1 CAR21-2571-R1

2 ASSOCIATION OF MYOCARDIAL FIBROSIS AND STROKE VOLUME

- **3 BY CARDIOVASCULAR MAGNETIC RESONANCE AND OUTCOME IN**
- 4 SEVERE AORTIC STENOSIS AFTER VALVE REPLACEMENT: DATA
- 5 FROM THE BSCMR AS700 STUDY

6 SUBTITLE: MYOCARDIAL FIBROSIS, STROKE VOLUME BY CMR AND

7 OUTCOME IN SEVERE AS AFTER VALVE REPLACEMENT

- 8 George D. Thornton MD^{1,2}, Tarique A. Musa PhD³, Marzia Rigolli PhD⁴, Margaret
- 9 Loudon PhD⁵, Calvin Chin PhD⁶, Silvia Pica PhD⁷, Tamir Malley PhD⁸, James R.J.
- 10 Foley PhD⁹, Vassiliou S. Vassiliou PhD¹⁰, Rhodri H Davies PhD^{1,2}, Gabriella Captur
- 11 PhD¹, Laura E. Dobson PhD¹¹, James C. Moon MD^{1,2}, Marc R. Dweck PhD¹², Saul
- 12 G. Myerson PhD⁴, Sanjay K. Prasad PhD⁸, John P. Greenwood PhD⁹, Gerry P.
- 13 McCann, PhD¹³, Anvesha Singh PhD^{13, *}, Thomas A. Treibel PhD^{1,2,*}
- 14 *denotes joint last author
- 15 ¹Institute of Cardiovascular Science, University College London
- 16 ²Barts Heart Centre, London, United Kingdom
- 17 ³Royal Surrey NHS Foundation Trust, United Kingdom
- 18 ⁴University of Oxford, United Kingdom
- 19 ⁵University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
- 20 ⁶National Heart Centre, Singapore
- 21 ⁷Policlinico San Donato, Milan, Italy
- 22 ⁸Royal Brompton Hospital, London, United Kingdom
- 23 ⁹University of Leeds, United Kingdom
- 24 ¹⁰University of East Anglia, United Kingdom
- 25 ¹¹University Hospital of South Manchester NHS Foundation Trust, United Kingdom

- 1 ¹²University of Edinburgh, United Kingdom
- 2 ¹³University of Leicester, United Kingdom
- 3
- 4 Word Count: 2448 (Excluding title, abstract, acknowledgements, references, figure
- 5 legends, tables)
- 6 Corresponding Author:
- 7 Dr Thomas A. Treibel MA MBBS MRCP PhD
- 8 Barts Heart Centre, St Bartholomew's Hospital
- 9 West Smithfield
- 10 London, UK,
- 11 EC1A 7BE
- 12 Email: thomas.treibel.12@ucl.ac.uk
- 13 Date of Revision: 06/02/2022

1 KEY POINTS

- 2 **Question:** Are myocardial fibrosis and left ventricular indexed stroke volume by
- 3 CMR (SVi_{CMR}) associated with outcome after valve replacement?
- 4 **Findings:** In a longitudinal observational cohort study of 674 patients, extent of late
- 5 gadolinium enhancement and SVicMR were independently associated with
- 6 cardiovascular mortality, with risk increasing more rapidly below SVi_{CMR} 45ml/m².
- 7 Meaning: SVicMR is an important marker of risk after valve intervention, and should
- 8 be considered alongside myocardial fibrosis in future risk models for predicting
- 9 outcomes after surgery.

1 **ABSTRACT (350/350 WORDS)**

Importance: Low flow severe aortic stenosis (LF-AS) has higher mortality than
severe AS with normal flow. The conventional definition of LF-AS is an indexed
stroke volume by echocardiography (SViECHO) <35ml/m². Cardiovascular magnetic
resonance (CMR) is the reference standard for quantifying left ventricular volumes
and function, from which SViCMR can be derived.

7 Objective: We sought to determine the association of left ventricular SVi_{CMR} with
8 myocardial remodeling and survival.

9 **Design:** A multicenter longitudinal outcome study conducted between January 2003

10 and May 2015. Patients were followed up for a median of 3.6 years.

11 **Setting:** A multicenter study across six UK cardiothoracic centers.

12 **Participants:** Patients with severe AS listed for either surgical (SAVR) or

13 transcatheter aortic valve replacement (TAVR). Patients underwent preprocedural

14 echocardiography and CMR. Patients were stratified by echocardiography derived

15 aortic valve mean and/or peak gradient and SVicmr into four AS endotypes: low flow

16 low gradient, low flow high gradient, normal flow low gradient and normal flow high

17 gradient AS.

18 **Exposures:** Surgical or Transcatheter Aortic Valve Replacement.

Outcome Measures: All-cause and cardiovascular (CV) mortality after aortic valve
intervention.

