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Abstract
As meta-analysis of multiple diagnostic tests impacts clin-
ical decision making and patient health, there is an
increasing body of research in models and methods for
meta-analysis of studies comparing multiple diagnostic
tests. The application of the existing models to compare the
accuracy of three or more tests suffers from the curse of
multi-dimensionality, that is, either the number of model
parameters increases rapidly or high dimensional inte-
gration is required. To overcome these issues in joint
meta-analysis of studies comparing T > 2 diagnostic tests
in a multiple tests design with a gold standard, we propose
a model that assumes the true positives and true negatives
for each test are conditionally independent and binomially
distributed given the 2T-variate latent vector of sensitivities
and specificities. For the random effects distribution, we
employ a one-factor copula that provides tail dependence
or tail asymmetry. Maximum likelihood estimation of the
model is straightforward as the derivation of the likelihood
requires bi-dimensional instead of 2T-dimensional integra-
tion. Our methodology is demonstrated with an extensive
simulation study and an application example that deter-
mines which is the best test for the diagnosis of rheumatoid
arthritis.
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1 INTRODUCTION

The identification of the most accurate diagnostic test for a particular disease contributes to the
prevention of unnecessary risks to patients and healthcare costs. Diagnostic test accuracy studies
aim to quantify the diagnostic accuracy of a new test in relation to the current perfect reference
standard, also known as gold standard.

Clinical and policy decisions are usually made on the basis of the results from many diagnostic
test accuracy studies on the same research question. The considerably large number of diagnos-
tic test accuracy studies has led to the use of meta-analysis. The purpose of a meta-analysis of
diagnostic test accuracy studies is to combine information over different studies, and provide an
integrated analysis that will have more statistical power to detect an accurate diagnostic test than
an analysis based on a single study. As the accuracy of a diagnostic test is commonly measured by
a pair of indices such as sensitivity and specificity, synthesis of diagnostic test accuracy studies is
the most common medical application of multivariate meta-analysis (Jackson et al., 2011). Most
of the existing meta-analysis models and methods, when a perfect reference standard is avail-
able, have mainly focused on a single test (e.g., Chu & Cole, 2006; Reitsma et al., 2005; Rutter &
Gatsonis, 2001).

However, as the understanding of a particular disease increases, along with technological
advances, the comparative test accuracy of more than one diagnostic test is of interest. As summa-
rized by Takwoingi et al. (2013), diagnostic test accuracy studies can be comparative when they
assess two or more tests or non-comparative when they assess one diagnostic test. Estimates of
comparative test accuracy can be obtained from either category of studies, but the ones from the
latter category are confounded by the study setting. The robust comparative studies of diagnos-
tic test accuracy use either a multiple test (also called paired or crossover) design, in which all
patients undergo all tests together with the perfect reference standard, or more rarely, a random-
ized (also called parallel) design, in which all patients undergo the perfect reference standard test
but are randomly allocated to have only one of the other tests. A multiple test design is statistically
much more efficient, in that one needs much smaller sample sizes to detect a given difference in
test accuracy, compared with a randomized design.

As meta-analysis of multiple diagnostic tests impacts clinical decision making and patient
health, there is an increasing body of research that focuses on the development of meta-analysis
models and methods for the synthesis of studies comparing multiple diagnostic tests. Trikali-
nos et al. (2014) were the first who developed a model for the joint meta-analysis of studies
comparing two diagnostic tests in a multiple tests design with a gold standard. They proposed
a multinomial generalized linear mixed model (GLMM) which assumes independent multino-
mial distributions for the counts of each combination of test results in diseased patients and the
counts of each combination of test results in non-diseased patients, conditional on the trans-
formed latent true positive rate (TPR) and false positive rate (FPR) for each test, and latent
joint TPR and FPR, which capture information on the agreement between the two tests in each
study. Dimou et al. (2016) extended the bivariate model of Reitsma et al. (2005), which jointly
meta-analyses the study-estimates of sensitivity and specificity for the case of a single test, to the
case of two tests. They modelled the transformed study-estimates of TPR and FPR of the two tests
using a quadrivariate normal distribution, with the information on the agreement between the
two tests incorporated in the calculation of the within-study covariance matrix which is assumed
fixed. Nikoloulopoulos (2020c) proposed a multinomial 1-truncated D-vine copula mixed model
for the joint meta-analysis of studies comparing two diagnostic tests, which assumes indepen-
dent multinomial distributions for the counts of each combination of test results in diseased and
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non-diseased patients, conditional on the latent vector of probabilities of each combination of test
results in diseased and non-diseased patients. Their proposed model includes the multinomial
GLMM (Trikalinos et al., 2014) as a special case, but can also operate on the original scale of the
latent proportions.

As the information on the agreement between the two tests is usually not available from all
the primary studies, Hoyer and Kuss (2018) proposed a model that is solely based on the infor-
mation from the two (one per test) 2 × 2 tables with the number of true positives, true negatives,
false negatives and false positives per study. They extended the bivariate generalized mixed model
(GLMM) proposed by Chu and Cole (2006) to the quadrivariate case. The proposed quadrivari-
ate GLMM assumes that the true positives and true negatives from the two tests are conditionally
independent and binomially distributed given the bivariate latent pairs of transformed sensitivity
and specificity, which are quadrivariate normally distributed. Nikoloulopoulos (2019) generalised
the quadrivariate GLMM by proposing a model that instead links the four random effects using
a quadrivariate D-vine copula rather than the quadrivariate normal distribution.

However, for a particular disease there may be three (or more) diagnostic tests developed,
where each of the tests is subject to several studies (e.g., Takwoingi et al., 2013). The extension
of the aforementioned models (Dimou et al., 2016; Hoyer & Kuss, 2018; Nikoloulopoulos, 2019,
2020c; Trikalinos et al., 2014) to compare the accuracy of more than two tests suffers from the
curse of multi-dimensionality, i.e., either the number of model parameters increases rapidly or
high dimensional integration is required. The quadrivariate GLMM (Hoyer & Kuss, 2018) and
D-vine copula mixed model (Nikoloulopoulos, 2019) although they can have a moderate number
of model parameters, they require 2T-dimensional integration, where T is the number of tests.
The multinomial GLMM (Trikalinos et al., 2014) and 1-truncated D-vine copula mixed model
(Nikoloulopoulos, 2020c) that both consider the case the test results are cross-classified do not
only require high-dimensional integration, but also their model parameters increase rapidly. For
example they have 2(2T − 1) parameters to only model the probabilities of each combination of
tests results in diseased and non-diseased patients.

In this paper to overcome the drawbacks in existing models for the joint meta-analysis of
studies comparing T > 2 diagnostic tests in a multiple test design with a gold standard, we
propose a model that assumes the true positives and true negatives for each test are condi-
tionally independent and binomially distributed given the 2T-variate latent (random) vector of
(transformed) sensitivities and specificities. For the random effects distribution, we employ an
one-factor copula (Kadhem & Nikoloulopoulos, 2021; Krupskii & Joe, 2013; Nikoloulopoulos &
Joe, 2015). The one-factor copula can provide, with appropriately chosen linking copulas, asym-
metric dependence structure as well as tail dependence (dependence among extreme values) as it
is an 1-truncated C-vine copula (Brechmann et al., 2012) rooted at the latent variable∕factor. Joe
et al. (2010) have shown that by choosing bivariate linking copulas appropriately, vine copulas
can have a flexible range of lower∕upper tail dependence, and different lower∕upper tail depen-
dence parameters for each bivariate margin. Hence, the factor copula random effects model will
be useful when there exists tail asymmetry or tail dependence in the latent sensitivities and speci-
ficities, so that the multivariate normality assumption is not valid. With an one-factor copula,
dimension reduction is achieved as the dependence among the latent sensitivities and specificities
is explained by one other latent variable∕factor. Hence, the proposed model has 2T dependence
parameters instead of T(2T − 1), but more importantly its derivation requires bi-dimensional
instead of 2T-dimensional integration.

