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Abstract Spatial partitioning is a propensity of biological systems orchestrating cell activ-
ities in space and time. The dynamic regulation of plasma membrane nano- environments has 
recently emerged as a key fundamental aspect of plant signaling, but the molecular components 
governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand- induced 
complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co- re-
ceptor BRASSINOSTEROID- INSENSITIVE 1- ASSOCIATED KINASE 1 (BAK1), and perception of the 
endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits 
immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of 
FLS2 and BAK1. Our study demonstrates that akin to FER, leucine- rich repeat (LRR) extensin 
proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization 
and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and 
BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase 
activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates 
plasma membrane nanoscale organization to regulate cell surface signaling by other ligand- binding 
receptor kinases.
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Introduction
Multicellular organisms evolved sophisticated surveillance systems to monitor changes in their envi-
ronment. In plants, receptor kinases (RKs) and receptor proteins (RPs) are the main ligand- binding 
cell- surface receptors perceiving self, non- self, and modified- self molecules (Hohmann et al., 2017). 
For example, recognition of pathogen- associated molecular patterns (PAMPs) by pattern recognition 
receptors (PRRs) initiates signaling events, leading to pattern- triggered immunity (PTI) (DeFalco and 
Zipfel, 2021). The Arabidopsis thaliana (hereafter Arabidopsis) leucine- rich repeat receptor kinases 
(LRR- RKs) FLS2 and EFR recognize the bacterial PAMPs flagellin (or its derived epitope flg22) and 
elongation factor- Tu (or its derived epitope elf18), respectively (Gómez- Gómez and Boller, 2000; 
Zipfel et al., 2006). Both FLS2 and EFR form ligand- induced complexes with the co- receptor BAK1 
(a LRR- RK also referred as SERK3) to initiate immune signaling, such as the production of apoplastic 
reactive oxygen species (ROS), and calcium influx (Chinchilla et al., 2007; Heese et al., 2007; Schulze 
et al., 2010; Roux, 2011; Sun et al., 2013; Thor et al., 2020).

We previously showed that the Catharanthus roseus RECEPTOR- LIKE PROTEIN KINASE 1- LIKE 
(CrRLK1L) FERONIA (FER) and the GPI- anchored protein LORELEI- LIKE GPI- ANCHORED PROTEIN 1 
(LLG1) are required for flg22- induced FLS2- BAK1 complex formation (Stegmann et al., 2017; Xiao 
et al., 2019). Notably, the endogenous peptide hormone RALF23 is perceived by a LLG1- FER hetero-
complex, which leads to inhibition of flg22- induced FLS2- BAK1 complex formation (Stegmann et al., 
2017; Xiao et al., 2019). As such, although FER and LLG1 are positive regulator of PTI, RALF23 is a 
negative regulator. How these components regulate FLS2- BAK1 complex formation remains however 
unclear.

Several members of the CrLKL1L family are involved in RALFs perception (Haruta et al., 2014; Ge 
et al., 2017; Gonneau et al., 2018; Liu, 2021). Among them, FER plays a pivotal role in the percep-
tion of several Arabidopsis RALF peptides (Haruta et al., 2014; Stegmann et al., 2017; Gonneau 
et al., 2018; Zhao et al., 2018; Abarca et al., 2021; Liu, 2021). In addition, cell wall- associated 
LEUCINE- RICH REPEAT- EXTENSINs (LRXs) proteins are also involved in CrRLK1L- regulated pathways 
and were shown to bind RALFs with high affinity (Mecchia, 2017; Zhao et al., 2018; Dünser, 2019; 
Herger et al., 2020; Moussu, 2020). Structural and biochemical analyses indicate that RALF binding 
by CrRLK1L/LLG complexes and LRXs are mutually exclusive and mechanistically distinct from each 
other (Xiao et al., 2019; Moussu, 2020). While CrRLK1Ls and LRXs have emerged as important RALF- 
regulated signaling modules, it is still unknown whether LRXs are also involved in RALF23- mediated 
regulation of immune signaling.

Plasma membrane lipids and proteins dynamically organize into diverse membrane domains 
giving rise to fluid molecular patchworks (Gronnier et al., 2018; Ballweg et al., 2020; Jaillais and 
Ott, 2020). These domains are proposed to provide dedicated biochemical and biophysical envi-
ronments to ensure acute, specific, and robust signaling events (Gronnier et al., 2019; Jacobson 
et  al., 2019). For instance, FLS2 localizes in discrete and static structures proposed to specify 
immune signaling (Bücherl et al., 2017). The cell wall is thought to impose physical constraints on 
the plasma membrane, limiting the diffusion of its constituents (Feraru, 2011; Martinière, 2012). 
Indeed, alteration of cell wall integrity leads to aberrant protein motions at the plasma membrane 
(Martinière, 2012; McKenna, 2019). Notably, perturbation of the cell wall affects FLS2 nanoscale 
organization (McKenna, 2019). Despite its utmost importance, it remains largely unknown how the 
cell wall and its integrity modulate the organization of the plasma membrane. Interestingly, both 
CrRLK1Ls and LRXs are proposed cell wall integrity sensors and conserved modules regulating 
growth, reproduction, and immunity (Franck et  al., 2018; Herger et  al., 2019). However, their 
mode of action and potential links between cell wall integrity sensing and RALF perception are still 
poorly understood.

Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. 
Similarly, we show that LRXs contribute to RALF23 responsiveness and regulate BAK1 nanoscale orga-
nization and immune signaling. Importantly, our work reveals an unexpected uncoupling of FER and 
LRX modes of action in growth and immunity. We demonstrate that RALF23 perception leads to 
rapid modulation of FLS2 and BAK1 nanoscale organization and that its inhibitory activity on immune 
signaling requires FER kinase activity. We propose that the regulation of the plasma membrane 
nanoscale organization by RALF23 receptors underscores their role in the formation of protein 
complexes and initiation of immune signaling.

https://doi.org/10.7554/eLife.74162
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Results and discussion
FER regulates membrane nanoscale organization of FLS2 and BAK1
We combined variable angle total internal reflection fluorescence microscopy (VA- TIRFM) and single- 
particle tracking to analyze the lateral mobility of FLS2- GFP in transgenic Arabidopsis lines. Two lines 
expressing FLS2- GFP under the control of its native promoter were crossed with FER knock- out alleles 
fer- 2 and fer- 4. In line with previous reports (Bücherl et al., 2017; Tran et al., 2020), we observed that 
FLS2- GFP localized to laterally stable foci in wild- type (WT) (Figure 1—video 1). Consistently, FLS2- GFP 
single- particle trajectories exhibited a confined mobility behavior (Figure  1—figure supplement 1, 
Figure 1—video 1). Comparative analysis of the diffusion coefficient (D), which describes the diffusion 
properties of detected single particles (Kusumi et al., 1993), showed that FLS2- GFP was more mobile 
in fer mutants than in WT (Figure  1—figure supplement 1, Figure  1—figure supplement 2, and 
Figure 1—video 1). To analyze FLS2- GFP organization, we reconstructed images using a temporal aver-
aging of FLS2- GFP fluorescence observed across VA- TIRFM time series. Furthermore, individual image 
sections were subjected to kymograph analysis. Using this approach, we found that FLS2- GFP fluores-
cence was maintained into well- defined and static structures in WT, while it appeared more disperse and 
more mobile in both fer mutants (Figure 1A and B, Figure 1—figure supplement 2). To substantiate 
these observations, we used the previously established spatial clustering index (SCI), which describes 
protein lateral organization (Gronnier et al., 2017; Tran et al., 2020). As expected, SCI of FLS2- GFP was 
lower in fer- 4 than in WT (Figure 1C), indicating disturbance in FLS2- GFP lateral organization.

