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We elucidate the influence of system-bath boundary placement within an open quantum system (OQS), with
emphasis on the 2DES spectral impacts, through application of the hierarchical equations of motion (HEOM)
formalism for an exciton system. We apply two di↵erent models, the Hamiltonian vibration model (HVM)
and bath vibration model (BVM), to a monomer and a homodimer. In the HVM we specifically include the
vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM all vibrational detail
is contained within the bath and described by an underdamped spectral density. The resultant spectra are
analysed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate
the e�cacy of the two models. The HVM produces 2D spectra with accurate peak positional information,
whilst the BVM is well suited to modelling dynamic peak broadening. For the monomer, both models produce
equivalent spectra in the limit where additional damping associated with the underdamped vibration in the
BVM approaches zero. This is supported by analytical results. Whereas, for the homodimer, the BVM
spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The
computational e�ciency of the two models is also discussed in order to inform on the most appropriate use
of each method.
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I. INTRODUCTION

Open quantum system (OQS) methodologies treat a
quantum system of interest within the noisy environ-
ment in which it is embedded. Accurately modelling
the dynamics of the quantum system requires not only
good theoretical descriptions of both the system and the
environment but also depends on the definition of the
system-environment boundary. OQS approaches have
been used to study a number of important processes
in chemical physics such as electronic energy transfer
(EET),1–3 charge transfer,4 as well as to investigate a
number of phenomena of fundamental interest, for ex-
ample, coherence.5–8

Experimentally, many processes occurring in molecular
systems on the ultrafast timescale are investigated using
time-resolved two-dimensional optical spectroscopy9,10

which allows one to separate homogeneous and inhomo-
geneous spectral broadening as well as resolve electronic
and vibronic couplings between quantum states. When
it comes to accurately reproducing experimental two di-
mensional spectra using theoretical methodologies, it is
imperative to correctly include any non-Markovian ef-
fects within the OQS dynamics. Non-Markovian e↵ects
are often interpreted as the quantum system having a
memory of the state of the bath, but an alternative defi-
nition is in terms of the direction of the flow of informa-
tion between the system and the bath.11 The unidirec-
tional flow of information from the system to the bath
gives rise to Markovian dynamics while any flow of in-
formation from the bath back into the system results
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in non-Markovian behaviour. Accounting correctly for
this non-Markovian behaviour in quantum trajectories is
required for producing an accurate description of spec-
tral broadening. In our previous work we quantitatively
linked spectral broadening to the non-Markovian BLP
(Breuer Laine Piilo) measure.12

Underdamped vibrational modes are defined as those
that are coupled strongly to the electronic degrees of
freedom of a molecular system, giving rise to oscillatory
beating of exciton state energies, which results in slow
dephasing of the reduced density matrix of the system of
interest. This type of system is associated with strong
non-Markovian behaviour, in which information returns
back to the system from the bath. There are many ways
to incorporate an underdamped vibration into an OQS,
and it is not always immediately obvious which is best
approach for a particular application, because there are
a number of theoretical and computational implications
that depend on your choice.13 Most obviously, the under-
damped vibration could be incorporated into the OQS in
at least two ways; (1) as part of the quantum system it-
self, being defined explicitly in the system Hamiltonian
or (2) as part of the environment via the spectral den-
sity that defines the bath. There are trade-o↵s when
using either definition. In the former case, the additional
vibronic structure requires a larger Hilbert space in or-
der to explicitly define the additional vibronic coupling
terms (even a single vibration will generally have multi-
ple vibrational levels that need to be incorporated). On
the other hand, in the latter case the Hilbert space of the
system Hamiltonian is truncated but the spectral density
will be more complex than that of a typical overdamped
bath, resulting in a more mathematically detailed defi-
nition of the bath, resulting in more complicated OQS
dynamics. As we show in this work, the two di↵erent ap-
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proaches inevitably lead to di↵erent population dynam-
ics and consequently di↵erent two-dimensional electronic
spectra. One of the objectives of this paper is to under-
stand the emergence of di↵erent features in the spectra
when using di↵erent system-bath boundaries.

