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Abstract 

Anthocyanins, a subclass of flavonoids, are plant metabolites found in commonly consumed 

red-, blue-, and purple-coloured fruits and vegetables. In population-based studies, habitual 

anthocyanin intakes have been associated with reduced risk for cardiovascular diseases. 

However, there is contradictory evidence gained from randomised controlled trials as wide 

inter-individual variability in response to anthocyanin intake has been repeatedly observed. A 

contributing factor is likely to be variability in absorption and metabolisation of anthocyanins, 

which suggests that individuals are exposed to different levels of potentially clinically 

bioactive compounds, and which may underpin classification of individuals as ‘responders’ 

and ‘non-responders’. In contrast to other flavonoid subclasses (i.e. isoflavones, 

ellagitannins) with unique, metabotype-defining catabolites (i.e. equol and urolithins, 

respectively), anthocyanins are metabolised to a set of metabolites common to many 

flavonoids. To date, this commonality in metabolism end-products has added complexity to 

the identification of a specific metabotype for anthocyanins. 

This research gap is addressed in this thesis by using a combination of factor analysis and 

univariate methods to identify a group of seven urinary metabolites proposed to describe a 

responder or ‘high metaboliser’ of anthocyanin intake: 4-hydroxyhippuric acid, 3-

hydroxyhippuric acid, hippuric acid, syringic acid, homovanillic acid, dihydroferulic acid, and 

3,5-dihydroxyphenylpropionic acid. In addition, this thesis tested the relationship between the 

anthocyanin ‘responder’ metabolite profile and flow-mediated dilation (FMD) and confirmed a 

strong association (β=0.79, p=0.02) with each doubling in excretion of the panel metabolites 

associated with a 0.8% increase in FMD. 

The results suggest that individuals with a high metaboliser profile may experience greater 

vascular benefits from the consumption of anthocyanin-rich blueberries than lower 

metaboliser profiles. To confirm its usefulness as a screening tool, the identified metabolite 

panel was applied to an ongoing dietary intervention study for the prospective recruitment of 

individuals classified as high or low metabolisers following a single dose of blueberries. 
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1 Introduction 

Nutrition has long been considered a crucial factor in health and disease, as illustrated by the 

quote ‘Let thy food be thy medicine, and medicine be thy food’ often credited to Hippocrates 

(400 BC).1  

Today this statement still holds to be true, however since the days of Hippocrates our 

understanding of nutrition and its link to health as well as our diets have changed substantially.  

One of the most striking characteristics of our modern diets and lifestyle is the 

overconsumption of unhealthy foods, such as highly processed and packaged foods, high in 

free sugars and salt, and the underconsumption of healthy foods including fruits, vegetables, 

legumes, whole grains, nuts, and seeds. In 2017, the Global Burden of Disease Study (GBD)2 

estimated that globally, the consumption of fruits was less than 100 g/day, or about 40% of 

what was considered an optimal level of intake of 250 g/d. The optimal intake level was defined 

by GBD as the amount of that minimised the risk from all causes of death and was based on 

results from published literature. Further examples of suboptimal consumption were whole 

grains (30 g/d, 24% of the optimal level of 125 g/d) and nuts and seeds (3 g/d, 12% of the 

optimal level of 21 g/day). In contrast, the amount of consumed sugar-sweetened beverages 

(49 g/d), processed meats (4 g/d), salt (6 g/d), and red meats (27 g/d) greatly exceeded the 

optimal levels globally by over 1500%, 90%, 86%, and 18%.  

The GBD study further reported that, globally, the diet lacked in beneficial nutrients (with 

exception to select regions), such as fibre (11 g/d, 46% of optimal intake), omega-3-fatty acids 

(0.1 g/d, 4% of optimal intake), calcium (0.4 g/d, 32% of optimal intake), and polyunsaturated 

fatty acids (4% of total energy intake, 36% of optimal intake).  

Dietary patterns characterised by high intakes of red and processed meats, refined grains, 

sugar, saturated fats and salt, and reduced intakes of fruit, vegetables, whole grains, fibre and 

other beneficial nutrients have been recognised by the World Health Organisation (WHO) as 

a modifiable dietary risk for the development of non-communicable diseases (NCD)2,3. In 2019, 

poor diet quality was one of the leading behavioural risk factors for NCDs, only second to 

smoking and followed by alcohol use and low physical activity.4,5 It was estimated that 74% of 

all deaths globally (42 million people annually) are related to NCDs, of which over 80% of these 

deaths were caused by cardiovascular diseases (CVD) (18.6 million globally), cancers (10 

million globally), chronic respiratory diseases (4 million globally), and type 2 diabetes (T2DM) 

(1.5 million globally). Every one in seven NCD deaths was attributable to dietary risks (about 

8 million deaths world-wide, 14% of total global deaths), of which the majority were caused by 

CVD (6.9 million, about 86% of diet-related global deaths) followed by T2DM (0.4 million, about 
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5% of diet-related global deaths). In the UK, dietary risks were responsible for every eighth 

death (78 500, 12.6% of total deaths in UK). Over 80% of these were due to CVDs. 

Given the scope and magnitude of diet-related diseases, there has been a growing interest in 

functional foods as therapeutics,6 alongside an increasing awareness that changes in lifestyle 

and diet may alleviate or manage NCDs.1 Implementing nutritional guidelines to improve diet 

quality and tackle excess energy intake is one key strategy in controlling and reducing the 

burden of these diseases. 

This introduction will first give an overview of cardiovascular disease and cardiometabolic risk 

factors. It will then move on to the significance of a diet rich in fruit and polyphenols as potential 

mediators of health. More specifically, anthocyanins will be introduced. Finally, the metabolism 

of flavonoids and the variability in the bioavailability of flavonoids in individuals will be 

discussed, and at the end a summary of the aims of this thesis will be presented. 

1.1 Cardiovascular diseases and cardiometabolic risk factors 

Cardiovascular diseases are disorders of the heart and blood vessels at the centre of which 

often lies atherosclerosis, a build-up of fatty deposits in the artery walls called plaque which is 

associated with hardening of the arterial walls and inflammation. The clinical symptoms are 

determined by the location of the atherosclerotic site as well as the severity of the plaque.  The 

lipid depositions lead to a narrowing of the artery which impedes the blood flow to organs and 

limbs and eventually may culminate in the occlusion of the artery stopping blood flow 

altogether. Manifestations of atherosclerosis include coronary artery disease, angina, heart 

attacks, ischemia, peripheral vascular disease, renal artery stenosis and stroke. Inflammation 

can also damage and weaken the vessel wall and may cause it to dilate leading to an 

aneurysm.7 

Pathophysiology of atherosclerosis 

Key players in the formation of early atherosclerotic lesions are endothelial dysfunction, 

dyslipidaemia, and inflammation.  

The arterial wall consists of three layers. The tunica intima is the innermost layer consisting of 

a thin membrane lining the inside of blood vessels called the endothelium, and a subendothelial 

layer of connective tissue. The endothelium has important functions including barrier forming 

properties, preventing platelet aggregation, maintaining low oxidative stress, inflammation 

signalling, and regulation of the constriction (vasoconstriction) and enlargement (vasodilation) 

of the blood vessel, subsequently controlling blood pressure. The tunica media is a layer of 

smooth muscle cells and elastic tissue which regulates the internal diameter of the vessel. The 
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tunica adventitia is a layer of connective tissue anchoring the blood vessel into the surrounding 

tissue. 

Early stages of atherosclerosis appear as a fatty streak in the vascular intima.7 Damage to the 

endothelium can lead to an activation of endothelial cells initiating pro-atherogenic processes, 

including increased endothelial permeability, platelet aggregation, production of reactive 

oxygen species (ROS), and expression of pro-inflammatory molecules.8 The overproduction 

of highly reactive ROS, such as the free radical superoxide anion radical, and a lack of 

enzymatic and non-enzymatic antioxidants causes oxidative stress and can incur damage to 

cellular lipids, proteins, and DNA bases by changing their structure and inhibiting their function. 

Increased endothelial permeability along with increased levels of low-density lipoproteins 

(LDL) allows for LDL particles to enter the subendothelial space where they become oxidised 

to oxLDL by ROS. oxLDL provokes the expression of adhesion molecules, such as ICAM-1 

and VCAM-1, in endothelial cells which attract inflammatory cells to the site. Monocytes adhere 

to the endothelium and migrate into the intima where they become activated and turn into 

macrophages. The oxLDL binds to the macrophage scavenger receptors and becomes 

internalised. However, this modified form of LDL cannot be digested fully, which results in an 

accumulation of lipids in the macrophages and the formation of foam cells. The abnormal lipid 

accumulation is perceived as a danger signal by the cells and in an attempt to remove the 

lipids, foam cells release chemokines and cytokines to recruit additional inflammatory cells, 

including T-helper cells and further monocytes. Pro-inflammatory cytokines produced by the 

T-helper cells (such as interferon-γ (IFN-γ) and interleukin-2 (IL-2)) stimulate the differentiation 

of monocytes to macrophages: These in turn release more ROS, cytokines (such as TNF-α, 

IL-1 and IL-6), and matrix metalloproteases (MMPs) and become foam cells through uptake of 

oxLDL. The secreted cytokines further stimulate proliferation of smooth muscle cells (SMC) 

and fibroblasts and the activation of endothelial cells. MMPs degrade the extracellular matrix 

and allow the migration of SMC into the intima where they synthesise a protective fibrous cap 

over the plaque. In advanced plaques, recruited fibroblasts produce large amounts collagen 

which leads to fibrosis and scarring. The abnormal lipid loading in foam cells can cause the 

cells to die and as the plaque grows bigger, dead foam cells in the centre form a necrotic core 

containing lipids and cell debris. The growth of the atherosclerotic plaque is driven by a positive 

feedback loop of lipid accumulation, activation of endothelial cells, inflammation and SMC 

proliferation until it may rupture and break through the endothelium. This disruption and spilling 

out of the necrotic core rapidly causes a thrombus to form which may partially or entirely 

occlude the vessel lumen and can have catastrophic consequences, such as a stroke or a fatal 

heart attack.  
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Cardiometabolic risk factors and the metabolic syndrome 

Cardiometabolic risk summarises a set of clinical conditions which increase the risk for 

cardiovascular disease and T2DM. These include being overweight/obese or abdominal 

obesity, hyperglycaemia, hyperinsulinemia, hypertension, and dyslipidemia.9 The increasing 

prevalence of overweight and obesity gives rise to a clustering of these co-morbidities, 

termed metabolic syndrome (MetS).10 Although the exact pathophysiology of MetS is 

unknown, insulin resistance and excessive abundance of free fatty acids (FFA) appear to be 

centre of the development.  

The metabolic abnormalities in metabolic syndrome are briefly described in the following. 

Obesity and central adiposity  

In times when energy is abundant, fat cells (adipocytes) grow to store the surplus energy as 

fat. More specifically, they store fat as triglycerides (TG) which consist of three fatty acids 

and one glycerol molecule. The cells are located in adipose tissue mainly beneath the skin 

(subcutaneous fat) and intra-abdominally surrounding internal organs (visceral fat). The 

prolonged imbalance of energy intake and energy expenditure eventually leads to weight 

gain.  

Overweight and obesity describe a state of excessive accumulation of fat and has been 

associated with chronic low-grade inflammation11 and metabolic changes including 

dyslipidaemia, hyperglycaemia, and hyperinsulinemia. It is commonly measured using the 

body mass index (BMI), defined as the weight of an individual divided by the square their 

height. Overweight is classified as a BMI ≥ 25 kg/m2 and obese as a BMI ≥ 30 kg/m2. By this 

definition, according to the Health Survey for England (HSE) of 201912, 64% of adults in 

England are overweight and obese, while a striking 30% of children between the ages of 2 

and 15 are overweight or obese. The prevalence of overweight and obesity in adults has 

increased by 11% since 1993, and the Global Burden of Disease Study 2019 has reported 

that over the previous ten years, the prevalence of a high BMI has been steadily increasing 

with an annual increase of 1.86%.4 

Surprisingly, not all overweight and obese subjects are affected by metabolic changes such 

as insulin resistance and dyslipidaemia and conversely, non-obese individuals may suffer 

from metabolic disorders. The amount of abdominal fat has been suggested as the potential 

link to this observation. Despite having the same amount of total body fat, those individuals 

with obesity-related metabolic abnormalities were characterized by an excess amount of 

visceral fat, whereas metabolically healthy obese had more subcutaneous fat13. Visceral 

adiposity has been associated with metabolic complications such as insulin resistance, 

dyslipidaemia and inflammation and many studies investigating the relationship between fat 
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distribution and disease risk seem to confirm that the distribution of fat is a more significant 

risk factor for diseases such as CVD and mortality than excess weight and fat per se14–20. 

Insulin resistance 

Overweight and obesity increase the risk for insulin resistance, which means that cells are 

less responsive to normal or elevated levels of insulin. Insulin is secreted by pancreatic β-

cells when blood sugar levels are high and stimulates glucose and FFA uptake in fat and 

muscle cells, increases fatty acid synthesis and decreases lipolysis, and suppresses 

gluconeogenesis in the liver. However, when cells are insulin resistant, plasma levels of 

glucose and FFA are increased. In the insulin resistant liver, reduced suppression of 

gluconeogenesis augments the already high glucose levels and contribute to 

hyperglycaemia. This in turn results in more insulin being synthesized by the pancreatic β-

cells causing hyperinsulinemia. The increased production of insulin eventually causes 

endoplasmic reticulum (ER) stress and failure to alleviate this stress leads to death of the β-

cells and progression to type II diabetes.  

Multiple factors promote insulin resistance, including elevated levels FFA, dysregulation of 

adipokine secretion from adipose tissue, and inflammation (Figure 1-1).  

In most obese individuals, FFA levels are increased.21 This is partly due to increased lipolysis 

of excess adipose tissue. Once increased, this is further enhanced by the inhibition of insulin 

action, which under normal conditions would stimulate the removal of FFA from the blood 

into cells. The mechanism by which FFA promote insulin resistance is thought to involve the 

formation of lipid intermediates, which activate several kinases that interfere in insulin 

signalling including protein kinase C (PKC), inhibitor of nuclear factor kappa B kinase (IKK-β) 

and c-Jun NH2-terminal kinase (JNK).22 In addition, FFA also induce oxidative stress, which 

was shown to play a role in insulin resistance.22 Conversely, in obese subjects, the reduction 

of plasma FFA using anti-lipolytic drugs by 60-70% in comparison to placebo was 

demonstrated to restore insulin sensitivity and increase insulin-stimulated glucose uptake by 

more than two-fold.23  

Next to storing fat, adipose tissue also functions as a secretory organ releasing cell-signalling 

proteins called adipokines. The dysregulation of some of the adipokines, such as 

adiponectin, leptin, and retinol binding protein-4 (RBP4), is associated with insulin resistance. 

Most of these mechanisms are mediated through the AMP-activated protein kinase (AMPK) 

which regulates energy homeostasis by promoting fatty acid oxidation, glucose uptake, and 

glycolysis, while inhibiting fatty acid synthesis, gluconeogenesis and glycogen synthesis. 

Adiponectin is an activator of AMPK and has an insulin-sensitising effect24. A lack of 

adiponectin, as the case in obesity, thereby supports insulin resistance. Leptin has also been 
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shown to stimulate fatty acid oxidation through AMPK signalling25 and additionally acts as an 

appetite suppressant in the hypothalamus. 

However, in contrast to adiponectin, leptin levels are increased in obesity and the failure to 

respond to leptin signalling suggests leptin resistance. It has been demonstrated that the 

upregulation of suppressors of cytokine signalling (SOCS) plays a role in inhibiting the leptin 

activation of AMPK.25 Increased plasma concentrations of RBP4 also induce insulin 

resistance, however the mechanism by which this is mediated is not fully understood. Recent 

evidence suggests that RBP4 indirectly promotes insulin resistance by promoting the 

inflammatory state in adipose tissue through activation of JNK and toll-like-receptor 4 (TLR4) 

pathways26,27 (see below). 

Inflammation 

Overweight and obesity is associated with a chronic low-grade proinflammatory state of the 

adipose tissue as well as other tissues like the liver, pancreas, brain and skeletal muscle.11 

This state involves increased infiltration of adipose tissue by macrophages and the increased 

production of inflammatory markers in adipose tissue as well as in the liver (Figure 1-2).  

 

 

Figure 1-1. Mechanisms of insulin resistance. 

Elevated levels FFA, dysregulation of adipokine secretion from adipose tissue, and inflammation can 
promote insulin resistance, which means that cells are less responsive to normal or elevated levels of 
insulin. This results in even more increased plasma levels of FFA and glucose.  Reduced suppression 
of gluconeogenesis in the insulin-resistant liver further augments the hyperglycaemia. This in turn 
results in more insulin being synthesized by pancreatic β-cells causing hyperinsulinemia. The 
increased production of insulin eventually causes endoplasmic reticulum (ER) stress and failure to 
alleviate this stress leads to death of the β-cells and progression to type II diabetes.  
Greyed out writing denotes original function, which is inhibited under insulin resistance. TG, 
triglycerides; FFA, free fatty acids; RBP4, retinol-binding protein-4; AMPK, AMP-activated protein 
kinase; PKC, protein kinase C; IKK-β, inhibitor of nuclear factor kappa B kinase; JNK, c-Jun NH2-
terminal kinase. 
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The inflammatory cytokines, which include tumour necrosis factor-α (TNF-α), interleukin-6 

(IL-6), monocyte chemotactic protein-1 (MCP-1) and interleukin-1β (IL-1β), interfere in insulin 

signalling like FFA through intracellular activation of JNK and IKK kinases. TNF-α further 

stimulates lipolysis, contributing to increased levels of FFA. In addition to the pathways 

named above, FFA can also activate TLR-4 pathways in adipocytes and macrophages, 

thereby contributing to the inflammatory state by stimulating the expression of inflammatory 

cytokines28.  MCP-1 supports the infiltration of tissue by macrophages, which not only 

augment the secretion of inflammatory cytokines, but also can induce tissue injury through 

phagocytosis and degradation of the extracellular matrix by secreting matrix 

metalloproteinases. In contrast, IL-6 is a pro- and anti-inflammatory cytokine. The opposing 

roles of IL-6 depend on IL-6 binding to the membrane-bound form of the IL-6 receptor (anti-

inflammatory action) or the soluble form, which interacts as a complex with the signalling 

receptor gp130 (pro-inflammatory action).29 It is certain that increased plasma concentrations 

are associated with obesity and insulin resistance. However, it is unclear if IL-6 has a 

disease promoting or rather a protective role in obesity. An animal study by Mauer et al 

showed that IL-6 led to increased insulin sensitivity and limits inflammation30, while acute 

injection of IL-6 in mice led to insulin resistance in a different study31.  

Importantly, inflammation of the hypothalamus appears to play a significant role in leptin and 

insulin resistance and occurs before weight gain in contrast to inflammation in peripheral 

tissues as described above.32 Excess nutrients and high-fat diets, especially those which are 

high in saturated fats (particularly palmitic acid), cause inflammation in the hypothalamus 

through activation of JNK and IKK. This leads to the inhibition of leptin and insulin signalling 

 

 

Figure 1-2. Inflammation of adipose tissue in obesity. 

Infiltration of macrophages leads to the mild inflammation of adipose tissue and increased secretion of 
cytokines which promote insulin resistance. TNF-α, tumour necrosis factor α; IL-1β, interleukin-1β; 
MCP-1, monocyte chemotactic protein-1; IL-6, interleukin-6. 
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and thus suppresses the satiety evoking effect of those hormones. It has further been 

suggested that sustained high-fat feeding may lead to neuron injury though the activation of 

TLR-4, ceramide biosynthesis and ER stress pathway. Reactive proliferation of neighbouring 

glial cells may impact neuronal function and eventually lead to the death of neurons 

responsible for satiety signalling33. 

Liver inflammation is of further significance for the inflammatory state in obesity11 (Error! 

Reference source not found.). The liver is a major site of metabolism, regulating 

gluconeogenesis and glycogen storage, lipogenesis and cholesterol synthesis and secretion. 

Inflammation in the liver increases the pool of inflammatory cytokines which causes 

inflammation-induced insulin resistance in the liver by the same mechanisms described 

above. This results in increased glucose output and contributes to hyperglycaemia. TNF-α 

and IL-6 have also been shown to activate hepatic lipogenesis which leads to the 

accumulation of hepatic TG and subsequently increased output of very-low-density 

lipoproteins (VLDL) and plasma TG levels34. Furthermore, acute-phase proteins produced by 

the liver such as C-reactive protein (CRP), plasminogen activator inhibitor-1, serum amyloid 

A, and IL-6, as a response to the inflammation are increased in obese individuals11 which 

could influence peripheral tissues, e.g. by inducing insulin resistance. Finally, the 

overabundance of FFA and increased lipogenesis promote the development of a fatty liver, 

which may culminate in fatty liver disease (steatohepatitis). 

Figure 1-3. Obesity-related inflammation of the liver. 

Increased availability of FFA, inflammation and insulin resistance lead to the 
accumulation of TG in the liver, which promotes hypertriglyceridemia, 
hyperglycaemia, metabolic disorders in peripheral tissues, and a fatty liver. FFA, free 
fatty acids; VLDL, very low-density lipoprotein; TG, triglycerides. 
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Systemic chronic inflammation can amplify the inflammation in atherosclerosis, and non-

specific inflammatory markers like CRP are used as a measure in the assessment of 

atherosclerotic risk.7 

Dyslipidaemia 

A further common change in obese patients are abnormal lipid levels. The key attributes of 

dyslipidaemia are increased plasma levels of TG (hypertriglyceridemia), increased small 

density LDL and low HDL-cholesterol (HDL-C). Error! Reference source not found. illustrates 

the adaptation of the lipid metabolism in obesity.  

Dyslipidaemia is likely the result of an interplay between excess nutrients, insulin resistance, 

and inflammation. Increased release of FFA from adipose tissue due to chronic low-grade 

inflammation, reduced clearance of FFA and de novo fatty acid synthesis in the liver due to 

insulin resistance may all contribute to the increased availability of FFA. This leads to the 

overproduction of TG-rich VLDL and subsequently hypertriglyceridemia. In addition, the 

postprandial clearance of TG from dietary fats packaged into particles called chylomicrons is 

impaired, further augmenting TG levels in circulation. Hypertriglyceridemia also stimulates the 

exchange of TG for cholesteryl esters between HDL and LDL particles causing a decrease in 

HDLC and an increase in small dense LDL particles, which have minimal amounts of TG left. 

Small dense LDL (sdLDL) are a subtype of LDL and sdLDL-cholesterol has been found to be 

a major contributor of the total LDLC associated with risk of coronary heart disease35. In 

contrast, HDLC has a protective effect on vascular function, therefore a decrease in HDLC is 

associated with greater CVD risk 36. 
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Endothelial dysfunction 

The endothelium is a thin membrane lining the inside of blood vessels. The functions of a 

healthy endothelium include providing a barrier between blood and tissues, providing an anti-

coagulant surface, and regulation of the vascular tone. 

Endothelial cells respond to changes in blood flow, circulating substances and inflammatory 

mediators to produce different molecules to dilate (nitric oxide, prostacyclin) or constrict 

(endothelin-1) the vessel.37 A major regulator of blood flow is nitric oxide (NO), a potent 

vasodilator as well as inhibitor of platelet adhesion and aggregation, which is synthesised by 

the endothelial nitric oxide synthase (eNOS). Its counterpart, the very potent vasoconstrictor 

endothelin-1 (ET-1), is also produced by endothelial cells. NO inhibits the release of ET-1 and 

the interaction of NO and ET-1 plays an important role in the regulation of vascular tone.38  

Various triggers can stimulate increased expression of eNOS and NO-release. One of them is 

shear stress generated by a high blood velocity. The endothelial cell membranes contain ion 

channels that respond to shear stress and activate the eNOS enzyme, which subsequently 

generates NO that diffuses to neighbouring smooth muscle cells. Its downstream effects are 

 

Figure 1-4. Metabolic adaptations of the lipid metabolism in obesity. 

Dyslipidaemia in obesity is characterized through increase of FFA in circulation, hepatic 
overproduction of VLDL, increased blood levels of TG and LDL-C, the formation of sdLDL, and 
decreased concentration of HDL-C (key aspects highlighted in red). TG, triglycerides; CE, 
cholesteryl ester; FFA, free fatty acid; VLDL, very low-density lipoprotein; LDL, low density 
lipoprotein; sdLDL: small dense low-density lipoprotein; HDL, high density lipoprotein; HDL-C, HDL-
cholesterol. 
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mediated by cGMP within the vascular smooth muscle cells which include smooth muscle 

relaxation and thereby blood vessel dilation.39 As long as sufficient shear stress persists, the 

endothelium will release a proportional amount of NO to ensure constant vasodilation, thereby 

preventing injury and damage from the shear forces.40 This process is called ‘endothelial-

dependent vasodilation’.  

Endothelial-dependent vasodilation can be measured by ultrasound imaging. This method of 

measuring is called flow-mediated dilation (FMD) and is the method we used in our study. 

Shear stress in the brachial artery is artificially induced by inflating a pneumatic cuff for 5 

minutes followed by a rapid deflation. In response to the sudden increase in flow, the brachial 

artery changes its diameter through vasodilation, which can be measured by ultrasound 

imaging.41 

A dysfunctional endothelium is one of the first landmarks in atherogenesis and by itself often 

regarded as a predictor of cardiovascular disease.42 Damage to the endothelium is 

characterised by a dysregulation of vascular homeostasis and a reduced bioavailability of NO. 

The resulting imbalance between NO and ET-1 favours vasoconstriction and thus contributes 

to hypertension through impaired endothelium-dependent vasodilation and increased 

vasoconstriction. In addition, endothelial dysfunction is associated with increased synthesis of 

pro-inflammatory cytokines and adhesion molecules, increased oxidative stress, and 

increased platelet aggregation.43  

Figure 1-5. Endothelial-dependent vasodilation. 

(A) Shear stress is a frictional force generated by high blood velocity. It stimulates ion channels in the 

endothelial cells. eNOS is activated and generates NO that diffuses into the smooth muscle cells and 

causes relaxation, resulting in vasodilatation. τshear = shear stress.294 

(B) Functional endothelial cells trigger vasodilatation to reduce potentially damaging forces generated 

by high blood flow velocities. The vasodilation can be measured by the ‘flow-mediated dilation’. 

Illustration is based on the description from Korkmaz (2009).41 
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In the context of the metabolic syndrome, contributors to endothelial dysfunction include insulin 

resistance and oxidative stress. In a healthy endothelium, insulin stimulates both ET-1 and NO 

production. However, in an insulin resistant state and compensatory hyperinsulinemia, 

stimulation of NO release is impaired, while the production of ET-1 is not.38 Increased oxidative 

stress can reduce NO bioavailability. NO is a highly reactive radical which rapidly reacts with 

ROS to form peroxynitrite, thereby reducing the NO-concentration before it reaches the smooth 

muscle cells to induce vasodilation. Under normal physiological conditions, ROS are balanced 

by a system of antioxidants,44 but in an inflammatory state this balance is disrupted, leading to 

increased oxidative stress. Chronic inflammation45, hyperglycemia40 and dyslipidemia46 can all 

enhance oxidative stress.  

1.2 The case for fruits 

Globally, in 2019, a diet low in fruits was the fifth highest behavioural risk factor for CVD and 

T2DM, surpassed by smoking, and diets high in sodium, low in whole grains, and low in 

legumes.5 The total deaths among CVD and T2DM attributable to a diet low in fruits amounted 

to 1.6% or 0.92 million. The role of fruits in disease prevention is highlighted by a prospective 

epidemiological study involving three large US cohorts, the Nurses’ Health Study (NHS), the 

Health Professional Follow-Up Study (HPFS), and the Nurses’ Health Study II (NHSII).  

In this study by Muraki et al47, a total of 187,382 men and women of white ethnicity and in 

health professions were involved. Fruit consumption was recorded every four years between 

1984 and 2008. The chosen methodology was a self-administered, 118-item, semi-quantitative 

food frequency questionnaire (FFQ), which consistently asked how often a standard portion 

size of ten individual fruits (see Figure 1-6) and fruit juices (including apple, orange, grapefruit, 

and other juices) was consumed. FFQs are tools used to estimate habitual dietary intake of a 

defined number of food items over a period of time. In comparison to 24h dietary recalls or 

food records, which aim to capture the exact dietary intake on a certain number of days, they 

are relatively simple and inexpensive to evaluate. However, FFQs are subject to a systematic 

measurement error — participants may under-report true food intake or change in diet during 

the period of the survey, which may lead to over- or underestimation of true intake.48 Therefore, 

testing the validity and reproducibility is required to ensure accurate intake data. The validity 

is the ability to record true intake and can be tested by comparing the results with intake data 

derived from a reference and presumably less-biased method, such as 24h dietary recalls. The 

reproducibility is the ability to produce the same result when the FFQ is repeated. The FFQ 

used in the three cohorts was tested for validity and reproducibility for each cohort49–51 and 

correlation coefficients specific for individual food items was applied to reduce bias in the intake 

estimates.  
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Another source of systematic error is confounding. Confounding is caused by a factor (i.e., a 

confounder) that is associated with the exposure being investigated (in this case fruit intake) 

and that is also a risk factor for the health outcome (in this case T2DM) and could thereby 

distort the relationship of interest between the exposure and the outcome.52 To reduce the 

effect of confounders, they are commonly adjusted for by using various techniques, such as 

stratification for confounding variables or including confounders in multivariate analysis. In the 

study by Muraki et al, a number of confounders were accounted for. The authors stratified their 

model by age and calendar year, and adjusted for BMI, ethnicity, physical activity, smoking, 

multivitamin use, family history of diabetes, menopausal status, oral contraceptive use, total 

energy intake, fruit juice consumption, and the modified alternate healthy eating index score. 

