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Like energy and momentum, optical helicity is a fundamental dynamical property of 

light. In the prevalent plane wave and paraxial description of light the optical helicity 

is directly proportional to the degree of circular polarization, being zero for both 

linearly and unpolarized fields. Here it is shown that the non-paraxial fields generated 

by tightly focused optical vortices which have the phase factor ( )exp i   possess a 

contribution to the optical helicity density that is completely independent of the 

polarization state of the source paraxial field. In stark contrast to what is known in 

classical optics with plane waves and paraxial light, the physical consequence is that 

unpolarized light can exhibit optical activity and chiral light-matter interactions. 

Non-paraxial optical fields exhibit fascinating properties compared to the plane waves and 

paraxial fields which have dominated classical optics and light-matter interactions for decades. 

In recent years, with the growth of modern nano-optics and photonics, the extraordinary 

properties of non-paraxial fields have found widespread utilization  [1,2]. In this work we refer 

to paraxial modes and propagating plane waves as two-dimensional (2D) structured fields, in 

that they may possess inhomogeneous spatial or polarization degrees of freedom in the 

transverse (x,y) plane, but are homogenous in the direction of propagation (z)  [3]. Such 2D 

structured fields are also usually examined in terms of their 2D polarization states. Three-

dimensional (3D) structured optical fields are inhomogeneous along their direction of 

propagation, examples include evanescent waves or tightly focussed laser beams, the essential 

requirement being electromagnetic fields that are spatially confined in some way or another. A 

crucial difference between 2D and 3D structured light is that in addition to the usually dominant 

transverse fields, the latter possess significant longitudinal components of their 

electromagnetic fields with respect to the direction of propagation. The non-paraxial nature and 

3D structure of spatially confined optical fields has led to some remarkable light-matter 

interactions [4–7], which are especially striking when compared to the prevailing textbook 
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description of light-matter interactions in terms of propagating plane waves. Because all three 

spatial components of the field vector generally play a role in non-paraxial light, the theory of 

polarization has been extended to the 3D case [8–10]. While generic 2D polarization is 

described by four Stokes parameters, 3D polarization is characterized by nine polarization 

parameters. Crucially, a totally unpolarized 2D field is at least half-polarized in the 3D 

sense [11,12], and for tightly focused unpolarized paraxial beams it has been demonstrated that 

the focused field produces rings of light which are locally fully polarized in a 3D sense [13,14]. 

One of the extraordinary properties of non-paraxial optical fields is that they possess a 

transverse spin momentum, orthogonal to the main direction of propagation [15–18]. Eismann, 

et al.  [12] have recently proven both theoretically and experimentally that this transverse spin 

momentum is largely independent of 2D polarization, and remarkably survives in 3D fields 

generated from a 2D unpolarized optical source. This is in sharp contrast to longitudinal spin 

which is directly related to 2D polarization. Subsequently, Chen et al. [19] extended the theory 

to account for  the electric field component of the spin for focused random light of arbitrary 

degree of polarization. Related to spin angular momentum is the optical helicity, and in fact 

both are correlated to one another by a continuity equation  [20–23]. However, both contribute 

to experimentally distinct observables, with spin producing mechanical spinning motions of 

probe particles  [15–17] while  optical helicity is proportional to the optical chirality for 

monochromatic fields and is responsible for optical activity and chiral light-matter 

interactions [24–31]. In the plane wave case, it is well known that optical helicity is 

proportional to the degree of 2D circular polarization: it is zero for 2D linearly polarized or 2D 

unpolarized optical fields and takes on its maximum value for 2D circular polarization. Here 

we show that 3D structured light beams generated from a 2D source which possesses the 

azimuthal phase factor ( )exp i  , commonly referred to as optical vortices or twisted light  [32], 

acquire a non-zero contribution to the optical helicity density that is fully independent of the 

2D polarization state, being generated even by a 2D unpolarized optical vortex light source. 

The striking physical consequence of this is that light generated from totally unpolarized 

paraxial light can exhibit optical activity.  