In Medicago truncatula and yeast, alteration of nanodomain localization has been linked to 
impaired protein accumulation at the plasma membrane due to increased protein endocytosis (Gross-
mann et al., 2008; Liang et al., 2018). To inquire for a potential defect in FLS2 plasma membrane 
accumulation, we observed subcellular localization of FLS2- GFP using confocal microscopy. The anal-
ysis revealed a decrease in FLS2- GFP accumulation in fer mutants (Figure  1—figure supplement 
3). Whether the proposed role of FER in regulating endocytosis (Yu et al., 2020) accounts for this 
defect is unknown. Altogether, these results show that FER is genetically required to control FLS2- GFP 
nanoscale organization and accumulation at the plasma membrane.

To further characterize the impact of FER loss of function in RK organization, we analyzed the 
behavior of BAK1- mCherry at the plasma membrane. Fluorescence recovery after photobleaching 
experiments previously suggested that the vast majority of BAK1 molecules are mobile (Hutten 
et al., 2017). Consistent with this result, BAK1- mCherry was more mobile than FLS2- GFP in the WT 
(Figure 1—video 2). Given that BAK1 is a common co- receptor for multiple LRR- RK signaling path-
ways (Hohmann et al., 2017), we hypothesized that BAK1 might dynamically associate with various 
pre- formed signaling platforms, such as FLS2 nanodomains (Figure 1, Bücherl et al., 2017). Under our 
experimental conditions, we were not able to perform high- quality single- particle tracking analysis for 
BAK1- mCherry (Figure 1—video 2, see Materials and methods section). However, visual inspection of 
particles behavior suggested that BAK1- mCherry was less mobile in fer- 4 than in WT (Figure 1—video 
2). Accordingly, reconstructed VA- TIRFM images and kymographs showed that BAK1- mCherry fluo-
rescence was more structured and static in fer- 4 than in WT (Figure 1F). Furthermore, we observed an 
increase of BAK1- mCherry SCI in fer- 4 (Figure 1G). Confocal microscopy analysis did not reveal signifi-
cant differences in BAK1- mCherry plasma membrane accumulation between fer- 4 and WT (Figure 2—
figure supplement 1). Altogether, these data show that loss of FER perturbs FLS2 and BAK1 nanoscale 
organization, albeit in an opposite manner (Figure 1D and H). Previous reports have similarly shown 
that altering the composition of the cell wall can lead to opposed effects on the mobility of different 
proteins. For instance, inhibition of cellulose synthesis increases the mobility of HYPERSENSITIVE- 
INDUCED REACTION 1 (Daněk et al., 2020) but limits the mobility of LOW- TEMPERATURE- INDUCED 
PROTEIN 6B (Martinière, 2012; Daněk et al., 2020). Modification of pectin methyl esterification status 
of the cell wall increases the mobility of FLS2 (McKenna, 2019) but decreases the mobility of FLOTILIN 
2 (Daněk et al., 2020). Collectively, these observations suggest that various membrane environments 
are differentially regulated by the cell wall and the proposed cell wall integrity sensor FER.

LRX3, LRX4, and LRX5 regulate BAK1 nanoscale organization and PTI 
signaling
LRXs are dimeric, cell wall- localized, high- affinity RALF- binding proteins suggested to monitor cell 
wall integrity in growth and reproduction (Baumberger et al., 2001; Mecchia, 2017; Dünser, 2019; 

https://doi.org/10.7554/eLife.74162
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Herger et al., 2019; Herger et al., 2020; Moussu, 2020). Their extensin domain confers cell wall 
anchoring, and their LRR domain mediates RALF binding (Herger et  al., 2019; Moussu, 2020). 
Among the Arabidopsis 11- member LRX family, LRX3, LRX4, and LRX5 are the most expressed in 
vegetative tissues, and the lrx3 lrx4 lrx5 triple mutant (hereafter lrx3/4/5) shows stunted growth and 
salt hypersensitivity phenotypes reminiscent of fer- 4 (Zhao et al., 2018; Dünser, 2019). Therefore, we 
hypothesized that LRXs also regulate immune signaling. Indeed, co- immunoprecipitation experiments 
showed that lrx3/4/5 was defective in flg22- induced FLS2- BAK1 complex formation (Figure  2A). 
Consistently, flg22- induced ROS production was reduced in lrx3/4/5 similar to the levels observed 
in fer- 4 (Figure 2B). In addition, lrx3/4/5 was impaired in elf18- induced ROS production (Figure 2C), 

Figure 1. FER regulates the nanoscale organization of FLS2- GFP and BAK1- mCherry. (A, E) FLS2- GFP and BAK1- mCherry nanodomain organization. 
Pictures are maximum projection of 20 variable angle total internal reflection fluorescence microscopy (VA- TIRFM) images obtained at 5 frames per 
second for FLS2- GFP (A) and 10 VA- TIRFM images obtained at 2.5 frames per second for BAK1- mCherry (E) in Col- 0 and fer- 4 cotyledon epidermal cells. 
(B, F) Representative kymograph showing lateral organization of FLS2- GFP (B) and BAK1- mCherry (F) overtime in Col- 0 and fer- 4. (C, G) Quantification of 
FLS2- GFP (C) and BAK1- mCherry (G) spatial clustering index. Graphs are notched box plots, scattered data points show measurements, colors indicate 
independent experiments, n = 16 cells for Col- 0/pFLS2::FLS2- GFP; n = 31 cells for fer- 4/pFLS2::FLS2- GFP, n = 23 cells for Col- 0/pBAK1::BAK1- mCherry, 
n = 18 cells for fer- 4/pBAK1::BAK1- mCherry. p- Values report two- tailed nonparametric Mann–Whitney test. (D, H) Graphical illustrations summarizing our 
observations for FLS2- GFP (D) and BAK1- mCherry (H) nanoscale dynamics.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. Source data points for the graphs in Figure 1C and G.

