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Highlights

• Three-dimensional flexural-gravity waves generated by moving pressures are computed.
• A novel hybrid preconditioning technique is derived.
• An iterative Newton-Krylov solver significantly increases the grid refinement.
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Abstract

In this work, we present three-dimensional, nonlinear travelling wave solu-
tions for water waves under a sheet of ice, i.e., flexural-gravity waves. The
ice is modelled as a thin elastic plate on top of water of infinite depth and the
equations are formulated as a boundary integral method. Depending on the
velocity of the moving disturbance generating the flow, different deflection
patterns of the floating ice sheet are observed. In order to compute solu-
tions as efficiently as possible, we introduce a novel hybrid preconditioning
technique used in an iterative Newton-Krylov solver. This technique is able
to significantly increase the grid refinement and decrease the computational
time of our solutions in comparison to methods that are presently used in the
literature. We show how this approach is generalisable to three-dimensional
ice wave patterns in different velocity regimes.

Keywords: three-dimensional waves, flexural-gravity waves, preconditioner

1. Introduction

In this work, we present a novel method for efficiently and accurately
computing solutions for three-dimensional waves under ice generated by a
moving disturbance. The fluid beneath the sheet of ice is considered to be
infinitely deep and we seek travelling wave solutions. The ice is modeled
as an elastic sheet and its interaction with the fluid makes the resulting
flexural-gravity (or hydroelastic) nonlinear free-surface problem particularly
challenging mathematically, as well as computationally expensive [1, 2]. As
such, we propose an efficient strategy to overcome this challenge.
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The research is motivated by applications to transportation in cold re-
gions, where the ice cover is used for roads or aircraft runways. This is of
particular interest in Canada, where ice-covered lakes enable the routing of
trucks on winter roads built partially on ice, which allows transport into re-
gions which may not be accessible otherwise [3]. It could also be applied
to study waves beneath a very large floating structure, such as the Mega-
Float constructed in Japan as a prototype for a floating airport [4]. As
these endeavours can be precarious, and occasionally result in the loss of life
and equipment, understanding ice and gravity wave interactions has become
increasingly important.

For this work, we assume that the ice forms a relatively thin layer on top
of the fluid and behaves as a thin elastic plate. Furthermore, we assume that
the ice bends with the waves and neglect the friction between the ice plate
and the water, as well as the inertia of the thin plate. As such, we will use the
bi-Laplacian model, which been used in other studies on three-dimensional
flexural-gravity waves [5, 2]. While this model is often appropriate [6], other
models can also be considered that take into account viscoelastic effects [7],
or ice of finite thickness [8]. Since the focus of this work is to illustrate an
efficient method for computing waves under ice, we restrict ourselves to the
linear bi-Laplacian model and leave other possible models for future work.

The mathematical study of flexural-gravity waves has a long history, start-
ing in the 19th century with the linear model devised by Greenhill for an ice
sheet floating on top of a bulk fluid [9]. Many advances have been made since
then, with the development of more sophisticated linear models [10, 11], as
well as nonlinear elastic plate/nonlinear flow models [12, 13, 2, 14]. For some
of these models the energy is conserved [13], while for others it is not (see
[12, 14] for an overview).

It has been shown rigorously that solutions to these hydroelastic models
exist for some values of parameters and in the absence of forcing. For exam-
ple, a Lagrangian formulation for travelling waves has been used to prove the
existence of solutions to these models in two-dimensions [15], a variational
approach has been employed to show the existence of hydroelastic solitary
waves [16], and the bifurcation theory for the existence of periodic waves in
two-dimensions [17].

The difficulty involved in solving the set of fully nonlinear, three-dimensional
equations with a moving boundary has brought on different approaches to
simplify the problem. Here, we restrict our focus to those studies most
relevant to our work. Several works have analysed both two and three-

2



dimensional flexural-gravity waves in weakly-nonlinear regimes. For exam-
ple, focusing on mainly two-dimensional interactions using a Hamiltonian,
a formalism was developed [18], deriving several model equations incorpo-
rating effects due to the ice plate. Using a Kirchhoff-Love model for the
ice plate, a forced nonlinear Schrödinger equation was derived [19] to study
the nonlinear effects of a moving load on a floating ice plate near a critical
speed. Using a Hamiltonian formulation and a fully nonlinear model for the
ice sheet, two-dimensional forced and unforced solutions were considered in
both finite and infinite depth [20, 21]. Moreover, a fifth-order Korteweg–de
Vries equation for two-dimensional hydroelastic waves on shallow water in
channels was derived [22].

In three dimensions, a generalization of the Kadomtsev-Petviashvili equa-
tion was derived to model waves in the presence of additional surface effects
[23], and to investigate solitary flexural-gravity waves [24]. Solitary waves
in three dimensions have also been studied using a Benney-Roskes-Davey-
Stewartson model for a fluid of arbitrary depth covered by an elastic sheet
[14]. These asymptotic models show that flexural-gravity solitary waves do
not bifurcate from zero amplitude solution in infinite depth. Fully localized
three-dimensional solitary wave solutions have also been computed [25] us-
ing a fifth-order Hamiltonian model obtained from the fully nonlinear equa-
tions of motion. More recently, fully three-dimensional weakly nonlinear
flexural-gravity waves were computing via Laplace transform methods, in-
cluding some time-dependent wave patterns [26].

In this paper we are interested in solving the equations of motion de-
scribing travelling waves generated by a pressure distribution moving on the
surface of a thin sheet of ice using a boundary integral technique. The lo-
calised pressure distribution is an idealized model for a vehicle travelling
over a floating ice cover. The boundary integral technique was introduced
initially for the problem of uniform flow past an ellipsoid [27], and generalized
for three-dimensional free-surface flows past a source [28]. With this reformu-
lation, the three-dimensional variable surface problem effectively reduces to
a two-dimensional problem in terms of the variable surface and velocity po-
tential. The resulting integro-differential equations and boundary conditions
are discretized over the truncated (x, y)-plane and computed numerically us-
ing a mesh of N × M grid points. For a symmetric pressure distribution
centred around the point (0, 0) in the (x, y)-plane, N points in the horizontal
x-direction are used to approximate (−∞,∞) and M points in the horizontal
y-direction approximate (0,∞). In this way, we exploit the symmetry of the
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problem and only compute solutions over half of the truncated domain.
Over a series of works, this formulation has been employed to compute

three-dimensional solutions for nonlinear gravity waves [29], forced and soli-
tary capillary-gravity waves [30, 31, 32], as well as forced and solitary flexural-
gravity waves using the linear model and the Plotnikov-Toland model to de-
scribe the ice sheet [5, 2]. To solve the discretized equations, the authors
of these works typically relied on more traditional direct Newton-type meth-
ods, involving computations of inverses of a Jacobian matrix [33], which could
take anywhere between several hours to several days to converge to a solu-
tion. Furthermore, these computations often require large amounts of system
memory, thereby limiting the number of mesh points that can be used. This
results in reduced accuracy and under-resolved solutions, especially when the
pressure is moving close to a critical speed, cmin.

More recently, a variation of the numerical scheme and boundary integral
technique was employed by Pethiyagoda et al. to compute solutions for
the nonlinear gravity-waves problem using a Jacobian-free Newton-Krylov
(JFNK) method [34, 35]. This approach was shown to achieve significant
performance gains allowing the grid refinement and size of the computational
domain to be increased considerably. So far, these Newton-Krylov (NK)
solvers have only been used to compute solutions for gravity waves problems
[34, 35], such as the wake patterns behind ships, but have yet to be applied
to the problem of flexural-gravity waves. A possible reason for this is that
an effective preconditioner matrix is typically required for the convergence
of NK methods [33]. In order to extend the framework of Pethiyagoda et al.
[34], developed for gravity waves, to the problem of flexural-gravity waves,
the contribution of the added flexural term to the Jacobian of the system
must be considered in the construction of the preconditioner. The method of
generating the preconditioner matrix for the flexural-gravity waves problem
will be discussed in detail in §4.