Optical helicity  in the Coulomb gauge is defined as  [20,22,28]  

 ( )3 0 ,
2

c
d

 ⊥ ⊥=  −  r A B C E  (1) 
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where ⊥
A

⊥
C are the vector potentials and E B  the electric and magnetic field, respectively. 

The vector potentials and electromagnetic fields are related to one another as [20,22] 

⊥ ⊥= − = −E C A and ⊥ ⊥=  = −B A C . The total helicity  (1) is both gauge and Lorentz 

invariant, however the integrand, which represents the optical helicity density h , is not Lorentz 

invariant. Lorentz invariance is sacrificed to make h  gauge invariant, important for calculating 

experimentally determinable physical quantities in optics  [23]. Noting that for monochromatic 

fields [22] i ⊥ =A E  and i ⊥ =C B , the cycle-averaged helicity density h  for classical fields 

is [22]  

 ( )0 Im .
2

c
h





= − E B  (2) 

Clearly both expressions (1)-(2) are conserved quantities of the field, i.e. , , 0h h = . For 2D 

structured light, propagating plane waves, and even evanescent waves the optical helicity is 

directly proportional to the degree of circular polarization h  , where 1 =   for circularly 

polarized light and is zero for both linearly and unpolarized light [4]. 

In this work we are mainly interested in calculating h  for 3D structured Laguerre-Gaussian 

(LG) modes generated from a 2D unpolarized source. The simplest way to calculate this is to 

average the conserved quantity over two orthogonal 2D polarization states on the Poincaré 

sphere. We therefore choose to average over two electric fields, one linearly polarized in the x 

direction and the other in the y direction (with the corresponding magnetic fields polarized in 

the y and -x directions, respectively).  

The electric field for a 2D-x polarized monochromatic 3D LG mode in the first post-paraxial 

approximation is  [33,34] 

 ( )LG
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i i
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k r
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0E is the field amplitude, 
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  is the pseudoscalar topological charge; p  is the radial index, all other quantities have 

their usual meanings. The x̂  dependent term in (3) is the transverse field component and taken 

alone represents a 2D structured and polarized LG mode; the ẑ  dependent term is the 

longitudinal field, responsible for 3D structure. The magnitude of the longitudinal component 

is proportional to 
0/ w , i.e. the ratio of the input wavelength to the beam waist, becoming 

larger the more tightly focused the field is. The corresponding magnetic field is given by 

 ( )LG

LG 0 ,
ˆ ˆ sin cos , , .p

i i
B u r z

k r
   

  
= + +  

  
B y z  (5) 

Inserting (3) and (5) into (2) gives the optical helicity density as 

 
( )

2

,
Re ,x

I r z
h

c k r



= −  (6) 

where ( )
2

2 LG0

0 ,,
2

p

c
I r z E u


=  is the input beam intensity. It is crucial to realize that this optical 

helicity density stems purely from the longitudinal field components and so is not exhibited by 

2D structured light. It is proportional to , and so is unique to 3D structured beams that possess 

an azimuthal phase ( )exp i  . Optical helicity of a 2D structured field comes purely from the 

degree of 2D circular polarization of the transverse fields. 

For the orthogonally polarized beam the electric and magnetic fields are  

 ( )LG

LG 0 ,
ˆ ˆ sin cos , , ,p

i i
E u r z

k r
   

  
= + +  

  
E y z  (7) 

 ( )LG

LG 0 ,
ˆ ˆ cos sin , , .p

i i
B u r z

k r
   

  
= − − −  

  
B x z  (8) 

Inserting (7) and (8) into (2) gives 

 
( )

2

,
Re ,y

I r z
h

c k r



= −   (9) 

and for unpolarized ( )n  light the optical helicity density nh is therefore 

 .
2

x y
n xh h

h h
+

= =   (10) 

This optical helicity density is fully independent of the 2D polarization of the transverse field. 