Although a range of confounders were considered, there is still a potential of residual or 

unmeasured confounding. For example, a possible confounder that was not adjusted for is 

socioeconomic status (SES). It is plausible that SES may influence diabetes and fruit intake 

through access to health-care services, information, or healthy food. A meta-analysis 

investigating the association between T2DM incidence and SES found that low levels of 

educational level, occupation, and income were associated with an increased risk of T2DM by 

30 – 40%.53 In the study by Muraki et al, the statistical model was not adjusted for SES likely 

because the study population itself consisted entirely of health professionals of similar SES, 

mitigating SES as a confounding factor. 

To measure the effect of specific fruit on health, the authors determined the hazard ratio of 

T2DM (the health event) for consuming different fruits (the exposure). A hazard ratio (HR) is a 

time-to-event analysis and is expressed as a ratio of probabilities between two groups for an 

individual to have an event at any given time of follow-up. If the HR = 1, the event rate in both 

groups is the same, i.e. fruit intake did not have an impact on the development of T2DM. If the 

HR > 1, this means that at any given time it is more likely for people in the exposed group to 

experience an event in comparison to the reference group and vice versa if HR < 1, i.e. fruit 

intake increases or decreases the probability of T2DM. To calculate the hazard ratio, the 

authors assessed each participant’s person years from the date of the baseline FFQ to the 

date of one of the following occurrences: T2DM diagnosis, death, date of the last return of a 

valid questionnaire, or end of study. Participants were divided by the amount of fruit intake into 

five groups ranging from <1 serving/month to >5 servings/week in increments of 3 servings.  

Finally, they pooled the results from all three cohorts. 

During the examined time period, 6.5% participants developed diabetes (12,198 of 187,382). 

The study found that greater intakes of specific fruits, including blueberries, grapes, and prunes 

were associated with lower chance of developing type II diabetes than some other fruits 

(cantaloupe, strawberries or oranges) and fruit juice (see Figure 1-6). Specifically, this meant 

that with every three servings of fruit per week, the probability to be diagnosed with T2DM at 
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any given time during the period of follow-up was reduced. The strongest significant 

association was reported for blueberries, with a HR (95% confidence interval (CI)) of 0.74 (0.66 

– 0.83), i.e. the probability of T2DM was reduced by 26%. In contrast, those who consumed 

three servings of cantaloupe or fruit juice per week increased their risk to develop T2DM by 

10% and 8%, respectively. Interestingly, total fruit intake only had a small impact on T2DM 

(HR 0.98 (0.96 – 0.99)).  

 

In total, the evidence suggested that certain fruits were more beneficial in lowering the risk 

T2DM than other types of fruit. Due to the largely white and educated American study 

population, these results may not be generalisable to all adults. However, it is probable that 

the biological mechanisms underpinning these results remain the same across different 

populations. 

A further prospective study involving the same three study cohorts (133,468 US men and 

women, followed up for 24 years) by Bertoia et al investigated the change in fruit and vegetable 

intake and weight change.54 The study population and dietary assessment every four years 

Figure 1-6. Intake of three servings/week of most fruits associated with lower risk of 
developing T2DM. 

Pooled multivariate adjusted hazard ratio of T2DM for every three servings/week of total whole fruit, 
individual fruits, or fruit juice. Error bars represent 95% confidence intervals (CI). The estimates were 
pooled from three cohorts totalling 187,382 participants and adjusted for age, ethnicity, body mass 
index, smoking status, multivitamin use, physical activity, family history of diabetes, menopausal 
status or postmenopausal hormone use, oral contraceptive use, total energy intake, fruit juice 
consumption, alternate healthy eating index score. Individual fruit consumption was mutually adjusted. 
Figure created from data presented in Tables 3 and 4 in Muraki et al.47 
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were as described above, while adjustments for covariates also included additional lifestyle 

and dietary factors, such as hours of sleep, hours spent watching the TV, change of intake in 

fried foods, whole grain, nuts, sweets, processed meats and other food groups. Results pooled 

across all three cohorts showed that increased intake of fruits and non-starchy vegetables 

(cruciferous and green leafy vegetables) was inversely associated with weight gain over time 

and provided more evidence that the strength of the association depended on the type of fruit 

or vegetable. Total fruit consumption was associated with a weight change of -0.24 kg per daily 

serving over four years. Among fruits, particularly blueberries were most strongly inversely 

associated with weight change with -0.63 kg per daily serving over a four-year interval, followed 

by apples and pears with -0.56 kg per daily serving. In comparison, a daily serving of peaches, 

plums and apricots had no impact on weight change, and total vegetables, cruciferous 

vegetables and green leafy vegetables were inversely associated with weight change with -

0.11 kg, -031 kg, and -0.24 kg per daily serving over a four-year interval (Figure 1-7).  

One explanation for the heterogeneity in the effectives of different types of fruit could be that 

the health benefits may be mediated by their nutritional or chemical components. Fruits and 

vegetables are good sources of antioxidants, vitamins, and minerals, including folate, vitamin 

C, and potassium, which may explain their protective effects. In addition, fruits and vegetables 

contain dietary fibre, which promotes gut health and helps regulate metabolic processes like 

blood sugar levels, satiety, and inflammation. High fibre intake has been linked to increased 

insulin-sensitivity and lower diet-induced obesity.55 Fibre are carbohydrates from plants which 

are indigestible for humans, and can traditionally be classified by their solubility.56 Insoluble 

fibre, such as cellulose, does not dissolve in water and helps food move through the digestive 

system and prevent constipation. Soluble fibre dissolves in water and incudes pectins and beta 

glucans which can be fermented by the gut microbiota to a variety of metabolites, such as short 

chain fatty acids (SCFA). The health benefits of fibre intake appear to be mediated by microbial 

fermentation products like SCFA and the protective effects exerted on the gut barrier. The 

recommended daily intake for adults in the UK is around 30 g per day. Generally, all plant 

foods contain soluble and insoluble fibre, but not all food sources contain all types of fibre. 

Soluble fibre such as pectins are mainly found in fruit, while beta glucans can be found in oats 

and cereals. Good sources of insoluble fibre are beans, wholegrains, fruits and vegetables. 

One cup of boiled black beans can provide about 15 g of fibre (around half of the recommended 

daily amount), while one apple or a pear can already provide around 5 g of fibre. Among fruits, 

raspberries are particularly high in fibre with 8 g per cup.57 

Notably, the study examining the association of fruit and vegetable consumption with weight 

change, reported that adjustment for fibre intake did not attenuate the impact of fruit and 

vegetable intake on weight change, meaning the effect of greater fruit intake went beyond the 

impact of fibre on weight loss. Similarly, adjusting for total energy intake did not greatly change 
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the relationship. Because the dietary assessment did not allow for accurate measurements of 

total energy intake, this finding should be considered cautiously. However, taken together 

these results could give an indication that a mechanism other than fibre intake and reduction 

in calories are responsible for the association.  

In addition to vitamins, minerals, and fibre, fruits and vegetables also contain phytochemicals. 

These are polyphenolic chemical compounds found almost ubiquitously in plants58 which may 

have additional health-promoting benefits. In the last few decades, evidence has emerged that 

polyphenols in plants may be key contributing factors to the protective effects of a fruit-rich 

diet. A follow-up study using the same three cohorts by the same authors highlighted that the 

inverse association between fruit and vegetable intake and weight loss may be due to 

increased intake of flavonoids, a class of polyphenols.59 Flavonoid intake was assessed by 

linking the FFQ data with a nutrient composition database with data on flavonoid content for 

foods. After multivariate adjustment, two flavonoid subclasses which are found in blueberries 

were negatively associated with weight change over each four-year interval: anthocyanins (-

0.1 kg per additional standard deviation (SD, 10 mg)/day) and proanthocyanins (-0.24 kg per 

Figure 1-7. Increased fruit and vegetable intake associated with less weight gain over a 4-year 
interval 

Figure shows weight change per 4-year interval associated with each increased daily serving of fruit 
or vegetable. Among fruits, particularly blueberries, apples, and pears were inversely associated with 
weight change. Error bars represent 95% CI. The estimates were pooled from three cohorts totalling 
133 468 participants and adjusted for baseline age, baseline BMI, lifestyle variables including 
smoking, physical activity, sleep, television watching, and foods considered to affect weight, such as 
fried foods and whole grains.  
Figure is adapted from Figures 1, 2, and 3 in Bertoia et al54, copyright 2015 Bertoia et al used under 
the Creative Commons CC BY license (https://creativecommons.org/licenses/by/4.0/) 
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additional SD (72 mg)/day). Although the magnitude of association per SD may be small, a 

single serving of fruit or vegetables often offers more than one SD, e.g. a serving of blueberries 

equals 120 mg of anthocyanins or 12 standard deviations. Importantly, similarly to the second 

study mentioned above, a significant inverse association between anthocyanins and weight 

change remained after adjustment for fibre content. This suggests that food sources high in 

these flavonoids may prevent weight gain through mechanisms alternative to fibre. 

Collectively, these three studies indicate that fruits may not be equally beneficial for health and 

that polyphenols in fruits may be key contributors to the underlying mechanisms. As Figure 1-6 

and Figure 1-7 show, this is particularly true for blueberries.  

1.3 Overview of dietary polyphenols 

Polyphenols 

Polyphenols are a large group of phytochemicals with many subclasses, of which some are 

toxic, and others show significant health benefits. In most cases, plant tissue contains a 

complex mixtures of polyphenols found within the call walls and inside the plant cell vacuoles, 

usually displaying a higher concentrations towards in the skin and seeds of the plant.60 In 

nature, polyphenols perform a very large variety of important functions which include 

antioxidant properties, defence against pathogens, protection from UV radiation, structural 

support, or determining features such as colour, flavour and odour.61  

Plant polyphenols can occur as simple monomers or highly polymerized. Predominantly they 

are also conjugated with one or more sugar residues in the form of monosaccharides, 

disaccharides or oligosaccharides62 up to a size larger than 30 kDa63. Therefore, their 

molecular weight, water-solubility and their digestibility and intestinal absorption can differ to 

quite some extent.  

Chemically, polyphenols are compounds with at least one aromatic ring which contain one or 

more hydroxyl groups bonded directly to an aromatic hydrocarbon. They are a large and 

diverse group, which can be divided up into four different classes: flavonoids, phenolic acids, 

stilbenes, and lignans (Figure 1-8).64 
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Flavonoids 

The chemical backbone of flavonoids consists of two rings of phenolic nature A and B and a 

heterocyclic ring C forming a three-carbon bridge between rings A and B. The 15-carbon 

structure is often abbreviated as C6-C3-C6. The position of the B ring in relation to ring C and 

the addition of functional groups define multiple subclasses of flavonoids (see Figure 1-9). 

There are six main subclasses present in the habitual diet: flavan-3-ols (also called catechins) 

and their oligo- and polymers (proanthocyanidins), anthocyanins, flavonols, flavones, 

isoflavones, and flavanones. In plants, they most commonly occur as glycosides (with the 

addition of one or more sugar molecules), though flavan-3ols are an exception and are most 

often found as aglycones. Next to the addition of a sugar moiety, they can also be modified 

through acylation and methylation after synthesis. The structural differences alter their 

biological function in plants65 and bioavailability and bioactivity in humans.66,67 The main dietary 

sources of the main flavonoid subclasses are shown in Table 1-1. 

Figure 1-8. The four main polyphenol classes and exemplary molecules thereof 

Polyphenols are a large family of compounds which contain at least one aromatic ring with one 
or more hydroxyl groups. They can be subdivided into the four main classes depicted in the 
figure: flavonoids, phenolic acids, stilbenes, and lignans. 
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Table 1-1. Examples of frequently consumed dietary sources of flavonoids in the UK diet. 

 

Flavonoid subclass Examples of dietary sources 

Flavonols Onion, green and black tea, leafy vegetables 

Flavones Celery, tea leaves and herbs (such as chamomile, parsley, mint) 

Flavan-3-ols Green and black tea, chocolate, red wine, apple, pear 

Anthocyanidins 
Red/blue/purple fruits (such as blueberries, blackberries, cherries, grapes) and 
vegetables (such as aubergine, red onion) 

Flavanones Orange, grapefruit and other citrus fruits and juices 

Isoflavones Soy products 

Figure 1-9. The chemical structures of the flavonoid backbone and six main 
flavonoid subclasses. 

Flavonoids are plant secondary metabolites widespread throughout the plant kingdom 
and can be found in many commonly consumed fruits, vegetables, and beverages. 
The backbone consists of two rings of phenolic nature A and B and a heterocyclic 
ring C forming a three-carbon bridge between rings A and B. The subclasses shown 
in the figure are the six main subclasses present in the habitual diet.  
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In population-based studies, the habitual intake of anthocyanins has been shown to be among 

the most effective of the six subclasses in reducing the risk of cardiovascular diseases.  

One prospective study investigated the incidence of myocardial infarction (MI) in 93,600 

American women aged 25 to 45 years from the NHSII over 18 years of follow-up.68 The authors 

found that the risk for MI was reduced by 32% (HR 0.68, 95% CI [0.49–0.96]) in the quintile of 

highest anthocyanin intake (25 mg/d) compared to the quintile with lowest intake (2.5 mg/d) 

after multivariate adjustment. A significant reduction in risk was only observed for 

anthocyanins, but not any other flavonoid subclass. 

A similar study was performed in American men by the same authors. 43,800 men aged 32 to 

81 years from the HPFS were observed over 24 years.69 During this time, 4,046 cases of MI 

and 1572 cases of stroke were recorded. The authors only investigated the impact of 

anthocyanins and one other subclass, flavanones, on MI and stroke due to previous 

information regarding the associations between anthocyanins and MI risk, and flavanones and 

stroke risk in women. In agreement with the previous study, the results showed that 

anthocyanins reduced the risk for non-fatal MI by 13% (HR 0.87, 95% CI [0.75, 1.00]). They 

further showed that flavanones reduced risk for ischemic stroke by 22% (HR 0.78, 95% CI 

[0.62, 0.97]), but anthocyanins had no effect on stroke risk. The authors postulated that this 

difference in impact on CVD risk might be due to the fact that flavanones are better absorbed 

and may cross the blood-brain barrier to a greater extent. 

A further prospective study found that anthocyanins reduced the risk of developing 

hypertension, as diagnosed by a doctor.68 In total, 156,957 American participants from the 

NHS, NHSII, and the HPFS were followed up for 14 years. Anthocyanins were shown to reduce 

risk of developing hypertension by 8% (HR 0.92, 95% CI [0.86, 0.98]) in adults in the highest 

quintile of anthocyanin consumption in comparison to adults in the lowest quintile of 

anthocyanin consumption. The authors did not observe significant impact of total flavonoid or 

the other flavonoids subclasses on incidence hypertension, supporting the suggestion that 

anthocyanins are one of the most effective flavonoid subclasses in protecting the 

cardiovascular system.  

A cross-sectional study provided further support for an inverse association of anthocyanins 

with blood pressure.70 Measurements of arterial stiffness, as well as central and peripheral 

blood pressure were collected from 1898 women from the TwinsUK cohort. A comparison 

between participants with the highest and lowest intakes of flavonoids revealed that of total 

flavonoids and all flavonoid subclasses, only anthocyanins were associated with lower blood 

pressure (mean ± SE: central blood pressure -3.4 ± 1.41 mmHg; mean arterial pressure -2.31 

± 1.16 mmHg). Furthermore, anthocyanins and flavones were associated with lower arterial 
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stiffness, a marker of structural and cellular changes of the vessel wall (mean ± SE: 0.4 ±0.22 

m/s and 0.4 ±0.25 m/s, respectively). 

All four of the studies mentioned above have some limitations, mainly due to residual or 

unmeasured confounding and the dietary assessment. Dietary intake was assessed via FFQs 

and flavonoid intake estimated using the USDA flavonoid database.71,72 This method will by its 

nature include measurement errors through over- or underestimation of food servings, by not 

capturing all sources of flavonoids, and by not capturing seasonal differences of flavonoid 

content in foods due to varying growing conditions or food processing steps. The cross-

sectional study design does not allow for any inferences on causality. In addition, the results 

may not be generalisable to study population which are not predominantly white with European 

ancestry. However, it is likely that underlying biological mechanisms remain the same across 

population. Taken together these studies suggest that anthocyanins may exhibit a stronger 

protective role in comparison to other flavonoid subclasses and that further research is 

warranted. 

In the US American cohorts, the main source of anthocyanins was from blueberries and 

strawberries, while in the UK cohort, the main contributors were grapes, pears, wine, and 

berries. This thesis will focus on anthocyanins, particularly those derived from blueberries, and 

investigate differences in how people metabolise these compounds after eating blueberries 

and whether these differences affect any cardiovascular risk markers.  

Anthocyanins 

Anthocyanins are the glycosides of anthocyanidins, i.e. they are made up of an aglycone 

(anthocyanidin), a sugar moiety, and often acyl groups which can impact the colour and 

function in plants.73 Over 700 anthocyanins have been identified to date, of which 90% are 

based on the six common anthocyanidins cyanidin, delphinidin, pelargonidin, malvidin, 

peonidin, and petunidin (Table 1-2). Anthocyanidins are all derived from 2-

phenylbenzopyrilium (flavylium cation) and differ in the hydroxyl and methoxy groups at the B-

ring. While most species contain anthocyanins based on only one anthocyanidin, in some 

species, including blueberries, they are based on two or more. The most widely distributed 

anthocyanidin is cyanidin.  
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Table 1-2. Substitution pattern of the six most common anthocyanidins (adapted from 74,75) 

Anthocyanidins are generally found as glycosides in plants. Anthocyanins contain one or two 

units of sugar molecules which make anthocyanins more stable and water-soluble than 

anthocyanidins. Glucose is the most frequently found sugar in anthocyanins, further sugars 

contained in anthocyanins are galactose, rhamnose, arabinose, xylose and glucuronic acid.76  

The sugar molecule is normally bound via O-linkage to the 3-hydroxyl group and a sugar 

molecule located at the 3-position is present in almost all anthocyanins. Other possible 

positions for sugar attachments are 5, 7, 3’, 4’, and 5’. The anthocyanins found in varying 

degrees in blueberries depending on the variety are delphinidin, malvidin, petunidin, peonidin, 

and cyanidin as 3-glucosides, 3-galactosides, and 3-arabinosides.76 The most common 

anthocyanin in edible plants is cyanidin-3-glucoside.75 Furthermore, acylation to the sugar 

group often occurs with molecules such as organic acids (e.g. benzoic acid, hydroxycinnamic 

acids) and other flavonoids. This lends further stability to the anthocyanin. 

General structural characteristics of anthocyanins can be described by an electron deficiency, 

which makes them extremely reactive towards free radicals like ROS and reactive nitrogen 

species (RNS), thus resulting in unique metabolic patterns and biological activities.77 

Anthocyanins may act as antioxidants and reduce oxidative stress by scavenging ROS and 

RNS, by chelating metal ions which can catalyse the formation of ROS, by stimulating the 

expression of detoxifying antioxidant enzymes such as the superoxide dismutase and 

glutathione-S-transferases, and by inhibiting pro-oxidant enzymes which produce ROS and 

RNS, such as the inducible nitric oxide synthase (produces NO) and NADPH oxidase 

 

 3 5 6 7 3’ 4’ 5’ Colour 
Distribution 
in edible 
plant parts 

Pelargonidin 

OH OH H OH 

H OH H Orange 12% 

Cyanidin OH OH H Orange-Red 50% 

Delphinidin OH OH OH Red 12% 

Peonidin OMe OH H Orange-Red 12% 

Petunidin OMe OH OH Red 7% 

Malvidin OMe OH OMe Red-Blue 7% 
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(produces the superoxide radical). This effective antioxidant property can prevent the oxidation 

of other molecules such as polyunsaturated lipids, proteins, and DNA. The degree of their 

antioxidant efficacy differs between different anthocyanins. It depends on the structure and 

extent of methoxylation and hydroxylation of the B-ring. Thus, delphinidin with three hydroxyl 

groups at the B-ring is the strongest antioxidant of the common anthocyanidins for scavenging 

the superoxide anion, followed by cyanidin and pelargonidin.  

Multiple in vitro assays exist to measure antioxidant capacity by assessing either the amount 

of lipid peroxidation or the ability to scavenge free radicals. Using different in vitro methods, 3-

glucosides of delphinidin, petunidin, and malvidin were shown to be powerful antioxidants, with 

a 2-times higher iron reducing capacity than the reference vitamin C and 3- to 6-times greater 

capacity to scavenge free radicals than a vitamin E analog (Trolox).78 The antioxidant efficacy 

may also be enhanced or inhibited by the presence of other phytochemicals or vitamins. For 

example, in an in vitro setting, the flavanol catechin and anthocyanin malvidin-3-glucoside 

were observed to synergistically inhibit the peroxidation of linoleic acid, meaning their 

combined effect was stronger than the sum of their individual effects and indicating that 

catechin regenerated malvidin-3-glucoside.79 Interestingly, the authors found that only 

malvidin-3-glucoside and to a lesser extent peonidin-3-glucoside were recycled by catechin, 

but did not observe this for the glucosides of delphinidin, cyanidin, and petunidin.  

Cell models revealed that anthocyanins also demonstrate intracellular antioxidant activity. A 

cell study using human vascular endothelial cells observed that cyanidin-3-glucoside was 

transported across the cell membrane via the transporter bilitranslocase and demonstrated 

intracellular antioxidant activity even at very low, physiologically relevant concentrations 

(concentration at half maximal effect = 0.9 nM).80   

In humans, antioxidant activity of anthocyanins and other flavonoids has been shown by 

assessing the antioxidant capacity of plasma or serum following the consumption of 

polyphenol-rich foods. As fruits also contain compounds other than polyphenols which exert 

antioxidant effects, a study tested whether blueberry increased serum antioxidant capacity in 

comparison to a control containing the same amount of fructose and ascorbic acid found in the 

equivalent amount of blueberries, each of which may contribute to the antioxidant properties 

of blueberries.81 The authors reported that an easily achievable dose of 75 g blueberries 

significantly increased the serum antioxidant capacity over two-fold in comparison to the 

control in the first two hours postprandially, suggesting that blueberries were effective in 

providing acute protection from oxidation and that this was likely due to the phenolic 

component in blueberries. In a different study, Mazza et al investigated the postprandial serum 

antioxidant capacity in human subjects following the consumption of blueberry powder. 

Although the authors estimated that only a very small fraction of ingested anthocyanins were 
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absorbed (0.002 to 0.003%), they observed that the time-dependent appearance of 

anthocyanins in serum was correlated with the increase in the antioxidant capacity of the serum 

in comparison to a control supplement without blueberries.  

As already implied by the study by Mazza et al, anthocyanins are absorbed very poorly as 

intact molecules (see details on absorption and metabolization in Section 1.5).  Due to the 

rapid metabolization upon ingestion, anthocyanins likely only contribute to the circulation of 

antioxidant compounds for a short amount of time postprandially. Instead, degradation 

products and metabolites may play an important role in sustaining the antioxidant activity of 

anthocyanins. Anthocyanin metabolites such as hydroxybenzoic acids and hydroxycinnamic 

acids, which reach much higher concentrations in plasma, also exhibit antioxidant properties 

against different types of free radicals and could prevent or decrease overproduction of 

reactive species.82,83 

The beneficial effect of anthocyanin intake on health has been studied intensively in 

epidemiological, clinical, and mechanistic studies for their impact on the cardiovascular 

system. Details are listed in Table 1-3. 

• Intermediate markers of cardiovascular risk84–91: which include lowering blood 

pressure, improving endothelial function, reducing arterial stiffness, inhibiting vascular 

68–70,92–94 and general95,96 inflammation, improving dyslipidaemia86,97, positively 

impacting bodyweight regulation and body composition54,59,98.  

• Disease incidence: decrease the risk of heart attack, stroke68–70,92–94 and type II 

diabetes.99,100 

Additional beneficial findings include associations with a reduction of colon cancer101,102 and 

neurodegenerative diseases as well as improving cognitive function,103–105 even with as little 

as a single dose of fresh blueberries.106 Anthocyanins are also effective antioxidants and can 

therefore prevent the oxidation of other molecules such as polyunsaturated fatty acids, 

proteins, and DNA.107 

Therefore, it is not surprising that the scientific interest and number of publications regarding 

the association of anthocyanins and health has risen drastically over the past two decades 

(Figure 1-10). 
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Figure 1-10. Flavonoid and polyphenol publications since 1988 

The number of annual publications relating to flavonoids or anthocyanins and health since 1998. Data 
from PubMed295 for the search query “(flavonoids or anthocyanins) and health”. 
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Table 1-3. Summary table of studies demonstrating health benefits of anthocyanins. 

Study aim Study type Study population 
Country 
(cohort) 

Study product Outcome assessment Effect estimate Conclusion Ref 

Effects of habitual intake 
of dietary flavonoids on 
blood pressure and risk of 
hypertension in 
population-based studies 

population-based 
prospective, 14 
years follow-up 

156,957 health 
professionals 

US (NHS; 
NHSII; 
HPFS) 

FFQ; USDA Incident hypertension 
HR [95% CI]: 0.92 [0.86, 0.98]  
(highest vs lowest quintile after 
multivariate adjustment) 

Anthocyanins compounds may 
contribute to the prevention of 
hypertension and have vasodilatory 
properties 

108 

Examine the relation 
between habitual 
anthocyanin intake and 
coronary artery disease 
and stroke. 

population-based  
prospective, 24 
years follow-up 

43,880 men US (HPFS) FFQ; USDA 
nonfatal myocardial 

infarction (men) 
HR: 0.87 [0.75, 1.00] 

Higher intakes of fruit-based 
anthocyanins were associated with a 
13% lower risk of nonfatal MI in 
men. 

69 

Examine the relationship 
between habitual 
anthocyanin intake and 
risk of myocardial 
infarction in young and 
middle-aged women. 

population-based  
prospective, 18 
years follow-up 

93,600 young and 
middle-aged women 

US (NHS 
II) 

FFQ; USDA 
myocardial infarction 

(women) 
HR: 0.68; [0.49-0.96] 

A high intake of anthocyanins may 
reduce myocardial infarction risk by 
32% in predominantly young 
women. 

68 

Examine the association 
between change in intake 
of specific fruits and 
vegetables and change in 
weight.  

population-based  
prospective, 24 
years follow-up 

133,468 Health 
Professionals 

US NHS; 
NHSII; 
HPFS 

FFQ; USDA 
Intake of fruits was inversely 

associated with 4-year 
weight change 

For each increased daily serving: 
Blueberries: ↓ 1.38 lbs 
Apples/pears: ↓ 1.24 lbs  
Berries: ↓ 1.11 lbs  
Bananas: ↓ 0.22 lbs  
Peaches, plums, apricots: ↑ 0.01 
lbs 

Increased consumption of fruits was 
inversely associated with weight 
change, with important differences 
by type suggesting that other 
characteristics of these foods 
influence the magnitude of their 
association with weight change. 