The nature of the dynamics for a particular OQS can
be directly related to two key bath parameters: � which
is the magnitude of the vibrations, and ⌧c which is the
correlation time of the bath. The product of the two,
� ·⌧c, is a key parameter for overdamped systems. In the
case of � · ⌧c >> 1 we observe inhomogeneous spectral
broadening where slower bath fluctuations give rise to a
particular instance of the OQS experiencing a di↵erent lo-
cal environment. That is to say, the bath is moving slowly
with respect to the timescale of the measurement.10 On
the other hand, in the case of the homogeneous limit,
where � · ⌧c << 1 fast bath fluctuations mean that there
is no correlation between measurements taken at di↵er-
ent times, which results in di↵erent systems (or di↵er-
ent instances of the same system) seeing the same noisy
environment.14

The spectral density is particularly sensitive when the
OQS is in neither the long nor short time limits, leading
to spectral features that are neither purely Gaussian or
purely Lorentzian. In order to model these cases non-
Markovianity must be included in the dynamics. While
it is still a matter of debate whether non-Markovianity
favours coherent dynamics, there are a number of exam-
ples of coherent spectral phenomena being suppressed or
enhanced by non-Markovianity within a system. Papers
by Wu et al.,15 Zhu et al.,16 and Thoss et al.,17 suggest
that the Markovian approximation results in too much
quantum coherence by neglecting memory e↵ects in the
dissipative bath. Specifically it is concluded by Wu et
al.15 through the use of the trace distance, that a robust
control of quantum coherence is achieved by having an
additional degree of freedom subsumed within the bath.
In contrast Jing18 presents a three-level quantum sys-
tem coupled to a bosonic bath where Markovianity is
shown to enhance coherent e↵ects. It is clear that coher-
ence is fundamental to atomic scale quantum phenomena,
such as entanglement, and this in turn is a↵ected by non-
Markovian system dynamics. It is the coupling between
a chaotic ensemble (the bath) and the quantum system
of interest which interrupts the delicate balance required
for coherence, resulting in decoherence.

A number of recent studies consider the impact of co-
herence on system dynamics, many from the perspec-
tive of aiming to reduce decoherence for physical appli-
cations, such as in Josephson junctions devices, but only
a few studies consider the impact of where to place a
vibrational mode within their model OQS. Huang and
Zheng19 theoretically study a qubit-oscillator system em-
bedded in a noisy environment which acts as a tunable
degree of freedom. These considerations were inspired
by models which control the dissipative dynamics of a
quantum-oscillator spin-boson system using a tunneling
degree of freedom20 and coherent behaviour influenced

by strong coupling to a single bosonic mode.21 In con-
trast, work by the authors Vierheilig,22 Yao,23 Ma,24

and Man25 consider an indirectly coupled qubit-bath sys-
tem, or an e↵ective qubit-bath system transformation
of a qubit-nonlinear quantum oscillator-ohmic bath sys-
tem. These works highlight the current interest in direct
and indirect coupling to a noise bath, however, the focus
of these studies was not whether an additional under-
damped vibrational component within the bath would
e↵ect the system dynamics.

Following on from this, it is known that structured
spectral densities have a profound impact on OQS
dynamics26 indicating that system-bath boundary con-
siderations have practical as well as theoretical con-
sequences that need to be considered. The work of
Fujihashi et al.27 consider quantum mechanical mixing
among vibronic transitions in a weakly coupled hetero-
dimer. In their work a spectral density is created for
one of the two pigment molecules with a sharp vibra-
tional peak, centred at approximately 200 cm�1, induced
by environmental fluctuations. This explores the impact
on EET dynamics and 2D electronic spectra of environ-
mental induced vibrational components within exciton
states, but does not consider simpler systems. Chin and
coworkers7 consider overdamped and underdamped lim-
its by studying the impact of di↵erent spectral densities,
ranging from a Gaussian profile through to a Lorentzian
and then a combination of both, on the decay of the
correlation function for the HEOM. Their application is
on vibrationally assisted energy transfer whereby they
consider the collective mode signatures for each choice of
spectral density and relate them to the non-Markovianity
through the volume of accessible states in a Bloch sphere.
Kim and coworkers28 examine EET with a three-site
Frenkel exciton model, with specific focus on the descrip-
tion of underdamped modes. Dynamics were compared
where the underdamped mode was considered as either,
part of the quantum subsystem, or as part of the classical
bath, and they concluded that the classical approach pro-
duced equivalent results. Schröter et al.,29 study dissipa-
tive exciton dynamics of a molecular heterodimer coupled
to a Brownian oscillator bath through models produced
using the HEOM. Linear absorption spectra are exam-
ined along with coherent oscillations in the population
dynamics using Fourier spectrum analysis which reveals
the origin of peaks in both the diabatic and adiabatic
regimes by comparison with direct diagonalisation of a vi-
bronic Hamiltonian. Importantly, they conclude by stat-
ing that further research into 2DES would be required in
order to link these conclusions directly to experimental
spectra; which is the focus of this paper.