Figure supplement 1. Analysis of FLS2- GFP single- particle dynamics in fer- 4.

Figure supplement 1—source data 1. Source data points for the graph in Figure 1—figure supplement 1.

Figure supplement 2. Analysis of FLS2- GFP organization and dynamics in fer- 2.

Figure supplement 2—source data 1. Source data points for the graphs in Figure 1—figure supplement 2B and D.

Figure supplement 3. FLS2- GFP accumulation at the PM is altered in fer mutants.

Figure supplement 3—source data 1. Source data points for the graphs in Figure 1—figure supplement 3B and D.

Figure 1—video 1. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of FLS2- GFP in Col- 0 and fer- 4.

https://elifesciences.org/articles/74162/figures#fig1video1

Figure 1—video 2. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of BAK1- mCherry in Col- 0 and fer- 4 with or 
without RALF23 treatment.

https://elifesciences.org/articles/74162/figures#fig1video2

https://doi.org/10.7554/eLife.74162
https://elifesciences.org/articles/74162/figures#fig1video1
https://elifesciences.org/articles/74162/figures#fig1video2
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Figure 2. LRX3, LRX4, and LRX5 regulate pattern- triggered immunity (PTI) and BAK1- mCherry organization. (A) flg22- induced FLS2- BAK1 complex 
formation. Immunoprecipitation of FLS2 in Arabidopsis Col- 0 and lr3/4/5 seedlings either untreated or treated with 100 nM flg22 for 10 min. Blot stained 
with Coomassie brilliant blue (CBB) is presented to show equal loading. Western blots were probed with α-FLS2, α-BAK1, or α-FER antibodies. Numbers 
indicate quantification of BAK1 bands normalized based on the corresponding intensities of FLS2 bands and relative to the control Col- 0. Similar results 
were obtained in at least three independent experiments. (B, C) Reactive oxygen species (ROS) production after elicitation with 100 nM elf18 (B) or 
100 nM flg22 (C). Values are means of total photon counts over 40 min. Red crosses and red horizontal lines denote mean and SEM, n = 32. Conditions 
that do not share a letter are significantly different in Dunn’s multiple comparison test (p<0.0001). (D) BAK1- mCherry nanodomain organization. Pictures 
are maximum projection images (10 variable angle total internal reflection fluorescence microscopy [VA- TIRFM] images obtained at 2.5 frames per 
second) of BAK1- mCherry in Col- 0, fer- 4, and lrx3/4/5 cotyledon epidermal cells. (E) Representative kymograph showing lateral organization of BAK1- 
mCherry overtime in Col- 0, fer- 4, and lrx3/4/5. (F) Quantification of BAK1- mCherry spatial clustering index. Graphs are notched box plots, scattered data 
points show measurements, colors indicate independent experiments, n = 26 cells for Col- 0/pBAK1::BAK1- mCherry, n = 31 cells for fer- 4/pBAK1::BAK1- 

Figure 2 continued on next page
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suggesting that, as for FLS2- BAK1 complex formation, LRX3/4/5 are required for complex formation 
between EFR and BAK1. Thus, we conclude that LRX3/4/5 are positive regulators of PTI signaling.

We then asked whether, similar to FER, LRX3/4/5 regulate plasma membrane nanoscale organiza-
tion. We crossed lines expressing FLS2- GFP and BAK1- mCherry under the control of their respective 
native promoter with the lrx3/4/5 mutant. However, despite several attempts, we could not retrieve 
homozygous lrx3/4/5 lines expressing FLS2- GFP. Nonetheless, VA- TIRFM and confocal imaging 
showed that, like in fer- 4, BAK1- mCherry was more organized and more static in lrx3/4/5 (Figure 2D 
and E, Figure 2—video 1), and that BAK1- mCherry plasma membrane localization was not affected 
by the loss of LRX3/4/5 (Figure 2—figure supplement 1). Thus, like in fer mutants, perturbation in 
PTI signaling observed in lrx3/4/5 correlates with alterations of plasma membrane RK organization.

LRX3, LRX4, and LRX5 have been proposed to sequester RALF peptides to prevent internaliza-
tion of FER and inhibition of its function (Zhao et  al., 2018). Following this logic, defects in PTI 
observed in lrx3/4/5 could be explained by a depletion of FER at the plasma membrane. However, our 
confocal microscopy analysis and western blotting with anti- FER antibodies indicated that FER accu-
mulation and plasma membrane localization were not affected in lrx3/4/5 (Figure 2—figure supple-
ment 2). Furthermore, VA- TIRFM revealed that FER- GFP transiently accumulated in dynamic foci, 
independently of LRX3/4/5 (Figure 2—figure supplement 3, Figure 2—video 2). Together, these 
results suggest that LRX3/4/5 do not prevent RALF association with FER to modulate PTI. Moreover, 
our results suggest that active monitoring by the proposed cell wall integrity sensors FER and LRXs 
regulates plasma membrane nanoscale dynamics of RKs.

The ability of LRX3/4/5 to associate with RALF23 in planta (Zhao et al., 2018) prompted us to 
test whether LRX3/4/5 are required for RALF23 responsiveness. Indeed, LRX3, LRX4, and LRX5 
were required for RALF23- induced inhibition of elf18- triggered ROS production (Figure 2—figure 
supplement 4A). Similarly, we observed a decrease in RALF23- induced seedlings growth inhibition 
in lrx3/4/5 compared to WT (Figure 2—figure supplement 4B). Altogether, these data show that 
LRX3/4/5 contribute to RALF23 responsiveness (Figure 2—figure supplement 4C), and that LRXs and 
FER have analogous functions in regulating PTI.

We next asked whether FER and LRX3/4/5 form a complex. For this, we made use of a trun-
cated version of LRX4 lacking its extensin domain (LRX4ΔE), previously used to assess protein complex 
formation (Dünser, 2019; Herger et al., 2020). Consistent with previous reports based on transient 
expression in Nicotiana benthamiana (Dünser, 2019; Herger et al., 2020), co- immunoprecipitation 

mCherry, n = 28 cells for lrx3/4/5/pBAK1::BAK1- mCherry. Conditions that do not share a letter are significantly different in Dunn’s multiple comparison 
test (p<0.0001). (G) Graphical illustration summarizing our observations for BAK1- mCherry nanoscale dynamics in lrx3/4/5.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 2:

Source data 1. Source data points for the graphs in Figure 2B, C and F.

Source data 2. Source blots images for the co- immunoprecipitation (co- IP) in Figure 2A.

Figure supplement 1. Subcellular localization of BAK1- mCherry in fer- 4 and lrx3/4/5.

Figure supplement 1—source data 1. Source data points for the graph in Figure 2—figure supplement 1B.

