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Optical helicity of unpolarized light
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Like energy and momentum, optical helicity is a fundamental dynamical property of light. In the prevalent
plane wave and paraxial description of light the optical helicity is directly proportional to the degree of circular
polarization, being zero for both linearly and unpolarized fields. Here it is shown that the nonparaxial fields
generated by tightly focused optical vortices which have the phase factor exp(i�φ) possess a contribution to the
optical helicity density that is completely independent of the polarization state of the source paraxial field. In
stark contrast to what is known in classical optics with plane waves and paraxial light, the physical consequence
is that unpolarized light can exhibit optical activity and chiral light-matter interactions.
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I. INTRODUCTION

Nonparaxial optical fields exhibit fascinating properties
compared to the plane waves and paraxial fields which
have dominated classical optics and light-matter interactions
for decades. In recent years, with the growth of modern
nano-optics and photonics, the extraordinary properties of
nonparaxial fields have found widespread utilization [1,2]. In
this work we refer to paraxial modes and propagating plane
waves as two-dimensional (2D) structured fields, in that they
may possess inhomogeneous spatial or polarization degrees of
freedom in the transverse (x, y) plane, but are homogenous in
the direction of propagation (z) [3]. Such 2D structured fields
are also usually examined in terms of their 2D polarization
states. Three-dimensional (3D) structured optical fields are
inhomogeneous along their direction of propagation; exam-
ples include evanescent waves or tightly focused laser beams,
the essential requirement being electromagnetic fields that are
spatially confined in some way or another. A crucial difference
between 2D and 3D structured light is that in addition to the
usually dominant transverse fields, the latter possess signifi-
cant longitudinal components of their electromagnetic fields
with respect to the direction of propagation. The nonparaxial
nature and 3D structure of spatially confined optical fields
has led to some remarkable light-matter interactions [4–7],
which are especially striking when compared to the prevailing
textbook description of light-matter interactions in terms of
propagating plane waves. Because all three spatial compo-
nents of the field vector generally play a role in nonparaxial
light, the theory of polarization has been extended to the 3D
case [8–10]. While generic 2D polarization is described by
four Stokes parameters, 3D polarization is characterized by
nine polarization parameters. Crucially, a totally unpolarized
2D field is at least half polarized in the 3D sense [11,12], and
for tightly focused unpolarized paraxial beams it has been
demonstrated that the focused field produces rings of light
which are locally fully polarized in a 3D sense [13,14].
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One of the extraordinary properties of nonparaxial opti-
cal fields is that they possess a transverse spin momentum,
orthogonal to the main direction of propagation [15–18].
Eismann et al. [12] have recently proven both theoretically
and experimentally that this transverse spin momentum is
largely independent of 2D polarization, and remarkably sur-
vives in 3D fields generated from a 2D unpolarized optical
source. This is in sharp contrast to longitudinal spin which is
directly related to 2D polarization. Subsequently, Chen et al.
[19] extended the theory to account for the electric field com-
ponent of the spin for focused random light of arbitrary degree
of polarization. Related to spin angular momentum is the
optical helicity, and in fact both are correlated to one another
by a continuity equation [20–23]. However, both contribute
to experimentally distinct observables, with spin producing
mechanical spinning motions of probe particles [15–17] while
optical helicity is proportional to the optical chirality for
monochromatic fields and is responsible for optical activity
and chiral light-matter interactions [24–31]. In the plane wave
case, it is well known that optical helicity is proportional
to the degree of 2D circular polarization: It is zero for 2D
linearly polarized or 2D unpolarized optical fields and takes
on its maximum value for 2D circular polarization. Here we
show that 3D structured light beams generated from a 2D
source which possesses the azimuthal phase factor exp(i�φ),
commonly referred to as optical vortices or twisted light [32],
acquire a nonzero contribution to the optical helicity density
that is fully independent of the 2D polarization state, be-
ing generated even by a 2D unpolarized optical vortex light
source. The striking physical consequence of this is that light
generated from totally unpolarized paraxial light can exhibit
optical activity.

II. OPTICAL HELICITY

Optical helicity H in the Coulomb gauge is defined as
[20,22,28]

H =
∫

d3r
ε0c

2
(A⊥ · B − C⊥ · E ), (1)
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where A⊥ and C⊥ are the vector potentials and E and B
the electric and magnetic fields, respectively. The vector po-
tentials and electromagnetic fields are related to one another
as [20,22] E = −∇ × C⊥ = −Ȧ

⊥
and B = ∇ × A⊥ = −Ċ

⊥
.