54 

Examine whether dietary 
intake of specific 
flavonoid subclasses is 
associated with weight 
change over time. 

population-based  
prospective, 24 
years follow-up 

124,086 men 
(Health 
Professionals) 

US (NHS; 
NHSII; 
HPFS) 

FFQ; USDA 
Weight change per four-

year interval 
↓ −0.23 lbs per additional 10 mg 
of anthocyanins per day 

Higher intake of foods rich in 
anthocyanins may contribute to 
weight maintenance in adulthood 

59 

Examine the associations 
between flavonoid intakes 
and fat mass 

population-based  
cross-sectional 

2,734 women 
UK 
(TwinsUK) 

FFQ; USDA 
Limb-to-trunk fat mass ratio 

(FMR) 

difference between extreme 
quintiles of anthocyanin intake: 
↓ 0.03 ± 0.02 

Higher habitual intake of 
anthocyanin is associated with lower 
fat mass 

98 

 

 



36 
 

Table 1-3. Continued 

Study aim Study type Study population 
Country 
(cohort) 

Study product Outcome assessment Effect estimate Conclusion Ref 

Examine associations 
between habitual 
flavonoid intakes and 
direct measures of 
arterial stiffness, central 
blood pressure, and 
atherosclerosis 

population-based  
cross-sectional 

1898 women 
UK 
(TwinsUK) 

FFQ; USDA 

 
 

central SBP 
MAP 
PWV 
DBP 

highest vs lowest quintile of 
intake: 
↓ 3.04 mmHg 
↓ 2.31 mmHg 
↓ 0.4 m/s  
↓ 1.86 mmHg 

Higher intake of anthocyanins is 
inversely associated with lower 
arterial stiffness and central blood 
pressure 

70 

Examine associations 
between habitual intake 
of flavonoid subclasses, 
insulin resistance, and 
related inflammatory 
biomarkers. 

population-based  
cross-sectional 

1997 women 
UK 
(TwinsUK) 

FFQ; USDA 

 
 

HOMA-IR  
insulin concentration 
hsCRP concentration 

highest versus lowest quintile 
of intake of anthocyanins: 
 ↓ 0.1  
 ↓ 0.7 μU/mL 
 ↓ 0.3 mg/L 

Higher intake of anthocyanins is 
associated with significantly lower 
insulin resistance 

99 

Effects of cranberry juice 
on vascular function in 
subjects with coronary 
artery disease 

chronic RCT 
cross-over 
placebo-
controlled  

44 men and women 
with coronary artery 
disease 

US 

Cranberry juice, daily 
intake of 480 mL 
providing 94 mg 
anthocyanins 

cfPWV ↓ 0.5 m/s 

Chronic cranberry juice 
consumption reduced carotid 
femoral pulse wave velocity—a 
clinically relevant measure of 
arterial stiffness. 

84 

Effects of daily blueberry 
consumption for 8 
weeks on blood pressure 
and arterial stiffness in 
postmenopausal women 
with pre- and stage 1-
hypertension. 

chronic RCT 
parallel 
placebo-
controlled  

Treatment: 25 
Placebo: 23 
postmenopausal 
women with pre- and 
stage 1-hypertension 

US 

22 g freeze-dried 
blueberry powder/d 
providing 470 mg 
anthocyanins 

SBP 
DBP 

baPWV 
NO level  

↓ 7 mmHg  
↓ 5 mmHg 
↓ 97 cm/s 
↑6.24 μmol/L 

Daily blueberry consumption may 
reduce blood pressure and arterial 
stiffness (compared to baseline 
levels), which may be due, in part, 
to increased nitric oxide 
production. 

85 

Effects of purified 
anthocyanins on 
dyslipidaemia, oxidative 
status, and insulin 
sensitivity in patients 
with type 2 diabetes. 

chronic RCT 
parallel 
placebo-
controlled 

Treatment: 29 
Placebo: 29 
men and women 
with type 2 diabetes 

China 

purified anthocyanins 
from bilberry and black 
currant; 160 mg twice 
daily 

LDLC 
TG 

Apo B-48 
Apo C-III 

HDLC 
Fasting glucose 

Adiponectin 
β-hydroxybutyrate 

↓ 7.9% 
↓ 23.0% 
↓ 16.5% 
↓ 11.0% 
↑ 19.4% 
↓ 8.5% 
↑ 23.4% 
↑ 42.4% 

Beneficial metabolic effects in 
subjects with type 2 diabetes 
(compared to placebo group) by 
improving dyslipidaemia, 
enhancing antioxidant capacity, 
and preventing insulin resistance.  

86 
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Table 1-3. Continued 

Study aim Study type Study population 
Country 
(cohort) 

Study product Outcome assessment Effect estimate Conclusion Ref 

Effect of daily dietary 
supplementation with 
bioactives from 
blueberries on whole-
body insulin sensitivity 

chronic RCT 
parallel 
placebo-
controlled 
6 weeks  

Treatment: 15 
Placebo: 17 
men and women, 
obese, nondiabetic, 
and insulin-resistant 

US 

smoothie containing 
22.5 g blueberry 
bioactives twice daily; 
668 mg anthocyanins in 
total 

Mean change in insulin 
sensitivity  

↑ 1.3 mg/kg FFM/min 
Favourable change in insulin 
sensitivity 

87 

Effects of pomegranate 
juice supplementation 
on pulse wave velocity 
and blood pressure 

chronic RCT 
parallel 
placebo-
controlled 
4 weeks  

Treatment: 24 
Placebo: 24 
healthy young and 
middle-aged men 
and women 

UK 
330 ml/day of 
pomegranate juice 

SBP 
DBP  

MAP  

↓ 3.14 mmHg 
↓ 2.33 mmHg 
↓ 2.60 mmHg 

Pomegranate juice 
supplementation has benefits for 
blood pressure in the short term 

88 

Effects of berry 
consumption on 
haemostatic function, 
serum lipids, and blood 
pressure 

chronic RCT 
parallel 
placebo-
controlled 
8 weeks 

Treatment: 35 
Placebo: 36 
middle-aged men 
and women with 
cardiovascular risk 
factors 

Finland 

2 portions of berries 
daily: berry products 
alternated between 
black currants, 
lingonberries, bilberries, 
chokeberries, 
strawberries and 
raspberries. Mean daily 
anthocyanin intake: 515 
mg 

 
HDLC 

 
  

CADP-CT (platelet 
function)  

↑ 5.2% compared to 0.6% 
placebo 
 
↑ CT prolonged by 11.0% 
compared to -1.4% (placebo) 

Favourable changes in platelet 
function, HDL cholesterol, and 
blood pressure after berries 
consumption. 

89 

To investigate whether 
dietary anthocyanins 
exert direct effects on 
endothelium-dependent 
vasodilation 

acute RCT 
crossover 
placebo-
controlled 

12 
hypercholesterolemic 
men and women 

China 

purified anthocyanin 
from bilberry and black 
currant; 320 mg 
anthocyanins daily 

Flow-mediated dilation 
↑ from 8.3% at baseline to 
11.0% at 1 h and 10.1% at 2 h 

Purified anthocyanins improve 
endothelial function. Maximal 
plasma concentration of 
anthocyanins 1 h after 
supplementation was associated 
with maximum FMD. 

90 

Long term effects of 
anthocyanin 
supplementation on 
endothelial function in 
hypercholesterolemic 
individuals 

chronic RCT 
parallel 
placebo-
controlled  
12 weeks 

Treatment: 75 
placebo: 75 
hypercholesterolemic 
men and women 

China 

purified anthocyanin 
from bilberry and black 
currant; 320 mg 
anthocyanins daily 

 
Flow-mediated dilation 

 
plasma cGMP 

  

↑ 28.4% vs 2.2% (placebo) 
 
↑ 12.6% vs -1.2% (placebo) 

Anthocyanin supplementation 
improves endothelium-dependent 
vasodilation in 
hypercholesterolemic individuals. 
Suggests activation of the NO-
cGMP signalling pathway. 

90 
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Table 1-3. Continued 

Study aim Study type Study population 
Country 
(cohort) 

Study product Outcome assessment Effect estimate Conclusion Ref 

Dose-dependent impact 
of blueberry flavonoid 
intake on endothelial 
function in healthy men 

two acute RCTs 
crossover 
placebo-
controlled  

21 healthy men UK 

Blueberry drink 
containing 129, 258, 
310, 517 or 724 mg 
total blueberry 
anthocyanins 

 
 

Flow-mediated dilation  
 
 

Polyphenol absorption as 
AUC of plasma metabolites 

 
Neutrophil NADPH oxidase 

activity 

For 310 mg blueberry 
anthocyanin intake: 
 
↑ 2.4% at 1h compared to -0.3 
(control) 
 
↑ 16.1 compared to 4.3 μmol · 
h/l (control) 
 
↓ up to 35% reductions in 
neutrophil NADPH oxidase 
activity 

Blueberry intake acutely improves 
vascular function in healthy men in 
a time- and intake-dependent 
manner. Suggested link of 
circulating phenolic metabolites 
and impact on neutrophil NADPH 
oxidase activity. 

91 

Effect of strawberry 
antioxidants on meal-
induced postprandial 
inflammatory and insulin 
responses in overweight 
human subjects.  

acute RCT 
cross-over 
placebo-
controlled 

26 overweight men 
and women with BMI 
≥ 25 kg/m2 

US 

Strawberry beverage 
containing 10 g of 
freeze-dried strawberry 
powder providing 82 mg 
total anthocyanins. 
Consumed together 
with a high-
carbohydrate, 
moderate-fat meal 
(HCFM) 

Postprandial response at 
6h: 
IL-6  

IL-1β 
plasma insulin level 

 
 
 
↓ 3.4 vs 4.5 pg/ml (control) 
↓ 0.15 vs 0.27 pg/ml (control) 
↓ 56 pmol/l compared to 
(control) 

Data provides evidence for 
favourable effects of strawberry 
antioxidants on postprandial 
inflammation and insulin 
sensitivity. 

95 

Effects of berry-derived 
anthocyanin 
supplements on the 
serum lipid profile in 
dyslipidaemia patients. 

chronic RCT 
parallel 
placebo-
controlled 
12 weeks 

Treatment: 60 
Placebo: 60 

China 

purified anthocyanin 
from bilberry and black 
currant; 320 mg 
anthocyanins daily 

HDLC 
LDLC 

Cholesterol efflux capacity 

↑ 13.7% vs 2.8% (placebo) 
↓ 13.6% vs -0.6% (placebo) 
↑ 20.0% vs 0.2% (placebo) 

Anthocyanin supplementation in 
humans improves LDL- and HDL-
cholesterol concentrations and 
enhances cellular cholesterol efflux 
to serum.  

97 

Examine cognitive 
performance in middle-
aged adults following 
wild blueberry (WBB) 
consumption 

acute RCT 
cross-over 
placebo-
controlled 

35 middle-aged 
adults 

UK 

Wild blueberry 
beverage consisted of 
25 g freeze-dried whole 
wild blueberry powder 
providing 475 mg 
anthocyanins 

Cognitive function 

↓ errors  
↓ response times 
↑ memory-related 
performance  

Acute cognitive benefits of 
blueberry intake. 

106 



39 
 

Table 1-3. Continued 

Study aim Study type Study population 
Country 
(cohort) 

Study product Outcome assessment Effect estimate Conclusion Ref 

Effect of supplementing 
an obesogenic (high-fat) 
diet with whole 
blueberry powder to 
test whether blueberry 
powder can protect 
against adipose tissue 
(AT) inflammation, 
insulin resistance (IR) 
and other obesity 
complications. 

In-vivo (mice) 
8 weeks 

24 mice NA 

High-fat (60% of energy) 
diet 
4% (wt:wt) whole 
blueberry powder (31g 
anthocyanins/kg dry 
food) 

insulin resistance (glucose 
AUC) 

blood glucose  
frequency of dead 

adipocytes 

↓ 550 vs 788 mmol/L·90min 
(control) 
↓ 7.3 vs 8.6 mmol/l (control)  
 
↓ 0.33% vs 0.64% (control) 

Blueberry supplementation 
provides favourable cytoprotective 
and anti-inflammatory metabolic 
benefits to alleviate obesity-
associated pathology 

96 

Effect of anthocyanin 
metabolites on vascular 
inflammation in human 
endothelial cells 

Cell culture study NA NA NA 

TNF-stimulated secretion 
of (metabolite 

concentration, incubation 
time) 

VCAM-1 (20 μM, 6h) 
VCAM-1 (44 μM, 24h) 

IL-6 (2 μM, 1h) 
IL-6 (20 μM, 6h) 

IL-6 (44 μM, 24h) 

 
 
 
 
↓ −65%   
↓ −66% 
↓ −37% 
↓ −31% 
↓ −36% 

Signatures of anthocyanin 
metabolites reduce VCAM‐1 and IL‐
6 production. 

94 

↑: increase; ↓: decrease; Adp: adiponectin; Apo: apolipoprotein; AUC: area under the curve; baPWV: brachial-ankle pulse wave velocity; CADP-CT: collagen-adenosine diphosphate closure time; cfPWV: carotid-femoral pulse 
wave velocity; cGMP: cyclic guanosine monophosphate; DBP: diastolic blood pressure; FMD: flow-mediated dilation; HDLC: high-density lipoprotein cholesterol; HOMA-IR: Homeostatic Model Assessment for Insulin 
Resistance; hsCRP: high-sensitivity C-reactive protein; IL-6: interleukin-6; IL-1β: interleukin-1β; LDLC: low-density lipoprotein cholesterol; MAP: mean arterial pressure; NADPH: nicotinamide adenine dinucleotide phosphate; 
NO: nitric oxide; PWV: pulse wave velocity; SBP: systolic blood pressure; TG: triglyceride; TNF: tumour necrosis factor; VCAM-1: vascular cellular adhesion molecule-1 

 



40 
 

1.4 Dietary intake of anthocyanins 

Anthocyanins are readily available in the habitual diet (see Table 1-4) and can reach nearly 

500 mg/100g of fresh weight in the highest sources such as elderberries. Rich dietary sources 

of anthocyanins are mainly berries such as blueberries, elderberries, and black currants, but 

also dark coloured vegetables like red cabbage, black beans, eggplant, and red onions.109  

However, sources such as elderberries, red cabbage, and eggplants are seldom consumed 

raw. Raw food processing such as steaming, boiling, cooking can lead to an anthocyanin 

degradation of 10% to 80%, dependent on duration and temperature of the treatment.110  

Table 1-4. Anthocyanin content in common dietary sources. (Based on 71)  

Despite anthocyanins being highly abundant in some foods, the intake levels at the population 

level are comparably small; anthocyanins make up only a small fraction of total flavonoid intake 

and the average intake has been reported to range from 1.6% in the USA111 to 10% in 

Mediterranean countries112. Mean intake for adults (see Figure 1-11) were estimated to be 16 

mg/d in the UK113; 3 mg/d111 to 11.6 mg/d in the USA114; 19 – 65 mg/d in Europe115; 27.2 mg/d 

in Australia116; 27.6 mg/d in China117.  

Food mg/100g fresh weight 

Elderberries 485.3 

Red cabbage 210.0 

Blueberries 163.3 

Black currants 157.8 

Grapes (Concord) 120.1 

Cranberries 104.0 

Blackberries 100.6 

Eggplant 85.7 

Red currants 75.0 

Plums 56.1 

Raspberries 48.6 

Black beans 44.5 

Lingonberries 40.2 

Red wine 35.6 

Cherries, sweet 32.0 

Strawberries 27.0 

Pecan nuts 18.0 

Grape juice 16.1 
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So far, no upper intake level has been published by food safety authorities nor an acceptable 

daily intake for anthocyanins in general. Based on toxicologic animal studies derived from 

grape-skin, blueberries and blackcurrant extracts, the European Food Safety Authority 

considered anthocyanins unlikely to be of safety concern.118 Daily intake values of 

anthocyanins from currants, blueberries or elderberries at amounts of  25 mg/kg (mice), >3 g/d 

(guinea pigs and rats), >2.4% body weight (beagle dogs), and 9 g/kg (over 3 generations in 

rats, mice, and rabbits) have not resulted in any identified toxic effects.74,119 

Figure 1-11. Mean anthocyanin intake across various countries and regions. 

Estimated values for daily mean anthocyanin intake taken from various publications.111–116 
Dietary intake was assessed using 24h dietary recall111–116 or 3-day food records113. Different 
flavonoid databases were used by the authors to estimate anthocyanin intake based on the 
dietary data (US Department of Agriculture Flavonoid Databases111–116, Phenol 
Explorer113,115,116, or AUSNUT 2011-2013116). 
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Usually, a mixture of polyphenol and flavonoid subclasses can be found in our diet. The 

respective proportion is largely dependent on the fruit or plant-product (Figure 1-12). For 

example, heavy coffee drinkers will likely consume more phenolic acids than flavonoids.120 

 

One of the first attempts from 1976 to measure and calculate an average daily consumption of 

total polyphenols, reported an estimate of 1g/day.121 In a more recent study with 35,628 

participants, typical dietary flavonoid intake was reported as 373 mg/day for non- 

Mediterranean countries and 370 mg/day for Mediterranean countries, in both cases the main 

contribution food sources were fruits.112  

1.5 Metabolism of anthocyanins 

After consumption, anthocyanins can be detected after a short amount of time (maximum 

concentration in plasma has been observed around 1.5 h after eating122,123), suggesting 

absorption in the upper gastrointestinal tract (GIT)124 and possibly also absorption through the 

gastric mucosa.125 The presence of intact anthocyanins in circulation suggests an active 

transport mechanism across the epithelium of the GIT, as they would be otherwise unlikely to 

pass the cell membrane due to their polarity and size. The transport mechanisms purported to 

be involved include glucose transporter 2 (GLUT2)126 and sodium-dependent glucose 

transporter (SGLT1) which transport glucose and galactose across the intestinal barrier.127  

Figure 1-12. Total phenolic compounds, flavonoid, and anthocyanin content in selected examples 

Examples of total phenolic compounds found in some regularly consumed fruits (in mg/200g) and beverages 
(in mg/200ml) and the contribution of flavonoids (dark grey + black) and anthocyanins (black) to the total 
phenolic compounds (light + dark grey + black). These values should only give a rough idea of phenolic and 
flavonoid content in common sources, as levels may vary widely, depending on growth conditions, ripening 
status, and soil.120,296–300 
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However, while anthocyanins can be absorbed intact, they represent only about 2% of the total 

metabolites and only briefly appear in circulation (t1/2 = 0.4h, not detected anymore after six 

hours).123 In fact, the majority of anthocyanins is quickly metabolised, with one of the first 

metabolic reactions being deglycosylation in the GIT. This process is mediated either via 

mammalian enzymes in the small intestine (lactase phlorizin hydrolase in the brush border of 

the small intestine epithelial cells, or the cytosolic ß-glucosidase in intestinal epithelial cells) or 

by the microbiome.124. Following deglycosylation, anthocyanidins can chemically degrade in 

the small intestine to an aldehyde and a hydroxybenzoic acid due to their instability at 

physiological pH.128 The expected products of this spontaneous degradation is given in Table 

1-5. 

Deglycosylated phenolic compounds are much less polar and can pass into the intestinal cells 

via passive diffusion. After absorption of the parent compounds or their metabolites, the 

phenolic compounds undergo phase I and II metabolism in the intestinal epithelium or liver to 

increase water solubility; similar to xenobiotics. Phase I metabolism, which involves the 

oxidation, reduction, and hydrolysis of molecules, appear to only play a minor role due to the 

rapid phase II conjugation following phase I.129 Phase II enzymes convert compounds to more 

water soluble metabolites by conjugating them with polar groups such as sulphate, 

glucuronide, glycine, or methyl. These can then be excreted via urine or recirculated into the 

intestine via bile for faecal excretion. This re-entering of previously absorbed compounds into 

the GIT is called enterohepatic circulation. This exposes the compound to microbial 

metabolism once more and the possibility of reabsorption.124 

Generally, the appearance of a compound in plasma within an hour after ingestion indicates 

absorption in the small intestine, while an appearance after 5 h is considered to be mainly from 

the large intestine128. Up to 85% of anthocyanins (dependent on the sugar moiety) pass from 

the small intestine unchanged into the colon130, where these, as well as recirculated 

metabolites, are exposed to successive break down by the colonic gut microflora (described 

in more detail below). 

Table 1-5. Anthocyanidins and their expected B-ring derived phenolic acids upon degradation 

 Anthocyanidin Expected phenolic acid 

Pelargonidin 4-hydroxybenzoic acid 

Cyanidin 3,4-dihydroxybenzoic acid (protocatechuic acid) 

Delphinidin 3,4,5-trihydroxybenzoic acid (gallic acid) 

Peonidin 4-hydroxy-3-methoxybenzoic acid (vanillic acid) 

Petunidin 3,4-dihydroxy-5-methoxybenzoic acid 

Malvidin 4-hydroxy-3,5-dimethoxybenzoic acid (syringic acid) 
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Microbial metabolism of anthocyanins 

The GIT includes all parts of the digestive system: mouth, oesophagus, stomach, small 

intestine and colon. Each section has its own specific conditions relating to absorption, the 

chemical environment, the presence of digestive enzymes and its specific microflora. In terms 

concentrations and diversity, the vast majority of the organisms in the GIT are located in the 

colon. It is estimated that 500 to over 1000 different species of bacteria, archaea and eukaryota 

reside within the colon of an individual. Their sheer number almost rivalling the human cell 

count (Figure 1-13).131 

Known metabolic processes by the microbiome phenolic compounds include O- and C-

deglycosylation, hydrolysis of esters and amides, deglucuronidation, and ring fission. The 

cleavage of the C-ring results in small microbial metabolites, such as cinnamic acids, 

phenylpropionic acids, and phenylacetic acids, which are then exposed to hydrogenation, α-

oxidation and β-oxidation of the aliphatic elements, aromatic dehydroxylation, demethoxylation 

and demethylation. The gut microbiota can also break down the aromatic A-ring into CO2 or 

into short chain fatty acids, which are absorbed through the colon, used for energy metabolism 

and exhaled as CO2 (approximately up to 7% of consumed anthocyanins).123,132 

For many of these transformations, the responsible organisms, corresponding enzymes, and 

the substrate specificity have not yet been characterised. In fact, this knowledge gap may 

remain for some time, considering the complexity and vast array of possible microbial 

candidates and how many are likely to be uncharacterised.  

Figure 1-13. Comparison of estimated numbers of human and bacterial cells in the 
human body 

The estimates for total human cells (first bar) and bacterial cells (second to fifth bar) in the 
human body are of similar magnitude. Bacterial cells are shown by distribution in the GIT. 
Based on Sender et al (2016)131 
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This immense complexity is compounded further by inter-individual variations in the microflora, 

which can change with age, diet and health status.128 Presently, these factors remain poorly 

understood. 

Phase I metabolism – modification 

In the first phase of the human drug metabolism (also called xenobiotic metabolism) the 

absorbed anthocyanins undergo an ‘activation’ step to prepare them for the subsequent phase 

II conjugation. This is achieved by enzymatic introduction of reactive and polar groups into the 

substrate by oxidation, reduction, or hydrolysis.  

During a feeding study with humans utilizing the 13C isotope-labelled anthocyanin cyanidin-3-

glucoside and subsequent identification of the metabolites, only small amounts of phase I 

metabolites were detected in serum and urine. It was therefore concluded that phase I 

metabolism was a minor pathway for anthocyanin metabolism.123 Examples of phase I 

metabolites are shown in Figure 1-14. 

Besides this, little is published specifically for phase I metabolites of polyphenols, flavonoids 

and anthocyanins. This could be because it is difficult to differentiate them from microbiome-

derived metabolites prior to absorption. However, there have been efforts to predict phase I 

metabolites of flavonoids in silico,133 or to produce them in vitro via recombinant enzymes.134  

Phase II metabolism – conjugation 

Phase II reactions are conjugation reactions which include acetylation, glucuronidation, 

sulphation, methylation, and glycine conjugation. The substrate must possess a reaction site 

for conjugation; these can already be present in the molecule or have been introduced during 

phase I metabolism. Reaction sites for the conjugation include carboxy (-COOH), amino (NH2), 

thiol (-SH) and hydroxy (-OH) groups, with the latter being quite abundant in anthocyanins. 

Figure 1-14. Examples of possible phase I metabolites derived from cyanidin‐3‐glucoside 

Cyanidin-3-glucoside is first deglycosylated and is then metabolised or degrades to 3,4-
dihydroxybenzoic acid. This then undergoes reduction reactions in phase I: a dehydroxylation results 
in the loss of a hydroxyl group at position 3’ or 4’. The reduction of the carboxyl group yields a 
benyzaldehyde. Possible products are a benzoic acid or benzaldehyde with one or both hydroxyl 
groups.  
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Enzymes that mediate phase II metabolism are found in many organs and tissues within the 

human body. The two main sites with the highest phase II metabolic activity are also the ones 

that come in contact with the substrate first: the epithelial cells of the intestinal mucosa and the 

liver.135 Sulfation, glucuronidation, acetylation can all occur at the epithelial cells of the 

intestinal mucosa, which has been implicated as a major metabolic organ for many 

substances.136 With regard to anthocyanins, phase II metabolites of anthocyanins or their 

degradation products (methyl, sulfate, glycine and glucuronic acid conjugates) could already 

be detected 0.5 h to 1 h after anthocyanin consumption.123 

1.6 Bioavailability of anthocyanins 

Bioavailability refers to the fraction of compound that is absorbed and present in the 

bloodstream. In a broader perspective it includes the intestinal metabolization and 

absorption, biotransformation, transportation and distribution to tissues, and excretion. 

Bioavailability of dietary flavonoids is usually characterised by maximum plasma or serum 

concentrations (Cmax) or the fraction recovered via urinary excretion as a measure of the 

exposure. 

Early assumptions on the bioavailability of anthocyanins were derived from animal and human 

feeding studies.66,137–139 In comparison with other flavonoid classes, anthocyanins appeared to 

be one of the least bioavailable flavonoids.66 Across these feeding studies, bioavailability of 

anthocyanins was observed to be poor, with less than 2% and often less than 0.1% of the 

consumed amount detected in urine. Anthocyanins were found to be rapidly absorbed and 

eliminated: the time maximum plasma concentration was reached (tmax) between 0.5 and 2 

hours in most studies and could not be detected in plasma anymore 6-8 h post ingestion.  

However, the reported poor bioavailability of anthocyanins is likely underestimated due to two 

main factors. First, analytical limitations66,137 may lead to loss of anthocyanins in biological 

samples. Because anthocyanins are degraded easily in less than an hour in near neutral pH, 

the amount of anthocyanins present in biological samples, such as urine and serum, may be 

underestimated. Therefore, to preserve the most stable form, anthocyanins are typically 

extracted and analysed in acidic medium with low pH.138 

In addition, the spontaneous degradation of anthocyanins into phenolic acids and aldehydes 

as well as the extensive metabolization of anthocyanins in the GIT to smaller molecules (more 

detailed in chapter ‘Microbial metabolism of anthocyanins’), likely leads to an underestimation 

of the bioavailability. Another source of error relates to accuracy of detection, as degradation 

products may easily escape detection, particularly if they are present in concentrations below 

detection limits of the quantifying method (such as liquid chromatography tandem mass 

spectrometry). 
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As a partial solution to these assessment limitations, labelling anthocyanins with carbon 

isotopes allows the tracking of metabolites and a more accurate assessment of bioavailability 

by measuring the recovered amount of the carbon isotope. Studies using such compounds 

are rare, however a ground-breaking human study which fed 500 mg of 13C-labelled cyanidin-

3-glucoside indeed showed that the bioavailability of anthocyanins is much higher than 

formerly perceived: a relative bioavailability of 12.38% of 13C was recovered in urine (5.37%) 

and breath (6.91%).140 Including the recovery from faeces (32.13%), a total of 43.9% of 13C 

was recovered over 48h. Whilst this was a significant increase on previous estimates, it was 

notable that over half of the 13C remained unaccounted for in this study. One explanation 

could be that the anthocyanins broke down into many diverse (and unmeasured) metabolites 

or existed at such low concentration that they could not be detected. It may also be that a 

large proportion remained in faeces after 48 h and a greater recovery may have been 

achieved with a longer sampling period. 

Importantly, as already mentioned above, the parent compound cyanidin-3-glucoside 

represented only 2% of the total metabolites found in circulation and was detected only up to 

6 h in serum. Conversely, 13C-labelled metabolites were present in higher abundance 

throughout the 48h post-ingestion period of observation. This emphasised the role of 

phenolic metabolites as bioactive molecules and the likely mediators of potential clinical 

effects of anthocyanins in comparison to the parent compounds. In support of this, in vitro 

studies have shown anthocyanin metabolites to be more effective than their parent 

compounds in reducing the expression of inflammatory markers141–143. 

Factors which influence the absorption of anthocyanins 

The chemical structure of anthocyanins impacts their absorption. For instance, the size and 

hydrophobicity can determine whether the molecule may enter the cell via diffusion or is 

transported across the membrane with a carrier. In support of this, a study investigating the 

uptake of blueberry anthocyanins in Caco-2 human intestinal cells showed differences in 

transport efficiency depending on aglycone structures and sugar moiety.144 Delphinidin-

glucoside was least efficiently absorbed, while malvidin-glucoside was most efficiently 

absorbed. This suggests that absorption efficiency increases with hydrophobicity – malvidin 

has two methoxy groups as B-ring substituents, while delphinidin has three hydroxyl groups 

and is therefore more polar.  

It is also apparent that the type of sugar plays a role in the bioavailability of anthocyanins. In 

the same study as above, glucosides appeared to have higher transport efficiencies than 

galactosides. This was also demonstrated in vivo in rats where 22.4% of ingested cyanidin-3-

glucoside were absorbed in the small intestine versus 13.6% of cyanidin-3-galactoside.145 

Moreover, acylation and glycosylation with more than one sugar molecule enhanced 
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anthocyanin stability and made them more resistant to metabolization and transformation by 

intestinal microflora.146 

It is highly likely that other dietary components in the food matrix may also interact with 

anthocyanin absorption. For example, a human study investigated the effects on the 

bioavailability of strawberry anthocyanins over 6h when co-ingested with a meal consisting of 

a croissant with butter and jelly, sausage links, corn flakes, frosted flakes cereal and whole 

milk. 147 In this study, the authors observed that Cmax dropped from 38.0 nmol/l when the 

strawberry drink was taken without the meal to 12.8 nmol/l when the drink was taken together 

with the meal. The meal also extended tmax from 1.7 h to 2.8 h. These findings suggest that the 

timing of the meal can have a substantial impact on the bioavailability of anthocyanins. Another 

feeding study comparing the bioavailability of strawberry anthocyanins when given with or 

without cream showed that Cmax was not significantly different, but tmax was delayed by over 

one hour from 1.1 h to 2.4 h.148 Interestingly, the urinary excretion over 24 h was not 

significantly affected by cream, suggesting that the cream did not impact on total absorption, 

but delayed gastric emptying and gastrointestinal transit time. 