Figure supplement 2. LRX3, LRX4, and LRX5 are dispensable for FER plasma membrane localization and accumulation.

Figure supplement 2—source data 1. Source blots images for Figure 2—figure supplement 2.

Figure supplement 3. LRX3, LRX4, and LRX5 are dispensable for FER- GFP nanoscale organization.

Figure supplement 3—source data 1. Source data points for the graph in Figure 2—figure supplement 3B.

Figure supplement 4. LRX3, LRX4, and LRX5 contribute to RALF23 responsiveness.

Figure supplement 4—source data 1. Source data points for the graph in Figure 2—figure supplement 4A and B.

Figure supplement 5. RALF23 does not modulate constitutive association between FER and LRX4.

Figure supplement 5—source data 1. Source blots images for the co- immunoprecipitation (co- IP) in Figure 2—figure supplement 5.

Figure 2—video 1. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of BAK1- mCherry in Col- 0 and lrx3/4/5.
https://elifesciences.org/articles/74162/figures#fig2video1

Figure 2—video 2. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of FER- GFP in fer- 4 and fer- 4;lrx3/4/5.

https://elifesciences.org/articles/74162/figures#fig2video2

Figure 2 continued

https://doi.org/10.7554/eLife.74162
https://elifesciences.org/articles/74162/figures#fig2video1
https://elifesciences.org/articles/74162/figures#fig2video2
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experiments with stable transgenic Arabidopsis showed that FER was constitutively associated with 
LRX4ΔE- FLAG, and that RALF23 treatment did not modulate this interaction (Figure 2—figure supple-
ment 5). This suggests that direct monitoring of the cell wall mediated by a possible FER- LRX complex 
(Dünser, 2019; Herger et al., 2019) is not regulated by RALF23. In agreement with structural and 
biochemical analyses of RALF- binding by CrRLK1Ls/LLGs and LRXs (Moussu, 2020), FER- LLG1 and 
LRX3/4/5 may form distinct RALF23 receptor complexes. Similar to their roles in pollen tube and root 
hair growth and integrity (Ge et al., 2017; Mecchia, 2017; Moussu, 2020; Dünser, 2019; Herger 
et al., 2020), future investigations are thus needed to understand the exact molecular link between 
RALF- binding LRXs and CrRLK1s.

Functional dichotomy of FER and LRXs in regulating growth and 
immunity
In line with previous reports, our data show that FER and LRXs can form a complex (Dünser, 2019; 
Herger et al., 2019, Figure 2—figure supplement 5). Moreover, they are known to associate with 
the cell wall (Baumberger et  al., 2001; Feng, 2018) and are proposed to cooperatively relay its 
properties (Dünser, 2019; Herger et al., 2019). We thus asked if direct cell wall sensing underlies 
FER and LRXs function in PTI. In the context of growth and cell expansion, plants overexpressing 
LRX4ΔE are phenotypically reminiscent of lrx3/4/5 and fer- 4 mutants (Dünser, 2019). This dominant 
negative effect is proposed to be caused by competition of the overexpressed truncated LRX4ΔE with 
endogenous LRXs and consequent loss of cell wall anchoring (Dünser, 2019). Similarly, overexpres-
sion of LRX1ΔE inhibits root hair elongation, phenocopying LRX1/LRX2 loss of function (Herger et al., 
2020). By contrast, we observed that LRX4ΔE overexpression did not affect flg22- induced interaction 
between FLS2 and BAK1 (Figure 3—figure supplement 1A). In good agreement with this notion, 
overexpression of LRX4ΔE did not affect flg22- nor elf18- induced ROS production (Figure 3—figure 
supplement 1B and C). To corroborate these results, we tested inhibition of root growth triggered by 
flg22 treatment. Consistent with the positive role of FER and LRX3/4/5 in PTI, we observed that fer- 4 
and lrx3/4/5 were hyposensitive to flg22 treatment (Figure 3—figure supplement 1D). By contrast, 
overexpression of LRX4ΔE did not affect inhibition of root growth by flg22 (Figure 3—figure supple-
ment 1D). In addition, we observed that LRX4ΔE overexpression did not impact RALF23 responsive-
ness (Figure 3—figure supplement 1E). Altogether, these data suggest that the function of LRX3/4/5 
in PTI is distinct from their role during growth.

The ectodomain of FER contains two malectin- like domains, malA and malB (Figure 3A), which 
share homology with malectin, a carbohydrate- binding protein from Xenopus laevis (Boisson- Dernier 
et al., 2011). Despite lacking the canonical carbohydrate- binding site of malectin (Moussu, 2018; 
Xiao et al., 2019), malA and malB were proposed to bind pectin (Feng, 2018; Lin et al., 2021), and 
FER- mediated cell wall sensing regulates pavement cell and root hair morphogenesis (Duan, 2010; 
Lin et al., 2021). To investigate if direct cell wall sensing underlies FER’s function in regulating PTI, 
we used transgenic lines expressing a FER truncated mutant, lacking the malA domain, C- terminally 
fused to YFP (FERΔmalA- YFP) in the fer- 4 mutant background (Figure 3B). We observed that FERΔma-

lA- YFP did not complement the cell shape and root hair elongation defects of fer- 4 (Figure 3C and 
D), emphasizing the importance of malA in FER- regulated cell morphogenesis. In contrast, immuno-
precipitation assays showed that FERΔmalA- YFP fully complemented flg22- induced complex formation 
between endogenous FLS2 and BAK1 (Figure 3E) as well as ROS production in response to flg22 
and elf18 (Figure 3F and G). Altogether, these data suggest that malA- mediated cell wall sensing 
underlies specific function(s) of FER in regulating growth and cell morphology, but is dispensable 
for FER’s role in PTI. Interestingly, we observed that expression of FERΔmalA- YFP restored inhibition of 
growth triggered by RALF23, suggesting that malB is sufficient for RALF responsiveness (Figure 3H), 
as suggested by its physical interaction with RALF23 (Xiao et al., 2019). While we cannot formally 
exclude the implication of pectin- binding by malB in regulating immunity, the contrasted context- 
dependent functionality of FERΔmalA- YFP suggests that FER’s function in PTI is primarily mediated by 
RALF perception. Altogether, our data indicate molecular and functional dichotomy of FER and LRXs 
in regulating growth and immunity.

https://doi.org/10.7554/eLife.74162
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Figure 3. FER malectin A domain regulates cell morphogenesis not pattern- triggered immunity (PTI). (A) Graphical representation of RALF23 
perception by FER- LLG1 complex. (B) Morphology of 4- week- old Arabidopsis plants; scale bar indicates 5 cm. (C, D) Confocal microscopy pictures 
of 5- day- old seedlings cotyledon (C) and root (D) epidermal cells stained with propidium iodide. 3–4 seedlings per genotypes were observed per 
experiment. For each seedling, we observed the center of both cotyledons, and at the initiation site of root hairs. Similar results were obtained in at 