The remainder of the paper proceeds as follows. Section 2 introduces the one-factor cop-
ula mixed model for the comparison of multiple diagnostic tests in a multiple tests design with
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a gold standard and Section 3 discusses its relationship with the 2T-variate GLMM. Section 4
deduces summary receiver operating characteristic (SROC) curves from the proposed model
through quantile regression techniques. Section 5 provides a fast and efficient maximum like-
lihood (ML) estimation technique based on dependent Gauss-Legendre quadrature points that
have an one-factor copula distribution and Section 6 contains small-sample efficiency calcu-
lations to investigate the effect of misspecifying the random effects distribution on parameter
estimators and standard errors. Section 7 applies our methodology to data from a meta-analysis of
diagnostic tests for rheumatoid arthritis. We conclude with some discussion in Section 8, followed
by a brief section with software details.

2 THE ONE-FACTOR COPULA MIXED MODEL

We first introduce the notation used in this paper. Let i be an index for the individual stud-
ies, j an index for the test outcome (0:negative; 1:positive), k an index for the disease status (0:
non-diseased; 1:diseased) and t an index for the diagnostic test. The frequency data yijkt, i =
1, … ,N, j = 0, 1, k = 0, 1, t = 1, … ,T, corresponding to a combination of index test and dis-
ease in study i for test t, form a 2 × 2T table (Table 1), that is T ‘classic’ 2 × 2 tables. We assume
that the gold standard is the same for the T tests, i.e. yi+01 = · · · = yi+0T and yi+11 = · · · = yi+1T .

The within-study model assumes that the number of true positives Yi11t and true neg-
atives Yi00t for t = 1,… , T are conditionally independent and binomially distributed given
(X1t,X0t) = (x1t, x0t), where (X1t,X0t) denotes the bivariate latent pair of (transformed) sensitivity
and specificity for the test t. That is

Yi11t|X1t = x1t ∼ Binomial
(

yi+1t, l−1(x1t)
)
;

Yi00t|X0t = x0t ∼ Binomial
(

yi+0t, l−1(x0t)
)
, (1)

for t = 1,… , T, where l(⋅) is a link function. We prefer to use notation that distinguishes unob-
served from observed variables. For the observed variables Yi11t,Yi00t we use the index i since they
are observed per individual study i, but this is not the case for the latent variables (random effects)
X1t,X0t and thus we suppress index i.

For the between studies model, there are different latent variables (X1t,X0t) for each test t,
but they are dependent. To model the dependence among the latent variables Xkt, k = 0, 1, t =
1, … ,T we employ copulas. A copula is a multivariate cumulative distribution function (cdf)
with uniform U(0, 1) margins (Joe, 1997, 2014). The power of copulas for dependence modelling
is due to the dependence structure being considered separate from the univariate margins; see,
for example, section 1.6 of Joe (1997). For k = 0, 1, t = 1,… , T denote the univariate cdf of Xkt by
F (⋅; l(!kt), "kt), where !kt is the meta-analytic parameter of sensitivity (k = 1) or specificity (k = 0)

T A B L E 1 Data from an individual study in a 2 × 2T table

Disease Disease Disease

Test 1 – + … Test t – + … Test T – +

− yi001 yi011 … − yi00t yi01t … − yi00T yi01T

+ yi101 yi111 … + yi10t yi11t … + yi10T yi11T

Total yi+01 yi+11 … Total yi+0t yi+1t … Total yi+0T yi+1T
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T A B L E 2 The choices of the F(⋅; l(!), ") and l in the one-factor copula mixed model

F(⋅; l(!), ") l ! "

N(#, $) Logit l−1(#) $

Beta(!, %) Identity ! %

for test t, "kt is the between-study variability for sensitivity (k = 1) or specificity (k = 0) for test t;
the choices of F(⋅; l(!), ") and l that are given in Table 2. In multivariate models with copulas, a
copula or multivariate uniform distribution is combined with a set of univariate margins. That is,
if a 2T-dimensional parametric family of copulas C(⋅; #) is combined with the parametric model
F (⋅; l(!kt), "kt), then

C
(

F(x11; l(!11), "11), … ,F(x1T; l(!1T), "1T),F (x01; l(!01), "01) , … ,F (x0T; l(!0T), "0T);#
)

is a multivariate parametric model with univariate margins F (⋅; l(!kt), "kt) , k = 0, 1, t = 1, … ,T.
This is equivalent to assuming that the latent variables Xkt, k = 0, 1, t = 1, … ,T have been trans-
formed to standard uniform latent variables Ukt = F (Xkt; l(!kt), "kt) , k = 0, 1, t = 1, … ,T. So
we assume that (U11, … ,U1T ,U01, … ,U0T) is a random vector with Ukt ∼ U(0, 1) and joint cdf
given by C(u11, … ,u1T ,u01, … ,u0T; #). To this end, the stochastic representation of the between
studies model takes the form

(
F(X11; l(!11), "11), … ,F (X1t; l(!1t), "1t) , … ,F (X1T; l(!1T), "1T),

F (X01; l(!01), "01) , … ,F (X0t; l(!0t), "0t) , … ,F (X0T; l(!0T), "0T)
)
∼ C(⋅;#). (2)

The models in (1) and (2) together specify a copula mixed model with joint likelihood

L(!1,!0, "1, "0,#)

=
N∏

i=1 ∫[0,1]2T

{ T∏
t=1

[
g
(

yi11t; yi+1t, l−1
(

F−1 (u1t; l(!1t), "1t)
))

g
(

yi00t; yi+0t, l−1
(

F−1
(

u0t;

l(!0t), "0t
)))]}

dC(u11, … ,u1T ,u01, … ,u0T;#) (3)

where g(y;n,!) =
(

n
y

)
!y(1 − !)n−y, y = 0, 1, … ,n, 0 < ! < 1, is the binomial probability mass

function (pmf). As the joint likelihood in Equation (3) involves 2T-dimensional numerical inte-
gration, we avoid multidimensional integration via an 1-factor copula model to account for the
between-studies dependence.

In the one-factor copula model, the latent variables U11, … ,U1T ,U01, … ,U0T are assumed
to be conditionally independent given a univariate latent variable V ∼ U(0, 1). The univariate
latent variable V drives the dependence between the latent variables Xkt, k = 0, 1, t = 1, … ,T,
corresponding to the latent sensitivity (k = 1) and latent specificity (k = 0) for test t. For
k = 0, 1, t = 1, … , T denote the bivariate cdf and density of (Ukt,V) by Ckt,V (ukt, v; &kt)
and ckt,V (ukt, v; &kt) =

'Ckt,V (ukt,v;&kt)
'ukt'v , respectively, and the conditional copula cdf of Ukt|V by

Ckt|V (ukt|v; &kt) = Pr(Ukt ≤ ukt|V = v) = 'Ckt,V (ukt,v;&kt)
'v ; the parameter &kt is the bivariate copula

parameter, denoting the association between Xkt and the latent variable V , and is separated
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from the marginal parameters !kt, "kt as the copula Ckt,V (ukt, v; &kt) associated with the latent
pair (Xkt,V) is invariant by monotone increasing transformations of the margins. Then, the
2T-dimensional one-factor copula cdf and density with dependence parameter vector # =
(&11, … , &1t, … , &1T , &01, … , &0t, … , &0T) are

C(u11, … ,u1t, … ,u1T ,u01, … ,u0t, … ,u0T;#) = ∫
1

0

T∏
t=1

C1t|V (u1t|v; &1t)C0t|V (u0t|v; &0t)dv, (4)

and

c(u11, … ,u1t, … ,u1T ,u01, … ,u0t, … ,u0T;#) = ∫
1

0

T∏
t=1

c1t,V (u1t, v; &1t)c0t,V (u0t, v; &0t)dv, (5)

respectively (Krupskii & Joe, 2013). It is seen that the 2T-variate density∕cdf decomposes in an
one-dimensional integral of a product of 2T bivariate copula densities∕cdfs. Using the one-factor
copula density in Equation (5) the joint likelihood in Equation (3) takes the form

L(!1,!0, "1, "0,#)

=
N∏

i=1 ∫[0,1]2T

{ T∏
t=1

[
g
(

yi11t; yi+1t, l−1
(

F−1(u1t; l(!1t), "1t
))
)

g
(

yi00t; yi+0t, l−1
(

F−1(u0t;

l(!0t), "0t
)))

]

∫
1

0

{ T∏
t=1

[
c1t,V (u1t, v; &1t)c0t,V (u0t, v; &0t)

]
}

dv
}

du11, … , du1T du01, … , du0T

=
N∏

i=1 ∫
1

0

{ T∏
t=1

[

∫
1

0

{
g
(

yi11t; yi+1t, l−1
(

F−1 (u1t; l(!1t), "1t)
))

c1t,V (u1t, v; &1t)
}

du1t

∫
1

0

{
g
(

yi00t; yi+0t, l−1
(

F−1 (u0t; l(!0t), "0t)
))

c0t,V (u0t, v; &0t)
}

du0t

]}
dv. (6)

It is shown that the joint likelihood is represented as an one-dimensional integral of a function
which in turn is a product of 2T one-dimensional integrals. As a result, 2T-dimensional numerical
integration has been avoided.