Historically a number of perturbative approaches have
been employed to model OQS for EET in vibronic sys-
tems. The quantum system of interest is kept deliber-
ately distinct from the stochastic bath degrees of free-
dom, and is modelled explicitly in order to retain as
much accuracy as possible but with maximum compu-
tational e�ciency. In turn, the stochastic bath is typi-
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cally described by a continuous spectral density function
rather than a (infinite) system of individual harmonic
oscillators. Notable examples of perturbative methods
include: the Redfield equation, Förster rate theory, gen-
eralized quantum master equations, and Langevin equa-
tion approaches.30–36 However in this work we use the
well known non-perturbative approach,37 the hierarchi-
cal equations of motion (HEOM), originally developed by
Tanimura et al.38–44 which is one of the most successful
and commonly employed in recent years. It models the
memory e↵ects of the interaction of the quantum system
of interest through evolution of an hierarchy of auxil-
iary density operators (ADOs). In particular this method
has been applied to the study of electron transfer16,45–50,
exciton dynamics,27,29,51–54 and excited state dynamics
within the condensed phase.55

The accuracy of the HEOM when applied to molecular
systems is what makes it particularly suitable for testing
the hypothesis of this paper,44 which is focused on def-
inition of the OQS boundary. Specifically, we consider
a vibronic homodimer system capable of transferring an
exciton coherently between its chromophores. The chro-
mophore vibration is strongly coupled to the exciton
states, and can be included in one of two ways: either (1)
using an overdamped bath to represent the environment,
in combination with the intramolecular vibration explic-
itly defined within the Hamiltonian (we refer to as the
Hamiltonian vibration model, HVM), or (2) using under-
damped dynamics in which the e↵ects of the intramolec-
ular vibration are introduced into the bath through the
spectral density (we refer to as the bath vibration model,
BVM). The question we address is whether subsuming
the intramolecular vibration into the bath is equivalent
to defining it in the Hamiltonian; in particular with ref-
erence to the resulting two-dimensional spectra. Phe-
nomenologically these two approaches appear to be qual-
itatively the same, as they should result in similar fluc-
tuations of the exciton states, however, the size of the
Hilbert space for the quantum system is greatly reduced
in case (2). This leads to a clear practical motivation
to this study, namely the trade-o↵ between accuracy of
the results compared to the computational cost of the dy-
namics. The HVM requires a larger Hilbert space but the
BVM has a significantly more complex spectral density
and therefore more auxiliary density matrices need to be
simultaneously evolved within the HEOM formalism.

In this paper, we describe a series of time-resolved
two-dimensional electronic spectra (2D spectra)56–58 for
model monomer and dimer chromophore systems. In
both cases, the electronic (excitonic) states are strongly
coupled to an intramolecular vibrational mode. We in-
vestigate the short-time evolution of the 2D spectra for
each of the systems, when described by the Hamiltonian
vibration model, and the bath vibration model. As out-
lined in the discussion of results, there are a number of
di↵ering features within the spectra that reflect di↵erent
approximations of the model. One must therefore care-
fully consider the form of the system-bath model when

using OQS dynamics to interpret 2D spectra.

II. METHODOLOGY

A. Construction of the system Hamiltonian

The homodimer system is formed by the electronic cou-
pling of a pair of identical monomers which are mod-
elled with harmonic potentials for each of the ground
and singly excited states, |gi and |ei, representing an in-
tramolecular vibrational mode. As such the monomer
Hamiltonian is,

HM = |gihg hg|+ |eihe he| , (1)

where the nuclear Hamiltonians for the ground and ex-
cited electronic states are,

hg = ~!0

✓
b†b+

1

2

◆
, (2)

he = ~
�
!0
eg + �

�
+ ~!0

✓
b†b+

1

2
�

�0
p
2
(b+ b†)

◆
. (3)

Here !0
eg is the frequency of the transition between the

ground and excited electronic states, and !0 is the vi-
brational mode frequency. The excited state potential
is displaced with respect to the ground state minimum
along the dimensionless nuclear coordinate by �0, result-
ing in the reorganisation energy, ~� = 1

2~!0�2
0. Apply-

ing the Born-Oppenheimer approximation, the monomer
(M) basis states are the tensor product of the electronic
and nuclear degrees of freedom,

| M i = |↵M i ⌦ |⌫M i = |↵M , ⌫M i , (4)

where ↵ = g, e and ⌫ = 0, 1, 2, . . . such that the o↵-
diagonal terms, proportional to (b+ b†) where b(†) is the
lowering (raising) operator,59 account for vibronic cou-
pling with the displaced excited state. Transitions be-
tween the ground and excited electronic states are then
mediated by the transition dipole moment µM .
Construction of the homodimer (D) then starts by

combining the monomer Hilbert spaces. A composite
Hilbert space is defined based on the states of both con-
stituent monomers, where M = 1, 2 for each monomer,

| Di = |↵1, ⌫1i ⌦ |↵2, ⌫2i = |↵1, ⌫1,↵2, ⌫2i . (5)

The monomers are treated as collinear point dipoles
which are also collinear with the displacement vector,