Results: 674 patients with severe AS (age 75, IQR 66-80; 63% male, aortic valve
 area index 0.4, IQR 0.3-0.44 cm²/m²) were included. LF-AS endotypes (low gradient

1 and high gradient) had lower left ventricular ejection fraction (LVEF), mass, wall 2 thickness, and importantly increased all-cause and CV mortality than normal-flow AS: 3 HR[all-cause] 2.08 (95% CI 1.37-3.14, p<0.001); HR[cardiovascular] 3.06 (95% CI 4 1.79-5.25, p<0.001). Independent associations of CV mortality were lower SVicmr (HR 1.64, 95%CI 1.08-2.5, p=0.04), age (HR 2.54, 95% CI 0.4-0.93, p=0.001) and higher 5 6 quantity of LGE (HR 2.93, 95%CI 1.68-5.09, p<0.001). CV mortality hazard increased more rapidly below SVicmr 45ml/m². SVicmr was independently associated with age, 7 8 atrial fibrillation, focal scar (LGE) and parameters of cardiac remodeling (LV mass, LA volume). 9

Conclusion and Relevance: SVi by CMR is associated with CV mortality after AVR,
independent of age, scar and ejection fraction. The unique capability of CMR to
quantify myocardial scar, combined with other prognostically important imaging
biomarkers such as SVicMR may enable comprehensive stratification of postoperative risk in severe symptomatic AS.

1 **BACKGROUND**

2 Current guidelines recommend intervention in severe aortic stenosis (AS) due to 3 adverse prognosis. Life expectancy is improved, but not normalized, by aortic valve replacement (AVR)^{1,2}. Identifying severe AS can be difficult if the peak velocity 4 5 across the aortic valve is <4 m/sec, which can occur when the flow volume across 6 the aortic valve is low. Stroke volume index (SVi) can be reduced in severe AS due 7 to two mechanisms: small chamber size due to concentric hypertrophy with normal 8 systolic function but diastolic dysfunction (paradoxical low flow), or secondary to 9 reduced left ventricular (LV) function (classical low) ³. Patients with 'paradoxical low-10 flow' severe AS, have also been shown to have worse outcomes that those with high 11 gradient AS, suggesting that SVi may be an important marker of risk regardless of 12 LV ejection fraction ⁴. Current guidelines define low SVi by echocardiographic Doppler assessment as <35ml/m² ⁵. However, SVi by echocardiography may be 13 14 incrementally associated with mortality, representing a continuum of mortality hazard rather than a binary threshold ^{6,7}. 15

While echocardiography remains the first line investigation for both quantification of AS severity and assessment of flow status, cardiovascular magnetic resonance (CMR) is increasingly recognized as a powerful adjunct to echocardiographic assessment of AS. CMR is the reference standard for evaluating cardiac volumes and function ⁸, redefining our understanding of the differing myocardial phenotypes ⁹, and it allows the detection of focal myocardial scar and diffuse fibrosis, which are both prognostic ^{10,11}.

Whether SVi_{CMR} is independently associated with mortality after valve intervention,
and how this applies to different AS endotypes is less well defined. SVi_{CMR} is most

frequently derived by a volumetric approach, differing from echo, which uses the left
ventricular outflow tract velocity time integral (LVOT VTI) and estimated LVOT
area¹². Previous work has demonstrated good agreement between SV_{CMR} and SV by
echocardiography, provided that the LVOT VTI is measured in close proximity to the
valve annulus¹³.

6 We hypothesized that SVi_{CMR} is independently associated with mortality in patients
7 with severe AS and is associated with other parameters of myocardial remodeling.

8 **Methods**

9 AS700 was designed by the British Society of Cardiovascular Magnetic Resonance 10 [BSCMR] Valve Consortium as a longitudinal observational cohort study performed 11 in six UK cardiothoracic centers, to examine patients with severe symptomatic AS. As previously described ¹⁰, patients with severe AS (AVmax ≥4m/s, mean gradient 12 13 \geq 40mmHg, peak gradient \geq 64mmHg or AVA < 1.0cm²) awaiting valve intervention 14 were prospectively recruited between January 2003 and May 2015. The study was approved by the UK National Research Ethics Service (13/NW/0832), conformed to 15 16 the principles of the Declaration of Helsinki and patients gave written informed 17 consent. The primary endpoint was all-cause mortality after valve replacement: the 18 secondary endpoint was cardiovascular (CV) mortality, both determined from death 19 certificate information and via the NHS Spine. The study was conducted in accordance with the Strengthening the Reporting of Observational Studies in 20 21 Epidemiology (STROBE) guidelines for the reporting of observational studies.

