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Removal of fish from gear by marine predators, known as depredation, is a fishery dependent mortality that needs to be included in stock
assessments for affected stocks to avoid misestimation of the assessed resource. Toothed whales engage regularly in depredation from longlines,
and while in some regions they leave clear marks of depredation activity, in the longline fisheries in the Southern Ocean they often leave no trace
of removal, making it necessary to estimate depredation through modelling approaches. Several modelling approaches have been developed
over the past decade in affected Southern Ocean fisheries, and in this paper, we examine five applications of common CPUE model structures to
the same dataset from the longline fishery around South Georgia. We then compare the estimates of depredation with those based on observed
bycatch ratios. The different model structures estimated very similar annual depredation removals, with all approaches averaging around % of
the catch removed throughout the entire fishery. While depredation varies spatially, the different modelling approaches consistently highlighted
areas where the impact of depredation was highest.
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Introduction
In the marine environment, depredation on fishery catches occurs
when animals exploit resources aggregated by humans. Examples
include sharks (MacNeil et al., 2009; Ryan et al., 2019), colossal
squid (Remeslo et al., 2019), and various marine mammal species
(Read, 2005; Werner et al., 2015) depredating on catches associated
with nets or longlines. Toothed whales (odontocetes), in particular,
have regularly been observed engaging in depredation, from the
Alaskan sablefish fishery, to fisheries in the tropics, and as far South

as the Antarctic (e.g. Sivasubramaniam, 1964; Yano and Dahlheim,
1995; Kock et al., 2006; Dalla Rosa and Secchi, 2007; Rocklin et al.,
2009; Peterson and Carothers, 2013; Rabearisoa et al., 2018; Tixier
et al. 2021).

Depredation removals result in a mortality associated with the
fishery being greater than the catch; fish that are caught in the
gear are eaten before they can be brought on board the vessel
to be counted or weighed. Not appropriately including these re-
movals within fish stock assessments may introduce bias to both
the stock and fishery metrics, as well as the sustainable management
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reference points (Gilman et al., 2006; Roche et al., 2007; Söffker et
al., 2015; Peterson and Hanselman, 2017; Hanselman et al., 2018)
due to the unrecorded mortality. Over a decade ago when the study
of depredation was an emerging field, this mortality was often not
considered (Purves et al., 2004; Gilman et al., 2006; Roche et al.,
2007). With increasing knowledge of depredation, modelling of re-
movals has become a necessary component in stock assessments
with a variety of approaches applied, including standardizing CPUE
for whale depredation (Hanselman et al., 2018; Earl, 2019) and in-
cluding depredation within estimates of fishery catch (Peterson and
Hanselman, 2017; Earl, 2019).

In some affected fisheries such as the tropical fisheries for tuna
and swordfish, marine mammals can leave lips or heads on the
hooks which can be counted (Rabearisoa et al., 2012), however, in
other fisheries such as the Southern Ocean fisheries the depredat-
ing odontocetes often leave no trace of removals, taking the whole
fish off the hook (Gasco et al., 2015). Direct observation is, there-
fore, impossible in these circumstances and depredation needs to
be estimated through modelling.

Depredation models generally compare catch per unit effort
(CPUE), with and without the presence of mammals, to estimate the
catch removed over time and space, whilst standardizing with vari-
ables such as season, location, and vessel using for example general-
ized linear models (GLMs; e.g. Peterson et al., 2013) or generalized
additive models (GAMs; e.g. Peterson et al., 2014; Tixier et al., 2020)
as well as generalized linear mixed models (GLMMs; e.g. Sigler et
al., 2008; Söffker et al., 2015; Janc et al., 2018) and generalized addi-
tive mixed models (GAMMs; e.g. Peterson and Hanselman, 2017).
The performance of different modelling approaches has been com-
pared by Hanselman et al. (2018), who evaluated fixed-effect GLMs
and GLMMs (with random and mixed effects) and found that the
mixed-effect models performed better than the fixed-effect models
to describe sperm whale (Physeter macrocephalus) depredation of
a sablefish (Anoplopoma fimbria) fishery in Alaska. An alternative
method to estimate depredation is to compare catches with a species
known to be less vulnerable to depredation; Gasco et al. (2015) de-
veloped an approach to corroborate the Tixier et al. (2010) esti-
mates, which was based on killer whale (Orcinus orca) preference
for toothfish compared to bycatch species and uses the change in
ratio of bycatch species to toothfish catch as an indicator of depre-
dation for a given fishing location.

The sub-Antarctic fisheries for Patagonian toothfish (Dissos-
tichus eleginoides, hereafter toothfish) target a highly prized bot-
tom dwelling deep water fish found in the Southern Ocean. Tooth-
fish can grow in excess of 2.3 m, weigh up to 200 kg, and have
been recorded living up to 50 years around South Georgia (Belchier,
2004). In these fisheries, marine mammals such as killer whales and
sperm whales have been shown to interact with the demersal long-
line fishing gear (Kock et al., 2006). The longlines are set on the
seabed at depths ranging from 500–2000 m, but typically around
1000 m, and are, therefore within the diving and foraging range of
sperm whales (Watwood et al., 2006). This depth was thought to re-
duce killer whale depredation until lines are hauled and their catch
becomes accessible in surface waters (Roche et al., 2007; Tixier et
al., 2010; Söffker et al., 2015). However, more recent studies have
shown that killer whales can dive to 700–1000 m (Reisinger et al.,
2015; Towers et al., 2019), and on occasion interact with longline
sets at these depths (Richard et al., 2020).

The level of depredation observed across the sub-Antarctic is-
lands where the toothfish fishery occurs is heterogeneous, following
different patterns and temporal trends (Tixier et al., 2020). It ranges

from relatively unaffected areas, such as Heard and McDonald Is-
lands, where sperm whales are the only species involved and inter-
act with <5% of the longline sets, to substantially depredated areas,
such as Crozet Islands, where together, killer and sperm whales in-
teract with >69% of the sets (Purves et al., 2004; Kock et al., 2006;
Gasco et al., 2015; Guinet et al., 2015; Söffker et al., 2015; Tixier et
al., 2020). Even within the same fishing ground there can be no-
table disparity with some areas clearly identifiable as depredation
‘hot spots’ (Clark and Agnew, 2010; Söffker et al., 2015).