R = RR̂, (6)

and are coupled via the Förster equation,

J =
µ1 · µ2 � 3(µ1 · R̂)(µ2 · R̂)

4⇡✏r✏0R3
. (7)
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The total dimer Hamiltonian60–62 is then,

HD =H1 ⌦ I2 + I1 ⌦H2

+ J
X

⌫1,⌫2

(|e1, ⌫1, g2, ⌫2ihg1, ⌫1, e2, ⌫2|

+ |g1, ⌫1, e2, ⌫2ihe1, ⌫1, g2, ⌫2|) , (8)

where IM is the identity matrix over the degrees of free-
dom of the M th monomer, such that the coupling rep-
resents transfer of electronic excitation only, with vibra-
tional quanta unchanged.59,63

The eigenstates of the dimer Hamiltonian, |�Di, cor-
respond to the delocalized exciton states and give the
diagonalised dimer Hamiltonian,

H0
D = U†HDU, (9)

where U =
P

k |�D,kih D,k|. The simulations discussed
below use the diagonalised Hamiltonian for both the
monomer and homodimer.

The collinear arrangement of transition dipole mo-
ments creates a J-aggregate64,65 which has a common
ground state, |gi, a lower energy, bright exciton state
corresponding to the symmetric combination of singly ex-
cited states, |e+i, a higher energy, dark exciton state cor-
responding to the anti-symmetric combination of singly
excited states, |e�i, and a doubly excited state, |fi,
corresponding to the simultaneous excitation of both
monomers (ignoring the biexciton binding energy).26,62,66

An energy level diagram67 showing the allowed/forbidden
transitions of the homodimer for the HVM and BVM
models is shown in figure 1.

B. The two open system models

The homodimer system is then coupled to its environ-
ment, which is modelled as an open quantum system.
We compare two di↵erent models which define the in-
tramolecular vibration either within the system Hamil-
tonian (HVM) or the bath spectral density (BVM), cor-
responding to movement of the system-bath boundary;
figure 2. Both approaches use HEOM methods, and the
full details of this are presented in our previous paper.12

The HEOM method derived by Tanimura and
coworkers38,39 models the environment as a bath of har-
monic oscillators which represent phonon modes. The
spectral density consists of a continuum of bath modes
with masses, m↵, frequencies, !↵, and distribution of
coupling strengths, g↵ such that the spectral density is
defined as,

J(!) =
X

↵

g2↵
2m↵!↵

�(! � !↵). (10)

In accordance with the fluctuation-dissipation theorem,
the entirety of the environment degrees of freedom, in-
cluding non-Markovian e↵ects, are then described by the

FIG. 1: Energy level diagrams for the HVM and BVM
dimers. The bright (e+) and dark (e�) exciton

potentials are both plotted along the antisymmetric
vibrational coordinate.68 Blue and red arrows
correspond to allowed and forbidden electronic

transitions, respectively.

system-bath correlation function,

C(t) =
~
⇡

Z 1

0
J(!)

✓
coth

✓
�~!
2

◆
cos(!t)� i sin(!t)

◆
d!,

(11)

where � = (kBT )�1. The imaginary term within the inte-
grand of this contour integral corresponds to dissipative
e↵ects within the bath whilst the real term corresponds
to the thermally induced fluctuations within the system.
HEOM methods are then derived from an approximated
analytical form of the spectral density, as discussed in
our previous paper, ref. 12.
In the HVM, the full vibronic monomer and homod-

imer Hamiltonians from the previous section are coupled
to the Debye spectral density,69

Jo(!) =
2⌘o!⇤o

!2 + ⇤2
o

, (12)

representing intermolecular solvent modes and are prop-
agated using the overdamped (o) HEOM described in
ref. 12. Jo(!) is shown in figure 3, dominated by lower
frequency modes, with a peak at ⇤o with intensity ⌘o.
⇤o = ⌧�1

c defines the rate of decay of system-bath corre-
lations and is chosen to be slow enough such that there is
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FIG. 2: Diagrammatic description of the Hamiltonian
and bath vibration models.

visible inhomogeneous broadening in the resulting spec-
tra.

FIG. 3: Overdamped spectral density for the HVM.