The total helicity H (1) is both gauge and Lorentz invariant;
however the integrand, which represents the optical helic-
ity density h, is not Lorentz invariant. Lorentz invariance is
sacrificed to make h gauge invariant, important for calculat-
ing experimentally determinable physical quantities in optics
[23]. Noting that for monochromatic fields [22] iωA⊥ = E
and iωC⊥ = B, the cycle-averaged helicity density h̄ for clas-
sical fields is [22]

h̄ = −ε0c

2ω
Im(E∗ · B). (2)

Clearly both expressions (1) and (2) are conserved quan-
tities of the field, i.e., Ḣ, ḣ, ˙̄h = 0. For 2D structured light,
propagating plane waves, and even evanescent waves the opti-
cal helicity is directly proportional to the degree of circular
polarization h̄ ∝ σ , where σ = ±1 for circularly polarized
light and is zero for both linearly and unpolarized light [4].

In this work we are mainly interested in calculating h̄
for 3D structured Laguerre-Gaussian (LG) modes generated
from a 2D unpolarized source. The simplest way to calculate
this is to average the conserved quantity over two orthogonal
2D polarization states on the Poincaré sphere. We therefore
choose to average over two electric fields, one linearly polar-
ized in the x direction and the other in the y direction (with
the corresponding magnetic fields polarized in the y and –x
directions, respectively).

III. OPTICAL HELICITY OF UNPOLARIZED LIGHT

The electric field for a 2D-x polarized monochromatic 3D
LG mode in the first postparaxial approximation is [33,34]

ELG = E0

{
x̂ + ẑ

i

k

(
γ cos φ − i�

r
sin φ

)}
uLG

�,p(r, φ, z), (3)

where E0 is the field amplitude, γ = { |�|
r − 2r

w2(z) +
ikr

R(z)− 4r
w2(z)

L|�|+1
p−1

L|�|
p

}, and uLG
�,p(r, φ, z) is [35,36]

uLG
�,p(r, φ, z)

√
2p!

πw2
0 (p + |�|!)

w0

w(z)

( √
2r

w(z)

)|�|
L|�|

p

[
2r2

w2(z)

]

× exp[−r2/w2(z)] exp i[kz + �φ − ωt + kr2/2R(z)

− (2p + |�| + 1)ξ (z)]. (4)

� ∈ Z is the pseudoscalar topological charge; p is the radial
index, and all other quantities have their usual meanings. The
x̂-dependent term in (3) is the transverse field component
and taken alone represents a 2D structured and polarized LG
mode; the ẑ-dependent term is the longitudinal field, respon-
sible for 3D structure. The magnitude of the longitudinal
component is proportional to λ/w0, i.e., the ratio of the in-
put wavelength to the beam waist, becoming larger the more
tightly focused the field is. The corresponding magnetic field
is given by

BLG = B0

{
ŷ + ẑ

i

k

(
γ sin φ + i�

r
cos φ

)}
uLG

�,p(r, φ, z). (5)

Inserting (3) and (5) into (2) gives the optical helicity
density as

h̄x = −Re
I (r, z)

cω

�

k2r
γ , (6)

where I (r, z) = cε0
2 E2

0 |uLG
�,p|2 is the input beam intensity. It

is crucial to realize that this optical helicity density stems
purely from the longitudinal field components and so is not
exhibited by 2D structured light. It is proportional to �, and
so is unique to 3D structured beams that possess an azimuthal
phase exp(i�φ). Optical helicity of a 2D structured field comes
purely from the degree of 2D circular polarization of the
transverse fields.

For the orthogonally polarized beam the electric and mag-
netic fields are

ELG = E0

{
ŷ + ẑ

i

k

(
γ sin φ + i�

r
cos φ

)}
uLG

�,p(r, φ, z), (7)

BLG = B0

{
−x̂ − ẑ

i

k

(
γ cos φ − i�

r
sin φ

)}
uLG

�,p(r, φ, z).

