research into host adaptation possible, as the most 

prevalent extraintestinal strains are phylogenetically more distantly related to 

each other, and the fact those included in SalmoNet 1 do not share host species 

adds another layer of complexity and noise to the question and analysis.  

From the release of SalmoNet 1, strain of particular recent interest was 

omitted, S. Typhimurium D23580, associated with the invasive non-typhoidal 

Salmonella (iNTS) disease. This serovar currently causes significant mortality in 

many countries of sub-Saharan Africa, and as such is a subject of numerous 

studies (Canals et al., 2019; Carden et al., 2017; Robert A Kingsley et al., 2009; 

Owen et al., 2017; Singletary et al., 2016). The inclusion of D23580 could 

certainly inform much of the currently ongoing research and help inform studies 

on the specific differences arising in this novel pathogenic lineage.  
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Although the information in SalmoNet 1 can highlight elements under 

evolutionary pressure, or indicate important interactions between regulators and 

targets, especially the predicted interactions cannot be taken on face value alone 

and should be used as a list of potential targets for molecular biology testing. 

While this is still the case with the updated version of the database, I wanted to 

increase the information content underlying interactions where this was possible, 

to increase confidence in interactions as much as possible, and compare the 

obtained results with published information to assess their reliability.  

While including metabolic interactions was very important step, the 

first release of this level of knowledge was incomplete. Due to a technical error, 

SalmoNet 1 only contained enzyme-enzyme interactions derived from 

irreversible reactions. I wanted to extend these to contain ones from reversible 

reactions as well, and more importantly, use a now updated background model 

as its basis. In their seminal work Seif et al. have developed strain specific 

metabolic models for all of the Salmonella strains I planned on including and 

more (Seif et al., 2018; Seif, Monk, Machado, Kavvas, & Palsson, 2019).  

One of the key motivations for the new release of the database was the 

Uniprot Proteome Redundancy project 

(https://www.uniprot.org/help/proteome_redundancy) that affected the utility 

of SalmoNet 1. For various reasons, many primarily prokaryotic sequences in the 

Uniprot database became redundant, or were assigned new accession numbers. 

SalmoNet 1 was primarily UniProt based, and the Uniprot Proteome Redundancy 

Project made parts of the SalmoNet 1 dataset progressively less user friendly as 

time went by, as users had to look up deprecated IDs, and match them up with 

new ones, which became more difficult going forwards. I therefore wanted to 

improve the annotation data within the database, and add more strains, including 
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other widely used lab strains, human pathogens and iNTS strains which were 

requested from the members of the Salmonella community. 

Although the main structure of the database remained the same, the underlying 

workflow changed. Figure 11. details the sources of information and layers 

contained in SalmoNet 2. 

 

Fig 11. Interaction sources and layers in SalmoNet 2.   



80 
 

2.3.1.2. Orthology mapping using the OMA database 

In SalmoNet 2 I used the OMA (“Orthologous Matrix”) standalone 

software to construct the orthologous relationships between the available 

Salmonella strains from the OMA browser database. OMA is a large-scale 

orthology database and toolkit, containing much of the information we need for 

SalmoNet in one place, including the proteomes and genomes of the strains on 

request, and important annotation data (Altenhoff et al., 2018).  

 

The reason for this change was the ease of use, extra information provided by the 

OMA database, and making it easier to generate minor and major releases for the 

future. Relying on an external database for the maintenance of a seperate 

database has advantages and disadvantages. The advantages are, an additional 

level of quality control, and an extra resource to refer to when wanting to compare 

or look for context on interaction data. Using a database that specialises on 

orthologous data is especially useful, as OMA contains data on 1688 bacterial and 

153 archaeal genomes (as of the August 2020 release), and as such any studies 

wanting to look up how the results they obtained from SalmoNet compare to the 

rest of the prokaryotes have an easier time doing so. The disadvantages are, that 

databases are only as good as their maintenance, and if any of the pillars 

supporting them (such as another database) stops being updated, it can hinder 

the future of the resource (Merali & Giles, 2005). Seeing as OMA has gained 

multiple releases since I started using it, I was confident in its future.  

The OMA algorithm is similar to the previously employed InParanoid method, as 

both use the pairwise amino acid sequence similarity to determine the 

orthologous status of proteins from the compared species. Once all putative 
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orthologs or stable pairs between all species or strains were found, OMA builds a 

network from the pairwise orthologs. In this network, the authors defined “OMA 

Groups” as cliques in the graph, where each node in that subgraph is connected 

to all other nodes in the same subgraph, the resulting part containing groups in 

which all the genes are connected to each other via pairwise orthologus 

relationships. These OMA groups, where all genes are orthologous to each other, 

were used as the template for orthologous relationships in SalmoNet 2. Although 

the clique approach is quite stringent, as just the loss of one edge in the subgraph 

can eject a gene from a group, the authors have implemented a tolerance 

parameter to combat this, the resulting structures termed “quasi-cliques” 

(Altenhoff et al., 2019; Train, Glover, Gonnet, Altenhoff, & Dessimoz, 2017; Zahn-

Zabal, Dessimoz, & Glover, 2020). 

Orthology mapping is the most computationally intensive step of the SalmoNet 

workflow. The OMA standalone software can save a lot of time and resources 

here. First, the all-against-all Smith-Waterman sequence alignments can be 

parallelised, both on single computers or high-performance clusters. Adding a 

new strain or species in the future is also made easier, as OMA Standalone does 

not require an all-against-all recomputing of the orthologous relationships in 

these cases, as the previously used pre-computed results can be submitted, in 

which case only the new genomes require computation time. What this means in 

practice, that a requested strain can be added, generated and compared much 

quicker and easier than in the previous version. In this iteration I ended up using 

the strains already in OMA, since they included all the requested strains, but from 

the perspective of database longevity it is an important step for the future. 
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It is important to note, that the outputs of the orthology prediction tools can be 

slightly different: according to a study comparing these methods the OMA 

standalone output OMA groups lead generally to more precise, but also more 

strict mapping, leading to less false positives (and true positives as well) 

(Altenhoff et al. 2016). I did however get very similar, and in cases better recall 

than with SalmoNet 1.0 (between 69-75% overlap with the 4140 proteins from E. 

coli) using InParanoid. The following table contains the list of included strains in 

SalmoNet 2, and the overlap of their respective orthologous proteins with 

Escherichia coli.   
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Strain Five letter 
code 

Orthologous 
protein 
overlap with E. 
coli 

Percentage match 

Salmonella enterica subsp. 
Enterica serovar Agona str. 
SL483 

SALA4 3016 72.8% 

Salmonella enterica subsp. 
Arizonae serovar 62:z4,z23:- 

SALAR 2859 69.1% 

Salmonella bongori NCTC 
12419 

SALBC 2961 71.5% 

Salmonella enterica subsp. 
Enterica serovar 
Choleraesuis str. SC-B67 

SALCH 2987 72.1% 

Salmonella enterica subsp. 
Enterica serovar Dublin str. 
CT 02021853 

SALDC 2983 72.1% 

Salmonella enterica subsp. 
Enterica serovar Enteritidis 
str. P125109 

SALEP 3092 74.7% 

Salmonella enterica subsp. 
Enterica serovar Gallinarum 
str. 287/91 

SALG2 3075 74.3% 

Salmonella enterica subsp. 
Enterica serovar Heidelberg 
str. SL476 

SALHS  
3044 

73.5% 

Salmonella enterica subsp. 
Enterica serovar Newport 
str. SL254 

SALNS 3033 73.3% 

Salmonella enterica subsp. 
Enterica serovar Paratyphi A 
str. AKU 12601 

SALPK 3006 72.6% 

Salmonella enterica subsp. 
Enterica serovar Paratyphi A 
str. ATCC 9150 

SALPA 2960 71.5% 
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Salmonella enterica subsp. 
Enterica serovar Paratyphi B 
str. SPB7 

SALPB 3077 74.3% 

Salmonella enterica subsp. 
Enterica serovar Paratyphi C 
str. RKS4594 

SALPC 2996 72.3% 

Salmonella enterica subsp. 
Enterica serovar 
Schwarzengrund str. 
CVM19633 

SALSV 2993 72.3% 

Salmonella enterica subsp. 
Enterica serovar 
Typhimurium str. 14028S 

SALT1 3109 75.1% 

Salmonella enterica subsp. 
Enterica serovar 
Typhimurium str. ST4/74 

SALT4 3110 75.1% 

Salmonella enterica subsp. 
Enterica serovar 
Typhimurium str. SL1344 

SALTS 3107 75% 

Salmonella enterica subsp. 
Enterica serovar 
Typhimurium str. D23580 

SALTD 3095 74.8% 

Salmonella enterica subsp. 
Enterica serovar Typhi str. 
CT18 

SALTY 3013 72.8% 

 
Table 3: List of strains in SalmoNet 2, and the overlap of the orthologous proteins 
with that of Escherichia coli, used as a measure of recall. 
 

Using OMA is not only beneficial for the orthology mapping, it is also really 

helpful for the re-annotation of proteins. As mentioned before, the first version 

of SalmoNet was essentially UniProt based, with UniProt IDs serving as the 

primary identifiers of the database. Because of the UniProt Redundancy Project, 

we found ourselves in a state where not all proteins of all strains have a matching, 

active UniProt ID. This is where the OMA IDs come in as our new primary 

identifier.  
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2.3.1.3. Re-construction of network layers 

Once I recreated the orthologous relationships of the Salmonella 

strains listed above, I began reconstructing the network layers. I followed the 

protocols described above, developed for SalmoNet 1, and as described in (Métris 

et al., 2017; Olbei et al., 2019). The workflow for the transcriptional regulatory 

and protein-protein interaction layers remained largely the same.  

2.3.1.4. Protein-Protein Interaction layer 

For the protein-protein interactions (PPI), when sourcing orthologous 

relationships based on E. coli information from IntAct, I have used the scoring 

IntAct has developed for their experimental interactions to filter the incoming 

data, to increase reliable coverage. This scoring contains the weighted cumulated 

value assigned to each interaction based on detection method (e.g. biochemical, 

biophysical, imaging, etc.) and interaction type (association, physical association, 

etc.). In the past, for the first version, only one specific kind of detection method 

psi-mi:”MI:0096”(pull down) was used to filter interactions. Most 

experimentally validated interactions are still captured by this method, but the 

novel scoring system allows us to select the higher quality ones based on 

additional information and use interactions from other methodologies that 

would have been left out otherwise, such as tandem affinity purification (psi-

mi:”MI:0676”). Tandem affinity purification (TAP) is a molecular biology 

method for discovering physical interactions of proteins, through 

immunoprecipitation. In short, the proteins of interest are tagged, and the tagged 

fusion proteins are expressed as normal in the cell, where they may interact freely 

with their normal interacting partners. Following that the tagged proteins are 
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separated using beads coated with an antibody that specifically binds the tag 

antigen (Gavin et al., 2002; Gully, Moinier, Loiseau, & Bouveret, 2003). 

 

The following paragraph is an excerpt from the intact website, describing how the 

IntAct scores are attained: 

How is the intact-miscore calculated?  

The IntAct MI score is based on the manual annotation of every 

instance of a binary interaction (A-B) within the IntAct database. 

First all instances of the A-B interacting pair are clustered by 

accession number. Each entry has been annotated using the PSI-CVs 

and we use this information to score by the interaction detection 

method and by the interaction type. Additionally we count the 

number of publications the interaction has appeared in, up to a 

maximum of 8. Each of these variables is normalised between 0-1. 

The cumulative score is also normalised between 0-1 across the 

entire IntAct database, with 1 representing an interaction in which 

we have the highest confidence. From: 

https://www.ebi.ac.uk/intact/pages/faq/faq.xhtml 

This increased the amount of Escherichia coli interactions I could 

create interologs from, by using interactions that had an MI score > 0.50. Figure 

12 shows the frequency distribution of PSI-Miscores of the Escherichia coli data 

in IntAct.  
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Figure 12. Frequency of PSI-Miscores in the Escherichia coli IntAct data. 

2.3.1.5. Transcriptional regulatory layer 

The establishment of the transcriptional regulatory networks was done 

in an identical way to SalmoNet 1 but with updated input information. Figure 13 

shows the workflow for the construction of the regulatory layer. 
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Figure 13. Workflow for the construction of the regulatory layer, updated 
for the second version of SalmoNet. Orange boxes contain information sources, 
green boxes contain actions, italic text refers to the necessary software. 
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The information content of PSSMs used to carry out the genome-wide scans was 

enhanced with novel binding sites published since the first version of the 

database, from the available literature and new data uploaded to the CollecTF 

repository. The sources of TFBS information can be seen in Table 4. RSAT's 

consensus is no longer available on the web server, info-gibbs took its place, 

which is the tool that was used to construct the matrices. Similarly, as previously, 

RSAT retrieve-sequence was used to gather the putative promoter regions for the 

genomes included in SalmoNet, and matrix-scan was used to establish putative 

transcription factor - target gene (promoter region) pairs. 