In this work, we present a versatile method for generating the precondi-
tioner, which will allow the efficient computation of flexural-gravity waves
in a variety of parameter regimes and can be easily generalized for different
problems and models for ice. To allow this flexibility, we formulate the prob-
lem in a general way. Using a novel hybrid preconditioning technique which
includes nonzero entries of the linearized gravity waves problem, as well as
nonzero entries from finite differences on the term describing the contribution
due to the presence of the sheet of ice at the boundary in a Newton-Krylov
method, we reduce the run-time of the calculations from several hours to just
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minutes for the same number of grid points. This allows us to achieve higher
accuracy than was previously possible, which we illustrate using a rigorous
numerical error analysis.

The outline of our paper is as follows. In §2 we recast the problem by
applying a boundary integral method, so that the governing equations are
ultimately satisfied by solving a singular integro-differential equation and
Bernoulli’s equation subject to some radiation conditions. In §3 we dis-
cretize our governing equations to produce a nonlinear system of algebraic
equations, which we solve using a NK method. The preconditioner we use is
related to the linear problem, as we explain in §4. In §5 we present highly
accurate, well resolved numerical solutions for the flexural-gravity problem.
We explore grid dependence and analyze the error arising from under-refining
solutions and truncating at the edges of the computational domain. The res-
olution of the mesh we use is up to the standard, and may even surpass, most
three-dimensional schemes for flexural-gravity waves published in literature.
Finally, we conclude our paper with a summary and discussion of how our
methods can be adapted to consider other types of flows or models for ice.

2. Mathematical formulation

2.1. Governing equations

We consider three-dimensional irrotational flow of an inviscid, incom-
pressible fluid of infinite depth and density ρ, bounded above by a continu-
ous sheet of ice. Following [5], we suppose that the flow is due to a pressure
distribution moving with constant speed, U , on the surface of a sheet of ice,
upon which gravity, g, is also acting. We define the problem in Cartesian
coordinates such that the disturbance travels in the negative x-direction and
gravity acts in the negative z-direction, as shown in Figure 1.

The vertical deflection of the ice sheet-fluid interface is denoted by z =
ζ(x, y, t) and z = 0 corresponds to the undisturbed interface. In terms of the
fluid velocity potential Φ(x, y, z, t), the governing equations of the flow are

∇2Φ = 0 on −∞<z<ζ(x, y, t), (1)

ζt + Φxζx + Φyζy = Φz on z = ζ(x, y, t), (2)

ρΦt +
ρ

2

(
Φ2

x + Φ2
y + Φ2

z

)
+ ρgζ +DPflex = −p(x, y, t) on z = ζ(x, y, t), (3)

|∇Φ| → 0 on z → −∞, (4)
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Figure 1: Sketch of the problem given by (1) - (4). The x-axis is aligned with the direction
of travel of the pressure distribution. The fluid of infinite depth and density ρ is bounded
above by the variable surface z = ζ(x, y, t) of the ice-fluid interface. The pressure distri-
bution p = p(x, y, t) is acting on the surface of the ice sheet of thickness h to generate the
disturbance.

where the subscripts denote partial derivatives. Equation (1) describes the
potential flow of an inviscid, irrotational fluid. Equations (2) and (4) are the
kinematic boundary condition at ice-fluid interface and the boundary condi-
tion at infinite depth, respectively. Equation (3) is the dynamic boundary
condition, obtained from the Bernoulli equation describing the the pressure
balance at the ice-fluid interface, where p is the external pressure distribu-
tion exerted on the surface and the term Pflex describes the effects due to
the presence of the sheet of ice on the surface of the fluid and depends on
the model. Radiation conditions are also imposed infinitely far upstream
from the disturbance. Equation (4) requires that the flow approaches an
undisturbed free stream at infinite depth.

Since the aim of this work is to illustrate an efficient method for computing
waves under ice, as a proof of concept we choose to use the simplest linear
thin elastic plate model for the pressure, DPflex, exerted by the ice on the
fluid (see e.g. [5]), with

Pflex = ∇4ζ = (∂xxxx + ∂yyyy + 2∂xxyy)ζ. (5)

The constant D = Eh3/12(1− ν2) is the flexural rigidity of the plate, where
E denotes Young’s modulus of elasticity, ν is the Poisson ratio describing the
effects of transverse strain relative to axial strain, and h is thickness of the
ice sheet. There are many other possible models that could be used to define
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Pflex, including the Kirchhoff–Love and Plotnikov–Toland nonlinear models
examined previously (see [2, 13]). However, the linear model (5) is often
appropriate [6], and serves as a good approximation when the wave patterns
do not exhibit strong nonlinearity [2], such as those considered in §5.

We seek steady-state solutions of the problem (1)-(4) and choose a frame
of reference moving with the disturbance. In the moving reference frame,
our variables transform according to x̂ = x + Ut, ζ̂(x̂, y) = ζ(x, y, t) and
Φ̂(x̂, y, z) = Φ(x, y, z, t) + Ux. We drop the hat notation from now on for
simplicity. We assume that in this moving frame the pressure has the lo-
calised form

p(x, y) =

P0e
L2

(x2−L2)
+ L2

(y2−L2) , |x| < L and |y| < L

0 otherwise,
(6)

where P0 is a constant and L is the characteristic length scale defining the
size of the support of the pressure.

The type of solutions for this problem depends on the speed, U , and form
of the moving pressure distribution that models the disturbance, as well as
the flexural rigidity, D, of the sheet of ice. From the dispersion relation for
linear flexural-gravity waves in infinite depth [6], the value of the critical
speed, where the group and phase speed are equal, is given by

c2min =
4

3

(
3Dg3

ρ

) 1
4

, (7)

where ρ is the density of the fluid. When the velocity of the moving load
on top of the floating ice plate is less than the minimum phase speed, cmin,
the disturbance is localized and the waves do not propagate away from the
pressure, so the solution will approach uniform flow in the far-field when
U < cmin. When the speed of the moving pressure is greater than cmin, a more
complicated pattern emerges, with waves of different wavelengths appearing
in front of and behind the moving pressure. The linear solution for U > cmin

is characterized by trains of waves in the far field, with predominantly gravity
waves downstream of the moving pressure and predominantly flexural waves
upstream [10]. As such, the boundary and radiation conditions are harder to
implement.

It is known that waves under a sheet of ice have properties similar to those
of gravity-capillary waves (see [5]), so it is possible to add an artificial dis-
sipative term in the dynamic boundary condition (3) of the form µ̃Φ, which
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was initially introduced by Rayleigh [36] to analytically calculate linear solu-
tions for the gravity-capillary waves problem. This artificial term represents
the effect of small dissipative forces and is based on the assumption that the
deviation of fluid particles from the uniform flow state is opposed by a force
proportional to the relative velocity. It is not directly related to the real
kinematic viscosity and does not change the irrotational character of motion
in the bulk of the fluid (see [37], Art.242). This technique was successfully
employed to compute forced nonlinear three-dimensional gravity-capillary
waves [30] and later for flexural-gravity waves [5].

2.2. Nondimensionalization

The problem (1)-(4) is nondimensionalized by scaling all lengths with
respect to L and all speeds with respect to U . This leads to the non-
dimensional parameters, ϵ = P0/(ρU

2) , the inverse of the length-based
Froude number F = gL/U2 which characterizes the nature of the solutions,
and β = D/ρU2L3 which depends on the flexural rigidity D of the ice. The
expression (6) in dimensionless variables becomes

p(x, y) =

{
e

1

(x2−1)
+ 1

(y2−1) , |x| < 1 and |y| < 1

0 otherwise.
(8)

In terms of the velocity potential function Φ(x, y, z) on the variable sur-
face z = ζ(x, y), the dimensionless problem in the moving reference frame is
formulated as follows:

∇2Φ = 0 and x, y ∈ R,−∞ < z < ζ(x, y), (9)

with the boundary conditions

Φxζx + Φyζy = Φz on z = ζ(x, y), (10)

1

2

(
Φ2

x + Φ2
y + Φ2

z

)
+ Fζ + µ(Φ− x) + βPflex + ϵp =

1

2
on z = ζ(x, y).