In addition to the computational advancements the proposed model offers, it can provide, with
appropriately chosen linking copulas, asymmetric dependence structure as well as tail depen-
dence. The one-factor copula can be explained as an 1-truncated C-vine rooted at the latent
variable V (Kadhem & Nikoloulopoulos, 2021; Krupskii & Joe, 2013; Nikoloulopoulos & Joe,
2015). 2T-dimensional C-vine copulas can cover flexible dependence structures through the spec-
ification of 2T bivariate marginal copulas at level 1 and T(2T − 1) bivariate conditional copulas at
higher levels (Nikoloulopoulos et al., 2012). For the 2T-dimensional one-factor copula, the pairs
at level 1 are V ,Ukt, for k = 0, 1, t = 1, … , T, and for higher levels the (conditional) copula pairs
are set to independence. That is the 1-factor copula has 2T bivariate copulas Ckt,V (⋅; &kt) that link
Ukt, k = 0, 1, t = 1, … ,T with V in the 1st level of the vine and independence copulas in all the
remaining levels of the vine (truncated after the 1st level). Figure 1 depicts the graphical repre-
sentation of the 1-factor copula model. Joe et al. (2010) have shown that in order for a vine copula
to have (tail) dependence for all bivariate margins, it is only necessary for the bivariate copulas
in level 1 to have (tail) dependence and it is not necessary for the conditional bivariate copulas
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F I G U R E 1 Graphical representation of the 1-factor copula model which consists on 2T + 1 nodes with the
latent variables V ,Ukt = F(Xkt), k = 0, 1, t = 1, … ,T and 2T edges. Each edge is allied with a copula Ckt,V (; &kt)
associated with the latent pair (Xkt,V) with &kt being the bivariate copula parameter denoting the association
between Xkt, corresponding to the latent sensitivity (k = 1) and latent specificity (k = 0) for each test t, and the
latent variable V

in levels 2, … , 2T to have (tail) dependence. Hence, the (tail) dependence between the latent
variable V and each of the latent variables Ukt, k = 0, 1, t = 1, … ,T is inherited to the (tail)
dependence between the latent variables Ukt, k = 0, 1, t = 1, … ,T, i.e., between the untrans-
formed latent variables Xkt, k = 0, 1, t = 1, … ,T, corresponding to the latent sensitivity (k = 1)
and latent specificity (k = 0) for test t, through the dependence invariance property of copulas.

3 RELATIONSHIP WITH THE 2T-VARIATE GLMM

We show what happens when all the bivariate copulas Ckt,V (; &kt) are BVN and the univariate
distribution of the random effects is the N(#, $) distribution.

One can easily deduce that the within-study model in (1) is the same as in the 2T-variate
GLMM. Furthermore, when Ckt,V (; &kt) are all BVN copulas, then (4) becomes the copula of
the multivariate normal distribution with an one-factor correlation structure. Let Ckt,V (; &kt) be
the BVN copula with correlation parameter &kt. Let Φ and ( denote the standard normal cdf
and density function, and let Φ2(⋅; )) be the BVN cdf with correlation ). Then Ckt,V (u, v) =

Φ2(Φ−1(u),Φ−1(v); &kt) and Ckt|V (u|v) = Φ
(
Φ−1(u)−&ktΦ−1(v)√

1−&2
kt

)
. For (4), let ukt = Φ(zkt), where zkt =

xkt−l(!kt)
$kt

, to get a 2T-variate distribution with N(0, 1) margins. Then

C
(
Φ(z11), … ,Φ(z1t), … ,Φ(z1T),Φ(z01), … ,Φ(z0t), … ,Φ(z0T);#

)

= ∫
1

0

T∏
t=1

⎧
⎪
⎨
⎪⎩
Φ
⎛
⎜
⎜
⎜⎝

z1t − &1tΦ−1(v)√
1 − &2

1t

⎞
⎟
⎟
⎟⎠
Φ
⎛
⎜
⎜
⎜⎝

z0t − &0tΦ−1(v)√
1 − &2

0t

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭

dv

or C
(
Φ(z11), … ,Φ(z1t), … ,Φ(z1T),Φ(z01), … ,Φ(z0t), … ,Φ(z0T);#

)

= ∫
∞

−∞

T∏
t=1

⎧
⎪
⎨
⎪⎩
Φ
⎛
⎜
⎜
⎜⎝

z1t − &1tw√
1 − &2

1t

⎞
⎟
⎟
⎟⎠
Φ
⎛
⎜
⎜
⎜⎝

z0t − &0tw√
1 − &2

0t

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭
((w)dw. (7)
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This model is the same as the 2T-variate normal model with an one-factor correlation structure

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 · · · )11,1T )11,01 · · · )11,0T

⋮ ⋱ ⋮ ⋮ ⋮ ⋮

)1T,11 · · · 1 )1T,01 · · · )1T,0T

)01,11 · · · )01,1T 1 · · · )1T,0T

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

)0T,11 · · · )0T,1T )0T,01 · · · 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

with

)k1t1,k2t2 = &k1t1&k2t2 , k1, k2 = 0, 1, t1, t2 = 1, … ,T. (8)

This occurs because the multivariate cdf in Equation (7) comes from the representation

Zkt =
Xkt − l(!kt)

$kt
= &ktW +

√
1 − &2

kt*kt, k = 0, 1, t = 1, … ,T, (9)

where W , *kt are i.i.d. N(0, 1) random variables (Krupskii & Joe, 2013; Nikoloulopoulos & Joe,
2015) and the partial correlation )k1t1,k2t2|W = )k1 t1 ,k2 t2−&k1 t1&k2 t2√

1−&2
k1 t1

√
1−&2

k2 t2

is zero due to the assumption of con-

ditional independence. As we assume conditional independence a structured correlation matrix
is exploited with 2T instead of T(2T − 1) correlation parameters.

The resulting random effects distribution for (X11, … ,X1t, … ,X1T ,X01, … ,X0t, … ,X0T) is
the 2T-variate normal distribution with mean vector $ = (l(!1), l(!0)) and variance-covariance
matrix

! =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

$2
11 · · · &11&1T$11$1T &11&01$11$01 · · · &11&0T$11$0T

⋮ ⋱ ⋮ ⋮ ⋮ ⋮

&1T&11$1T$11 · · · $2
1T &1T&01$1T$01 · · · &1T&0T$1T$0T

&01&11$01$11 · · · &01&1T$01$1T $2
01 · · · &1T&0T$1T$0T

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

&0T&11$0T$11 · · · &0T&1T$0T$1T &0T&01$0T$01 · · · $2
0T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

Hence, the proposed model has as special case the 2T-variate GLMM with an one-factor correla-
tion structure that has a latent additive structure as seen in Equation (9). Nevertheless, if other
bivariate copulas are used, then the one-factor copula mixed model has a latent structure that is
non-additive.