1.7 Inter-individual variability and phenotypes 

Although a body of population-based studies have associated clinical benefits with 

anthocyanin intake, findings from human randomised controlled trials (RCTs) are equivocal. 

Likewise, it is widely accepted that inter-individual variability in response to flavonoids 

interventions exists, which may partly be responsible for the contradictory findings from 

RCTs.  

Inter-individual variability relates to differences in absorption and metabolization of flavonoids 

between individuals and implies that individuals are exposed to different levels of bioactive 

compounds.  
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For example, in a one-year study, epicatechin levels in 24h pooled urine were measured at the 

beginning of the intervention and after one year of daily intake of 27 g flavonoid-enriched 

chocolate, providing 85 mg of epicatechin per day.149 A wide inter-individual variability was 

observed for urinary excretion rates of epicatechin (flavan-3-ol), with individual excretion 

amounts ranging 9.6 to 327.0 μmol/24h (Figure 1-15).150 

Differences between individuals in any step in the absorption, metabolization, distribution, and 

elimination of metabolites may contribute to variability in the bioavailability of flavonoids. To be 

more specific, such factors could include genetic variability (e.g., in the xenobiotic metabolism 

or transporters and carriers involved in the absorption from the gut), composition of the habitual 

diet, integrity of the intestinal barrier and constitution of the gut microbiome, as well as age and 

gender.150 

Because the majority of anthocyanins pass into the colon intact, the metabolization by colonic 

microbiota plays a central role in the metabolism of flavonoids128,151. Thus, key determinants 

of inter-individual variability are likely to be the gut microbiota and differences in its composition 

between individuals. On this basis, several metabolic phenotypes (‘metabotype’) have been 

discovered which classify an individual into a ‘responder’ and ‘non-responder’ to flavonoid 

intake.  

One of the earliest and most prominent examples of a metabolic phenotype is the ability to 

produce equol from the soy isoflavone daidzein, which is dependent on certain bacterial 

strains.152 Equol has been shown to have vasoactive and immune modulatory functions,152–

154 however only 30% of the western population are equol producers. A further example is 

Figure 1-15. Figure illustration of the range of individual responsiveness 

Figure shows the range of urinary excretion levels of epicatechin in 47 participants after one year 
daily intake of chocolate enriched with 85 mg epicatechin per day.  

Adapted from Cassidy & Minihane (2016)150, based on data published in Curtis (2012)149; figure 
copyright 2016 Oxford University Press used under the Creative Commons CC BY license 
(https://creativecommons.org/licenses/by/4.0/) 
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the production of urolithins from ellagitannins (found in foods such as tea, pomegranate, and 

walnuts). 155 The production of urolithins is also dependent on certain strains of bacteria, and 

enables the classification of individuals into one of three metabotypes Uro-A, Uro-B, and Uro-

0 (Uro-0 do not produce any urolithins). Interestingly, the prevalence of the metabotypes 

differs between healthy normoweight (20% Uro-B) and unhealthy individuals with metabolic 

syndrome (45% Uro-B), which may be associated with a gut dysbiosis in the unhealthy 

individuals. Importantly, the clustering by urolithin metabotype was recently shown to be 

associated with the observed improvements in cardiometabolic markers, such as oxidized 

LDL-cholesterol and small LDL-cholesterol.156 

Unfortunately, not many polyphenols with unique catabolites are known. The microbial 

degradation of different and diverse flavonoids largely produces a similar set of catabolites of 

aromatic and phenolic acids, which include cinnamic acids, phenylpropionic acids, 

phenylacetic acids and benzoic acids 157. This means that the different subclasses of 

flavonoids present in one dietary source converge at the metabolite level, which add difficulty 

to the identification of specific metabotypes in response to most flavonoid classes. In this 

case, multivariate analyses techniques which identify correlations between metabolites and 

identify clusters of similar participants based on their metabolic profile can help deduce the 

existence of metabotypes. These methods were applied recently to putatively define specific 

metabotypes following the intake of high amounts of flavan-3-ols from green tea and green 

coffee extracts (3469 mg (corresponding to 23 cups of green tea) daily for eight weeks).158. 

1.8 Research Gap 

Following consumption, flavonoids are rapidly metabolised and there is strong support for the 

hypothesis that phenolic metabolites rather than their parent compounds are the bioactive 

molecules and likely mediators of potential clinical effects. Although in population-based 

studies the habitual intake of anthocyanins has been shown to be the most effective of the 

six main flavonoid subclasses in reducing the risk of CVD, findings from RCTs remain 

equivocal. It is widely accepted that inter-individual variability in the absorption and 

metabolization of flavonoids exists, in part driven by differences in the gut microbiota 

between individuals, which may partly be responsible for the contradictory findings from 

RCTs. In support of this rationale, several metabolic phenotypes (‘metabotype’) 

characterised by unique metabolism profiles following the intake of flavonoids have been 

identified, i.e. equol following isoflavone intake, and urolithins following ellagitannin intake. In 

both cases, these metabotypes have successfully classified individuals as ‘responders’ and 

‘non-responders’ to flavonoid intake. Conversely, the main phenolic metabolites of 

anthocyanins are not unique, being commonly produced following the intake of different 
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flavonoids. Consequently, there has been no attempt to establish a metabolite profile to 

identify responders to anthocyanin intake to date. In addition, we lack an understanding how 

using such a metabolite profile to differentiate between responders and non-responders to 

anthocyanin intake may impact on assessing the clinical efficacy of anthocyanins in RCTs. 

1.9 Thesis objectives 

The first objective of this thesis was to investigate whether inter-individual variability in 

response to intake of anthocyanins from blueberries among participants of the CIRCLES study 

existed and could be characterised based on the urinary excretion of a single or a group of 

metabolites. A further aim was to determine the relationship between such a urinary metabolite 

profile and cardiometabolic markers, including vascular function. 

The second objective was to assess whether the same urinary metabolite profile could be 

applied in an ongoing dietary intervention study to prospectively recruit individuals as high, 

medium, or low anthocyanin metabolisers. 
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2 Methods pertaining to the retrospective analysis of 

urinary anthocyanin metabolites and their association 

with cardiometabolic markers (Chapter 3) 

2.1 The CIRCLES Study design, participants and intervention material 

The aim of the CIRCLES study was to assess the effects of blueberry anthocyanins on insulin 

resistance and vascular function in a population with metabolic syndrome. The study design is 

briefly described in the following. Further details can be found in the paper published in 2019 

by Curtis et al.159 

The study was designed as a double-blind, six-month, placebo-controlled parallel dietary 

intervention conducted in men and women with overweight or obesity (BMI ≥ 25 kg/m2), aged 

50 -75 years, with at least 3 characteristics of metabolic syndrome (MetS) (central adiposity, 

elevated fasting glucose, elevated triglyceride levels, reduced high-density lipoprotein 

cholesterol, hypertension). Eligibility was based on a range of criteria, with exclusion criteria 

relating to smoking status, disease status, medication, and supplement intake. Eligibility to 

participate in the study was assessed through a combination of approaches: 1) the 

administration of a health and lifestyle questionnaire, collected after initial expression of 

interest to participate, and 2) a fasted clinical screening, conducted at the clinical research and 

trials facility based at the University of east Anglia and performed by study research nurses to 

assess general health parameters (assessed through clinical chemistry analysis following 

biological sampling). 

Prior to the baseline assessment, participants were required to adhere to dietary restrictions 

for 21 days. Throughout the study, participants took a daily dose of one of three treatments 

(described below). Assessments were done at 0 months and 6 months in the morning after an 

overnight fast (≥ 10 h). Assessments included the collection of biological samples (24h pooled 

urine and blood sampling) and the assessment of cardiometabolic endpoints. 

The primary outcome of the study was change in insulin resistance from baseline (0 months) 

to endpoint (6 months). Secondary outcomes were changes in blueberry metabolites, changes 

in vascular function (flow-mediated dilation (FMD), carotid-to-femoral pulse-wave velocity 

(PWV), augmentation index (AIx) and blood pressure), and changes in cardiometabolic 

biomarkers (fasting blood lipids, nitric oxide (NO) and related metabolites, fasting glucose, 

inflammatory markers). 
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Treatment groups, intervention material and compliance 

A total of 138 participants were randomly assigned to one of three groups: full-dose blueberry 

(equivalent to 1 US cup or 150 g fresh blueberry per day), half-dose blueberry (equivalent to 

½ US cup or 75 g fresh blueberry per day), or placebo. These doses were chosen to reflect 

dietarily achievable portions that could easily be incorporated into the habitual diet. Participants 

were randomised by four factors considered to likely affect insulin resistance and vascular 

function: sex, number of MetS criteria, age, and statin/anti-hypertensive medication use. Both 

participants and researchers conducting the study and analysing the biological samples 

remained blind to the treatment group throughout the study. 

Participants were instructed to daily consume one of three intervention materials 

corresponding to their group allocation, which was given to participants in single-serve opaque 

sachets labelled only with the letters A, B, C to uphold the double-blind approach to masking 

the treatment allocation. 82% of participants were unable to judge their treatment group, as 

assessed by an exit questionnaire completed after six months.  

The full-dose group received 26g of freeze-dried blueberry powder; the half-dose group 

received a mixture of 13 g freeze-dried blueberry powder and 13 g placebo powder; and the 

placebo group received 26 g of the placebo material (dextrose, maltodextrin, fructose, purple 

colouring, and blueberry aroma). All intervention foods were matched for calories, colour, 

sugar, and taste. The blueberries were provided by the United States Highbush Blueberry 

Council (USHBC; Folsom, California, US) and the placebo was produced by the National Food 

Laboratory (Plymouth, MN 55331, US). 

The anthocyanin and phenolic content of the products were: 364, 182 and 0 mg anthocyanins 

and 879, 439, and 0 mg phenolics for the full-dose, half-dose, and placebo groups, 

respectively. Similar amounts of blueberries have been observed to improve insulin sensitivity, 

blood pressure and arterial stiffness85,87, and the anthocyanin doses have been shown 

previously to affect endothelial function90,91. 

Compliance was measured by the number of returned wrappers and unused sachets. Overall 

compliance was high with 94.1% of sachets consumed across all three intervention groups. 

Dietary and lifestyle restrictions 

To minimise the interference of effects on the study outcomes from other dietary sources, 

participants were required to adhere to dietary restrictions for 21 days prior to the first 

assessment and throughout the study. Particularly, the intake of anthocyanin-rich foods as well 

as other commonly consumed rich in other flavonoids were limited. This allowed for a cleaner 

assessment of metabolites derived from the intervention material rather than other foods. 

Throughout the study, the intake of blueberries was completely prohibited, while the intake of 
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anthocyanin-rich foods (berries, red and purple fruits and vegetables) was limited to one 

portion a week. The intake of other commonly consumed foods rich in other flavonoids was 

also limited, such as dark chocolate (2 portions per week), red wine (1 small glass per week), 

tea and coffee (4 cups total per day). The intake of oily fish was also restricted due to potential 

effects on cardiometabolic measurements160. Immediately prior to assessment visits, further 

restrictions were implemented to improve the accuracy of metabolite and vascular 

assessments. This included the strict avoidance of strenuous exercise for 48 h before the study 

visit161 and for 24h before the visit foods rich in anthocyanins, nitrates, nitrites162, caffeine163 

and alcohol164. In addition, a standardised evening meal was given to control for any effect 

from the background diet on the repeated measurements at the two timepoints. The meal was 

free of anthocyanins and low in flavonoids, nitrite, and nitrate, and for 24 h before vascular 

assessments only low-nitrate bottled water (Buxton, Derbyshire, UK) was consumed. 

The adherence to dietary restrictions was monitored using a validated food-frequency 

questionnaire70,165 at baseline, interim (3 months), and six months. 

Participants were also instructed to maintain habitual activity levels throughout the study which 

was monitored using the International Physical Activity Questionnaire (long last 7-day 

version166) at baseline, 13-week interim point, and 6-month endpoint.  

2.2 Vascular assessments 

Vascular assessments included measures of endothelial function, arterial stiffness and blood 

pressure. 

Brachial artery flow-mediated dilation as a measure of endothelial function 

Endothelial dysfunction describes a disorder of the vascular endothelium in which the 

endothelium-dependent vasodilation is decreased. It is recognized as an early key factor in the 

development of atherosclerosis and a marker for cardiovascular disease167. Endothelial 

function can be measured by flow-mediated dilation (FMD) of the brachial artery168. This non-

invasive method uses ultrasound to measure the widening (dilation) of the artery as a reaction 

to acute reactive hyperaemia and a subsequent increased blood flow which causes shear 

stress. The increased blood flow is induced through a temporary occlusion (5 minutes) of the 

brachial artery in the upper arm through inflation of a sphygmomanometric cuff to 220 mmHg. 

Upon release of the cuff (after 5 minutes occlusion) a shear stress response is generated on 

the endothelium which increases NO production through the activation of the endothelial nitric 

oxide synthase (eNOS). NO induces relaxation of the smooth muscle cells of the vessel and 

leads to vasodilation. FMD is expressed as the percentage change at the maximum dilation 

from the baseline diameter, which is assessed for one minute under resting conditions. An 
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impaired endothelium is characterised by reduced NO availability and thus would dilate less 

than a healthy endothelium. 

For the FMD measurement, the participant was lying in supine position with the arm rested in 

a comfortable position. A sphygmomanometric cuff was placed below the elbow, distal to the 

measurement site, which was at the upper arm. FMD was captured using ultrasound (Philips 

iE33; 11-3MHz linear transducer, Philips, Surrey, UK) with the image acquisition triggered by 

3-lead ECG gating (Vascular Imager software; Medical Imaging Applications LLC, Coralville, 

USA). The protocol was as follows: 1 min baseline assessment of the vessel diameter, 

occlusion of the artery for 5 min by inflating the cuff to 220 mmHg, followed by a 5 min 

assessment of the vessel diameter post-occlusion after release of the cuff. 

FMD images were independently assessed by two researchers (Dr Peter Curtis and Dr Lindsey 

Berends) and automated edge-detection software (Brachial Analyzer v5; Medical Imaging 

Applications LLC) was used to determine the vessel diameter. The pre-occlusion baseline 

diameter was averaged across all viable frames during the 1 min baseline assessment and the 

maximum diameter was averaged across at least 3 frames at the peak of post-occlusion 

diameter. The percentage change from baseline was calculated as  

𝐹𝑀𝐷 (%) =  
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
× 100 

The %FMD value assigned for each assessment was the mean of the independent analyses 

performed by the two researchers. An FMD measurements were excluded if both researchers 

judged the images as ‘failed’. 

Measurement of systolic and diastolic blood pressure 

With every heartbeat, the ejection of blood from the left ventricle of the heart into the aorta 

generates a pressure wave that travels down the arterial tree. The maximal pressure in the 

aorta and large arteries is termed systolic blood pressure (SBP). While the left ventricle refills, 

the pressure in the arteries drop. The lowest blood pressure is termed diastolic blood pressure 

(DBP) which occurs just before the next heart contraction. Blood pressure is influenced by a 

number of factors, including cardiac contractility, blood volume, the afterload (pressure in the 

arterial system) and vascular compliance. The latter factor is related to arterial stiffness – when 

compliance is reduced with increasing stiffness, resistance to blood flow is increased which in 

turn increases blood pressure. Hypertension, i.e. high blood pressure, is one of the 

characteristics of metabolic syndrome10 and a well-established risk factor for cardiovascular 

disease and mortality169,170. 

Blood pressure was measured in the brachial artery using an automated sphygmomanometric 

cuff (Omron 705IT, Omron Healthcare Co., Kyoto, Japan) after 15 minutes of supine rest. 
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Blood pressure was measured in triplicate separated by three minutes each and was 

calculated as a mean of the last two measurements. 

Pulse wave velocity and augmentation index as measures of arterial stiffness and wave 

reflection 

Arterial stiffness involves structural and cellular changes of the vessel wall171. The structural 

changes are largely defined by the balance of two scaffolding proteins which differ in their 

elasticity, collagen (inelastic) and elastin (elastic). Increase in arterial collagen and degradation 

of elastin results in a stiffening of the arterial wall. In addition, cellular changes to the 

endothelium can promote arterial stiffness through an increased vascular tone. Further 

contributors to arterial stiffness are inflammation, oxidative stress and changes in the 

extracellular matrix of the wall171. Chronic hypertension can induce a thickening of the arterial 

wall mainly through hypertrophy of vascular muscle cells. Conversely, increased arterial 

stiffness is associated with an increase in blood pressure, resulting in a positive feedback loop 

and common progression of both arterial stiffness and hypertension172. While arterial stiffness 

is part of the normal aging process, it has been shown to be associated with increased risk for 

future cardiovascular events, including myocardial infarction, heart failure, or stroke173.  

Arterial stiffness affects the way blood pressure and the arterial diameter change with every 

heartbeat174. As the heart pumps blood from the left ventricle into the aorta, a pulse wave is 

generated that moves along the arterial tree. The speed at which this wave moves down a 

section of the aorta can be assessed and used as a measure for arterial stiffness. The stiffer 

the artery, the faster the transit time of the pulse. This measure is called pulse wave velocity 

and is often measured between the carotid and femoral artery. 

The pulse wave is reflected at multiple points along its path, mostly at bifurcation points or 

changes in vascular resistance175. The final shape of the aortic pressure wave is the sum of 

the forward wave and the reflected backward wave. The backward wave mainly affects the 

systolic pressure, as diastolic and mean arterial pressure remain roughly the same (Figure 

2-1). Increased amplitude of the reflected wave increases the systolic load at the left ventricle 

and was shown to cause a variety of cardiovascular complications, such as myocardial 

hypertrophy and fibrosis174. The augmentation pressure, i.e., the contribution of the reflected 

wave to the systolic pressure, can be measured and expressed as the percentage of 

augmentation pressure to total pulse pressure (augmentation index, AIx): 𝐴𝐼𝑥 =  
𝐴𝑃

𝑃𝑃
 × 100 
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In this study, arterial stiffness was assessed via the pulse wave velocity (PWV) between cuffs 

placed at the carotid and femoral artery. The distance between the cuffs was measured in 

duplicate and the calculation of the transit time was done automatically (Vicorder, Smart 

medical, UK).  

Wave reflection (AIx) was automatically generated by the Vicorder software and standardised 

to 75 bpm. Up to six measurements were made with the aim to achieve ≤ 10% CV.  

2.3 Assessment of biomarkers of CVD risk in fasted blood 

After an overnight fast (≥10 h), venous blood was collected into heparin and serum tubes. 

Serum tubes were allowed to clot for 30 min before centrifuging, while heparin plasma tubes 

were centrifuged right away at 1300 g for 10 minutes. Samples were then aliquoted and stored 

at -80°C.  

The cardiometabolic markers assessed were blood lipids, glucose, insulin, nitric oxide levels, 

and inflammatory markers. 

Measurement of blood lipids, glucose, and insulin 

Fasting glucose, total cholesterol, high-density lipoprotein cholesterol (HDLC) and triglycerides 

(TG) were assessed at the Norfolk & Norwich University Hospital using a clinical chemistry 

autoanalyzer (ARCHITECT c; Abbott Laboratories). Low-density lipoprotein cholesterol was 

calculated using the Friedewald equation 176:  

𝐿𝐷𝐿𝐶 =
(𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 − 𝐻𝐷𝐿𝐶 − 𝑇𝐺)

5
⁄  

Figure 2-1. Aortic pulse pressure wave 

The shape of the aortic pulse pressure wave is the sum of the forward wave generated by the pumping 
of the heart and the backward wave, which is the reflection of the forward wave at multiple points along 
the arterial tree. The reflected wave increases the systolic pressure of the forward wave (S1) by the 
augmented pressure (AP). The pulse pressure (PP) is the difference between the total augmented 
systolic pressure (SBPaug) and diastolic pressure (DBP). The augmentation index is the percentage of 
AP to PP. 
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Fasting serum insulin was measured in-house by the CIRCLES team using an enzyme-linked 

immunosorbent assay (Mercodia, Uppsala, Sweden) according to the manufacturer’s 

instruction. 

The intra-assay coefficients of variation were 1.51% (glucose), 0.86% (total cholesterol), 

2.91% (HDL cholesterol), 1.23% (TGs), and 11.8% (insulin). 

Dyslipidaemia, i.e., abnormal lipid levels, are one of the key attributes of metabolic syndrome. 

It is characterised by increased plasma levels of TG (hypertriglyceridemia), increased small 

density LDL and low HDLC. While LDL transports cholesterol to peripheral tissues such as 

muscles, HDL takes up free cholesterol from the periphery and transports them back to the 

liver for excretion. 

Dyslipidaemia is likely the result of an interplay between excess nutrients, insulin resistance, 

and inflammation. Increased release of free fatty acids (FFA) from adipose tissue due to 

chronic low-grade inflammation, reduced clearance of FFA and de novo fatty acid synthesis in 

the liver due to insulin resistance may all contribute to the increased availability of FFA. This 

leads to the overproduction of TG-rich very-low-density lipoproteins (VLDL) and subsequently 

hypertriglyceridemia. In addition, the postprandial clearance of TG from dietary fats is impaired, 

further augmenting TG levels in circulation. Hypertriglyceridemia also stimulates the exchange 

of TG for cholesteryl esters between HDL and LDL particles causing a decrease in HDLC and 

an increase in small dense LDL particles, which have minimal amounts of TG left. Small dense 

LDL (sdLDL) are a subtype of LDL and sdLDL-cholesterol (sdLDLC) has been found to be a 

major contributor of the total LDLC associated with risk of coronary heart disease35. In contrast, 

HDLC has a protective effect on vascular function, therefore a decrease in HDLC is associated 

with greater CVD risk36. 

Assessment of insulin resistance 

Insulin resistance (IR) is a state in which cells are less responsive to normal or elevated levels 

of insulin. In this study, IR was calculated using the homeostatic model assessment (HOMA)177, 

which is calibrated to a normal IR of 1. It approximates IR with the following equation:  

𝐻𝑂𝑀𝐴‐𝐼𝑅 =
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 [

𝑚𝑚𝑜𝑙
𝑙 ]  × 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 [

𝑚𝑈
𝑙

]

22.5
 

The model is based on the relationship between fasting glucose and insulin levels, which are 

regulated by the feedback loop between pancreatic β-cells and the liver. The liver plays a major 

role in balancing glucose levels, by storing glucose as glycogen molecules or releasing glucose 

via gluconeogenesis or glycogen breakdown. Insulin is secreted by pancreatic β-cells when 

blood sugar levels are high. It stimulates the uptake of glucose into liver, fat, and muscle cells 
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and suppresses gluconeogenesis in the liver. However, when cells are insulin resistant, the 

uptake of glucose into cells is reduced and plasma levels of glucose are increased. In the 

insulin resistant liver, reduced suppression of gluconeogenesis augments the already high 

glucose levels and contributes to hyperglycaemia. This in turn results in more insulin being 

synthesized by the pancreatic β-cells causing hyperinsulinemia. The increased production of 

insulin eventually causes endoplasmic reticulum (ER) stress and failure to alleviate this stress 

leads to death of the β-cells and progression to type 2 diabetes mellitus (T2DM). Impaired 

regulation of gluconeogenesis was found to be the main contributor to hyperglycaemia in 

individuals with type 2 diabetes178. 

Measurement of NO-related metabolites 

To investigate underlying mechanisms of vascular function, components of the NO pathway 

were quantified. This was done by Prof. Martin Feelisch and his group at the University of 

Southampton. 

Gas phase chemiluminescence and liquid chromatography were used to assess nitrite (NO2
−), 

nitrate (NO3
−), and total nitroso species (RXNO) levels in EDTA plasma179. Cyclic guanosine 

monophosphate (cGMP) was measured using an enzyme immunoassay (KGE003; RnD 

Systems). The intra-assay coefficients of variation were 1.6% (NO2−), 16.2% (NO3−), 15% 

(RXNO), and 9.9% (cGMP). 

Endothelial dysfunction is characterised by an impairment of the endothelium-dependent 

vasodilation.8 This is largely mediated via nitric oxide (NO), an oxidative signalling molecule 

produced in endothelial cells and a potent mediator of smooth muscle cell relaxation. The direct 

measurement of NO is technically difficult due to its reactivity and short half-life of 

approximately a few seconds.180 Indirect measurements include nitrate, nitrite, and nitrosylated 

species. Nitrate and nitrite are products of the NO metabolism, but have also been shown to 

be recycled to form NO.181 There are two main sources for nitrate and nitrite: the endogenous 

production of NO through nitric oxide synthases (NOS) and dietary sources. Particularly nitrate 

is abundant in many vegetables and requires the commensal bacteria in the gastrointestinal 

tract to convert it into nitrite. After ingestion of nitrate, both nitrate and nitrite levels increase in 

plasma. Nitrite has been reported to exhibit vasodilatory properties, and could therefore be 

seen as stable storage pool for NO-like bioactivity.181  

Measurement of inflammatory biomarkers 

Insulin resistance and obesity are accompanied by a chronic low-grade proinflammatory state. 

This includes increases in interleukin 6 (IL-6), tumour necrosis factor α (TNF-α), C-reactive 

protein (CRP), IL-8 and a decrease in adiponectin10,182. 
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To evaluate the effect of the intervention on the inflammatory state, pro-inflammatory markers 

were assessed in heparin plasma using a sandwich immunoassay with an 

electrochemiluminescent detection method from Meso Scale Discovery (MSD). This assay 

allows the detection of up to ten analytes of interest simultaneously. Electrodes at the bottom 

of a 96-well plate are coated with antibodies which bind the analytes of interest in the sample. 

The addition of labelled detection antibodies, read buffer and the application of a voltage 

causes the labels to emit light. The intensity of the emitted light is measured and quantified 

against a standard curve. 

The manufacturer provided immunoassay plates coated with antibodies on 1 to 10 spots per 

well, the detection antibody, calibrators, required diluents, blocker buffer, and read buffer. 

Calibrators and detection antibodies were prepared according to the manufacturer’s protocol. 

In total, 40 inflammatory biomarkers were analysed. This included the human kits for 

adiponectin, RBP4, and Neuroinflammatory Panel 1 (IFNγ, IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, 

IL-12p70, IL-13, TNF-α, GM-CSF, IL-1a, IL-5, IL-7, IL-12/IL-23p40, IL-15, IL-16, IL-17A, TNF-

b, VEGF, SAA, CRP, VCAM-a, ICAM-1, Eotaxin, MIP-1β, Eotaxin-3, TARC, IP-10, MIP-1α, 

MCP-1, MDC, MCP-4, VEGF-C, VEGF-D, Tie-2, Flt-1, and PlGF. 

A general protocol provided by the manufacturer was followed and was similar for all analytes. 

Differences were in the type of diluents used and the sample dilution, which was adjusted to 

ensure sample readings were within range of the standard curve. Sample dilutions varied from 

2-fold (most analytes) to 50000-fold (RBP4). In brief, first the plate was blocked with 150 μl 

blocking buffer (5% BSA in PBS) for 1 h at room temperature, shaking at 600 rpm. Then the 

plate was washed three times with 1X PBS + 0.05% Tween. The wash buffer was discarded 

and the plated tapped out on paper towels to remove any excess liquid. 50 μl of prepared 

calibrator, control or sample (heparin plasma) was added. The plate was shaken for 5 min at 

600 rpm and then incubated overnight at 4°C for 16 h with mild shaking. The next morning, the 

plate was washed three times with 1X PBS + 0.05% Tween and tapped dry. The plate was 

incubated with 25 μl of prepared antibody detection solution for 2 h at room temperature while 

shaking at 600 rpm and then washed again three times with 1X PBS + 0.05% Tween. After the 

plate was tapped dry, 150 μl read buffer was added to the plate and analysed on the MESO 

QuickPlex SQ 120 imager.  

Quality control criteria included intra- and interplate CV ≤ 20%; standard curve within 80 – 

120% recovery; data completeness ≥ 85%. Due to very low concentrations, the measurement 

of some analytes was unreliable, resulting in high CVs. After quality control (QC), data for 28 

analytes was available. 
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2.4 Quantification of blueberry anthocyanin metabolites 

Blueberry anthocyanin metabolites were quantified in serum and urine. Blood samples were 

collected via venepuncture and allowed to clot for 30 min followed by centrifugation at 1300 g 

for 10 minutes. A 24h pooled urine collection was made prior to the assessment visit and 

included the first sample on the morning of the assessment day. Upon receipt, both serum and 

urine samples were acidified with 95% formic acid (reagent grade, Sigma Aldrich, Dorset UK) 

to prevent degradation of anthocyanins using 52.5 µL/mL for serum and 32µL/mL for urine. 