The bath couples to the electronic excited states
through the operators,

VM =
X

⌫M

|eM , ⌫M iheM , ⌫M | , (13)

for the monomer and,

VD =
X

⌫1,⌫2

�
|e1, ⌫1, g2, ⌫2ihe1, ⌫1, g2, ⌫2|

+ |g1, ⌫1, e2, ⌫2ihg1, ⌫1, e2, ⌫2|

+ 2 |e1, ⌫1, e2, ⌫2ihe1, ⌫1, e2, ⌫2|
�
, (14)

for the dimer, which undergo the same unitary trans-
formation as the diagonalisation of the Hamiltonian;
V0 = U†VU. The stochastic motion of the bath thus
causes the electronic transition frequencies to fluctu-
ate leading to dephasing of excited state wavepackets
and spectral broadening. Vibrational relaxation and de-
phasing can be included by coupling the intramolecu-
lar mode coordinate to a second bath with a separate
spectral density,61,70,71 and recent studies have also high-
lighted the impact of fluctuations in the electronic cou-
pling strength to EET, accounting for the nuclear depen-
dence of the electronic transition dipole moment, beyond
the Condon approximation.55,72,73 But here, the HVM is
simplified to account for an undamped vibrational mode
with constant J , assuming vibrational relaxation and any
fluctuations in the electronic coupling are much slower
processes than electronic dephasing, with negligible ef-
fect on the 2DES spectra at very early population times,
T  100 fs.
In the BVM, the intramolecular vibrational mode is

subsumed into the bath degrees of freedom through a
canonical transformation. This reduces the size of the
system Hamiltonian to the electronic states only, which
are then coupled to an underdamped (u) Brownian oscil-
lator which adds to the spectral density.
The spectral density for the BVM has two

components,74

Ju(!) =
2⌘1�1!2

1!

(!2
1 � !2)2 + �21!

2
+

2⌘2�2!2
2!

(!2
2 � !2)2 + �22!

2
, (15)

where the first corresponds to the intramolecular vibra-
tional mode in the underdamped limit,69 !1 � �1, such
that !1 = !0 and ⌘1 = � from eq. 3, and the second
represents the bath modes from the HVM model. In the
overdamped limit, where !2 ⌧ �2 this reduces to the
Debye form,

Ju(!) =
2⌘1�1!2

1!

(!2
1 � !2)2 + �21!

2
+

2⌘2!⇤

!2 + ⇤2
, (16)

where,

⇤ =
!2
2

�2
. (17)

The total spectral density for the BVM is shown in
figure 4 as well as the separate underdamped, J1(!),
and overdamped, J2(!), components. In contrast to the
broad overdamped spectral density for the low frequency
bath modes, the underdamped spectral density features
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a sharp Lorentzian peak at the intramolecular mode fre-
quency with width determined by the damping parame-
ter �1.

For the BVM, an underdamped HEOM described in
ref. 12 is derived from eq. 15, corresponding to two un-
derdamped baths. Both baths couple to the electronic
excited states through the dephasing operators,

V0
M = |eihe| , (18)

for the monomer and,

V0
D = |e+ihe+|+ |e�ihe�|+ 2 |fihf | , (19)

for the dimer. Note that �1 introduces additional damp-
ing of the intramolecular mode in the BVM, absent in
the HVM. Approaching the limit �1 ! 0, the BVM be-
comes equivalent to the undamped intramolecular vibra-
tional mode in the HVM. But zero damping invalidates
the HEOM termination criterion,12 producing an infinite
hierarchy, and thus some minimal damping is unavoid-
able.

FIG. 4: Underdamped spectral density for the BVM.

Figure 1 then highlights the di↵erence between the def-
inition of the system in the HVM vs. BVM, building
upon figure 2. In the HVM, the system Hamiltonian
defines the vibrational levels for each electronic state,
fully accounting for vibronic coupling terms, whereas
the BVM contains the electronic states only. In both
models, the system Hamiltonians are renormalised as
H0+

P
i ⌘i(V

0
i)

2, where i are the components of the spec-
tral density, to counter the energy shift induced by the
system-bath coupling.44,75

2D electronic spectra66,71,76,77 are calculated in the im-
pulsive limit using the response function formalism, as
described in the appendix of ref. 12, using the HEOM to
correctly account for non-Markovian system-bath inter-
actions across system-field interactions.

In the following simulations, the ground and excited
electronic states of the monomer are separated by !̃0

eg =

10 000 cm�1 where tilde denotes conversion to wavenum-
bers, !̃0

eg = !0
eg(2⇡c)

�1. The electronic states are cou-
pled to a vibrational mode with !̃0 = 500 cm�1, with
the excited state displaced by �0 = 1.09 such that
� = 300 cm�1. The monomer transition dipole moments
are then strongly coupled by J̃ = �400 cm�1 forming
the J-aggregate homodimer. After diagonalisation, the
monomer and homodimer Hamiltonians are truncated to
the ⌫M = 0, 1, 2 vibrational levels only.
For the HVM overdamped bath, ⌘̃o = 50 cm�1 with

⇤̃o = 100 cm�1 such that �⌧c = 1.44. For the BVM
underdamped baths, ⌘1 = �, !1 = !0, �̃1 = 100 cm�1,
⌘2 = ⌘o, !̃2 = 500 cm�1 and �̃2 = 2500 cm�1 such that
⇤ = ⇤o. At 300K with the Markovian limit set to be
2000 cm�1, HVM and BVM propagates 50 and 26091
ADOs, respectively. 2D spectra are calculated with co-
herence time up to ⌧ = 200 fs in steps of 0.5 fs, for popu-
lation times of T = 0, 50 and 100 fs.