Figure 3 continued on next page
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RALF23 alters FLS2 and BAK1 organization and function through active 
FER signaling
We next asked whether RALF23 activity is mediated by active FER signaling. We used a kinase- dead 
mutant (FERK565R) C- terminally fused to GFP, expressed in fer knock- out backgrounds (Chakravorty 
et  al., 2018), and selected lines showing comparable accumulation to endogenous FER in WT 
(Figure 4—figure supplements 1 and 2). Interestingly, we observed that FERK565R- GFP complemented 
fer’s defect in FLS2- BAK1 complex formation (Figure 4—figure supplement 1A) and PAMP- induced 
ROS production (Figure 4—figure supplement 1B and C). In contrast, we observed that inhibition 
of FLS2- BAK1 complex formation by RALF23 depended on FER kinase activity (Figure  4—figure 
supplement 2B). Similarly, inhibition of elf18- induced ROS production and seedling growth inhibi-
tion by RALF23 depended on FER kinase activity (Figure 4—figure supplement 2C). Overall, these 
data show that inhibition by RALF23 is mediated by active FER signaling while FER’s positive role in 
immune signaling is kinase activity- independent.

We next asked whether inhibition of FLS2- BAK1 complex formation by RALF23 correlates with 
a modulation of FLS2 or BAK1 nanoscale organization. VA- TIRFM imaging showed an increase of 
FLS2- GFP mobility and an alteration of FLS2- GFP nanodomain organization within minutes of RALF23 
treatment (Figure  4—figure supplements 3 and 4, Figure  4—videos 1–3, imaging performed 
2–30 min post treatment; Figure 4—figure supplement 5). In addition, we observed that RALF23 
treatment stabilized BAK1- mCherry nanoscale organization (Figure 4, Figure 4—figure supplement 
6, Figure 1—video 2). These data suggest that RALF23 perception leads to rapid modification of 
FLS2 and BAK1 membrane organization and thereby potentially inhibits their association. In addition, 
these data, based on short- term RALF23 treatment, demonstrate that the aforementioned defects 
in FLS2 and BAK1 organization observed in fer and lrx3/4/5 mutant plants are not caused by their 
pleiotropic growth defects.

Our study unravels the regulation of FLS2 and BAK1 nanoscale organization by the RALF recep-
tors FER and LRX3/4/5 (Figure 4—figure supplement 6). The function of RALF receptors in other 
processes might similarly rely on the regulation of RK nanoscale dynamics, and the identification of 
the corresponding regulated RKs is an exciting prospect for future investigation. Further work will be 
required to decipher how FLS2 and BAK1 associate in a ligand- dependent manner within the plasma 
membrane and to understand how FER and LRXs control this process. While FER associate with 
LLG1 to perceive RALF peptides, whether perception of these peptides by LRXs involves additional 
unknown components remains open. For both FER- LLG1 and LRXs, it will be important in the future to 
identify the components mediating RALF23 signaling and modification of FLS2 and BAK1 nanoscale 
dynamics. Because FER- LLG1 and LRX3/4/5 – components of distinct RALFs receptor complexes – are 
genetically required to control FLS2 and BAK1 nanoscale dynamics, we hypothesize that perception 
of additional RALF peptides may be involved in regulating this process (Figure 4—figure supplement 

least three independent experiments. (E) Flg22- induced FLS2- BAK1 complex formation. Immunoprecipitation of FLS2 in Arabidopsis Col- 0, fer- 4, and 
fer- 4/p35S::FER∆MalA- YFP seedlings that were either untreated or treated with 100 nM flg22 for 10 min. Blot stained with Coomassie brilliant blue (CBB) 
is presented to show equal loading. Western blots were probed with α-FLS2, α-BAK1, or α-FER antibodies. Numbers indicate quantification of BAK1 
bands normalized based on the corresponding intensities of FLS2 bands and relative to the control Col- 0 + flg22. Similar results were obtained in at 
least three independent experiments. (F, G) Reactive oxygen species (ROS) production after elicitation with 100 nM flg22 (F) or 100 nM elf18 (G). Values 
are means of total photon counts over 40 min, n = 8. Red crosses and red horizontal lines denote mean and SEM, respectively. Conditions that do not 
share a letter are significantly different in Dunn’s multiple comparison test (p<0.0001). (H) Fresh weight of 12- day- old seedlings grown in the absence 
(mock) or presence of 1 µM of RALF23 peptide. Fresh weight is expressed as relative to the control mock treatment for each genotype. Similar results 
were obtained in at least three independent experiments. Conditions that do not share a letter are significantly different in Dunn’s multiple comparison 
test (p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data points for the graphs in Figure 3F–H.

Source data 2. Source blots images for the co- immunoprecipitation (co- IP) in Figure 3E.

Figure supplement 1. Overexpression of LRX4∆E does not affect pattern- triggered immunity (PTI).

Figure supplement 1—source data 1. Source data points for the graphs in Figure 3—figure supplement 1B–E.

Figure supplement 1—source data 2. Source blots images for the co- immunoprecipitation (co- IP) in Figure 3—figure supplement 1A.

Figure 3 continued

https://doi.org/10.7554/eLife.74162
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Figure 4. RALF23 perception regulates BAK1- mCherry organization. (A) BAK1- mCherry nanodomain organization 
(pBAK1::BAK1- mCherry). Pictures are maximum projection images (10 variable angle total internal reflection 
fluorescence microscopy [VA- TIRFM] images obtained at 2.5 frames per second) of BAK1- mCherry in Col- 0 and 
fer- 4 cotyledon epidermal cells with or without 1 µM RALF23 treatment (2–30 min). (B) Representative kymograph 
showing lateral organization of BAK1- mCherry overtime in Col- 0 and fer- 4 with or without 1 µM RALF23 treatment. 
(C) Quantification of BAK1- mCherry spatial clustering index. Graphs are notched box plots, scattered data points 
show measurements, colors indicate independent experiments, n = 21 and n = 23 cells for Col- 0/pBAK1::BAK1- 
mCherry with and without RALF23, respectively, n = 20 and n = 21 cells for fer- 4/pBAK1::BAK1- mCherry with and 
without RALF23, respectively. Conditions that do not share a letter are significantly different in Dunn’s multiple 
comparison test (p<0.0001). (D) Graphical illustration summarizing our observations for BAK1- mCherry nanoscale 
dynamics upon RALF23 treatment.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 4:

Source data 1. Source data points for the graph in Figure 4C.

Figure supplement 1. FER kinase activity is dispensable to support pattern- triggered immunity (PTI) signaling.

Figure supplement 1—source data 1. Source data points for the graphs in Figure 4—figure supplement 1B 
and C.