For the South Georgia fishery, depredation was first reported
by scientific observers in 1994 (CCAMLR, 1994) and described in
1996 (Ashford et al., 1996). The extent and patterns of depredation
were first described in detail in 2004 (Purves et al., 2004). The ef-
fect of depredation on CPUE was first modelled in 2010 (Clark and
Agnew, 2010), and the results of the initial model were included
in the toothfish stock assessment for this region in 2011 (Peatman
et al., 2011). The model was later extended to include additional
species and spatial effects in 2015 (Söffker et al., 2015). Estimation
of depredation continues to be a routine element of the toothfish
stock assessment around South Georgia to date (Earl, 2019).

In this paper, we examine five applications of common model
structures (GLMs, GAMs, and GAMMs; Zuur, 2012; Zuur et al.
2013) to the dataset from the longline fishery around South Geor-
gia. We then compare the estimates of depredation with those based
on comparing local catch ratios between toothfish and grenadiers
(Macrourus spp.), a family not targeted by killer whales (Gasco et
al., 2015). The models are compared with the aim of investigating
whether an improved model compared to the existing approach can
be identified, and whether the approaches estimate similar magni-
tude and trends in depredation.

Methods
To compare the performance of alternative models of depredation,
a standard dataset was compiled that would be suitable for each
of the models. All analysis was carried out in R versions 4.0.0 and
4.0.2 (R Core Team, 2020), using GAM fitting from packages mgcv
(Wood, 2011), and surveyIndex (Berg, 2020). The notation for vari-
ables used in these modelling approaches are given in Table 1.

Data preparation
The toothfish fishery operates by setting longlines of around 10 km
in length in one of three configurations (Spanish, trotline, or auto-
line) between buoys. After a typical soak period of 17 h, the line is
recovered and hauled on board over several hours. Data collected
during the setting and hauling of each longline (henceforth haul)
deployed by vessels fishing in the South Georgia longline toothfish
fishery provided catches of toothfish and grenadier by weight and
number, as well as the associated fishing effort and corresponding
scientific observer records of depredating killer and sperm whales,
between 2003 and 2019 (Figure 1). Observation periods occur on
an ad hoc basis for brief periods during hauling activity of around
50% of the hauls, with timing and duration dependent on the other
tasks that the observer is required to complete. During each of these
haul observation periods, the observer makes a visual estimation of
the number of depredating whales in a 500 m radius around the
vessel using a standardized protocol used across toothfish fisheries
(Gasco et al., 2016).

Data were removed when hauls occurred outside the regular
bounds and timing of the fishery (retaining those deeper than
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Table 1 Notation used in the description of the models. Lines are indexed by i and cells by j.

Continuous variables Discrete factors

CPUEi – The CPUE observed from line i
̂CPUEA, j – The average CPUE observed from lines in cell jwhere

depredating odontocetes were not observed
̂CPUEP, j – The average CPUE observed from lines in cell jwhere

depredating odontocetes were observed.
CPUEloss, j– CPUE lost from a line in cell j.
loni, lati – longitude and latitude of midpoint line i
depthi – average depth (m) of the endpoints of line i
Nspw i – number of depredating sperm whales observed for line i
Nkiw i – number of killer whales observed for line i
soaki – time that line i was left to soak
speedi – haul speed of line i
dayi – day of year that line i was set
Tloss,j – number of toothfish lost to depredation in cell j.
TP, j – number of toothfish caught in cell jwhen killer whales were

observed
TA, j – number of toothfish caught in cell jwhen killer whales were not

observed
G P, j – number of grenadiers caught in cell jwhen killer whales were

observed
G A, j – number of grenadiers caught in cell jwhen killer whales were

not observed

yeari – year when line i was set
monthi – month when line i was set
areai – one of four areas for fishing: Shag Rocks, South, North West or

East South Georgia
depthbandi– average depth (m) of the endpoints of line i in m bands

vesseli – code randomly allocated to the vessel setting line i
nationalityi – code randomly allocated to the nationality of the vessel

setting line i
cetaceani – presence of killer whale, depredating sperm whale or both
Pkiw i – presence of killer whales when hauling line i
Pspw i – presence of depredating sperm whales when hauling line i
geari – fishing gear autoliner, Spanish or trotline used on line i
celli – the cell in which the midpoint of line i occurs

Figure 1. Study area around the island of South Georgia (SG) and Shag Rocks (SR) in the Southern Ocean shown in relation to – m
depth contours derived from GEBCO Compilation Group () data. Top: fishing effort (number of hauls – by .◦ × .◦ cells) .
Bottom: the subset of hauls included in this study, where observations for mammals occurred and data met the requirements outlined in the
data preparation section.
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500 m, South of 52◦S, East of 45◦W, and between 1st April and
31st August) to exclude data entry errors. Data points that were
outliers regarding line length, soak time and haul duration were ex-
cluded. Hauls in isolated locations where fewer than 20 hauls oc-
curred within 10 statute miles were also removed as fisheries on
isolated seamounts may exhibit different patterns to fishing along
the shelf edge. In addition, only data from vessels that either par-
ticipated in the fishery for more than 3 years or participated in
2019 were included (14 vessels met these criteria). The final dataset
(Figure 1, bottom) contained 8710 hauls with observation periods
during hauling, of which mammals were present in 2643 cases.
The final dataset represented 30% of the total hauls in the fish-
ery, with the number of hauls in each year included in the data
varying between 217 and 1220. In some years and on some ves-
sels, the abundance of depredating sperm whales or killer whales
near the vessel were recorded as a range rather than a single fig-
ure, or multiple observation periods took place during the haul-
ing of one longline set. In those instances, the mean between the
minimum and the maximum was used for each observation period,
and the median of the observation periods was associated with the
line.

Sperm whale and killer whale longline interactions
The depredation patterns around South Georgia are described in
Söffker et al. (2015), which showed that in this region catch rates
with killer whales near the vessel, whether feeding was observed
or not, were significantly lower than catch rates in the absence of
killer whales. In contrast, catch rates were typically lower when the
sperm whales were recorded by observers as “feeding” near the ves-
sel and “interacting” with the vessel (dives near the longline and
vessel) during hauling activity than when they were recorded as
present, but not interacting during hauling activity (Söffker et al.,
2015). Therefore, in this paper depredation by sperm whales is con-
sidered to have occurred when they have been observed as ‘interact-
ing’ with the longlines during hauling, while for killer whales depre-
dation is considered to have occurred whenever they were present
during hauling.