(11)

Equation (11) is the dynamic condition with the artificial non-dimensional
damping term µ > 0 included. It can be shown using (7) that the minimum
phase speed, U = cmin, is reached for F = gL/c2min = (3/4) 3

√
1/4β . We also

impose that we have uniform flow both far upstream (the radiation condition)
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from the disturbance, and at the bottom (infinitely far below the variable
surface), providing the final two conditions

(Φx,Φy,Φz) → (1, 0, 0), ζ → 0 as x → −∞ (12)

(Φx,Φy,Φz) → (1, 0, 0), as z → −∞. (13)

At the downstream x → ∞ and lateral y → ±∞ boundaries, we assume that
the amplitude of the waves have decayed to zero. The governing equation (9),
subject to (10)-(13), with µ = 0 define the exact formulation of the nonlinear
problem with no known analytical solution.

2.3. Boundary integral method

In order to solve (9)-(13) numerically, we reformulate the problem using
a boundary-integral equation method [28, 29]. For convenience, we define
the velocity potential on the variable surface z = ζ(x, y) by setting

ϕ(x, y) = Φ(x, y, ζ(x, y)). (14)

Then, using the chain rule of calculus, the dynamic condition (11) can be
rewritten using the kinematic condition (10) as the following local equation
in terms of surface variables:

1

2

(1 + ζ2x)ϕ
2
y +

(
1 + ζ2y

)
ϕ2
x − 2ζxζyϕxϕy

1 + ζ2x + ζ2y
+Fζ+µ(ϕ−x)+βPflex+ϵp =

1

2
, (15)

which we refer to as the dynamic condition. Omitting the details and using
the notation ϕ∗ = ϕ(x∗, y∗), ζ∗ = ζ(x∗, y∗) (and same for the derivatives),
the reformulation results in the following boundary-integral equation for the
variable surface z = ζ(x, y),

2π(ϕ∗ − x∗) =

∫ ∞

0

∫ ∞

−∞
(ϕ− ϕ∗ − x− x∗)K1(x, y;x

∗, y∗) dx dy

+

∫ ∞

0

∫ ∞

−∞
[K2(x, y;x

∗, y∗)ζx − ζ∗xS2(x, y;x
∗, y∗)] dx dy

+ ζ∗x

∫ ∞

0

∫ ∞

−∞
S2(x, y;x

∗, y∗) dx dy ,

(16)

9



which holds for any point (x∗, y∗) in the (x, y)-plane (see [29] for details) and
has been desingularized. The kernel functions K1 and K2 are

K1(x, y;x
∗, y∗) =

ζ − ζ∗ − (x− x∗)ζx − (y − y∗)ζy

((x− x∗)2 + (y − y∗)2 + (ζ − ζ∗)2)3/2
, (17)

K2(x, y;x
∗, y∗) =

1√
(x− x∗)2 + (y − y∗)2 + (ζ − ζ∗)2

, (18)

and S2 is

S2(x, y;x
∗, y∗) =

1√
A(x− x∗)2 +B(x− x∗)(y − y∗) + C(y − y∗)2

, (19)

with
A = 1 + ζ∗x

2, B = 2ζ∗xζ
∗
y , C = 1 + ζ∗y

2.

The last integral in (16) contains the singularity and can be evaluated an-
alytically in terms of logarithms [29]. Symmetry in the y-direction with
ζ(x, y) = ζ(x,−y) and ϕ(x, y) = ϕ(x,−y) implies that we can solve the set
of equations given by the dynamic condition (15) and desingularized integro-
differential equation (16) on half of the domain. We use the method of images
to account for the symmetry, which introduces an additional term in each
kernel (17), (18), and in (19) (see [2] for more details). The final form of equa-
tions to solve for flexural-gravity waves in infinite depth is thus given by the
desingularized integral equation (16) and the dynamic boundary condition
(15) with the unknowns ϕ and ζ.

2.4. Linearized Problem

While the focus here is on calculating numerical solutions to the nonlin-
ear problem, analytical approximations can be obtained by linearizing equa-
tions (9)-(13) around a uniform flow. The main reason for us to pursue the
linearized problem is to construct a preconditioner for the nonlinear prob-
lem. The linearized problem can be formulated by substituting Φ = x + ϕ
into equations (9)-(13) and then dropping the nonlinear terms in ϕ and ζ.
Omitting the details, the linearized problem is to solve Laplace’s equation

∇2ϕ = 0 for x, y ∈ R, −∞ < z < 0, (20)
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subject to the linearized kinematic and dynamic conditions (10)-(11), which
become

ζx = ϕz on z = 0, (21)

ϕx − 1 + Fζ + µϕ+ βPflex + ϵp = 0 on z = 0, (22)

and impose the upstream radiation condition and condition at infinite depth,
which remain the same as for the nonlinear case.

The solution of the linearized problem can then be found using Laplace
transforms [26] or using Fourier transforms for the corresponding free-surface
problem [38]. However, we will consider the equivalent boundary-integral
approach as that used for the nonlinear problem. The application of Green’s
second formula gives

2π(ϕ∗ − x∗) =

∫ ∞

0

∫ ∞

−∞
(ζx − ζ∗x)K3(x, y;x

∗, y∗) dx dy

+ ζ∗x

∫ ∞

0

∫ ∞

−∞
K3(x, y;x

∗, y∗) dx dy ,

(23)

where

K3(x, y;x
∗, y∗) =

1√
(x− x∗)2 + (y − y∗)2

. (24)

We note that the singularity in (23) is dealt with in the same way as with the
nonlinear problem and symmetry in the y-direction introduces an additional
term in (24).

3. Numerical method

To solve the system of equations (15)-(16), we use the approach intro-
duced in [34]. The numerical discretization leads to a nonlinear system of
equations of the form

E(u) = 0, (25)

where u is a vector of unknowns, which is comprised of the unknown wave
profile and surface velocity potential, as well as their derivatives, evaluated at
discrete points. The system of equations (25) is then solved with a Newton-
Krylov method. For each Newton iteration, the current estimate of the so-
lution, un, is replaced by a new estimate,

un+1 = un + ηnδun,
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where ηn ∈ (0, 1] is the damping parameter chosen via line-search [39], and
δun is the Newton correction. The Krylov iterations find a suitable δun

which satisfies the linear system

J(un)δun = −E(un), (26)

where un is the nth nonlinear iterate in the sequence {un}∞n=0 → u approxi-
mating the solution and J(un) = ∂E(un)/∂un is the Jacobian matrix [33].

The advantage of using Krylov subspace methods as linear solvers in
conjunction with nonlinear Newton iterations, is their ability to compute a
Newton iteration without explicitly forming the Jacobian in (26). Instead,
the action of the Jacobian is only required in the form of matrix-vector prod-
ucts that build a basis for the Krylov subspace needed to find δun [33]. The
rate of convergence of Krylov subspace methods depends strongly on the
conditioning of the iteration matrix J(un), which is very ill-conditioned in
our case due to the nonlocal nature of the integrals arising from the bound-
ary integral reformulation described in §2.3. As a consequence, the Krylov
method converges very poorly, if at all, unless the system is preconditioned
appropriately.

The purpose of the preconditioner matrix, P, is to reduce the number of
Krylov iterations by reducing the dimension of the Krylov subspace needed
to find a sufficiently accurate value for δun [40, 33]. As such, P should
be constructed as an approximation to the full Jacobian of the nonlinear
system (25), denoted by Jn = J(un), such that P ≈ Jn. In this way, the con-
dition number is reduced for the preconditioned Jacobian with JnP

−1 ≈ I,
where I is the identity matrix. In §4, we discuss how the preconditioning
method of Pethiyagoda et al. [34], developed for gravity waves, can be ex-
tended to include the contribution from the flexural term in the dynamic
boundary condition (15), which is required to build an effective precondi-
tioner for the flexural-gravity problem.

3.1. Numerical discretization scheme

Equations (15) and (16) are nonlinear and have no known general ana-
lytical solutions. As such, we must solve these equations numerically. To do
this, the infinite half plane is truncated such that −∞ < x < ∞ becomes
x1 < x < xN and 0 < y < ∞ becomes y1 < y < yM (where we have taken
advantage of symmetry). We introduce the mesh points,

xk = x1 + (k − 1)∆x and yℓ = (ℓ− 1)∆y, (27)
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for k = 1, . . . , N and ℓ = 1, . . . ,M , where the point x1 is chosen as a suitably
far-upstream value such that the waves are considered to decay to approx-
imately zero amplitude there and solutions are reflected in the y = y1 axis
of symmetry. With the mesh points defined according to (27), the func-
tions ζ(x, y) and ϕ(x, y) can be represented by discrete values ζk,ℓ and ϕk,ℓ

evaluated at the mesh points (xk, yℓ). The vector of 2(N +1)M unknowns is

u =
[
ϕ1,1, (ϕx)1,1, . . . , (ϕx)N,1, ϕ1,2, (ϕx)1,2, . . . ϕ1,M , (ϕx)1,M , . . . , (ϕx)N,M ,

ζ1,1, (ζx)1,1, . . . , (ζx)N,1, ζ1,2, (ζx)1,2, . . . , ζ1,M , (ζx)1,M , . . . , (ζx)N,M

]
.