Aliquots of both serum and urine were stored at -80°C before analysis. 

The samples were analysed for blueberry anthocyanin metabolites using liquid-

chromatography tandem mass spectrometry (LCMS, the combination of HPLC (high 

performance liquid chromatography) and mass spectrometry) based on a published method 

183 and adapted for this study by Dr Vera van der Velpen. I was substantially involved in the 

lab analysis of serum and urine samples and the subsequent data analysis and processing. 

To summarise the method: 100 µl serum or 50 µl urine samples were purified through solid 

phase extraction prior to mass spectrometric analysis using a 96 well plate containing Strata-

X- 33 µm polymeric reversed phase (Strata-X 33u Polymeric Reversed Phase, 60mg/1ml well, 

Phenomenex, Cheshire, UK). The samples were concentrated to 20 μl and spiked with 5 μl of 

5 µM scopoletin as an internal standard (for adjustment to final sample volume). Matrix-

matched standard curves were prepared from commercial serum or pooled urine ranging from 

0 - 10 µM for serum (10 points) and 0 - 20 µM for urine (11 points). For hippuric acid and 

benzoic acid in urine an external standard curve was prepared which extended to 2000 µM. 

Following the SPE, 1 µl of sample was injected onto a Kinetex polyfluorphenol column (2.6µM, 

100 x 2.1mm; Phenomenex, Cheshire, UK) and separated with an Agilent 1200 HPLC at a 

column temperature of 37°C and a flow rate between 0.3 and 0.45 ml/min using 0.1% formic 

acid in water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B) over a 

total run time of 34 min. The elution gradient is shown in Table 2-1. The HPLC was coupled to 

an ESI-MS/MS (SCIEX 3200 series Q-trap MS/MS; SCIEX, Warrington, UK). Source 

parameters were as follows. curtain gas: 30 psi, ion source gas 1: 35 psi, ion source gas 2: 50 

psi, ion spray voltage: -4000V/+4000V, temperature: 700°C. Compound parameters were 

independently optimised for each compound using syringe infusion from purchased standards 

(Sigma, Dorset, UK). The metabolites were identified based on retention time and three to four 

transitions (see Table 2-2). 
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Table 2-1. HPLC elution gradient for mobile phases A and B 

Time (min) Flow (μl/min) A (%) B (%) 

0 450 99 1 

7 300 92.5 7.5 

14 300 92.4 7.6 

17 450 90 10 

18.5 450 88 12 

20 450 87.5 12.5 

24 450 70 30 

25 450 10 90 

28 600 10 90 

29 450 99 1 

34 450 99 1 

 

Analyte peak areas and concentrations were determined using Analyst 1.5.1 (AB Sciex). 

Matrix-matched standard curves were prepared from commercial serum or pooled urine 

ranging from 0 - 10 µM for serum (10 points) and 0 - 20 µM for urine (11 points). For hippuric 

acid and benzoic acid in urine an external standard curve was prepared which extended to 

2000 µM. For each compound six consecutive points were chosen for the quantification. 

Further data processing was handled in Excel. This included adjustment of the concentrations 

for 1) a baseline peak in the 0 µM standard if present to obtain the absolute amount of analyte 

in the sample; 2) a final sample volume of 25 μl using the internal standard scopoletin; 3) the 

dilution factor (4 for serum and 2 for urine). To account for variations in urine volume, urine 

sample concentrations were further adjusted to the total volume of the 24h pooled sample, 

giving the total metabolite amount in μmol/24h. 

After all adjustments, the dataset for final statistical analysis was generated in SAS (SAS 

v9.3/9.4, SAS Institute Inc., Cary, NC, USA). 

LODs were calculated as the average of 3 times the signal-to-noise ratio from seven plates 

(see Table 2-2). 

Table 2-2. HPLC-MS identification of phenolic compounds and their LOD in serum and urine 

Compound Mode 
Rt 
(min) 

ion transitions (m/z) 
LODa 
Serum 

LODa  
Urine 

2,3-dihydroxybenzoic acid - 8.2 153/109, 108, 91 389 ± 304 736 ± 174 

2,4,6-trihydroxybenzaldehyde - 15.6 153/151, 125, 107 95 ± 38 91 ± 32 

2,4-dihydroxybenzaldehyde + 11.6 139/121 N/A 3395 ± 850 

2,5-dihydroxybenzoic acid - 7.5 153/109, 108, 91 N/A 180 ± 50 

2,6-dihydroxybenzoic acid - 19.4 153/135, 109, 91, 65 116 ± 41 N/A 

2,6-dimethoxybenzoic acid - 10.9 181/137, 107, 92 501 ± 156 597 ± 184 

2-hydroxy-4-methoxybenzaldehyde + 23 153/92, 77, 63 965 ± 432 N/A 

2-hydroxy-4-methoxybenzoic acid - 23.4 167/123, 108, 80 17 ± 2 20 ± 8 

2-hydroxy-6-methoxybenzoic acid - 19.6 167/123, 108, 80 63 ± 19 59 ± 11 

2-hydroxybenzoic acid - 16 137/93, 75, 65 64 ± 28 86 ± 9 

2-hydroxycinnamic acid - 19.3 163/119, 117, 93 46 ± 32 48 ± 17 

3,4,5-trihydroxybenzoic acid - 2 169/125, 107, 79 48 ± 13 72 ± 10 
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Table 2-3. Continued 

Compound Mode 
Rt 
(min) 

ion transitions (m/z) 
LODa 
Serum 

LODa  
Urine 

3,4,5-trimethoxybenzaldehyde + 23.8 197/169, 154, 138, 123 50 ± 14 55 ± 13 

3,4,5-trimethoxyphenylpropionic acid - 23.4 239/180, 164, 149, 121 349 ± 87 594 ± 378 

3,4-dihydroxy-5-methoxybenzoic acid + 7.5 185/155, 146, 107, 78 490 ± 248 1208 ± 147 

3,4-dihydroxybenzaldehyde - 5.4 137/108, 92, 81 55 ± 25 48 ± 20 

3,4-dihydroxybenzoic acid - 3.8 153/108, 91, 81 52 ± 9 57 ± 14 

3,4-dihydroxycinnamic acid - 10.6 179/135, 106, 89 262 ± 74 236 ± 117 

3,4-dihydroxyphenylacetic acid - 4.2 167/123, 108, 95 405 ± 219 127 ± 73 

3,4-dihydroxyphenylpropionic acid - 7.1 181/137, 135, 121, 109 348 ± 189 506 ± 331 

3,4-dimethoxybenzoic acid - 17.8 181/137, 122, 107, 79 633 ± 302 1976 ± 794 

3,4-dimethoxybenzyl alcohol + 12.2 169/109 665 ± 348 N/A 

3,4-dimethoxyphenylacetic acid - 17.7 195/151, 136, 121, 93 51 ± 15 51 ± 25 

3,5-dihydroxybenzaldehyde - 5.8 137/109, 95, 93, 91 182 ± 60 206 ± 38 

3,5-dihydroxybenzoic acid - 3.9 153/109, 108, 91 157 ± 32 60 ± 6 

3,5-dihydroxybenzyl alcohol - 1.8 139/121, 109, 97, 95 98 ± 21 169 ± 63 

3,5-dihydroxyphenylpropionic acid - 6.6 181/137, 122, 95 171 ± 83 94 ± 19 

3,5-dimethoxybenzaldehyde + 25.9 167/139, 123, 105, 79 336 ± 226 N/A 

3-hydroxy-4-methoxybenzaldehyde - 11.8 151/136, 108, 92 1781 ± 1867 N/A 

3-hydroxy-4-methoxybenzoic acid + 6.7 169/151, 125, 93 1117 ± 482 141 ± 43 

3-hydroxy-4-methoxycinnamic acid - 19.4 193/178, 149, 134 170 ± 62 198 ± 53 

3-hydroxy-4-methoxyphenylacetic acid - 11 181/166, 137, 122, 94 719 ± 209 840 ± 105 

3-hydroxybenzaldehyde - 8.4 121/93, 92, 65 133 ± 34 163 ± 34 

3-hydroxybenzoic acid - 7.6 137/93, 75, 65 152 ± 31 151 ± 43 

3-hydroxybenzoic acid-4-glucuronide + 3 331/155, 153, 115, 113, 111, 109 12 ± 3 20 ± 7 

3-hydroxybenzoic acid-4-sulfate & 
4-hydroxybenzoic acid-3-sulfateb + 7 235/191, 189, 155, 153, 110, 109 7 ± 5 13 ± 7 

3-hydroxyhippuric acid - 4.4 194/150, 148, 93 125 ± 100 13 ± 11 

3-hydroxyphenylpropionic acid - 12.1 165/121, 119, 106 99 ± 29 95 ± 20 

3-methoxybenzoic acid + 19.5 153/93, 75, 65 N/A 431 ± 412 

3-methoxybenzoic acid-4-glucuronide + 5.1 345/169, 167, 154, 152, 115, 113 21 ± 14 24 ± 7 

3-methoxybenzoic acid-4-sulfate &  
4-methoxybenzoic acid-3-sulfateb + 10 249/169, 167, 154, 152, 110, 108 14 ± 9 12 ± 5 

3-methoxyphenylpropionic acid - 24.5 179/135, 120, 105 N/A 1958 ± 741 

3-methylhippuric acid &  
4-methylhippuric acidb - 12.5 192/148, 146, 91 109 ± 87 140 ± 80 

4-hydroxy-2-methoxybenzaldehyde + 15.6 153/92 N/A 318 ± 92 

4-hydroxy-3,5-dimethoxybenzoic acid + 12.3 199/155, 140, 125 80 ± 45 68 ± 14 

4-hydroxy-3,5-dimethoxycinnamic acid - 21.1 223/208, 193, 164 15 ± 4 14 ± 2 

4-hydroxy-3,5-dimethoxyphenylacetic 
acid 

- 12.5 211/167, 152, 109 N/A 595 ± 188 

4-hydroxy-3-methoxybenzoic acid - 9.5 167/152, 123, 108 153 ± 87 135 ± 57 

4-hydroxy-3-methoxycinnamic acid - 18.8 193/178, 149, 134 49 ± 12 35 ± 11 

4-hydroxy-3-methoxyphenylacetic acid - 9.8 181/166, 137, 122, 79 1020 ± 322 1226 ± 464 

4-hydroxy-3-methoxyphenylpropionic 
acid 

- 14 195/136, 121, 119 42 ± 7 74 ± 80 

4-hydroxybenzaldehyde - 7.9 121/108, 92, 65 76 ± 63 49 ± 35 

4-hydroxybenzoic acid - 6 137/93, 75, 65 78 ± 33 72 ± 17 

4-hydroxybenzoic acid-3-glucuronide - 4.1 329/153, 113, 109 11 ± 8 21 ± 10 

4-hydroxybenzyl alcohol - 4.2 123/121, 105, 77 N/A 135 ± 60 

4-hydroxycinnamic acid - 16.1 163/119, 117, 93 64 ± 48 58 ± 16 

4-hydroxyhippuric acid - 3.7 194/150, 100, 93 11 ± 4 4 ± 2 

4-hydroxyphenylacetic acid - 6.4 151/123, 107, 93 1007 ± 305 N/A 

4-hydroxyphenylpropionic acid - 10.5 165/121, 119, 106, 59 428 ± 203 1447 ± 471 

4-methoxybenzoic acid + 19.5 153/135, 109, 92, 77 250 ± 46 N/A 

4-methoxybenzoic acid-3-glucuronide - 6.5 343/167, 152, 113 27 ± 4 31 ± 6 

4-methoxyphenylpropionic acid + 23.6 181/121 1213 ± 963 1196 ± 304 

Benzoic acidc - 12 121/93, 77 N/A 14 ± 1 

Benzoic acid-4-glucuronide + 2.5 315/177, 175, 115, 113, 95, 93 11 ± 4 25 ± 9 
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Table 2-3. Continued 

Compound Mode 
Rt 
(min) 

ion transitions (m/z) 
LODa 
Serum 

LODa  
Urine 

Benzoic acid-4-sulfate + 8.4 219/175, 173, 139, 137 25 ± 6 11 ± 9 

Benzoylglutamic acid - 9.7 250/206, 162, 121 23 ± 7 24 ± 8 

Chlorogenic acid - 11.7 353/191, 161, 127 47 ± 24 34 ± 13 

Cyanidin-3-glucoside + 12.7 449/287, 241, 157 20 ± 15 33 ± 9 

Hippuric acidc - 6 178/134, 132, 77 85 ± 108 8 ± 3 

Methyl 3,4,5-trihydroxybenzoate - 7.4 183/124, 106, 78 26 ± 15 26 ± 13 

Methyl 3,4,5-trimethoxybenzoate + 26.5 227/195, 168, 91 309 ± 236 N/A 

Methyl 3,4-dihydroxybenzoate - 12.5 167/108, 107, 91 27 ± 18 28 ± 10 

Methyl 3,4-dimethoxybenzoate + 25.6 197/165, 153, 138 54 ± 25 47 ± 9 

Methyl 3,5-dihydroxybenzoate - 12.2 167/152, 125, 123, 108 N/A 160 ± 71 

Methyl 3,5-dimethoxybenzoate + 26.8 197/165, 153, 138, 122 59 ± 35 59 ± 25 

Methyl 3-hydroxybenzoate - 19 151/136, 92 N/A 1292 ± 426 

Methyl 3-methoxybenzoate &  
methyl 4-methoxybenzoateb + 26.8 167/145 237 ± 86 403 ± 63 

Methyl 4-hydroxybenzoate - 18 151/136, 92, 91 18 ± 5 23 ± 8 

Rosmarinic acid - 25 359/197, 179, 161 8 ± 3 7 ± 2 

trans-3-hydroxycinnamic acid - 16,9 163/119, 93, 91 79 ± 56 75 ± 24 

Rt = retention time in minutes. 
a Limit of Detection (LOD) values are LOD ± SD. Calculated as 3 times the signal-to-noise ratio and averaged across 7 plates. 
N/A = no concentration data was available for this compound 
b Isomers could not be separated sufficiently with HPLC and are presented as the cumulative of both isomers. 
c Hippuric acid and benzoic acid were quantified using an external standard curve run in triplicate. SD reflects the triplicate 
measurement. 
 

 

2.5 Statistical analyses 

All statistical testing was performed in Stata 16.0 (Stata Corp, College Station, Texas, USA).  

In part 1 of the results (Section 3.1) an exploratory factor analysis (EFA) was used to reduce 

the data dimension to two factors (see Section 2.6 for an introduction to EFA). For each factor, 

two types of composite measures were calculated: 1) factor scores, in which factor loadings 

are applied as weights to all variables, were computed using the Stata factor postestimation 

command and 2) average scores (in μmol/24h) were calculated as the average change of 

selected variables most represented by the extracted factors. Associations between composite 

scores from EFA and cardiovascular risk factors were assessed using Pearson correlation. 

High and low group comparisons were tested using Welch’s t-test. Participants were clustered 

by plotting the ranks of the average scores against each other. The clustering was initially done 

manually and followed up by a cluster analysis using k-means clustering algorithm. One-way 

ANOVA was performed to test differences between the clusters, homogeneity of variance was 

tested using the Brown-Forsythe test. 

In part 2 of the results (Section 3.2) the following additional analyses were performed:  

• The metabolite panels were calculated as the average log2 fold change from baseline 

for selected metabolites: 𝑙𝑜𝑔2𝐹𝐶 =  𝑙𝑜𝑔2(𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡) −  𝑙𝑜𝑔2(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒).  
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• Equality of variance between groups was tested based on the median using the Brown-

Forsythe test before using one-way ANOVA to compare the metabolite panels across 

treatment groups.  

• Univariable ordinary least-squares linear regression was used to assess the 

relationship between the metabolites/panels and cardiovascular risk factors; validity of 

the model was assessed by inspecting the residuals plot and assessing normality of 

the residuals using normal probability plots.  

• In case of outliers, which were confirmed to not be due to measurement errors, a robust 

regression was performed using an MM-estimator184,185.  

• A non-parametric ROC analysis was performed using Stata’s “roctab” command.  

Across all treatment groups, participants were excluded on the basis of incomplete urine 

collections (n= 22), lacking metabolite data (n = 2), lower quality FMD data (n = 16), and 

change in blood pressure medication (n = 1).  

Note to examiners: 

The development of a working panel of target metabolites which characterized blueberry high 

metabolisers and low metabolisers was an exploratory and iterative process. The exploratory 

factor analysis described in Section 3.1 and the common metabolite analysis presented in 

Section 3.2 within this chapter were originally performed with all available data (n = 35) in the 

full dose group as the underpinning assessment to then apply in a prospective ongoing study 

(described in Chapter 5). Due to the limitations confirmed in Section 3.1.2 (see Challenge 1) 

regarding the use of factor analysis in small study sizes, and the need to have a confirmed 

panel to employ consistently in the AMP study (described in Section 3.2.3), it was considered 

justified to proceed prior to a more stringent application of data quality assessments in the 

latter stage of the thesis.  

Recruitment for the study and use of the metabolite panel as a screening tool began at the end 

of my third year. A delay to the start of the study was introduced due to the move of the clinical 

research facility to the Quadram Institute, and was the reason I got an extension to my studies. 

After completion of the AMP study recruitment, the process was reexamined and stepwise 

refined: 

1) excluding those with incomplete urine collections 

2) excluding those with FMD image sequences scored as poorer quality by the ultra-

sonographers. 

What follows in Chapter 3 (all analyses) represents the final, refined analysis (after the 

implementation of steps 1 and 2 above), as this was considered the most robust for purposes 
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of extensive thesis analysis (i.e., n = 25 participants in the full dose group were used for the 

exploratory factor analysis and subsequent analyses). The panel which resulted from the 

original analysis was reexamined in Section 3.2.3 (see Panel 5) to assess validity of its use 

when a more stringent data quality assessment was applied. 

 

2.6 Exploratory factor analysis 

Research question 

In metabolomics, multivariate methods are applied to identify a few biologically relevant 

features among a large background of metabolites which uniquely define the system186. In 

other words, the goal is to find a pattern within the data. The first step in such an analysis is 

commonly a dimension reduction technique, which summarizes variables into a smaller, more 

manageable set of variables based on their correlations. There are two types of dimension 

reduction – the grouping of variables and the grouping of observations. The former is 

commonly done using principal components analysis or factor analysis. The latter can be 

achieved using a cluster analysis algorithm such as hierarchical clustering or k-means 

clustering. These two methods can also be combined. First, a ‘metabolic fingerprint’ of an 

underlying cause is identified, and then individuals are clustered based on their similarities in 

regard to the identified metabolic fingerprint. 

The research objective in Chapter 2.7 was to determine if a metabolic phenotype existed which 

underpinned the formation of metabolite patterns in the CIRCLES study population. This 

analysis was approached in two steps: first, an exploratory factor analysis was performed to 

reduce the dimension of the metabolite data and identify clusters of urinary metabolites which 

may suggest a metabolic phenotype. Second, after identification of high and low metabolisers, 

the metabolic profiles of each group were examined more in-depth to create a panel of 

metabolites indicative of a high metaboliser of blueberry compounds. Hereafter is a description 

of the methods used in the first step. 

Sample type and variables 

Of the 72 metabolites quantified in urine, 46 metabolites were included in this analysis. 

Because of the data pre-treatment methods used, measurement errors particularly at low 

concentrations would have been inflated. To ensure high data quality, 26 metabolites were 

excluded if the compound was not detected or there was uncertainty in measurement 

accuracy. Uncertainty included low concentrations close to the LOD or unclear peak detection 

due to noisy chromatograms. 
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24h pooled urine samples (at baseline and 6 months) were chosen to determine metaboliser 

signatures in preference to single, fasted serum samples, as this enabled an assessment of 

the accumulated metabolite elimination over 24h. In contrast, metabolite concentrations in 

fasted serum samples would have shown only the metabolites in circulation at the time of blood 

sampling; thus providing an incomplete picture of likely metabolites in response to blueberry 

intake. In previous studies, urinary metabolites have correlated well with maximum serum 

concentrations 64, anthocyanin metabolite levels have been shown to be elevated over 24 h140 

and urine has been confirmed as the likely main pathway of phenolic acid elimination48. For 

these reasons, it was considered a more accurate reflection of the bioavailability of blueberry 

metabolites in this study than fasting serum.  

The EFA was restricted to the full dose treatment group only. This was done as it was of 

particular interest to identify metabolic differences in people who received the same amount of 

blueberry compounds. 

Brief introduction to EFA 

This section is intended to give a brief overview of EFA to facilitate understanding of the results. 

More details of some concepts concerning EFA, such as sample size considerations, are 

included in the results chapter where pertinent.  

Exploratory factor analysis (EFA), or also called common factor analysis, is a multivariate 

analysis technique which is used to identify an unobserved (latent) variable represented in the 

common variance of the observed variables. In simpler terms, it aims to identify patterns 

among the correlations between the variables and tries to find the best way to express those 

patterns by summarising them in a smaller number of variables called factors. It is similar to 

principal component analysis (PCA), which is one of the most widely used methods for 

dimension reduction in metabolomics186. Although EFA is less widespread, it has been used 

in nutritional research to identify dietary patterns associated with metabolic syndrome187–189 

and has also found application in the interpretation of variations in mass spectrometry data190. 

The fundamental difference between PCA and EFA is that PCA tries to identify components 

which are composites of the observed variables, whereas EFA assumes there is an underlying 

factor which affects the observed variables. EFA was therefore better suited than PCA in the 

context of the research question set out in this study. The rationale behind choosing EFA for 

this analysis was the hypothesis that a metabolic phenotype (= the unobserved factor) affected 

the metabolism of blueberry compounds and thereby the formation of phenolic metabolites (= 

the observed variables). The two different principles are illustrated in Figure 2-2. 

Next to the conceptual difference, a further important difference between PCA and EFA is the 

way the variance in the data is viewed. EFA assumes that the total variance can be partitioned 
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into two parts: a common variance, which is the shared variance among the variables, and a 

unique variance, which is any variance which is not shared among the variables. The unique 

variance includes a specific variance, which is specific to a certain variable, and an error 

variance, which may arise from measurement errors. The presence of unique variance and 

measurement errors is a reasonable assumption in real data (i.e., not simulated data). When 

creating factors, EFA only considers the common variance. In contrast, PCA assumes that the 

total variance is equal to the common variance. While it preserves as much of the variance as 

possible, it is reasonable to assume that each extracted component includes some unique 

variance and measurement error.  

 

Decision process in EFA 

A key component in EFA is the exploratory nature. It goes through multiple stages and finding 

the best solution requires returning to and repeating previous stages. The decision process 

followed in this study is outlined in Figure 2-3. 

Stage 1. Data screening and pre-treatment 

Data pre-treatment is crucial to the outcome of factor analysis and improves the biological 

interpretation and reliability of the results191,192. This stage involves considerations regarding 

Figure 2-2. Concept of EFA and PCA 

Exploratory factor analysis (left) assumes that an underlying factor gives rise to the observed 
variables. It differentiates between common variance among the variables and a unique variance, 
which includes a variance specific to a variable, and an error variance, which could arise from a 
measurement error. A factor represents only the common variance among variables, not the total 
variance. In contrast, principal component analysis (right) focusses on the observed variables and tries 
to find optimised weighted linear combinations of the variables. A component represents the total 
variance in the data and will therefore likely include specific variance and measurement error. S: 
specific variance; E: error variance 
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the available sample size (in this case n = 25), the cleaning of data (26 of 72 quantified 

metabolites were excluded to ensure high data quality), identification and handling of potential 

outliers, treatment of missing data, scaling of data (affects the range of each variable), and 

variable selection (affects the number of variables for the model). These considerations are 

explained in detail in the results section. 

 

The data was screened for factorability, i.e., the suitability of the data for factor analysis. This 

is based on the correlation between the variables as well as the sample size. If multiple 

variables are correlated with an underlying factor, we expect the variables to be correlated with 

each other. Thus, a degree of correlation is desired. Different measures were used to ascertain 

factorability in this study. 

Figure 2-3. Decision process in factor analysis 

The figure summarises the decision process used in this thesis to perform the EFA. It was informed by 
the guidelines described in Chapter 3 of Hair et al, 2010, Multivariate Data Analysis, 7th Edition, 
Pearson Education, Upper Saddle River, NJ 
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- Correlation matrix:  

As a rule of thumb, no variable should have many correlations under 0.3 193 

- Bartlett’s test of sphericity: 

If all variables are perfectly uncorrelated, then the correlation is 0 and the matrix 

would resemble an identity matrix, i.e., 1 on the diagonal and 0 everywhere else. 

Bartlett’s test tests the correlation matrix against an identity matrix and a significant p-

value would indicate that the correlations significantly deviate from the identity matrix. 

- Kaiser-Meyer-Olkin measure of sampling adequacy (KMO): 

KMO compares correlations to partial correlations and takes a value between 0 and 

1, with values closer to 1 indicating better suitability of the data for factor analysis. 

Values close to 0 indicate that the partial correlations are greater than the 

correlations, which means that the correlation between the variables is due to only a 

few variables sharing variance rather than being more widespread. 

- Anti-image correlation matrix: 

This is the negative of the partial correlation matrix. Many large values indicate that 

the correlation between some variables is not related to other variables and that the 

data is not suitable for factor analysis. 

 

An important consideration is the sample size required for exploratory factor analysis. This 

discussed in more detail in results section 3.1.2. Many different recommendations exist for a 

minimum sample size in absolute numbers or ratios of observations to variables. While it is 

widely accepted that larger sample sizes lead to a more stable and reproducible factor pattern, 

MacCallum, Widaman, and Zhang194 have demonstrated that the common rules of thumb for 

a minimum sample size are not generalisable and that the impact of the sample size rests on 

the communalities (the proportion of shared variance explained by the factors) and factor 

overdetermination (at least three or four variables strongly correlate with the factor and simple 

structure). Furthermore, the impact of sample size reduces with increased factor loadings (the 

strength of the relationship between a variable with a factor)192.  

Although the sample size in this study was small with n = 25, putting thresholds in place can 

help reduce the impact of a small sample size to still achieve a meaningful result. The 

thresholds used were 0.5 for communalities and factor loadings and 0.7 for KMO. As will be 

discussed in the results chapter, a factor with less than three significant loadings was not 

considered sufficiently overdetermined.  
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Stage 2. Selecting an extraction method 

An extraction method is the technique by which the correlation matrix is examined, and factors 

are extracted. The factors are linear combinations of the variables and are extracted in a 

progressive fashion until a number of factors has been extracted that equals the number of 

original variables. The first factor accounts for the most variance in the data, the second the 

second highest variance and so on. Each extracted factor has an eigenvalue, which is the 

amount of variance explained by that factor. Each method also estimates factor loadings and 

the communalities of the model.  

The factor loading represents the unique relationship of the original variable with the extracted 

factor. Higher loadings therefore represent a bigger contribution of a variable to a factor. The 

sum of squared factor loadings across all original variables equals the amount of variance 

explained by the factor.  

Communality is the proportion of variance for each variable that is explained by the extracted 

factors. It is estimated by summing the squared factor loadings across all extracted factors per 

original variable and ranges from 0 to 1. 

The maximum number of factors that can be extracted is the number of original variables. 

However, the first few factors will account for a substantial portion of the variance. Therefore, 

the next step is to decide on how many factors to extract. 

Stage 3. Deciding on the number of factors to extract 

The number of factors retained in the model has implications on factor pattern, the reliability of 

the structure and interpretability195. There a several criteria available to guide the factor 

retention decision196. Two of these, the minimum average partial test (MAP) and scree plot 

were used in this study and are presented in the results chapter.  

In addition, the decision on the number of factors to extract should also be guided on a 

theoretical basis when possible. In this case, we might expect at least two factors which 

differentiate at least two metabolic profiles. 

Stage 4. Selecting a rotation method 

Factor rotation helps achieve a simpler and theoretically more meaningful factor pattern193. 

Each variable is modelled as a linear combination of the extracted factors and the relationship 

of each variable with each factor is quantified by the factor loading. Ideally, each variable 

should load only on one factor and each factor should have multiple high-loading variables. 

This is often not the case with unrotated factor loadings. Because the first factor explains the 

largest amount of variance, most variables will load highly on the first factor.  
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To understand the rotation, imagine a factor diagram which plots the unrotated factor loadings 

of two factors Figure 2-4. The variables form two clusters on the diagram, however this is not 

easily visible from the factor loadings. When factors are rotated, this means that the axes are 

rotated around the origin so that the factor loading pattern changes, but the relative position of 

the variables remains the same. This can clarify the factor structure such that each of the 

clusters is now represented by one factor, i.e., each variable loads highly only on one factor. 