Depredation estimation approaches
Current stock assessment GLM
The current stock assessment GLM is the method used to estimate
depredation and CPUE trends for the stock assessment for tooth-
fish around South Georgia (Earl, 2019). The approach fits a linear
model predicting CPUE based on the factors: year, month, nation-
ality, area, depth class, and presence of killer whales or depredat-
ing sperm whales. The nationality of the ship’s registration acts as
a proxy for a variety of factors such as gear type and configura-
tion, and the fishing experience of the captain and fishing master,
rather than as a factor directly affecting the catch rate. An alterna-
tive model, replacing nationality with individual vessels was over-
parameterized because of a high degree of dependence between
year and vessel. This model fits a General Linear Model (GLM) with
a normal distribution and square root link function to the CPUE of
the form of Equation ), where i is an index that identifies data spe-
cific to a haul.

√
CPU Ei = α + β1yeari + β2monthi + β3nationalityi

+ β4cetaceani + β4areai + β5depthbandi + εi (1)

CPUE comparison
The CPUE comparison method developed by Tixier et al. (2010)
compares the CPUE locally (0.2◦ × 0.2◦ cells) in the presence of
depredating mammals to that observed in their absence to estimate
a change in CPUE implied by the presence of mammals. The ef-
fect of depredation on CPUE (CPU Eloss, j ) is calculated as the differ-
ence between the average for each cell j in the absence of mammals
(independently for occurrences of sperm whales, killer whales, and
both species) and the average in cell j when mammals are present,
according to Equation (2).

CPU Eloss, j = ̂CPU EA, j − ̂CPU EP, j. (2)

Data for all years are combined to maximize the number of cells
where CPUE loss can be calculated. In order to compare the esti-
mates of depredation, and their uncertainty with the other models,
the model was reformulated as a GLM with a normal distribution,
according to Equation (3) where the CPUE loss from each haul is
estimated by the β2 and β3 terms.

CPU Ei = α + β1Celli + β2Cetaceani

+ β3 (Celli × Cetaceani) + εi (3)

Circumpolar GAM
The Circumpolar GAM model is based on the GAM derived by Tix-
ier et al. (2020) for several sub-Antarctic fisheries fitting an additive
model to observed CPUE to standardize for factors that include ma-
rine mammal abundance. We take the general form of the GAM
and keep the same specifications of the smoothers as in Tixier et al.
(2020), while estimating parameters to provide the best fit to our
dataset. This model fits a GAM with a normal distribution and log
link function to the CPUE of the form of Equation (4), where the
f1,2,4,5,6 are thin plate splines with four knots, and f3 is the thin plate
spline with estimated degrees of freedom.

log (CPU Ei ) = α + β1
(
yeari

) + f1
(
dayi

) + β2 (vesseli)

+ f2
(
depthi

) + f3 (lati, loni ) + f4 (soaki )

+ f5(Nkiw i ) : geari + f6(Nspw i ) : geari ) + εi

(4)

South Georgia specific GAM
The South Georgia specific GAM was developed from the circum-
polar GAM by selecting the parameters most appropriate for esti-
mating CPUE in the current study. Initially, the explanatory vari-
ables for sperm whale and killer whale presence were added in ad-
dition to the dependence on the abundance of depredating whales
used in the circumpolar GAM. This was added to reflect the large
difference in observed CPUE between no individuals observed and
one individual observed, which was not well-modelled by fitting a
smoother to the abundance. The thin plate spline was replaced by
a full product tensor smooth to allow for an anisotropic relation-
ship. Parameters in the model were reduced by backward stepwise
selection using the Akaike Information Criterion (AIC; Akaike,
1974) value and residuals as a guide to achieve a best fitting GAM
for South Georgia data. The dimension of the basis for the cho-
sen smooth terms (k) was adjusted using the residuals as a guide.
This resulted in a removal of the interaction between gear type and
mammal abundance for both sperm whales and killer whales, but
gear remained in the model as a factor. This model fits a GAM
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with a normal distribution and log link function to the CPUE of
the form of Equation (5), where the f1,2,4,5,6,7 are thin plate splines
with eight, ten, four, six, four, and four knots, respectively, and f3 is
the full product tensor smooth, using cubic regression spline with
estimated degrees of freedom.

log (CPU Ei ) = α + β1yeari + f1
(
dayi

) + β2vesseli

+ f2
(
depthi

) + f3 (loni, lati ) + f4 (soaki )

+ f5
(
speedi

) + β3Pkiw i + β4Pspw i

+ f6 (Nkiw i ) + f7
(
Nspw i

) + β5geari + εi (5)

Survey standardization GAMM
Survey standardization GAMM, a standardization technique based
on the approach of Berg et al. (2014), was applied to the CPUE
from the commercial vessels, adding mammal abundance as a fac-
tor for both sperm whales and killer whales. This method was ini-
tially developed to combine survey indices from multiple vessels by
allowing for standardization where the vessel, gear, timing, or spa-
tial extent of the survey has varied over time. The model allows for
zero-inflation but this is not required for our data, because only a
small number of hauls (less than 1.5%) have zero toothfish catch.
The model applied fits a GAMM with a Tweedie distribution and
log link function to the CPUE of the form given in Equation (6),
where f1 is the default full product tensor smooth, using Duchon
splines with 12 knots, f2,3,4,5 are Duchon splines with five knots and
the vessels are treated as random effects.

log (CPU Ei ) = α + β1yeari + f1 (loni, lati ) + f2
(
depthi

)
+ f3(Nkiwi ) + f4(NSPWi ) + β2

(
vessel fi

)
+ f5

(
dayi

) + εi (6)

Bycatch as an indicator of depredation
The bycatch as an indicator of depredation method takes advan-
tage of catch species selectivity of killer whales (Tixier et al., 2016).
Gasco et al. (2015) estimated the number of depredated toothfish
using the proportion of grenadiers caught in relation to toothfish on
each haul (Equation (7)) aggregated in 0.2◦ × 0.2◦ cells to account
for spatial variations in grenadier bycatch rates. As with the CPUE
comparison method, data from all years were combined into a time-
invariant model. Around South Georgia, grenadier are caught in
lower proportions (typically a ratio of 0.2 grenadiers to toothfish
by number) than in the original study area used by Gasco et al.
(2015), which might affect the accuracy of the approach. Therefore,
we excluded all cells that had four or fewer hauls within them (as in
Gasco et al., 2015) but made no further data exclusions (the original
method only included areas with ratios between 0.35 and 0.65). The
number of toothfish lost in each cell was estimated using Equation
(7). As with the statistical models, the notation for variables used in
these modelling approaches are given in Table 1.