TF Strain Method PMID 
AraC Salmonella enterica serovar 

Typhimurium 14028s 
High-throughput 
(HT) 

24272778 

ArcA Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

21144897 

Crp Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

9068635 

CueR Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

20807206 

FimY Salmonella enterica serovar 
Typhimurium LB5010 

Low-throughput 
(LT) 

24462182 

Fis Salmonella enterica serovar 
Typhimurium SF530 

Low-throughput 
(LT) 

16777370, 
17483226 

FruR Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

8230205 

Fur Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

22017966 

Fur Salmonella enterica serovar 
Typhimurium SL1344 

Low-throughput 
(LT) 

21573071 

GolS Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

20807206 

HilA Salmonella enterica serovar 
Typhimurium SL1344 

High-throughput 
(HT) 

17483226 

HilC Salmonella enterica serovar 
Typhimurium 14028s 

High-throughput 
(HT) 

27601571 

HilD Salmonella enterica serovar 
Typhimurium 14028s 

 High-throughput 
(HT) 

27601571 

HypT Salmonella enterica serovar 
Typhimurium 4/74 

Low-throughput 
(LT) 

30733296 
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Ihf Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

1511875 

InvF Salmonella enterica serovar 
Typhimurium SL1344, Salmonella 
enterica serovar Typhimurium 
14028s 

Low-throughput 
(LT), High-
throughput (HT) 

11296219, 
27601571 

LeuO Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

12871947 

MetR Salmonella enterica serovar 
Typhimurium SL1344 

Low-throughput 
(LT) 

2676984, 
7896708, 
1904437  

MntR Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

15659669 

OmpR Salmonella enterica serovar Typhi 
Ty2 and Typhimurium 

Low-throughput 
(LT) 

23190111 

PhoP Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

20661307, 
15703297 

PmrA Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

23690578 

RamA Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

18577510 

RamR Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

22123696 

RcsB Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

20724387 

RpoN Salmonella enterica serovar 
Typhimurium LT2 

Low-throughput 
(LT) 

24007446 

RstA Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

18790861 

RtsA Salmonella enterica serovar 
Typhimurium 14028s 

High-throughput 
(HT) 

27601571 

RtsB Salmonella enterica serovar 
Typhimurium 14028s 

High-throughput 
(HT) 

27601571 

SlyA Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

11882648, 
15208313, 
15813739 

SoxS Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

19460824 

SprB Salmonella enterica serovar 
Typhimurium 14028s 

High-throughput 
(HT) 

27601571 

SsrAB  Salmonella enterica serovar 
Typhimurium 14028s, Salmonella 
enterica serovar Typhimurium 
SL1344 

Low-throughput 
(LT), High-
throughput (HT) 

15491370, 
20300643 

YncC Salmonella enterica serovar 
Typhimurium 14028s 

Low-throughput 
(LT) 

20713450 
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Table 4. List of transcription factors and literature sources with their binding site 

information. 

2.3.1.6. Metabolic layer 

The largest changes in terms of data sources occurred to the metabolic 

layer of the database. As mentioned previously, version one used the STM 1.0 

model generated by Thiele et al., and an automatically generated model 

(BMID000000141143) to generate the enzyme-enzyme interactions. While this 

was a good starting point, a better resolution is available using novel data. 

In two studies Seif et al. have generated genome-scale metabolic models for 

Salmonella, in a second work extending these to describe the metabolism of O-

antigens (Seif et al., 2018, 2019). The models used the same STM 1.0 model as a 

starting point, but updated it with new genes and reactions, and were made strain 

specific, leading to the metabolic models 410 Salmonella strains belonging to 64 

serovars.  

I used these models as an input to the metabolic networks replacing STM1.0, as 

the collection contained the GEMs of each of my strains. Due to a technical 

problem during the development of SalmoNet 1, only enzymes connected by 

biochemically irreversible reactions were included in the database. By including 

enzyme-enzyme interactions from reversible reactions as well, I could include 

more interactions, despite the number of nodes not increasing significantly in the 

layer. 

2.3.1.7. Removal of pseudogenes 

To remove all hypothetically disrupted coding DNA sequences (HDCs), 

the curation made by Nuccio & Bäumler was used to remove such entries (Nuccio 
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and Bäumler 2014) and HDCs in S. Typhimurium D23580 were removed based 

on previously published analyses (Canals et al., 2019; Robert A Kingsley et al., 

2009). 

2.3.1.8. Phylogenetic trees, network dendrograms and validation of 

regulatory layer 

Core genome SNPs were determined with snippy (version: 4.3.6), with 

the snippy-multi and snippy-core functions, ran on the Earlham Institute High 

Performance Cluster. MegaX was used to build a newick tree file from the 

resulting core genome SNP alignment. All trees were visualized using the ggtree 

R language package (Kumar, Stecher, Li, Knyaz, & Tamura, 2018; G. Yu, Smith, 

Zhu, Guan, & Lam, 2016). 

The network dendrograms were generated using a Metropolis coupling Markov 

Chain Monte Carlo (MC3) from the MrBayes (version: 3.2.4) software with 10 

million generations, and 25% of the samples were discarded during the MrBayes 

run. To accommodate the binary data, the data type was set to restriction, and no 

substitution model was used (Huelsenbeck & Ronquist, 2001). This is identical 

to the approach that was used to generate network based dendrograms for the 

first version of SalmoNet. 

For assessing the relevance of regulatory interactions, the overlap of differentially 

expressed genes for all applicable regulators from the Supplementary Table 3 of 

(Colgan et al., 2016) were compared with the targets of the same transcription 

factors in SalmoNet 2. Hypergeometric test was done with the phyper function of 

R, and the adjustment for multiple testing was carried out via the p.adjust 

function in R with the Benjamini-Hochberg method. 
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2.3.1.9. Data formats and website 

Users can query data from the Browse menu. The pages of individual 

proteins show their interactors, the layer the interactions occur, and the 

orthologous proteins of the selected node. Links lead to the OMAbrowser website, 

where further phylogenomic analysis can be done. 

  

Figure 14. User interface of the SalmoNet website.  
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2.4. Results 

2.4.1. Comparison of SalmoNet 1 and SalmoNet 2 

SalmoNet 2 increases the amount of available Salmonella strains to 20, 

including more widely used lab-strains, such as S. Typhimurium 14028S or S. 

Typhimurium 4/74, and more distantly related strains, from other subspecies 

(Salmonella enterica subspecies arizonae (strain ATCC BAA-731 / CDC346-86 / 

RSK2980)) or other species in the genus (Salmonella bongori (strain ATCC 

43975 / DSM 13772 / NCTC 12419)). Figure 15 shows the comparison in the size 

of networks between SalmoNet 1 and SalmoNet 2. 
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Figure 15. Comparison of SalmoNet 2 network sizes with the first version. 
The new version increases the information content of the networks, for all 
included strains. 

 

 

SalmoNet 2 has increased the information content of all SalmoNet 1 and 

novel networks, especially that of the protein-protein interaction layer. By using 

the IntAct MI Score as the quality filter, instead of selecting just one experimental 

method, I could cover more of the interactome, without losing the quality of 

interactions. The regulatory layer increased in the number of nodes it connects, 

and the metabolic layer, at least the mean size of the layers became ever so slightly 



96 
 

smaller, as a result of the more specific metabolic interaction mapping, and the 

inclusion of strains with smaller metabolic capabilities captured by the metabolic 

models. Figure 16. shows the size of the layers by interactions, and the number of 

nodes contained in them. 

 

 

Figure 16. Comparing the number of interactions (a) and nodes (b) between 

SalmoNet 1 and SalmoNet 2. The inclusion of the new nodes increased the size 

of the protein-protein interaction layer the most.  

 

The total number of interactions increased from 81,514 to 270215, due to the 

expansion of the PPI layer, and the increase in the number of strains included. 

The composition of the consensus network, comprised of shared interactions 

amongst all strains included in the database slightly changed from the first 

version of SalmoNet. 24.4% of regulatory interactions (up from 16%), 68.1% of 

PPI interactions (down from 72%), and 51.8% (down from 69%) of metabolic 

interactions were shared amongst all strains, forming the core network of 

Salmonella interactions.  
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I built a core genome SNP based tree to determine the phylogenetic relationships 

of the included Salmonella strains, under the assumption that the strains have 

an approximately equal rate of mutation. The results are in accordance with 

previously published phylogenies, such as the one in (Branchu et al. 2018), 

although the latter publication only concerns subspecies I serovars. There is no 

clear clustering of the pathovars in the phylogenetic tree. This is consistent with 

observations in previous works in the literature, the extraintestinal and 

gastrointestinal strains could not be distinguished based on genomic 

dendrograms (Timme et al., 2013). This observation is consistent with the 

hypothesis that extraintestinal, host adapted strains emerge independently from 

gastrointestinal serovars, through a convergent evolutionary process, 

accompanied by genome degradation in important functions (Nuccio & Bäumler, 

2014; Timme et al., 2013). The structure of the PPI, regulatory and metabolic 

network dendrograms very closely resembles their phylogenetic relationships, 

with the notable exception of S. Dublin, that does not cluster together with S. 

Enteritidis and S. Gallinarum in the network structure-based strains. Figure 17 

shows the phylogenetic tree and network structure based dendrograms. 
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Figure 17 Core genome SNP based phylogenetic tree, and hierarchical 
classification of network layers. Extraintestinal serovars labelled with red, 
gastrointestinal serovars with blue labels. A., Neighbour-joining tree from core 
genome SNPs of the strains. B-D., Hierarchical classification trees based on 
matrix representation of protein-protein, regulatory and metabolic networks. 

 

To resolve the largest bottleneck in the usability of the database caused by the 

unfamiliar nature of network resources to most molecular microbiologists, I have 

written detailed step-by-step tutorials on how to import and analyse network 

data using Cytoscape, available from the SalmoNet 2 website 

(https://salmonet.org). 

 

To help computational biologists access network information from SalmoNet 2, 

we now provide networks in the community standard PSI-MITAB format as well, 
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which contains a strictly regulated vocabulary for interaction data, helping 

interoperability between network resources, and is a prerequisite for the resource 

to be included in the PSICQUIC ecosystem as well. We also plan on sharing the 

novel interaction resources in The Network Data Exchange (NDEx) repository 

(Pratt et al., 2015). The latter is an open-source community driven framework, 

where network information can be stored, shared and queried directly from 

Cytoscape, solving one of the larger bottlenecks in the accessibility of our data 

(Pillich, Chen, Rynkov, Welker, & Pratt, 2017; Pratt et al., 2017, 2015). 

 

2.4.2. Assessing the reliability of SalmoNet 2 interactions using 

experimental information 

To ascertain the validity of regulatory interactions included in 

SalmoNet 2 in an unsupervised analysis, I compared the overlap of TF-TG 

associations with systematic regulatory knockouts from the SalComRegulon 

database (Colgan et al., 2016). In this work, the authors have generated 18 

regulatory knockouts of virulence-related global regulatory systems in S. 

Typhimurium 4/74. Since the S. Typhimurium 4/74 strain is one of the newly 

added strains included in SalmoNet 2, it is an appropriate candidate to test the 

relevance of the regulatory interactions predicted for it, using an experimental 

dataset that was not used to create the interaction networks. 

Using the lists of differentially expressed genes provided for each 

knocked out regulator shared by the authors of SalComRegulon in the 

supplementary materials of their paper, I performed a hypergeometric test for 

every transcription factor, to see if there is a significant association between the 



100 
 

genes differentially expressed following a regulator knockout, and the genes 

targeted by the same transcription factor in SalmoNet 2. Figure 18 shows the 

rationale for this comparison. 

 

Figure 18. Schematic overlap of differentially expressed genes from 

regulatory knockouts and predicted SalmoNet 2 regulatory interactions. By 

comparing the sets of differentially expressed genes (as examples both 

significantly downregulated in blue and upregulated in red) following 

knockouts of infection relevant regulators with the predicted targets of each of 

the kocked out regulators in SalmoNet 2, I was able to measure whether the 

predicted interactions capture biologically relevant targets. 

 

It is important to keep in mind that regulatory knockouts will not only 

affect the genes they regulate directly, in the case of multi-step regulatory 

mechanisms they might affect the expression of genes further downstream, as 

shown in the example on Figure 18. The implication of this is that the performed 

test does not test for the precision or coverage of TF-TG binding directly, but 



101 
 

rather tests whether there exists a statistically significant relationship between 

targets of regulatory interactions implemented in SalmoNet 2 and all 

downstream affected genes of the SalComRegulon regulatory knockouts, under 

the assumption that a portion of which the tested transcription factors can 

regulate directly.  

Out of the 18 knocked out regulators in SalComRegulon, the majority 

were included in SalmoNet 2 (the HilD regulon was determined in three different 

culture conditions). The regulators Dam, HilE, RpoS, RpoE, Hfq were not tested, 

as binding information from these regulators was not included in SalmoNet 2. 

Dam and Hfq regulate genes through post-transcriptional control, and as such 

were outside the scope of SalmoNet 2 (López-Garrido & Casadesús, 2010; Vogel 

& Luisi, 2011). RpoS and RpoE are alternative sigma-factors, while HilE interacts 

with HilD to repress hilA transcription (Baxter, Fahlen, Wilson, & Jones, 2003; 

Fang et al., 1992; Humphreys, Stevenson, Bacon, Weinhardt, & Roberts, 1999). 

The addition of the necessary information regarding these regulators should be 

considered in the next release of the database.  

Following p-value adjustment with the Benjamini-Hochberg method 

for multiple testing, the following associations were found, listed in table 5. 

Regulator Adjusted p-value 
fliZ 1.16 x 10-01 
fur 3.09 x 10-02 
hilA 1.29 x 10-02 
hilC 1.92 x 10-07 

hilD (early stationary phase 
conditions) 3.89 x 10-03 

hilD (late exponential phase 
conditions) 3.98 x 10-04 

hilD (SPI-2 inducing conditions) 1.56 x 10-01 
ompR 5.60 x 10-01 
phoBR 6. 00 x 10-02 
phoPQ 5.18 x 10-04 
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slyA 1.15 x 10-01 
ssrA 2.94 x 10-06 

ssrB 1.26 x 10-06 
ssrAB 1.84 x 10-05 

Table 5. Significance of the overlap between targets of transcription 

factors as listed in SalmoNet 2, and differentially expressed genes following the 

knockout of each individual transcription factor. Significance was determined 

using a hypergeometric test, and the Benjamini-Hochberg method was used to 

correct for multiple testing.  

 

Using a significance cut-off of adjusted p-value <= 0.05, 9 out of 14 tests 

have shown a significant relationship between the compared sets. This implies 

that despite some of the differentially expressed genes measured following a 

regulatory knockout might not be directly regulated by the knocked-out 

transcription factor, the regulatory layer in SalmoNet 2 is able to capture 

biologically relevant interactions using the regulatory prediction pipeline for 

most of the regulators. Where the significance cutoff was not reached, it was due 

to a lack or too small of an overlap between target genes and DEGs, indicating 

regulators where further binding site information should be incorporated in the 

future to enhance the effectiveness of the regulatory pipeline. 