Figure supplement 2. Inhibition of pattern- triggered immunity (PTI) signaling by RALF23 requires FER kinase 
activity.

Figure supplement 2—source data 1. Source data points for the graph in Figure 4—figure supplement 2C.

Figure supplement 3. Analysis of FLS2- GFP single- particle dynamics upon RALF23 treatment.

Figure supplement 3—source data 1. Source data points for the graph in Figure 4—figure supplement 3B.

Figure supplement 4. Analysis of FLS2- GFP organization upon RALF23 treatment. 

Figure 4 continued on next page
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6). Plants have evolved coordinated RK protein- protein interaction networks to process extracellular 
signals into specific responses (Smakowska- Luzan et al., 2018), and thus may have co- evolved mech-
anisms to regulate these interactions in both space and time. Our results suggest that perception 
of endogenous peptides by distinct receptor complexes actively modulates the plasma membrane 
nanoscale organization to regulate cell surface signaling by other RKs.

Materials and methods

Figure supplement 4—source data 1. Source data points for the graph in Figure 4—figure supplement 4C.

Figure supplement 5. Time- resolved analysis of the spatial clustering index.

Figure supplement 5—source data 1. Source data points for the graphs in Figure 4—figure supplement 5A 
and B.

Figure supplement 6. Working model for the regulation of FLS2 and BAK1 nanoscale organization by RALFs 
receptor complexes.

Figure supplement 7. Linear regression analysis of the relationship between the spatial clustering index and 
fluorescence intensity.

Figure supplement 7—source data 1. Source data points for the graphs in Figure 4—figure supplement 6A–C.

Figure supplement 8. Replicates of co- immunoprecipitation experiments.

Figure supplement 8—source data 1. Source blots images for the replicate of co- immunoprecipitation (co- IP) 
experiments.

Figure 4—video 1. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of FLS2- 
GFP in Col- 0 with or without RALF23 treatment.

https://elifesciences.org/articles/74162/figures#fig4video1

Figure 4—video 2. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of FLS2- 
GFP in fer- 4 with or without RALF23 treatment.

https://elifesciences.org/articles/74162/figures#fig4video2

Figure 4—video 3. Variable angle total internal reflection fluorescence microscopy (VA- TIRFM) imaging of FLS2- 
GFP in Col- 0 and fer- 2 with or without RALF23 treatment.

https://elifesciences.org/articles/74162/figures#fig4video3

Figure 4 continued

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Arabidopsis thaliana) Col- 0/pFLS2::FLS2- GFP#1 Göhre et al., 2008 See Materials and methods

Genetic reagent (A. thaliana) Col- 0/pFLS2::FLS2- GFP#2 This paper See Materials and methods

Genetic reagent (A. thaliana) fer- 2/pFLS2::FLS2- GFP#1 Stegmann et al., 2017 See Materials and methods

Genetic reagent (A. thaliana) fer- 4/pFLS2::FLS2- GFP#2 This paper See Materials and methods

Genetic reagent (A. thaliana) fer- 4 Duan, 2010 See Materials and methods

Genetic reagent (A. thaliana) fer- 4/pFER::FER- GFP Duan, 2010 See Materials and methods

Genetic reagent (A. thaliana) fer- 4/pFER::FERKD- GFP Chakravorty et al., 2018 See Materials and methods

Genetic reagent (A. thaliana) lrx3/4/5 Dünser, 2019 See Materials and methods

Genetic reagent (A. thaliana) p35S::LRX4∆E- Citrine Dünser, 2019 See Materials and methods

Genetic reagent (A. thaliana) p35S::LRX4∆E- FLAG Dünser, 2019 See Materials and methods

Genetic reagent (A. thaliana) Col- 0/pBAK1::BAK1- mCherry Bücherl et al., 2013 See Materials and methods

Genetic reagent (A. thaliana) fer- 4/ pBAK1::BAK1- mCherry This paper See Materials and methods

https://doi.org/10.7554/eLife.74162
https://elifesciences.org/articles/74162/figures#fig4video1
https://elifesciences.org/articles/74162/figures#fig4video2
https://elifesciences.org/articles/74162/figures#fig4video3
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (A. thaliana) lrx3/4/5/ pBAK1::BAK1- mCherry This paper See Materials and methods

Genetic reagent (A. thaliana) lrx3/4/5/ pFER::FER- GFP This paper See Materials and methods

Antibody anti- FLAG- HRP Sigma- Aldrich A8592 WB (1:4000 dilution)

Antibody Monoclonal rabbit anti- FLS2 Chinchilla et al., 2007 WB (1:1000 dilution)

Antibody Polyclonal rabbit anti- BAK1 Roux, 2011 WB (1:5000 dilution)

Antibody Polyclonal rabbit anti- BAK1 pS612 Perraki, 2018 WB (1:3000 dilution)

Antibody Polyclonal rabbit anti- FER Xiao et al., 2019 WB (1:2000 dilution)

Antibody Anti- rabbit IgG- HRP Trueblot Rockland 18- 8816- 31 WB (1:10,000 dilution)

Peptide, recombinant protein Flg22
Synthesized by EZBiolab
(purity >95%) See Materials and methods

Peptide, recombinant protein Elf18
Synthesized by EZBiolab
(purity >95%) See Materials and methods

Peptide, recombinant protein RALF23
Synthesized by EZBiolab
(purity >95%) See Materials and methods

Chemical compound, drug GFP- Trap agarose beads ChromoTek See Materials and methods

Chemical compound, drug M2 anti- Flag affinity gel Sigma- Aldrich A2220- 5ML See Materials and methods

Chemical compound, drug Anti- rabbit Trueblot agarose beads eBioscience SML1656 See Materials and methods