Tloss, j = GP, j

(
TA, j

GA, j

)
− TP, j. (7)

Building on the method used in Gasco et al. (2015), the total
depredation in the area was determined by calculating the estimated
depredation rate for each cell and applying this to the reported
catch in each haul. To apply the method to as much of the available
data as possible, the hauls in cells with insufficient hauls to estimate Ta
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 T. Earl et al.

Figure 2. Partial effects on CPUE of longitude/latitude, depth (m), vessel nationality, killer whale or depredating sperm whale
presence/abundance, time of year (days), and year from the current stock assessment GLM. Shaded areas and whiskers indicate two standard
errors. Positive partial effects indicate higher estimated CPUE.

depredation from the bycatch were instead estimated using average
depredation rate in that year weighted by the proportion of total
catch in that year. Number of fish depredated was converted into
catch weight lost using the average weight of toothfish on each line.

A re-formulation of this method into a statistical model (GAM)
to allow comparison with the other models, and to provide a
method of estimating uncertainty was considered. However, due to
the approach estimating catch loss rather than CPUE loss, and the
separate treatment of data from cells with few hauls it was not possi-
ble to construct such a model in a way that would allow meaningful
comparison with the other approaches that estimate the impact on
CPUE of mammal presence and abundance.

Model comparison
Estimates of depredation within the CPUE models for the hauls in-
cluded in the final dataset were calculated by predicting the total
weighted catch from a dataset, where each haul was included twice,
first with the observed abundance of depredating whales, weighted
by −1 times the number of hooks on the line, and second with no
depredating whale present, weighted by the number of hooks on the
line. This allows for calculation of the total depredation, including
confidence intervals, taking into account the variance–covariance
structure of the models. Despite the CPUE comparison method
estimating parameters that do not depend on time, the estimated
depredation does vary by year because of the different spatial dis-
tribution of the fishery in each year. Total depredation attributable

to the entire fishery (including hauls where observations to deter-
mine the presence of depredating whales were not made) was cal-
culated by dividing the estimates of depredation by the proportion
of the total hauls fished in each year that were included in our final
dataset. The estimates of depredation from the bycatch as an indi-
cator of depredation method were also divided by this proportion
to provide comparable estimates from the whole fishery.

Model diagnostics were produced for the statistical models
to assess their suitability, and the AIC, degrees of freedom, de-
viance explained, and estimates of annual depredation are pre-
sented in Table 2.

Results
Statistical models of CPUE
Current stock assessment GLM
The current stock assessment GLM estimated partial effects for
each of the factors used to estimate CPUE (Figure 2). To reflect the
non-linear impact of depth, time of year, and fishing location on
CPUE, each of these data were aggregated into blocks (Table 1),
which is visible in the step-like estimation of partial effects (Figure
2). Overall, the parameters in this model explained 25.7% of the
deviance, with an AIC of −6496. This model estimates similar ef-
fects of fishing depth, vessel effect, and annual variability on CPUE
as the South Georgia specific GAM. The spatial variability within
the defined data blocks shows the difference in CPUE between
Shag Rocks and south of South Georgia (p = 0.02), northwest
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Whale depredation in the South Georgia Patagonian toothfish (Dissostichus eleginoides) fishery in the South Atlantic 

Figure 3. Average CPUE (kg/ hooks) by .◦ × .◦ cells (relative to the overall average) in the presence of neither interacting sperm
whales nor killer whales (top), change due to sperm whales (top middle), change due to killer whales (bottom middle), and change due to both
sperm whales and killer whales additional to the sum of the change due to both mammals (bottom right).

of South Georgia (p < 0.0001), and east of South Georgia (p =
0.0007; Figure 2). This model does not include the abundance of
killer whales or sperm whales, but instead estimates the effect of
presence or absence. The presence of killer whales, interacting
sperm whales, or both, resulted in significantly lower CPUE than
when neither were present (all p < 0.0001). Similar to the South
Georgia specific GAM, the time of year describes a similar pattern
of initial decrease in CPUE over the season followed by an increase
towards the end of the season.

CPUE comparison
Average CPUE estimates by grid square showed the reduction in
CPUE associated with presence of depredating killer whales and
sperm whales compared to the average without depredating whales
(Figure 3). Due to the small scale of the grid squares relative to the
extent of the fishery, the model estimated a large number of param-
eters (549) but still explained relatively little of the variance in the
CPUE (23.5%) and an AIC of −5211. Depredating sperm whales
and killer whales were observed to reduce CPUE across most of the
spatial extent of the fishery, although the hauls where both were ob-
served occurred more commonly in the north of the fishery.

Circumpolar GAM
The GAM developed for a circumpolar dataset highlighted the ef-
fects of hauling speed, fishing depth, location, and abundance of

killer whales and depredating sperm whales on CPUE. The best fit-
ting model explained 33.3% of the South Georgia data deviance,
with an AIC of −7351. There were significant differences between
years (p < 0.0001, F16 = 28.1) as well as between vessels (p < 0.0001,
F13 = 18.54). The model estimated a decrease in CPUE with fish-
ing depth (edf = 2.30, F = 35.3) and throughout the season (edf =
2.70, F = 316). There was a linear decrease in CPUE with increas-
ing depredating sperm whale abundance for autoline and Spanish
gear types (edf = 1.00, F = 43.8; edf = 1.00, F = 15.1) but not for
trotlines (edf = 1.00, F = 2.84). Killer whale presence also affected
CPUE negatively with increasing number of individuals. However,
after an initial reduction, that effect was then less pronounced with
larger numbers of killer whales for autoline and Spanish gear types
(edf = 2.29, F = 28.15; edf = 2.71, F = 44.6). Large numbers of killer
whales were not observed when trotlines were used and only the ini-
tial reduction in CPUE was observed (edf = 1.04, F = 2.99). The re-
lationship of CPUE with location was highly non-linear and showed
substantial spatial variability (edf = 27.88, F = 17.2; Figure 4).