To assess the specificity of the individual transcription factors, I 

compared the overlaps of their individual target genes in regulatory interaction 

shared by all involved strains. In the SalmoNet 2 network model, the individual 

transcription factors regulate a distinct set of genes, with relatively small 

overlaps. Figure 19 shows the amount of overlapping target genes for the ten 

highest degree transcription factors, and the enriched biological processes of the 

shared target genes of the Fis and Crp regulons, containing the most shared 
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targets across all comparisons. Both Fis and Crp function as global regulators of 

transcription, involved in energy metabolism, amino acid and nucleotide 

biosynthesis, nutrient transport, and many other housekeeping functions, and 

the enriched terms of their shared target genes reflect this (El Mouali et al., 2018; 

Rosu et al., 2007; H. Wang, Liu, Wang, & Wang, 2013). 
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Figure 19: Evaluating the target specificity of transcription factors in SalmoNet 

2. A: Overlap of target genes of the ten highest degree transcription factors in 

regulatory interactions shared by all strains in SalmoNet 2. The vertical bars 

on the top of the UpSet plot signify the size of the intersection between the 
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individual transcription factors, the horizontal bars show the size of the sets (i.e. 

the equivalent of a circle on a Venn-diagram), while the dots connected in the 

matrix show the specific subset. Transcription factor – target gene relationships 

are specific in SalmoNet 2, with only a few overlaps in the core regulatory 

mechanisms. B: Enriched terms in the shared target genes of the Fis and Crp 

transcription factors. The enriched Gene Ontology biological process terms 

capture many of the roles Fis and Crp are known to regulate, such as transport 

of sugars and catabolic functions. Figures generated with UpSetR and Revigo 

[Supek et al 2011, Conway et al 2017] 

2.4.3. Key predictions of SalmoNet 2 in the literature 

Since SalmoNet 2 contains predicted regulatory interactions based on 

genome-wide scans of putative regulatory regions, data published in the 

literature that was not used in the construction of the database can serve as an 

independent judge on the quality of some of these predictions. Since the 

generation of these interactions, a number of studies have been published, where 

regulatory interactions also predicted in SalmoNet 2 were confirmed 

experimentally. 

For example, in their study, Romero-González and colleagues have 

studied the effects of regulators downstream from the main SPI-1 regulators such 

as HilD and HilA. One of these regulators is InvF, a transcription factor usually 

bound to SicA, a T3SS associated chaperone. The two proteins regulate their 

cognate genes as a complex. InvF can bind in vitro to the promoter region of 

sopB, independently of SicA, although the transcriptional activation of sopB still 

requires bonth InvF and SicA (Romero-González et al., 2020). The latter 
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interaction, the regulation of sopB by InvF has also been predicted by the 

SalmoNet 2 pipeline, in 18 out of the 20 strains, where the upstream regulatory 

regions of the gene sopB are essentially identical. In the two strains where the 

interaction has not been predicted, S. Typhimurium strain D23580 and S. 

Choleraesuis strain SC-B67 the upstream regulatory region is truncated and the 

upstream gene pipD sits much closer to the sopB start site in their genomes. 

Further work is required to elucidate what caused this rearrangement in these 

two invasive strains, and whether it affects InvF binding. 

In another example Choi and Groisman investigated the effects of the 

horizontally acquired regulator SsrB, and its effects on the PhoP/PhoQ system 

and a virulence gene called ugtL. They established that SsrB is required to 

activate the ancestral regulatory PhoP/PhoQ system responsible for the 

regulation of a large proportion of the Salmonella genes, and that SsrB binding 

to ugtL is required for the activation of PhoP/PhoQ. Once again, the SalmoNet 2 

pipeline predicted the SsrB – ugtL interaction in 18 out of 20 strains. The 

interaction is missing in S. Heidelberg strain SL476, as it is lacking the 

orthologous protein for UgtL, and it is missing from Salmonella bongori, which, 

as Choi and Groisman have also demonstrated, lacks the gene ssrB and the SsrB 

binding site in the ugtL promoter. This fascinating study also found, that the 

regulator SsrB promotes the transcription of phoP by binding to the coding 

region of the upstream gene (purB) of the phoP promoter (Choi & Groisman, 

2020). As this was outside of the scope of the genome wide scans used to establish 

putative regulatory interactions in SalmoNet 2, the interaction is not present in 

the database. 

In another example Lim et al. have been studying the iroBCDEN 

operon, and verified that a binding site of the transcription factor Fur lies within 
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the promoter region of the iroBCDE operon (Lim et al., 2020). The interaction is 

once again present in all but two SalmoNet 2 strains. The lack of the interactions 

can be explained by the fact that the orthologous proteins are missing from 

Salmonella bongori, and in the case of S. Typhi, a small gene of unknown 

function, STY2889 is present in the regulatory region of iroBCDE. However, 

SalmoNet 2 does predict a Fur binding site in the upstream regulatory region of 

the introgressing STY2889. More work is required to determine whether this 

small gene could be coregulated with iroBCDE. 

 

2.5. Discussion 

Multi-layered network databases collate information from various 

sources, and are useful knowledgebases of interaction information. With 

SalmoNet 2 including additional important human pathogenic Salmonella 

strains, both typhoidal and non-typhoidal, more targeted analysis is now possible 

focusing on human disease. Since most of the included extraintestinal serovars 

have adapted to different host species, eliminating the differences from the 

acclimation of these pathogens to their specific microenvironments could help 

specialists target the human-disease specific interactions and subgraphs. 

By greatly increasing the number of available strains compared to 

SalmoNet 1, SalmoNet 2 now extends beyond subspecies I., and includes 

information on members of another subspecies (subspecies arizonae), or an 

entirely different species (Salmonella bongori). The larger evolutionary distance 

between this additional subspecies and species can further help Salmonella 
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researchers study the evolutionary history of the genus as as whole, and contrast 

the differences to the more studied human pathogenic strains (Fookes et al., 2011; 

Park & Andam, 2020). 

The comparison of differentially expressed gens from SalComRegulon 

and transcription factor target genes from SalmoNet 2 highlights that the 

majority of the tested transcription factors capture biologically relevant target 

genes, and where they do not, clearly points out areas if improvement, where 

additional data should be included in the next iteration of the SalmoNet database 

for the affected regulators (Colgan et al., 2016). Additionally, I found 

experimental evidence for multiple regulatory interactions from the literature 

that have been published since the generation of the interaction data, such as the 

examples from the papers describing the interactions of InvF with sopB or the 

regulation of ugtL via SsrB (Choi & Groisman, 2020; Romero-González et al., 

2020).  

 

Developing a more tight-knit structure between SalmoNet and other available 

large-scale evolutionary genomics tools such as OMA, there is increased potential 

to generate interaction networks for specific Salmonella strains on request, or 

build similar data resources for other non-model organisms, similarly as to how 

it is described in the work above. With the change to OMA as the backbone of 

SalmoNet interactions, there is also a great untapped potential to study the 

evolutionary history of proteins, and potentially even interactions. Although it 

was largely outside the scope of this thesis, I did end up using OMA in a research 

article we published, where we mapped the interaction differences of two 

paralogous proteins affecting autophagy, and the OMA database provided the 

missing information, pinpointing the specific genome duplication event giving 
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rise to the studied proteins (Demeter et al., 2020). While this specific example is 

not directly applicable to prokaryotes, the on-demand availability of orthologous 

proteins from outside of our studied organism or clade could make larger scope 

comparisons possible. The programmatic access interfaces implemented into 

OMA make these integrated analyses reproducible, and scalable as well (Kaleb, 

Warwick Vesztrocy, Altenhoff, & Dessimoz, 2019). 

 

The availability of strain specific metabolic models, and the increased specificity 

of PPI data, although still reliant on orthology mapping, increases the resolution 

of the resulting network models, and the more interwoven interaction layers get, 

the more valuable the information content of the database gets. Although there 

are other resources containing Salmonella interaction data, such as STRING for 

PPI interactions, RegPrecise for regulatory interactions, or BioCyc for metabolic 

interactions, no other resource combines the listed connection types besides 

SalmoNet (Caspi et al., 2019; Novichkov et al., 2013; Szklarczyk et al., 2019). 

 

To increase the usability and interoperability of the generated interaction 

information, I have generated the data files in the PSI-MITAB format as well, 

quickly becoming a standard of biological network information (Samuel Kerrien 

et al., 2007; Perfetto et al., 2019). Beyond their raw information content, 

databases are as good as their usability and their availability, and the potential 

for SalmoNet data to be found and utilised in as many ways as possible is crucial 

for this effort to be useful for the scientific community (Merali & Giles, 2005).  
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2.5.1. Future research directions 

The integration of SalmoNet into the OMA ecosystem makes the 

possibility of genome-to-network pipelines feasible, and meaningful to generate 

in the future. In the past, an addition of a novel strain would have meant the re-

computation of the all-against-all orthology mapping, which took weeks on the 

Earlham Institute High Performance Cluster. The OMA standalone software cuts 

down on this large computational bottleneck, by only requiring us to compute the 

relationships of the novel genome. Although only those genomes were included 

in this update that were already carried by OMA, the potential to generate 

interaction networks on request, or to map Salmonella breakouts, not only 

through genomics, but comparative network studies, could be a useful tool in the 

future for Salmonella studies. While I have made every necessary precaution to 

remove false-positive interactions from the resources, another argument for a 

further increase in the amount of networks - to the scale of hundreds or 

thousands - would be, that it would possibly give more statistical, and lineage 

based backing to interactions.  

 

In addition, the possibility of generating strain specific networks to characterize 

the samples of a specific outbreak or epidemic strain could give us further 

insights into the adaptation of Salmonella to specific environments and stressors. 

In the future, statistics based methods could be involved when trying to 

categorise Salmonella serovars into gastrointestinal or invasive phenotypes, such 

as the machine learning assisted DeltaBS applied by Wheeler et al., that was able 

to categorise the recently emerged iNTS strains as invasive purely based on 

sequence data, or the approach used by Langridge et al, that assigns invasiveness 
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to the individual serovars, by what percentage of the samples were isolated from 

the blood, compared to the total amount of samples (Langridge, Nair, & Wain, 

2009; Wheeler, Barquist, Kingsley, & Gardner, 2016). 

 

To increase the reach of the resource as much as possible, the goal of future minor 

and major updates should be to integrate the resource in the PSICQUIC web 

service. The implementation of the PSI-MITAB interaction format already serves 

this goal. The advantage of this integration would be, that potential users do not 

have to query and process SalmoNet data from the website directly, but it would 

be accessible directly from the PSICQUIC service as well, in combination with 

any other compliant data, similarly to NDEx, increasing accessibility (del-Toro et 

al., 2013; Perfetto et al., 2019). 

 

As mentioned above, the potential value and information content of each 

interaction increases by their potential interconnections between layer types. As 

such, in the future involving other information as additional layers could be an 

important step to increase the specificity and usability of the interaction resource. 

One such layer is the addition of protein complex information, such as the one 

found in the Complex Portal (Meldal et al., 2015). Interactions between proteins 

often occur in complexes, and the potential to include this information could lead 

to novel modelling approaches, and insights into the studied systems as a whole.  

 

To understand gene regulation in more detail, post-transcriptional regulatory 

interactions could be included. The presence of small RNAs in Salmonella has 

been described previously, and many contemporary interaction databases carry 

and model with this kind of data - albeit not yet in interaction databases involving 
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prokaryotes (Kröger et al., 2012) (Türei et al., 2016). Including this interaction 

layer is one of the most important tasks for the future releases of SalmoNet. 

Recently, there have been novel results of post-transcriptional modifications of 

proteins as well, which could be a fruitful avenue in the future (Macek et al., 

2019). 

3. Network biology methods to 

study evolution and adaptation 

3.1. Network resources 

The underlying assumption of network analysis is that by putting 

relationships to the individual interactors, we notice emergent patterns that 

might better explain their behaviour than studying them in a vacuum or different 

context. Hubs, for example, are such properties – without putting the interaction 

data to genes or proteins, we would not know of their promiscuous nature, and 

potentially heightened biological relevance.  This is the case on any level we aim 

to analyse networks, be they molecular or supra-individual networks (Miele, 

Matias, Robin, & Dray, 2019). The availability of networks depends on the 

subject, but in molecular biology, there are more and more repositories at our 

disposal where we can query interactions from. These databases collect and 

curate interaction data, often from individual research articles or from other 

similar data resources. 
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Most things that can be represented as matrices can be represented as networks 

as well - which is why the most important step in network analysis is determining 

whether networks are an appropriate tool for the study of the particular question 

at hand, and one would not be more successful applying clustering methods, or 

principal component analysis for example. While networks can be, for the most 

part, intuitive, there are elements in their behaviour that are the opposite of that 

– all interactions between two nodes are not only considered in the context of this 

pair of interactors, but also the context of the global network as a whole (Miele et 

al. 2019; Barabási et al. 2011; Barabási and Oltvai 2004). This can become even 

more complex when one starts comparing networks, to study evolutionary 

processes, and has to assess whether an interaction is important on a local (i.e. 

between a pair of interactors), global (i.e. on the scale of the entire network) and 

an evolutionary (i.e. taking all compared networks into account) scale.  

 

This chapter describes the theoretical background of network comparison 

methods used in this thesis, and their applications. The first subject is a large-

scale study on the regulatory evolution of cichlid fish species, where I first 

developed and applied my network rewiring approaches. Although the subject of 

the analysis was different from what is the main topic of my PhD research, the 

approaches developed for this work laid the foundation of my Salmonella studies. 

The second half of the results section describes how network rewiring can be used 

to study SalmoNet 2 networks of typhoidal and gastrointestinal Salmonella 

strains for hypothesis generation. 
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3.2. Aims 

The aims of this project were the following: 

● Identify approaches in the literature applicable to the analysis of 

molecular interaction networks. 

● Application of one of these approaches (DyNet rewiring) on a study 

involving the comparison of gene regulatory networks of East African 

cichlid fish species. 

