
NeuroImage: Clinical 30 (2021) 102582

Available online 10 February 2021
2213-1582/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Disrupted brain connectivity in children treated with therapeutic 
hypothermia for neonatal encephalopathy 

Arthur P.C. Spencer a, Jonathan C.W. Brooks a,b, Naoki Masuda c,d, Hollie Byrne a, 
Richard Lee-Kelland e, Sally Jary e, Marianne Thoresen e,f, James Tonks e,h, 
Marc Goodfellow i,j,k, l, Frances M. Cowan e,m, Ela Chakkarapani e,g,* 

a Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom 
b School of Psychological Science, University of Bristol, Bristol, United Kingdom 
c Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States 
d Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, United States 
e Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom 
f Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway 
g Neonatal Intensive Care Unit, St Michael’s Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom 
h University of Exeter Medical School, Exeter, United Kingdom 
i Living Systems Institute, University of Exeter, Exeter, United Kingdom 
j Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom 
k EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom 
l College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom 
m Department of Paediatrics, Imperial College London, London, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Neonatal encephalopathy 
Therapeutic hypothermia 
White matter 
Structural connectivity 
Brain networks 
Diffusion-weighted imaging 

A B S T R A C T   

Therapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral 
palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal 
encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower re-
action times and reduced visuo-spatial processing abilities compared to typically developing controls. We ac-
quired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic 
hypothermia for neonatal encephalopathy at birth, and a matched control group. Voxelwise analysis (33 cases, 
36 controls) confirmed reduced fractional anisotropy in widespread areas of white matter in cases, particularly in 
the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally and cingulum 
bilaterally. In structural brain networks constructed using probabilistic tractography (22 cases, 32 controls), 
graph-theoretic measures of strength, local and global efficiency, clustering coefficient and characteristic path 
length were found to correlate with IQ in cases but not controls. Network-based statistic analysis implicated brain 
regions involved in visuo-spatial processing and attention, aligning with previous behavioural findings. These 
included the precuneus, thalamus, left superior parietal gyrus and left inferior temporal gyrus. Our findings 
demonstrate that, despite the manifest successes of therapeutic hypothermia, brain development is impaired in 
these children.   

1. Introduction 

Neonatal encephalopathy (NE), which often results from perinatal 
asphyxia, leads to a high risk of death or disability, including cerebral 

palsy (CP) (Azzopardi et al., 2014; Marlow, 2005; O’Connor et al., 2017; 
Robertson et al., 1989). In the UK, approximately 2.6 per 1000 live 
births in 2015 were affected by NE secondary to perinatal asphyxia 
(Gale et al., 2018). The recommended treatment for NE (National 
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Institute for Clinical Excellence (NICE), 2010) is therapeutic hypother-
mia (TH), which consists of reducing the infant’s core temperature to 
33.5 ◦C for three days, commencing as soon as possible after the 
asphyxia (Azzopardi et al., 2009; Rutherford et al., 2010). TH reduces 
the chance of death and disability at 18 months (Jacobs et al., 2013), 
reduces likelihood and severity of CP (Jary et al., 2015) and increases 
the incidence of survival with an IQ > 85 (Azzopardi et al., 2014). 
However, recent studies have shown that children aged 6–8 years, who 
underwent TH at birth for NE and did not develop CP, perform worse in 
motor and cognitive tests than controls (Jary et al., 2019; Lee-Kelland 
et al., 2020) and have attention difficulties, slower reaction times and 
reduced visuo-spatial processing abilities (Tonks et al., 2019). These 
motor and cognitive deficits are not predicted by 18-month develop-
mental scores (Azzopardi et al., 2014; Jary et al., 2019). Thus, despite 
the reduced occurrence of severe disabilities following TH, aspects of 
brain development remain affected by NE. 

Studies on children born with NE, prior to widespread use of TH (Gao 
et al., 2012; Ly et al., 2015; Martinez-Biarge et al., 2012), and on animal 
models (Chakkarapani et al., 2010; Kyng et al., 2015; Yue et al., 1997) 
indicate damage to white matter and subcortical structures, caused by 
hypoxic-ischaemic brain injury. Some studies have shown an association 
between hypothermia/rewarming and subcortical white matter 
apoptosis independent of hypoxic-ischemic brain injury (O’Brien et al., 
2019; Wang et al., 2016), whereas other findings suggest no impact of 
hypothermia on the subcortical white matter (Gressens et al., 2008). It is 
unknown how the interplay between the damage mechanisms of NE and 
the effects of TH impact brain development. 

Diffusion-weighted imaging (DWI) provides a non-invasive tool for 
investigating white matter microstructure. Measurement of diffusion of 
water molecules through brain tissue allows calculation of diffusion 
metrics such as fractional anisotropy (FA), which is related to its 
microstructural properties. FA is affected by properties such as myeli-
nation and fibre density (Le Bihan and Johansen-Berg, 2012) and has 
clinical relevance in patient cohorts (Assaf and Pasternak, 2008; Dennis 
and Thompson, 2013a; Assaf et al., 2019). We used tract-based spatial 
statistics (TBSS) (Smith et al., 2006) to perform voxel-wise comparison 
of FA across the brain’s white matter, whilst controlling for multiple 
comparisons. We further investigated white matter connectivity by 
constructing structural brain networks, or connectomes (Sporns et al., 
2005), in which nodes represent brain regions and edges were deter-
mined by probabilistic tractography. We characterised structural net-
works by drawing on techniques from graph theory (Bullmore and 
Sporns, 2009; Hagmann et al., 2010a; Fornito et al., 2013; Bassett and 
Sporns, 2017), allowing comparison of quantitative differences in 
whole-brain network structure. Such techniques have previously been 
used to characterise the developing human connectome (Hagmann 
et al., 2010b; Dennis and Thompson, 2013b; Morgan et al., 2018), as 
well as in the study of specific neurodevelopmental complications such 
as CP (Arrigoni et al., 2016; Pannek et al., 2014) and neuro-
developmental impairments following preterm birth (Brown et al., 
2014; Muñoz-Moreno et al., 2016). We then used the network-based 
statistic (NBS) (Zalesky et al., 2012, 2010) to look for subsets of con-
nections (subnetworks) which were weakened in cases, and subnetwork 
which related to measures of cognition. 

2. Materials and methods 

2.1. Participants 

Informed and written consent was obtained from the parents of 
participants, in accordance with the Declaration of Helsinki. Ethical 
approval was obtained from the North Bristol Research Ethics Com-
mittee and the Health Research Authority (REC ID: 15/SW/0148). 