South Georgia specific GAM
The South Georgia specific GAM included adjustments in the vari-
ables used to formulate the circumpolar GAM to better fit the vari-
ation of CPUE through the fishing season, and to allow a discon-
tinuity in the dependence on killer whale and depredating sperm
whale abundance. This model described the data slightly better and
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 T. Earl et al.

Figure 4. Partial effects on CPUE from the circumpolar GAM of longitude/latitude, depth (m), vessel, time of year (days), soak time (hours),
killer whale and interacting sperm whale abundance (by gear type), and year based on the GAM derived by Tixier et al. (). Shaded areas
and whiskers indicate two standard errors. Positive partial effects indicate higher estimated CPUE.

explained 34.6% of the deviance, with an AIC of −7,512. As for the
circumpolar GAM, there were significant differences in CPUE be-
tween years (p < 0.001, F16 = 24.3), as well as between vessels (p <

0.001, F13 = 18.4). Presence of killer whales (p = 0.006, F1 = 7.42)
and feeding sperm whales (p < 0.001, F1 = 15.2) significantly re-
duced CPUE, and there was no significant difference between the
current gear types used in the fishery (p = 0.59), but CPUE was
higher on trotline sets (p = <0.001). Overall, results were broadly
similar to the circumpolar GAM from which it was developed, al-
though there were notable differences in the partial effects for sperm
whale abundance and fishing depth. Unlike the circumpolar GAM
the relationship between sperm whale abundance and CPUE was
not directly linear, with CPUE initially declining with increasing
sperm whale abundance but remaining relatively stable after that
(edf = 1.97, F = 24.0). The fishing depth relation with CPUE was
non-linear, decreasing at deeper depths but remaining relatively
similar across the depth range of the fishery (edf = 8.13, F = 23.4).
The smoother for day of the year in this model described the sea-
sonal effect with CPUE dropping to a minimum part way through
the season (edf = 6.71, F = 114). There was a clear spatial relation-
ship identified by this model (edf = 27.8, F = 15.1; Figure 5), which
closely resembles the estimates from the circumpolar GAM.

Survey standardization GAMM
The GAMM based on the method by Berg et al. (2014) described
the data slightly less well than the South Georgia specific GAM and

explained 30% of the deviance, but with a lower AIC of −8410. As
with the previous statistical models, there were significant differ-
ences in CPUE between years (F16 = 25.8, p < 0.0001) and vessels
(edf = 11.6, F = 20.7). The abundance of killer whales (edf = 3.72,
F = 114) and interacting sperm whales (edf = 2.80, F = 32.8) was
related to reduced CPUE on affected hauls. This model did not de-
scribe the relationship between sperm whale abundance and CPUE
as linear, but followed a pattern of an initial reduction of CPUE
with increasing abundance and then remained relatively stable (edf
= 2.74, F = 30.6). The partial effect of the abundance of killer
whales was more non-linear than for sperm whales, with CPUE
overall declining with increasing abundance but with some variabil-
ity and a slight increase towards larger pods (edf = 3.71, F = 105,
Figure 6).

Estimation of depredation through bycatch
A total of 166 spatial grid cells met the criteria set out in the meth-
ods, by having at least five hauls. The estimation of depredation
through bycatch highlighted several regions with higher depreda-
tion removals for all years combined (Figure 7). Areas with higher
rates of depredation were to the northwest of South Georgia, and
in the north-eastern region at Shag Rocks, where this method esti-
mated a total removal of over 65 tonnes from observed hauls in two
areas. Overall depredation removals were estimated higher along
the northern side of South Georgia, while the south-eastern side of
South Georgia was less affected (Figure 7). The average estimated
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Whale depredation in the South Georgia Patagonian toothfish (Dissostichus eleginoides) fishery in the South Atlantic 

Figure 5. Partial effects on CPUE of longitude/latitude, depth (m), vessel, killer whale or depredating sperm whale presence and abundance,
haul speed, soak time, time of year (days), year, and longline code from the South Georgia specific GAM. Shaded areas and whiskers indicate
two standard errors. Positive partial effects indicate higher estimated CPUE.

catch removals per year from killer whales are 196 tonnes using the
bycatch approach and is higher than that estimated by the statistical
models (Figure 8).

Comparison of model estimates
Each of the statistical models accounted for spatial variability in
CPUE, either through splines or through dividing the study area
into independent regions and estimating local CPUE. Each of the
GAMs (including the GAMM) used similar smoothers and esti-
mated areas of higher CPUE in the North West, at the Eastern-
most extremity of the fishery and around 37◦W in the Southern
part of the fishery (Figures 3, 4, and 6). Similar areas were high-
lighted as having high CPUE by the CPUE comparison method,
with the addition of an area in the North East of the fishery
(Figure 2). The current stock assessment GLM estimated the spa-
tial variability on a coarser scale, with only four regions, and high-
lights higher CPUE to the West and to the South of the fishery
(Figure 5).

The GAM methods and the current stock assessment GLM in-
cluded depth as an explanatory variable. Although the exact form of
the relationship differed between models, they each showed CPUE
dropping between 500 and 100 m, before stabilizing, with increased
variability above 1500 m (Figures 3–6).

The GAM methods and the current stock assessment GLM in-
cluded year as an explanatory variable, generally estimating the
years 2003 and 2017 to have high CPUE, and the years 2010–2012
to have lower CPUE. The models differ slightly in their estimates
for 2018, which is estimated to be among the lowest years by the
South Georgia GAM, while the other models estimate it to be higher
than 2010–2012 (Figures 3–6). Within each year, a similar trend
of decreasing CPUE until around day 200 (mid-July), followed by
an increase was estimated by each of these models, although the
increase at the end of the season was lowest in the circumpolar
GAM.