22 IMAGING DATA ACQUISITION AND ANALYSIS

23 Echocardiographic parameters were acquired following standard guidelines for AS

24 severity assessment ¹⁴. CMR was performed using standardized protocols, as

1	previously described ¹⁰ . Scans were anonymized, centralized and analyzed using
2	CVI42 software (Circle Calgary, Alberta, Canada) in a distributed core-lab approach
3	by experienced readers blinded to clinical parameters ¹⁰ .
4	CATEGORIZATION BY STROKE VOLUME AND AS ENDOTYPE
5	The primary analysis focused on SV_{ICMR} as a continuous variable. The secondary
6	analysis divided the cohort into two groups: high flow (SVi _{CMR} \ge 35ml/m ²) and low
7	flow (SVi _{CMR} <35ml/m2) and then further into four AS endotypes by velocity, peak
8	and mean AV gradient (by echocardiography) and SVicmr, as follows:
9	1. Normal Flow High gradient (NFHG) AS
10	a. Peak gradient ≥64mmHg or mean gradient ≥40mmHg
11	b. SVi ≥35ml/m²
12	2. Low flow high gradient (LFHG) AS
13	a. Peak gradient ≥64mmHg or mean gradient ≥40mmHg
14	b. SVi <35ml/m²
15	3. Low flow low gradient (LFLG) AS
16	a. Peak gradient <64mmHg and mean gradient <40mmHg
17	b. SVi <35ml/m²
18	4. Normal flow low gradient AS (NFLG)
19	a. Peak gradient <64mmHg and mean gradient <40mmHg
20	b. SVi ≥35ml/m²
21	We performed further exploratory analysis dividing the cohort by different flow
22	thresholds in 10ml/m ² increments: 35ml/m ² , 45ml/m ² , 55ml/m ² and 65ml/m ² .

23 STATISTICAL ANALYSIS

Continuous variables are expressed as median and interquartile range (IQR);
 categorical variables as counts and percent. Baseline characteristics of participants
 were compared using Kruskal-Wallis, x² or Fisher's exact tests as appropriate.

Univariable associations of all-cause and CV mortality were established via the
Kaplan-Meier method. The index date was the date of CMR. Cox proportional
hazards models were fitted for all-cause and CV mortality. The proportional hazards
assumption was checked with Schoenfeld residuals. We additionally assessed the
association of relevant clinical and CMR biomarkers with SVi in a proportional odds
ordinal logistic regression model. Odds ratios and Hazard ratios are presented over
the interquartile range of continuous variables.

11 MODEL SELECTION

Spearman's ρ²-the square of Spearman's rho rank correlation coefficient for each
variable was calculated, to approximate the potential predictive ability of each
variable. A multivariable model was built including clinically relevant variables and
incorporating restricted cubic splines to variables with the highest ρ² and to variables
of interest (i.e. SVi). Variables with significant missing data were excluded. Variance
Inflation Factors (VIFs) were calculated to ensure no significant collinearity.

The predictive information contained within each covariate was expressed by the Information Index, which is a chance corrected version of the adequacy index, proposed by Harrell¹⁵. This was calculated as the likelihood ratio chi-square minus the degrees of freedom (d.f.) or each added variable, divided by the total model likelihood ratio chi-square minus the d.f. for the total model. This allows for factors with different d.f. to be compared. The information index thus represents the percentage of explained variation in survival that is explained by the addition of the

1 specified predictor, though due to correlation between variables this need not

2 necessarily add up to 100%. Evidence for incremental predictive value is assessed

3 using the likelihood ratio chi-square test (but without the d.f. correction).

4 Statistical analyses were performed using software R version 3.5.2, with R studio

5 interface © R Studio, Inc. using the 'rms' package, graphs were plotted in 'ggplot2'.

6 **RESULTS**

7 BASELINE CLINICAL AND IMAGING CHARACTERISTICS

8 The AS700 study comprised a total of 674 patients with severe AS. Baseline

9 characteristics of the whole cohort are in Table S1. Median age was 75 (IQR 66-80);

10 63% male with a median aortic valve area index 0.4 cm^2/m^2 (IQR 0.3-0.44) and

11 mean gradient of 46 mmHg (IQR 38-56). At a median follow up of 3.6 years (IQR

12 2.6-5.9), 145 patients died, of whom 70 had a cardiovascular cause ascribed. The

13 median time from CMR to SAVR was 44 days (IQR 11-103 days) and to TAVR was

14 13 days (IQR 1-61 days). All deaths were post-intervention.

15 560 out of a total of 674 patients had sufficient flow and gradient data available to be 16 stratified by flow and gradient: 412 patients had NFHG, 77 NFLG, 51 LFHG and 20 17 LFLG-AS. Baseline characteristics by AS endotype are shown in Table 1. Patients 18 with LFLG had a greater incidence of AF than other endotypes. Patients with low 19 flow AS (LFLG and LFHG) had lower LV and RV ejection fraction and lower LV mass 20 and maximum wall thickness compared to high flow AS patients. LFHG patients had 21 smaller LV cavity size compared with other groups (median LV EDV 57ml/m² for 22 LFHG vs median 77-80ml/m² in other groups).

23 ASSOCIATIONS WITH SVICMR

1 The strongest associations with SVicMR (per 1ml/m² increase) were parameters of LV 2 remodeling including LV mass (OR 2.65, 95%CI 1.98-3.54, Information index 32%, 3 p<0.001) and LA volume (OR 2.27, 95% CI 1.73-2.99, Information index 26%, 4 p<0.001). Other weaker associations with SVicMR included age (OR 0.62, 95% CI 5 0.46-0.84, Information index 6.6%, p=0.002, history of atrial fibrillation (OR 0.36, 6 95%CI 0.21-0.62, Information index 9.21%, p<0.001) and the presence of 7 myocardial LGE, likely representing pockets of scar tissue (OR 0.89, 95% CI 0.82-8 0.97, Information index 5%, p=0.006)(Table 2). LVEDVi and LVESVi were not 9 included in the multivariable model as they are used to calculate stroke volume.