4 SUMMARY RECEIVER OPERATING CHARACTERISTIC
CURVES

Though typically the focus of meta-analysis has been to derive the summary-effect estimates,
there is increasing interest in alternative summary outputs, such as summary receiver operating
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characteristic (SROC) curves (e.g., Arends et al., 2008; Rücker & Schumacher, 2009). For the
2T-variate GLMM in the preceding section with the linear additive structure and dependence, the
SROC curve can be obtained through a characterization of the estimated BVN margin by a line
(Chu & Guo, 2009; Chu et al., 2010, 2012). Therefore, the model parameters control the shape
of the GLMM SROC curve which is restricted to be linear. Our general statistical model allows
for selection of bivariate copulas and univariate margins independently, i.e., there are no con-
straints in the choices of parametric bivariate copulas and univariate margins, hence can allow
for a non-linear shape of the SROC curves.

In line with our previous contributions in copula mixed models (Nikoloulopoulos, 2015,
2017, 2018a, 2018b, 2019, 2020a, 2020b, 2020c) in addition to the BVN copula with intermedi-
ate tail dependence, we use Frank with tail independence and Clayton with positive lower tail
dependence. For the latter we also use its rotated versions to provide negative upper-lower tail
dependence (Clayton rotated by 90◦), positive upper tail dependence (Clayton rotated by 180◦)
and negative lower-upper tail dependence (Clayton rotated by 270◦). We next proceed with the
derivation of the SROC curves from the one-factor copula mixed model. For the one-factor cop-
ula mixed model, the univariate parameters !kt, "kt, k = 0, 1, t = 1, … ,T, the copula parameters
&kt, k = 0, 1, t = 1, … ,T, the choice of the copula, and the choice of the univariate margin will
affect the shape of the SROC curves.

Let the joint cdf of (U1t,U0t) be given by the copula C1t,0t(⋅; &1t,0t). The copula parameters
&1t,0t, t = 1, … ,T can be derived using the following steps:

1. Convert the copula parameters &1t and &0t of Frank or (rotated) Clayton copulas to Kendall’s
+1t and +0t via the relations

+ =
{

1 − 4&−1 − 4&−2∫ 0
&

t
et−1 dt, & < 0

1 − 4&−1 + 4&−2∫ &0 t
et−1 dt, & > 0

, (10)

or

+ =
{
&∕(& + 2), by 0◦ or 180◦

−&∕(& + 2), by 90◦ or 270◦
, (11)

in Genest (1987), or Genest and MacKay (1986), respectively.
2. Convert the Kendall’s +1t and +0t to BVN copula parameters &1t and &0t using the inverse of the

relation

+ = 2
!

arcsin(&), (12)

in Hult and Lindskog (2002).
3. Convert the BVN copula parameters &1t and &0t to the correlation parameter )1t,0t via the

relation in Equation (8).
4. Convert the correlation parameter )1t,0t to Kendall’s +1t,0t via the relation (12).
5. Convert the Kendall’s +1t,0t to the copula parameter &1t,0t of Frank or (rotated) Clayton copula

via the inverses of the relations in Equations (10) or (11).

For the special case, when all the bivariate copulas are BVN, step 3 is sufficient to get the BVN
copula parameter &1t,0t = )1t,0t.
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Then, the SROC curves for the latent pair (X1t,X0t) for test t can be deduced through the
quantile regression techniques proposed by Nikoloulopoulos (2015):

1. Set C1t|0t(u1t|u0t; &1t,0t) = q;
2. Solve for the quantile regression curve u1t ∶= ũ1t(u0t, q; &1t,0t) = C−1

1t|0t(q|u0t; &1t,0t);
3. Replace ukt by F (xkt; l(!kt), "kt);
4. Plot x1t ∶= x̃1t(x0t, q) versus x0t.

As there is no priori reason to regress X1t on X0t instead of the other way around (Arends et al.,
2008), quantile regression curves of X0t on X1t are also derived in a similar manner. We use the
median regression curves (q = 0.5), along with the quantile regression curves with a focus on high
(q= 0.99) and low quantiles (q= 0.01), which are strongly associated with the upper and lower tail
dependence, respectively, imposed from each parametric family of bivariate copulas. These can
be seen as confidence regions, as per the terminology in Rücker and Schumacher (2009), of the
median regression curves. Finally, in order to reserve the nature of a bivariate response instead
of a univariate response along with a covariate, we plot the corresponding contour graph of the
bivariate copula density. The contour plot can be seen as the predictive region (analogously to
Reitsma et al., 2005) of the estimated pair (!1t,!0t) of the meta-analytic parameters of sensitivity
and specificity at test t.

To depict the different shapes of the SROC curves that are related to the tail dependence
behaviour of each parametric bivariate copula, in Figure 2 we plot the SROC curves and summary

F I G U R E 2 Summary receiver operating characteristic curves and summary operating points at
(!1t, 1 − !0t) along with their confidence and predictive regions from the one-factor copula mixed model with
BVN, Frank, Clayton by 90◦ and 270◦ copulas and normal margins with the same model parameters{
!1t = 0.7,!0t = 0.9, $1t = 1, $0t = 1, +1t,0t = −0.5

}
for test t. ■: summary operating point; red and green lines

represent the quantile regression curves x1t ∶= x̃1t(x0t, q) and x0t ∶= x̃0t(x1t, q), respectively; for q = 0.5 solid lines
and for q ∈ {0.01, 0.99} dotted lines (confidence region) [Colour figure can be viewed at wileyonlinelibrary.com]
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operating points at (!1t, 1 − !0t) along with their confidence and predictive regions from the
one-factor copula mixed model with BVN, Frank, Clayton by 90◦ and 270◦ copulas and normal
margins with the same model parameters

{
!1t = 0.7,!0t = 0.9, $1t = 2, $0t = 1, +1t,0t = −0.5

}
for

test t. Since the copula parameter &1t,0t of each family has different range, we use the Kendall’s
+1t,0t in order to be the same among the different parametric bivariate copulas. It is shown that as
the form of the copulas changes, typically the middle part of the SROC is similar as they have the
same dependence in the middle (+1t,0t = −0.5), but differs more for extreme values of the latent
sensitivity and specificity because of different tail behaviour of the bivariate copulas. The SROC
curve and its confidence region from the one-factor copula mixed model with BVN copulas and
normal margins are represented by lines and the shape of the predictive region is elliptical. Other
bivariate copulas provide non-elliptical shapes and the relationship between the latent sensitivity
and specificity is non-linear. Sharper corners of the predictive region (relative to ellipse) indicate
tail dependence.

5 MAXIMUM LIKELIHOOD ESTIMATION AND
COMPUTATIONAL DETAILS

The parameters (!11, … ,!1t, … ,!1T) ∶= !1 and (!01, … ,!0t, … ,!0T) ∶= !0 denote the
meta-analytic parameters for the sensitivities and specificities, respectively, while the uni-
variate parameters ("11, … , "1t, … , "1T) ∶= "1 and ("01, … , "0t, … , "0T) ∶= "0 denote the
between-study variabilities for the sensitivities and specificities, respectively. The parameter vec-
tor # of the random effects model is separated from the univariate parameters !1,!0, "1, "0 as
the random effects model is an 1-factor copula model with dependence parameter vector # that
does not involve the parameters of the within-studies model !1,!0, "1, "0. Estimation of the
model parameters (!1,!0, "1, "0,#) can be approached by the standard maximum likelihood (ML)
method, by maximizing the logarithm of the joint likelihood in Equation (3). The estimated
parameters can be obtained by using a quasi-Newton (Nash, 1990) method applied to the loga-
rithm of the joint likelihood. This numerical method requires only the objective function, i.e., the
logarithm of the joint likelihood, while the gradients are computed numerically and the Hessian
matrix of the second order derivatives is updated in each iteration. The standard errors (SE) of
the ML estimates can be also obtained via the gradients and the Hessian computed numerically
during the maximization process.

For one-factor copula mixed models of the form with joint likelihood as in Equation (3),
numerical evaluation of the joint pmf can be achieved with the following steps:

1. Calculate Gauss-Legendre (Stroud & Secrest, 1966) quadrature points {uq ∶ q = 1, … ,Nq}
and weights {wq ∶ q = 1, … ,Nq} in terms of standard uniform.