2.1.1. Cases 
Eligibility criteria were as follows: gestation at birth ≥ 36 weeks and 

treatment with TH as standard clinical care based on TOBY trial eligi-
bility criteria including signs of perinatal asphyxia and moderate to 
severe encephalopathy, confirmed by amplitude integrated electroen-
cephalogram (Azzopardi et al., 2009). Children were excluded if they 
had started cooling later than six hours after birth, were cooled for less 
than three days, had received Xenon as part of a neuroprotective feasi-
bility study, had been found to have a metabolic or genetic disorder, or if 
any major intracranial haemorrhage or structural brain abnormality 
could be seen on the neonatal MRI scan. Cases were sequentially selected 
from the cohort of children who received TH between 2008 and 2011. 
These data are maintained by the Bristol Neonatal Neurosciences group 
at St Michael’s Hospital, Bristol, UK, under previous ethics approval 
(REC ID: 09/H0106/3). A diagnosis of CP was ruled out at 2 years based 
on assessment of motor function and neurological examination using the 
gross motor function classification system (Palisano et al., 1997). At 6–8 
years, a standard clinical neurological examination including assess-
ment of tone, motor function and deep tendon reflexes was carried out to 
exclude later presentations of cerebral palsy or any other neurological 
problems not previously identified. Children were native English 
speakers and had no additional medical diagnosis other than NE. 

Qualitative assessment of the presence and extent of brain injury on 
neonatal MRI was conducted by a perinatal neurologist (FC). Neonatal 
brain injury was quantified in the basal ganglia and thalami, and white 
matter (each scored from 0 to 3) and the posterior limb of internal 
capsule (score 0–2) (Rutherford et al., 2010; Skranes et al., 2017), where 
a higher number indicates more severe injury. 

2.1.2. Controls 
The control group consisted of children matched for age, sex and 

socio-economic status (Lee-Kelland et al., 2020), recruited via local 
schools in Bristol and newsletters circulated at the University of Bristol. 
Children were excluded if they were born before 36 weeks gestation, had 
any history of NE or other medical issues of a neurological nature 
(confirmed using the same neurological clinical examination as in 
cases), or were not native English speakers. 

2.2. Cognitive assessment 

Cognitive performance was assessed using the Wechsler Intelligence 
Scale for Children 4th Edition (WISC-IV) (Kaufman et al., 2006), which 
summarises raw score performance from 10 subsets into 10 scaled 
scores. These 10 scores are summed in four domains – verbal compre-
hension, perceptual reasoning, processing speed and working memory – 
which are combined to form a full-scale intelligence quotient (FSIQ) 
score. Cognitive testing was administered by assessors who were not 
previously involved with the patients’ care and were blinded to case- 
control status. 

2.3. Image acquisition 

T1-weighted images and DWI data were acquired with a Siemens 3 T 
Magnetom Skyra MRI scanner at the Clinical Research and Imaging 
Centre (CRiCBristol), Bristol, UK. An experienced radiographer placed 
children supine within the 32-channel receive only head-coil, and head 
movement was minimised with memory-foam padding. Children wore 
earplugs and were able to watch a film of their choice. A volumetric T1- 
weighted anatomical scan was acquired for tissue segmentation and 
parcellation, with the magnetisation-prepared rapid acquisition 
gradient echo (MPRAGE) sequence using the following parameters: echo 
time (TE) = 2.19 ms; inversion time (TI) = 800 ms; repetition time (TR) 
= 1500 ms; flip angle = 9◦; field of view (FoV) 234 × 250 mm; 176 
slices; 1.0 mm isotropic voxels. DWI data were acquired for tractography 
and microstructural analysis, with a multiband echo-planar imaging 
(EPI) sequence, using the following parameters: TE = 70 ms; TR = 3150 
ms; FoV 192 × 192 mm; 60 slices; 2.0 mm isotropic voxels, flip angle 
90◦, phase encoding in the anterior-posterior direction, in-plane 
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acceleration factor = 2 (GRAPPA (Griswold et al., 2002)), through-plane 
multi-band factor = 2 (Moeller et al., 2010; Setsompop et al., 2012a, 
2012b). For the purpose of data averaging and eddy-current distortion 
correction, two sets of diffusion-weighted images were acquired with b 
= 1000 s mm− 2 in 60 diffusion directions, equally distributed according 
to an electrostatic repulsion model, as well as 8 interspersed b = 0 im-
ages, with one data set acquired with positive phase encoding steps, then 
repeated with negative steps (so-called, “blip-up, blip-down”), giving a 
total of 136 images. 

2.4. Quality control 

The quality of the DWI data was assessed using the EddyQC tool 
(Bastiani et al., 2019) from the FMRIB Software Library (FSL, http://fsl. 
fmrib.ox.ac.uk) (Smith et al., 2004). Scans were rejected if the root- 
mean-square of all movement and eddy current metrics from EddyQC 
was greater than one standard deviation above the mean for all 
participants. 

T1-weighted anatomical images were assessed visually; any scans 
with severe movement artefacts were rejected. The remaining scans 
were processed with the structural pipeline described below, followed 
by further visual inspection of the parcellation and tissue segmentation. 
Scans were further rejected at this stage if any moderate artefacts had 
caused errors in the parcellation or segmentation. 

Fig. 1 shows the process of recruitment and scan quality control. We 
recruited 51 cases and 43 controls for this study. Of these, 7 cases and 4 
controls did not want to undergo scanning. A further 4 cases had 
incomplete data due to movement during the scan. DWI quality control 
led to the rejection of a further 6 cases and 2 controls. One further case 
and one control were rejected due to incorrect image volume placement. 
This left 33 case and 36 control scans which passed the DWI quality 
control, which were used in the TBSS analysis. Of these remaining 69 
datasets, the anatomical scan for 11 cases and 4 controls was not of 
sufficient quality to allow segmentation and parcellation, leaving 22 
cases and 32 controls for network analysis. Participant demographics 
are shown in Table 1. 

Anatomical images were visually assessed for focal lesions and 
abnormal signal intensities. In the TBSS datasets, lesions were present in 
1 case and 2 controls. In the network analysis datasets, lesions were 
present in 1 control. These lesions were judged by the blinded assessor 
(FC) to be non-severe, consequently these subjects were not excluded. 

Note that previous findings from the same cohort demonstrate 
reduced performance in cases in all WISC-IV domains (Lee-Kelland et al., 

2020), whereas in the smaller group which passed quality control in this 
study cases exhibit significantly reduced performance in perceptual 
reasoning, verbal comprehension, working memory and FSIQ. Though 
processing speed was reduced in cases in this study, the difference was 
not significant (see Table 1). 

2.5. TBSS 

Voxelwise statistical analysis of the FA data was carried out using 
TBSS (Smith et al., 2006), part of FSL. DWI data were corrected for eddy 
current induced distortions and subject movements using EDDY 
(Andersson and Sotiropoulos, 2016) and TOPUP (Andersson et al., 
2003), from FSL. FA images were then generated by fitting a tensor 
model to the diffusion data using the weighted least squares method in 
FSL’s FDT software. All images were then nonlinearly registered to one 
subject, chosen automatically by finding the most representative sub-
ject, which was then affine registered to MNI152 standard space. This is 
the recommended procedure when testing data from children, which 
may not register well to an adult template (Smith et al., 2006). A 
threshold of 0.3 was then used to create a skeletonised representation of 
the white matter tracts. Each subject’s registered FA image was then 
projected onto this skeleton to allow voxelwise statistics. 