● Highlight how network rewiring can be applied to interaction networks of 

typhoidal and non-typhoidal Salmonella strains, and what downstream 

analyses can be applied to help understanding the results of rewiring. 
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3.3. Network comparisons 

3.3.1. Network rewiring 

The increasing availability of incredible amounts of biological data 

enables us to build interaction networks such as the ones detailed in Chapter 2 of 

this thesis. Using these resources, one can formulate questions that study how 

the parts of these systems work together or differ in areas. These interaction 

networks are difficult to compare naively due to their complexity. Thankfully, 

there are a group of methods aimed at solving this problem (Han and Goetz 

2019). The methodology I used most extensively in my PhD research belongs to 

a group of approaches often categorised as “network rewiring” methods. Network 

rewiring is a broad term used to describe many approaches aimed at quantifying 

changes between interaction networks.  

 

The specific tool I used most often is a third-party module for Cytoscape called 

“DyNet” (Goenawan et al., 2016). The reason I chose this was its ease of use 

thanks to its integration into the Cytoscape ecosystem, and since it was an 

appropriate tool for the interaction networks I analysed. 

 

3.3.1.1. The Dynet tool 

DyNet identifies the most dynamically changing, or most rewired 

neighbourhoods between the compared networks (Goenawan et al., 2016; 

Salamon, Goenawan, & Lynn, 2018). The tool does this, by assigning a score, the 

Dn rewiring score to each node, that effectively sums up the quantitative (i.e. how 



116 
 

many interactors does the node have) and qualitative (i.e. what nodes is it 

interacting with) differences between the same nodes across different networks, 

so even a node that has the same amount of interactors in two networks, but some 

of those interactors are different proteins entirely, will be assigned a rewiring 

score.  

 

The rewiring score is modelled as a weighted node adjacency matrix, where 

instead of indicating the presence or absence of an edge with binary 0-1 values, 

one can supply any number, used to represent the weight or importance of that 

edge, through some predefined process, like categorising them based on 

interaction detection methods. In this model this weighted matrix is extended by 

a third dimension, S. This describes the state-space, where states represent the 

compared interaction networks, or in other words, every state has its own 

weighted adjacency matrix. The rewiring score is calculated by first calculating 

the mean of non-zero edge weights of all states (if using weighted data) and 

following that standardizing the data through dividing by the previously 

calculated means. Following that the centroids for each node over all states will 

be calculated, by taking the average of the sum of standardized weights. The 

Euclidean distance from the centroid is calculated for each node by taking the 

value for the standardizes weights minus centroids, for each interaction (i.e. the 

row in the adjacency matrix), and calculating the square root of the sum of their 

squares. The final rewiring value of a node is calculated by dividing the sum of 

distances with n-1, where n is the number of compared states.  

Using these terms, the formula for the Dn-score is the following: 

!! − #$%&' =
∑!"#$ [+,#-./$'(1" , $'/-&%,+)]%

/ − 1 	
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Where Vi is each vector representing a node in each network (the compared 

nodes), and n is the number of networks (states) being analysed. If using edge 

weights, normalization is performed before, by dividing by the average (of non-

zero) values across all networks (Salamon et al. 2018). 

Figure 20 shows a worked example included from the supplementary materials 

of (Goenawan et al., 2016). 

 

Figure 20. Worked example demonstrating the steps to calculate the rewiring 
value using DyNet from (Goenawan et al., 2016). With permission of the rights 
holder, Oxford University Press. 
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3.4. Evolution of regulatory networks 

associated with traits under selection 

in East African cichlid species 

In this work, my colleagues and I were studying how gene regulatory 

changes can lead to changes in anatomy and phenotype of East African cichlid 

fish species. The resulting findings highlighted how network rewiring approaches 

can be used to study regulatory evolution in non-model organisms, one that I 

applied in my studies related to Salmonella (while not a vertebrate, similarly a 

non-model organism). My role in the work was to carry the out network rewiring 

analysis, and help in the interpretation of its results.  

 

Below is the summary of the background, approaches and main results of the 

work, necessary to understand the importance and value of the network rewiring 

analysis I applied. This half of the chapter is based on the peer-reviewed article 

published in Genome Biology, which I am a co-author of (T. K. Mehta et al., 

2021). The detailed description of the study can be found in the paper. While I 

cannot claim authorship over all parts of the project, as this has been an over five 

year long endeavour altogether, it was important to include in this thesis, as the 

parts I worked on fundamentally shaped my PhD research. Figure 21 shows the 

main steps and approaches used in this project. My role in this project was to 

measure and interpret regulatory network rewiring using DyNet in the generated 

networks. 
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Figure 21. Graphical abstract of the work on the evolution of regulatory networks associated with traits under selection in 
East African cichlid species. The RNA-Seq data of five cichlid fish species was used to generate modules of co-expressing genes 
using the Arboretum software. Additional data was integrated into the resulting expression modules, including ChIP-Seq, and 
Gene Ontology data. Multiple approaches (RSAT, FIMO) were used to scan the UTR regions of coding genes for putative 
transcription factor binding sites, using binding signature data from multiple databases. The resulting gene regulatory 
networks were analysed with three distinct approaches aimed at quantifying network rewiring. Candidate targets containing 
rewired, modified transcription factor binding sites were tested experimentally. Image modified, from (Brawand et al. 2014), 
licensed under CC BY-NC-SA 3.0.
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3.4.1. Background 

Among all vertebrate species, ray finned fishes are among the largest of 

any group, with East African cichlid species displaying one of the most striking 

examples of adaptive radiation (Brawand et al., 2014). Over 1500 species exist 

today in the Great Lakes of East Africa (Lake Tanganyika, Lake Victoria, and Lake 

Malawi), which evolved in a relatively short amount of time. 250-500 species 

formed in each lake, taking between 15,000-100,000 years in the case of Lake 

Victoria, less than 5 million years for Lake Malawi, and approximately 10-12 

million years for Lake Tanganyika, from just a few ancestral lineages of cichlid 

fish species.  

 

These novel species inhabit a wide range of ecotypes, exhibit a range of varying 

behaviours and morphology. Sexual selection, indicated by colourful phenotypes 

and elaborate bower building, and their ecological roles in terms of foraging 

behaviour both converge on the cichlid visual systems, that have trichromatic 

vision, with eight opsin genes. Altogether, the evolution of these species has been 

shaped by cycles of population expansions, and shrinkage, as their environment 

changed over the time (Brawand et al., 2014; T. K. Mehta et al., 2021). On an 

evolutionary timescale, the fastest rewiring interaction layer is the gene 

regulatory network (GRN) one (Shou et al., 2011). Mutations accumulating in the 

cis-regulatory elements of genes (transcription factor binding sites of promoters 

and enhancers), or trans regulatory changes leading to the levels of a regulator 

can lead to phenotypic differences, stemming from GRN rewiring events. 

As such, the study aimed at researching if evolutionary regulatory changes on the 

level of whole gene regulatory networks can lead to phenotypic variation and 
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facilitate adaptation to a variety of ecological niches found in the great lakes of 

East Africa, and the surrounding rivers.  

3.4.2. Methods 

3.4.2.1. Co-expression modules 

The Arboretum software generates gene regulatory modules for 

multiple species using expression data, and gene phylogenies. Modules of co-

expressed genes were identified using the software in five cichlid species 

(Pundamilia nyererei (Pn), Maylandia zebra (Mz), Astatotilapia burtoni (Ab), 

Neloamprologus brichardi (Nb) and Oreochromis niloticus (On)) (Roy et al., 

2013). Co-expression modules were generated for six tissues (brain, eye, heart, 

kidney, muscle, testis), from RNA isolated from adult animals. As a result, 18,799 

orthogroups including 69,989 genes and 34,220 1-to-1 orthologs were identified.  

3.4.2.2. Gene regulatory networks 

To establish putative transcription factor – target gene interactions, 

transcription factor binding site information was retrieved from the JASPAR 

database, and other similar resources such as HOCOMOCO or UniPROBE 

(Hume, Barrera, Gisselbrecht, & Bulyk, 2015; Khan et al., 2018; Kulakovskiy et 

al., 2013). ChIP-seq peaks were called from experiments of human and mouse 

transcription factors, retrieved from GTRD (Yevshin, Sharipov, Valeev, Kel, & 

Kolpakov, 2017). Similarly, as in the case of SalmoNet, position specific scoring 

matrices (PSSMs) were generated using the info-gibbs module from the RSAT 

suite (see 3.3.2.3 for details), and scanned 20kb upstream of the starting sites of 

genes and conserved non-coding elements using RSAT’s matrix-scan and FIMO 
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from the MEME suite of tools (Bailey et al., 2009; Nguyen et al., 2018). The 

optimal p-value cutoff for every putative TF-PSSM pair was calculated using 

RSAT’s matrix-quality or a default value was used in cases where this could not 

be determined.  

3.4.2.3. Network rewiring 

To study transcription factor – target gene rewiring between the five 

species, three approaches were developed and used for this study. All three aim 

at identifying differently interconnected parts of the compared networks. My role 

was the implementation and interpretation of the DyNet approach.  

 

The first method compares TF-TG edges to a selected species versus others in the 

context of gene expression module assignment (e.g. module changing 

transcription factors). In this metric a rewired interaction is present in when a 

unique transcription factor - target gene edge is present in only one “focal” 

species, but the transcription factor ortholog is state changed in module 

assignment, and is present as a node in other TF-TG edges in any of the other 

species. 

 

The second approach collects TF rate of edge gain and loss in networks. This 

method uses a continuous-time Markov process parametrized by transcription 

factor - target gene gain and loss rates, and uses an expectation-maximization 

based algorithm to estimate gain and loss rates. Regulators that have a degree > 

25 were used, as less than 25 edges would greatly hinder statistical analysis (T. K. 

Mehta et al., 2021).    
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Finally, the third approach utilised DyNet rewiring scores. In this approach, I 

used the DyNet (version: 1.0) package implemented in Cytoscape (version: 

3.7.1.). I calculated and visualized the degree-corrected rewiring (Dn) score of 

orthologous nodes across the five species. Following this, the Dn score of each 

orthogroups rewiring score was ordered, and the mean calculated. To measure 

the significance of each orthogroups rewiring score against all others, the non-

parametric Kolmogorov-Smirnov test (KS-test) was applied.  

 

3.4.2.4. Summary of molecular biology approaches used in this study 

The DNA-binding domains of two cichlid proteins, NR2C2 and RXRB 

were predicted using multiple sequence alignment and conversation with their 

mouse and human orthologues. M. zebra and N. brichardi specimens were 

sacrificed using triacine at the University of Hull, UK and at the University of 

Basel, Switzerland. RNA was extracted and first strand cDNA synthesis of the 

DNA-binding domain specific regions was done. The expression of the DNA-

binding domain was resolved by SDS-PAGE. The EMSA assay was carried out 

using double-stranded DNA probes with in vitro expressed DNA-binding 

domains as described above. The double-stranded DNA probes were generated 

through annealing the sense and antisense oligonucleotides in an annealing 

buffer. Further detail of the experiments can be found in (T. K. Mehta et al., 

2021). 
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3.4.3. Results 

In this study five East-African cichlid fish species were used: 

Pundamilia nyererei, Maylandia zebra, Astatotilapia burtoni, Neloamprologus 

brichardi and Oreochromis niloticus, whose gene regulatory networks were 

established as described in the Methods section of this chapter. Using the 

Arboretum software, 10 modules of 12,051-14,735 coexpressed genes were 

determined, that were represented in 18,799 orthogroups. 

 

During the analysis of the gene regulatory networks of the aforementioned 

species, using the Dynet degree corrected rewiring scores, we identified 60 

candidate genes linked with phenotypic diversity based on previously published 

literature. These genes have a few standard deviations higher degree-corrected 

rewiring scores than the mean of all orthologs (0.23 ± 0.007 SD; KS-test p-value 

6 x 10-4). Figure 22 shows the violin plots detailing the distribution of degree-

corrected Dn rewiring scores. 
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Figure 22. Distribution of DyNet degree-corrected rewiring scores between 1-
to-1 (green) and 1-to-1 and many-to-many (blue) orthologs. Mean rewiring 
shown as white diamond in the center. Non-candidate genes shown with black 
dots through the center. Candidate genes linked with morphogenetic trait 
diversity have a few standard deviations higher score, highlighted in orange. 
Image modified from (Mehta et al. 2021), licensed under CC BY 4.0. 

 

These highlighted phenotypic diversity genes are involved multiple 

important functions, such as craniofacial development (dlx1a, nkx2-5), tooth 

morphogenesis (notch1) genes, telencephalon diversity (foxg1) and interestingly, 

most visual opsin genes and genes associated with photoreceptor cell 

differentiation and eye development (rho, sws1, sws2, actr1b, pax6a). 

 

As a case study, we focused more in detail on the highly rewired nodes of the 

visual system highlighted above. The changes in regulation can lead to large shifts 

in the adaptive spectral sensitivity of adult cichlids, and as such we hypothesized 
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that the diversity in opsin expression could be the result of adaptive gene 

regulatory network evolution (Carleton, 2009). 

Sws1 is an ultraviolet opsin, responsible for the short-wavelength section of the 

visual palette in N. brichardi and M. zebra, two of the lake representative species. 