2. Numerically evaluate the joint pmf

∫
1

0

{ T∏
t=1

[
∫

1

0

{
g
(

yi11t; yi+1t, l−1
(

F−1(u1t; l(!1t), "1t
)))

c1t,V (u1t, v; &1t)
}

du1t

∫
1

0

{
g
(

yi00t; yi+0t, l−1
(

F−1 (u0t; l(!0t), "0t)
))

c0t,V (u0t, v; &0t)
}

du0t

]}
dv



NIKOLOULOPOULOS 1409

in a double sum:

Nq∑
q1=1

⎧
⎪
⎨
⎪⎩

wq1

T∏
t=1

⎡
⎢
⎢⎣

Nq∑
q2=1

{
wq2 g

(
yi11t; yi+1t, l−1

(
F−1

(
C−1

1t|V (uq2 |uq1 ; &1t); l(!1t), "1t
)))}

Nq∑
q2=1

{
wq2 g

(
yi00t; yi+0t, l−1

(
F−1

(
C−1

0t|V (uq2 |uq1 ; &0t); l(!0t), "0t
)))}⎤

⎥
⎥⎦

⎫
⎪
⎬
⎪⎭
,

where C−1
kt|V (u|v; &kt) is the inverse conditional bivariate copula cdf. Note that the independent

quadrature points {uq1 ∶ q1 = 1, … ,Nq} and {uq2 ∶ q2 = 1, … ,Nq} have been converted to
dependent quadrature points that have an one-factor copula distribution C(⋅; #).

With Gauss-Legendre quadrature, the same nodes and weights are used for different func-
tions; this helps in yielding smooth numerical derivatives for numerical optimization via
quasi-Newton (Nash, 1990). Our one-factor copula mixed model for meta-analysis of multiple
diagnostic tests is straightforward computationally as it requires the calculation of a double
summation over the quadrature points.

6 SMALL-SAMPLE EFFICIENCY—MISSPECIFICATION OF
THE RANDOM EFFECTS DISTRIBUTION

In this section, we study the small-sample efficiency and robustness of the ML estimation of the
one-factor copula mixed model. In Section 6.1, we gauge the small-sample efficiency of the ML
method in Section 5 and investigate the misspecification of either the parametric margin or bivari-
ate copula of the random effects distribution. In Section 6.2, we investigate the mixed model mis-
specification by using the D-vine copula mixed model proposed by Nikoloulopoulos (2019) as the
true model. That is we include a sensitivity analysis to the conditional independence assumption.

6.1 Misspecification of the parametric margin or bivariate
pair-copulas

We randomly generate 10,000 meta-analysis data sets with N = {10, 20, 50} studies in each data
set from an one-factor copula mixed model with both normal and beta margins that jointly
meta-analyses T = {2, 3, 4} diagnostic tests.

The simulation process is as below:

1. Simulate (u11, … ,u1T ,u01, … ,u0T) from an one-factor copula C(; %); % is converted to the
copula parameter vector # of Frank, (rotated) Clayton or BVN copulas via the inverses of the
relations in Equations (10) and (11 or 12), respectively.

2. For each test t in 1, … , T convert to proportions via

x1t = l−1 (F−1 (u1t; l(!1t), "1t)
)

x0t = l−1 (F−1 (u0t; l(!0t), "0t)
)
.
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3. Simulate the study size n from a shifted gamma distribution, i.e., n∼ sGamma
(- = 1.2, . = 0.01, lag = 30) and round off to the nearest integer.

4. Draw the number of diseased n1 from a B(n, 0.4) distribution and set n0 = n − n1.
5. For each test t in 1, … , T generate y11t and y00t from a B(n1, x1t) and B(n0, x0t) distribution,

respectively, and set y01t = n1 − y11t, y10t = n0 − y00t.

Representative summaries of findings on the performance of the ML method in Section 5 are
given in Table 3 and Supplementary Table 1 for 6-dimensional (T = 3) one-factor copula mod-
els with normal and beta margins, respectively. The true (simulated) bivariate copulas are the
Clayton and the Clayton copula rotated by 270◦ to handle the positive and negative dependen-
cies, respectively. True sensitivity !1 and specificity !0 vectors are (0.8, 0.7, 0.8) and (0.7, 0.8, 0.7),
respectively, the variability parameter vectors are "1 = "0 = (1, 1, 1) or "1 = "0 = (0.1, 0.1, 0.1) for
normal or beta margin, respectively, and the Kendall’s % = (0.6, 0.7, 0.5, −0.3, −0.4, −0.2). Under
each margin, 10,000 meta-analysis data sets are simulated with N = 50 studies in each data set. We
have estimated the one-factor copula mixed model with different bivariate copulas and margins.
Table 3 and Supplementary Table 1 contain the resultant biases, root mean square errors (RMSEs)
and standard deviations (SDs), along with average standard errors (ASEs), scaled by 100, for the
MLEs under different copula choices and margins. The standard errors of the MLEs are obtained
via the gradients and the Hessian that were computed numerically during the maximization
process.

Conclusions from the values in Table 1 and Supplementary Table 1 are the following:

• ML with the true one-factor copula mixed model is highly efficient according to the simulated
biases, SDs and RMSEs.

• The MLEs of !1,!0 are not robust to margin misspecification, e.g., in Table 3 (Supplementary
Table 1) where the true univariate margins are normal (beta) the scaled biases for the MLEs
of !02 for the various one-factor copula mixed models with beta (normal) margins range from
−4.16 (3.21) to −1.86 (4.70).

• The MLEs of !1,!0 are rather robust to bivariate copula misspecification, but their biases
increase when the assumed bivariate copulas have different tail dependence behaviour. For
example, in Table 3 (Supplementary Table 1) the scaled biases for the MLEs of !11 for the var-
ious one-factor copula mixed models with normal (beta) margins increase to −1.38 (−0.92)
and −3.71 (−2.27) when rotated Clayton copulas with opposite direction tail dependence and
Frank copulas with tail independence, respectively, are called.

• The MLEs of "1, "0 are rather robust to bivariate copula misspecification, but their biases
increase when the assumed bivariate copula has tail dependence of opposite direction from
the true bivariate copula. For example, in Table 3 (Supplementary Table 1) the scaled
biases for the MLEs of $02 (%02) for the various one-factor copula mixed models with nor-
mal (beta) margins range from −0.83 (−0.25) to 1.75 (0.05), but the scaled bias increases
to 6.85 (1.01) when rotated Clayton copulas with opposite direction tail dependence are
called.

• The ML estimates of +’s are robust to margin misspecification, as the copula remains invariant
under any series of strictly increasing transformations of the components of the random vector,
for example, in Table 3 the scaled bias of +̂13 is 1.81 for the true one-factor copula mixed model
and 1.57 for an one-factor copula mixed model with the true bivariate copulas but beta margins.
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T A B L E 4 Number of times each fitted one-factor copula mixed model under different copula choices and
margins has been selected when 10,000 meta-analysis data sets are generated with N = 50 studies in each data
set from the one-factor copula mixed model with Clayton and Clayton rotated by 270◦ copulas to handle the
positive and negative dependencies, respectively and normal or beta margins

True (simulated) margin

Margin Copula Normal Beta

Normal BVN 184 43

Cln {0◦, 270◦} 8125 1518

Cln {180◦, 90◦} 0 1

Frank 80 18

Beta BVN 58 221

Cln {0◦, 270◦} 1508 8040

Cln {180◦, 90◦} 0 1

Frank 45 158

The numbers of correct choices are boldfaced; Cln {0◦1 ,0◦2}; The bivariate copulas are the Clayton rotated by 0◦1 and 0◦2 to
handle the positive and negative dependencies, respectively.

We have chosen N = 50 studies as the chosen number of tests is T = 3, i.e., there are 3 × 2T = 18
parameters to be estimated. Our summaries agree with what we see in simulated data sets with
fewer studies as regard as to main parameters of interest. Nevertheless, the SDs and ASEs for the
Kendall’s +’s and variability parameters are larger for smaller sample sizes as 2T variability and
2T Kendall’s + parameters have to be estimated on the top of the 2T probability parameters that
are of the main interest. Trikalinos et al. (2014) also acknowledged these parameters are often not
well estimated for small sample sizes.