For example, taking a paraxial 2D structured vortex and tightly focusing it to create a 3D 
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structure, the ensuing optical helicity density contribution (10) generated is completely 

independent of the 2D polarization state of the input paraxial structured mode. The 2D 

polarization independent optical helicity density (10) is plotted in Figure 1 at 
0w . The focal 

plane is concentrated upon because helicity in the far field is purely a measure of 2D circular 

polarization [37]. For cases where 0p =  we produce two distinct rings of helicity density with 

different signs, and in the case of 1= we produce an on-axis helicity density. The magnitude 

of the optical helicity density in the outer ring is smaller than the inner ring and of the opposite 

sign. Small probe chiral particles and nanostructures in the focal region will experience 

differential light-matter interactions depending on their position in the transverse plane and 

their handedness. For example, comparison of Figure 1a and 1b shows that a chiral particle of 

a given handedness positioned in the centre of the focal spot of a tightly focused 2D unpolarized 

LG ( )1, 0p= = beam will absorb or scatter the 1=  at a different rate to the 1= −  source beam. 

The case of  0p =  has been concentrated on in Figure 1 because of the fact this is the radial 

index predominantly implemented in experiments involving LG beams. However, (10) is 

general and applies to any mode ( ), p . Increasing p  has two effects: firstly, ( )2 2p + rings of 

helicity density are produced in general and secondly, we increase the relative magnitude of 

the longitudinal fields responsible for the 2D-polarization independent helicity density because 

increasing p  leads to larger transverse field gradients and thus larger longitudinal field 

components.  
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Figure 1: normalized 2D polarization independent optical helicity density (10) at ( )0 0w z = . 

0p =  in (a)-(d).  

It is important to note that this 2D polarization independent contribution to the optical helicity 

density we are concerned with does not contribute to the integrated value of optical helicity: 

 2 0.hd= = r  (11) 

Its experimental observation therefore requires particles smaller than the transverse dimension 

of the focal field. 

It must be emphasized that this 2D polarization independent contribution to the optical helicity 

density is proportional to  and so linearly/randomly polarized Gaussian or Hermite-Gaussian 

beams, for example, do not possess it regardless of whether they are 2D or 3D structured. The 

input 2D beam must possess the phase factor ( )exp i  , so Bessel beams, for example, would 

also display this 2D polarization independent optical helicity density contribution. The reason 

for this is that the origin of the longitudinal fields of 3D modes which generate this 2D 

polarization independent optical helicity density are in the gradients of the transverse fields, 
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i.e. 
r   +  , and it is the azimuthal gradient which provides the unique -dependent 

longitudinal component.     

Our result for a 2D unpolarized 3D LG beam can be derived via an alternative method. The 

optical helicity density generated for a 3D field generated from a 2D circularly polarized 

paraxial LG mode is  [34] 

 
( )

( )
2

2

2 2

, 1 2
Re Re ,

2

I r z
h

c rk r

 
   



  
= + − +   

  
 (12) 

where 1 =  , the positive sign corresponding to a left-handed input and the negative sign right-

handed. Adding the optical helicity densities calculated for the orthogonal polarizations 1 =  

and 1 = −  together and averaging the result gives the 2D unpolarized result: 

 
( )

2

,
Re ,

2

n
I r zh h

h
c k r

 




−
+

= = −  (13) 

which gives the identical optical helicity contribution as the method of averaging the optical 

helicity densities of two orthogonal linear polarizations (10). This alternative method of 

calculation equally proves that there is an optical helicity density which is 2D polarization 

independent in 3D vortex beams. It is also important to highlight that the middle term in square 

brackets in (12) is the 2D polarization independent optical helicity density term (i.e. (6), (9), 

(10), and (13)) and so we may also conclude that even when the input source field is 2D 

circularly polarized this 2D polarization independent contribution survives and is therefore 

robust again spin-orbit-interactions of light [5]. 

As mentioned above, recently it was theoretically and experimentally shown that transverse 

spin angular momentum is largely independent of the polarization state of the input 2D field in 

both focussed light and evanescent waves [12]. In their work the authors make the comment 

that ‘However, in our case of an unpolarized source, the helicity and longitudinal spin vanish.’ 