The two species share many regulators for this gene, but there are multiple 

unique transcription factors associated with only one of them. Overall, the 

analysis identified more unique significant TF regulators of sws1 in M. zebra, 

than in N. brichardi (38 vs 6). Interestingly, the rewiring analysis also 

highlighted that one of the causes of the rewiring is that M. zebra has a potentially 

broken interaction caused by a mutation in the binding sites of the NR2C2 and 

RXRB transcription factors, an interaction that is present in N. brichardi. Figure 

23 shows the comparison of regulatory networks in the two species, the single-

nucleotide polymorphism (SNP) responsible for the loss of interaction. 
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Figure 23. A: Regulatory networks of sws1 in N. brichardi and M. zebra. Sws1 
sits in the middle, nodes organized in a circular layout are shared regulators, 
grid layout nodes are unique regulators in M. zebra. For node annotation please 
see legend on the bottom left. Bottom right shows a violin plot of edge 
significance, with highly significant edges highlighted in orange. B: A SNP in 
the promoter region of the sws1 gene leads to regulatory rewiring between two 
species. Top: the SNP found at approximately -2kb from the transcriptional 
start site of sws1. Bottom left: binding motif logos for the two TFs predicted to 
bind to the region in N. brichardi, the species with intact interactions. A G→ A 
mutation potentially disrupts TF binding. Bottom right: protein alignment of 
the DNA binding domain from the two predicted interacting transcription 
factors in the two cichlid species, and their corresponding orthologues in Homo 
sapiens and Mus musculus. Image modified from (Mehta et al. 2021), licensed 
under CC BY 4.0. 
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My colleague’s experimental validation using an EMSA assay confirmed 

that NR2C2, but not RXRB can bind to the sws1 promoter in N. brichardi, and 

that the variant in M. zebra has disrupted binding, and potentially regulation of 

sws1 in the latter species. Results are shown on Figure 24. These results are 

further supported by their better correlation with the expression values of the 

regulators, meaning NR2C2 is better associated with sws1 than RXRB, especially 

in the eye tissue. 

 

 

Figure 24. EMSA assay to screen for DNA binding from the NR2C2 and RXRB 
transcription factors. Left: Table on top contains the combinations of DNA 
probe and expressed DNA binding domain in EMSA reactions. Lanes 1-4: 
negative controls, 5-6 N. brichardi DNA binding assay, 7-8: M. zebra DNA 
binding assay, 9: kit negative, 10: binding positive control. Right: EMSA 
validation of increasing DNA binding domain concentrations and binding to 
predicted transcription factor binding site in N. brichardi sws1 promoter. 
Image modified from (Mehta et al. 2021), licensed under CC BY 4.0. 

 

The results show that the variations in nucleotides found in the binding sites of 

transcription factors can drive regulatory divergence through the observed GRN 

rewiring events. The elements identified by network rewiring highlighted traits 

under natural or sexual selection, such as the visual system, possibly shaping 

cichlid adaptation to a variety of ecological niches.  
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3.4.4. Discussion 

In this work, a computational workflow was established to study gene 

regulatory networks of non-model organisms. We applied this workflow on five 

East African cichlid fish species to study examples of adaptive radiation through 

the evolution of GRNs. By putting putative predicted regulatory interactions to 

the genomes in a tissue specific manner, the approach has shown that network 

comparison methods, more specifically network rewiring methods can highlight 

regulatory hotspots in gene regulatory networks, in this case caused by selection 

pressure, arising from natural or sexual selection. The combination of tissue-

specific expression data with reconstructed gene regulatory networks captures 

lineage specific changes in a well-studied trait in the species of this group, the 

visual system. Using the DyNet network rewiring approach I was able to highlight 

a key regulatory variation in transcription factor binding sites of genes involved 

in this system, that have been then shown experimentally to break specific 

transcription factor – gene interactions, and as such drive gene regulatory 

network evolution, and drive evolutionary innovations in the studied species, that 

can help them adapt to different ecological niches. The generation and 

subsequent comparison of regulatory networks, through the utilised workflows 

can add functionality to the observed differences (e.g., regulation by a specific 

transcription factor) as compared to multiple sequence alignments between the 

species, for example. 

 

While the biological system studied here is far removed from my main topic of 

investigation, the network rewiring workflow and strategy developed and applied 

in this study was also implemented in my investigation to analyse changes in 
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Salmonella strains as well. Gene regulatory network rewiring has been 

successfully shown to drive phenotypic diversity in other kingdoms of life as well, 

from leaf shape to the emergence of pregnancy in mammals, showing how the 

approach itself is agnostic of a model system (Ichihashi et al., 2014; Lynch, 

Leclerc, May, & Wagner, 2011). 

3.4.5. Future research directions 

The approaches used in this study to construct regulatory networks 

from tissue-specific RNA-Seq data for multiple species can serve as a general 

guideline for other model organisms in the future. The majority of the results 

captured by the network rewiring and other methods applied in this study have 

not been verified experimentally, and further examination of these transcription 

factor – (opsin) target gene interactions could shed further light on the variances 

and sites under selection within the visual system in the studied cichlid species.  

 

While this study focused finding divergent cis-regulatory elements involved in 

adaptation to certain conditions, other levels of regulation could also be used for 

this reason, with adequate changes to the methodology, e.g. post-transcriptional 

regulation, studies of enhancer regions, tracking gene duplication events.  
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3.5. Applications of SalmoNet 2 – Using 

network rewiring to identify 

functional differences in Salmonella 

enterica 

To explore the utility of a multi-layered network resource such as 

SalmoNet, I compared the degree of interaction rewiring between the 

interactomes of host adapted typhoidal Salmonella strains and gastrointestinal 

Salmonella strains, captured the potential functional differences using Gene 

Ontology enrichment analysis, and compared the rewired subgraphs to find the 

causes of the rewiring. The approach outlined in this section could be used to 

provide insight into the functional differences caused by differing interactions 

between Salmonella pathovars, highlight key genes and proteins, and 

importantly provide targets for hypothesis generation and experimental 

validation. 

SalmoNet 2 added three additional typhoidal Salmonella serotype 

strains to the interaction resource, now containing four typhoidal pathogens in 

total. Comparing the interactions patterns of these extraintestinal strains by 

contrasting them with those of gastrointestinal Salmonella could be utilised to 

show conserved or diverging subnetworks in these strains, related to their 

invasive lifestyle, and help researchers better understand these important human 

pathogens.  
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The results shown in this section indicate that SalmoNet 2 and the 

enrichment analysis captures adequate biological information, and the 

presence/absence of edges can pinpoint nodes under a level of selection pressure, 

that could be subjects of future work and experimental testing. 

3.5.1. Methods 

To calculate network rewiring I used the DyNet app in Cytoscape to 

calculate the rewiring value of the nodes in each group separately. Four typhoidal 

strains (S. Paratyphi A (AKU 1261), S. Paratyphi A (ATCC 9150), S. Paratyphi C 

(RKS4594), S. Typhi (Ty2) and four gastrointestinal strains (S. Agona (SL483), 

S. Newport (SL254), S. Heidelberg and S. Typhimurium (LT2)) were compared 

for interaction differences. 

The level of rewiring was calculated across all strains, and the degree-

corrected rewiring values were ordered in a descending list, where the top 50 hits 

were further analysed. Rewiring was also calculated within-group (i.e., between 

the selected typhoidal, and between the selected gastrointestinal strains 

separately), to allow for identifying which group is the source of variance comes 

when comparing all strains. To alleviate the bias towards hub nodes, the degree 

corrected Dn value was used for the cutoff. 

To calculate the enrichment of Gene Ontology terms in the identified 

subgraphs I downloaded the up-to-date Gene Ontology annotation of the target 

genes using the topGO library in R, and following that the R library clusterProfiler 

was used to calculate Gene Ontology enrichment with the enricher() function, 

from Biological Process terms (Alexa & Rahnenfuhrer, 2021; Wu et al., 2021). P-
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value adjustment for multiple testing was done via the Benjamini-Hochberg 

approach, using the p.adjust function in R.  

The statistically significant enrichment results were compared side-by-

side between the groups, and the differences in enrichment were further studied 

by comparing the sets of genes responsible for (underlying) the enriched terms, 

i.e., if one group was enriched in a specific term, the presence/absence of the 

orthologous genes responsible for the enrichment was analysed in the members 

of the other group. Terms were deemed respective of a group if that term was 

present in all members of a group, and simultaneously in one or none of the other. 

To study the relationship of YreP and YjcS to the extraintestinal 

pathovar, network rewiring was calculated in an identical manner as above, but 

all extraintestinal and gastrointestinal strains from SalmoNet 2 were involved in 

the comparisons. 

BLAST searches for the YreP and YjcS genes was done through the 

pubMLST website, with default parameters (Jolley, Bray, & Maiden, 2018). The 

entire genomic sequence of the genes and their shared regulatory region was 

queried, as taken from S. Gallinarum strain 287/91. The hits were filtered for 

above 95% sequence identity, and the top 10% of bitscores to make sure the 

compared sequences contain both the genes and the shared regulatory region.  

 

3.5.2. Results 

To evaluate whether the interaction networks in SalmoNet 2 can be 

used to the study the effects of host adaptation in invasive strains of Salmonella, 

I studied and compared the interaction networks of four typhoidal and four 



134 
 

gastrointestinal strains using the DyNet network rewiring tool. In total, I 

analysed the 50 highest Dn nodes, and I highlighted the potential functional 

relevance of these interaction differences using Gene Ontology enrichment 

analysis. 

In general, many of the top hits or most rewired nodes are important 

global regulators, such as Crp, Fis and Fur, despite correcting for degree bias. The 

significantly enriched functions are similar between the compared strains, with a 

few key differences. For example, the gene Fur or ferric uptake regulator senses 

metal concentration and the redox state of cells, and regulates many operons and 

genes involved in these processes (Troxell, Fink, Porwollik, McClelland, & 

Hassan, 2011). Fur is enriched in the GO function “iron ion homeostasis” in all 

included gastrointestinal strains, while this enrichment is absent from the 

typhoidal strains. Upon further inspection of the genes responsible for the 

enrichment of the term and their orthologous status, Fur is missing interactions 

present in GI strains towards the genes fhuA, fhuE, caused by the disruption of 

coding sequences in these genes in the typhoidal serovars, as highlighted 

previously in the literature (Nuccio & Bäumler, 2014; Y. Wang et al., 2018).  

Fur is similarly enriched in the term “cell adhesion” in all 

gastrointestinal strains, whereas this function is not enriched in typhoidal 

strains, except S. Paratyphi C. Once again, inspection of the genes underlying the 

enrichment result reveals that the culprit behind the mismatch in functional 

enrichment is the pseudogenization and subsequent missing interactions with 

the genes stiH and stiA in the rest of the typhoidal Salmonella strains, two genes 

responsible for the production of fimbriae, highlighted previously in the 

literature (Nuccio & Bäumler, 2014). Figure 25. shows the functional differences 
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in Gene Ontology enrichment between the compared groups through examples 

involving the Fur transcription factor. 

 

Figure 25. The causes of different Gene Ontology enrichment between 

gastrointestinal and typhoidal strains as highlighted by rewiring analysis. The 

Fur regulon controls many genes that undergo pseudogenisation in invasive 

strains of Salmonella. The rewiring analysis highlights two such examples for 

the regulon, where genes involved in metabolic processes, such as iron ion 

homeostasis (a), or fimbriae production (b) get disrupted, and the consequent 

loss of interactions causes a loss in the enrichment of functions.  
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The rewiring analysis has revealed many other examples like this, where 

the cause of rewiring can be led back to the disruption of coding sequences and 

thus loss of interactions as described by (Nuccio & Bäumler, 2014). For example, 

LyxK is enriched in “carbohydrate phosphorylation” and “C4-dicarboxylate 

transport” in GI strains but not in typhoidal ones, or ‘nitrate assimilation’ in the 

case of Fnr, showing the same split across groups. These examples highlight the 

functional, phenotypical effects of genome reduction on the interaction networks 

of extraintestinal strains as they adapt to their host, which has been well 

documented in the literature (Hiyoshi et al., 2018; Langridge et al., 2015; 

MacKenzie et al., 2019; Vázquez-Torres, 2018). As detailed in Chapter 1, gene 

inactivation caused by genome degradation is one of the recurring features of 

host adaptation. The specific changes captured by this analysis reflect two often 

changing processes in extraintestinal strains, those of anaerobic metabolism and 

cell adhesion (fimbrial genes) (Nuccio & Bäumler, 2014). The rewiring analysis 

highlights the magnitude of change genome reduction incurs on the interaction 

networks of typhoidal strains, as most of the analysed genes were rewired due to 

this phenomenon (Nuccio & Bäumler, 2014). From the top 50 most rewired 

nodes, on average 33 nodes had at least one pseudogene first neighbour in the 

typhoidal serovars, and on average 4% of the first neighbours of the top 50 most 

rewired nodes were pseudogenes.  In the gastrointestinal strains on average 7 

nodes had pseudogene first neighbours, and only 1% of their first neighbours 

were pseudogenes.  

While a large part of the rewiring was due to gene loss in typhoidal and 

extraintestinal serovars, during my work I found examples where the cause of 

rewiring was due to the exclusivity of genes to the invasive group. The following 
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analysis is an example of how SalmoNet 2 can be used in conjunction with other 

computational tools to make inferences regarding the role of previously unknown 

or less known interactions and genes. 

The two proteins, YreP and YjcS, are present in all extraintestinal 

serovars of Salmonella in SalmoNet 2 but are missing from almost all 

gastrointestinal strains. This interesting pathovar specific split led me to analyse 

the genes in more detail, with the assumption that they could be involved with 

the invasion process in a pathovar specific manner. The protein YjcS has an 

orthologue in S. Enteritidis, but the protein is otherwise missing from the 

gastrointestinal group. Since their presence is, except for the S. Enteritidis case, 

is restricted to the host adapted serovars in SalmoNet 2, they only receive 

interactions in these strains. The two genes get regulatory input from three 

transcription factors: HilC and RtsA involved in the regulation of SPI-1 genes 

amongst others, and the global regulator Fur. YjcS has an additional protein-

protein interaction in all strains where it is included, as the protein can interact 

with itself. The source of the regulatory interactions are the genome wide scans 

of the Salmonella strains included in SalmoNet 2. 