III. RESULTS AND DISCUSSION

The monomer spectra. The calculated time-resolved
spectra allow comparison between the BVM and HVM
and for determining the e�cacy of the two methods.
Figures 5 and 6, as shown below, depict the monomer
spectra obtained using the two models. Our expectation
is a strong agreement between the two models barring
the unavoidable additional damping in the BVM. Fig-
ures 5 and 6 present distinct peaks at the fundamental
frequency, !0

eg, in agreement with the theory in addition
to peaks due to vibronic pathways at plus and minus in-
teger multiples of the mode frequency, !0. These peaks
are particularly distinct in the HVM due to the explicit
construction of the Hamiltonian with three vibrational
levels, per electronic state, resulting in a Hilbert space
|↵i ⌦ |⌫i of dim(H) = 6. The BVM has a Hilbert space
dim(H) = 2 because it accounts for the electronic states
only to produce a two level system. Clear evidence of
vibronic cross peaks shows that the system vibration is
manifested in both the HVM and BVM despite the di↵er-
ent ways in which the vibrational mode is incorporated
into the models. Furthermore, oscillation of vibrational
coherence pathways56 over the waiting time, T , results
in peak amplitude changes within both spectra in figures
5 and 6. The similarity between these peak intensities
suggests that both models are able to capture all the es-
sential features for the monomer.
However, there are also some noteworthy di↵erences

based on the complementary setup of the models. At
T = 0 fs in the HVM, figure 5, there is uniform elonga-
tion of vibronic peaks along the diagonal which is lost
as the waiting time increases. In contrast, peaks within
the BVM are smooth and poorly defined with signifi-
cant overlap between neighbouring peaks, and increased
broadening below the diagonal reflects the additional vi-
bronic peaks as the BVM is not limited to three vibra-
tional levels, as is the case for the HVM. Spectral dif-
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FIG. 5: Absorptive 2D spectra for the HVM monomer at
T = 0, 50 and 100 fs, normalised to the maximum at

T = 0 fs.

FIG. 6: Absorptive 2D spectra for the BVM monomer at
T = 0, 50 and 100 fs, normalised to the maximum at

T = 0 fs.

fusion is clearly observed in the HVM, in contrast to
the BVM spectra, where di↵usion is obscured by the
greater broadening which is a consequence of the addi-
tional damping intrinsic to the underdamped mode.

Finally we note that both spectra in figures 5 and 6
have significant regions of negative intensity below the
diagonal at T = 0 fs. These are the result of rephasing vi-
brational coherence pathways which oscillate with oppo-
site phase above and below the diagonal69,78 and should
not be mistaken for excited state absorption peaks, which
are not observed for a monomer with only two electronic
states.

The dimer spectra. Next we consider the strongly

coupled dimer. In agreement with the analysis for the
monomer we observe similarities in the peak positions
and the peak intensities for both the HVM and BVM.
We expect a redshift of J of the fundamental peak
from !0

eg to !0
e+g corresponding to the formation of a

J-aggregate. In both figures 7 and 8 the theoretically
predicted fundamental peak and peaks resulting from ad-
ditions of the fundamental transition with integer mul-
tiples of the mode frequency79 are clearly present. In
addition to these peaks we also observe strong excited
state absorption peaks above the diagonal, corresponding
to transitions from the |e+i to |fi doubly excited state.
The next similarity between the HVM and BVM dimer
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FIG. 7: Absorptive 2D spectra for the HVM dimer at
T = 0, 50 and 100 fs, normalised to the maximum at

T = 0 fs.

FIG. 8: Absorptive 2D spectra for the BVM dimer at
T = 0, 50 and 100 fs, normalised to the maximum at

T = 0 fs.

spectra is the increased amplitude of the fundamental
peak relative to that of the vibronic peaks in both the
HVM and BVM.80 Additionally the spectra present com-
parable peak amplitudes with increasing waiting time,
T , due to the oscillation of the vibrational coherence
pathways.81 These key similarities highlight the presence
of vibronic pathways, even involving the extended ex-
cited state structure of the dimer, for both the HVM and
BVM.