(28)

The values of the functions ζ1,ℓ and ϕ1,ℓ at the upstream boundary of the
truncated domain are place before the derivatives of the corresponding slice.
The particular ordering of the variables in (28) follows the convention in [34]
and allows us to optimize our scheme for a more sparse Jacobian matrix, but
other choices are possible.

Given the elements in the vector of unknowns (28), the remaining values
of ζ and ϕ are first obtained by trapezoidal-rule integration using the values
of ζx and ϕx. The values ζy and ϕy are then calculated using second-order
accurate finite differences [41]. We evaluate the boundary integral equation
(16) at the half-mesh points (xk+ 1

2
, yℓ), k = 1, 2, . . . , N − 1 and ℓ = 1, . . . ,M

by using two-point interpolation for the half-mesh points producing (N−1)M
equations to avoid vanishing denominators [28]. An additional (N − 1)M
equations come from evaluating the dynamic condition (15) at the half-mesh
points.

The last 4M equations enforce the radiation condition (12) on the up-
stream boundary of the truncated domain and are given by

ϕ1,ℓ = x1, (ϕx)1,ℓ = 1, ζ1,ℓ = 0, (ζx)1,ℓ = 0, (29)

for ℓ = 1, . . . ,M . There are various other possible candidates for the radia-
tion conditions (see [42, 34], for example). However, certain radiation condi-
tions may risk eliminating or dampening waves that represent real physical
solutions for the flexural-gravity problem. For this reason, we choose the
simple radiation conditions in (29), which have also been used in previous
studies on three-dimensional flexural-gravity waves [5, 2]. With these condi-
tions, we now have 2(N + 1)M nonlinear equations that make up the vector
E in (25) for the 2(N + 1)M unknowns in (28).
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Since the system of discretized equations (25) is solved using a Newton-
Krylov method, we need a good initial guess, u0 in (26). In the regimes we
have examined, it was sufficient to use a flat surface as the initial guess, given
by

ϕ1,ℓ = x1, (ϕx)k,ℓ = 1, ζ1,ℓ = 0, (ζx)k,ℓ = 0, (30)

for k = 1, . . . , N and ℓ = 1, . . . ,M . A variant of the restarted generalised
minimum residual method [43] is used to solve the system (26), where we
used the default 6× 10−6 absolute tolerance for the residual.

3.2. Sources of error

In this work, we consider two overarching sources of error. The first is
the truncation error introduced when approximating the infinite domain of
integration in (16) with a finite domain. This truncation error is particularly
obvious in the U > cmin regime, where solutions are characterized by waves
in front and behind the source of the disturbance. The second main source
of error can be attributed to insufficient grid refinement, which has an affect
on the accuracy of the solutions. We examine both of these sources of error
in §5.

4. Preconditioner

To speed up the convergence of the numerical methods, we utilise a pre-
conditioner. The preconditioner is a matrix P, that approximates the Jaco-
bian of the nonlinear problem, which can be applied to reduce the condition
number. Its effectiveness can be illustrated by a clustering of the eigenval-
ues of the preconditioned Jacobian JnP

−1 ≈ I [40]. There are many ways to
construct a relevant preconditioner, but for our work we consider a simplified
form of the problem [33]. Following the framework for gravity waves in [34],
we construct the preconditioner, P, as the Jacobian matrix of the linearized
problem for flexural-gravity waves, where it becomes necessary to consider
the additional effects due to the presence of the ice plate. To construct the
Jacobian of the linear problem, we apply the discretization scheme described
in §3.1 to the linear problem derived in §2.4 and obtain a system of 2(N+1)M
equations for the 2(N + 1)M unknowns in (28). The novelty of our contri-
bution is in our treatment of the flexural term, Pflex, in the Jacobian of the
system, which is required to build an effective preconditioner.

Different possibilities for the preconditioner are shown in Figure 2, where
the Jacobian matrix of the nonlinear problem for flexural-gravity waves is

14



(a) Jn, with µ = 0.1, β = 0.5 (b) Jg , with µ = 0.1, β = 0

(c) J̃, with µ = 0, β = 0.5 (d) J̃, with µ = 0.1, β = 0.5

Figure 2: Visualization of the orders of magnitude of entries of the Jacobians on a log
scale: log10 |Ji,j |. Entries with larger magnitudes are represented by darker shades and
zero entries are white. These are computed using mesh of size 40×20 with ∆x = ∆y = 0.6,
x1 = −12, and non-dimensional parameters ϵ = 1, L = 1, F = 0.7. (a) The Jacobian for
the nonlinear flexural-gravity problem with β = 0.5 and µ = 0.1, computed numerically
for un using centered differences. (b) The Jacobian of the linearized problem for gravity
waves with β = 0 and µ = 0.1, determined analytically by explicit differentiation of the
linearized equations. The Jacobian, J̃, for the linear flexural-gravity problem is computed
using the hybrid approach for u0, with β = 0.5 when (c) µ = 0 and (d) including artificial
viscosity µ = 0.1.
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compared to its counterparts for the linear problem, computed with different
values of parameters β and µ. The magnitude of the entries of the Jacobians
in Figure 2 are shown on a log scale, where the larger magnitude entries
are represented by darker shades and the zero entries are white. For each
Jacobian in Figure 2, the other non-dimensional parameters are ϵ = 1, L = 1,
and F = 0.7.

We first consider the Jacobian matrix of the nonlinear problem, Jn, which
we wish to approximate. The Jacobian Jn in Figure 2(a) was computed nu-
merically using centered differences for the solution un satisfying the system
of equations (25) with non-dimensional parameters F = 0.7, β = 0.5 and
µ = 0.1. This direct method of differentiation is very computationally in-
tensive since it requires each component of E to be evaluated for at least
2(N+1)M+1 sets of independent variables. With the particular ordering of
equations and unknowns in (28) (see [34] for details), the dynamic boundary
condition (15) contributes to the top-half of the Jacobian and is local, yield-
ing a sparse block-diagonal structure. The contribution from the artificial
viscosity, µ, is seen in the top-left submatrix. The entries corresponding to
the flexural term, Pflex, that describes the effects due to the presence of the
ice plate, appear in the top-right submatrix and have a relatively large mag-
nitude, which is important for preconditioning purposes. The bottom-half
corresponds to the nonlocal boundary integral equations (16) which give a
dense submatrix structure, predominantly in the bottom-right submatrix.

Without the flexural contribution from the ice plate (i.e., by setting β = 0
in (22)), the linear problem derived in §2.4 allows for easy differentiation by
hand and all elements of the Jacobian, Jg, can be determined analytically.
This requires considerably less computational time than directly evaluating
the differentiation for the entire system numerically. The structure of the
fully analytical Jacobian, Jg, for the linearized problem with β = 0 and µ =
0.1 is shown in Figure 2(b). While it shares some common structural features
with the Jacobian of the nonlinear problem in Figure 2(a) (e.g., lower-right
dense submatrix and sparse lower-diagonal blocks), the key difference is in
the top-right submatrix which lacks the additional non-zero entries from the
flexural contribution that appear above and below the main diagonal.

For flexural-gravity waves, we need to consider the contribution from the
flexural term, Pflex, to the Jacobian of the nonlinear system, which appears
dominantly in the top-right submatrix of Jn in Figure 2(a). Due to the rel-
atively large magnitude of these entries, the Jacobian, Jg, for the linearized
gravity waves problem is not an adequate preconditioner since it fails to
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reduce the dimension of the Krylov subspace, which is illustrated by the
spectrum of eigenvalues in Figure 3(b). Instead, we use a hybrid approach to
approximate the Jacobian, J̃, for the linear flexural-gravity waves problem.
In the hybrid approach, the flexural contribution to the Jacobian, Jflex, is
calculated numerically using centered differences on Pflex (for u0 correspond-
ing to a flat surface). The flexural contribution, Jflex, is then added to the
appropriate entries of the analytical Jacobian, Jg, of the linearized problem

with β = 0 (i.e., J̃ = Jg + Jflex).