2.6. Structural network construction 

A weighted connectome was constructed for each subject, with nodes 
defined by parcellation of the anatomical scan and edges determined by 
probabilistic tractography using the DWI data. The processing pipeline, 
described in more detail below, is summarised in Fig. 2. 

2.6.1. Node definition 
T1-weighted anatomical images were denoised with the Advanced 

Normalization Tools DenoiseImage tool (http://github.com/ANTsX/A 
NTs) (Manjón et al., 2010). Brain extraction was performed with 
either SPM8-VBM (http://fil.ion.ucl.ac.uk/spm) (Ashburner and Fris-
ton, 2005) or CAT12 (http://www.neuro.uni-jena.de/cat) (Gaser and 
Dahnke, 2016) depending on which gave better delineation of the brain 
surface for each subject. Each subject’s T1-weighted image was parcel-
lated, using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) (Fischl, 
2012), according to the Desikan-Killiany atlas (Desikan et al., 2006) (a 
total of 84 regions; 34 cortical, 7 subcortical and 1 cerebellar per 
hemisphere). The FIRST (Patenaude et al., 2011) subcortical segmen-
tation tool from FSL was found to give better segmentation of subcortical 
structures (including the hippocampus and amygdala) than FreeSurfer, 
so this was combined with the cortical parcellation from FreeSurfer 
using the labelsgmfix tool from MRtrix (www.mrtrix.org) (Tournier 
et al., 2019). 

2.6.2. Edge definition 
DWI data were corrected for eddy current induced distortions and 

subject movements using EDDY (Andersson and Sotiropoulos, 2016) and 
TOPUP (Andersson et al., 2003), from FSL. Subsequent DWI processing 
and tractography steps were performed using MRtrix. The response 
function (the DWI signal for a typical fibre population) was estimated 
from the data (Tournier et al., 2013) in order to calculate the fibre 
orientation distribution (FOD) by performing constrained-spherical 
deconvolution of the response function from the measured DWI signal 
(Tournier et al., 2007). The normalised FOD image and the five-tissue- 
type segmentation of the T1-weighted anatomical image were used to 
perform anatomically-constrained tractography (Smith et al., 2012) 
using second-order integration over FODs (Tournier et al., 2010), with 
the following parameters: step size = 1 mm, minimum length = 50 mm, 
cutoff FOD magnitude = 0.1, maximum angle between steps = 30◦. 
Streamlines were seeded in the interface between grey and white matter 
and only accepted if they terminated in subcortical or cortical grey 
matter. Terminated streamlines which were not accepted were allowed 

Fig. 1. Recruitment. Flowchart of participants at each stage of quality control. 
FoV = field of view, indicating the scans which were rejected due to incorrect 
image volume placement. 
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to backtrack to a valid point to be resampled (Smith et al., 2012). This 
method was used to generate 10 million streamlines which were sub-
sequently filtered to 1 million using spherical-convolution informed 
filtering of tractograms (Smith et al., 2013) in order to improve bio-
logical plausibility and remove length bias. FA images were then used to 
assign a weight to each streamline according to the mean FA along its 
path. In order to construct a weighted graph for each subject, edges were 
defined between any pair of nodes connected by at least one streamline, 
with the connection strength defined by the mean FA along all stream-
lines connecting the nodes. 

2.7. Network metrics 

We selected the following metrics to quantify properties of the FA- 
weighted structural connectivity networks: average strength, charac-
teristic path length, global efficiency, local efficiency, clustering coef-
ficient, modularity and small-worldness. These are defined below (for an 
in-depth description see Rubinov and Sporns, 2010). 

The strength of a node is defined as the sum of the weights of all 
edges connected to the node. The average weight for the entire graph is 
equal to the average node strength across all nodes. The characteristic 
path length of the graph is the average of the shortest path from each 
node to every other node, where the edge distances used to calculate 
path lengths are defined inversely to edge weights (making stronger 
connections equivalent to shorter paths). Note that this does not reflect 
physical distance between regions in the brain. A shorter characteristic 
path length indicates stronger connectivity across brain regions, thus 
implying stronger potential for integration (Rubinov and Sporns, 2010). 
Global efficiency is the average of the inverse of the shortest path length. 
This has a roughly inverse relationship with characteristic path length, 
and therefore indicates integration (Bullmore and Sporns, 2009). 

However, the two metrics differ in the edges they are influenced by; the 
calculation of characteristic path length is more dependent on longer 
paths, whereas global efficiency is more dependent on shorter paths. 

Local efficiency of a given node is the average of the inverse of the 
shortest path length between the immediate neighbours of that node. 
This is then averaged across all nodes to give a single measure for the 
whole graph. The clustering coefficient gives the number of connections 
between the nearest neighbours of a node as a fraction of the maximum 
number of possible connections. Modularity indicates how well the 
network can be split up into relatively separate communities (i.e. 
modules) of nodes by measuring a normalised ratio of the number of 
within-module connections to the number of between-module connec-
tions. Local efficiency, clustering coefficient and modularity indicate the 
efficiency of local information transfer, thus indicating the potential for 
segregated functional processing (Bullmore and Sporns, 2009; Rubinov 
and Sporns, 2010). 

Both integration and segregation are required for brain networks to 
carry out localised and distributed processing simultaneously (Tononi 
et al., 1994). The degree to which a network exhibits both segregation 
and integration is measured by the small-worldness of the network 
(Muldoon et al., 2016; Rubinov and Sporns, 2010). A high degree of 
small-worldness is characterised by a high clustering coefficient and low 
characteristic path length compared to random graphs. We measured 
small-worldness with small-world propensity (Muldoon et al., 2016). All 
other metrics were calculated with the Brain Connectivity Toolbox (htt 
p://www.brain-connectivity-toolbox.net) (Rubinov and Sporns, 2010). 

2.8. Statistical analysis 

Group differences between case and control network metrics were 
tested using two-tailed, unpaired t-tests. Correlation of network metrics 

Table 1 
Participant information. Demographics are shown for each of the TBSS and network analysis groups. Two measures of socio-economic status are provided: social grade 
is defined by the National Readership Survey (www.nrs.co.uk) and is based on parental occupation (A = upper middle class, B = middle class, C1 = lower middle class, 
C2 = skilled working class, D = working class, E = casual worker or unemployed); the index of multiple deprivation is defined by the UK Government (www.gov. 
uk/government/statistics/english-indices-of-deprivation-2019) and is based on post code at birth. Controls are matched to cases for both measures of socio- 
economic status in both datasets. Perinatal clinical information, as well as scores from neonatal MRI assessment of basal ganglia and thalami (BGT), white matter 
(WM) and posterior limbs of the internal capsule (PLIC), are given for cases.   