The effects of depredating mammals were included in four dif-
ferent ways within the models. The stock assessment GLM and the
CPUE comparison considered only the presence of sperm whale,
killer whale or both, rather than their abundance. In the CPUE
comparison, this effect interacted with the spatial distribution of
CPUE. In both of these estimates, killer whales implied a larger re-
duction than sperm whale, and the effect of both depredating mam-
mals occurring together resulted in a slightly greater CPUE drop
than the sum of their effects (Figures 1 and 2). The GAMs included
depredating mammal abundance rather than presence, but did not
estimate an effect of the interaction between sperm whale and
killer whale. For sperm whales, the South Georgia specific GAM,
and the survey standardization GAMM estimated a roughly linear
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Figure 6. Partial effects on CPUE of longitude/latitude, depth, vessel, killer whale or depredating sperm whale abundance, time of year, and year
from the survey standardization GAMM. Shaded areas and whiskers indicate two standard errors. Positive partial effects indicate higher
estimated CPUE.

reduction in CPUE between one and five individuals, with
less effect for subsequent mammals (Figures 3, 4, and 6).
The South Georgia specific GAM estimated little difference be-
tween the effect of one mammal and none. The circumpo-
lar GAM estimated a linear reduction in CPUE with abun-
dance for the two most common gear types, with only lim-
ited data available for trotlines. For killer whales, a steep re-
duction in CPUE was seen between 0 and 5 individuals,
while the effect of further individuals was small (Figures 3, 4,
and 6).

Comparison of model diagnostics
Among the models considered, the current stock assessment per-
forms relatively poorly with the second-highest AIC, and second-
lowest percentage of deviance explained (Table 2). Each of the
GAMs explain more of the variability than the current stock assess-
ment GLM due to the improved modelling in two key assumptions;
the GAMs show much greater spatial variability than the structure
of the current GLM allows, and the GAMs include killer whale and
depredating sperm whale abundance, whereas the GLM only in-
cludes presence or absence. The South Georgia specific GAM ex-
plains the highest proportion of the variance, at 35%, but each of the
GAMs, explains a proportion of variance greater than 30%. The per-
formance of the models judged by the AIC indicates that the survey
standardization GAMM is superior to the other models according
to this metric. The South Georgia specific GAM represents a small

improvement on the circumpolar GAM as measured by both the
deviation explained and the AIC, as might be expected for a model
optimized for a specific area.

The survey standardization GAMM showed that among the
models considered it has the lowest AIC, and additionally, the resid-
uals shown in Figure 9 showed no concerning patterns of auto-
correlation or evidence of poor fits, except in the case of depth,
where CPUE at depths greater than 1800 m (the extreme depth of
the fishery) is poorly estimated. The partial effects estimated from
this model are consistent with fishers’ knowledge regarding optimal
depths for fishing, and a period of lower CPUE during the fishing
season, as well as the expected decreasing relationship in CPUE in
the presence of mammals. The use of continuous relationships de-
pendencies of CPUE on location, depth, and time of year is a more
defensible hypothesis than assuming fixed break points as is done
in the current stock assessment GLM.

Comparison of depredation estimates
Despite the differences in performance according to statistical mea-
sures, the total depredation estimates from each of the statistical
models were very similar to the current stock assessment GLM
(Table 2). Average annual estimates of total depredated catch range
between 78 and 95 tonnes where only killer whales were observed,
22–45 tonnes where only sperm whales were observed, and 10–14
tonnes on hauls where both occurred, compared to a total fishery
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Whale depredation in the South Georgia Patagonian toothfish (Dissostichus eleginoides) fishery in the South Atlantic 

Figure 7. Estimated total depredated catch in tonnes by .◦ × .◦cells across all years derived from the stock assessment GLM, CPUE
comparison, circumpolar GAM, South Georgia specific GAM, survey standardization GAMM, and from using bycatch as an indicator of
depredation. Shag rocks are the shallow area to the west of the main island around ◦W .◦S.

catch (i.e. that brought onboard the vessel) averaging 2,850 tonnes.
Therefore, the total mortality implied by a catch of 2850 tonnes
would be around 2980 tonnes.

Depredation estimates from all six models showed an over-
all increasing trend between 2003 and 2019 with larger amounts
depredated in 2009, 2010, 2014, and most recently around 2018
(Table 3 and Figure 8). The GAMs were consistent with the cur-
rent stock assessment GLM. The estimates from the three GAM ap-
proaches were closest with average depredation rates of 5.0–5.3%,
only differing by the magnitude of the high depredation years.
The CPUE comparison was similar to the current stock assess-
ment GLM until around 2015, and then estimated lower depre-
dation. Estimates of depredated catch removal using the bycatch
as an indicator of depredation were overall slightly higher, and al-
though the highest years are the same as the other models, the
annual estimates since 2015 show a different pattern to the cur-
rent stock assessment GLM, and were more similar to the CPUE
comparison.

There was a good level of consistency in the spatial distribu-
tion of the depredation estimates (Figure 7), showing areas of
higher depredation to the northwest of South Georgia and in the
northeast. In addition, the bycatch comparison approach identi-
fied two areas subject to notably higher depredation that were not
seen in the statistical modelling approaches, to the north of Shag
Rocks and in the Gully between Shag Rocks and South Georgia
(Figure 7).

Discussion
Comparison of model applicability
We examined the application of a range of approaches to modelling
depredation by killer whales and sperm whales from the longline
toothfish fishery around South Georgia to compare and evaluate
the performance of these models, and understand whether there
are substantial differences in the predicted removals compared to
the current stock assessment GLM. There was close agreement be-
tween the different model structures in estimating the scale of the
annual removal of toothfish by depredation from the fishery and
the trends in the effects of the main parametric drivers of toothfish
CPUE.