Using the hybrid method, the Jacobian, J̃, of the linearized flexural-
gravity problem, computed with β = 0.5, is shown in Figure 2(d) with arti-
ficial viscosity µ = 0.1 and in Figure 2(c) without artificial viscosity µ = 0.
Comparison reveals that inclusion of artificial viscosity contributes signifi-
cantly to the structure of the Jacobian and should be included in the con-
struction of the preconditioner. Comparison of Figure 2(a) and Figure 2(d)
reveals the similarity between the Jacobian, Jn, of the nonlinear problem and
the Jacobian, J̃, of the corresponding linear problem, with the same param-
eter values β = 0.5 and µ = 0.1, obtained using the hybrid approach. The
visualization shows that J̃ shares the same structural features as Jn, while
being much easier to form as analytical formulae exist for the Jg derivatives
which are provided in their exact form in §Appendix B and derived following
the framework of Pethiyagoda et al. [34].

A major advantage of computing the flexural contribution, Jflex, numer-
ically is that other models for ice can easily be considered without need-
ing to modify the code that generates the preconditioner, P = J̃. While
modest time savings could perhaps be achieved by evaluating the flexural
contribution to the Jacobian analytically, the time needed to compute Jflex

numerically using a finite difference routine that avoids the nonlocal inte-
gral equations is negligible compared to the time required to compute the
dense submatrix, J̃2,2 = (Jg)2,2, analytically. To maintain generalizability to
other models where the sparsity structure of Jflex is unknown, we choose to
keep M(N + 1) function evaluations in our finite difference routine instead
of optimizing for the specific case of the linear model considered here. In our
view, the flexibility allowed by computing Jflex numerically, and ease with
which the hybrid preconditioning method can be applied to consider differ-
ent models and differentiation schemes, outweighs the modest performance
gains that would be obtained by calculating Jflex analytically, especially when
programming labour is taken into account.
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An additional advantage is that, since analytical formulae exist for all
entries of Jg, these can be calculated independently and allow for the pos-
sibility of parallelization, which we leave for future work. We are also able
to exploit the 2× 2 submatrix structure of the preconditioner and form each
submatrix separately. This is useful as the dense bottom-right submatrix,
J̃2,2, does not depend on the parameters β, µ, and F , which we are interested
in changing, and can be reused for a variety of problems. In this way, we
remove the burden of computing the most costly part of the preconditioner
each time we wish to explore different parameters on a given mesh. More-
over, the submatrices J̃1,1, J̃1,2, J̃2,1 each have an underlying block diagonal
structure comprising identical lower-diagonal blocks within each submatrix.
These lower diagonal blocks share a common form determined by (B.14), and
only differ from each other by a constant coefficient, which allows easy com-
putation and storage. For clarity, we emphasize that the flexural contribution
only enters into the top-right submatrix,i.e., J̃1,2 = (Jg)1,2 + Jflex.

In Figure 3, we check the effectiveness of the preconditioner by comparing
the eigenvalues, λ, of the Jacobian, Jn, for the nonlinear problem without
any preconditioning (Figure 3(a)), and those of the preconditioned Jacobian,
JnP

−1, for the different possible P matrices, where the eigenvalues were
computed using Python’s scipy.linalg.eig module. The result of using
a preconditioner that does not consider the flexural component, such as the
fully analytical Jacobian, Jg, for the linear free-surface problem, is illustrated
in Figure 3(b) and appears to make the system more ill-conditioned.

The effect of preconditioning with P = J̃, the Jacobian of the corre-
sponding linear problem which accounts for the flexural contribution using
the hybrid method, is seen in Figure 3(c) and Figure 3(d). The effect is
a tight clustering of eigenvalues around Re {λ} = 1 when the flexural con-
tribution is included in the structure of the preconditioner. By comparing
Figure 3(c) when P = J̃µ=0 is computed without artificial viscosity (µ = 0),

and Figure 3(d) when P = J̃µ=0.1 includes the contribution from artificial vis-
cosity, µ = 0.1, we see that the tightest clustering around Re {λ} = 1 occurs
when the contribution from artificial viscosity is included in the precondi-
tioner structure. This tight clustering of eigenvalues is desirable since it will
result in a smaller Krylov subspace required to find a solution to the New-
ton correction δun. The tight clustering of eigenvalues around Re {λ} = 1
in Figure 3(d) thus confirms the effectiveness of our choice P = J̃ for the
preconditioner.
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(a) λ(Jn) (b) λ
(
JnJ

−1
g

)
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µ=0

)
(d) λ
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)
Figure 3: Visualization of the eigenvalues of the Jacobian, Jn, of the nonlinear problem
computed for un (solution) with β = 0.5 and µ = 0.1 (a) without any preconditioning,
and the preconditioned Jacobian JnP

−1 shown for different P matrices, all computed for
non-dimensional parameters ϵ = 1, L, F = 0.7, on a 40 × 20 mesh with ∆x = ∆y = 0.6,
x1 = −12. (b) Preconditioning with P = Jg, the analytical Jacobian of the linear gravity
waves problem with β = 0 and µ = 0.1, yields a more disperse spectrum of eigenvalues. The
effect of preconditioning with P = J̃, the Jacobian of the linear flexural gravity problem
approximated using the hybrid method with β = 0.5, is seen in (c) when P = J̃µ=0

does not include artificial viscosity (µ = 0), and in (d) when P = J̃µ=0.1 includes the
contribution from artificial viscosity µ = 0.1. The effect is a tight clustering of eigenvalues
around Re {λ} = 1 when the flexural contribution is included in the structure of the
preconditioner. The tightest clustering is obtained when the contribution from µ is also
included.

19



5. Numerical results

We have computed solutions using a standard laptop computer1 with the
code written in Python. In all cases, the scipy.optimize implementation of
nonlinear solvers from the SciPy library was used. We have computed solu-
tions using both fsolve and newton krylov, with the LGMRES method se-
lected for the preconditioned inner Krylov iterations. For the newton krylov

solver, we compared two different methods for generating the preconditioner,
P, used in the Krylov iterations. The direct method for generating P involves
computing centred differences for the entire system numerically, which is
very computationally intensive. The hybrid preconditioning method is as
described in §4 and requires considerably less time to generate the precon-
ditioner compared to the fully numerical direct method. The summary of
computation time for these different solvers and methods of generating the
preconditioner are given in Table 1, where it is clear that the fastest time is
a couple of minutes using the Newton-Krylov method with a hybrid precon-
ditioner compared to the hours it would take using a direct Newton solver
(fsolve).

Solver
(method)

Preconditioner
(method)

Time to generate P
(h : min : s)

Time to solve
(h : min : s)

Total time
(h : min : s)

fsolve — — 08:45:02 08:45:32
newton krylov direct 08:11:11 00:00:20 08:11:31
newton krylov hybrid 00:01:08 00:00:40 00:01:48

Table 1: Performance of different solvers and preconditioning methods for solutions com-
puted on a 80 × 40 mesh with spacing ∆x = ∆y = 0.6, and parameters ϵ = 1, F = 0.7,
β = 0.5, and µ = 0.

For the results that follow, we recall that an N ×M mesh comprises N
grid points in the x-direction and M grid points in the y-direction. The
parameter values we focused on are F = 0.70 in the U < cmin regime and
F = 0.35 in the U > cmin regime. The other dimensionless parameters are

1Intel Core i5-8265U CPU with 1.80 GHz processor and 8 GB of system memory
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ϵ = 1 and L = 1, which are representative of a moderately nonlinear regime
and a symmetric pressure distribution. We choose β = 0.5 for the ice plate,
which corresponds to F = (3/4) 3

√
1/2 ≈ 0.595 when U = cmin.