TBSS Network Analysis 

Cases (n = 33) Controls (n =
36) 

p Cases (n = 22) Controls (n =
32) 

p 

Age, median (range) 6.9 (6.0–7.9) 7.0 (6.1–7.9) 0.5555 7.0 (6.0–7.8) 7.0 (6.1–7.8) 0.5428 
Sex, male/female 18/15 19/17 0.8894 12/10 16/16 0.7526 
Social Grade, median (range) C1 (A–E) B (A–D) 0.1568 C1 (A–D) B (A–D) 0.0924 
Index of Multiple Deprivation, median (range) 7 (1–10) 7 (2–10) 0.5211 7 (1–10) 7 (2–10) 0.8174 
FSIQ, median (range) 93 (62–115) 108 (75–137) <0.0001 98 (62–114) 108 (75–137) 0.0010 
Perceptual Reasoning, median (range) 90 (67–123) 108 (84–145) <0.0001 91 (67–110) 108 (84–145) <0.0001 
Processing Speed, median (range) 97 (68–136) 106 (68–141) 0.0787 98.5 (75–136) 106 (68–141) 0.1221 
Verbal Comprehension, median (range) 98 (73–126) 109 (81–126) 0.0012 98 (73–126) 109 (81–126) 0.0114 
Working Memory, median (range) 97 (62–116) 105.5 

(77–135) 
0.0076 94 (62–116) 105.5 

(77–135) 
0.0290  

Neonatal MRI Assessment 
BGT, median (range) 0 (0–2) – – 0 (0–1) – – 
WM, median (range) 1 (0–3) – – 1 (0–3) – – 
PLIC, median (range) 0 (0–2) – – 0 (0–1) – –  

Perinatal Clinical Information 
Mode of delivery, vaginal/instrumental/emergency caesarean in labour/ 

emergency caesarean not in labour 
11/8/10/4 – – 8/6/7/1 – – 

Assisted ventilation at 10 min of age, yes/no 24/9 – – 17/5 – – 
Cardiac compressions required, yes/no 13/20 – – 8/14 – – 
Apgar score at 10 min of age, median (range) 6 (0–10) – – 5 (0–10) – – 
Worst pH within 1 h of birth, median (range) 6.98 (6.70–7.25) – – 6.98 (6.77–7.25) – – 
Worst base excess within 1 h of birth, median (range) − 16.0 (− 31.0 to 

− 4.8) 
– – − 16.1 (− 31.0 to 

− 4.8) 
– – 

Grade of encephalopathy: moderate, n (%) 25 (75.8) – – 18 (81.8) – – 
Grade of encephalopathy: severe, n (%) 8 (24.2) – – 4 (18.2) – – 
aEEG abnormalities prior to TH: moderate, n (%) 30 (90.9) – – 20 (90.9) – – 
aEEG abnormalities prior to TH: severe, n (%) 3 (9.1) – – 2 (9.1) – –  
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with cognitive score was then tested by calculating the partial Pearson 
correlation coefficient, including age and sex as covariates. In order to 
reduce the effect of multiple comparisons and increase statistical power, 
each network metric was tested for correlation with FSIQ, not with every 
WISC-IV domain. Bonferroni correction was applied to correct for 
multiple comparisons. Statistical analysis of the network metrics was 
performed in MATLAB (R2018b, Mathworks). For TBSS, significance 
was tested using FSL’s non-parametric permutation testing software, 
RANDOMISE (Winkler et al., 2014). We used 10,000 permutations and 
applied threshold-free cluster enhancement to correct for multiple 
comparisons. Significant results have corrected p < 0.05. 

2.8.1. Network-Based Statistic (NBS) 
We used NBS to test the hypothesis that cases exhibit reduced con-

nectivity (i.e. reduced FA) compared to controls, based on previously 
reported findings of reduced FA in white matter in neonates treated with 
TH for NE (Lally et al., 2019; Tusor et al., 2012). We also explored group 
differences in the relationship between cognitive scores and 
connectivity. 

NBS (Zalesky et al., 2012, 2010) is a nonparametric, permutation- 
based approach for controlling family-wise error rate (FWER) on the 
level of subnetworks. NBS identifies connected subnetworks in which 
each edge satisfies the given contrast (e.g. group differences in con-
nectivity). The t-statistic is calculated for each edge in the network, then 
thresholded at a chosen value. Of the remaining suprathreshold edges, 
the size of each connected subnetwork (given by the number of edges) is 
stored. This process is repeated for random permutations of the data to 
estimate the null distribution. The FWER-corrected p-value for each 
subnetwork is given by the number of permutations for which the largest 
connected subnetwork in the permuted data is the same size or larger 
than the given subnetwork, normalised by the number of permutations. 

We tested for reduced connectivity in cases compared to controls 

(one-tailed) and for group differences in the dependence of cognitive 
scores on edge weights (two-tailed). We tested all four cognitive do-
mains for correlation (perceptual reasoning, processing speed, verbal 
comprehension, working memory) in addition to FSIQ. We used 10,000 
permutations to calculate the p-value. In order to only test robust edges, 
only connections present in > 50% of cases and > 50% of controls were 
assessed. Age and sex were included as covariates in a general linear 
model in all tests (design matrices are shown in Supplementary Tables 2 
and 3). As recommended in the literature (Zalesky et al., 2012, 2010), a 
range of t-statistic thresholds were tested (2.5–3.5) to find the value 
which gave robust results (Supplementary Fig. 4). This procedure allows 
identification of large subnetworks with subtle effects (at low primary 
thresholds) as well as smaller subnetworks with strong effects (at high 
primary thresholds). Significant results have p < 0.05 (FWER- 
corrected). 

2.9. Visualisation 

Subnetworks were visualised with the BrainNet Viewer (https: 
//www.nitrc.org/projects/bnv/) (Xia et al., 2013) and as Circos con-
nectograms (http://www.circos.ca) (Krzywinski et al., 2009). 

2.10. Data availability 

The data that support the findings in this article are available upon 
reasonable request to the corresponding author. 

3. Results 

3.1. TBSS 

Fig. 3 shows the results of voxelwise comparison of FA using TBSS, 

Fig. 2. Processing pipeline. Method for constructing structural brain networks from T1 and DWI data. Cortical and sub-cortical nodes were defined by segmentation 
of the T1-weighted structural scan. Edges were determined by seeding streamlines from the cortical grey/white matter interface and performing tractography using 
the fibre orientation distribution obtained by spherical deconvolution of the measured diffusion signal. Edges were weighted by the mean FA along all streamlines 
passing between the corresponding pair of nodes, and the resulting network was represented by a connectivity matrix. 
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demonstrating widespread reduction in FA in cases compared to con-
trols. The effect is most prominent in the fornix, the corpus callosum, 
anterior and posterior limbs of the internal capsule bilaterally, and the 
cingulum bilaterally, but can also be seen in other distributed areas of 
white matter. These results demonstrate extensive alterations to white 
matter microstructure in cases. This analysis was repeated with age, sex 
and socio-economic status included as covariates in a general linear 
model; the results were largely unchanged (see Supplementary Fig. 1). 
There were no significant case-control differences in the dependence of 
FSIQ on FA. We performed post hoc analysis investigating the correla-
tion between FSIQ and FA in cases and controls separately. Cases 
exhibited correlation of FA with FSIQ in widespread areas of white 
matter, including the corpus callosum, fornix, superior longitudinal 
fasciculus, and the anterior limbs of the internal capsule (Supplementary 
Fig. 2). There were no significant correlations in controls. 