Software, algorithm Fiji https://imagej.net/Fiji See Materials and methods

 Continued

Plant materials and growth
A. thaliana ecotype Columbia (Col- 0) was used as WT control. The fer- 4, fer- 4/pFER::FER- GFP (Duan, 
2010), fer- 4/pFER::FERKD- GFP (Chakravorty et  al., 2018), fer- 4/p35S::FERΔMalA- GFP (Lin, 2018), 
Col- 0/pFLS2::FLS2- GFP#1 (Göhre et al., 2008), Col- 0/pFLS2::FLS2- GFP#2 (this study), fer- 2/pFLS2::-
FLS2- GFP (Stegmann et al., 2017), lrx3/4/5, p35S::LRX4ΔE- Citrine and p35S::LRX4ΔE- FLAG (Dünser, 
2019) lines were previously published. Col- 0/pFLS2::FLS2- GFP (Göhre et  al., 2008) was crossed 
with fer- 4 to obtain fer- 4/pFLS2::FLS2- GFP. Col- 0/pBAK1::BAK1- mCherry (Bücherl et al., 2013) was 
crossed with fer- 4 and lrx3/4/5 to obtain fer-4/pBAK1::BAK1- mCherry and lrx3/4/5/pBAK1::BAK1- 
mCherry. fer- 4/pFER::FER- GFP was crossed with lrx3/4/5 to obtain fer- 4/lrx3/4/5;pFER::FER- GFP. For 
the VA- TIRFM imaging, we initially used a line expressing pFLS2::FLS2- GFP in fer- 2 we previously 
generated (Stegmann et al., 2017). Despite that both alleles are well- characterized null allele of FER, 
for consistent and direct comparison of our biochemical, physiological, and imaging experiments, 
we also crossed another Col- 0/pFLS2::FLS2- GFP with fer- 4. To further facilitate the single- particle 
tracking analysis, we choose a Col- 0/pFLS2::FLS2- GFP line expressing less FLS2- GFP. For ROS burst 
assays, plants were grown in individual pots at 20–21°C with a 10 hr photoperiod in environmentally 
controlled growth rooms. For seedling- based assays, seeds were surface- sterilized using chlorine gas 
for 5 hr and grown at 22°C and a 16 hr photoperiod on Murashige and Skoog (MS) medium supple-
mented with vitamins, 1% sucrose and 0.8% agar.

Synthetic peptides and chemicals
The flg22 ( QRLS TGSR INSA KDDA AGLQIA), elf18 (SKEKFERTKPHVNVGTIG), and RALF23 ( ATTK YISY 
GALR RNTV PCSR RGAS YYNC RRGA QANP YSRG CSAI TRCRR) peptides were synthesized by EZBiolab 
(USA) with a purity of >95%. All peptides were dissolved in sterile purified water.

ROS burst measurement
ROS burst measurements were performed as previously documented (Kadota et al., 2014). At least 
eight leaf discs (4 mm in diameter) per individual genotype were collected in 96- well plates containing 
sterile water and incubated overnight. The next day the water was replaced by a solution containing 
17 μg/mL luminol (Sigma- Aldrich), 20 μg/mL horseradish peroxidase (HRP, Sigma- Aldrich), and the 
peptides in the appropriate concentration. Luminescence was measured for the indicated time period 

https://doi.org/10.7554/eLife.74162
https://imagej.net/Fiji
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using a charge- coupled device camera (Photek Ltd., East Sussex, UK). The effect of RALF23 on elf18- 
triggered ROS production was performed as previously described (Stegmann et al., 2017). 8–10 leaf 
discs per treatment and/or genotype were collected in 96- well plates containing water and incubated 
overnight. The following day the water was replaced by 75 µL of 2 mM MES- KOH pH 5.8 to mimic 
the apoplastic pH. Leaf discs were incubated further for 4–5 hr before adding 75 μL of a solution 
containing 40 μg/mL HRP, 1 μM L- O12 (Wako Chemicals, Germany), and 2× elicitor RALF peptide 
solution (final concentration 20 μg/mL HRP, 0.5 µM L- O12, 1× elicitors). ROS production is displayed 
as the integration of total photon counts.

Root growth inhibition assay
Three- day- old Col- 0, fer- 4, lrx3/4/5, and 35S::LRR4- Cit seedlings (n = 9–12) were transferred for addi-
tional 3 days to 3 mL liquid ½ MS medium containing different concentrations (100 nM, 300 nM, or 
1 µM) of flg22 or the appropriate amount of solvent. The seedlings were then placed on solid MS 
plates before scanning. Root length was measured using ImageJ.

Live-cell imaging
For confocal microscopy and VA- TIRF microscopy experiments, surface- sterilized seeds were individ-
ually placed in line on square Petri dishes containing 1/2 MS 1% sucrose, 0.8% phytoagar, stratified 2 
days in the dark at 4°C, then placed in a growth chamber at 22°C and a 16 hr photoperiod for 5 days. 
Seedlings were mounted between a glass slide and a coverslip in liquid 1/2 MS, 1% sucrose medium. 
For VA- TIRF microscopy experiments, 2–4 seedlings were sequentially imaged for each genotype 
and/or condition. To test the effect of RALF23 on FLS2- GFP dynamics and nanodomain organization, 
seedlings were preincubated in 2 mM MES- KOH pH 5.8 for 3–4 hr prior treatment. Seedlings were 
imaged 2–30 min after treatment.

Confocal laser scanning microscopy (CLSM)
Confocal microscopy was performed using a Leica SP5 CLSM system (Leica, Wetzlar, Germany) 
equipped with Argon, DPSS, He- Ne lasers, hybrid detectors, and using a 63 × 1.2 NA oil immer-
sion objective. GFP was excited using 488 nm argon laser, and emission wavelengths were collected 
between 495 and 550 nm. mCherry was excited using 561 nm He/Ne laser, and emission wavelengths 
were collected between 570 and 640 nm. Propidium iodide was imaged using 488 nm and 500–550 nm 
excitation and emission wavelengths, respectively. In order to obtain quantitative data, experiments 
were performed using strictly identical confocal acquisition parameters (e.g., laser power, gain, zoom 
factor, resolution, and emission wavelengths reception), with detector settings optimized for low 
background and no pixel saturation. Pseudo- color images were obtained using look- up- table (LUT) of 
Fiji software (Schindelin et al., 2012).

Total internal reflection fluorescence (TIRF) microscopy
TIRF microscopy was performed using an inverted Leica GSD equipped with a ×160 objective (NA = 
1.43, oil immersion), and an Andor iXon Ultra 897 EMCCD camera. Images were acquired by illumi-
nating samples with a 488 nm solid- state diode laser set at 15 mW using a cube filter with an excitation 
filter 488/10 and an emission filter 535/50 for FLS2- GFP and FER- GFP. Optimum critical angle was 
determined as giving the best signal- to- noise for our sample and was kept fixed for each experiment. 
Images time series were recorded at 20 frames per second (50 ms exposure time) for Figure 1—figure 
supplement 2 and Figure 4—figure supplements 3 and 4; 5 frames per second for Figure 1A–C and 
Figure 2—figure supplement 3. To observe BAK1- mCherry, we could only use a 532 nm solid- state 
diode laser (ca. 40% of maximum excitation for mCherry) using a cube filter with an excitation filter 
532/10 and an emission filter 600/100. To obtain a sufficient signal- to- noise ratio, image time series 
were recorded at 2.5 frames per second (Figures 1, 2 and 4). Due to apparent high mobility of BAK1 
and relatively slow acquisition rate, we could not asses with confidence the identity of fluorescent 
particles from one time frame to another and therefore did not perform particle tracking analysis of 
BAK1- mCherry. VA- TIRFM images were subjected to background subtraction (30 rolling pixel radius) 
and smoothing. Kymographs were generated using Orthogonal views in Fiji (Schindelin et al., 2012).