 The two genes have first been described together previously in 

Escherichia coli, in two analysed strains: E. coli SMS-3-5, and environmental 

pathogenic isolate with multiple antibiotic resistances, and E. coli (NMEC) O7:K1 

strain CE10, causing neonatal meningitis. The first gene, yreP (dgcY in E. coli), 

encodes a diguanylate cyclase, its suggested function based on it carrying the 

signature GGDEF domain. Diguanylate-cyclases facilitate the production of c-di-

GMP, a ubiquitous secondary messenger metabolite in prokaryotes (Povolotsky 

& Hengge, 2016; Ryjenkov, Tarutina, Moskvin, & Gomelsky, 2005). The second 

gene, yjcS (EcSMS35_1714 in E. coli), is an alkyl-sulfatase. This enzyme has been 
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first described in Pseudomonas, where a strain carrying this enzyme was able to 

grow on the surfactant sodium dodecyl sulfate (SDS), and the gene has been 

characterised in E. coli as well (Liang, Gao, Dong, & Liu, 2014; Williams & Payne, 

1964). The orthologous proteins exist in multiple other genuses within the 

Enterobacteriaceae family, such as Enterobacter, or Klebsiella based on synteny 

information in the OMA database (Altenhoff et al., 2020). Since SalmoNet 2 is 

now based on orthologous information from the OMA orthology database, users 

can very quickly look up the phylogenetic spread of proteins of interest, like in 

this example with YjcS and YreP. 

After noting their presence in the well-studied extraintestinal strains 

included in SalmoNet 2, I expanded the search into a more expansive data source, 

to see if this was representative of the serovars as a whole, not just the specific 

strains in SalmoNet 2. BLAST searches were executed within the available 

genomes of the pubMLST database (Jolley et al., 2018). PubMLST itself is a 

collection of databases, containing 18638 Salmonella genomes (accessed on 

09/10/2021). The entire gene sequences of YreP and YjcS were input as the 

BLAST search query, including their shared regulatory region. Figure 26 shows 

the results of the BLAST searches in the pubMLST database. 
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Figure 26. Prevalence of the yreP + promoter + yjcS segment in Salmonella 

serovars based on BLAST hits. Figure 26 A shows the total amount of hits in 

each serovar. Figure 26 B shows the ratio of hits to all isolates in the serovar. 

Serovars containing < 5 isolates were removed from this figure for clarity. 

 

The distribution of BLAST hits from the genomes included in the 

pubMLST database is for the most part in accordance with what I have found in 

SalmoNet 2, the genomes of well-known extraintestinal serovars seem to contain 



140 
 

the sequence more often. In total 83% of hits come from well-known 

extraintestinal serovars, dominated by S. Typhi strains. The top 10 serovars in 

terms of number of hits are also mostly invasive serovars: S. Typhi, S. Paratyphi 

A, and S. Paratyphi C are notable typhoidal serovars adapted to humans, S. 

Dublin, S. Pullorum and S. Choleraesuis are well-known host adapted serovars of 

cattle, poultry and pigs (Métris et al., 2017; Tanner & Kingsley, 2018). S. Napoli 

is an emerging serovar in Europe, phylogenetically closely related to S. Paratyphi 

A, carrying an almost identical pattern of typhoid-associated genes, and  capable 

of causing a form of invasive nontyphoidal disease (Gori et al., 2018; Huedo et 

al., 2017). The invasive behaviour is not as clear cut with the rest of the serovars, 

but there have been reports of it in the literature. S. Bovismorbificans is capable 

of causing bloodstream infections, and has recently been described as an 

emerging disease in Malawi, converging towards a phenotype resembling a 

human adapted iNTS variant (Bronowski et al., 2013). Although not strictly an 

extraintestinal serovar, S. Virchow has been known to cause invasive illness 

(Eckerle, Zimmermann, Kapaun, & Junghanss, 2010; Mani, Brennand, & 

Mandal, 1974; Messer, Warnock, Heazlewood, & Hanna, 1997; Todd & Murdoch, 

1983). S. Weltevreden is an emerging cause of diarrheal and sometimes invasive 

disease in humans in tropical regions, and is hypothesized to be adapted or 

adapting to life in aquatic hosts (Hounmanou et al., 2020; Makendi et al., 2016). 

While large in total numbers in the database, S. Enteritidis only makes up 2% of 

the positive hits. Since S. Enteritidis is one of the most commonly isolated iNTS 

strains, there exists a possible link to invasive behaviour (Feasey et al., 2016; M. 

A. Gordon, 2011). However, more work is needed to uncover the cause and extent 

of this curious split between pathovars.  
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This brief analysis above highlights how the information contained in 

and linked with SalmoNet 2 can be used to form scientific questions relating the 

functionality of genes to the behaviour and phylogenetics of Salmonella, based 

on molecular interaction information. SalmoNet 2 contains example strains from 

the most prevalent serovars, and the information can further be extended using 

the easily accessible sequence data and homology information through OMA and 

other computational resources. 

3.5.3. Discussion & Future research directions 

In this work I demonstrated how large-scale network rewiring analysis 

can be applied to compare interaction networks of gastrointestinal and typhoidal 

Salmonella serovars. The results highlights the effects genome degradation has 

on host adapted Salmonella, as the loss of genes related to anaerobic metabolism, 

chemotaxis and related functions were present behind the rewiring for the 

majority of most rewired nodes in the analysed typhoidal strains (Holt et al., 

2009; Nuccio & Bäumler, 2014). 

In a second round of analysis, I demonstrated how downstream 

investigations can be followed through using information gained from SalmoNet 

2 through the example of the YreP and YjcS proteins, that seem to associate to 

host adapted serovars, and do not have orthologous proteins in gastrointestinal 

serovars barring S. Enteritidis. Querying their genomic sequence from the linked 

OMA database and running BLAST searches against more than 18000 

Salmonella genomes results in a similar picture. 

However, the results shown here are inconclusive, and require further 

functional analysis of the studied genes, and whether they are beneficial to the 
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invasion process at any point. Based on available information we can only 

hypothesize what their roles could be. The potential role of YjcS is in the invasive 

lifestyle is difficult to assess, owing to the lack of relevant information of the alkyl-

sulfatase domain structure in this setting (Liang et al., 2014). YreP on the other 

hand, a diguanylate-cyclase, can potentially affect host adaptation. The role of 

diguanylate cyclases and c-di-GMP in bacteria has been mostly understood as a 

sessile-motile switch, first shown in Vibrio, where low c-di-GMP levels 

correspond to the host environment and increased motility, while high c-di-GMP 

levels decrease motility in the aquatic environment, highlighting how the 

potentially increased production of c-di-GMP can influence cell fate decisions 

relating to virulence and sessility/biofilm formation (Ahmad et al., 2011; Jenal et 

al., 2017; Tamayo et al., 2007). The decisions to reduce motility, and/or virulence 

and start producing biofilms are quite important and severe from the bacteria’s 

point of view, and as such are under tight spatial, temporal and multiple levels of 

regulatory control, and there are often direct protein-protein interactions 

occurring between the effectors and the signalling enzymes (Hengge, 2009). 

However, host adapted serovars are for the most part weaker biofilm formers 

than their gastrointestinal counterparts (MacKenzie et al., 2017). As parts of the 

cellulose synthase operon are pseudogenized in many of the host adapted 

serovars (Nuccio & Bäumler, 2014), I hypothesize the consequences of increased 

c-di-GMP levels may be different in terms of sessility-motility or virulence 

attenuation in extraintestinal and gastrointestinal Salmonella serovars.  

However, more future work is required to confirm whether the two 

genes have any role in the invasion process, and to further solidify their link to 

extraintestinal serovars. We have started a series of RNA-Seq experiments to 

capture the differentially expressed genes between a wild-type and ∆yjcS/∆yreP 
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knockout strain of S. Gallinarum, but unfortunately the experiments were halted 

by the COVID-19 pandemic. The transcriptomics readout could potentially 

answer what sets of genes are affected by the activity of the YreP and YjcS, and 

the mutants could be used in further future experiments involving other 

functions linked to c-di-GMP production, such as efflux pump activity (Holden & 

Webber, 2020). While the latter half of this analysis could have been done 

without network information, since SalmoNet 2 predicts multiple upstream 

regulatory interactions to potentially control yreP and yjcS, future experimental 

work could evaluate which one of these regulators, and under what circumstances 

regulate these genes, which is the added value of the network biology approach.  
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4. The role of cytokines in SARS-

CoV-2 infection 

4.1. Introduction 

The currently ongoing pandemic has mobilised scientists and people 

around the world, to understand and resolve the infection caused by the novel 

pathogen. Globally, as of the writing of this text (16th March 2021), there have 

been 119,791,453 confirmed cases of COVID-19, including 2,652,966 deaths, 

reported to the WHO (https://covid19.who.int/). Major efforts now concentrate 

on how severe acute respiratory syndrome β-coronavirus 2 (SARS-CoV-2) 

changes the efficacy of normal antiviral immune responses, and why host 

antiviral immune responses are unable to resolve it in a subgroup of patients. The 

clinical symptoms of the disease range from asymptomatic, through mild (fever, 

persistent cough, loss of taste and smell, gastrointestinal problems) to severe 

pneumonia, organ failure, and even death (Pedersen & Ho, 2020). Although 

SARS-CoV-2 appears to alter host inflammatory defences, similar modifications 

have also been observed in the recent β-coronavirus epidemics caused by SARS-

CoV and MERS-CoV, and the ones responsible for the H5N1 and H7N9 influenza 

A subtype outbreaks (Channappanavar et al., 2016, 2019). 
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Although these viruses can cause similar symptoms, the specifics of the 

pathogenesis may be caused by different factors. A shared trait is their effect on 

the pro-inflammatory host immune response. One of the key characteristics of 

these viruses, including SARS-CoV-2, is that they can lead to a Cytokine Release 

Syndrome (CRS), or "cytokine storm", which can increase the mortality observed 

for this illness in a subgroup of patients (P. Mehta et al., 2020). This phenomenon 

occurs when a large number of innate and adaptive immune cells, such as B-cells, 

T-cells, NK-cells, macrophages or dendritic cells activate, and start producing 

pro-inflammatory cytokines, establishing a feedback loop of inflammation. This 

process normally resolves after the antiviral response successfully clears the 

pathogen from the host, but it can persist in serious cases. In these situations, the 

inflammatory response can become so severe it damages organs and tissues, and 

can eventually lead to death (Del Valle et al., 2020).  

 

One of the first lines of defence against viral infections is the type-I interferon 

response, carried out by the type-I interferons (IFN-ɑ, -β, -κ, -ε, -τ, -ω and -ζ). 

Produced by a large number of cell types, as part of the innate immune system 

they are an ancient, very conserved evolutionary response against viruses. Their 

role is activating a cascade of signalling that results in the expression of a cluster 

of genes, called the Interferon Stimulated Genes. These cascades can attenuate 

the inflammation to avoid tissue damage, lead to the production of cytokines such 

as IL-12, and further carry the signal, eventually resulting in the activation of the 

adaptive immune response through IFN-γ (Betakova, Kostrabova, Lachova, & 

Turianova, 2017; Kang, Brown, & Hwang, 2018; Makris, Paulsen, & Johansson, 

2017).  
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Due to the changed circumstances caused by the pandemic, I was re-deployed for 

6 extra months during my PhD studies to work on COVID-19 related research, 

working on these topics in the Korcsmaros Group, and as a member of the 

COVID-19 Disease Map community (Ostaszewski et al., 2020). The results 

presented in this chapter build on the biological and methodological knowledge 

I acquired over the years as a postgraduate research student. While many studies 

focus on the intracellular effects of the virus, from its entry into the cell through 

TMPRSS2 and ACE2, to the downstream affected pathways, because of the 

potential danger of CRS I wanted to map the pathogenic process backwards. My 

goal was to trace and compare the cytokine responses caused by SARS-CoV-2 and 

similar viruses, and highlight the affected, differently behaving source cell types. 

The goal was to find conserved, and unique immune response patterns between 

CRS-causing viruses to help specialists identify interventions that can alleviate 

serious cases of COVID-19, and other illnesses that cause CRS, and potentially 

pinpoint immune cell populations that behave differently than expected in CRS. 

 

In this chapter, I am going to detail the results of two projects I led during my 

redeployment. The first one, published in Frontiers in Immunology, is a 

systematic literature curation of cytokine responses to CRS-causing viruses from 

the relevant literature (Olbei et al., 2021). In the second project, I developed a 

novel network resource, CytokineLink, aimed at highlighting how cell types can 

communicate using cytokines, with the goal in mind that the established 

networks can pinpoint specific cytokines that mediate intercellular 

communication between important celltypes and tissues.  

Although these were the main studies I worked on during this period, I was also 

involved in two other works, led by other members of our group. The first such 
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project was ViralLink, published in PLOS Computational Biology, a systems 

biology workflow which reconstructs and analyses networks representing the 

effect of viruses on intracellular signalling (Treveil et al., 2021). 

The second such project, still in progress, has the working title of “Gut-COVID 

project”, where we study the effects of the SARS-CoV-2 infection on the intestine, 

which was shown to be productively infected by the virus earlier last year (Lamers 

et al., 2020). 

4.2. Aims 

The aims of these projects were the following: 

● Collect the available patient derived cytokine response data for five 

cytokine release syndrome causing viruses, including SARS-CoV-2, 

through a systematic curation process. 

● Compare the acquired cytokine data, and study the observed differences. 

● Generate a novel network resource (CytokineLink) to map cytokine 

mediated signalling using patient derived data in COVID-19 and other 

inflammatory and infectious diseases, and assign validity to its 

interactions through curation via systems immunology databases and the 

published literature. 

● Connect the two works by analysing the COVID-19 cytokine response data 

we collected with CytokineLink. 
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4.3. Methods 

The results and approaches in the first half of this chapter (comparing 

cytokine responses from five cytokine release syndrome causing viruses) were 

developed by me, with the help of Isabelle Hautefort, who did one half of the 

curation and worked on the interpretation of the data, as well as with support 

from Dezso Modos, who helped in the formal analysis, hierarchical clustering, 

and interpretation of the results. Claire Shannon-Lowe, Agatha Treveil, Martina 

Poletti and Leila Gul contributed to the paper that forms the foundation of this 

chapter.  