(8)

Inserting (7) and (8) into (2) gives

h̄y = −Re
I (r, z)

cω

�

k2r
γ , (9)

and for unpolarized (n) light the optical helicity density h̄n is
therefore

h̄n = h̄x + h̄y

2
= h̄x. (10)

This optical helicity density is fully independent of the
2D polarization of the transverse field. For example, taking a
paraxial 2D structured vortex and tightly focusing it to create
a 3D structure, the ensuing optical helicity density contri-
bution (10) generated is completely independent of the 2D
polarization state of the input paraxial structured mode. The
2D polarization independent optical helicity density (10) is
plotted in Fig. 1 at w0. The focal plane is concentrated upon
because helicity in the far field is purely a measure of 2D
circular polarization [37]. For cases where p = 0 we produce
two distinct rings of helicity density with different signs, and
in the case of |�| = 1 we produce an on-axis helicity density.
The magnitude of the optical helicity density in the outer
ring is smaller than the inner ring and of the opposite sign.
Small probe chiral particles and nanostructures in the focal
region will experience differential light-matter interactions
depending on their position in the transverse plane and their
handedness. For example, comparison of Figs. 1(a) and 1(b)
shows that a chiral particle of a given handedness positioned
in the center of the focal spot of a tightly focused 2D unpo-
larized LG (|�| = 1, p = 0) beam will absorb or scatter the
� = 1 at a different rate to the � = −1 source beam. The
case of p = 0 has been concentrated on in Fig. 1 because of
the fact this is the radial index predominantly implemented
in experiments involving LG beams. However, (10) is gen-
eral and applies to any mode (�, p). Increasing p has two
effects: firstly, (2p + 2) rings of helicity density are produced
in general and secondly, we increase the relative magnitude
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FIG. 1. Normalized 2D polarization independent optical helicity density (10) at w0(z = 0). p = 0 in (a–d).

of the longitudinal fields responsible for the 2D polarization
independent helicity density because increasing p leads to
larger transverse field gradients and thus larger longitudinal
field components.

It is important to note that this 2D polarization independent
contribution to the optical helicity density we are concerned
with does not contribute to the integrated value of optical
helicity:

H =
∫

h̄d2r = 0. (11)

Its experimental observation therefore requires particles
smaller than the transverse dimension of the focal field.

It must be emphasized that this 2D polarization indepen-
dent contribution to the optical helicity density is proportional
to � and so linearly or randomly polarized Gaussian or
Hermite-Gaussian beams, for example, do not possess it re-
gardless of whether they are 2D or 3D structured. The input
2D beam must possess the phase factor exp(i�φ), so Bessel
beams, for example, would also display this 2D polarization
independent optical helicity density contribution. The reason
for this is that the origin of the longitudinal fields of 3D modes
which generate this 2D polarization independent optical he-
licity density are in the gradients of the transverse fields, i.e.,
∝ ∂r + ∂φ , and it is the azimuthal gradient which provides the
unique �-dependent longitudinal component.

Our result for a 2D unpolarized 3D LG beam can be de-
rived via an alternative method. The optical helicity density
generated for a 3D field generated from a 2D circularly polar-
ized paraxial LG mode is [34]

h̄σ = I (r, z)

cω

{
σ + 1

2k2

[
σ (Reγ )2 − 2�

r
Reγ + �2σ

r2

]}
,

(12)

where σ = ±1, the positive sign corresponding to a left-
handed input and the negative sign right-handed. Adding the
optical helicity densities calculated for the orthogonal polar-
izations σ = 1 and σ = −1 together and averaging the result
gives the 2D unpolarized result:

h̄n = h̄|σ | + h̄−|σ |

2
= −Re

I (r, z)

cω

�

k2r
γ , (13)

which gives the identical optical helicity contribution as the
method of averaging the optical helicity densities of two or-
thogonal linear polarizations (10). This alternative method
of calculation equally proves that there is an optical helicity
density which is 2D polarization independent in 3D vortex
beams. It is also important to highlight that the middle term
in square brackets in (12) is the 2D polarization independent
optical helicity density term [i.e., (6), (9), (10), and (13)] and
so we may also conclude that even when the input source field
is 2D circularly polarized this 2D polarization independent
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contribution survives and is therefore robust again spin-orbit
interactions of light [5].