Single-particle tracking analysis
To analyze single- particle tracking experiments, we used the plugin TrackMate 2.7.4 (Tinevez et al., 
2017) in Fiji (Schindelin et al., 2012). Single particles were segmented frame- by- frame by applying 

https://doi.org/10.7554/eLife.74162
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a Laplacian of Gaussian (LoG) filter and estimated particle size of 0.4 μm. Individual single particles 
were localized with sub- pixel resolution using a built- in quadratic fitting scheme. Then, single- particle 
trajectories were reconstructed using a simple linear assignment problem (Jaqaman et al., 2008) with 
a maximal linking distance of 0.4 μm and without gap closing. Thresholds were empirically determined 
for optimal single- particle detection and linking. Only tracks with at least 10 successive points (tracked 
for 500 ms) were selected for further analysis. Diffusion coefficients of individual particles were deter-
mined using TraJClassifier (Wagner et al., 2017). For each particle, the slope of the first four time 
points of their mean square displacement (MSD) plot was used to calculate their diffusion coefficient 
according to the following equation: MSD = (x – x0)2 + (y – y0)2 and D = MSD/4t, where x0 and y0 are 
the initial coordinates, and x and y are the coordinates at any given time, and t is the time frame.

Quantification of SCI
Genotype and/or treatment- dependent variation in fluorescence intensity of FLS2- GFP and fluores-
cence pattern of FLS2- GFP and BAK1- mCherry compromised the use of a unique set of parameters 
to compute nanodomain size and density across the different experiments. To uniformly quantify 
differences in membrane organization of both FLS2 and BAK1 across all experiments, we used the SCI 
that was shown to be largely insensitive to variation in fluorescence intensity (Gronnier et al., 2017). 
Quantifications were performed as previously described (Gronnier et al., 2017). Briefly, fluorescence 
intensity was plotted along an 8-µm- long line on maximum projection of VA- TIRFM images. Three 
plots were randomly recorded per cell and at least eight cells per condition per experiment were 
analyzed. For each line plot, the SCI was calculated by dividing the mean of the 5% highest values 
by the mean of 5% lowest values. Because the absence of correlation between fluorescence inten-
sity and SCI was assessed on confocal microscopy images and for a single protein (Gronnier et al., 
2017), we tested whether this was also the case in our experimental conditions. Indeed, we consis-
tently observed poor to no correlation between variation in fluorescence intensity and values of SCI 
(Figure 4—figure supplement 7).

Co-immunoprecipitation experiments
20–30 seedlings per plate were grown in wells of a 6- well plate for 2 weeks, transferred to 2 mM 
MES- KOH, pH 5.8, and incubated overnight. The next day flg22 (final concentration 100 nM) and/or 
RALF23 (final concentration 1 µM) were added and incubated for 10 min. Seedlings were then frozen 
in liquid N2 and subjected to protein extraction. To analyze FLS2- BAK1 receptor complex formation, 
proteins were isolated in 50 mM Tris- HCl pH 7.5, 150 mM NaCl, 10% glycerol, 5 mM dithiothreitol, 1% 
protease inhibitor cocktail (Sigma- Aldrich), 2 mM Na2MoO4, 2.5 mM NaF, 1.5 mM activated Na3VO4, 
1 mM phenylmethanesulfonyl fluoride, and 0.5% IGEPAL. For immunoprecipitations, α-rabbit True-
blot agarose beads (eBioscience) coupled with α-FLS2 antibodies (Chinchilla et al., 2007) or GFP- 
Trap agarose beads (ChromoTek) were used and incubated with the crude extract for 3–4 hr at 4°C. 
Subsequently, beads were washed three times with wash buffer (50 mM Tris- HCl pH 7.5, 150 mM 
NaCl, 1 mM phenylmethanesulfonyl fluoride, 0,1% IGEPAL) before adding Laemmli sample buffer and 
incubating for 10 min at 95°C. Analysis was carried out by SDS- PAGE and immunoblotting. To test 
the association between Flag- LRX4 and FER, total protein from 60 to 90 seedlings per treatment per 
genotype was extracted as previously described. For immunoprecipitations, M2 anti- Flag affinity gel 
(Sigma A2220- 5ML) was used and incubated with the crude extract for 2–3 hr at 4°C. Subsequently, 
beads were washed three times with wash buffer (50  mM Tris- HCl pH 7.5, 150  mM NaCl, 1  mM 
phenylmethanesulfonyl fluoride, 0.1% IGEPAL) before adding Laemmli sample buffer and incubating 
for 10 min at 95°C. Analysis was carried out by SDS- PAGE and immunoblotting. The replicates of the 
co- immunoprecipitation are presented in Figure 4—figure supplement 8.

Immunoblotting
Protein samples were separated in 10% bisacrylamide gels at 150 V for approximately 2 hr and trans-
ferred into activated PVDF membranes at 100 V for 90 min. Immunoblotting was performed with 
antibodies diluted in blocking solution (5% fat- free milk in TBS with 0.1% [v/v] Tween- 20). Antibodies 
used in this study were α-BAK1 (1:5000; Roux, 2011), α-FLS2 (1:1000; Chinchilla et al., 2007), α-FER 
(1:2000; Xiao et  al., 2019), α-BAK1 pS612 (1:3000; Perraki, 2018), α-FLAG- HRP (Sigma- Aldrich, 
A8592, dilution 1:4000), and α -GFP (sc- 9996, Santa Cruz, used at 1:5000). Blots were developed with 
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Pierce ECL/ECL Femto Western Blotting Substrate (Thermo Scientific). The following secondary anti-
bodies were used: anti- rabbit IgG- HRP Trueblot (Rockland, 18- 8816- 31, dilution 1:10,000) for detec-
tion of FLS2- BAK1 co- immunoprecipitation or anti- rabbit IgG (whole molecule)–HRP (A0545, Sigma, 
dilution 1:10,000) for all other western blots.

Statistical analysis
Statistical analyses were carried out using Prism 6.0 software (GraphPad). As mentioned in the figure 
legends, statistical significances were assessed using nonparametric Kruskal–Wallis bilateral tests 
combined with post- hoc Dunn’s multiple pairwise comparisons or using a two- way nonparametric 
Student’s t- test Mann–Whitney test.

Accession numbers
FER (AT3G51550), LRX3 (AT4G13340), LRX4 (AT3G24480), LRX5 (AT4G18670), RALF23 (AT3G16570), 
FLS2 (AT5G46330), BAK1 (AT4G33430).
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The Arabidopsis 
Genome Initiative

2000 Locus: AT4G13340 https://www. 
arabidopsis. org/ 
servlets/ TairObject? 
id= 130361& type= 
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The Arabidopsis 
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AT4G13340
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The Arabidopsis 
Information Resource, 
AT4G33430
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