We are able to directly compare our results here to those in [12]. The fundamental Gaussian 

mode is simply 
00LG  and 0=  in (13) shows that for a Gaussian beam 0nh =  in agreement 

with  [12]. The input 2D field which generates the 3D Gaussian field and evanescent wave 

in  [12] responsible for the 2D polarization independent transverse spin and zero helicity 

density does not possess the phase factor ( )exp i  . An alternative physical interpretation to that 

given below (10) is that this azimuthal phase leads to the canonical momentum density having 

an azimuthal component, which when projected onto the 2D polarization independent (in the 
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dual symmetric sense, see below) transverse spin angular momentum density leads to a non-

zero helicity density for unpolarized light as we have shown here. In the case of a Gaussian 

beam  [4] or evanescent wave  [38] the canonical momentum density is purely in the 

longitudinal direction, and so even though these optical fields may possess a transverse spin 

density when generated from an unpolarized source, its projection on their canonical 

momentum density to yield the helicity gives zero in any circumstances.   

Another point worth comparing between optical helicity density and transverse spin 

momentum density is that in  [12] it is stated that the transverse spin angular momentum is 

‘largely independent of the polarization state’. The dual symmetric transverse spin E B

⊥ ⊥ ⊥= +s s s   

is fully independent of the polarization state, but the corresponding electric and magnetic 

spatial distributions do depend on the input 2D polarization, and this has important 

consequences in experimental observations due to the electric-bias nature of most materials 

(see Appendix). However, the optical helicity density contribution studied in this work is fully 

independent of 2D polarization in every respect, including its interaction with matter. The 

electric-magnetic asymmetry of matter does not influence optical helicity because by its very 

nature it couples to the interferences between electric and magnetic dipoles of chiral matter. 

This agrees with the fact that the dual symmetric and dual asymmetric optical helicities are 

identical  [22,34]. 

In this work we have highlighted a contribution to the optical helicity density for 3D vortex 

beams which is fully independent of the 2D polarization state of the source, surviving even 

when the source is 2D unpolarized, and that its generation requires the incident optical field to 

possess the phase factor ( )exp i  . The input 2D fields with this phase structure before spatial 

confinement possess zero optical helicity but they are geometrically chiral, i.e. they possess a 

non-zero Kelvin’s chirality  [39]. In contrast, the Kelvin’s chirality of an unpolarized 2D 

Gaussian beam or propagating plane wave is zero. As such, it is only optical fields which 

possess a non-zero Kelvin’s chirality which have the capacity to generate the 2D polarization 

independent optical helicity density contribution. Interestingly Kelvin’s chirality does not 

interact (in a non-mechanical, spectroscopic sense) with chiral matter in the dipole 

approximation; multipole couplings of electric quadrupole nature or higher are required  [40]. 

However, the 2D polarization independent optical helicity density contribution generated by 

these beams with Kelvin’s chirality does interact via the interferences of electric and magnetic 

dipoles  [37,41,42]. Is it therefore legitimate to suggest that there is a relationship between 
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Kelvin’s chirality and optical helicity, and in certain scenarios the two become coupled? This 

is what Nechayev et al.  [39] propose. The problem is that just like geometrical chirality of 

matter, there is seemingly no satisfactory way to quantify the scale-dependent Kelvin’s 

chirality, and fundamentally there is of course no quantum operator for chirality.   

Observation of an optical property necessarily requires a suitable light-matter interaction. 

Experimental observation of the 2D polarization independent contribution to the optical 

helicity density would be straightforward in this regard. For example, the experimental set up 

in Ref.  [42] could very easily be modified to prove that 3D optical vortices possess a 2D 

polarization independent optical helicity density contribution by simply comparing the 

transmission of 2D unpolarized LG modes of 1, 0p=  =  to that of any polarized Gaussian 

mode. Essential in any general experimental setup aiming to observe the 2D polarization 

independent optical helicity density of 3D vortex beams would be a tight focus using a high 

NA lens and chiral particles smaller than the transverse dimension 
0w . Beyond these general 

considerations the signal magnitude of any given light-matter interaction depends on the 

material properties (i.e. molecular, plasmonic, etc.) and the fundamental interaction itself. It is 

known that a number of light-matter interactions are proportional to the optical helicity 

density [43], such as chiral optical forces, Rayleigh and Raman optical activity, and vortex 

dichroism  [44], all of which provide a means to observe optical activity with unpolarized light, 

something which could never be envisaged with plane wave or paraxial light sources. This 

work therefore adds to the rapidly growing field of structured light and chirality  [41].  