In this section, we present some typical computations for forced waves
with U < cmin, then we discuss some results for forced waves with U > cmin.
We also consider the accuracy of our results by comparing solutions computed
on different N × M meshes as we vary the number of grid points and size
of the grid intervals. In order to explore grid independence, one technique
we use is to compute solutions on a given truncated domain and increase
the number of grid points between successive iterations of the solver (e.g.,
twice as many each time), then test whether grid refinement has significantly
altered the solution by computing the error as the maximum difference be-
tween successive refinements. We employ a similar approach to qualitatively
determine the effects the truncated domain has on our numerically computed
solution and present the results below.

5.1. Subcritical case

For localized solutions that appear in the regime U < cmin, we use the
dynamic boundary condition (15), without artificial viscosity (i.e., µ = 0),
and parameters F = 0.7 and β = 0.5. For U ≪ cmin, the deformation of
the ice sheet is highly localized near the support of the pressure distribution
(Figure 4) and for symmetric pressure distributions with respect to x = 0,
the solutions are also symmetric. As expected, the steady displacement of
the variable surface ζ(x, y) of the ice-fluid interface is similar to the static
deformation of an ice plate under a load [6].

To explore the extent of grid dependence, we compare the solution shown
in Figure 4 to the same parameter solution computed on both a coarser and
finer mesh with the same number of grid points, as shown in Figure 5. Com-
parison of the centrelines in Figure 5 reveals that the solutions are clearly grid
dependent and the amplitudes of the waves are overestimated by solutions
computed on the coarser grid. The size of the truncated domain appears
to have a comparatively minor effect on solutions in this regime since the
disturbance is localized and the waves do not propagate away from the pres-
sure. We also note that there appears to be very good agreement between
the solutions computed for ∆x = ∆y = 0.3 and ∆x = ∆y = 0.15. The effect
of grid spacing on the amplitude of the waves for a fixed truncated domain
is illustrated in more detail in Figure 6.
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(a) Surface profile

(b) cross-section in x

(c) cross-section in y

Figure 4: Forced wave solution when U < cmin computed on a 160×80 mesh with spacing
∆x = ∆y = 0.3, and x1 = −24. The dimensionless parameters are F = 0.7 and β = 0.5.

(a) Centrelines ζ(x, 0) for different grid intervals (b) Centrelines ζ(0, y) for different grid intervals

Figure 5: Comparison between forced waves solutions, with ∆x = ∆y = 0.15, x1 = −12
(dotted line), ∆x = ∆y = 0.3, x1 = −24 (solid line) and ∆x = ∆y = 0.6, x1 = −48
(dashed line), when U < cmin computed on a 160 × 80 mesh. For both solutions, the
dimensionless parameters are F = 0.7 and β = 0.5.
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The characteristic localized nature of solutions in this regime makes it
ideal for exploring the effect of mesh refinement on the accuracy of solutions,
since solutions can be computed on a smaller truncated domain without
significantly altering their surface profile. The accuracy of solutions in this
regime is determined by computing solutions on a fixed truncated domain:
−12 < x < 12, 0 < y < 12 (chosen to capture the main features of the
solution and impose the radiation conditions accurately) and doubling the
number of grid points between successive solutions. Solutions are computed
for the following mesh sizes: 40×20, 80×40, 160×80, 320×160, corresponding
to uniform grid spacing ∆x = ∆y: 0.6, 0.3, 0.15, 0.075, respectively.

The error is plotted in Figure 7, with each point corresponding to the
L∞-norm of the difference between successive solutions. For a given uniform
grid spacing denoted by ∆k ≡ ∆x = ∆y, the error is calculated as

ek = max
ij

∣∣ζ∆k+1
(xi, yj)− ζ∆k

(xi, yj)
∣∣,

where the difference is taken between two consecutive refinements (i.e., ∆k/∆k+1 =
2) of the solutions ζ evaluated at the same (xi, yj) coordinates of the coarse
grid with spacing ∆k. The semi-log plot of the L∞-norm of differences be-
tween solutions in Figure 7 shows that the error decays exponentially. This
exponential decrease in error suggests that we may be able to approach grid
independence of our solutions and is distinguishable from the error due to
our second-order accurate finite difference schemes, which would be expected
to follow a power law.

5.2. Supercritical case

In this regime, the artificial viscosity µ = 0.1 is included in the dynamic
boundary condition (15), and its effect has already been discussed in previous
works [5]. A typical solution for U > cmin is presented in Figure 8 showing
the two different wave patterns expected: one ahead of the pressure with
shorter waves, and behind the pressure with longer waves. We show only the
results for F = 0.35, but it is known from previous works that the waves
behind the pressure are confined to an angle that varies with the velocity of
the moving pressure [5, 10]. Figure 8 illustrates how the waves in front of the
moving load are mainly flexural waves and are curved around the support of
the pressure. The highest point of positive elevation is shown in Figure 8(b)
to occur just in front of the pressure.
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Figure 6: Comparison of solutions for different uniform grid spacing ∆x = ∆y shows
variation in the maximum amplitude ζ(0, 0) of solutions F = 0.7 computed on the fixed
truncated domain −12 < x < 12, 0 < y < 12. This suggests larger grid spacings overesti-
mate the amplitude of the solution.

Figure 7: Error calculated as L∞-norm of differences between solutions computed on the
fixed truncated domain: −12 < x < 12, 0 < y < 12 for N ×M : 40× 20, 80× 40, 160× 80,
320×160 meshes (doubling N,M between successive solutions) with uniform grid spacing
∆x = ∆y: 0.6, 0.3, 0.15, 0.075, respectively.
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(a) Surface profile

(b) ζ(x, 0) cross-section in x

(c) ζ(0, y) cross-section in y

Figure 8: A Forced solution (U > cmin) with artificial viscosity (µ = 0.1) computed on a
320×80 mesh with spacing ∆x = ∆y = 0.3, and x1 = −48. The dimensionless parameters
are F = 0.35 and β = 0.5

The effects of the truncated domain are more evident in this regime since
we have waves of different wavelengths that appear before and after the
pressure so the radiation condition imposed at the upstream boundary may
not be accurately enforced if x1 is chosen too close to the pressure. Simi-
larly, choosing the lateral boundary yM too close to the pressure may lead
to non-physical reflections at the boundary. Figure 9 compares centrelines
of solutions in this regime, computed for the same parameter values but dif-
ferent lengths of the truncated domain, varying the number of N grid points
for fixed uniform grid spacing ∆x = ∆y = 0.3. The grid spacing is chosen to
be sufficiently small such that the effects from truncation may be considered
the dominant source of error. In Figure 9, we can see some agreement around
the support of the pressure but find more pronounced discrepancies further
upstream and downstream as the domain is truncated closer to the source of
the disturbance.

6. Discussion

In this work we developed a novel preconditioning method to efficiently
compute forced flexural-gravity travelling wave solutions in three dimensions.
Using the nonlinear governing equations (1)-(4), and following [5, 28], we
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Figure 9: Comparison of centrelines ζ(x, 0) for forced wave solutions on different truncated
domains N ×M : 320 × 80 with x1 = −48 (solid line), 160 × 80 with x1 = −24 (dashed
line), 120 × 80 with x1 = −18 (dotted line), with uniform grid spacing ∆x = ∆y = 0.3.
For all solutions, the dimensionless parameters are F = 0.35, β = 0.5 and µ = 0.1. The
inset shows a close up of this comparison upstream of x = 0.

employed a boundary-integral method to obtain a desingularized integro-
differential set of equations for the velocity potential ϕ(x, y) and variable sur-
face ζ(x, y). The resulting discretized equations are solved using an iterative
Newton-Krylov method that relies on a suitable preconditioner to converge.
The hybrid preconditioning method we have developed for flexural-gravity
waves is an extension of the framework devised for gravity waves generated
by a point source [34]. The novelty of our contribution is the treatment of
the flexural term in the Jacobian of the system, which is required to build an
effective preconditioner. The hybrid preconditioner is so called as it combines
analytical and numerical differentiation to approximate the Jacobian of the
linear problem for flexural-gravity waves. This versatile method of generat-
ing the preconditioner has proven to be highly effective, and has allowed us
to reduce the computational time dramatically from several hours to a few
minutes for contemporary mesh sizes.