The CPUE comparison method (Tixier et al., 2010) provides a
simple way to estimate depredation, taking into account its spatial
variability. However, it does not take into account the behaviour
of different fishers, and so the model could be refined by includ-
ing these factors. Despite being developed for different purposes,
the circumpolar GAM and the survey standardization GAMM esti-
mated similar magnitudes for the main parameter effects and trends
as the models developed specifically for the South Georgia fishery.
Although, estimating similar patterns in the main partial effects,
the GAMs have the advantage over this application of the current
stock assessment GLM in that the flexibility of the GAM approach
means non-linear relationships can be modelled without detailed
assumptions and knowledge on shape and non-linearity of those
underlying relationships. The choice of link function and error
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Figure 8. Estimated total depredated catch in tonnes by year (top) and as a percentage of total catch (bottom) derived from the stock
assessment GLM, CPUE comparison, circumpolar GAM, South Georgia specific GAM, survey standardization GAMM, and bycatch as an
indicator of depredation.

distribution assumed by the statistical models resulted in only small
differences in the fit and the error distribution. The South Georgia
specific GAM had a better fit to the CPUE than any of the other
methods due to the combination of a smoother for abundance and
a factor for presence. This was a key component to improving the
estimation of the scale of depredation and could be used in future
depredation estimates, along with a GAM model structure as it bet-
ter captures variability in the number of depredating killer whales.

While all the models predicted similar annual depredation re-
movals and encapsulated the trends in the main effects determin-
ing CPUE variability, such as depth and season, they only explained
around 35% of the CPUE variance; there is still much about the
fishery and toothfish population dynamics that remains to be de-
scribed. The spatial distribution of toothfish is likely to vary at
a much finer scale than the spatial smoothers in the depredation
models can estimate, due to local bathymetric features such as slope
angle and direction (Péron et al., 2016; Yates et al., 2018). In ad-
dition, the changing spatial and temporal distribution of interac-
tion between the fishers and whales is complex, as both learn and
adapt. The small number of vessels fishing, captains’ preference for
favoured fishing grounds and different approaches to avoid whales,
leads to a degree of complexity, and noise that can be difficult to
disentangle (Richard et al., 2018). Some differences result from
changes in mammal observation protocols through time and to the
frequency and quality of observations, due to the workload of other
scientific observation tasks. In particular, there is no record of when
the observations took place during hauling, which makes it impos-

sible to evaluate whether the whale abundance increases during the
haul, or remains constant.

In our comparative study, we showed that the bycatch as an in-
dicator of depredation method is successful in identifying the same
patterns as the models that standardize CPUE across a range of vari-
ables. This method has proved to be a practical approach for ar-
eas that do not have sufficiently detailed data collection for model-
based estimation, if sufficient bycatch data are available (Gasco et
al., 2015). With only relative catch data available, a first estimate of
whether depredation occurs, and a scale of its extent can be made.
This method is a very useful first step in estimating the relative mag-
nitude of depredation once detected, before a time series of suffi-
cient data is available for more complex analysis. A further potential
development is to investigate pairwise matching of adjacent hauls
within each season for areas where catch is not as homogeneously
distributed, as at South Georgia, and where a gridded solution may
be too coarse for the resolution required.

Depredation impacts on the fishery
The estimated depredation from the South Georgia catches is rel-
atively low compared to fishery catches, averaging around 5%, al-
though showing a slightly increasing trend. While depredation is
a locally important contributing factor for the catch of each ves-
sel, and is important in the stock assessment, it is not likely to be a
major contributor to the dynamics of the estimates of total fishery
associated mortality rates estimated within the stock assessment.
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Whale depredation in the South Georgia Patagonian toothfish (Dissostichus eleginoides) fishery in the South Atlantic 

Figure 9. Residuals for CPUE of longitude/latitude, depth, vessel, killer whale or depredating sperm whale abundance, time of year, and year
from the survey standardization GAMM. Smoothers (blue line) are fitted to continuous explanatory variables to aid determination of any
trends. Note that killer whale and sperm whale abundance are not always integers due to taking the midpoint of a range of observed
abundances on some lines.

Table 3 . Estimated total depredated catch in tonnes and as a percentage of total catch by year derived from the stock assessment GLM, CPUE
comparison, circumpolar GAM, South Georgia specific GAM, survey standardization GAMM, and bycatch as an indicator of depredation.

Year
Current stock

assessment GLM
CPUE

comparison
Circumpolar

GAM
South Georgia
specific GAM

Survey
standardization

GAMM

Bycatch as an
indicator of
depredation

2003  (.%)  (.%)  (%)  (.%)  (.%)  (.%)
2004  (.%)  (.%)  (.%)  (%)  (.%)  (%)
2005  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2006  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2007  (.%)  (.%)  (.%)  (.%)  (.%)  (%)
2008  (%)  (.%)  (.%)  (.%)  (.%)  (.%)
2009  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2010  (.%)  (%)  (.%)  (.%)  (.%)  (.%)
2011  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2012  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2013  (.%)  (.%)  (.%)  (.%)  (%)  (.%)
2014  (.%)  (.%)  (%)  (.%)  (%)  (.%)
2015  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2016  (.%)  (.%)  (.%)  (.%)  (%)  (.%)
2017  (.%)  (.%)  (%)  (.%)  (.%)  (.%)
2018  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
2019  (.%)  (.%)  (.%)  (.%)  (.%)  (.%)
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Spatial estimates of depredation were consistent between ap-
proaches and identified similar regions to those previously de-
scribed as depredation ‘hot spots’ based on whale abundance ob-
servations in this region (Söffker et al., 2015). The additional ar-
eas identified by the bycatch as an indicator of depredation method
corresponded to locations where high grenadier catch has occurred
in a cluster of benthic trawl survey stations (Morley et al., 2004), as
well as higher longline grenadier CPUE (Laptikhovsky et al., 2014).

Model selection and comparison to other regions
Having considered the relative performance of the approaches for
estimating depredation, the survey standardization GAMM has
been identified as having an improved fit to the data, and reduced
dependence on the arbitrary areas and depth bands compared to
the current depredation estimates used in the assessment of this
stock. As a result, the survey standardization GAMM is suggested
as a basis for making depredation estimates for future assessments.
All modelling approaches in this paper fitted the data similarly
to the models in Tixier et al. (2020), and within the lower range
of the models developed to describe depredation off the coast of
Alaska (Peterson et al., 2013, 2014; Peterson and Hanselman, 2017).
The approaches presented here are not specific to the South Geor-
gia toothfish fishery, in principle the requirements for estimating
depredation are simply that observations of the presence or abun-
dance of predators can be made, and that there is a measure of
CPUE (potentially standardized) which is impacted by the preda-
tors. These models could therefore be applied to the depredation
on Alaskan sablefish, Australian recreational and commercial fish-
eries, western Atlantic tuna, and swordfish fishery, as well as other
Southern Ocean toothfish fisheries (Hanselman et al., 2018; Ryan et
al., 2019; Charles et al., 2020; Tixier et al. 2020).