This work has revealed a further fascinating property of optical vortices in that when tightly 

focused they acquire an optical helicity density contribution which is fully independent of the 

2D polarization state of the generating paraxial source, surviving even for unpolarized light. 

Remarkably, unlike transverse spin which is a generic property of non-paraxial optical fields, 

2D polarization independent optical helicity is solely attributable to non-paraxial optical 

vortices. Unlike the polarization dependent optical helicity which is responsible for practically 

all currently known forms of optical activity and chiral light-matter interactions, the present 

study opens an avenue for the use of unpolarized light in such studies, a remarkable result when 

placed in the context of classical optics and another exceptional feature of modern nano-optics.   

K A F is grateful to the Leverhulme Trust for funding him through a Leverhulme Trust Early 

Career Fellowship (Grant Number ECF-2019-398) and thanks David L. Andrews for helpful 

discussions and Garth A. Jones for help with the figure.   
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Appendix: spin angular momentum density   

The dual symmetric spin angular momentum density for time averaged monochromatic fields 

is [22]  

 ( )20 Im
4

E B= c




  +   +s E E B B s s  (A14) 

Using (3) in (A14), the electric transverse spin density (which comes from the cross product of 

a transverse field component with the longitudinal component) ( )E x

⊥s  for a 2D-x polarized 3D 

LG mode is  

 ( ) ( ), 1
ˆ Re cos .

E x I r z

c k
 


⊥ = −s y  (A15) 

Inserting the 2D-y polarized electric field (7) in (A14) we get its spin density as 

 ( ) ( ), 1
ˆ Re sin .

E y I r z

c k
 


⊥ =s x  (A16)

The magnetic spin density contribution for the 2D-y polarized magnetic field (5) (which 

corresponds to the x polarized electric field) is 

 ( ) ( ), 1
ˆ Re sin

B y I r z

c k
 


⊥ =s x  (A17)

The corresponding magnetic contribution for the 2D-y polarized electric field is calculated 

using (8) as: 

 ( ) ( ), 1
ˆ Re cos .

B x I r z

c k
 



−

⊥ = −s y  (A18) 

Therefore the 2D-unpolarized result for the dual symmetric spin is calculated as:  

 

( ) ( )( ) ( ) ( )( )

( )

2

,1 1
ˆ ˆ ˆ ˆcos sin sin cos Re

2

E x B y E y B x

n

mag eleele mag

I r z

c k
    



−

⊥ ⊥ ⊥ ⊥

⊥

+ + +
=

 
 = − + + −
 
 

s s s s
s

y x x y

  (A19)

  

This matches the result in  [12] for the 2D-unpolarized Gaussian beam, i.e. ( ) ( )
( )

2

n

E n M n ⊥

⊥ ⊥= =
s

s s  

(of course in the Gaussian case 0= ). It is important to compare this 2D-unpolarized result to 

the case of 2D-polarized light. For a 2D-x polarized electric field the dual symmetric spin is  
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( ) ( ) ( )

( ), 1
ˆ ˆsin cos Re ,

E x pol E x B y

mag elec

I r z

c k
  



−

⊥ ⊥ ⊥+

  
= − 
  

s = s s

x y
  (A20)

  

and what we see is that unlike the 2D polarization-independent optical helicity density 

contribution in the main manuscript which is completely independent of polarization, the 

transverse spin angular momentum density is largely independent but  

 ( ) ( ).unpolarized polarized⊥ ⊥s s  (A21) 

For example, an electric dipole probe interacting with the transverse spin density of a 2D-

unpolarized beam would couple to  

 ( ) ( ),1 1
ˆ ˆsin cos Re ,

2

E n

ele ele

I r z

c k
  


⊥

 
 = −
 
 

s x y  (A22)  

whereas for a 2D-x polarized electric field the spin density experienced by the electric dipole 

is  

 ( ) ( ), 1
ˆ cos Re

E x pol

elec

I r z

c k
 



−

⊥ = −s y . (A23) 
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