IV. DISCUSSION

As mentioned above, recently it was theoretically and ex-
perimentally shown that transverse spin angular momentum
is largely independent of the polarization state of the input 2D
field in both focused light and evanescent waves [12]. In their
work the authors make the comment that “However, in our
case of an unpolarized source, the helicity and longitudinal
spin vanish.” We are able to directly compare our results here
to those in [12]. The fundamental Gaussian mode is simply
LG00 and � = 0 in (13) shows that for a Gaussian beam h̄n = 0
in agreement with [12]. The input 2D field which generates
the 3D Gaussian field and evanescent wave in [12] responsible
for the 2D polarization independent transverse spin and zero
helicity density does not possess the phase factor exp(i�φ).
An alternative physical interpretation to that given below (10)
is that this azimuthal phase leads to the canonical momen-
tum density having an azimuthal component, which when
projected onto the 2D polarization independent (in the dual
symmetric sense; see below) transverse spin angular momen-
tum density leads to a nonzero helicity density for unpolarized
light as we have shown here. In the case of a Gaussian beam
[4] or evanescent wave [38] the canonical momentum density
is purely in the longitudinal direction, and so even though
these optical fields may possess a transverse spin density when
generated from an unpolarized source, its projection on their
canonical momentum density to yield the helicity gives zero
in any circumstances.

Another point worth comparing between optical helicity
density and transverse spin momentum density is that in
[12] it is stated that the transverse spin angular momentum
is “largely independent of the polarization state.” The dual
symmetric transverse spin s⊥ = sE

⊥ + sB
⊥ is fully independent

of the polarization state, but the corresponding electric and
magnetic spatial distributions do depend on the input 2D
polarization, and this has important consequences in exper-
imental observations due to the electric-bias nature of most
materials (see the Appendix). However, the optical helicity
density contribution studied in this work is fully independent
of 2D polarization in every respect, including its interaction
with matter. The electric-magnetic asymmetry of matter does
not influence optical helicity because by its very nature it
couples to the interferences between electric and magnetic
dipoles of chiral matter. This agrees with the fact that the
dual symmetric and dual asymmetric optical helicities are
identical [22,34].

In this work we have highlighted a contribution to the
optical helicity density for 3D vortex beams which is fully in-
dependent of the 2D polarization state of the source, surviving
even when the source is 2D unpolarized, and that its gener-
ation requires the incident optical field to possess the phase
factor exp(i�φ). The input 2D fields with this phase structure
before spatial confinement possess zero optical helicity but
they are geometrically chiral; i.e., they possess a nonzero
Kelvin’s chirality [39]. In contrast, the Kelvin’s chirality of
an unpolarized 2D Gaussian beam or propagating plane wave
is zero. As such, it is only optical fields which possess a

nonzero Kelvin’s chirality which have the capacity to gener-
ate the 2D polarization independent optical helicity density
contribution. Interestingly Kelvin’s chirality does not interact
(in a nonmechanical, spectroscopic sense) with chiral matter
in the dipole approximation; multipole couplings of electric
quadrupole nature or higher are required [40]. However, the
2D polarization independent optical helicity density contri-
bution generated by these beams with Kelvin’s chirality does
interact via the interferences of electric and magnetic dipoles
[37,41,42]. Is it therefore legitimate to suggest that there is
a relationship between Kelvin’s chirality and optical helicity,
and in certain scenarios the two become coupled? This is what
Nechayev et al. [39] propose. The problem is that just like
geometrical chirality of matter, there is seemingly no satisfac-
tory way to quantify the scale-dependent Kelvin’s chirality,
and fundamentally there is of course no quantum operator
for chirality.

Observation of an optical property necessarily requires
a suitable light-matter interaction. Experimental observation
of the 2D polarization independent contribution to the opti-
cal helicity density would be straightforward in this regard.
For example, the experimental setup in Ref. [42] could very
easily be modified to prove that 3D optical vortices pos-
sess a 2D polarization independent optical helicity density
contribution by simply comparing the transmission of 2D
unpolarized LG modes of � = ±1, p = 0 to that of any po-
larized Gaussian mode. Essential in any general experimental
setup aiming to observe the 2D polarization independent
optical helicity density of 3D vortex beams would be a
tight focus using a high numerical aperture (NA) lens and
chiral particles smaller than the transverse dimension w0.
Beyond these general considerations the signal magnitude
of any given light-matter interaction depends on the ma-
terial properties (i.e., molecular, plasmonic, etc.) and the
fundamental interaction itself. It is known that a number of
light-matter interactions are proportional to the optical he-
licity density [43], such as chiral optical forces, Rayleigh
and Raman optical activity, and vortex dichroism [44], all
of which provide a means to observe optical activity with
unpolarized light, something which could never be envisaged
with plane wave or paraxial light sources. This work there-
fore adds to the rapidly growing field of structured light and
chirality [41].