As mentioned in §2.1, the form of the solutions for flexural-gravity waves is
known to depend on the speed of the moving pressure distribution U relative
to the critical speed cmin [5]. With the hybrid preconditioning method, we
computed representative solutions in both U < cmin and U > cmin regimes
that agree with previously published results. The performance gains achieved
using the hybrid preconditioning method persist for finer meshes with more
grid-points making it possible to analyze the error arising from under-refining
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solutions and truncating at the edges of the computational domain. We
showed that the error decays exponentially as the mesh is refined and when
a larger computational domain is considered. In turn, this implies that with
this new method, we are able to approach grid independence of our solutions.
To further increase the grid refinement and decrease the run-time of our
solutions, we wish to explore the possibility of utilizing graphics processing
unit acceleration in future work, as was done in [34, 44].

The dense submatrix of the preconditioner, J̃2,2, is the most computation-
ally intensive part and is considered to be the limiting factor for the number
of grid points we can use. However, we take advantage of the fact that the
construction of the dense submatrix only depends on the mesh parameters
(N , M , ∆x, ∆y, x1). As such, it can be stored and reused to probe different
parameter regimes (e.g., varying F , β, ϵ, L, µ) on a given mesh without
recomputing it each time. Moreover, the flexibility allowed by calculating
the flexural contribution to the Jacobian numerically can be adapted easily
for different models for ice, adding very little computational complexity to
find solutions in a wider variety of physical regimes.

For our purposes, we have chosen the linear biharmonic model for the ice
sheet and an axially symmetric pressure distribution as an idealized problem
to illustrate our method, but our method can easily be extended to different
models for ice and features of the disturbance. Without any modification
to the preconditioner, it is also possible to compute elevation waves by the
sign of P0 in (8). We plan to consider different nonlinear models such as
Kirchhoff–Love and Plotnikov–Toland in future work and expect that our
hybrid preconditioning method will generalise in a straightforward manner.
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Appendix A. Biharmonic finite difference scheme

The flexural term, Pflex, is evaluated at the midpoints of the two-dimensional
N ×M mesh described in §3.1 and is defined as

(P ∗
flex)k,ℓ ≡ ∇4ζ∗k,ℓ =

(
∇4ζk+1,ℓ +∇4ζk,ℓ

)/
2 , (A.1)

which involves fourth-order partial derivatives. Since applying finite differ-
ence equations for higher order derivatives can become rather involved, and
different schemes are possible, we wish to discuss the biharmonic term in
(A.1) in more detail here to remove any ambiguity. The biharmonic operator
∇4ζk,ℓ is discretized using centered finite differences in the x- and y-directions
with 13-points [41]. Figure A.10 shows a visualization of the dependence of
one point in the biharmonic term (P ∗

flex)k,ℓ = ∇4ζ∗k,ℓ on the nearby 17 points.
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ζ0,1 ζ1,1ζ−1,1
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Figure A.10: 18-point stencil for (P ∗
flex)0,0 with symmetric grid spacing, ∆x = ∆y

To allow for asymmetric spacing in the x- and y-directions,

(Pflex)k,ℓ = ∇4ζk,ℓ =

(
∂4ζ

∂x4
+ 2

∂4ζ

∂x2∂y2
+

∂4ζ

∂y4

)
k,ℓ

is computed in the interior of the domain using the following second-order
accurate centered finite difference formulas(

∂4ζ

∂x4

)
k,ℓ

= (ζk−2,ℓ − 4ζk−1,ℓ + 6ζk,ℓ − 4ζk+1,ℓ + ζk+2,ℓ)
/
(∆x)4 +O

(
∆x2

)
(

∂4ζ

∂x2∂y2

)
k,ℓ

= (ζk+1,ℓ+1 + ζk−1,ℓ+1 + ζk+1,ℓ−1 + ζk−1,ℓ−1 + 4ζk,ℓ)
/
(∆x∆y)2

− 2(ζk+1,ℓ + ζk,ℓ+1 + ζk−1,ℓ + ζk,ℓ−1)
/
(∆x∆y)2 +O(∆x∆y)(

∂4ζ

∂y4

)
k,ℓ

= (ζk,ℓ−2 − 4ζk,ℓ−1 + 6ζk,ℓ − 4ζk,ℓ+1 + ζk,ℓ+2)
/
∆y4 +O

(
∆y2

)
,

(A.2)
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which reduces to the 13-point formula when ∆x = ∆y [41]. At the bound-
aries of the truncated domain, the finite difference formula (A.2) depends on
points outside the domain, which require additional considerations. At the
upstream x = x1 boundary we use second-order accurate forward differences
for differentiation in the x-direction. At the y = 0 boundary, points outside
the domain are obtained by symmetry. At the downstream, x = xN , and lat-
eral, y = yM , boundaries we apply centered differences and use extrapolation
for points outside the domain. Developing boundary conditions for a finite
computational domain without any spurious reflections can be a challenge
[5, 45], and we leave this consideration for future work.

Appendix B. The Jacobian of the linear free-surface problem

Appendix B.1. Algebraic equations for the linearized problem

The analytical part of the preconditioner is given by the Jacobian of the
linear problem with β = 0 in (22), following the approach in [34]. The
linear problem presented in §2.4 is discretized in the same manner as the
nonlinear problem, using the numerical scheme outlined in §3.1 and evaluated
on the half-mesh points (x∗

k, y
∗
ℓ ) = ((xk + xk+1)/2 , yℓ) for k = 1, . . . , N − 1,

ℓ = 1, . . . ,M . The singularity in (23) is dealt with in the same way as with
the nonlinear problem by noting that∫∫

R2

ζxK3 dx dy =

∫∫
R2

K3(ζx − ζ∗x) dx dy + ζ∗x

∫∫
R2

K3 dx dy ,

and using symmetry in the y-direction to compute solutions on half of the
domain which introduces an additional term in the kernel.

The resulting vector function, E, for the linear flexural-gravity problem
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with artificial viscosity is

E1(k,ℓ) =ϕ∗
x(k,ℓ) − 1 + Fζ∗(k,ℓ) + µϕ∗

(k,ℓ) + βP ∗
flex(k,ℓ) + p(x∗

k, y
∗
ℓ ) (B.1)

E2(k,ℓ) =2π
(
ϕ∗
(k,ℓ) − x∗

k

)
− ζ∗x(i,j)

∫ yM

y1

∫ xN

x1

K3 dx dy

−
N∑
i=1

M∑
j=1

w(i, j)
(
ζx(i,j) − ζ∗x(k,ℓ)

)
K3(i,j,k,ℓ) (B.2)

E3(ℓ) =ϕ(1,ℓ) − x1 (B.3)

E4(ℓ) =ϕx(1,ℓ) − 1 (B.4)

E5(ℓ) =ζ(1,ℓ) (B.5)

E6(ℓ) =ζx(1,ℓ), (B.6)

for k = 1, . . . , N − 1, ℓ = 1, . . . ,M and K3(i,j,k,ℓ) = K3(xi, yj;x
∗
k, y

∗
ℓ ), which

can be integrated exactly in terms of logarithms∫∫
ds dt√
s2 + t2

= t ln
(
2s+ 2

√
s2 + t2

)
+ s ln

(
2t+ 2

√
s2 + t2

)
.

The weighting function w(i, j) for numerical integration is defined for the
trapezoidal-rule such that w(i,j) = ∆x∆y on the interior of the domain i =
2, . . . , N − 1, j = 2, . . . ,M − 1, each i = 1, N and j = 1,M brings in an
additional factor of 1/2, such that w(i,j) = (∆x∆y)/2 for values along the
edges, and w(i,j) = (∆x∆y)/4 in the corners.

Appendix B.2. Ordering the equations

The left-hand side of (25) is a vector valued function made up of the
six equations (B.1)-(B.6) evaluated at the half-mesh points

(
xk+1/2 , yℓ

)
, for

k = 1, . . . , N − 1 and ℓ = 1, . . . ,M . These equations are ordered according
to the framework developed by Pethiyagoda et al. [34], and are as follows

E =
[
E3(1),E4(1),E1(1,1), . . . ,E1(N−1,1), . . . ,E3(M),E4(M),E1(1,M), . . . ,E1(N−1,M),

E5(1),E6(1),E2(1,1), . . . ,E2(N−1,1), . . . ,E5(M),E6(M),E2(1,M), . . . ,E2(N−1,M)

]T
,

(B.7)
resulting in the Jacobian structure illustrated in Figure 2. The purpose of
this ordering is to make the structure of the Jacobian more sparse and easier
to invert.
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Appendix B.3. Explicit differentiation

Finally, to calculate the Jacobian of the linear problem with β = 0 an-
alytically, the system (B.1)-(B.6) can be easily differentiated by hand with
respect to the unknowns ϕ(1,m), ϕx(n,m), ζ(1,m), and ζx(n,m), for n = 1 . . . N ,
m = 1 . . .M . Note, the contribution from Pflex is discussed in more detail in
Appendix A.