10 ASSOCIATION WITH OUTCOME

11 Univariable associations with outcome are summarized in Table S2 (all-cause 12 mortality) and Table S3 (cardiovascular mortality). Low flow AS was associated with 13 increased all-cause and cardiovascular mortality compared to normal flow AS (HR[all-14 cause] 2.08, 95% CI 1.37-3.14, p<0.001; HR[cardiovascular] 3.06, 95% CI 1.79-5.25, 15 p<0.001)(Figure 1). By AS endotype, both LFLG and LFHG AS were associated with 16 CV mortality (LFLG HR 3.75, 95%CI 1.45-9.71, p=0.006; LFHG HR 2.56, 95% CI 1.21-17 5.42, p=0.014, NFLG AS HR 0.79, 95%CI 0.31-2.06, p=0.64), but not all-cause 18 mortality. Mean and peak AV gradients were not associated with either all-cause or 19 cardiovascular mortality in this group with already severe AS awaiting valve 20 intervention. Examining different thresholds defining high and low SVi_{CMR}, there was 21 a significant difference in mortality at thresholds of 35ml/m², 45ml/m² and 55ml/m² but 22 not at 65ml/m² with progressive divergence of the curves, the lower the threshold 23 (Figure S1).

1	Independent associations of all-cause mortality were increased age (HR 2.18, 95%
2	CI 1.41-3.37, information index 22.73%, p<0.001), amount of LGE (HR 1.68, 95% CI
3	1.15-2.45, information index 11.49%, p=0.01) and maximum LV wall thickness (HR
4	0.75, 95% CI 0.57-0.98, information index 5%, p=0.03). Lower SVicmr was not
5	independently associated with all-cause mortality (HR 1.28, 95% CI 0.96-1.72,
6	information index 1.47%, p=0.22), neither were indices of ventricular function (LVEF
7	information index 0%, p=0.96; RVEF information index 0%, p=0.85)(Table 3).
8	
9	Associations of CV mortality included increased age (HR 2.54, 95%CI 1.29-5.01,
10	information index 13.3%, p=0.01), LGE (HR 2.93, 95% CI 1.68-5.09, information
11	index 22.5%, p<0.001) and lower SVi (HR 1.64, 95%CI 1.08-2.5, information index
12	7.5%, p=0.04). The amount of LGE (even more than age) held the strongest
13	association with CV mortality (with a greater hazard ratio than age).
14	
15	The partial association between covariates (i.e. adjusted for other covariates within
16	the model) and CV mortality can be seen in Figure 2 and all-cause mortality in Figure
17	S2. Figure 2A shows that hazard of CV death increases continuously and in a non-

18 linear fashion, increasing more rapidly below 45ml/m². Figure 2E demonstrates the 19 strong non-monotonic relationship between CV mortality and quantity of LGE, with 20 even very low volumes of LGE demonstrating significantly increased mortality risk. 21 Discussion

In patients with severe, symptomatic AS referred for SAVR or TAVR, SVi_{CMR} is
associated with cardiovascular mortality after valve replacement. The association of
SVi_{CMR} is independent of age, sex, LV ejection fraction and myocardial scar.

1 Previous studies have demonstrated an association between SVIECHO and adverse 2 outcomes after valve replacement¹⁶. Similarly, AS endotypes have classically been 3 defined by echocardiography-derived SVi⁵. Calculation of stroke volume by 4 echocardiography relies upon a number of geometric assumptions and accurate 5 measurement of the LVOT anteroposterior diameter, which can be overcome 6 through accurate volumetric analysis by CMR¹⁷. Using the same threshold by CMR, 7 we see a marked survival penalty in low flow endotypes, driven by SVicmr and not by 8 gradient, with LFLG and LFHG AS following a similar adverse trajectory (Figure 1). 9 We found that stroke volume itself was associated with parameters of cardiac 10 remodeling, most strongly with LV mass and LA volume. Patients with LFLG and 11 LFHG AS had lower LV mass and lower maximum wall thickness compared to HG-12 AS, though absolute differences were small.

13 Several studies have highlighted the importance of low SVi in predicting outcome in 14 severe AS, and have supported the use of the 35ml/m² threshold proposed in current guidelines ^{5-7,18-21}. While a cut off is often clinically desirable, it lacks biological 15 16 plausibility. In this cohort, CV mortality after valve replacement increases 17 continuously with lower SVi_{CMR}, more rapidly below of 45ml/m² (Figure 2A), raising 18 the question as to whether reliance on a single threshold may be overly simplistic, 19 and instead SVicMR should be considered as a continuous variable in models of post-20 operative risk.

Previous work in mild-moderate AS has suggested that SVi is more than just a
barometer of systolic function^{22,23}. Our data (in severe AS) adds support to this
hypothesis, in that while both LVEF and RVEF associated with SVicMR, neither

1 remained independent associations of outcome in a multivariable model

2 incorporating SVicMR.