 

The second half of the chapter details the construction of a novel network 

resource aimed at understanding cytokine-mediated intercellular 

communication. The resource was conceived of and developed by myself, with 

the help of Dezso Modos, Isabelle Hautefort and Tamas Korcsmaros, who advised 

me during the project. 

 

4.3.1. Comparing cytokine responses from five cytokine release 

syndrome causing viruses 

4.3.1.1. Literature curation 

We performed a mass literature search of 98 well-studied cytokines in the 

PubMed resource using PubTator, and in the bioRxiv and medRxiv non-peer 

reviewed pre-publication repositories (Wei, Allot, Leaman, & Lu, 2019). The 
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targets include commonly studied interleukins, interferons, chemokines involved 

in both anti- and pro-inflammatory responses, in particular those that are 

involved in CRS. We only included studies where the direction of change in the 

level of a cytokine was included. We could not meaningfully collect the amplitude 

of change, only the presence or absence of change. We restricted the study to five 

CRS-causing viruses, all of them responsible for an epidemic in the past few 

decades. Three β-coronaviruses SARS-CoV, SARS-CoV-2 and MERS-CoV, and 

two influenza A subtypes, H5N1 and H7N9. The names of each pathogen, and 

each cytokine was used as search terms, e.g. "H5N1 CCL2". In ambiguous cases, 

multiple forms ("IFN-b", " IFN-beta", "IFN b", "IFN beta") were tried. If the 

search resulted in more than 50 hits "patient" was added to the search terms.  

 

The resulting articles were then manually processed for cytokine data. We 

only considered results valid for curation, if the results came directly from studies 

including at least 10 patients, i.e. model-organism, or cell-line based results were 

excluded. From the main text of the resulting articles the direction of change of 

the listed cytokines was noted in a spreadsheet. We closed the curation on 

03/06/2020. We estimated the size of the discarded literature using a shell 

script, available in a GitHub repository 

[https://github.com/korcsmarosgroup/CRS]. Figure 27 highlights the steps of 

the curation process. 
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Figure 27. The literature curation workflow applied in this study. Publications 
were considered valid for inclusion into our data collection i) if they contained 
patient-derived data (model organisms and cell lines were excluded) and ii) the 
study data were collected from cohorts of at least 10 participants per group iii) 
if it included a directional change in cytokine levels. In the end 55 publications 
were selected that matched the criteria above. 
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4.3.1.2. Hierarchical clustering 

The hierarchical clustering of the cytokine clusters was done using the 

seaborn python package, with Jaccard index as the similarity measure, and the 

complete linkage method. The former similarity measure is used to calculate the 

dissimilarity of two sets, while the latter linkage method calculates each cluster's 

distance from each other (the farthest point from each cluster). This approach is 

sensitive for the furthest elements, and it does not join the furthest elements, 

giving a clearer result. It performs well when applied to finding appropriate 

clusters in synthetic studies. The code for the clustering method is available at 

the GitHub repository. [https://github.com/korcsmarosgroup/CRS] 

4.3.2. Construction of an intercellular cytokine-cytokine 

communication network resource, CytokineLink 

The cytokine-cytokine interaction network resource was built between 

tissues and blood cell types available in the Human Protein Atlas (Uhlén et al., 

2015).  

The consensus RNA-Seq data for all cytokines and their receptors listed in 

ImmuneXpresso and ImmunoGlobe, and a relevant literature source was 

downloaded using a custom shell script, and processed using an R language script 

(Atallah et al., 2020; Kveler et al., 2018).  

 

To establish potential interactions between tissues and cell types mediated by 

cytokines, I made the following abstraction. Using cytokine - receptor 

interactions received from the appropriate literature and the OmniPath database 

(Cameron & Kelvin, 2013; Türei et al., 2016), I created meta-edges between 
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tissues and blood cell types expressing these cytokines, creating the meta-

network of tissue level cytokine communication. To uncover prospective cytokine 

- cytokine interactions, I inverted the same dataset. In these cases, the 

interactions signify what cell types can certain cytokines act on, and what 

cytokines do these cell types produce. An example interaction, with all of the 

subsequent steps involving IL-7 and IFN-γ can be seen on Fig 28. 

 

Figure 28. Construction of CytokineLink. Data was downloaded from the 
Human Protein Atlas, with cytokine-receptor data queried from OmniPath and 
the relevant literature. The base networks contain tissue - cytokine - receptor 
interactions, from which the abstracted meta-edges were created. These meta 
cytokine - cytokine edges symbol the potential ways which the production of a 
cytokine can alter the production of another, by binding to its receptor, carried 
by a cell type expressing the secondary cytokine. 
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These custom paths (i.e. Tissue1, Cytokine1, Receptor, Tissue2, Cytokine2) were 

generated using the tissue-cytokine interactions as an input, with the 

get_simple_paths() function of the NetworkX (version: 2.5) python library 

(python version: 3.8.6). 

 

Beyond containing important cytokine data, ImmuneXpresso and ImmunoGlobe 

also curates interaction data collated from the literature, between cell types and 

cytokines, both as sources and sinks (Atallah et al., 2020; Kveler et al., 2018). 

These interaction annotations were included in the resource, assigning 

confidence to the underlying edges. 

 

To add further information to the network, a layer of regulatory interactions was 

also integrated into the data resource. The interactions were included from a 

recent publication, utilising enhanced yeast-one hybrid assays to collect 

interactions between 265 transcription factors and 108 cytokines (Santoso et al. 

2020). 

 

The network can be instantiated using custom (e.g. single-cell RNA-Seq) 

datasets, in these cases the presence/absence of cytokines is based on that of the 

input data, instead of the Human Protein Atlas results. 

 

For the COVID-19 use case, the elevated cytokine list contained: CCL2, CCL3, 

CCL4, CSF2, CXCL10, CXCL11, IFNG, IL1B, while the complemented cytokine 

list contained: IL2, IL4 and IL5. The networks were generated in Cytoscape 
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(Shannon et al., 2003), by filtering down the cell-cell networks to ones only 

containing interactions mediated by the above cytokines.  

4.4. Results & Discussion 

4.4.1. SARS-CoV-2 causes a different cytokine response 

compared to other cytokine storm-causing respiratory 

viruses in severely ill patients 

In this work, we collected cytokine responses from patient-derived data 

published in the literature that met our curation criteria listed above. The 

curation protocol followed the steps shown on Figure 27. 

We compared the amount of increased, decreased or mixed status cytokines from 

the collected literature. Figure 29. shows the number of cytokines measured in 

the studies for each of the five CRS-causing viruses. 
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Figure 29. The number of cytokines measured in the included studies for each of 
the five CRS-causing viruses. Each bar of the stacked barcharts represents how 
many different cytokines were found increased (yellow), reported as both 
increasing and not increasing (green) or not increasing (blue). The n number 
on the bottom of the chart corresponds to the number of articles citing cytokine 
changes during infection. 

 

Out of the 98 queried cytokines, we found 38 that were included in the studies 

matching the curation criteria. Only a small group of cytokines was measured for 

all viruses (CXCL8, IL-6, CXCL10, IL-2, FN-γ, TNF-α). Figure 29. shows how 

variable the number of different measured cytokines is across the different 

viruses. This variation can be most likely attributed to the increased interest in 

CRS-causing viruses over the recent years, in no small part due to the current 

pandemic, and the increased availability and sensitivity of the detection methods. 

 

One of the notable differences between influenza A subtypes and β-coronaviruses 

is that the former group triggers an increase in almost all measured cytokine 
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levels, while in the latter case, some cytokines were detected at levels normally 

found in control groups (non-increased), or the data disagrees between different 

studies (mixed results). This highlights the potential differences in the underlying 

kinetics and pathogenesis process between the CRS-causing viruses.  

 

Specificity Cytokines elevated at least in one study 
(elevated & mixed) 

Virus-specific 16 

Shared between 2 viruses 5 

Shared between 3 viruses 8 

Shared between 4 viruses 2 

Common to all five viruses 5 
Table 6. Number of cytokines elevated in at least one study. Column 2 shows the 

number of elevated (or mixed) measurements, and their overlaps between 

viruses. Mixed observations occur when one or more studies show no change in 

the level of a cytokine, whereas others show an increase. 

 

Table 6. details the number of cytokines whose levels are increasing in one, two, 

three, four or all viral infections, from the curated literature. Only five cytokines 

are shared across all of the conditions (CXCL8, IL-6, CXCL10, IL-2, IFN-γ, TNF-

α), and 20 are shared to a lesser degree. 16 cytokine responses are unique to the 

selected viruses.  

 

A limitation of our study is that the amplitude of change for the measured 

cytokines is not included, which can be different between the different diseases 

and disease states. To examine the presence and absence of cytokine responses 
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between the viruses more in detail, we constructed a heatmap of collected data, 

shown on figure 30. 

 

Figure 30. Hierarchical clustering of cytokine responses from influenza A 
subtype viruses and beta coronaviruses.  The influenza viruses, SARS-CoV and 
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MERS-CoV, and SARS-CoV-2 form separate clusters. Hierarchical clustering 
results are based on Jaccard distance complete linkage. 

Based on the results of the cluster analysis, eight clusters can be delineated. It is 

important to highlight that the resulting grouping can be biased by the missing 

information for certain cytokines.  

 

With this in mind, cluster I. contains two anti-inflammatory cytokines IL-2 and 

IL-10, and the pro-inflammatory cytokine TNF-α. The literature reports mixed 

results for all three cytokines in the SARS-CoV-2 literature, but has all possible 

outcomes in the β-coronavirus cluster, while they are predominantly increased in 

the influenza viruses.  

 

Clusters III and VI contain most of the increased pro-inflammatory cytokines, 

elevated for almost all viruses, but not measured in every case. Among them the 

cornerstones of the type I and type II interferon response, IFN-α and IFN- γ, and 

IL-6, one of the main pro-inflammatory cytokines, and target of many clinical 

interventions.  

 

Cytokines from Cluster IV measured during coronavirus infections do not 

fluctuate, while most of them are elevated during influenza infection, e.g. IL-4 

and IL-5 upon H7N9 infections. IL-4 is involved in Th2 differentiation, and the 

Th2 cells can produce IL-5 to mitigate eosinophil infiltration (X.-Z. J. Guo & 

Thomas, 2017). Such differences observed between virus-specific pathologies 

reflect the strong alterations caused by coronavirus infections, especially SARS-

CoV-2 (Tan et al., 2020).  
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The cytokines in cluster VII and VIII do not always respond to SARS-CoV-2: IL-

15 and CCL5 (also known as RANTES) are not elevated after SARS-CoV-2 

infection. IL-15 is involved in natural killer cell differentiation as part of antiviral 

response (Y. Guo, Luan, Patil, & Sherwood, 2017). Meanwhile, CCL5 mediates 

eosinophil infiltration which is considered to be involved in the recovery after 

SARS-CoV infection alterations observed in coronavirus infections, particularly 

SARS-CoV-2 (Patterson et al., 2020).  

 

Clusters II and V contain cytokines measured only in H7N9 and SARS-CoV2, 

respectively, whereas TGF-b1 was measured only in SARS-CoV studies in cluster 

IV. 

 

To put the results more in context, we decided to focus on a small part of the 

infection process, and focus on the differences in cytokine responses involved in 

the type-I interferon response, and the cytokines involved downstream of it. 

Figure 31 shows the presence/absence of key cytokines in the analysed viruses in 

the process. 
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Figure 31. Type I interferon response upon infection with the different CRS-
causing viruses. The measured cytokines in the influenza viruses are increased. 
In the case of the coronaviruses the response is mixed, not all of the anti-
inflammatory cytokines are elevated. Only a fraction of cytokines shown for 
clarity. 
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Based on the data we collected, infection with either of the two influenza subtypes 

seems to increase the levels of measured type-I IFN-relevant cytokines, resulting 

in an antiviral immune response, with the appropriate cytokines showing 

elevated levels in all influenza A studies. However, the responses given to the 

coronaviruses show a more variable IFN-I response. In the case of SARS-CoV it 

is active, including the downstream activation of IL-12 and IFN-γ, which 

indicates the involvement of mature dendritic cells based on the former, and the 

activation of the type-II interferon response based on the latter signature. 

 

For MERS-CoV, the type-I response is active, but there are some conflicts about 

parts of it in the literature. In certain studies IL-12 does not increase, in line with 

the inactivation of IFN-γ. Despite this, the mostly anti-inflammatory IL-10 is 

active, although caution should be taken as interpreting this cytokine as a solely 

anti-inflammatory, as there are more and more studies now confirming its role 

as a pro-inflammatory agent in certain scenarios (Mühl, 2013). 

 

Based on the curated responses above we found that SARS-CoV-2 is 

characterized by an apparent dysregulation of the type-I IFN response, and 

consequently parts of the downstream cytokine machinery, involving IL-4, IL-12, 

IL-2, IL-10, and the type-II IFN response. 
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4.4.2. CytokineLink: an intercellular cytokine-cytokine 

communication network resource 

To uncover how affected cytokines, such as the ones highlighted in the 

previous section might disrupt intercellular communication, I built a new 

network resource aimed at depicting all possible indirect interactions they can 

have, and contextualised it using Human Protein Atlas consensus expression 

data. 

 

CytokineLink contains 24 tissues, 18 blood cell types, from which I generated two 

meta-networks (cell to cell, cytokine to cytokine), containing 6573 meta edges. In 

total, I included 115 cytokines, with 308 unique cytokine-receptor interactions. 

The latter has a large, 95% overlap with the published literature. To add more 

confidence to the interactions, I added annotation data from two systems 

immunology databases, immuneXpresso, and ImmunoGlobe, assigning 

literature references from research articles and textbooks, literature enrichment 

cores and signage (i.e. stimulatory / inhibitory) data to the interactions (Atallah 

et al. 2020; Kveler et al. 2018). 46% of interactions have at least one data point 

of annotation attached to them, indicating the degree to which the resource 

captures already known biology. 

 

To demonstrate the applicability of the resource, I have selected the cytokines 

found to be increased in SARS-CoV-2 patients from the previous results section. 