V. CONCLUSION

This work has revealed a further fascinating property of
optical vortices in that when tightly focused they acquire an
optical helicity density contribution which is fully indepen-
dent of the 2D polarization state of the generating paraxial
source, surviving even for unpolarized light. Remarkably,
unlike transverse spin which is a generic property of non-
paraxial optical fields, 2D polarization independent optical
helicity is solely attributable to nonparaxial optical vortices.
Unlike the polarization-dependent optical helicity which is
responsible for practically all currently known forms of op-
tical activity and chiral light-matter interactions, the present
study opens an avenue for the use of unpolarized light in
such studies, a remarkable result when placed in the context
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of classical optics and another exceptional feature of modern
nano-optics.
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APPENDIX: SPIN ANGULAR MOMENTUM DENSITY

The dual symmetric spin angular momentum density for
time-averaged monochromatic fields is [22]

s̄ = ε0

4ω
Im(E∗ × E + c2B∗ × B) ≡ s̄E + s̄B. (A1)

Using (3) in (A1), the electric transverse spin density
(which comes from the cross product of a transverse field
component with the longitudinal component) s̄E (x)

⊥ for a 2D-x
polarized 3D LG mode is

s̄E (x)
⊥ = −ŷ

I (r, z)

cω

1

k
Reγ cos φ. (A2)

Inserting the 2D-y polarized electric field (7) in (A1) we
get its spin density as

s̄E (y)
⊥ = x̂

I (r, z)

cω

1

k
Reγ sin φ. (A3)

The magnetic spin density contribution for the 2D-y polar-
ized magnetic field (5) (which corresponds to the x polarized
electric field) is

s̄B(y)
⊥ = x̂

I (r, z)

cω

1

k
Reγ sin φ. (A4)

The corresponding magnetic contribution for the 2D-y po-
larized electric field is calculated using (8) as

s̄B(−x)
⊥ = −ŷ

I (r, z)

cω

1

k
Reγ cos φ. (A5)

Therefore the 2D-unpolarized result for the dual symmetric
spin is calculated as

s̄n
⊥ =

(
s̄E (x)
⊥ + s̄B(y)

⊥
) + (

s̄E (y)
⊥ + s̄B(−x)

⊥
)

2

= 1

2

(− ŷ cos φ︸ ︷︷ ︸
elec

+ x̂ sin φ︸ ︷︷ ︸
mag

+ x̂ sin φ︸ ︷︷ ︸
elec

− ŷ cos φ︸ ︷︷ ︸
mag

) I (r, z)

cω

× 1

k
Reγ . (A6)

This matches the result in [12] for the 2D-unpolarized

Gaussian beam, i.e., s̄E (n)
⊥ = s̄M(n)

⊥ = s̄(n)
⊥
2 (of course in the

Gaussian case � = 0). It is important to compare this 2D-
unpolarized result to the case of 2D-polarized light. For a
2D-x polarized electric field the dual symmetric spin is

s̄E (x−pol)
⊥ = s̄E (x)

⊥ + s̄B(y)
⊥

= {
x̂ sin φ︸ ︷︷ ︸

mag

− ŷ cos φ︸ ︷︷ ︸
elec

} I (r, z)

cω

1

k
Reγ , (A7)

and what we see is that unlike the 2D polarization independent
optical helicity density contribution in the main part of the
paper, which is completely independent of polarization, the
transverse spin angular momentum density is largely indepen-
dent but

s̄⊥(unpolarized) �= s̄⊥(polarized). (A8)

For example, an electric dipole probe interacting with the
transverse spin density of a 2D-unpolarized beam would cou-
ple to

s̄E (n)
⊥ = 1

2

(
x̂ sin φ︸ ︷︷ ︸

elec

− ŷ cos φ︸ ︷︷ ︸
elec

) I (r, z)

cω

1

k
Reγ , (A9)

whereas for a 2D-x polarized electric field the spin density
experienced by the electric dipole is

s̄E (x−pol)
⊥ = − ŷ cos φ︸ ︷︷ ︸

elec

I (r, z)

cω

1

k
Reγ . (A10)
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