Because the number of parameters is the same between the models, we can use the
log-likelihood at the maximum likelihood estimates as a rough diagnostic measure for model
selection between the models. For vine copulas (one-factor copula is an 1-truncated C-vine cop-
ula), Dissmann et al. (2013) found that pair-copula selection based on likelihood seems to be better
than even using bivariate goodness-of-fit tests. The goodness-of-fit procedures involve a global
distance measure between the model-based and empirical distribution, hence they might not be
sensitive to tail behaviours and are not diagnostic in the sense of suggesting improved parametric
models in the case of small p-values (Joe, 2014, p. 254). A larger likelihood value indicates a model
that better approximates both the dependence structure of the data and the strength of depen-
dence in the tails. Table 4 presents the number of times each fitted model was chosen over the
10,000 simulation runs and reveals the true (simulated) model has been chosen for a considerable
large number of times.

6.2 Misspecification of the copula-mixed model—Sensitivity
analysis to the conditional independence

We show a sensitivity analysis to the conditional independence assumption. We randomly gener-
ate 10,000 meta-analysis datasets from the D-vine copula mixed model with both normal (Table 5)
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T A B L E 5 Simulation results when 10,000 meta-analysis data sets are generated with N = 22 studies in each
data set from the D-vine copula mixed model with normal margins and Clayton copulas rotated by 270◦ at level 1
and Clayton copulas at levels 2 and 3

Margin Copula !11 !12 !01 !02 &11 &12 &01 &02

Bias Normal BVN −0.07 −0.29 −0.21 −0.05 −3.29 −4.01 −2.07 −1.70

Cln {0◦, 270◦} −0.10 −0.29 −0.32 −0.06 −2.76 −3.36 −1.11 −2.07

Cln {180◦, 90◦} −0.68 −0.87 −0.10 −0.03 −0.15 −1.04 −0.84 0.14

Frank −1.33 −1.47 0.06 0.03 −2.53 −3.21 −1.69 −1.69

Beta BVN −1.58 −1.71 −4.31 −1.22 – – – –

Cln {0◦, 270◦} −1.64 −1.75 −4.46 −1.24 – – – –

Cln {180◦, 270◦} −2.39 −2.50 −4.08 −1.16 – – – –

Frank −2.64 −2.73 −4.14 −1.15 – – – –

SD Normal BVN 3.61 3.48 3.39 0.84 12.80 12.27 18.92 19.00

Cln {0◦, 270◦} 3.62 3.50 3.42 0.84 12.84 12.35 19.79 19.23

Cln {180◦, 90◦} 3.89 3.76 3.49 0.86 15.16 14.69 19.73 20.00

Frank 4.06 3.93 3.58 0.88 13.43 12.89 19.19 19.18

Beta BVN 3.35 3.25 3.58 1.06 2.68 2.55 4.02 1.51

Cln {0◦, 270◦} 3.37 3.28 3.65 1.10 2.76 2.63 4.26 1.57

Cln {180◦, 90◦} 3.72 3.62 3.61 1.09 3.38 3.23 4.11 1.62

Frank 3.74 3.67 3.83 1.13 2.89 2.76 4.20 1.55

ASE Normal BVN 3.38 3.31 3.22 0.80 12.07 11.84 17.15 17.57

Cln {0◦, 270◦} 3.22 3.15 3.04 0.77 10.75 10.51 15.55 16.50

Cln {180◦, 90◦} 3.26 3.19 3.15 0.81 11.78 11.55 16.34 16.85

Frank 3.34 3.25 3.11 0.78 11.95 11.67 16.55 17.34

Beta BVN 3.14 3.08 3.17 0.94 2.64 2.56 3.48 1.26

Cln {0◦, 270◦} 2.97 2.91 2.89 0.88 2.32 2.25 3.04 1.12

Cln {180◦, 90◦} 3.04 2.98 3.06 0.95 2.57 2.47 3.31 1.25

Frank 3.07 3.01 3.01 0.90 2.63 2.55 3.27 1.19

RMSE Normal BVN 3.61 3.49 3.40 0.84 13.22 12.91 19.03 19.07

Cln {0◦, 270◦} 3.62 3.51 3.43 0.85 13.14 12.80 19.82 19.34

Cln {180◦, 90◦} 3.95 3.86 3.49 0.86 15.16 14.73 19.75 20.00

Frank 4.27 4.19 3.58 0.88 13.67 13.28 19.27 19.25

Beta BVN 3.71 3.67 5.60 1.62 – – – –

Cln {0◦, 270◦} 3.74 3.71 5.76 1.65 – – – –

Cln {180◦, 90◦} 4.43 4.40 5.59 1.64 – – – –

Frank 4.58 4.57 5.64 1.61 – – – –

The biases, root mean square errors (RMSEs) and standard deviations (SDs), along with average standard errors (ASEs) for the
MLEs of the one-factor copula mixed model under different copula choices and margins are scaled by 100; Cln {0◦1 ,0◦2}: The
bivariate copulas are the Clayton rotated by 0◦1 and 0◦2 to handle the positive and negative dependencies, respectively; Nq = 25
quadrature points have been used.
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F I G U R E 3 Graphical representation of the 4-dimensional D-vine copula model with 3 levels. Level & has
5 − & nodes and 4 − & edges. At level 1 there are three bivariate copulas C11,01(⋅; +11,01), C01,12(⋅; +01,12) and
C12,02(⋅; +12,02) associated with the latent pairs (U11,U01), (U01,U12) and (U12,U02) with +11,01, +01,12 and +12,02 being
the bivariate copula parameters in Kendall’s + scale. At level & for & = 2, 3 there are 4 − & bivariate conditional
copulas that condition on & − 1 variables

and beta (Supplementary Table 2) margins for joint meta-analysis and comparison of two diag-
nostic tests using the algorithm in Nikoloulopoulos (2019). The D-vine copula mixed model
assumes full dependence among the tests as the D-vine copula is not truncated, i.e., there are
bivariate copulas not only at level 1 of the D-vine. At level 1 there are three bivariate copu-
las C11,01(⋅; +11,01), C01,12(⋅; +01,12) and C12,02(⋅; +12,02) associated with the latent pairs (U11,U01),
(U01,U12) and (U12,U02) with +11,01, +01,12 and +12,02 being the bivariate copula parameters in
Kendall’s + scale. At level & for & = 2, 3 there are 4− & bivariate conditional copulas that condition
on & − 1 variables and model the conditional dependence. Figure 3 depicts the representation of
the D-vine copula model. The true (simulated) D-vine copula mixed model uses Clayton copulas
rotated by 270◦ at level 1 and Clayton copulas at levels 2 and 3.

We set the number of studies N, the study size n, the disease prevalence, and the
true univariate and Kendall’s + parameters to mimic the rheumatoid arthritis data in
Nishimura et al. (2007). True sensitivity !1 and specificity !0 vectors are (0.679, 0.680) and
(0.826, 0.959), respectively, the variability parameter vectors are "1 = (0.711, 0.698) and "0 =
(1.033, 0.780) or "1 = (0.10, 0.10) and "0 = (0.15, 0.02) for normal or beta margin, respectively,
and the Kendall’s +’s as shown in Figure 3 are (+11,01, +01,12, +12,02, +11,12|01, +01,02|12, +11,02|01,12) =
(−0.156,−0.115,−0.243, 0.597, 0.331, 0.127), as estimated in Nikoloulopoulos (2019) who has pre-
viously fitted the D-vine copula mixed model to the rheumatoid arthritis data. Converting the
Kendall’s +’s to BVN copula parameters (correlations at level 1 and partial correlations at levels 2
and 3) via the inverse of the relation in (12) and then via the relations in (Joe, 2014, p. 297) to a
correlation matrix, viz.,
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reveals the implied strength of association between the tests.
We have estimated the one-factor copula mixed model with different bivariate copulas and