3.2. Network metrics 

3.2.1. Group differences 
No significant group differences were found in network metrics (see 

Supplementary Table 1). Notably, small-world characteristics were 
expressed robustly across the entire cohort with all subjects expressing a 
small-world propensity>0.82 (networks with small-world propensity >
0.6 are considered small-world (Muldoon et al., 2016)). 

3.2.2. Cognitive correlations 
Fig. 4 shows the correlation of network metrics with FSIQ. In cases, 

FSIQ was significantly correlated with average node strength (r =
0.6858, p = 0.0059), local efficiency (r = 0.6320, p = 0.0196), global 

efficiency (r = 0.6672, p = 0.0092), clustering coefficient (r = 0.6817, p 
= 0.0065) and characteristic path length (r = − 0.6704, p = 0.0085), 
independent of age and sex. In controls, network metrics exhibited the 
same general trends as in cases, however none of the correlations were 
significant, despite there being a comparable spread in the residuals. We 
repeated this analysis with socio-economic status included as a covariate 
(in addition to age and sex); the results were largely unchanged (see 
Supplementary Fig. 3). 

3.3. NBS 

Figs. 5 and 6 show the significant subnetworks identified by NBS. To 
reiterate; in each of the subnetworks, the tested contrast is expressed 
significantly at the level of each individual connection, with FWER 
controlled for the whole subnetwork. Significant results were found for: 
reduced connectivity (equating to reduced FA) in cases compared to 
controls; stronger relationship between connectivity and FSIQ in cases 
than in controls; and stronger relationship between connectivity and 
processing speed in cases than in controls. No results were found for 
group differences in the relationship between connectivity and percep-
tual reasoning, verbal comprehension or working memory. 

Connectivity was significantly reduced in cases compared to controls 
(t = 2.8, p = 0.0304) in a subnetwork comprising 19 nodes (10 left, 9 
right) and 20 edges (14 interhemispheric, 6 intrahemispheric). In this 
subnetwork, the five most well-connected nodes were the right pre-
cuneus cortex, left superior parietal gyrus, left precuneus cortex, left 
thalamus and left inferior temporal gyrus. 

The relationship between connectivity and FSIQ was significantly 
stronger in cases than controls (t = 3.5, p = 0.0132) in a subnetwork 

Fig. 3. Results of voxelwise comparison of FA on the white matter skeleton (green) with TBSS. Areas of significantly reduced FA in cases are indicated by the colour 
bar (p < 0.05, TFCE corrected), and include the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally, and the cingulum bilaterally. 
These are overlaid on the MNI standard template. Labels indicate some major white matter tracts and regions. Abbreviations are as follows: anterior thalamic ra-
diation (ATR), corpus callosum (CC), external capsule (EC), internal capsule (IC), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), 
superior longitudinal fasciculus (SLF), uncinate fasciculus (UF). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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comprising 23 nodes (10 left, 13 right) and 22 edges (all interhemi-
spheric). The subnetwork was entirely composed of interhemispheric 
connections connecting parietal, limbic, temporal and occipital areas. 
The five most well-connected nodes were the left precuneus cortex, left 
and right supramarginal gyrus, left superior parietal gyrus and right 
parahippocampal gyrus. 

The relationship between connectivity and processing speed was 
significantly stronger in cases than controls (t = 3.3, p = 0.0122) in a 

subnetwork comprising 28 nodes (6 left, 22 right) and 30 edges (7 
interhemispheric, 23 intrahemispheric). The three most well-connected 
nodes were the right lingual gyrus, left superior parietal gyrus and right 
cuneus cortex. See Supplementary Tables 4–6 for the complete list of 
nodes in each subnetwork. 

To provide graphical demonstration of each effect, the average FA in 
each of these subnetworks was calculated for each subject and plotted as 
a box plot for case-control differences (Fig. 6A) and plotted against FSIQ 

Fig. 4. Correlation of network metrics with FSIQ. Network metrics and FSIQ were controlled for age and sex, with residuals plotted for cases (blue circles) and 
controls (red triangles). These are fitted with a blue solid line and red dashed line for cases and controls respectively. Where p > 0.05, plots are labelled as not 
significant (n.s.). p-values are Bonferroni corrected for the number of correlations performed. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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(Fig. 6B) and processing speed (Fig. 6C). This figure clearly demon-
strates the effect captured by each subnetwork. The median of the 
subnetwork-averaged FA in cases was 6% lower in cases than in controls 
(p < 0.0001) in the case-control status subnetwork. The dependence of 
FSIQ on connectivity was much stronger in cases than controls in the 
FSIQ subnetwork (ANCOVA with age and sex as covariates; p < 0.0001). 
Similarly, the dependence of processing speed on connectivity was 
stronger in cases than controls in the processing speed subnetwork 
(ANCOVA with age and sex as covariates; p < 0.0001). 

Removing the outlier in Fig. 6B strengthened the correlation (r =
0.7860, p < 0.0001). 

4. Discussion 

This study assessed white matter microstructure and connectivity 
properties in children aged 6–8 years who underwent TH for NE at birth 
and who did not develop CP, compared to a matched group of control 
children with no history of neurological issues. TBSS was used to 
compare white matter microstructural properties, derived from diffu-
sion weighted imaging data at the voxel level, between cases and con-
trols. Network analysis was used to further investigate the relationship 
between brain connectivity and cognitive measures in cases and 

controls, using graph theory to interpret connectome data. NBS was used 
to determine the specific connections associated with case-control status 
and those associated with cognitive performance. 

Children who were treated with TH for NE at birth exhibited wide-
spread reduction in FA compared with controls. Correlations with FSIQ 
were found in strength, local efficiency, global efficiency, clustering 
coefficient and characteristic path length of the structural networks, in 
cases only. NBS revealed subnetworks associated with case-control sta-
tus, FSIQ and processing speed. 

4.1. Cases exhibit widespread alterations to white matter microstructure 

Several factors can cause a reduction in FA, including reduced fibre 
density, cross-sectional area or myelination. Previous studies of neo-
nates treated with TH for NE have investigated the relationship between 
white matter diffusion properties, measured in the first weeks following 
birth, and neurodevelopmental outcome at 2 years of age; these studies 
found a significant reduction in FA in infants with adverse outcomes, 
compared to those with favourable outcomes, in widespread areas of 
white matter including the centrum semiovale, corpus callosum, ante-
rior and posterior limbs of the internal capsule, external capsules, fornix, 
cingulum, cerebral peduncles, optic radiations and inferior longitudinal 

Fig. 5. NBS results. Subnetworks are shown for case-control comparison (top), correlation with FSIQ (middle) and correlation with processing speed (bottom). In the 
case-control status subnetwork, all connections shown are significantly weakened in cases compared to controls (reflecting lower FA in cases). In the FSIQ and 
processing speed subnetworks, the dependence of cognitive score on connection strength is significantly higher in cases than in controls. The dorsal (axial) view 
shows all connections, while the lateral (sagittal) views of the left and right cortices show the intrahemispheric connections. 
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fasciculus (Lally et al., 2019; Tusor et al., 2012). In addition, FA in many 
of these regions was found to correlate with developmental scores of 
children with and without CP (Tusor et al., 2012). Our findings in a 
select group of school-age children who did not develop CP, who had 
developmental scores in the normal range at 18 months and who were 

attending mainstream school, demonstrated reduced FA in many of the 
same areas of white matter as those highlighted in neonates, providing 
evidence that these microstructural differences persist to an older age 
group, even in the absence of CP. This suggests that children cooled for 
NE have an altered neurodevelopmental trajectory. 