We have previously shown that women have different myocardial responses to severe AS than men, with less concentric remodeling and less scar²⁴⁻²⁷. Women also had higher cardiovascular mortality, but this was not borne out in multivariable analysis⁹. While sex itself was not associated with outcomes in this study, we found that low maximal wall thickness was independently associated with all-cause mortality and was more prevalent in low-flow AS endotypes.

9 Echo remains the first line technique for evaluation of AS severity and flow status. 10 CMR is unlikely therefore to be routinely performed for the quantification of stroke 11 volume alone. However, CMR provides an accurate assessment of AS severity, is 12 the reference standard for quantification of ventricular mass and volumes and, 13 perhaps most importantly, enables quantification of myocardial fibrosis by T1 14 mapping and late gadolinium enhancement imaging, all within the same scan²⁸. 15 SVicmr offers additive prognostic information to that of myocardial tissue 16 characterization. CMR may, in future, enable comprehensive multiparametric risk 17 stratification of patients after valve replacement, through integration of multiple 18 prognostically important biomarkers.

Using the Information index¹⁵, we have demonstrated relative strength of association of different demographic and imaging biomarkers. LGE is by some margin the biomarker most strongly associated with cardiovascular outcome (Table 3), outperforming age and contributing more than three times the predictive information of indexed stroke volume. LGE demonstrates a non-monotonic relationship with outcome, with even small volumes of LGE being associated witha significantly

increased risk (Figure 2E). The relative strengths of these associations should be
 taken into consideration when evaluating the importance of different biomarkers in
 clinical risk models.

4 **LIMITATIONS**

5 This is an observational study of patients at tertiary referral centers with 6 cardiothoracic surgery and CMR focus, thus there the potential for selection bias. 7 These patients were selected for inclusion after the decision for surgery/intervention 8 had been made. These data therefore cannot inform on thresholds of risk on which 9 to proceed to surgery, but rather reflect prognosis after valve intervention. Certain 10 patient groups with contraindications to CMR were excluded as well as patients 11 medically managed for aortic stenosis. Native T1 and extracellular volume (ECV) 12 mapping techniques are not reported due to considerable variation in the values on 13 different scanners at different institutions. The study was not initially designed to 14 evaluate differences between AS endotypes, and thus is not powered for this 15 purpose. Findings from this subgroup analysis are exploratory.

16 **CONCLUSION**

Indexed stroke volume by CMR (SVicMR) is associated with cardiovascular mortality in severe, symptomatic AS after valve replacement, independent of age, sex, left ventricular ejection fraction and scar. The unique capability of CMR to quantify myocardial scar, combined with other prognostically important imaging biomarkers such as SVi_{CMR} may enable comprehensive stratification of post-operative risk in severe symptomatic AS.

1 ACKNOWLEDGEMENTS

2 Sources of Funding

3 This study was in part supported by the British Heart Foundation (University of 4 Leeds, Greenwood JP [PG/11/126/29321]; University of Leicester, McCann GP 5 [PG/07/068/2334]; University of Oxford, Myerson SG [FS/10/015/28104]; University 6 of Edinburgh, Dweck MR [FS/10/026]; University College London, Moon JC 7 [FS/08/028/24767]), Treibel TA [FS/19/35/34374] and Thornton GD 8 [FS/CRTF/21/24128], the UK National Institute for Health Research via its 9 Biomedical Research Centre and Clinical Research Facility (Leeds and Oxford) 10 programmes, as well as Rosetrees Trust. Funding supported design and conduct of 11 the study; collection, management, analysis, and interpretation of the data; 12 preparation, review, or approval of the manuscript; and decision to submit the 13 manuscript for publication. The views expressed are those of the authors and not 14 necessarily those of the UK National Health Service, National Institute for Health 15 Research or Department of Health.

16 **Disclosures**

17 No conflicts of interest to disclose.

18 ACCESS TO DATA AND ANALYSIS

Dr Thomas Treibel (lead author) acknowledges full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis

22 Dr George Thornton (UCL) conducted and is responsible for the data analysis.

TABLE 1 BASELINE CHARACTERISTICS BY AS ENDOTYPE

	High Flow, High	High Flow, Low	Low Flow, High	Low Flow, Low	-
Characteristic	Gradient, $N = 412^{1}$	Gradient , $N = 77^{1}$	Gradient , $N = 51^{1}$	Gradient , $N = 20^{1}$	p-value ²
Age	74 (66, 81)	70 (62, 78)	77 (70, 82)	74 (67, 80)	0.015
Male Sex	252 (61%)	54 (70%)	31 (61%)	15 (75%)	0.3
Atrial Fibrillation	42 (10%)	9 (12%)	8 (16%)	7 (35%)	0.015
BMI	27.0 (24.3, 30.4)	27.3 (24.5, 31.8)	27.8 (24.5, 31.2)	28.8 (25.7, 29.7)	0.5
Type 2 Diabetes	83 (20%)	15 (19%)	17 (33%)	3 (15%)	0.2
Hypertension	227 (55%)	40 (52%)	30 (59%)	12 (60%)	0.9
NYHA class					
	57 (14%)	12 (16%)	5 (10%)	1 (5.0%)	
II	160 (40%)	45 (58%)	16 (32%)	6 (30%)	
III	175 (43%)	19 (25%)	24 (48%)	12 (60%)	
IV	13 (3.2%)	1 (1.3%)	5 (10%)	1 (5.0%)	
Bicuspid valve	94 (23%)	24 (32%)	8 (16%)	3 (15%)	0.2
Coronary Artery Disease	65 (17%)	9 (12%)	10 (21%)	4 (22%)	0.4
History of MI	47 (11%)	7 (9.1%)	5 (9.8%)	4 (20%)	0.6
STS score	1.80 (1.09, 3.20)	1.23 (0.83, 2.06)	2.39 (1.46, 3.79)	1.90 (1.24, 2.40)	<0.001
Mean gradient (mmHg)	50 (42, 60)	32 (27, 34)	49 (40, 57)	29 (26, 35)	<0.001
Peak gradient (mmHg)	83 (73, 100)	54 (46, 58)	81 (70, 96)	50 (45, 57)	<0.001
Valve area (cm²/m²)	0.37 (0.30, 0.43)	0.42 (0.36, 0.50)	0.33 (0.26, 0.42)	0.42 (0.37, 0.46)	<0.001
LA volume (ml/m²)	54 (43, 67)	52 (43, 66)	41 (33, 54)	58 (39, 81)	0.001
LV EDV (ml/m2)	80 (69, 95)	78 (67, 94)	57 (51, 87)	77 (51, 115)	<0.001

Stroke volume (ml/m2)	49 (42, 55)	46 (42, 56)	30 (27, 33)	29 (26, 32)	<0.001
LVEF (%)	62 (55, 69)	62 (54, 68)	57 (31, 62)	40 (24, 60)	<0.001
EF < 50%	59 (14%)	9 (12%)	19 (37%)	13 (65%)	<0.001
RVEF (%)	65 (61, 72)	65 (58, 73)	57 (50, 66)	48 (38, 63)	<0.001
Max. wall thickness (mm)	14.0 (12.0, 16.0)	14.0 (12.0, 15.0)	13.0 (11.0, 15.5)	13.0 (10.0, 14.0)	0.002
LV mass (g/m2)	84 (68, 100)	76 (62, 89)	67 (53, 85)	68 (55, 87)	<0.001
LGE Present	205 (54%)	40 (60%)	23 (48%)	13 (68%)	0.39
LGE pattern					
None	176 (46%)	27 (40%)	25 (52%)	6 (32%)	0.192
Non-infarct	147 (39%)	25 (37%)	14 (29%)	6 (32%)	
Infarct	58 (15%)	15 (22%)	9 (19%)	7 (37%)	
LGE (g)	0.25 (0.00, 1.73)	0.57 (0.00, 2.47)	0.00 (0.00, 2.03)	0.27 (0.00, 6.26)	0.2
¹ 114 observations excluded due to missing data ² Kruskal-Wallis rank sum test; Pearson's Chi-squared test; Fisher's exact test					

TABLE 2. MULTIVARIABLE MODEL OF ASSOCIATIONS OF INDEXED STROKE

VOLUME

Per 1ml/m ² increase in SVi _{CMR}	Odds ratio ^a	95% CI	Information Index (%)	Likelihood ratio test of nested model without variable (p-value)
Age	0.62	0.46-0.84	6.65	0.002
Male Sex	1.00	0.7-1.43	0.00	0.995
LV mass (g/m2)	2.65	1.98-3.54	32.09	<0.001
LA volume (ml/m2)	2.27	1.73-2.99	25.56	<0.001
STS score	0.94	0.8-1.1	0.00	0.435
Atrial Fibrillation	0.36	0.21-0.62	9.21	<0.001
LGE (g)	0.89	0.82-0.97	5.02	0.006
Bicuspid valve	1.17	0.75-1.81	0.00	0.486
Mean gradient (mmHg)	1.02	0.84-1.24	0.00	0.830
Coronary Artery Disease	1.19	0.76-1.87	0.00	0.732