In contrast to these similarities we note a number
of key di↵erences between the spectra produced using
the two models. In agreement with the monomer re-
sults, there is a uniform broadening along the diagonal

in the HVM which is absent in the BVM. This high-
lights that the impact on the broadening due to direct
coupling of the vibrational states to overdamped envi-
ronment modes is not dependent on the system choice.
The other important di↵erence is related to redshift-
ing of the entire spectra. Our expectation based on
the theory for J-aggregates is that there will be a red-
shift of J̃ = �400 cm�1 which is quenched68,82,83 by
the vibronic coupling of the system to a reduced mag-
nitude. This quenched dimer redshift is directly observ-
able in the HVM spectra in figure 7 and matches the
decrease in transition frequency relative to the monomer
shown by the Hamiltonian eigenvalues for the system of
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FIG. 9: Spectral densities and correlation functions, with exponential fits, for an overdamped, ⇤̃o = 100, and three
underdamped spectral densities with damping strengths �̃a = 120 cm�1, �̃b = 80 cm�1, and �̃c = 40 cm�1.

�316 cm�1. However there is a striking di↵erence in red-
shift between the two models. In the BVM, both the
eigenvalues and spectra in figure 8 show a full redshift
of J̃ = �400 cm�1 with a complete absence of vibronic
quenching. This demonstrates an important intrinsic dif-
ference between the two models: vibronic quenching is
absent in BVM dimer systems.

Comparison of broadening between HVM and BVM.

One of the fundamental di↵erences presented by com-
parison of the BVM and HVM in these models is the
significantly di↵erent broadening each method presents.
In order to correctly attribute these di↵erences in spec-
tral lineshape to the placement of the fundamental vi-
bration we consider a series of spectra with decreasing
damping strengths, �̃a = 120 cm�1, �̃b = 80 cm�1, and

�̃c = 40 cm�1, for the BVM approaching the limit of
�̃1 ! 0. Initially we consider the HVM, where all of the
vibrational information is contained within the Hamilto-
nian, coupled to a single overdamped spectral density.
This spectral density is of Ohmic form with a high fre-
quency cuto↵ and is applied in order to introduce elec-
tronic dephasing to the system through the interaction
with bath modes. In the BVM the intramolecular mode
of interest is moved from the Hamiltonian and introduced
into the spectral density. An undamped mode has no
decaying component and subsequently introduces no ad-
ditional dephasing time to the total system and does not
add to the overall broadening of the 2DES. However, due
to the nature of the HEOM, and because the spectral
density is required to have a representation in exponen-
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tial form, the introduction of some level of damping is
unavoidable.

In order to demonstrate the influence of the additional
damping from the underdamped spectral density the cor-
relation function from equation (11) is formally solved,
when J1(⌫̃) is substituted for J(!), and expanded into
real and imaginary parts.84

C(t) = C 0(t) + iC 00(t), (20)

In the overdamped regime, with a single spectral den-
sity, the correlation function reduces to an exponential
decay, exp (�t/⌧c). Figure 9 shows the spectral density
for the HVM, its calculated correlation function, and the
exponential decay.

In all three of the underdamped regimes the correla-
tion function is not just a simple decay. When the corre-
lation function both decays and oscillates we expect the
decay to have a rate of �̃x/2, where x denotes the damp-
ing strength. This follows from the simplification of the
imaginary part of the correlation function:84

C 00(t) =
~⌘!2

0

2⇣
sin(⇣t) exp

✓
�
�̃x
2
|t|

◆
, (21)

where ⇣ =
q
!2
0 � (�̃x/2)

2.
Figure 9 shows the correlation functions and negative

exponential dephasing rates calculated using �̃x, for all
three underdamped spectral densities. As demonstrated
in figure 9, decreasing the damping increases the dephas-
ing time, approaching the limit of an undamped vibration
corresponding to a continuous oscillation in the correla-
tion function.

Figure 10 shows the application of these spectral den-
sities to the BVM for the monomer. The successive re-
duction of � shows a clear trend towards the lineshape
of the HVM (Figure 5a ), however there are computa-
tional implications to this. The number of ADOs in-
creases exponentially as a function of the reduction of
damping strength such that for a �̃ reduction of 40 cm�1

(such as between �̃b and �̃c) an additional 115,620 ADOs
are required. Consequently it is not computationally
tractable to perform simulations with very small damping
strengths. Furthermore, the termination procedure im-
plemented in this HEOM cannot be applied to undamped
modes, where � = 0.