Fig. 6. Subnetworks given by NBS analysis of case-control comparison (A), correlation with FSIQ (B) and correlation with processing speed (C). Connectograms are 
shown with interhemispheric connections in green and intrahemispheric connections in red (left) and blue (right). Panel A also shows box plots of the mean FA across 
all connections in the case-control subnetwork for both the true FA values (left) and residual values after controlling for age and sex (right). In the box plots, the circle 
is the median, the solid box represents the 25th to 75th percentiles, and the lines extend to the minimum and maximum data points. Panels B and C also show scatter 
plots of the mean FA across all connections in the FSIQ and processing speed subnetwork, respectively, for both cases (blue circles, blue solid line) and controls (red 
triangles, red dashed line). The complete list of node label abbreviations is shown in Supplementary Table 7. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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The question remains whether these alterations are caused by the 
cooling treatment, or if there is residual damage from the initial injury 
resulting from NE. There is conflicting evidence regarding the impact of 
TH on subcortical white matter. While one experimental study reported 
no adverse effect of hypothermia on subcortical white matter, brain 
maturation or neuronal death markers (Gressens et al., 2008), other 
studies have suggested that TH causes cell death in subcortical white 
matter (O’Brien et al., 2019; Wang et al., 2016). However, the damage 
resulting from NE without TH (Gao et al., 2012; Gosar et al., 2020; Ly 
et al., 2015; van Kooij et al., 2010, 2008), and the reduction in white 
matter lesions with TH compared to standard care following NE (Cheong 
et al., 2012; Rutherford et al., 2010) suggest that these microstructural 
alterations are likely attributable to the hypoxic-ischemic insult that 
preceded NE. 

4.2. Structural connectivity correlates with cognitive outcome in cases 
only 

We found no significant group mean differences in the network 
metrics. However, when considering cognitive performance, a close 
relationship was revealed between structural connectivity and func-
tional outcome in cases only. In controls, though each metric exhibited 
the same general trend as in cases, none of the correlations with 
cognitive performance were significant, indicating that individual dif-
ferences in structural connectivity play a bigger role in determining 
FSIQ in cases than in controls. The fact that this trend emerged in 
relation to cognitive performance, despite finding no significant group 
differences in network metrics, suggests that cases exhibit a broad 
spectrum of connectivity impairments, ranging from mild to severe, 
which relate to functional outcome in these children. 

In cases, the positive correlation of global efficiency with FSIQ and 
negative correlation of characteristic path length with FSIQ indicate a 
relationship between cognitive performance and network integration, 
which reflects the brain’s ability to carry out distributed processing 
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Also in cases, 
the positive correlation of local efficiency and clustering coefficient with 
FSIQ demonstrate a relationship between cognitive performance and 
network segregation, which reflects localised processing capabilities 
(Rubinov and Sporns, 2010). These relationships provide further evi-
dence for the link between the severity of connectivity impairment and 
cognitive outcome following the brain injury. 

During development, increasing network segregation is thought to be 
associated with pruning, while increasing strength and integration are 
thought to be associated with myelination (Dennis and Thompson, 
2013b; Tymofiyeva et al., 2014). We found an association between 
reduced cognitive performance and measures of segregation and inte-
gration, reinforcing the hypothesis that the developmental trajectory of 
the TH children is altered, potentially impacting the processes of mye-
lination and pruning and resulting in a ceiling effect on functional 
outcome at school age. 

Despite the association between FSIQ and network strength, effi-
ciency, clustering and characteristic path length, no relationship was 
found with small-worldness or modularity. This suggests that brain 
reorganisation during development prioritises small-world, modular 
characteristics, such that no relationship emerges between these prop-
erties and the level of cognitive impairment resulting from NE. Similar 
findings have been reported in school-age children born extremely 
preterm or with intrauterine growth restriction (Fischi-Gomez et al., 
2016). 

4.3. Regions involved in attention and visuo-spatial processing have 
impaired connectivity in cases 

Connectivity, measured by FA, was significantly reduced in cases 
compared to controls in a subnetwork comprising several sensorimotor 
areas including the thalamus, putamen, precentral gyrus, postcentral 

gyrus, paracentral gyrus and the superior parietal gyrus. The superior 
parietal gyrus is concerned with aspects of attention and visuo-spatial 
perception, including the representation and manipulation of objects. 
The precuneus, which appears bilaterally as two of the three most well- 
connected nodes in the subnetwork, is associated with numerous highly 
integrated tasks including visuo-spatial imagery and episodic memory 
retrieval (Cavanna, 2007; Cavanna and Trimble, 2006). Other nodes in 
the subnetwork include the insula (sensorimotor as well as higher-level 
cognitive function (Uddin et al., 2017)), isthmus of the cingulate cortex 
(which has a role in memory), inferior temporal gyrus (visual processing 
and visual object recognition), superior temporal gyrus (visual infor-
mation integration (Karnath, 2001; Shen et al., 2017)), fusiform gyrus 
(object and face recognition (Kleinhans et al., 2008; Pelphrey et al., 
2007)), amygdala (emotional behaviour) and the posterior cingulate 
cortex (internally directed thought (Leech et al., 2011) and task man-
agement (Pearson et al., 2011)). The posterior cingulate cortex is also 
involved in controlling attention via interaction with the cognitive 
control network and has been linked to attentional impairments in brain 
injury, autism, attention deficit hyperactivity disorder and schizo-
phrenia (Leech et al., 2011; Leech and Sharp, 2014). Both the precuneus 
and the posterior cingulate cortex feature in the default mode network 
(Raichle et al., 2001), suggesting a role in the neural correlates of con-
sciousness (Cavanna, 2007). 

The reduced connectivity to numerous regions involved in visuo- 
spatial processing and attention aligns with behavioural findings from 
a study by Tonks et al., demonstrating reduced visuo-spatial processing, 
attention difficulties and slower reaction times in this group of children 
(Tonks et al., 2019). Similarly, the sensorimotor regions included in the 
network (in particular the numerous thalamocortical connections) may 
account for the reduced motor performance in the absence of CP (Jary 
et al., 2019; Lee-Kelland et al., 2020) while the impaired connectivity to 
the amygdala may be linked to the increased likelihood of emotional 
behavioural difficulties (Lee-Kelland et al., 2020). 