^aOdds ratios are reported over the interquartile range of the variable

TABLE 3. Cox Proportional Hazards Model – All-cause and CV

MORTALITY

ALL-CAUSE MORTALITY	Hazard Ratio ^a	95% CI	Information Index (%)	Likelihood ratio test of nested model without variable (p-value)
Lower SVicmr (ml/m2)	1.28	0.96-1.72	1.47	0.22
Age	2.18	1.41-3.37	22.73	<0.001
STS score	0.85	0.47-1.52	2.49	0.16
LGE (g)	1.68	1.15-2.45	11.49	0.01
Bicuspid valve	0.52	0.25-1.07	3.74	0.06
Atrial Fibrillation	1.44	0.86-2.41	1.23	0.17
LVEF (%)	1.01	0.75-1.35	0.00	0.96
RVEF (%)	1.03	0.78-1.35	0.00	0.85
Max. wall thickness (mm)	0.75	0.57-0.98	5.03	0.03
Male Sex	0.93	0.6-1.44	0.00	0.74
				••••
CV MORTALITY	Hazard Ratio ^a	95% CI	Information Index (%)	Likelihood ratio test of nested model without variable (p-value)
	Hazard		Information	Likelihood ratio test of nested model without
CV MORTALITY Lower SVicmr (ml/m2) Age	Hazard Ratio ^a	95% CI	Information Index (%)	Likelihood ratio test of nested model without variable (p-value)
Lower SVicmr (ml/m2)	Hazard Ratio ^a 1.64	95% CI 1.08-2.5	Information Index (%) 7.48	Likelihood ratio test of nested model without variable (p-value) 0.04
Lower SVicmr (ml/m2) Age	Hazard Ratio ^a 1.64 2.54	95% CI 1.08-2.5 1.29-5.01	Information Index (%) 7.48 13.26	Likelihood ratio test of nested model without variable (p-value) 0.04 0.01
Lower SVicmr (ml/m2) Age STS score	Hazard Ratio ^a 1.64 2.54 0.81	95% CI 1.08-2.5 1.29-5.01 0.36-1.81	Information Index (%) 7.48 13.26 5.34	Likelihood ratio test of nested model without variable (p-value) 0.04 0.01 0.07
Lower SVicmr (ml/m2) Age STS score LGE (g)	Hazard Ratio ^a 1.64 2.54 0.81 2.93	95% CI 1.08-2.5 1.29-5.01 0.36-1.81 1.68-5.09	Information Index (%) 7.48 13.26 5.34 22.47	Likelihood ratio test of nested model without variable (p-value) 0.04 0.01 0.07 <0.001
Lower SVicmr (ml/m2) Age STS score LGE (g) Bicuspid valve	Hazard Ratio ^a 1.64 2.54 0.81 2.93 0.84	95% Cl 1.08-2.5 1.29-5.01 0.36-1.81 1.68-5.09 0.33-2.18	Information Index (%) 7.48 13.26 5.34 22.47 0.00	Likelihood ratio test of nested model without variable (p-value) 0.04 0.01 0.07 <0.001 0.72
Lower SVicmr (ml/m2) Age STS score LGE (g) Bicuspid valve Atrial Fibrillation	Hazard Ratio ^a 1.64 2.54 0.81 2.93 0.84 1.94	95% Cl 1.08-2.5 1.29-5.01 0.36-1.81 1.68-5.09 0.33-2.18 0.99-3.76	Information Index (%) 7.48 13.26 5.34 22.47 0.00 4.26	Likelihood ratio test of nested model without variable (p-value) 0.04 0.07 <0.001 0.72 0.06
Lower SVicmr (ml/m2) Age STS score LGE (g) Bicuspid valve Atrial Fibrillation LVEF (%)	Hazard Ratio ^a 1.64 2.54 0.81 2.93 0.84 1.94 1.12	95% Cl 1.08-2.5 1.29-5.01 0.36-1.81 1.68-5.09 0.33-2.18 0.99-3.76 0.75-1.69	Information Index (%) 7.48 13.26 5.34 22.47 0.00 4.26 0.00	Likelihood ratio test of nested model without variable (p-value) 0.04 0.07 <0.001 0.72 0.06 0.58

^aHazard ratios are reported over the interquartile range of the variable

FIGURE TITLES & LEGENDS

FIGURE 1 KAPLAN-MEIER SURVIVAL CURVES FOR CARDIOVASCULAR

MORTALITY

Unadjusted Kaplan-Meier estimates of all-cause and cardiovascular survival by flow status (Panels A& B) and by AS endotype (Panels C & D). Tables below each plot describe number of patients at risk. Tables below each plot describe number of patients at risk. Low stroke volume refers to a SVi_{CMR} < 35ml/m², High stroke volume to SVi_{CMR} ≥ 35 ml/m²

FIGURE 2 PARTIAL ASSOCIATION PLOTS OF HAZARD RATIO OF

CARDIOVASCULAR **D**EATH

Partial association plots demonstrating the relationship between individual variables and CV mortality after multivariable adjustment. A, Indexed stroke volume by CMR; B, Left ventricular ejection fraction (LVEF); C, Right ventricular ejection fraction (RVEF); D, STS score; Late gadolinium enhancement (LGE); E, Age. The red line in each plot delineates a hazard ratio of 1. The blue dashed line in Panel A is to illustrate the SVi_{CMR} at which cardiovascular hazard begins to increase more rapidly. The shaded area represents the 95% confidence interval.