There are two main categories of rotation: the orthogonal factor rotation and the oblique factor 

rotation. In the orthogonal rotation, the rotated axes are kept at a 90° angle which results in 

uncorrelated factors. Varimax is an orthogonal rotation method and aims to maximise the 

variance within a factor so that high loadings are increased and low loadings are reduced. In 

contrast, promax is the oblique rotation method. In oblique rotation, the rotated axes are not 

constrained to a 90° angle which means that the factors can be correlated after rotation. 

The structure simplification can be seen from the example in Table 2-4. For this example, two 

factors were extracted from seven variables. Any loading below 0.5 is omitted for clarity. The 

unrotated factor pattern is not easy to interpret, as most variables load onto factor 1 with a 

factor loading of over 0.7. In addition, variables 1 and 3 cross-load onto factor 2, i.e., they 

significantly load on a second factor. The rotated factor solution however, clearly separates 

variables 1, 2, 6, and 7 from variables 3, 4, and 5. The former are described by factor 1 and 

the latter by factor 2. There are no cross-loadings. Essentially, the rotation redistributes the 

variance explained by each factor, thus the communalities (far right column in Table 2-4) are 

Figure 2-4. Explanation of factor rotation 

In essence, factor rotation can be understood as the rotation of the axes around the origin of a 
coordinate system while the relative position of the variables remains the same. When the angle 
between the axes remains 90°, as shown in the figure, then the rotation is orthogonal and resulting 
factors are uncorrelated. When the angle is not constrained to 90°, i.e. the angle may be larger or 
smaller than 90°, then the rotation is oblique and results in correlated factors. 
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the same for both factor patterns. The communalities in this example are all high with a 

communality of at least 0.6, indicating that at least 60% of the variance of each variable was 

explained by this factor solution.  

Table 2-4. Comparison of rotated and unrotated factor loadings 

 Unrotated Rotated  

Variables Factor 1 Factor 2 Factor 1 Factor 2 Communality 

Var 1 0.76 -0.52 0.92  0.84 

Var 2 0.77  0.76  0.66 

Var 3 0.70 0.59  0.90 0.85 

Var 4  0.61  0.78 0.62 

Var 5 0.76   0.81 0.78 

Var 6 0.86  0.89  0.85 

Var 7 0.80  0.78  0.70 

 

Stage 5. Interpreting the results and respecification 

After rotating the factor matrix, the factor matrix should be interpreted and the model 

respecified if required. Interpretation includes identifying the variables which load significantly 

on each factor, evaluating the communalities, and labelling the factors. Variables which load 

highly on a factor are considered to contribute more to the factor. The labelling of a factor 

involves trying to find an appropriate term descriptive of those variables. This is derived from 

the nature of the variables rather than a statistical computation. 

Respecification of the model is required when a variable does not load significantly on any 

factor, there is cross-loading, communalities are low, or the resulting factors do not make any 

sense. In this case, the model may be respecified by extracting a different number of factors 

or using a different rotation method. 

Stage 6. Additional uses for subsequent analyses 

After an acceptable solution has been found, appropriate variables representing the factors 

can be generated and used for subsequent statistical testing. This effectively reduces the 

dimension of the data to a smaller set of new variables. There are two types of scores, refined 

and non-refined197. A refined score is a linear combination of all variables using the factor 

loadings as weights. A non-refined score is a composite measure such as the total sum or 

average of variables which loaded highly on the respective factors. In contrast to the factor 

scores, each variable was weighted the same. 

The new variables can be used for further statistical testing. In this study, they were used for 

association studies with cardiovascular risk factors and the identification of groups of 

individuals which were classed as high and low metabolisers. The metabolic profile of these 

groups was further investigated in Part 2 of the results chapter (Section 3.2).  
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2.7 My involvement in the CIRCLES study and acknowledgements 

The CIRCLES study was designed and conducted by the CIRCLES research team (Chief 

Investigator Prof Aedin Cassidy, see 159 for other team members and contributions). Dr Vera 

van der Velpen optimised the LCMS method, supported by Dr Colin Kay. The flow-mediated 

dilation (FMD) images were captured and analysed by Dr Peter Curtis and Dr Lindsey Berends. 

Prof Martin Feelisch and his group assessed NO-related metabolites and cGMP levels. 

My role in the study included the quantification of metabolites using LCMS in urine and serum, 

and the assessment (including method optimisation) of inflammatory biomarkers in plasma. 

For a period of time towards the end of the CIRCLES study and during my first year, I also had 

some patient facing responsibilities and received and processed biological samples (urine and 

blood). The data analysis presented in Chapter 3 was designed and performed by me. 
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3 Retrospective analysis of urinary anthocyanin 

metabolites to identify a metabolic signature of high 

metabolisers and its association with cardiometabolic 

markers 

The objective of the study in this chapter was to investigate if differential responses to intake 

of blueberry anthocyanins among participants of the CIRCLES study existed and if these 

mediated differential clinical responses, such as vascular function. The CIRCLES study was a 

six-month blueberry intervention study conducted in people with metabolic syndrome (MetS). 

MetS is a term which encompasses the compounded metabolic risk, attributable to a cluster 

of conditions that together significantly increase the risk of developing cardiovascular disease 

and type 2 diabetes mellitus (T2DM)10. MetS is characterised by visceral obesity, 

dyslipidaemia, hyperglycaemia, and hypertension. While the exact underlying cause of MetS 

is uncertain, insulin resistance is widely believed to be central to the pathophysiology. In 

addition, each of the components of MetS can cause endothelial dysfunction46. There is 

evidence from population-based studies and human intervention trials that dietary flavonoids, 

and in particular the subclass of anthocyanins, may improve cardiometabolic health and 

alleviate several components of the metabolic profile associated with MetS70,87,89,99,198. Thus, 

for those with MetS a daily intake of anthocyanins may improve the MetS metabolic profile as 

a whole and complement existing therapies to address MetS.  

Anthocyanins are found in red-, blue-, and purple-coloured fruits and vegetables and are 

especially abundant in commonly consumed berry fruits including blueberries.199 In 

population-based studies, the habitual intake of anthocyanins has been shown to be the 

most effective of the six main flavonoid subclasses in reducing the risk of cardiovascular 

diseases (CVD), such as myocardial infarction, ischemic stroke, and hypertension, and is 

inversely associated with insulin resistance, inflammation, and body weight59,68,69,99,108,200,201. 

Beneficial effects on intermediate markers of cardiovascular risk, including endothelial 

function, arterial stiffness, blood pressure, insulin resistance and lipid profile, have also been 

observed in randomised controlled trials (RCTs)84–91.  

However, findings from RCTs are equivocal and there is a well-established body of research 

which highlights the inter-individual variability in response to flavonoid interventions and the 

importance of addressing this issue in future research151,156,202–208. The inter-individual 

variability in the absorption and metabolisation of flavonoids implies that individuals are 

exposed to different levels of bioactive compounds. For example, inter-individual variability is 

demonstrated by a study with 18 participants which assessed the flavanone metabolites 
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hesperitin and naringenin (aglycones and phase II conjugated metabolites) in urine after 

consumption of 400 ml fresh orange juice209. In this study variable mean excretion rates were 

observed for high excretors (15% of intake, n = 4), medium excretors (9% of intake, n = 7), and 

low excretors (3% of intake, n = 7). In another example, a human tracer study which fed 500 

mg 13C-labelled Cyanidin-3-glucoside recovered on average a total of 44% 13C in urine, breath, 

and faeces over 48h. However, per individual, the recovery ranged from 15% to 99%140. The 

authors note that the observed variability was likely due to unrecovered label remaining in 

faeces, demonstrating a variability in gastric and intestinal transit time, which may also affect 

bioavailability over time due to prolonged time in the gut. The between-person variability in 

bioavailability is thought to be one of the factors leading to contradictory results obtained from 

clinical trials. 

Importantly, the tracer study outlined above observed a high abundance of 13C-labelled 

phenolic metabolites, some of which persisted over 48 h123. In contrast, the parent anthocyanin 

cyanidin-3-glucoside was only observed for a short period of time and made up only 2% of the 

total compounds found in circulation. This result emphasised the potential of the anthocyanin 

metabolites as the bioactive mediators of clinical effects rather than the parent compounds. In 

support of this, phenolic metabolites have been found to be effective in in vitro studies. For 

example, in a cell model a greater anti-inflammatory effect was observed for anthocyanin 

metabolites in comparison to their parent anthocyanins.141–143 

There are a multitude of factors which likely contribute to inter-individual variation, including 

genetic variability in the absorption of phenolic compounds from the gut, further metabolism 

once absorbed (including the phase I and II of the xenobiotic metabolism), the elimination 

through urine excretion or recirculation to the gut via bile. Next to the genetic component, 

particularly the gut microbiota are thought to play a major role in the metabolism of 

flavonoids.128,151. Up to 85% of anthocyanins reach the colon intact where they are exposed to 

microbial degradation. Thus, the composition and bioactivity of the gut microbiota may 

significantly contribute to inter-individual variation. On this basis, several phenotypes have 

been established which differentiate a responder from a non-responder to flavonoid intake. A 

prominent example of such a phenotype is the ability to produce the microbial metabolite equol 

from soy isoflavones152 which depends on the presence of certain strains of bacteria. Equol 

production has been linked to vasoactive functions153,210, however, only about 30% of the 

western population are equol producers. This highlights the importance of being able to 

differentiate between metabolic phenotypes (‘metabotypes’) when assessing the clinical 

efficacy of flavonoids. Unfortunately, only few unique, metabotype-defining catabolites for 

flavonoids such as equol are known (another example are urolithins from ellagitannins156). 

Predominantly, microbiota degrade many different flavonoids into a set of similar catabolites 

157 which include hydroxycinnamic, phenylpropionic, phenylacetic and benzoic acids. Because 
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of this, metabotyping on the basis of produced metabolites in response to dietary interventions 

is not straightforward for the majority of flavonoids and likely includes a group of metabolites 

rather than a specific metabolite. 

The main aim of the current study was to identify a metabolic signature of responders to 

blueberry anthocyanins. The second aim was to investigate the relationship between the 

metabolic signature and vascular function. These aims were driven by the underlying 

hypothesis that a single or a group of metabolites may mediate the potential cardiovascular 

benefits a person receives from blueberry intake and that this group of metabolites is 

preferentially produced by individuals of a certain metabolic phenotype. As has been shown 

for other dietary flavonoids (e.g. isoflavones152,211 and ellagitannins156), underpinning metabolic 

phenotypes may explain some of the variability in cardiometabolic response to intake.  

The data analysis was approached in two steps: first, an exploratory factor analysis was 

performed to identify clusters of urinary metabolites which may suggest a metabolic 

phenotype. Second, the metabolic profile of high metabolisers was examined more in-depth to 

create a panel of metabolites indicative of a high metaboliser of blueberry compounds. 

The data presented hereafter, is the first known assessment (to the author) of a metabolic 

phenotype from an expansive range of anthocyanin-derived metabolites on cardiometabolic 

endpoints. 

3.1 Part 1: Exploratory factor analysis of urinary anthocyanin metabolites 

following blueberry intake for six months 

3.1.1 Summary of the method and data used (see methods Section 2.6 for details) 

and statistical approach 

The factor analysis and subsequent testing in this section was restricted to n = 25 participants 

(after quality assurance-based exclusions) from the full dose group of the CIRCLES study (see 

Section 2.1). To recap, the full-dose group consumed freeze-dried blueberries daily for six 

months providing 364 mg anthocyanins and 879 mg phenolics. The 24 h urinary analysis 

presented hereafter was limited to n = 46 blueberry metabolites quantified using liquid-

chromatography mass spectrometry (see Section 2.4 for methodology). The data from a range 

of cardiometabolic assessments were included in this section (further described in Sections 

2.2 and 2.3, i.e., FMD, PWV,SBP, DBP, fasting levels of glucose, insulin, HOMA-IR, HDLC, 

LDLC, TG and the inflammatory markers IL-6, TNF-α, CRP, IL-8, adiponectin. As described in 

the statistics section (Section 2.5), exploratory factor analysis (EFA) was used to identify 

clusters of metabolites; associations were assessed using Pearson correlation, group 
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comparisons were done using Welch’s t-test and cluster analysis was performed using k-

means clustering. 

3.1.2 Screening and preparation of the metabolite data 

After data pre-processing, which included the analysis of the LCMS output in Analyst 1.5 and 

further data handling in Excel and SAS, the data was pre-treated prior to the multivariate 

analysis. This included data cleaning, identification of potential outliers, scaling, and variable 

selection. Data pre-treatment affects the outcome of the analysis and is crucial for improving 

the biological interpretation of the results191,192. The challenges encountered with this dataset 

and how these were resolved is summarised in Table 3-1 and described in more detail below. 

Table 3-1. Steps involved in the preparation of the metabolite data for EFA 

Challenge Solution 

1. No. of variables > sample size  
(n = 25) 

Reduce no. of variables (group by chemical structure) 
and set thresholds: 
- factor loadings (> 0.5) 
- communalities (> 0.5) 
- KMO (> 0.7) 

2. Variation at baseline Adjust for baseline (calculate change) 

3. Differences in scale/large range Median and IQR normalization 

4. Potential outliers Median and IQR normalization 

5. Missing values Imputation of median 

6. Factorability 
Grouping by chemical structure attenuated the extreme 
multicollinearity of some variables 

 

Challenge 1: Sample size and number of variables 

This analysis included n = 25 observations from the original n = 37 full dose participants that 

completed the study. Participants were excluded from this factor analysis based on having 

poorer quality FMD data, incomplete urine collections or lacking metabolite data. 

Although there is no generally agreed recommendation for an adequate EFA sample size, it is 

widely accepted that more stable, reproducible and generalisable factor patterns are observed 

with larger sample sizes192. Equally, the ratio of observations to variables assessed is 

important; with greater stability when the observations comfortably outnumber the variables 

assessed. Guidelines in textbooks for a minimum sample size vary largely, for example Hair 

et al193 recommended a sample size of at least 50 and a ratio of 5 observations per variable, 

but added that 100 samples and a ratio of 10:1 would be preferable. Comrey and Lee212 offered 

a rough scale ranging from n = 50 (very poor) to 100 (poor), 200 (fair), 300 (good), 500 (very 

good) and 1000 (excellent). In contrast, Gorsuch213 considered a ratio of 10:1 above what was 
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needed and speaks of a factor analysis where a sample size of less than twice the number of 

variables gave the same factors as a larger sample size. MacCallum, Widaman, Zhang and 

Hong194 demonstrated empirically that the common rules of thumb for a minimum sample size 

are not generalisable nor particularly useful in factor analysis and showed that the required 

sample size is related to the size of the communalities (i.e. the shared variance between 

variables) and number of variables per extracted factor. Furthermore, strong factor loadings 

have been shown to be good indicators of a stable factor pattern and the impact of sample 

size decreases with increasing factor loadings192. In sum, the impact of sample size decreases 

with high communalities, well-determined factors and strong factor loadings. 

The data in the present dataset therefore had around half of what could be perceived as the 

minimal expected observations, whilst the number of metabolites of interest (n = 46) gave a 

ratio of about 1:2 outside the often-recommended boundaries. To account for these limitations, 

the following steps were taken to maximize the chance to obtain biologically meaningful results:  

- The 46 quantified metabolites were grouped into 15 groups based on chemical 

structure (see Table 3-2). Each group was created by adding up the absolute change 

of individual metabolites between baseline and endpoint to a total sum. 

- Benzoic acid and hydroxybenzoic acids were separated into two separate groups. 

These groupings were considered to better reflect the kinetics of metabolite formation 

where hydroxybenzoic acids can appear in the circulation as one of the first degradation 

products, whereas benzoic acid is usually considered as a later stage metabolite of 

microbial origin which is eliminated from the system as hippuric acid upon 

absorption123. 

- Thresholds were set at 0.5 for factor loadings and communalities and at 0.7 for the 

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. 

The groups shown in Table 3-2 were used as variables in the factor analysis. 

Table 3-2. The 15 metabolite groups used as variables in EFA 

Group number Group Metabolite 

1 Methoxybenzoic acid 

2-hydroxy-4-methoxybenzoic acid 
3-hydroxy-4-methoxybenzoic acid 
4-hydroxy-3,5-dimethoxybenzoic acid 
4-hydroxy-3-methoxybenzoic acid 
3,4-dihydroxy-5-methoxybenzoic acid 

2 Methyl benzoates 
methyl-3,5-dimethoxybenzoic acid 
methyl-3,5-dihydroxybenzoic acid 
methyl-4-hydroxybenzoic acid 

3 Hydroxycinnamic acids 
3,4-dihydroxycinnamic acid 
4-hydroxycinnamic acid 
trans-3-hydroxycinnamic acid 
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Table 3-2. Continued 

Group number Group Metabolite 

4 Methoxycinnamic acids 
4-hydroxy-3,5-dimethoxycinnamic acid 
4-hydroxy-3-methoxycinnamic acid 

5 Cinnamic acid esters 
Chlorogenic acid 
Rosmarinic acid 

6 Hydroxyphenylpropionic acids 

3,4-dihydroxyphenylpropionic acid 
3,5-dihydroxyphenylpropionic acid 
3-hydroxyphenylpropionic acid 
4-hydroxyphenylpropionic acid 

7 Methoxyphenylpropionic acids 
4-methoxyphenylpropionic acid 
4-hydroxy-3-methoxyphenylpropionic acid 

8 Hydroxyphenylacetic acids 3,4-dihydroxyphenylacetic acid 

9 Methoxyphenylacetic acids 
3-hydroxy-4-methoxyphenylacetic acid 
4-hydroxy-3-methoxyphenylacetic acid 

10 Sulfate conjugates 
3&4-methoxybenzoic acid-3&4-sulf 
3&4-hydroxybenzoic acid-3&4-sulf 
Benzoic acid-4-sulfate 

11 Hippuric acids 

3&4-methylhippuric acid 
3-hydroxyhippuric acid 
4-hydroxyhippuric acid 
Hippuric acid 

12 Glucuronide conjugates 

3-methoxybenzoic acid-4-GlcA 
3-hydroxybenzoic acid-4-GlcA 
4-methoxybenzoic acid-3-GlcA 
4-hydroxybenzoic acid-3-GlcA 
Benzoic acid-4-GlcA 

13 Glutamate conjugates Benzoylglutamic acid 

14 Benzoic acid Benzoic acid 

15 Hydroxybenzoic acids 

2,3-dihydroxybenzoic acid 
2,5-dihydroxybenzoic acid 
2-hydroxybenzoic acid 
3,4,5-trihydroxybenzoic acid 
3,4-dihydroxybenzoic acid 
3,5-dihydroxybenzoic acid 
3-hydroxybenzoic acid 
4-hydroxybenzoic acid 

Challenge 2: Baseline variation 

Although dietary restrictions were designed to limit the intake of anthocyanins and common 

sources of flavonoids as a means of standardising metabolite backgrounds, there was still 

some variation in metabolite values at baseline. It is highly likely that other food sources 

contributed to the measured metabolites, as many of the metabolites listed in Table 1-2 are 

attainable from other sources including many commonly consumed fruits and vegetables, 

coffee and tea64. To adjust for the variation in background diet, a calculation was made to 
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deduct the baseline from the endpoint value; this ‘change from baseline’ value was used for 

the factor analysis. 

Challenge 3: Handling of differences in range  

The metabolites varied greatly in their abundance and in the magnitude of absolute change 

from baseline to endpoint. For example, the change in hippuric acids ranged from -2797.6 to 

7458.7 µmol/24h while the change in hydroxybenzoic acids ranged from -21.4 to 24.8 

µmol/24h. The data was centred by subtracting the median and scaled by dividing by the 

interquartile range (IQR) to accommodate the offset between high and low abundant 

metabolites and to adjust for variations in absolute change. Median and IQR were chosen 

instead of the mean and standard deviation to minimize the effect of potential outliers. 

Challenge 4: Dealing with outliers 

Values which could be considered as outliers were checked for experimental or measurement 

errors. In the absence of such errors, these values were intentionally not excluded from the 

analysis due to exploratory aim of the study to find differences in how people metabolise 

blueberries. 

Challenge 5: Handling of missing values 

In circumstances of missing data, data was imputed using the median values of the full-dose 

treatment group. In the dataset used in this chapter, ‘change’ (0 to 6 month) data was partially 

missing for three metabolites: 3-hydroxy-4-methoxybenzoic acid (n = 4 participants (14.81 %)), 

benzoic acid-4-sulfate (n = 8 participants (29.63%)), and 3,4-dihydroxyphenylacetic acid (n = 

1 participants (3.7%)).  

When assessing the completeness of the metabolite data, it was apparent that the missing 

data occurred at random and was due to incomplete quantification using LCMS. Because a 

substantial proportion of data was missing these metabolites, a complete-case analysis was 

not a viable option. Instead, for the factor analysis presented in this section, the missing data 

was imputed using the median values of the full-dose treatment group. While imputing the 

median is known to reduce the variance of the data214, the effect should be largely attenuated 

because the metabolites were part of a bigger group of metabolites. This was tested by 

excluding benzoic acid-4-sulfate and 3,4-dihydroxyphenylacetic acid from the analysis (while 

preserving the sample size). Because the exclusion did not change the overall results, the 

median imputation was favoured for its simplicity over other generally more accepted methods 

such as multiple imputation.  
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Challenge 6: Testing the factorability of the data 

Factor analysis assumes that an underlying structure exists in the set of observed variables. It 

tries to identify a pattern among the correlation between the variables and describe them with 

a smaller set of factors. To this extent, a degree of correlation between the variables is 

required. Because this is a key requirement for a successful factor analysis, the 

interrelationship between variables and thereby the factorability of the data was tested using 

four different methods. 

First, the correlation matrix was inspected for a substantial number of correlations above 0.3 

(as recommended by Hair et al193). For each of the n = 15 metabolite groups (see Table 3-2), 

a correlation with multiple other groups above 0.3 was observed (Table 3-3). In most cases, 

correlation coefficients were between 0.3 and 0.7; with some highly correlated (>0.8), such as 

the hydroxy- and methoxycinnamic acids (groups 3 and 4) and hydroxy- and methoxybenzoic 

acids (groups 1 and 15). The high multicollinearity between variables is not generally a problem 

in factor analysis unless variables are perfectly correlated and therefore redundant.  

Table 3-3. Pairwise correlations of the metabolite groups 

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1.00               

2 0.37 1.00              

3 0.86 0.47 1.00             

4 0.81 0.25 0.83 1.00            

5 0.50 0.09 0.62 0.58 1.00           

6 0.46 0.36 0.49 0.21 0.38 1.00          

7 0.45 0.38 0.30 0.19 0.09 0.55 1.00         

8 0.16 -0.15 0.18 0.09 0.18 0.41 0.38 1.00        

9 0.54 0.31 0.50 0.33 0.31 0.68 0.64 0.32 1.00       

10 0.81 0.18 0.66 0.65 0.48 0.61 0.58 0.39 0.77 1.00      

11 0.47 0.30 0.49 0.27 0.61 0.78 0.45 0.27 0.44 0.49 1.00     

12 0.92 0.30 0.85 0.82 0.51 0.40 0.45 0.32 0.54 0.83 0.39 1.00    

13 0.80 0.21 0.75 0.75 0.74 0.36 0.21 0.05 0.37 0.66 0.55 0.74 1.00   

14 0.46 0.73 0.55 0.18 0.15 0.57 0.52 0.16 0.62 0.43 0.43 0.47 0.21 1.00  

15 0.87 0.42 0.86 0.79 0.46 0.48 0.35 0.21 0.58 0.79 0.34 0.90 0.68 0.49 1.00 

See table Table 3-2 for detail on metabolite groupings. 

 

To further confirm the suitability of the data for factor analysis, three statistical measures were 

assessed. The Kaiser-Meyer-Olkin measure of sampling adequacy, which estimates the 

proportion of common variance among the variables, was 0.80 (above the commonly 

recommended value of 0.5) and Bartlett’s test of sphericity, which tests if the variables are 

uncorrelated, was significant (χ2 = 844.0, p < 0.001), i.e., the variables significantly diverged 

from being uncorrelated. Finally, the anti-image describes the portion of variance that cannot 

be explained by the other variables. Because the variables should be correlated, the anti-image 
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should be small. None of the anti-image correlation coefficients were high enough to indicate 

any problems. 

Taken together, all four tests suggested reasonable factorability. 

After pre-treating the data and confirming its suitability for factor analysis, a series of factor 

analyses was performed to find the most optimal factor model for this dataset. 

3.1.3 Results of the initial factor analysis 

Choosing an extraction method 

The initial factor analysis was performed with 15 variables (metabolite groups). As mentioned 

previously, factor analysis extracts a number of factors based on the interrelatedness of the 

variables. The greater the correlation between variables, the greater the shared variance. 

Factor analysis proceeds by extracting the first factor which accounts for the most variance in 

the data. The second factor is then extracted from the variance that is still unexplained. 

Subsequent factors are progressively extracted from the remaining variance accounting for 

less and less of variance until all variance is explained. Although up to n factors can be 

extracted from a dataset with n variables, the goal of factor analysis is to explain a great amount 

of the variance with only a few factors and thus to represent the entire dataset with a much 

smaller set of variables. 

The extraction method used in this analysis was principal factors. Stata offers several methods 

of extraction: principal components, principal factors, and maximum likelihood. Principal 

components (the extraction method used in principal components analysis) assumes that the 

common variance among the variables (communality) is equal to the total variance (i.e., there 

is no error in measurement) and is useful when dimension reduction of the data is the main 

goal. In contrast, principal factors (used here) assumes that the total variance is comprised of 

a common variance and a unique variance that is not common. Factors resulting from this 

method are based only on the common variance, which makes this method better suited to 

identify an underlying latent variable and thus was more appropriate for this analysis. The 

maximum likelihood factor method also partitions the total variance into common and unique, 

however assumes multivariate normality which was not the case here. 

Using the principal factor method for extraction, nearly all of the variance was explained by the 

first five extracted factors (98.1%). This meant that the 15 variables could almost entirely be 

represented by five factors.  
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Tests to determine the number of factors to extract 

The next step was to determine the number of factors to retain for further analysis. To avoid 

loss or dilution of information and uninterpretable models, it is critical to ensure that neither too 

few or too many factors are retained195. Therefore, two test criteria were considered to help 

with the decision process, including the recommended minimum average partial (MAP) test 

and the scree test as an adjunct criteria196. 

Minimum average partial (MAP) test: The MAP test sequentially partials out the common 

variance for each successive number of factors215. This test has been shown to have good 

accuracy and is considered superior to the other two tests.192,196 The MAP criterion will 

decrease until the point at which only unique variance remains and then start to increase. With 

this criterion, only factors consisting of common variance are retained. In this case, the MAP 

test indicated the retention of two factors (Figure 3-1A). 

Scree test findings: The scree test is one of the most commonly used criteria to determine 

the number of factors. It plots the eigenvalues of the factors216. The point at which the curve 

breaks or levels out, indicates the number of factors to retain. A disadvantage of this test is the 

subjective judgement on the number of factors when there are multiple breaks in the curve or 

the bend is unclear. In this case, Costello and Osborne217 suggest to test multiple factor 

solutions retaining the predicted number of factors given by the scree test as well as one above 

and below. Velicer et al196 also point out the advantage of the visual representation, as it has 

the potential to avoid overextraction because minor factors will appear as insignificant. The 

authors therefore value its use as an adjunct method to the MAP test.  

As demonstrated in Figure 3-1B, the scree plot did not definitively confirm the point at which 

factors should be included, as it displayed two breaks. At these breakpoints, the scree test 

suggested the retention of either two or five factors. The plot also clearly shows that factors six 

and onwards were trivial factors because they accounted for insignificant amounts of variance. 
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 Comparison of factor solutions with two, three, four, and five extracted factors.  

The MAP and scree tests indicated the retention of two or five factors. To ensure that the best 

structure was identified, a number of factor solutions was tested and the outcomes of retaining 

two, three, four or five factors were explored.  

An important process in determining the factor solution which gives the best structure involves 

the ability to make sense of a factor, i.e., to give it a name and determine how the high loading 

variables of a factor fit together. In the absence of a sensible interpretation, respecifying the 

model and for example extracting a different number of factors can help achieve sensible 

results192. 

Each factor solution was examined using two types of factor rotation methods, an orthogonal 

rotation (varimax) and an oblique rotation (promax). An explanation of factor rotation is given 

in the methods section (see Section 2.6, stage 4). In brief, factor rotation helps achieve a 

simpler and theoretically more meaningful factor pattern193. A simple factor pattern is 

characterised by each variable only loading on one factor and each factor should have multiple 

high-loading variables. After an orthogonal rotation, the factors are uncorrelated, while an 

oblique rotation allows the factors to be correlated. 

Due to the connection through metabolic pathways, we can expect some degree of correlation 

between the factors. Therefore, using an oblique rotation method was likely more appropriate 

Figure 3-1 MAP and scree test plots. 