While the optimal use case would be to apply it to single-cell RNA-Seq data 

involving many of the involved immune cell types, at the time of carrying out this 

project no such dataset was available. To help future studies utilising the resource 
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with single-cell data, an additional layer of cytokine-specific regulation was 

added, to add further context to up or downregulated cytokine responses. From 

the results of the CytokineLink resource based analysis, an interesting pattern 

emerges, as shown on Figure 31 A. The majority of cells that communicate using 

the elevated cytokines are involved in innate immune responses. From the T-cell 

elements MAIT T-cells generally show an innate-like behaviour, while gdT-cells 

generally bridge the response between the innate and adaptive immune system. 

The innate immune response, as recently shown, is the part of the COVID-19 

disease process that might be the underlying cause of the large scale 

heterogeneity observed in outcomes (Hinks et al., 2020; Holtmeier & Kabelitz, 

2005; Schultze & Aschenbrenner, 2021).  
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Figure 32. Cell-to-cell communication mediated by cytokines increased in 
COVID-19 patients. A: Interactions involving cytokines elevated in COVID-19 
patients (red). B: Interactions involving elevated cytokines in COVID-19 
patients (red), and interactions with cytokines that are missing following a 
SARS-CoV-2 infection, but are present in other CRS-causing viruses (blue). 
Edge width corresponds to the amount of cytokines mediating the specific 
interaction. 

 

 

 

In part B of Figure 32, I attempted to model what the cell to cell 

communication would look like, if cytokines that are elevated in some other CRS-

causing viruses were elevated. In other words, I "complemented" the system with 

these cytokines, to show what parts of the communication seem to be missing 

based on the literature data we curated. The complemented model shows three 

novel cell types: naïve-B-cells, memory B-cells, and the presence of myeloid DCs. 

The latter cell type is responsible for the secretion of multiple cytokines, including 

IL12, that also seems to be missing from the system, based on the literature 

curation analysis (see 5.4.1). The presence (or lack of) memory B-cells and naïve-

B-cell can be explained by a variety of factors. An explanation arising from the 

bias of our methodology would be that much of the data we gathered from the 

curation contained samples from the time of hospital admission, where these 

responses could not form yet. 

 

 

The CytokineLink based analysis gave a possible mechanistic link to the lack of 

one of the key anti-inflammatory cytokines. IL12 is missing from the system, 

potentially caused by an under-activation of myeloid DCs. This can be the result 

of the missing edge between myeloid DCs and basophils, an interaction mediated 
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by IL4. Although there are other cell types capable of producing IL12 in the 

model, its lack can be possibly caused by this missing cell type. The lack of IL12 

can be seen in other patterns of the cytokine responses as well, as it is one of the 

main stimulators of IFN-γ (annotated as "mixed" in our curation) and the type II 

interferon response, which is the key in leading the innate immune response into 

the adaptive one, and eliminating the viral infection (Bhardwaj, Seder, Reddy, & 

Feldman, 1996; Kang et al., 2018; Lee & Ashkar, 2018). 

4.5. Future research directions 

COVID-19 research moves at an incredible speed, and seems to 

accelerate almost day by day. This makes following the literature an exciting and 

daunting task, and as such systematic reviews as the one we performed provide 

an important gap-filling function, summarising the state of the literature at the 

point of curation. The data and literature collected for them can be useful on its 

own, and can be further applied later down the line, systematically. I think 

systematic reviews like the one summarised in this chapter should be an iterative 

process, especially in a dynamically changing topic such as COVID-19 research. 

To enable this, we put together a robust semi-automated workflow, that allows 

periodic re-scanning of the literature, to fill gaps such as the ones seen in the 

hierarchical clustering figure in the first half of the chapter. Although there is 

always going to be a level of bias between the other compared viruses and SARS-

CoV-2, caused by the sheer amount of literature being released on the latter, a 

functional comparison of these viruses can hopefully let us get a glimpse of the 

underlying pathomechanisms undiscovered so far. 
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The all-purpose version of CytokineLink, collated from Human Protein Atlas 

consensus expression data can give an overview of the cellular and molecular 

actors involved in certain infectious and inflammatory diseases. While it is well 

annotated, using two external systems immunology databases in the form of 

ImmunoGlobe and immuneXpresso, the trade-off is the relatively low level of 

resolution we can analyse the data under. Although this is appropriate for 

exploratory analyses and hypothesis generation, I think in the future, if 

applicable single-cell RNA-Seq data resources exist, a second round of 

CytokineLink analysis would provide much higher resolution results, especially 

combined with the integrated regulatory layer further informing on the 

expression status of the studied cytokines. Although I built the resource with the 

COVID-19 research and effort in mind, it can be utilised in all situations involving 

cytokines, such as autoimmune diseases, or even Salmonella infections. On the 

latter point, I think there exists a yet undiscovered niche of Salmonella research, 

wherein one could combine network data from both the host side (e.g. cytokine 

responses and their upstream signalling), a mechanistic intermediary layer 

established with tools such as MicrobioLink, and an intra-pathogen layer, such 

as the ones generated for SalmoNet 2 (Andrighetti, Bohar, Lemke, Sudhakar, & 

Korcsmaros, 2020). A complex model like this, generated from dual-RNA-Seq 

experiments for example, could give further insight into host-microbe 

interactions, by simultaneously uncovering the responses to the infection 

process, from both the host and the pathogen side, and potentially allow for 

previously unknown insight regarding the pathogenesis process and intervention 

therapies.  
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5.  Final discussion 

Network biology approaches are an appropriate tool to study infectious 

diseases and interactions of the host and the pathogen. By involving interactions 

between the genes or proteins of an organism, or between organisms, they 

provide a way to study these organisms on a systems level  (Mulder, Akinola, 

Mazandu, & Rapanoel, 2014; Sudhakar et al., 2019).  

 

Host adapted Salmonella serovars, or typhoidal Salmonella serovars when 

focusing on human disease, cause between 200,000 to 600,000 deaths every 

year (GBD 2017 Typhoid and Paratyphoid Collaborators 2019). Understanding 

how these invasive serovars form and behave is crucial to developing better 

intervention and surveillance strategies. In this thesis, I aimed to develop and 

update a network resources that enables us to study extraintestinal and 

gastrointestinal Salmonella serovars in this context.  

 

Extraintestinal serovars are the products of convergent evolution, and are not 

monophyletically related to each other, in most cases their closest relative is a 

gastrointestinal serovar (Branchu et al., 2018). Because of this, many 

comparative genomic approaches have been applied to the problem, with great 

success: these led to the discovery of how S. Typhi and S. Paratyphi neutralise the 

phagocyte respiratory burst, how hundreds of genes, often belonging to the same 

functional categories degrade in these serovars, or how they collectively lose part 

of their ability to form biofilms (Hiyoshi et al. 2018; Nuccio and Bäumler 2014; 

MacKenzie et al. 2017).  
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Interaction information for non-model organisms are more difficult to acquire 

than better studied models. SalmoNet 2, described in Chapter 2, describes the 

need for molecular interaction network resources such as this, and the general 

logic of how they can be constructed for any organism of importance. The utilised 

data sources contain a lot of information for my Gram-negative bacterial species, 

and there exist Gram-positive alternatives for the involved layers (Sierro, Makita, 

de Hoon, & Nakai, 2008). The frameworks and workflows developed for 

SalmoNet 1 & SalmoNet 2 can help other scientific communities which lack 

integrated resources, and achieve the same goal of serving as a knowledge base 

for understudied organisms, and simultaneously drive research by predicting 

previously unknown interactions (Olbei et al., 2019).  

The update to the database doubled the included serovars to cover more of the 

Salmonella genus and aimed to make the information content more precise than 

before. This was done through the involvement of novel data resources, such as 

strain specific metabolic models for all involved Salmonella strains, the usage of 

the IntAct scoring to involve high quality protein-protein interactions attained 

from multiple types of experiments, and the involvement of novel transcription 

binding sites used for genome wide scans. Through the inclusion of novel strains 

and data sources total number of interactions in the database grew from 81,514 

to 270,196, more than tripling that of the first version of the SalmoNet database. 

Anecdotally, a second update in a database's lifecycle is an important 

steppingstone, signalling to the scientific community that there is still work going 

on, they can count on the data in it, and await further updates. This trust between 

user and developer is very important for a tool and resource like this to better 

integrate into the scientific community. 
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Through the comparison of differentially expressed genes following the knockout 

of infection relevant regulators and predicted regulatory targets of the same 

regulators in SalmoNet 2, I was able to assess the validity to my predicted 

regulatory interactions, insofar as they capture biologically relevant interactions 

for the majority of analysed global regulators (Colgan et al., 2016). In addition, 

the literature published since the generation of the interactions has 

independently confirmed, and added function to multiple predicted regulatory 

interactions in SalmoNet 2, such as the regulation of sopB through InvF, or the 

regulation of ugtL via SsrB, and its lack of regulation in Salmonella bongori (Choi 

& Groisman, 2020; Romero-González et al., 2020). However, future releases will 

have to strive for even greater precision regarding the quality of interactions, as 

the included number of included strains and genomes grows, and include other 

layers of information, such as posttranscriptional regulation mediated by small 

RNAs (Van Assche et al., 2015). 

 

Integrating network information into comparative genomics studies can further 

highlight elements under selection and potentially even explain parts of the 

organism’s behaviour. We showed an example of this, through a study involving 

the adaptive radiation of East African cichlid fish species (T. K. Mehta et al., 

2021). The network rewiring analysis we applied highlighted the gene regulatory 

network rewiring of the visual opsin apparatus in a number of species, caused by 

a single nucleotide polymorphism in the 5` UTR transcription factor binding 

region of the genes in question. This finding fits into the hypothesis that the fish 

species adapted to different ecotypes and feeding behaviours utilise and require 

different parts of the visible light spectrum. Although the authors of the DyNet 

software used case-control experiments involving PPI networks and drug treated 
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cell line data as their use case in the original publication, we showed that the 

approach can be used to seek out and understand differences arising from the 

pressures of evolution (Goenawan et al., 2016). By adding regulatory interactions 

to the genes in the compared fish species, we were able to add functionality to the 

regulatory mutations observed (T. K. Mehta et al., 2021). 

 

Applying the same rewiring approach to the interaction networks generated for 

SalmoNet 2 highlighted the effect genome degradation has on the interaction 

networks of typhoidal Salmonella strains, as this pseudogenization process was 

a large driving force behind the observed rewiring results of the most rewired 

genes between the pathovars, as described previously in the literature (Holt et al., 

2009; Robert A Kingsley et al., 2013; Nuccio & Bäumler, 2014; Tanner & 

Kingsley, 2018). The large-scale comparison involving all serovars in SalmoNet 2 

highlighted a pair of genes that seem to associate to invasive serovars. Due to the 

extraordinary challenges we face in our current times, we were not able to carry 

out our planned experiments to get a deeper understanding of the potential 

functions of these genes, but the computational approaches attempted to 

characterize the two proteins highlight how interaction information from 

SalmoNet 2 can be used for hypothesis generation, and how downstream 

analyses using the linked or external knowledgebases such as OMA or pubMLST 

can help in understanding and describing novel characteristics, such as the 

phylogenetic spread of the studied proteins (Altenhoff et al., 2018; Jolley et al., 

2018). 

 

The COVID-19 pandemic is still ongoing all over the planet. Although many 

countries have started vaccinating against the virus, hopefully indicating changes 
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to come, the past year has really highlighted the need to understand not just the 

virus itself, but how the immune system responds to it. In my 6-month 

redeployment I attempted to uncover parts of this mechanism, by comparing the 

cytokine responses from patients infected by functionally and phylogenetically 

related viruses. What we have found here is that there exists a group of cytokines 

that are not activating in response to a SARS-CoV-2 infection in the analysed 

datasets, but are present in other similar viral infections.  

 

To give a mechanistic explanation as to why some cytokines activate, and why 

others do not, I built a novel network resource, called CytokineLink, aimed at 

highlighting how cells can communicate using cytokines as a medium, and vice 

versa, how cytokines can possibly affect each other's expression. I integrated 

other systems immunology databases into this network resource, giving more 

confidence to the individual links. When analysing the elevated and non-elevated 

cytokine levels from the previous study with CytokineLink, I identified a potential 

lacking cell signature from myeloid dendritic cells, that could explain why we 

noticed the differences when comparing the cytokine responses of viruses. 

 

While these were interesting and novel research projects, adequate for a 6-month 

period, in the future I would like to see them iteratively refined, and scaled up, 

respectively. Systematic analyses and reviews of the literature of a fast-moving 

field such as COVID-19 research is important to sum up the current status of the 

field, and identify potential blind spots that need to be addressed. 

 

Although the all-purpose version of CytokineLink is an adequate, high-level 

starting point for analyses involving cytokine responses, in my opinion the real 
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power of the approach would lie in applying it to large scale single-cell datasets, 

coming from infectious or inflammatory diseases, where both the regulatory 

layer, and the cytokine interactions could be analysed simultaneously. To make 

initial analyses easier, in the future I would like to prepare a simple web-based 

access point to the data as well, where interested researchers could quickly 

retrieve interactions certain cytokines or cells are involved in. 

 

In this thesis I detailed the workflows and data resources I developed to create 

and compare molecular biological interaction networks, to answer specific 

biological questions. The methodologies I developed are, for the most part, 

agnostic of biological system, as shown by the publications I have co-authored 

involving other model (and non-model) organisms. The research presented in 

this thesis shows what gaps the pairwise or multiple comparison analysis of 

biological networks can fill. 

 

In conclusion, this thesis has added to the understanding of Salmonella host 

adaptation, by generating multi-layered molecular interaction networks and a 

knowledgebase for multiple extra-and gastrointestinal Salmonella serovars 

important in human health. The methods I applied to the networks can be used 

in the future to identify rewiring hotspots in biological network comparisons, and 

the results obtained with them can lead to validatory analyses and future 

hypotheses. The results highlighted in this thesis lead to a framework that could 

be used to study not just host adaptation, but any other phenotypic split in a 

group of organisms in the future. 
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