The Alaskan fisheries have substantial variability in depredation
between different locations and fisheries (Peterson et al., 2013; Pe-
terson and Hanselman, 2017), similar to that observed in the South-
ern Ocean. Depredation models in both regions fit similar variables,
including standardizing for location, year, season, and depth. In all
cases, models for fisheries with higher depredation rates fitted better
than those with low rates, highlighting that only when depredation
becomes substantial, and the signal to noise ratio is also substan-
tial, do the models provide robust estimates. The main drivers for
the extent of depredation of fisheries is the spatial overlap and / or
the duration of fishing activities (Tixier et al., 2019a). The extent
of depredation is also affected by measures that specifically impact
interactions such as vessels setting shorter lines, increasing haul-
ing speed, and tying off lines when killer whales approach, return-
ing only once they have left the area; all of which have been shown
to reduce depredation (Tixier et al., 2015a). The use of some or all
of these practices by vessels around South Georgia will have con-
tributed to the current comparatively low interaction rate.

Future developments
A future research question is the effectiveness these changes have
had to fishing practices over time, both in the context of reduc-
ing depredation and of the economic and social cost to fishers. As
new technologies and approaches in longline fisheries develop, it
will become increasingly necessary to understand how these affect
the response of depredating whales and changes in CPUE. Another
dynamic not yet considered in the models is the potential for un-
recorded removal of toothfish at depth during fishing rather than

observed near the surface during hauling. The relative importance,
or magnitude of this cryptic depredation is at present poorly un-
derstood. Our results showed that the presence of killer whales,
whether observed depredating or not, resulted in a decrease in
CPUE which was consistent with previous findings in this region
(Söffker et al., 2015); while observations of sperm whales that were
present but not identified feeding around the vessel was not asso-
ciated with a similar reduction. The observers record these inter-
actions during hauling activity only, and distinguish between indi-
viduals deep-diving or surfacing during hauling activities around
the vessel as feeding or interacting. Outside hauling activities or
away from the vessel, feeding behaviour of sperm whales is not
recorded. Sperm whales regularly dive and forage at similar depths
as those where toothfish lines are set, and a recent study demon-
strated through use of the vessel Automatic Identification System
(AIS) and data loggers on the longlines that depredation can oc-
cur at depth on the seabed (Richard et al., 2020). Evidence of sperm
whale depredation derived from line movement showed that sperm
whales were more likely than killer whales to feed on soaking long-
lines (Richard et al., 2020). Killer whales on the other hand were
more frequently seen to start deep dives along the line with the start
of hauling rather than on soaking lines, which is consistent with a
previous observation around South Georgia where deeper dives by
a tagged killer whale were also associated with the start of hauling
activities (Towers et al., 2019; Richard et al., 2020).

Given that killer whale depredation is more prevalent on haul-
ing than sporadically on soaking longlines, and that in some re-
gions toothfish are part of the natural diet of killer whales (Reisinger
et al., 2015; Tixier et al., 2019b), the estimates based on hauling
should be sufficient to capture the majority of their depredation.
Understanding the natural diet composition of killer whales around
South Georgia would be a valuable area of research to determine
whether toothfish form a natural part of the killer whale diet around
South Georgia, and depredation mostly focuses this mortality spa-
tially or if depredation results in an increased intake of toothfish
by killer whales specifically associated with the longline fishery. Es-
timation of cryptic sperm whale depredation, and whether it has
a critical impact on depredation mortality, may be more difficult.
Sperm whales are thought to feed largely on squid species in the
Southern hemisphere (Clarke, 1980; Gaskin and Cawthorn, 1967;
Pascoe et al., 1990; Evans and Hindell, 2004) and toothfish have not
been recorded as a primary prey species to date but can form a small
part of their diet (Yukhov, 1971).

Compared to the global extent of depredation, interactions with
the longline fishery around South Georgia are relatively well-
understood. Observations by the scientific observers indicate that
depredation is not a static situation but continues to evolve as
whales adapt to changed fishing practices and fishers try to reduce
losses (e.g. Peterson and Carothers, 2013; Tixier et al., 2015b). Fol-
lowing initial descriptions over two decades ago (Ashford et al.,
1996), first estimations of removals over a decade ago (Purves et
al., 2004; Clark and Agnew, 2010) and more recent updated models
highlighting the highly localized effects as well as seasonal patterns
around South Georgia (Söffker et al., 2015), revisiting these mod-
els periodically has allowed changes to be monitored over time and
continuing to do so will allow the ongoing dynamics of depredation
to be captured.

The waters around South Georgia were commercial whaling
grounds until the mid-20th century. Sperm whales were not among
the main targeted species around South Georgia in the earlier years
(Shackleton, 1919), but were taken more frequently during the
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modern whaling period in the early 20th century. Killer whales were
not directly harvested during the whaling period but were subject
to considerable culling by whalers as they were scavenging on har-
vested whale carcasses (Bonner, 1980; Moore et al., 1999). Data on
cetacean sightings and abundances after this period are relatively
limited and for a large part come from opportunistic sightings such
as cruise ships, fishing vessels, or from research stations (Moore
et al., 1999; Richardson et al., 2012). Fishers from longline vessels
anecdotally report that the groups interacting with their vessels are
increasing and changing behaviour. While it is likely that both pop-
ulations of sperm whales and populations of killer whales are sta-
ble or recovering around South Georgia, it is difficult to provide
certainty as to whether these perceived changes in interaction are
signs of their recovery, or adaptation of behaviour. Periodic dedi-
cated transect surveys combined with standardized opportunistic
sighting protocols on vessels of opportunity that regularly visit the
waters around South Georgia such as cruise ships (Williams et al.,
2006; Johnston et al., 2012; Viquerat and Herr, 2017) would provide
much-needed data in this regard.

Data availability statement
Data access is governed by the Rules for the Access and Use of
CCAMLR Data https://www.ccamlr.org/en/document/publication
s/rules-access-and-use-ccamlr-data
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