4.4. Connectivity to regions involved in visuo-spatial processing correlates 
with cognitive outcome 

Subnetworks were found in which there is a stronger dependence of 
aspects of cognitive outcome (FSIQ and processing speed) on connec-
tivity in cases than in controls. Processing speed aims to measure the 
mental speed and cognitive flexibility of the child; however, the score is 
also affected by other cognitive factors such as visuo-motor coordina-
tion, visual discrimination, attention, short-term visual memory and 
concentration. FSIQ is a measure of the overall cognitive ability of an 
individual based on performance on all WISC-IV subtests (Kaufman 
et al., 2006). There were no edges common to the two subnetworks, 
indicating that the correlation with FSIQ was not driven by correlation 
with processing speed. 

The most well-connected nodes in the FSIQ subnetwork are involved 
in visuo-spatial processing, memory and attention, but there are also 
connections to several association cortices and visual processing areas. 
All connections in the FSIQ subnetwork are interhemispheric, suggesting 
involvement of the corpus callosum. The processing speed subnetwork 
consists of predominantly visual processing regions, as well as areas 
involved in visuo-spatial function and attention, and sensorimotor areas. 
Importantly, the relationship between connectivity and outcome is 
significantly stronger in cases than in controls, as demonstrated in 
Fig. 6B and C. This provides an extension to the idea of ceiling effects 
being imposed on the cognitive processing abilities of cases, whereby the 
connections in the subnetwork restrict cognitive outcome in cases, 
whereas the cognitive processing abilities of controls are less dependent 
on the strength of these particular connections. 

Most of the connections in the processing speed subnetwork are 
intrahemispheric in the right hemisphere. This laterality is unlikely to be 
related to handedness, as this is not associated with white matter 
microstructure in children (López-Vicente et al., 2021). Additionally, 
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laterality is not observed in the TBSS results, case-control subnetwork or 
the FSIQ subnetwork, nor has it been reported in neonates (Lally et al., 
2019; Tusor et al., 2012), suggesting it is not a result of targeted injury 
mechanisms; this effect only emerges when measuring processing speed. 
It may be the result of compensatory mechanisms involving the brain 
regions associated with the processing speed assessment. 

Though perceptual reasoning, verbal comprehension and working 
memory were reduced in cases (see Table 1), group differences in the 
dependence of these domains on connectivity was not found. This could 
be due to the dependence of these domains on connectivity being equal 
across subjects regardless of case-control status, or due to these domains 
being dependent on different connections in each subject rather than on 
any distinct subnetwork. This may also be dependent on how well each 
WISC-IV domain reflects fundamental cognitive processes versus higher- 
level thinking. 

4.5. Major hubs in the human connectome are among those affected in 
cases 

Several studies have investigated structural brain network properties 
to determine key, densely connected hub nodes which constitute a 
structural core, or “rich club”, of the human connectome (Gong et al., 
2009; Hagmann et al., 2008; van den Heuvel and Sporns, 2011). These 
hub nodes are thought to play a central role in information integration. 

These studies consistently identified the precuneus cortex as a key 
node in the rich club, as well as highlighting the posterior cingulate 
cortex, superior parietal cortex, paracentral lobule, isthmus of the 
cingulate cortex, superior temporal cortex and thalamus. Additionally, 
sensorimotor areas were among those found to be hubs during the 
neonatal period (Fransson et al., 2011; van den Heuvel et al., 2015) and 
have been shown to be affected in dyskinetic cerebral palsy (Ballester- 
Plané et al., 2017), which can also result from hypoxia at birth. Many of 
these rich club nodes were implicated in the relationship between con-
nectivity and case-control status, FSIQ and processing speed. 

It has been suggested that, due to their topological centrality and 
high biological cost, rich club nodes are particularly vulnerable to a 
wide range of pathogenic factors (Crossley et al., 2014; van den Heuvel 
and Sporns, 2013). The high metabolic rates of the precuneus cortex 
(Cavanna and Trimble, 2006) and posterior cingulate cortex (Leech and 
Sharp, 2014) support this suggestion of vulnerability. Increased 
vulnerability may be a reason for these nodes being implicated in NE 
children; these nodes are affected the most by the lack of oxygen during 
birth therefore they sustain lasting developmental alterations. 

4.6. Strengths and limitations 

To our knowledge, this is the first study to investigate whole-brain 
structural connectivity in school-age children treated with TH for NE, 
who did not develop CP. We used a robust methodology of high angular 
resolution DWI combined with an anatomically-constrained tractog-
raphy method capable of resolving crossing fibres. Movement can be a 
common issue when scanning children, therefore we applied a robust 
quality control pipeline. The rejection of scans due to movement arte-
fact, as well as the incomplete or unobtained scans, resulted in a rela-
tively small sample size. However, there were no significant differences 
between the cognitive scores of the rejected subjects and those included 
in the analysis. In order to increase the robustness of the NBS results, 
connections were only included in the analysis if expressed in > 50% of 
cases and > 50% of controls. 

5. Conclusions 

We demonstrate structural connectivity deficits relating to white 
matter microstructure and network connectivity properties in school- 
age children treated with TH for NE, who did not develop CP, 
compared to typically developing controls. We provide evidence for a 

relationship between structural connectivity and cognitive outcome and 
further demonstrate specific brain regions and connections which are 
associated with case-control status and with cognitive outcome. Our 
findings demonstrate that, although TH reduces severe disabilities after 
NE, underlying structural deficits are present which are associated with 
the cognitive differences found between cases and controls at school- 
age. These differences are often overlooked as most children given TH 
for NE do not demonstrate significant deficits in cognitive performance 
at 18 months (Azzopardi et al., 2014). Further study involving neonatal 
scans and longitudinal investigation of the developmental aspects of 
these impairments could guide follow-up care and inform future thera-
peutic intervention strategies. 
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Fischi-Gomez, E., Muñoz-Moreno, E., Vasung, L., Griffa, A., Borradori-Tolsa, C., 
Monnier, M., Lazeyras, F., Thiran, J.P., Hüppi, P.S., 2016. Brain network 
characterization of high-risk preterm-born school-age children. NeuroImage Clin. 
11, 195–209. https://doi.org/10.1016/j.nicl.2016.02.001. 

Fischl, B., 2012. FreeSurfer. Neuroimage 62 (2), 774–781. https://doi.org/10.1016/j. 
neuroimage.2012.01.021. 

Fornito, A., Zalesky, A., Breakspear, M., 2013. Graph analysis of the human connectome: 
Promise, progress, and pitfalls. Neuroimage 80, 426–444. https://doi.org/10.1016/j. 
neuroimage.2013.04.087. 

Fransson, P., Åden, U., Blennow, M., Lagercrantz, H., 2011. The Functional Architecture 
of the Infant Brain as Revealed by Resting-State fMRI. Cereb. Cortex 21, 145–154. 
https://doi.org/10.1093/cercor/bhq071. 

Gale, C., Statnikov, Y., Jawad, S., Uthaya, S.N, Modi, N., 2018. Neonatal brain injuries in 
England: population-based incidence derived from routinely recorded clinical data 
held in the National Neonatal Research Database. Arch. Dis. Child. - Fetal Neonatal 
Ed. 103 (4), F301–F306. https://doi.org/10.1136/archdischild-2017- 
31370710.1136/archdischild-2017-313707.supp110.1136/archdischild-2017- 
313707.supp2. 