The minimum average partial (MAP) correlation and the scree test were used to determine 
the number of factors to retain. 
(A) The MAP correlation suggested two factors for this data (the number of factors where the 
average partial correlation was lowest). 
(B) The scree test identified two bends in the curve, suggesting to retain between two and 
five factors. It also showed that factors six and beyond accounted for insignificant amounts of 
variance. 
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than supposing factors were uncorrelated, as assumed in the varimax rotation method. Both 

were tested to find out which one resulted in a simpler and interpretable factor structure. 

Five-factor solution: The five-factor solution resulted in an unclear factor pattern with 

several variables cross-loaded onto multiple factors for both types of rotation. In 

addition, two factors were not well determined with only one and two significant 

loadings, respectively. With small sample sizes, as in the present dataset, the likelihood 

of improper solutions increases if factors are not well determined194. The determination 

of a factor relates to the number of variables which load highly on a factor; thus, two 

factors in this solution were not well determined with only one and two significant 

loadings. In addition to the possibility of an instable factor pattern, due to the cross-

loading the pattern structure was unclear. Consequently, this model was discarded 

because likely too many factors had been extracted, resulting in cross-loading and 

insufficient significant loadings which made interpretation of the underlying variable not 

possible. 

Four-factor solution: The four-factor solution resulted in a similar outcome as the five-

factor solution, with cross-loading of variables, one factor with insufficient loadings and 

an unclear factor pattern with both types of rotation. This model was also discarded for 

the same reasons as the five-factor model. 

Three-factor solution: The factor pattern was clearer when extracting three factors, 

however still had one factor with only two significant loadings. The variables in question 

were the methyl benzoates and benzoic acid. Methyl benzoates have been identified 

previously in urine following anthocyanin intake123, and benzoic acid is a known 

microbial metabolite of phenols128. Apart from both groups being phenolic metabolites 

and containing benzoic acid, it was difficult to identify an underlying latent variable 

which might affect these two metabolite groups, but not other metabolites such as 

hydroxy- and methoxybenzoic acids as well as benzoic acid sulfates. It is possible that 

a third factor was present, but that the grouping of metabolites was obscuring some 

information. This resulted in an unclearly defined factor and structure. 

Two-factor solution: The two-factor solution had two clearly defined factors with 

overall good communalities of ≥ 0.7 for most variables (i.e., > 50% of the variable was 

explained by this factor solution). It appeared that both benzoic acid and the methyl 

benzoates now loaded onto the second factor. However, the methyl benzoates had a 

low communality of 0.3, meaning in comparison to other metabolites it was 

underrepresented in this model. Extracting only two factors likely caused factors 2 and 

3 to merge and potentially distort the loading of other variables on the second factor.  
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Because the methyl benzoates were underrepresented in the two-factor model, but a three-

factor solution was not optimal due to the undetermined third factor, a further model was tested 

with extracting two factors, but excluding the methyl benzoates. This model resulted in the 

clearest loading pattern and was chosen for further analysis accepting that the methyl 

benzoates were not represented in this model. This factor solution is described in the following 

section. 

3.1.4 Factor analysis with two retained factors 

The following table shows the results for the two-factor solution with 14 variables for both 

varimax and promax rotations (Table 3-4). Cumulatively, the two factors explained a high 

amount of the variance (82.9%). Factor loadings were frequently > 0.7 and communalities for 

most variables were > 0.5. Both factors were well determined with 6 and 8 variables loading 

on the respective factors. These parameters gave reassurance this factor model was a valid 

solution despite the small sample size. As mentioned above, high communalities, well-

determined factors, and strong factor loadings reduce the impact of a small sample size and 

increase the likelihood of finding a stable solution194.  

Both rotation methods resulted in similar factor patterns, however the promax rotation provided 

a clearer structure. This confirmed that the factors were correlated due to shared metabolic 

pathways. The correlation between the factors was r = 0.50. In addition, the promax rotation 

also clarified the primary loadings of the sulfate conjugates and hydroxyphenylacetic acids at 

a factor loading threshold of 0.5. 

One variable (hydroxyphenylacetic acids) displayed low communality: only 23% of the variance 

was explained by this factor solution. The metabolite in question was 3,4-

dihydroxyphenylacetic acid, also known as DOPAC, a direct metabolite of dopamine. The 

endogenous source is a likely reason why the factor model, which was comprised of phenolic 

metabolites mostly derived from the blueberry intervention, explained such a low amount of 

the variance. Nevertheless, DOPAC significantly increased in participants who received the 

blueberry intervention in comparison to the placebo group, suggesting that at least part of the 

measured metabolite was in response to blueberry intake159. Furthermore, DOPAC loaded 

clearly onto factor 2 and only very weakly on factor 1. For these reasons, DOPAC was included 

in the model and considered as a part of factor 2 despite the low communality. 
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Table 3-4 Factor pattern matrix for urinary anthocyanin metabolites. 

 Unrotated factor 
loadings 

Rotated factor 
loadings (varimax) 

Rotated factor 
loadings (promax) 

 

Variable 1 2 1 2 1 2 Communality 

Methoxycinnamic acids 0.766 -0.516 0.924 -0.007 1.018 -0.232 0.854 

Methoxybenzoic acid 0.915 -0.218 0.883 0.324 0.856 0.152 0.885 

Hydroxycinnamic acids 0.893 -0.244 0.879 0.289 0.863 0.114 0.856 

Glucuronide conjugates 0.912 -0.212 0.877 0.327 0.848 0.157 0.877 

Glutamate conjugate 0.787 -0.378 0.864 0.120 0.907 -0.074 0.761 

Hydroxybenzoic acids 0.882 -0.194 0.842 0.325 0.810 0.163 0.815 

Cinnamic acid ester 0.630 -0.239 0.657 0.149 0.669 0.009 0.454 

Sulfate conjugates 0.889 0.103 0.684 0.577 0.547 0.485 0.800 

Hippuric acids 0.639 0.325 0.353 0.624 0.167 0.618 0.514 

Methoxyphenylacetic 
acid 

0.708 0.439 0.348 0.757 0.114 0.770 0.693 

Hydroxyphenylpropionic 
acids 

0.673 0.557 0.253 0.836 -0.018 0.882 0.762 

Benzoic acid 0.576 0.428 0.244 0.675 0.029 0.703 0.515 

Methoxyphenylpropionic 
acids 

0.539 0.517 0.164 0.729 -0.078 0.783 0.559 

Hydroxyphenylacetic acid 0.325 0.354 0.076 0.475 -0.085 0.517 0.231 

Factor correlation (promax rotation) = 0.50 

 

The factor analysis revealed a grouping of metabolites by metabolism stage 

The factor analysis revealed two clusters of metabolites (Figure 3-2) as follows:  

- Factor 1: cinnamic acids, hydroxy- and methoxybenzoic acids (not benzoic acid), 

glucuronide conjugates, glutamate conjugates, and sulfate conjugates.  

- Factor 2: phenylpropionic acids, phenylacetic acids, hippuric acids and benzoic acid. 

On the basis of known metabolic pathways of anthocyanins and other flavonoids, these two 

metabolite groups were named ‘early-stage metabolites’ (factor 1) and ‘late-stage metabolites’ 

(factor 2). The stages are used here to refer to the likely absorption location and time. ‘Early-

stage’ refers to metabolites likely absorbed in the small intestine. This is generally indicated by 

the appearance of a compound in plasma within an hour after ingestion, while an appearance 

after 5 h is considered to be mainly from the large intestine128. A great majority of anthocyanins 

reaches the colon130, where they are exposed to degradation by the gut microflora. Thus ‘late-

stage’ metabolites are likely to consist of phenolic acids originated from the microbial 

metabolism and to be more abundant than early-stage metabolites. Following absorption, 

phenolic compounds are treated as xenobiotics and undergo phase I and II biotransformation 

either in intestinal cells or the liver124. Phase I involves oxidation, reduction, and hydrolysis, 
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whereas phase II reactions are conjugation reactions which include glucuronidation, 

sulphation, methylation, and glycine conjugation. The phenolic compounds are then excreted 

via urine (main pathway for small conjugates) or bile (large, extensively conjugated 

metabolites) 64. 

 

Early-stage metabolites: Hydroxycinnamic acids (such as ferulic and caffeic acid in free, 

esterified or glycosidic form) and smaller amounts of hydroxybenzoic acids (such as 

protocatechuic acid) occur naturally in blueberries64. They have been observed to appear in 

plasma and urine within the first few hours after ingestion of berries or anthocyanins122,123,218,219. 

In addition, hydroxybenzoic acids, such as gallic acid, syringic acid, protocatechuic acid, and 

vanillic acid, are formed as the initial metabolites from spontaneous chemical degradation in 

the small intestine123,128. Thus, protocatechuic acid and vanillic acid have been observed to 

peak early in urine between 1 – 4 hours after ingestion. Once absorbed, phenolic compounds 

undergo phase II metabolism and a corresponding peak for sulfated and glucuronidated 

protocatechuic and vanillic acid is observed in the first few hours. Ferulic acid could also arise 

from the 3-O-methylation of caffeic acid following hydrolysis of a small proportion of 

chlorogenic acid (ester of caffeic acid and quinic acid) through mammalian esterases157.  

Figure 3-2. Loading plot using promax rotation 

Loading plot of the two-factor solution shows two variable clusters of ‘late-stage’ and ‘early-stage’ 
metabolites. One variable (sulfate conjugates) cross-loaded onto both factors. 
Early and late are used here to indicate the likely absorption location and time, with ‘early’ 
referring to the small intestine and ‘late’ to the colon. ‘Early-stage’ metabolites include compounds 
which have been observed to appear in plasma and urine within the first few hours after ingestion 
of berries or anthocyanins. ‘Late-stage’ metabolites include metabolites which are typically 
products of microbial transformations in the colon. 
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Late-stage metabolites: The colon is the main site of metabolisation and absorption of 

anthocyanins157. The primary microbial catabolites of anthocyanins are phenylpropionic, 

phenylacetic and benzoic acids128. Microbial transformations in the gut include hydrolysis, ring 

fission, hydrogenation, demethylation, dehydroxylation, and decarboxylation. Phenylpropionic 

acids contain a sidechain of three carbons which are progressively shortened to benzoic acids, 

which are then glycinated upon absorption to form hippuric acids and excreted via urine. 

Hippuric acid could thus also be seen as a microbial metabolite, although the glycination is not 

a microbial transformation. The conversion to benzoic acid and then hippuric acid has been 

speculated to be the definitive elimination pathway of polyphenols123 

The categorisation into early and late needs to be qualified in the sense that multiple phenolic 

acids appear in a biphasic pattern after ingestion of anthocyanins. For example, after the initial 

peak of vanillic acid, a second peak has been repeatedly observed at 24h after intake in 

different studies122,123. A similar pattern was observed for ferulic acid. The second peak is 

thought to be a result of metabolisation at different sites of the gut as well as enterohepatic 

recycling, i.e. phenolic compounds which have been absorbed are excreted via bile back into 

the gastrointestinal tract where they are exposed to the microbial metabolism once more and 

can be absorbed again124. Moreover, the majority of compounds such as chlorogenic acid are 

hydrolysed in the colon rather than in the small intestine220. The free caffeic acid is then rapidly 

absorbed and metabolised, as evidenced by the fact that it is frequently not observed in plasma 

or urine following anthocyanin intake221. The 3-O-methylation of caffeic acid, this time absorbed 

from the colon, could explain the second increase of ferulic acid. Furthermore, a chain of 

microbial reactions in the colon converts hydroxycinnamic acids, which fall under factor 1 

(early-stage) to hydroxyphenylpropionic acids (factor 2 metabolites) through microbial 

hydrogenation, which are in turn progressively converted to hydroxybenzoic acids (factor 1 

metabolites) via α- or β-oxidation128. It is clear therefore, that the factors are connected through 

metabolic pathways and their correlation is not surprising.  

While some microbial degradation also occurs in the small intestine, the main site of microbial 

transformation is in the colon157. However, endogenous production and other dietary sources 

add difficulty in ascertaining the exact origin of the small phenolic acids. For example, in the 

present study, hippuric acid and homovanillic acid were two metabolites, which were already 

present at baseline, and loaded on factor 2 (presumed to be late-stage/colonic metabolites of 

the consumed blueberry anthocyanins). Hippuric acid can be derived from many aromatic 

compounds, including aromatic amino acids from protein catabolism, and quinic acid, which 

occurs in many fruits and vegetables222. Its daily urinary excretion is estimated to amount to 1 

– 2 mM per day. Homovanillic acid is a metabolite of the neurotransmitter dopamine and is 

eliminated in urine at approximately 4 mg per day223,224. Nonetheless, a significant increase in 

urinary excretion above baseline after consumption of anthocyanin-rich products has been 
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observed across multiple studies for these two metabolites122,159,219,225, including one study in 

which anthocyanins were labelled using 13C carbon123. This indicated that the observed 

quantities of these two compounds are partially derived from anthocyanins and due to the late 

peak (> 5 h) in plasma are more likely to be metabolites of the colonic microbiota123,226. It  

Based on the early and late explanation above, it could be hypothesised that the factors 

represent; factor 1 = ‘dietary phenolic acids, initial degradation products, and proximal 

microbial metabolites’ and factor 2 = ‘colonic microbial metabolites’. 

3.1.5 Computation of composite measures representing factors 1 and 2 

To explore the association of the factors with clinical responses to the intervention such as 

vascular function, a composite measure was computed to represent each factor.  

The factor scores were computed using the built-in Stata command (regression method), using 

the two-factor model described above (see Section 3.1.4). Calculating factor scores reduces 

the original set of variables into a smaller set of new variables through linear combination, by 

taking all variables into account and involves using the correlations of each variable with the 

respective factors as weights for the calculation of each score. The calculation method of the 

scores yields approximately standardised variables with a mean ≈ 0 and standard deviation ≈ 

1.  

The distributions of factor scores 1 and 2 is shown in Figure 3-3A. Nearly all factor 1 scores 

ranged from -1 to +1 with one outlier at 4.26, i.e., with one exception all values were within 

approximately ±1 SD from the mean. Because this outlier was inherent to the factor analysis 

on which these scores were based, this participant was included in all following tests unless 

also an outlier for the dependent variable (as defined by a value greater than 3 SD from the 

mean). In contrast to factor 1 scores, factor 2 scores were slightly more spread across a range 

from -2 to +3. The point at which the scores started to markedly decrease or increase and 

deviate from the average was at approximately the 15th and 85th percentiles. The datapoints in 

the upper and lower 15% are signified as black dots for both factor scores in the figure. The 

Pearson correlation coefficient between factor scores 1 and 2 was 0.53, which corresponded 

closely with the oblique rotation and a correlation between the original factors of 0.5 (Figure 

3-3B). 

To gain a more relatable overview from the factor relationships, a second type of score using 

the raw values (in μmol/24 h) was calculated to represent the average change of metabolites 

characterised by factors 1 and 2, respectively. The average score for each factor was 

calculated by averaging the metabolite variables with high loadings as determined in Section 

3.1.4. Of note, the sulfate group was omitted from both average scores due to cross-loading 

on both factors. In total, the factor 1 average score was comprised of 7 metabolite groups (26 
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metabolites) and the factor 2 average score of 6 groups (14 metabolites). Notably, in contrast 

to the factor scores, the average score does not consider the relative importance of each 

variable but weights each variable the same.  

Assessing the average scores for unidimensionality and reliability  

Each of the average scores was assessed for both unidimensionality and reliability. 

Unidimensionality is the assumption that the variables together represent a single concept. 

Variables should therefore only load highly on a single factor, as was the case apart from the 

sulfate group, which appeared to cross-load on both factors. This core assumption supported 

the need to exclude the sulfate group from the factor 1 average score, as otherwise the 

average score would include a variable which shares similarities with factor 2. 

A common way to measure reliability of a score is Cronbach’s alpha227. This estimates the 

internal consistency, i.e., the average degree of interrelatedness of the variables comprising a 

score. A high alpha value means that each variable of the score measures something similar 

to at least some of the other variables. A high alpha is generally an indicator for better reliability 

of the composite measure, except when very high (in this case alpha may indicate redundancy 

within the score). The alpha values for the average scores were 0.71 (factor 1) and 0.34 (factor 

2). The alpha value for average score 1 decreased to 0.51 when including the sulfate group, 

further reinforcing that this group should be excluded from the score. On the other hand, it did 

not improve or worsen the alpha value when included in average score 2, indicating that it 

Figure 3-3. Distribution and correlation of factor scores 

Scores were computed for each of the two factors. A factor score is a composite measure and its 
computation reduces the original set of variables into a smaller set through linear combination. It takes 
all variables into account and uses the correlation of each variable with the respective factor as 
weights for the calculation of each score. 
(A) Both factor scores were approximately standardised variables with mean ≈ 0 and SD ≈ 1. The 
black datapoints denote high and low subsets, determined using the upper and lower 15 percentiles 
as cut-offs.  
(B) The two scores were moderately correlated (r = 0.53). 



93 
 

should not be included in this score instead. Generally, an (arbitrary) threshold of at least 0.7 

is widely considered as desirable for the alpha value, i.e., the alpha value for average score 2 

would be regarded as too low. However, rather than represent a fixed characteristic of a score, 

Cronbach’s alpha applies to a particular sample228. Because of the small sample size used for 

the factor analysis in the present case, it was difficult to determine an appropriate threshold for 

the acceptance of the alpha values.  

Two alternative measures were considered: (1) the correlation of each variable to the 

corresponding average score and (2) the correlation between the average score and relevant 

factor score. It is recommended that each variable should be at least moderately correlated (r 

> 0.3) with the relevant score193. Here, the correlations between the score and individual 

variables were regarded sufficient. Correlation coefficients for factor 1 variables ranged from 

0.34 to 0.94 and from 0.59 to 0.95 for factor 2 variables. 

There was a high degree of consistency between the average and factor scores with 

correlations of 0.98 and 0.83 for factors 1 and 2, respectively (Table 3-5 and Figure 3-4). 

Between themselves, the correlation was 0.49 for average scores 1 and 2 which is very close 

to the correlation between the original factors of 0.5. Interestingly, including the sulfate group 

in average score 1 decreased the association with factor score 1 to 0.89 and increased the 

association with factor score 2 from 0.57 (close to what was expected) to 0.739, again 

reinforcing the notion to exclude the sulfates from average score 1. Figure 3-4 also clarified 

that a scoring around 0 on a factor did not mean ‘no change’ in metabolites, but rather ‘average 

Figure 3-4. Correlation between average and factor scores 

The figure shows that there was a strong correlation between the average and factor scores 
for both factor 1 (A) and factor 2 (B). 
The average score for each factor equalled the average amount of change of metabolite 
variables with high loadings as determined in Section 3.1.4 and carried the unit μmol/24h. The 
sulfate group was omitted from both average scores due to cross-loading on both factors. Note 
that the average score differed from the factor score in that each variable was weighted the 
same. 
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change in metabolites’. This meant for the factor scores that the mean change in metabolites 

within 1 SD from 0 equalled 0.22 μmol/24h (factor 1) and 128.39 μmol/24h (factor 2). 

Table 3-5. Correlation between average scores and factor scores 

 Factor score 1 Factor score 2 

Average score 1 0.983* 0.569* 

Average score 2 0.517* 0.827* 

* Significant at 0.01 level 
** Significant at 0.05 level 

 

In conclusion, the average scores were considered to be valid representations of the factor 

scores due to the close relationship between both types of scores. In addition, the assumption 

of unidimensionality, estimate of internal consistency and correlation between the average and 

factor scores for factor 1 all supported the exclusion of the sulfate conjugates from the average 

score for factor 1. 

Factor 2 metabolites increased about two times as much as factor 1 metabolites 

Figure 3-5 illustrates the average change in factor 1 and 2 metabolites. Particularly for factor 

2 metabolites, a large difference in slopes of the curves was apparent, indicating a large 

variability between the participants in response to the intervention. Seven of 25 participants 

decreased in factor 1 metabolites, while only three decreased in factor 2 metabolites. Although 

factor 1 encompassed nearly twice the number of metabolites than factor 2, it was striking that 

the average amount of factor 1 metabolites at baseline and endpoint was about 220 to 280-

fold smaller than factor 2 metabolites (Table 3-6). A big proportion of this difference was driven 

by hippuric acid, which made up 58% and 72% of factor 2 metabolites at baseline and endpoint, 

respectively. Without hippuric acid, the amount of factor 2 metabolites was still 98 and 84 times 

higher than factor 1 metabolites. Furthermore, on average, factor 2 metabolites (including 

hippuric acid) increased about two times as much as factor 1 metabolites between baseline 

and endpoint (76% versus 36%).  

Both factors included metabolites which were shown to significantly change following blueberry 

intake159, however it was clear that amount-wise the main urinary metabolites of blueberries in 

this study were represented by factor 2. The factor scores therefore not only represented the 

type of metabolite (early-stage, potentially dietary phenolic acids absorbed in the small 

intestine versus late-stage, likely colonic microbial metabolites), but also reflected their level 

of bioavailability. 

Figure 3-5 also revealed the presence of a potential outlier for each factor. In both cases it was 

only the six-month value which significantly departed from the group average. There was no 

indication of an experimental or measurement error in either case. In addition, the metabolite 
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levels were within previously observed boundaries. For factor 1 the large value was mainly 

driven by vanillic acid and its glucuronide derivatives for which the total amount observed was 

36.7 μmol/24h. This amount was comparable to a study which gave participants a bilberry and 

lingonberry puree containing nearly twice as much anthocyanins as given in this study and 

which reported 77.6 μmol/24h of vanillic acid and derivatives122. Similarly, for factor 2 the large 

value was mainly influenced by a single metabolite, hippuric acid. The measured amount was 

10.5 mmol/24h for this participant. A study investigating hippuric acid as a biomarker for fruit 

and vegetable intake reported amounts up to 11.7 mmol/24h229. Moreover, because the 

potential outlier for factor 2 also had a high baseline, this participant was not an outlier when 

looking at change from baseline to endpoint. In conclusion, it appeared that the extreme values 

were due to individual fluctuation and that there was no practical reason, such as a 

quantification error or unrealistic amounts, to exclude these participants. Indeed, these 

individuals are particularly interesting for this exploratory study as its aim is to differences in 

the metabolisation of blueberries. 

 

Figure 3-5. Average change of factor 1 and factor 2 metabolites 

The average amount of metabolites at baseline and endpoint is shown for each 
participant and connected with lines. The gray lines indicate a positive change, while 
the black lines show negative change. The black diamonds and dashed line show the 
means. Mean changes from baseline to endpoint were 0.3 and 147.3 for factors 1 
and 2, respectively. 
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Table 3-6. Mean values for factor 1 and 2 metabolites at baseline and endpoint 

 Factor 1 Factor 2 
Factor 2 

(without hippuric acid) 

Baseline 0.90 ± 0.37 196.35 ± 93.47 87.82 ± 61.19 

Endpoint 1.22 ± 0.83 345.34 ± 187.76 101.96 ± 54.78 

Change (% change) 0.32 ± 0.84 (36%) 147.35 ± 154.17 (75%) 14.14 ± 56.30 (16%) 

Mean values ± SD in μmol/24h 

3.1.6 Investigating the relationship between change in FMD and factors 1 and 2 

To assess if one of the metabolite clusters associated with change in vascular function as 

indicated by FMD, ∆FMD was included in the factor analysis (Figure 3-6). FMD was singled 

out over other cardiovascular risk factors as the gold standard method to measure endothelial 

function, which is an important risk factor for cardiovascular disease and a central aspect in 

metabolic syndrome.  

The analysis resulted in the same two factors as above with the same general loading pattern 

for the metabolite groups. Interestingly, ∆FMD clearly loaded onto factor 2 (factor loading = 

0.64, communality = 0.32) and weakly loaded on factor 1 in the negative direction (factor 

loading = -0.25). This suggested that the change in FMD was aligned with the accumulation of 

late-stage metabolites in urine. 

Figure 3-6. Factor loadings for factor analysis including ∆FMD 

Including ∆FMD in the factor analysis resulted in the same two factors with the same general loading 
pattern. The loading of ∆FMD onto factor 2 suggested that the change in FMD was aligned with the 
accumulation of late-stage metabolites in urine. 
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Factor score 2 was moderately associated with ∆FMD 

The relationship between each of the factor scores and ∆FMD was further explored. First, by 

determining Pearson’s correlation coefficient (Figure 3-7) and then by comparing the FMD 

response between groups of individuals who scored highest and lowest on the factors (Figure 

3-8). 

There was a moderate positive correlation between ∆FMD and factor 2 (r = 0.41, p = 0.042) 

suggesting that an improvement in FMD could be associated with an increase in urinary late-

stage metabolites. Considering the limited number of observations in this analysis, this was a 

significant finding. Moreover, the relationship was substantiated by a moderate correlation of 

the individual metabolite groups which loaded on factor 2 with ∆FMD (Table 3-7).  

 

No correlation was observed between factor score 1 and ∆FMD (r = 0.08, p = 0.722). As 

Pearson’s correlation is sensitive to outliers, for completeness the correlation was also 

determined excluding the participant with the very high factor 1 score. The correlation between 

∆FMD and factor score 1 was then moderately positive (r = 0.29, p = 0.169), though to a lesser 

extent than factor score 2. However, of the eight metabolite groups loading primarily on factor 

1, only one was weakly correlated with ∆FMD, which in turn was due to a moderate correlation 

of a single metabolite (chlorogenic acid) with ∆FMD (r = 0.28, p = 0.017). Because of the lack 

in evidence of an association between the majority of factor 1 metabolite groups and ∆FMD, it 

is possible that a potential correlation between factor 1 and ∆FMD was enhanced by the 

oblique rotation used for the factor analysis, i.e. although the individual variables primarily 

Figure 3-7. Correlation between ∆FMD and factor scores 1 (A) and 2 (B) 

(A) No correlation was observed between ∆FMD and factor score 1 (r = 0.08, p = 0.722). When 
the outlier was removed, the correlation coefficient increased to r = 0.29 (p = 0.169), however 
there was no evidence of a relationship when pairwise correlations between ∆FMD and the 
individual metabolite groups comprising factor score 1 were inspected (Table 3-7). 
(B) There was a moderate positive association with factor score 2 (r = 0.41, p = 0.042). 



98 
 

constituting factor 1 may not have been associated with ∆FMD, the correlation between factors 

1 and 2 and the inclusion of all variables in the computation of factor scores could have resulted 

in the factors partially representing the same underlying metabolic profile. 

Table 3-7. Pairwise correlations between ∆FMD and metabolite groups 

  ∆FMD 

Factor 1 

Methoxybenzoic acid 0.05 (0.80) 

Hydroxycinnamic acids 0.08 (0.70) 

Methoxycinnamic acids -0.01 (0.95) 

Cinnamic acid esters 0.36 (0.07) 

Glucuronide conjugates 0.07 (0.75) 

Glutamate conjugates 0.11 (0.60) 

Hydroxybenzoic acids 0.00 (0.99) 

Factor 2 

Hydroxyphenylpropionic acids 0.42 (0.04) 

Methoxyphenylpropionic acids 0.33 (0.11) 

Hydroxyphenylacetic acids 0.36 (0.07) 

Methoxyphenylacetic acids 0.40 (0.05) 

Hippuric acids 0.39 (0.05) 

Benzoic acid 0.16 (0.45) 

Values are Pearson correlation coefficients with p values in parentheses. 

 

Interestingly, all individuals whose %FMD decreased following the intervention (∆FMD < 0, n 

= 6) scored at around 0 on both factor 1 and factor 2, i.e., close to the average, while those 

who scored at the lower or upper end of the factors all experienced at least a small positive 

change in FMD. In this factor model, 32% of the variance in ∆FMD was explained with these 

two factors. The largest portion was therefore not captured by this model and hence it was not 

entirely surprising that the influence of other variables (such as age, BMI, blood pressure, lipid 

profile) could have caused a random scattering around zero. There may also be additional 

factors which were not identified in this dataset or other metabolites which were not measured 

in this study. To get a better idea of any potential effect the factors had on ∆FMD, those with 

scores at the either end of the range were compared. 
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The group with the highest factor score 2 showed the greatest improvement in %FMD 

To assess the FMD response between individuals who scored highest and lowest on the 

factors, the score was used to group individuals by using the upper and lower 15 percentiles 

where those with particularly high or low scores separated visibly from the average. This 

resulted in two groups for each factor, high and low, each with n = 4 (Figure 3-8 and see Figure 

3-4 for the distribution of both scores). The low and high groups corresponded to a mean 

average change in metabolites of -0.4 and 1.7 μmol/24h for factor 1 and -41.6 and 399.54 

μmol/24h for factor 2. 

From a visual evaluation of the means of ∆FMD, those who scored high on factor 2 tended to 

increase in %FMD more than the low group and both groups of factor score 1. Scoring high on 

factor 1 also slightly increased %FMD to a lesser degree in comparison to the low group. Mean 

differences between the groups and results of an independent t-test are listed in Table 3-8. 