margins. Table 5 and Supplementary Table 2 contain the resultant biases, RMSEs and SDs, along
with ASEs, scaled by 100, for the MLEs of the common parameters under different copula choices
and margins. The standard errors of the MLEs are obtained via the gradients and the Hessian
that were computed numerically during the maximization process. From Table 5 (Supplementary
Table 2) it is seen that the one-factor copula mixed model with normal (beta) margins led to unbi-
ased and efficient estimates when the bivariate copulas are a combination of Clayton and rotated
Clayton by 270◦ to model the positive and negative dependencies, respectively. These are the same
with the true (simulated) copulas of the D-vine copula mixed model which imply that the sensi-
tivity and specificity of each test have tail dependence. Hence, the tail dependence between the
factor V and each of the latent sensitivities∕specificities Xkt, k = 0, 1, t = 1, 2 is inherited to the
tail dependence between the latent sensitivities and specificities Xkt, k = 0, 1, t = 1, 2, and thus,
the conditional independence assumption has no impact on the estimation of the meta-analytic
parameters of sensitivity and specificity of each test when this assumption is violated. This is due
the fact that the one-factor copula can be explained as an 1-truncated C-vine rooted at the factor
(Kadhem & Nikoloulopoulos, 2021; Krupskii & Joe, 2013; Nikoloulopoulos & Joe, 2015). Note also
that in line with the results in the preceding subsection, the biases of the estimates increase when
the assumed bivariate copulas have tail dependence of opposite direction from the true copulas
or tail independence. When the BVN copulas with intermediate tail dependence are used to link
the factor with the latent sensitivities∕specificities, the estimates are robust to misspecification of
the copula mixed model as long as the univariate margins are correctly specified.

Finally in order to study the relative performance of the one-factor copula mixed model over
the quadrivariate vine copula mixed model as the number of quadrature points increase we ran-
domly generated 20 meta-analysis datasets with N = 22 studies in each dataset from the D-vine
copula mixed model. The number of studies N, the study size n, the disease prevalence, and
the true univariate and Kendall’s + parameters are set as in the 10,000 simulation runs. The
simulations were carried out on a Broadwell E5-2680 v4@2.40GHz. Table 6 summarizes the com-
puting times (averaged over 20 replications) in seconds. Clearly the D-vine copula mixed approach
requires a much higher computing time. Hence it is demonstrated that even for the case of T = 2
tests, the computational improvement of the one-factor copula mixed model is substantial, as

T A B L E 6 Average computing times in seconds of the one-factor and quadrivariate D-vine copula mixed
approaches for a varying number of quadrature points Nq when 20 meta-analysis data sets are generated with
N = 22 studies in each data set from the quadrivariate D-vine copula mixed model

Nq One-factor D-vine

15 35.4 799.8

30 65.7 7355.4

50 126.2 42,997.6
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one has to calculate numerically bivariate integrals instead of much more difficult quadrivariate
integrals.

7 APPLICATION

Nishimura et al. (2007) contacted a systematic review and summarized data of rheumatoid factor
(RF) and anti-cyclic citrullinated peptide (anti-CCP) antibodies for diagnosing rheumatoid arthri-
tis. They included N = 22 studies that assessed both RF and anti-CCP2 antibody for diagnosing
rheumatoid arthritis and used the 1987 revised American College of Rheumatology (ACR) crite-
ria as the perfect reference standard of rheumatoid arthritis (Arnett et al., 1988). These data have
been frequently used as an example for methodological papers on joint meta-analysis of diag-
nostic accuracy studies in a multiple tests design with a gold standard (e.g., Dimou et al., 2016;
Nikoloulopoulos, 2019). Liu et al. (2015) in one of their examples deal with the same data, but
as they propose models for the meta-analysis of the accuracy of a diagnostic test under evalua-
tion and an imperfect reference test, they use only the the RF test as the index test for detection
of rheumatoid arthritis and assume that the ACR 1987 revised criteria are an imperfect reference
test for classification. Their analysis confirmed that the ACR 1987 revised criteria are a prefect ref-
erence test as the estimates of sensitivity and specificity of the ACR 1987 criteria (reference test)
were 1, suggesting that such reference test is in fact a gold standard.

We use the one-factor copula mixed model in order to determine whether anti-CCP antibody
identifies more accurately patients with rheumatoid arthritis than RF does. We fit the one-factor
copula mixed model for all choices of parametric families of copulas and margins. To make
it easier to compare strengths of dependence, we convert the copula parameters &̂kt to +̂kt for
k = 0, 1, t = 1 (RF), 2 (anti-CCP2) via the relations in Equations (10)–(12).

The log-likelihoods showed that an one-factor copula mixed model with Clayton and Clay-
ton rotated by 270◦ degrees copulas with normal margins to join the factor V with each of the
latent sensitivities∕specificities Xkt provides the best fit (Table 7). For this particular example it
is revealed that an one-factor copula mixed model with the sensitivities and specificities on the
transformed scale provides better fit than an one-factor copula mixed model with beta margins,
which models the latent sensitivity and specificity on the original scale.

The estimated meta-analytic sensitivity and specificity parameters !̂kt, k = 0, 1, t =
1 (RF), 2 (anti-CCP2) show that the anti-CCP2 antibody is better compared with RF. Both tests
have fairly similar sensitivity but the anti-CCP2 is much more specific. On the one hand, the
estimated univariate parameters and standard errors are in line with the ones in Nikoloulopou-
los (2019), but the implementation of the proposed model is much faster, since a numerically
time-consuming four-dimensional integral calculation is replaced with a numerically fast
two-dimensional integral calculation on the other.

From the Kendall’s tau estimates and standard errors there is strong evidence of dependence
between the two diagnostic tests. The estimated +1t(+0t), t = 1 (RF), 2 (anti-CCP2) indicate a pos-
itive (negative) association between each of the latent sensitivities X1t (specificities X0t) with the
latent variable V implying a negative association +1t,0t between the latent sensitivity X1t and speci-
ficity X0t within each test t. The fact that the best-fitting bivariate copulas are Clayton and Clayton
rotated by 270◦ reveals that there is tail dependence among the latent sensitivities and specificities.
This can be further seen trough the SROC curves. Figure 4 depicts the SROC curves and summary
operating points (a pair of average sensitivity and specificity) with a confidence region and a pre-
dictive region for each test from the best fitted one-factor copula mixed model. Sharper corners
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T A B L E 7 Maximized log-likelihoods, estimates and standard errors (SE) of the parameters !kt, $kt (normal
margins), %kt (beta margins), +kt, k = 0, 1, t = 1 (RF), 2 (anti-CCP2) of the one-factor copula mixed models for
the rheumatoid arthritis data