Gao, J., Li, X., Hou, X., Ding, A., Chan, K.C., Qinli Sun, Wu, E.X., Jian Yang, 2012. Tract- 
based spatial statistics (TBSS): Application to detecting white matter tract variation 
in mild hypoxic-ischemic neonates, in: 2012 Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. IEEE, pp. 432–435. https://doi. 
org/10.1109/EMBC.2012.6345960. 

Gaser, C., Dahnke, R., 2016. CAT-a computational anatomy toolbox for the analysis of 
structural MRI data. HBM 2016, 336–348. 

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., Beaulieu, C., 2009. 
Mapping anatomical connectivity patterns of human cerebral cortex using in vivo 
diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536. https://doi.org/ 
10.1093/cercor/bhn102. 

Gosar, D., Tretnjak, V., Bregant, T., Neubauer, D., Derganc, M., 2020. Reduced white- 
matter integrity and lower speed of information processing in adolescents with mild 
and moderate neonatal hypoxic-ischaemic encephalopathy. Eur. J. Paediatr. Neurol. 
28, 205–213. https://doi.org/10.1016/j.ejpn.2020.06.003. 

Gressens, P., Dingley, J., Plaisant, F., Porter, H., Schwendimann, L., Verney, C., 
Tooley, J., Thoresen, M., 2008. Analysis of neuronal, glial, endothelial, axonal and 
apoptotic markers following moderate therapeutic hypothermia and anesthesia in 
the developing piglet brain. Brain Pathol. 18 (1), 10–20. https://doi.org/10.1111/ 
j.1750-3639.2007.00095.x. 

Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., 
Haase, A., 2002. Generalized autocalibrating partially parallel acquisitions 
(GRAPPA). Magn. Reson. Med. 47 (6), 1202–1210. https://doi.org/10.1002/(ISSN) 
1522-259410.1002/mrm.v47:610.1002/mrm.10171. 

Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., 
Meuli, R., Thiran, J.-P., Honey, C.J., Sporns, O., 2010a. MR connectomics: Principles 
and challenges. J. Neurosci. Methods 194 (1), 34–45. https://doi.org/10.1016/j. 
jneumeth.2010.01.014. 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., 
Sporns, O., Friston, K.J., 2008. Mapping the structural core of human cerebral 
cortex. PLoS Biol. 6 (7), e159. https://doi.org/10.1371/journal.pbio.0060159. 

Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V.J., Meuli, R., 
Thiran, J.P., Grant, P.E., 2010b. White matter maturation reshapes structural 
connectivity in the late developing human brain. Proc. Natl. Acad. Sci. 107 (44), 
19067–19072. https://doi.org/10.1073/pnas.1009073107. 

S.E. Jacobs M. Berg R. Hunt W.O. Tarnow-Mordi T.E. Inder P.G. Davis Cooling for 
newborns with hypoxic ischaemic encephalopathy 2013 Rev Cochrane Database Syst 
10.1002/14651858.CD003311.pub3. 

Jary, S, Lee-Kelland, R, Tonks, J, Cowan, F.M, Thoresen, M, Chakkarapani, E, 2019. 
Motor performance and cognitive correlates in children cooled for neonatal 
encephalopathy without cerebral palsy at school age. Acta Paediatr. Int. J. Paediatr. 
108 (10), 1773–1780. https://doi.org/10.1111/apa.v108.1010.1111/apa.14780. 

Jary, S., Smit, E., Liu, X., Cowan, F.M., Thoresen, M., 2015. Less severe cerebral palsy 
outcomes in infants treated with therapeutic hypothermia. Acta Paediatr. 104 (12), 
1241–1247. https://doi.org/10.1111/apa.13146. 

Karnath, H.-O., 2001. New insights into the functions of the superior temporal cortex. 
Nat. Rev. Neurosci. 2 (8), 568–576. https://doi.org/10.1038/35086057. 

Alan S. Kaufman Dawn P. Flanagan Vincent C. Alfonso Jennifer T. Mascolo 24 3 2006 
278 295. 

Kleinhans, N.M., Richards, T., Sterling, L., Stegbauer, K.C., Mahurin, R., Johnson, L.C., 
Greenson, J., Dawson, G., Aylward, E., 2008. Abnormal functional connectivity in 
autism spectrum disorders during face processing. Brain 131, 1000–1012. https:// 
doi.org/10.1093/brain/awm334. 

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., 
Marra, M.A., 2009. Circos: An information aesthetic for comparative genomics. 
Genome Res. 19 (9), 1639–1645. https://doi.org/10.1101/gr.092759.109. 

Kyng, K.J., Skajaa, T., Kerrn-Jespersen, S., Andreassen, C.S., Bennedsgaard, K., 
Henriksen, T.B., 2015. A Piglet Model of Neonatal Hypoxic-Ischemic 
Encephalopathy. J. Vis. Exp. 1–12 https://doi.org/10.3791/52454. 

Lally, P.J., Montaldo, P., Oliveira, V., Soe, A., Swamy, R., Bassett, P., Mendoza, J., 
Atreja, G., Kariholu, U., Pattnayak, S., Sashikumar, P., Harizaj, H., Mitchell, M., 
Ganesh, V., Harigopal, S., Dixon, J., English, P., Clarke, P., Muthukumar, P., 
Satodia, P., Wayte, S., Abernethy, L.J., Yajamanyam, K., Bainbridge, A., Price, D., 
Huertas, A., Sharp, D.J., Kalra, V., Chawla, S., Shankaran, S., Thayyil, S., 2019. 
Magnetic resonance spectroscopy assessment of brain injury after moderate 
hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. 
Lancet Neurol. 18 (1), 35–45. https://doi.org/10.1016/S1474-4422(18)30325-9. 

Le Bihan, D., Johansen-Berg, H., 2012. Diffusion MRI at 25: Exploring brain tissue 
structure and function. Neuroimage 61 (2), 324–341. https://doi.org/10.1016/j. 
neuroimage.2011.11.006. 

Lee-Kelland, R., Jary, S., Tonks, J., Cowan, F.M., Thoresen, M., Chakkarapani, E., 2020. 
School-age outcomes of children without cerebral palsy cooled for neonatal 
hypoxic–ischaemic encephalopathy in 2008–2010. Arch. Dis. Child. - Fetal Neonatal 
Ed. 105 (1), 8–13. https://doi.org/10.1136/archdischild-2018-316509. 

Leech, R., Kamourieh, S., Beckmann, C.F., Sharp, D.J., 2011. Fractionating the default 
mode network: Distinct contributions of the ventral and dorsal posterior cingulate 
cortex to cognitive control. J. Neurosci. 31 (9), 3217–3224. https://doi.org/ 
10.1523/JNEUROSCI.5626-10.2011. 

Leech, R., Sharp, D.J., 2014. The role of the posterior cingulate cortex in cognition and 
disease. Brain 137, 12–32. https://doi.org/10.1093/brain/awt162. 
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