Subsuming the fundamental vibration of the dimer into
the spectral density has a considerable impact on the dy-
namics, as previously discussed, and this is due to the
structure of the Hamiltonian used in the HEOM model.
The HVM calculations for the dimer have three vibra-
tional levels in the constituent monomer units leading
to a Hilbert space dim(H) = 36 for the dimer, whereas
the BVM assumes monomers are two level systems, re-
sulting in a Hilbert space dim(H) = 4 for the dimer.26

Consequently the HVM contains all relevant couplings
between the energy levels giving rise to an equally large

FIG. 10: Absorptive 2D spectra for the BVM monomer
at T = 0 fs, normalised to the maximum at T = 0 fs,

with damping strengths �̃a = 120 cm�1, �̃b = 80 cm�1,
�̃c = 40 cm�1.

number of sharply defined peaks.26 For the HVM, the
peak information and energy transfer pathways in the
dimer originate within the Hamiltonian, whereas in the
BVM they occur as the result of non-Markovian feedback
from energy fluctuations within the bath. Additionally
in the HVM, the broadening applied to each peak is a
uniform broadening due to the overdamped environment
modes. Overall this results in more Lorentzian-shaped
peaks that present more precise positional information.
In contrast, because the BVM has a relatively smaller

Hamiltonian, the vibronic peaks and broadening are cal-
culated based on an underdamped spectral density which
is a combination of both the bath modes and the sub-
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sumed vibration. Subsequently the additional damping
leads to more pronounced broadening of each peak and
this broadening is not uniform, that is to say di↵ering
peaks have di↵erent lineshapes. As such the BVM spec-
tra have fewer explicit o↵-diagonal peaks, where vibronic
peaks arise naturally through the broadening introduced
by the spectral density.

This has implications for the computational costs of
the two di↵erent models. The truncation of the Hilbert
space by removal of explicit vibronic states in the BVM
reduces the computational cost of the diagonalisation
when compared to the HVM. However, the increased
computational cost of the BVM comes from the spec-
tral density, and resulting HEOM, which is required in
order to describe an underdamped vibration.

IV. CONCLUSIONS

This research focuses on elucidating the impact of the
placement of the system-bath boundary, how it a↵ects
OQS dynamics, and subsequent di↵erences in 2DES spec-
tra. To this end, we applied two di↵erent models, the
HVM and BVM, to a monomer and a homodimer. In
the HVM we specifically include the vibronic states in
the Hamiltonian capturing vibronic quenching, whereas
in the BVM all vibrational detail is contained within the
bath and described by an underdamped spectral den-
sity. The analysis for the resulting models focuses on
the comparison between the HVM and BVM approaches
with specific emphasis on the impact on 2DES spectra.

The model for the monomer successfully reproduces
expected spectral features for both models, but there are
some di↵erences in the broadening. Due to the construc-
tion of the BVM, the uniform broadening applied to each
peak from the Hamiltonian is obscured as a consequence
of the unavoidable additional damping from the under-
damped mode. Figures 9 and 10 show a successive re-
duction in the damping strength during which the BVM
spectra converge towards that of the HVM. It can be
seen that in the limit of �1 ! 0 the two models become
equivalent.

Results for the dimer also present all expected fea-
tures for both models and di↵erences in spectral broad-
ening consistent with that of the monomer have been ob-
served. However, the choice of the system-bath boundary
placement clearly alters the vibronic coupling e↵ects, as
is evidenced by the lack of vibronic quenching relative
to the Hamiltonian eigenvalues for the BVM. It is clear
from these results that HVM versus BVM is a choice be-
tween energetic informational precision (peak position)
and greater dynamic broadening, respectively. This rep-
resents a shift in focus from an accurate system Hamilto-
nian to a model that e�ciently includes a more complete
system-bath interaction.

In addition to these conclusions, we also present obser-
vations about the relative computational e↵ort for each
model. In the HVM we specifically include the vibronic

states in the Hamiltonian, capturing vibronic quenching,
but it is expensive because of the diagonalisation: the
computational bottleneck is the system choice and the
corresponding Hilbert space dimension. In contrast, the
BVM contains all vibrational detail within the bath as an
underdamped spectral density allowing the Hilbert space
dimension to be significantly reduced. Application of the
BVM shifts the computational bottleneck to the bath dy-
namics, exponentially increasing the number of ADOs as
a function of decreasing damping strength. However, this
introduces the risk of neglected vibronic quenching and
additional damping which results in greater peak broad-
ening across the spectrum.
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20Z. Lü and H. Zheng, J. Chem. Phys. 136, 121103 (2012).
21E. K. Levi, E. K. Irish, and B. W. Lovett, Phys. Rev. A 93,
042109 (2016), 1510.00608.

22C. Vierheilig, D. Bercioux, and M. Grifoni, Phys. Rev. A 83,
012106 (2011), 1010.4684.

23Y. Yao, Phys. Rev. B 93, 115426 (2016), 1510.06798.
24T. Ma, Y. Chen, T. Chen, S. R. Hedemann, and T. Yu, Phys.
Rev. A 90, 042108 (2014), 1404.5280.

25Z.-X. Man, N. B. An, and Y.-J. Xia, Opt. Express 23, 5763
(2015).
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