Equations (B.3)-(B.6) are already in terms of the unknowns (28), so we
can immediately determine the expressions for their explicit differentiation:

∂E3(ℓ)

∂ϕ(1,m)

=
∂E5(ℓ)

∂ζ(1,m)

=

{
1 for m = ℓ

0 otherwise

∂E4(ℓ)

∂ϕx(n,m)

=
∂E6(ℓ)

∂ζx(n,m)

=

{
1 for n = 1, m = ℓ

0 otherwise
(B.8)

The other partial derivatives of E3(ℓ), E4(ℓ), E5(ℓ) and E6(ℓ) with respect to
the unknowns ϕ(1,m), ϕx(n,m), ζ(1,m), and ζx(n,m) are all equal to zero. Since the
only nonzero partial derivatives of E3(ℓ) and E4(ℓ) are with respect to ϕ(1,m)

and ϕx(n,m), the contribution from E3 and E4 only appears in the top-left
submatrix of P. Similarly, the only nonzero partial derivatives of E5(ℓ) and
E6(ℓ) are with respect to ζ(1,m) and ζx(n,m). Hence, the contribution from E5

and E6 only appears in the bottom-right (dense) submatrix of P.Notice that
the expressions provide identical contributions to the corresponding entries
in each block.

Next, we need to express (B.1)-(B.2) in terms of the unknowns (28). This
involves determining how ϕ, ϕ∗, ζ and ζ∗ depend on the unknowns in (28).
To do this, we need the values for ζ obtained by trapezoidal-rule integration
using the values of ζx:

ζ(k+1,ℓ) = ζ(k,ℓ) +
∆x

2

(
ζx(k,ℓ) + ζx(k+1,ℓ)

)
, ℓ = 1, . . . ,M, k = 1, . . . , N − 1,

(B.9)
and apply a similar formula to compute the values of ϕ using ϕx. Expanding
the trapezoidal-rule integration of ζ and ϕ gives

ζ(k,ℓ) = ζ(1,ℓ) +
∆x

2
ζx(1,ℓ) +∆x

k−1∑
i=2

ζx(i,ℓ) +
∆x

2
ζx(k,ℓ),

ϕ(k,ℓ) = ϕ(1,ℓ) +
∆x

2
ϕx(1,ℓ) +∆x

k−1∑
i=2

ϕx(i,ℓ) +
∆x

2
ϕx(k,ℓ),

(B.10)
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for k = 2, . . . , N , ℓ = 1, . . . ,M . The values for ζ∗ and ϕ∗ at the half-mesh
points are obtained using two-point interpolation

ζ∗(k,ℓ) =
1

2

(
ζ(k,ℓ) + ζ(k+1,ℓ)

)
, ϕ∗

(k,ℓ) =
1

2

(
ϕ(k,ℓ) + ϕ(k+1,ℓ)

)
. (B.11)

From the result of (B.10) and the two-point interpolation in (B.11), we obtain
the expressions for ζ∗ and ϕ∗ in terms of the variables in (28):

ζ∗(k,ℓ) = ζ(1,ℓ) +
∆x

2
ζx(1,ℓ) +∆x

k−1∑
i=2

ζx(i,ℓ) +
3∆x

4
ζx(k,ℓ) +

∆x

4
ζx(k+1,ℓ)

(B.12a)

ϕ∗
(k,ℓ) = ϕ(1,ℓ) +

∆x

2
ϕx(1,ℓ) +∆x

k−1∑
i=2

ϕx(i,ℓ) +
3∆x

4
ϕx(k,ℓ) +

∆x

4
ϕx(k+1,ℓ),

(B.12b)

for k = 1, . . . , (N − 1), ℓ = 1, . . . ,M . We use the equivalent of (B.11) for ζ∗x
and ϕ∗

x to get

ζx
∗
(k,ℓ) =

1

2

(
ζx(k,ℓ) + ζx(k+1,ℓ)

)
, ϕx

∗
(k,ℓ) =

1

2

(
ϕx(k,ℓ) + ϕx(k+1,ℓ)

)
. (B.13)

We substitute the expressions (B.12) for ζ∗k,ℓ, ϕ
∗
k,ℓ, and the two-point interpo-

lation (B.13) for their derivatives ϕ∗
x(k,ℓ), ζ

∗
x(k,ℓ) into (B.1) and (B.2) to obtain

the expressions for E1(k,ℓ) and E2(k,ℓ) in terms of the unknowns in (28).
To find the expressions for the differentiation of (B.1)-(B.2), it is helpful

to note that

∂ζ∗(k,ℓ)
∂ζ(1,m)

=
∂ϕ∗

(k,ℓ)

∂ϕ(1,m)

=

{
1 for m = ℓ

0 otherwise

∂ζ∗(k,ℓ)
∂ζx(n,m)

=
∂ϕ∗

(k,ℓ)

∂ϕx(n,m)

=



∆x
4

for n = 1, k = 1 and m = ℓ
∆x
2

for n = 1, k > 1 and m = ℓ

∆x for n < k, and m = ℓ
3∆x
4

for n = k, and m = ℓ
∆x
4

for n = k + 1, and m = ℓ

0 otherwise

(B.14)
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These expressions form repeating blocks on the diagonal when m = ℓ =
1, . . . ,M .

The expressions for the explicit differentiation of (B.1)-(B.2) with β = 0
are as follows

∂E1(k,ℓ)

∂ϕ(1,m)

=

{
µ for m = ℓ

0 otherwise

∂E1(k,ℓ)

∂ϕx(n,m)

=



µ∆x
4

for n = 1, k = 1 and m = ℓ
µ∆x
2

for n = 1, k > 1 and m = ℓ

µ∆x for n < k, and m = ℓ
3µ∆x

4
+ 1

2
for n = k, and m = ℓ

µ∆x
4

+ 1
2

for n = k + 1, and m = ℓ

0 otherwise

(B.15)

∂E1(k,ℓ)

∂ζ(1,m)

=

{
F for m = ℓ

0 otherwise

∂E1(k,ℓ)

∂ζx(n,m)

=



F∆x
4

for n = 1, k = 1 and m = ℓ
F∆x
2

for n = 1, k > 1 and m = ℓ

F∆x for n < k, and m = ℓ
3F∆x

4
for n = k, and m = ℓ

F∆x
4

for n = k + 1, and m = ℓ

0 otherwise

(B.16)

∂E2(k,ℓ)

∂ϕ(1,m)

=

{
2π for m = ℓ

0 otherwise

∂E2(k,ℓ)

∂ϕx(n,m)

=



π∆x
2

for n = 1, k = 1 and m = ℓ

π∆x for n = 1, k > 1 and m = ℓ

2π∆x for n < k, and m = ℓ
3π∆x

2
for n = k, and m = ℓ

π∆x
2

for n = k + 1, and m = ℓ

0 otherwise

(B.17)
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∂E2(k,ℓ)

∂ζ(1,m)

= 0

∂E2(k,ℓ)

∂ζx(n,m)

=

{
1
2

∑N
i=1

∑M
j=1 w(i, j)K3(i,j,k,ℓ) − 1

2
I − w(n,m)K3(n,m,k,ℓ), for n = k, k + 1 and m = ℓ

−w(n,m)K3(n,m,k,ℓ), otherwise

(B.18)

The preconditioner is formed by ordering these Jacobian entries in the
manner described in Appendix B.2.
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[24] P. Guyenne, E. I. Părău, Asymptotic modeling and numerical simulation
of solitary waves in a floating ice sheet, in: The Twenty-Fifth Interna-
tional Ocean and Polar Engineering Conference, OnePetro, 2015, pp.
467–475.

[25] Z. Wang, P. A. Milewski, J.-M. Vanden-Broeck, Computation of three-
dimensional flexural-gravity solitary waves in arbitrary depth, Procedia
IUTAM 11 (2014) 119–129.
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