BVN Frank Cln{0◦, 90◦} Cln{0◦, 270◦} Cln{180◦, 270◦}

Est. SE Est. SE Est. SE Est. SE Est. SE

Normal margins

!11 0.681 0.034 0.660 0.033 0.678 0.033 0.681 0.036 0.676 0.034

!12 0.684 0.034 0.655 0.031 0.673 0.032 0.675 0.034 0.674 0.035

!01 0.825 0.033 0.834 0.032 0.827 0.033 0.826 0.033 0.827 0.033

!02 0.960 0.008 0.962 0.000 0.960 0.008 0.960 0.008 0.960 0.008

$11 0.685 0.128 0.698 0.134 0.691 0.122 0.722 0.133 0.687 0.129

$12 0.697 0.124 0.675 0.123 0.657 0.112 0.687 0.121 0.722 0.134

$01 1.028 0.181 1.028 0.177 1.037 0.183 1.029 0.181 1.027 0.178

$02 0.790 0.175 0.795 0.164 0.794 0.184 0.792 0.170 0.797 0.171

+11 0.644 0.168 0.680 0.119 0.719 0.137 0.716 0.124 0.818 0.223

+12 0.802 0.395 0.839 0.152 0.750 0.149 0.826 0.144 0.466 0.136

+01 −0.125 0.168 −0.218 0.160 −0.149 0.161 −0.213 0.148 −0.227 0.162

+02 −0.201 0.182 −0.289 0.183 −0.228 0.333 −0.272 0.203 −0.278 0.221

− log (L) 322.4 321.0 320.1 318.9 325.3

Beta margins

!11 0.667 0.031 0.648 0.032 0.664 0.033 0.665 0.031 0.661 0.032

!12 0.670 0.032 0.646 0.032 0.661 0.032 0.661 0.030 0.658 0.033

!01 0.782 0.034 0.789 0.033 0.783 0.034 0.784 0.033 0.785 0.033

!02 0.949 0.009 0.950 0.009 0.949 0.009 0.949 0.009 0.949 0.009

%11 0.087 0.028 0.092 0.030 0.089 0.030 0.097 0.029 0.089 0.029

%12 0.091 0.028 0.092 0.027 0.083 0.028 0.091 0.026 0.098 0.032

%01 0.132 0.039 0.132 0.039 0.133 0.039 0.132 0.039 0.130 0.039

%02 0.025 0.012 0.026 0.013 0.025 0.012 0.026 0.013 0.027 0.013

+11 0.635 0.226 0.937 0.004 0.723 0.140 0.731 0.128 0.815 0.231

+12 0.849 0.644 0.651 0.103 0.764 0.168 0.811 0.126 0.497 0.134

+01 −0.111 0.169 −0.175 0.167 −0.120 0.164 −0.217 0.144 −0.234 0.173

+02 −0.203 0.179 −0.195 0.187 −0.212 0.290 −0.248 0.192 −0.278 0.221

− log (L) 323.3 322.8 321.2 320.1 326.3

Cln {0◦1 ,0◦2}: The bivariate copulas are the Clayton rotated by 0◦1 and 0◦2 to handle the positive and negative dependencies,
respectively.
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F I G U R E 4 Summary receiver operating characteristic curves and summary operating points at
(!1t, 1 − !0t) along with their confidence and predictive regions from the best fitted one-factor copula mixed model
for the rheumatoid arthritis data. ■: summary operating point; ◦: study estimate; red and green lines represent
the quantile regression curves x1t ∶= x̃1t(x0t, q) and x0t ∶= x̃0t(x1t, q), respectively; for q = 0.5 solid lines and for
q ∈ {0.01, 0.99} dotted lines (confidence region); the axes are in logit scale since we also plot the estimated contour
plot of the random effects distribution as predictive region [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Summary receiver operating characteristic curves and summary operating points at (!1t, 1 − !0t)
for each test backtransformed to the original scale of sensitivity and specificity for the rheumatoid arthritis data

in the predictive region indicate tail dependence. For the graphs the Kendall’s +11,01 = −0.191 and
+12,02 = −0.261 have been calculated using the steps 1–5 in Section 4, while the sensitivity and
specificity at study i for test t (point estimate) have been calculated with the typical definitions of
sensitivity and specificity, viz.,

yi11t
yi+1t

and yi00t
yi+0t

,

respectively. Figure 5 provides a direct and visual comparison between the two competing
diagnostic tests and reveals that the anti-CCP2 antibody is better compared with RF.

8 DISCUSSION

We have proposed an one-factor copula mixed model for joint meta-analysis and comparison of
multiple diagnostic tests in a multiple tests design with a gold standard. This is a parsimonious
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meta-analytic model that (a) has the 2T-variate GLMM with an additive latent structure as a spe-
cial case when the BVN copulas are used, (b) can have a latent structure that is not additive if other
than BVN copulas are called, (c) can model the latent sensitivities and specificities on the original
scale rather than a transformed scale as in the 2T-variate GLMM (d) enables the meta-analytic
parameters of interest to be separated from the copula (dependence) parameters which are inter-
pretable as dependence of the latent sensitivity∕specificity with another latent variable, (e) avoids
the issues of multi-dimensionality and (f) models adequately the dependence among the latent
sensitivities and specificities as it can be explained as an 1-truncated C-vine copula.

Our model can provide an improvement over the 2T-variate GLMM with an additive latent
structure as the random effects distribution is expressed via an one-factor copula that provides
a wide range of dependence with 2T dependence parameters and allow for different types of
tail behaviour, different from assuming simple linear correlation structures, normality and tail
independence. This strength of multivariate meta-analysis approaches that use copulas has been
pointed out by Jackson and White (2018) and Jackson et al. (2020) and it has also been exploited
in network meta-analysis (Phillippo et al., 2020).

The 2T-variate D-vine copula mixed model (Nikoloulopoulos, 2019), which it has as special
case the 2T-variate GLMM with an unstructured correlation structure, provides full dependence
and can also provide tail dependence, but it is intractable as the number of competing tests
increases. The 2T-variate one-factor copula mixed model solves this problem since the joint like-
lihood reduces to an one-dimensional integral of a function which in turn is a product of 2T
one-dimensional integrals, hence the method avoids 2T-dimensional integration which is time
consuming even for T = 2 tests. Its parsimony is not a distributional concern about the depen-
dence between the tests due to the main result in Joe et al. (2010): all the bivariate margins of the
vine copula have (tail) dependence if the bivariate copulas at level 1 have (tail) dependence. This
is satisfied by the one-factor copula as it is an 1-truncated C-vine. Hence, the proposed model
can form the vehicle for conducting meta-analysis of comparative accuracy studies with three or
more tests.

Building on the basic model proposed in this paper, the inclusion of covariates is straightfor-
ward. One can carry out the model building process in two steps: (a) the selection of the univariate
margins with the parameters as functions of some explanatory variables and, (b) the selection of
the bivariate copulas to build the one-factor copula model according to the actual dependence
among the latent sensitivities and specificities. If the interest is to study the effect of explana-
tory variables on the dependence structure, one-factor copulas are suitable since allow the use
of covariate functions for the copula dependence parameters; this is not the case for the GLMM,
because of the joint constraints for the correlation parameters.

When the focus is on estimates of the meta-analytic univariate parameters of interest, the ben-
efit of joint analysis is modest, in that the differences in the summary estimates and standard
errors from separate meta-analyses for each test are not that distinct. The most striking differ-
ences between separate and joint meta-analyses arise when one deduces comparative diagnostic
accuracy, that is, an SROC curve. An SROC curve makes much more sense and will help deci-
sion makers to assess the actual diagnostic accuracy of the competing diagnostic tests. In an era
of evidence-based medicine, decision makers need high-quality procedures such as the SROC
curves to support decisions about whether or not to use a diagnostic test in a specific clinical sit-
uation and, if so, which test. We have deduced SROC curves from the one-factor copula mixed
model. The model parameters (including dependence parameters), the choice of the copula, and
the choice of the margin affect the shape of the SROC curves. On the one hand a series of inde-
pendence models cannot be used to produce the SROC curves, since the dependence parameters
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affect the shape of the SROC curve and these are set to independence, and the GLMM SROC
curves are restricted to be linear on the other. Hence our approach brings additional insights into
the diagnostic accuracy data with SROC curves that can be non-linear as it allows dependence
among the extreme values of the latent sensitivities and specificities.

Comparative accuracy studies with paired designs where each test is applied to the same
patients should report the data as separate 2 × 2 tables. Authors of primary studies of diagnos-
tic accuracy that assess three or more tests in the same patients should be encouraged to report
sufficient data to extract separate 2 × 2 tables of test results as in Table 1. Comparative accu-
racy studies should rightly use a multiple tests designs so that patients receive each test in order
to reduce biases and ensure the clinical relevance of the resulting inferences (Trikalinos et al.,
2014).

Nevertheless, in practice there exist comparative studies in a randomized design or even
non-comparative studies (Takwoingi et al., 2013) and for some of them the reference test might be
imperfect. Future research will focus on extending the one-factor copula mixed model to incorpo-
rate randomized designs and non-comparative studies with or without a gold standard. Ma et al.
(2018) and Lian et al. (2019) proposed methods for comparing multiple diagnostic tests that can
incorporate studies with different designs and studies with our without gold standard. As their
methods assume that the between-studies model is the multivariate normal distribution that suf-
fers from the computational burden of multidimensionality when the number of tests increases,
we will exploit the use of the one-factor copula distribution. The one-factor copula distribution
will provide computational and distributional improvements when adapted to the setting of Ma
et al. (2018) and Lian et al. (2019).

SOFTWARE
R functions to implement the one-factor copula mixed model for meta-analysis of multiple
diagnostic tests are part of the R package CopulaREMADA (Nikoloulopoulos, 2022).
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