REFERENCES

- 1. MB L, CR S, M M, et al. Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery. *The New England journal of medicine*. 2010;363(17).
- Glaser N, Persson M, Jackson V, Holzmann MJ, Franco-Cereceda A, Sartipy
 U. Loss in Life Expectancy After Surgical Aortic Valve Replacement: SWEDEHEART Study. *J Am Coll Cardiol.* 2019;74(1):26-33.
- P P, JG D. Low-flow, Low-Gradient Aortic Stenosis With Normal and Depressed Left Ventricular Ejection Fraction. *Journal of the American College of Cardiology*. 2012;60(19).
- Clavel M-A, Dumesnil JG, Capoulade R, Mathieu P, Sénéchal M, Pibarot P. Outcome of Patients With Aortic Stenosis, Small Valve Area, and Low-Flow, Low-Gradient Despite Preserved Left Ventricular Ejection Fraction. *Journal of the American College of Cardiology*. 2012;60(14):1259-1267.
- 5. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. *European Heart Journal.* 2021.
- Eleid MF, Sorajja P, Michelena HI, Malouf JF, Scott CG, Pellikka PA. Survival by stroke volume index in patients with low-gradient normal EF severe aortic stenosis. *Heart.* 2015;101(1):23-29.
- Eleid MF, Goel K, Murad MH, et al. Meta-Analysis of the Prognostic Impact of Stroke Volume, Gradient, and Ejection Fraction After Transcatheter Aortic Valve Implantation. *The American Journal of Cardiology*. 2015;116(6):989-994.
- 8. Park S-J, Dweck MR. Multimodality Imaging for the Assessment of Severe Aortic Stenosis. *Journal of Cardiovascular Imaging.* 2019;27(4):235.

- Singh A, Musa TA, Treibel TA, et al. Sex differences in left ventricular remodelling, myocardial fibrosis and mortality after aortic valve replacement. *Heart.* 2019;105(23):1818-1824.
- 10. Musa TA, Treibel TA, Vassiliou VS, et al. Myocardial Scar and Mortality in Severe Aortic Stenosis. *Circulation.* 2018;138(18):1935-1947.
- 11. Everett RJ, Treibel TA, Fukui M, et al. Extracellular Myocardial Volume in Patients With Aortic Stenosis. *J Am Coll Cardiol.* 2020;75(3):304-316.
- 12. Tan C, Rubenson D, Srivastava A, et al. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. In: *Cardiovasc Ultrasound.* Vol 15.2017.
- Guzzetti E, Capoulade R, Tastet L, et al. Estimation of Stroke Volume and Aortic Valve Area in Patients with Aortic Stenosis: A Comparison of Echocardiography versus Cardiovascular Magnetic Resonance. *Journal of the American Society of Echocardiography*. 2020;33(8):953-963.e955.
- Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. *J Am Soc Echocardiogr.* 2009;22(1):1-23; quiz 101-102.
- 15. Harrell FE. Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed.). . Springer International Publishing; 2015.
- Guzzetti E, Poulin A, Annabi M-S, et al. Pre- and Post-Operative Stroke Volume Impact After Surgical Aortic Valve Replacement for Severe Aortic Stenosis. *Journal of the American College of Cardiology*. 2020;76(17):2036-2038.

- Messika-Zeitoun D, Serfaty J-M, Brochet E, et al. Multimodal Assessment of the Aortic Annulus Diameter. *Journal of the American College of Cardiology*. 2010;55(3):186-194.
- Clavel M-A, Burwash IG, Pibarot P. Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis. *JACC: Cardiovascular Imaging*. 2017;10(2):185-202.
- Dayan V, Vignolo G, Magne J, Clavel M-A, Mohty D, Pibarot P. Outcome and Impact of Aortic Valve Replacement in Patients With Preserved LVEF and Low-Gradient Aortic Stenosis. *Journal of the American College of Cardiology*. 2015;66(23):2594-2603.
- 20. Capoulade R, Le Ven F, Clavel M-A, et al. Echocardiographic predictors of outcomes in adults with aortic stenosis. *Heart.* 2016;102(12):934-942.
- Rusinaru D, Bohbot Y, Ringle A, Maréchaux S, Diouf M, Tribouilloy C. Impact of low stroke volume on mortality in patients with severe aortic stenosis and preserved left ventricular ejection fraction. *European Heart Journal*. 2018;39(21):1992-1999.
- 22. Singh A, McCann GP. Stroke volume index in mild-moderate aortic stenosis: more than a barometer of systolic function? *Heart.* 2017;103(18):1398.
- Lønnebakken MT, De Simone G, Saeed S, et al. Impact of stroke volume on cardiovascular risk during progression of aortic valve stenosis. *Heart.* 2017;103(18):1443-1448.
- Treibel TA, Kozor R, Fontana M, et al. Sex Dimorphism in the Myocardial Response to Aortic Stenosis. JACC: Cardiovascular Imaging. 2018;11(7):962-973.

- 25. Singh A, Greenwood JP, Berry C, et al. Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) Study. *European Heart Journal.* 2017;38(16):1222-1229.
- 26. Singh A, Chan DCS, Greenwood JP, et al. Symptom Onset in Aortic Stenosis. *JACC: Cardiovascular Imaging.* 2019;12(1):96-105.
- 27. Dobson LE, Fairbairn TA, Musa TA, et al. Sex-related differences in left ventricular remodeling in severe aortic stenosis and reverse remodeling after aortic valve replacement: A cardiovascular magnetic resonance study. *American Heart Journal.* 2016;175:101-111.
- Bohbot Y, Renard C, Manrique A, et al. Usefulness of Cardiac Magnetic Resonance Imaging in Aortic Stenosis. *Circulation: Cardiovascular Imaging.* 2020;13(5).