Although evidence of a difference between the groups was not conclusive, the results provided 

some additional support that a positive association between factor score 2 and ∆FMD existed, 

i.e. that greater ∆FMD was aligned with higher levels of factor 2 metabolites. The mean 

difference in ∆FMD between the high and low groups of factor score 2 was 1.9% (80% CI [0.04, 

3.75], p = 0.191). An increase in %FMD of this size would be of significant clinical relevance 

and has been associated with a reduction in risk for cardiovascular disease of nearly 16%.230 

However, the study was not powered for this analysis and with only four participants per high 

and low group, the test had low power. Therefore, results should be interpreted with caution 

and confirmed in further studies. 

Figure 3-8. FMD for high and low factor score groups 

Figure shows the change in %FMD for individuals who scored highest and lowest on the factor 
scores. These were identified by using the upper and lower 15 percentiles as cut-offs and resulted 
in n = 4 per group. Those who scored high on factor 2 tended to have a greater increase in %FMD 
in comparison to those in the low group and both high and low groups of factor score 1. 
Hollow circles = individual data points. Mean (black diamonds) and 80% CI (error bars) displayed 
for each group. 
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Table 3-8. Mean differences in ∆FMD between low and high groups of factor scores 1 and 2 

 Mean ∆FMD 
(low) 

Mean ∆FMD 
(high) 

Mean difference 
(high – low) 

[80% CI] 
t statistic p value 

Factor 1 score 1.69 2.46 0.76 [-0.79, 2.32] 0.707 0.513 

Factor 2 score 1.91 3.81 1.90 [0.04, 3.75] 1.475 0.219 

Values show ∆FMD in %. n = 4 for each group. 

 

Identification of two clusters representing high and low metabolisers 

It appeared that ∆FMD was slightly increased in those with a high factor 1 score, however in 

contrast to factor 2 metabolites, there was no evidence of an association of the individual 

metabolite groups comprising factor 1 with ∆FMD. The potential association may have been 

due to the correlation between the factors which resulted from the oblique rotation during the 

factor analysis, meaning that the two factors were at least partially estimators of the same 

thing. Indeed, the low and high groups of both factor scores overlapped considerably, with 

each factor sharing three of four participants, i.e., those in the high group scored highly on both 

factors and those in the low group scored low on both factors. This could imply that an 

improvement in vascular function may be associated with a general ability to absorb and 

metabolise blueberry compounds. This further suggests that those in the high group were high 

metabolisers, while those in the low group were low metabolisers. 

Plotting the ranks of average change for each factor against each other (Figure 3-9) revealed 

two clear groups in the lower left and upper right corner, clearly demonstrating the overlap 

seen for the factor scores. The high group had the biggest positive changes in both factor 1 

and 2 metabolites (1.4 and 362.5 μmol/24h, while the low group changed in the negative 

direction (-0.5 and -42.7 μmol/24h). 

The remainder of participants scattered around the means of either factor (corresponds to mid-

range ranks). Factor 1 metabolites were clustered closely around zero (-0.2 to 0.50 μmol/24h), 

while factor 2 metabolites were more spread (-23.3 to 254.0 μmol/24h), but within 1 SD from 

the mean. Although the graph hinted at the formation of two middle groups, there were no 

visually distinct clusters. Perhaps more observations could have clarified the presence of 

further clusters, however with the present dataset, it appeared that these participants were 

average for both factors. Therefore, the interesting groups resulting from this analysis were the 

high/high and low/low groups at the extremities of both factors 1 and 2 and the further analysis 

laid out in Section 3.2 was limited to these two groups. 
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Confirmation of high and low metaboliser clusters using cluster analysis 

At a later date, after the analysis described in Section 3.2 was performed, the groups of 

high/high and low/low metabolisers identified via visual inspection in Figure 3-9 were confirmed 

using k-means cluster analysis. The optimal number of k clusters was determined using a 

scree plot which plotted the within sum of squares for cluster solutions with k ranging from 1 

to 20231. In the scree plot, the point at which the curve breaks indicates the optimal number of 

clusters. Because the results depend on the initial cluster centres, this was repeated 50 times 

with random starting points. A cluster solution with k = 4 clusters was indicated in 82% of the 

cases (Figure 3-10A) and used as the optimal cluster solution. 

Figure 3-10B shows the four clusters identified by k-means cluster analysis. Their 

corresponding factor average scores are shown in Figure 3-10C. The high/high cluster (cluster 

4) was the same as determined in Figure 3-9, with 1.3 and 362.5 μmol/24h for factors 1 and 2. 

The low/low cluster (cluster 1) included three additional participants who had slightly higher 

factor 1 and factor 2 values, however the group mean in cluster 1 for both factors was still 

negative (-0.2 and -19.4 μmol/24h for factors 1 and 2). In addition, the cluster analysis 

partitioned the middle group into two groups, which were previously viewed as a single group. 

Relative to the sample, cluster 2 was characterised by medium increase in factor 1 and a low 

increase in factor 2 metabolites (0.3 and 93.0 μmol/24h). Cluster 3 was characterised by no 

change in factor 1 metabolites and a medium increase in factor 2 metabolites (0.0 and 207.3 

μmol/24h).  

Figure 3-9. Ranks of factor averages 

Figure shows the ranks of two factor averages plotted against each other. This highlights two 
groups: a high/high group, which is high in both factors 1 and 2 (black dots top right corner, n = 5), 
and a low/low group, which is low in both factors (black dots bottom left corner, n = 3). 
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Figure 3-10D and Table 3-9 show the ∆FMD responses for each cluster. A one-way ANOVA 

was performed to test differences between the clusters. Cluster 4 had the highest response as 

expected and there was support for an effect of factor 2 metabolites on FMD when comparing 

cluster 4 to clusters with the lowest amounts of factor 2 metabolites, although this was 

statistically inconclusive (cluster 1 group difference = 1.85%, p = 0.235; and cluster 2 group 

difference = 2.17%, p = 0.098). These findings are similar to the results found when comparing 

the high and low groups of factor score 2 (see Table 3-8).  

The contribution of factor 1 metabolites in vascular function was less clear. Cluster 2 increased 

slightly in both factor 1 and 2 metabolites in comparison to cluster 1. The slight increase in 

metabolites had no effect on the FMD response, however this may simply indicate that a 

certain threshold of metabolites must be reached to observe a noticeable effect. Unexpectedly, 

cluster 3 had the lowest FMD response, despite a much higher increase in factor 2 metabolites 

than clusters 1 and 2. This apparently contradicted the role of factor 2 metabolites in mediating 

vascular function. However, it may be that factor 1 metabolites could function as an indicator 

of other unobserved underlying causes. Like cluster 1, cluster 3 lacked a response in factor 1 

metabolites. However, in cluster 1, the lack of both factor 1 and factor 2 metabolites seems 

more suggestive of a general lack of metabolism and/or absorption. In the case of cluster 3, 

the lack of factor 1 metabolites, but not factor 2, may point to other aspects of metabolism such 

as differences in the composition of small intestine microbiota. This could not only affect the 

metabolism and absorption of phenolic compounds, but also other dietary components which 

may have an impact on vascular function. The small intestine plays a big role in the digestion 

of macronutrients, such as lipids, and the proximal microbiota have been found to regulate lipid 

digestion and absorption in an animal study232. Differences in bacterial strains may therefore 

affect the absorption of lipids, which may affect vascular function. Acute postprandial effects 

of increased serum lipids have been shown to have a deleterious effect on endothelial 

function233 and in a cross-sectional study, elevated levels of triglycerides were shown to be 

inversely associated with FMD234. In the present study, cluster 3 did not display an increased 

level of triglycerides in comparison to the other clusters (data not shown) and thus this theory 

could not be confirmed. Nevertheless, although cluster 3 was not further investigated in this 

thesis, other factors relating to the small intestine and vascular function may be an interesting 

subject for future research. 
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Table 3-9. ∆FMD (%) pairwise cluster comparisons  

Cluster comparison Mean difference [95% CI] t value p value 

1 vs 2 -0.33 [-2.67, 2.02] -0.39 0.980 

1 vs 3 -1.76 [-4.27, 0.74] -1.96 0.233 

1 vs 4 1.85 [-0.78, 4.47] 1.96 0.235 

2 vs 3 -1.44 [-3.78, 0.9] -1.71 0.342 

2 vs 4 2.17 [-0.3, 4.64] 2.45 0.098 

3 vs 4 3.61 [0.98, 6.24] 3.83 0.005 

Results from one-way ANOVA. Tukey adjusted pairwise comparisons. 

 

Figure 3-10. Identification of metaboliser clusters using k-means clustering of factor average 
ranks 

(A) Scree plot of within sums of squares (WSS) to determine the optimal number of clusters from 
solutions with k ranging from 1 to 20. Scree plot was repeated 50 times using random initiation points 
for clustering. k = 4 was indicated in 82% of cases. 
(B) Scatterplot of ranks of factor 1 and 2 averages. Clusters identified using k-means clustering shown 
by different symbols and numbers (1 = , 2 = , 3 = , 4 = ,). Group 1 corresponded to the low/low 
group, and group 4 corresponded to the high/high group identified in Figure 3-9. 
(C) Scatterplot shows means of factor 1 and 2 average scores by cluster (μmol/24h) + or – SD (+ for 
factor 2; - for factor 1). SD shown in one direction only for clarity. 
(D) Scatterplot shows the ∆FMD (%) response in each of the clusters identified in (B). Table 3-9 below 
this figure shows the Tukey adjusted pairwise comparisons of means. 
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Clusters 1 and 4 are not significantly different for other cardiovascular risk factors 

To test the potential effect of being a high or low metaboliser, only clusters 1 and 4 were 

compared for multiple cardiovascular risk factors (Table 3-10). Many markers moved in the 

expected direction, however none achieved statistical significance at a level of 0.05. There 

was however an indication for a reduction in inflammation. Interleukin-6 (IL-6), tumour necrosis 

factor α (TNF-α), and C-reactive protein (CRP) all reduced in cluster 4 in comparison to cluster 

1. The support was strongest for TNF-α (mean difference -0.42 pg/ml, p = 0.08). The results 

further hinted at a reduction in insulin resistance (-2.55, p = 0.31), as assessed by HOMA-IR, 

due to a reduction in insulin, but not glucose. Although statistically inconclusive, insulin 

resistance and pro-inflammatory markers both play a role in endothelial dysfunction, thus these 

findings would be in alignment with an increase in FMD.  

Curiously, both systolic (SBP) and diastolic blood pressure (DBP) increased in cluster 4 versus 

cluster 1, although again not statistically significant at a level of 0.05 (p = 0.191 and 0.296). 

Across treatments, no effect was observed on blood pressure in this study159. Although 

population-based studies have reported an inverse association of anthocyanin intake with 

blood pressure70,235, this finding is in agreement with recent meta-analyses of clinical trials 

investigating the effect of anthocyanins on blood pressure92,236,237. The large mean difference 

in SBP observed between clusters 1 and 4 may be due to the fact that two participants in 

cluster 1 received blood pressure medication and reduced in SBP by 10 and 11 mmHg, 

whereas all other participants in the two clusters were unmedicated. Excluding the two 

medicated participants from the analysed greatly attenuated the effect observed on DBP, but 

not SBP (systolic: 7.75 mmHg, p = 0.311, diastolic: -0.62 mmHg, p = 0.870). This was mostly 

due to one participant in cluster 4 who had a very high SBP of 170 at the six-month endpoint 

(increase of 27.5 mmHg from baseline). In sum, these results suggested that metaboliser 

status likely did not affect DBP. However, due to the uncertainty of the group estimates and 

small group size, no conclusion on the effect of high metaboliser status on SBP could be made 

in either direction (attenuation, no effect, or increase). 

In this assessment, no effect was observed by cluster for PWV, AIx or levels of glucose, HDLC, 

TG, IL-8, and adiponectin. 
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Table 3-10. High vs low group comparisons of cardiovascular risk factorsa 

Change in 
n  

(clus1; 
clus4 

Mean 
(clus1) 

Mean 
(clus4) 

Mean difference  
[80% CI] 

t statistic p value 

PWV (m/s) (2; 4) 0.59 -0.21 -0.80 [-2.06, 0.46] -1.030 0.376 

AIx@75 bpm (%) (6; 5) -2.88 -4.27 -1.37 [-6.71, 3.95] -0.358 0.729 

SBP (mmHg) (6; 5) -4.75 5.9. 10.65 [0.26, 21.04] 1.530 0.191 

DBP (mmHg) (6; 5) -0.25 3.30 3.55 [-1.02, 8.12] 1.119 0.296 

Glucose (mmol/l) (6; 5) 0.22 0.10 -0.12 [-0.66, 0.42] -0.311 0.764 

Insulin (mU/l) (6; 5) 3.53 0.98 -2.55 [-5.50, 0.41] -1.242 0.254 

HOMA-IR (6; 5) 1.07 0.27 -0.80 [-1.85, 0.24] -1.110 0.310 

Chol (mmol/l) (6; 5) -0.05 0.24 0.29 [-0.09, 0.67] 1.101 0.310 

HDLC (mmol/l) (6; 5) 0.04 0.06 0.02 [-0.07, 0.10] 0.266 0.799 

LDLC (mmol/l) (6; 5) -0.13 0.08 0.21 [-0.10, 0.53] 0.979 0.366 

TG (mmol/l) (6; 5) 0.14 0.17 0.03 [-0.29, 0.35] 0.148 0.887 

IL-6 (pg/ml) (5; 5) 0.05 -0.26 -0.31 [-0.68, 0.06] -1.223 0.259 

IL-8 (pg/ml) (6; 5) 0.02 -0.05 -0.07 [-1.08, 0.95] -0.097 0.926 

TNF-α (pg/ml) (5; 5) 0.24 -0.17 -0.42 [-0.71, -0.12] -2.010 0.081 

CRP (μg/ml) (6; 5) 0.35 -0.86 -1.21 [-2.33, -0.09] -1.562 0.175 

Adp (μg/ml) (6; 5) 0.20 6.54 6.35 [-1.89, 14.58] 0.183 0.862 
a Results from Welch’s t-test. Clus1 = cluster 1 and clus4 = cluster 4 from Figure 3-10. 
PWV: pulse wave velocity; SBP: systolic blood pressure; DBP: diastolic blood presser; HOMA-IR: homeostasis 
model assessment estimated insulin resistance; Chol: cholesterol; HDLC: high-density lipoprotein cholesterol; 
LDLC: low-density lipoprotein cholesterol; TG: triglycerides; IL-6: interleukin-6; TNF-α: tumour necrosis factor α; 
CRP: c-reactive protein; Adp: adiponectin 

3.1.7 Summary of results of the exploratory factor analysis  

In summary, the exploratory factor analysis extracted two factors from 46 phenolic metabolites 

measured in 24 h pooled urine from n = 25 participants after a six-month dietary intervention 

with daily blueberry intake. Although the data could be perceived to have half of the minimal 

expected number of observations, careful preparation of the dataset was performed to account 

for this limitation as well as other challenges including baseline variation in metabolites, great 

differences in abundance and magnitude of change from baseline, outliers, and missing 

values. The extracted factors were labelled ‘early-stage metabolites’ (factor 1) and ‘late-stage-

metabolites (factor 2) as determinants of absorption location and time with early-stage 

metabolites predominantly absorbed in the small intestine and late-stage metabolites 

predominantly absorbed in the colon. Based on this definition, the factors could also represent 

dietary phenolic acids and initial degradation products (factor 1) and colonic microbial 

metabolites (factor 2).  

The factors were distinct by the type of metabolites, but correlated to a moderately high degree 

(correlation coefficient = 0.5). Two types of scores were generated to represent each factor: 

(1) a standardised and weighted variable comprised of all metabolite groups and (2) an 

average score calculated using to absolute change of selected metabolite groups which loaded 

on the relevant factor. The average amount of change in metabolites differed greatly between 

the factors. It was clear that factor 2 metabolites, particularly hippuric acid, increased the most 
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from baseline, about 2-fold more than factor 1 metabolites. However, as the great majority of 

anthocyanins reach the colon, it is perhaps unsurprising that the colonic microbial metabolites 

(factor 2) were the main metabolites to increase in response to the intervention. 

Including FMD in the factor model suggested that an improvement in FMD was associated 

more with factor 2 metabolites which seemed to imply a greater importance of the colonic 

metabolites metabolism. Plotting the ranks of each factor score against one another revealed 

four clusters of participants. A comparison of FMD response in the clusters which were high or 

low in both factors 1 and 2 reinforced the previous finding of a potential association between 

abundant (mainly factor 2) metabolites and FMD, however the association was not statistically 

conclusive and due to the small sample size of n = 4 per group, the evidence was not strong 

enough to conclude the presence of a real effect. Interestingly, the participant cluster which 

was high in factor 2 and low in factor 1 metabolites had the lowest FMD response of all four 

clusters. An increase in factor 2 metabolites, but a lack of a response in factor 1 metabolites 

could suggest that other, unobserved aspects of metabolism impacted on vascular function, 

such as the microbiome of the small intestine. 

There was also an indication of an inverse association with inflammatory markers (TNF-α, IL-

6, and CRP) and insulin resitance, with the strongest indication for TNF-α. TNF-α plays a 

pivotal role in endothelial dysfunction. Mechanisms inlcude an increase in oxidative stress and 

a reduction NO bioavailability, a major mediator of endothelium-dependent vasodilation238. A 

decrease in TNF-α would therefore be in alignment with an increase in FMD. 

The next section investigates the two groups (high and low) as determined from the visual 

inspection of Figure 3-9 to identify common metabolite profile which may play a role in the 

mediation of vascular function as measured by FMD. 

3.2 Part 2: Identifying an anthocyanin metabolite signature of high 

metabolisers 

The factor analysis results indicated differential metaboliser profiles within the blueberry 

treatment group and within this, two subgroups were identified which were diametrically 

opposed. The high group (shown in Figure 3-9) represented a group of five individuals (20% 

of the analysed group) who had a large metabolite response to blueberry intake, i.e., had the 

largest rank change in urinary metabolites in both factor 1 and factor 2 from baseline to 

endpoint. Conversely, those in the low group (n=3; 12% of the analysed group) exhibited 

minimal responses to chronic six-month blueberry intake, i.e., with low or negative change in 

urinary metabolites relative to baseline levels.  
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Having confirmed a seeming disparity between the two groups of interest (high versus low), a 

series of assessments were made to identify a panel of key metabolites, which may 

characterise the main differences between high and low blueberry metaboliser phenotypes. 

Both groups were compared to the placebo group, as the control group which did not receive 

any blueberries. 

To establish whether the panel of metabolites had heath consequences, associations between 

the metabolite panel and parameters related to vascular function were assessed.  

The construction of a blueberry anthocyanin metabolite panel was the first of its kind and thus 

was exploratory and developmental in nature. It was considered that, if confirmed, that a panel 

of metabolites which predicted anthocyanin responsiveness would be useful in future studies 

a) as a screening tool, and b) to identify participants / patients that would benefit from 

anthocyanin based dietary strategies for health benefits. From a study design perspective, 

recruiting by metaboliser type would allow studies to more readily understand and account for 

the inter-individuality in metabolic responses which are conjectured to mask dietary health 

effects in randomised controlled studies. 

3.2.1 A comparison of the metabolite patterns shows the high group strongly differed 

from the low group and placebo 

In the first step to finding the key metabolites, the metabolite profiles of the high (n = 5) and 

low group (n = 3) were compared. First, the absolute change from baseline (μmol/24h) of each 

metabolite was ranked from smallest to greatest change for each individual. Then, the rank 

product of those metabolites was calculated to create a pooled rank across the participants in 

each group. The combined rank expressed which of the metabolites ranked highest per group. 

Figure 3-11 illustrates that there are clear commonalities between ranks among the 

participants in the high group (identified as H1- H5 on the x axis). Likewise, Figure 3-12 shows 

the absolute change for each metabolite for each participant in the high and the low groups 

(H1-H5; L1 – L3 respectively on the x axis). For comparative purposes, the mean changes in 

each metabolite per group (across the high and low groups; drawn from the blueberry 

intervention group) are shown alongside the changes in these metabolites in the placebo 

group, which received no blueberries for six months. In both figures the metabolites are shown 

in the order of the combined rank in the high group (highest to lowest). 

Figure 3-12 clearly demonstrates the stark difference in absolute metabolite changes between 

the high group and both low and placebo groups. 
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High metaboliser group 

In the high group, metabolites generally increased after the six-month intervention. Hippuric 

acid made up nearly 80% of total change (4098.8 ± 1974 μmol/24h), followed by benzoic acid 

(784.4 ± 83.3 μmol/24h (15% of total)) and 3-hydroxyhippuric acid (113.9 ± 65.9 (2.2% of 

total)). Over half of the metabolites (57%) increased by less than 1 μmol/24h in comparison to 

baseline. On average only one metabolite decreased, while for all participants individually, 

metabolites decreased in about 10% of the cases.  

Low metaboliser group 

A large percentage of metabolites (29 total, 63%) decreased on average in the low group (see 

Figure 3-12, L1 – L3). 14 metabolites (30%) increased by less than 1 μmol/24h, of which at 

least one participant had a negative change in most cases (see inset table in Figure 3-12, 

middle column). Only three metabolites increased more than 1 μmol/24h. Whilst hippuric acid 

was the metabolite with the greatest pre to post increase, the absolute level in the low 

metaboliser group was 10-fold less than in the high group (363.1 ± 66.0 μmol/24h). The other 

two metabolites were 3-hydroxyhippuric acid (8.0 ± 64.0 μmol/24h) and 4-hydroxy-3-

methoxyphenylpropionic acid (1.6 ± 2.5 μmol/24h). Although on average 3-hydroxyhippuric 

acid was the metabolite with the second highest change in this group, it ranked much lower at 

rank 16 because the positive average was due to only one of the three participants in the group 

while the other two strongly decreased in this metabolite. Interestingly, benzoic acid strongly 

decreased in all three participants (-956.4 ± 957.1 μmol/24h). 
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Figure 3-11. Ranked change in metabolites from baseline to 6 mo in the high group 

The heatmap shows the ranks of change from baseline for each metabolite (46 metabolites total) per 
individual in the high/high group (H1 – 5) in the order of their combined rank. Darker colours denote 
higher ranks (i.e. greater change), lighter colours denote lower ranks (i.e. smaller change). 
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Figure 3-12. Absolute change (μmol/24h) 
from baseline to 6 mo for 46 metabolites in 
high and low metabolisers, compared 
against placebo 

Heatmap: 
Absolute change in μmol/24h is shown for the 
five participants in the high/high group (H1-5), 
three participants in the low/low group (L1-L3), 
and the mean of the placebo group (P, n = 30). 
Data was log transformed for visibility due to the 
large difference in range. Empty fields denote a 
negative change. 

Table: 
Values are the mean change per metabolite 
across participants H1 – 5 (high), L1 – 3 (low), 
and placebo (n = 30). Data was missing for one 
metabolite (3,4-dihydroxyphenylacetic acid) for 
participant H5. 
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Placebo group 

In the placebo group (n = 30) the vast majority of metabolites (78%) did not change over the 

course of the study. For example, most metabolites decreased marginally, i.e., within 0.2 

μmol/24h of the baseline values. Whereas four metabolites decreased by more notable 

amounts, namely hippuric acid (-288.46 ± 907.57 μmol/24h), 3-hydroxyhippuric acid (-24.82 ± 

64.20 μmol/24h), 4-hydroxyhippuric acid (-20.23 ± 60.45 μmol/24h), and benzoic acid (-18.41 

± 592.93 μmol/24h). In general, these data confirm the good adherence to background diet 

restrictions which were applicable across all intervention groups in the study. 

Brief summary on the monitoring of dietary intake during the study 

Many of the measured phenolic acids may be naturally present in a multitude of foods 

(derivatives of hydroxycinnamic acids and to a lesser degree hydroxybenzoic acids 64 or are 

common catabolites to many flavonoids and other polyphenols. Hence habitual dietary intake 

is a key factor in the formation of metabolites. In the data presented in this chapter, it is 

acknowledged that strong variations in diet (across any group, i.e., intervention or placebo 

groups) could have influenced metabolite profiles; to account for this possibility, the study used 

a randomised controlled trial design and implemented dietary restrictions across all 

participants. To recap, in this free-living intervention study, participants were given a list of 

restricted food items (i.e., to avoid blueberries and minimise anthocyanin intake) for the three 

weeks before, and throughout the six-month study period. A list of alternative replacement 

foods was suggested, which included other fruits and vegetables. As this was a long-term, 

pragmatic study, only blueberries were entirely restricted, whilst other anthocyanin-rich foods 

such as other berries or red wine were allowed in limited proportions, i.e., one portion per 

week. Up to four cups of tea and coffee were allowed per day, as well as dark chocolate up to 

two portions per week. In an attempt to further standardise metabolite profiles, 24h before the 

study visit, participants were further instructed to consume a low-polyphenol diet and given a 

more extensive and stricter list of foods to avoid. Finally, a standardised, low-polyphenol 

evening meal was provided by the research team and consumed by the participant on the 

evening prior to each assessment visit. It is however acknowledged that phenolic metabolites 

have been observed in urine 48h after intake of flavonoids140,221,239, which may have had a 

bearing on the urine collections made in the 24h prior to each assessment visit. 

Of importance to this chapter, whilst the replacement alternative foods (i.e., fruits, vegetables, 

and beverages (such as bananas, oranges, peppers, cauliflower, beer, fruit juice)) were low in 

anthocyanins, they were not necessarily low in polyphenols. Therefore, it is plausible that 

changes in metabolite profiles (pre- to post-intervention) may have reflected changes in 

habitual dietary intakes as a consequence of adherence to the dietary restrictions. To explore 
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this, self-reported food frequency questionnaires (FFQ) taken at baseline and endpoint were 

evaluated159. The FFQs reflected the habitual intake of fruits and vegetables and other foods 

which was reported in the week before the study visit. Anthocyanin intake was estimated using 

polyphenol composition databases of the US Department of Agriculture (USDA).71,72  

The FFQ used has been validated (i.e. the assessment of intake has been assessed for 

accuracy using 24h dietary recalls) and previously used successfully to assess habitual dietary 

and flavonoid intakes in the context of large epidemiological studies.98,99 It included 131 items 

and allowed for the estimation of intake by asking for the consumption frequency of food 

servings (frequency categories ranged from ‘never or less than once a month’ to ‘6+ times per 

day’; servings were units of food items, such as one apple, or household measures, such as 

one cup). However, it is important to note that this method is subject to measurement errors 

and bias which may lead to over- or underestimation of true intake. Participants may under-

report true food intake or change in diet during the period of the survey. Also, polyphenol 

content of some foods may be missing in the databases and it is difficult to extrapolate values 

from related species, as the polyphenol profiles vary between similar foods. Furthermore, 

polyphenol content in foods and beverages does not only depend on plant species, but also 

on the season, year, and processing, which is not always fully documented in dietary records. 

Finally, intra- and inter-individual variability in polyphenol metabolism and uptake may obscure 

actual systematic polyphenol exposure.48 

Therefore, the data derived from the FFQ in the following is understood as an estimation rather 

than an accurate calculation of dietary intakes. While exact numbers may not be accurate, 

large differences and comparison of ratios between groups and timepoints are nevertheless 

able to give an indication of variation between groups or timepoints. 

Metaboliser profiles were not a result of changes to habitual diet between baseline and 

6 months 

As shown in Table 3-11, the FFQ data gave no indication that there were discrepancies in 

dietary intake which may underpin the metabolite groupings. For example, the low metaboliser 

group did not have unusually high intakes of polyphenol-rich foods at baseline, compared with 

the average for the blueberry intervention group. Likewise, the high metaboliser group did not 

consume particularly low amounts of polyphenol-rich foods at baseline. Neither group 

significantly reduced, or increased, their intake of anthocyanins, fruits, vegetables, tea, and 

coffee between baseline and endpoint which provides reassurance that the change in 

metabolite profiles were likely to be attributable to the blueberry study material. Indeed, 

between the two timepoints, the low group had increased their intake of fruits and vegetables, 

whereas the high group had slightly decreased their intake. Intuitively, if any change due to 
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other fruits and vegetables was expected, we would have expected an increase in phenolic 

metabolites for the low group and a decrease for the high group, rather than the opposite as 

observed here.  

To further explore whether change in habitual dietary intake may have influenced the 

metaboliser profiles, efforts were made to identify commonly consumed alternate food sources 

with common metabolite profiles and subsequently determine the change in their FFQ intakes. 

In the high metaboliser group, the increase was most evident for hippuric acid and benzoic 

acid, both known metabolites in the catabolism of phenolic acids124. Especially hippuric acid 

has been observed frequently as a metabolite of polyphenols, such as from chlorogenic acid 

in coffee and tea239, and even proposed as a biomarker240. In fact, hippuric acid has many 

dietary sources and originates from other molecules, for example quinic acid and aromatic 

amino acids in proteins222. Macronutrient intake was comparable between all groups, and 

although tea and coffee intake greatly differed between groups, the amounts consumed per 

group were consistent between both timepoints. Therefore, while baseline levels in metabolites 

derived from tea and coffee were expected to vary among the groups, the change in 

metabolites between timepoints should not be affected.  

It was notable that the 7th highest ranked metabolite to change from pre- to post-intervention 

was 3,5-dihyddroxyphenylpropionic acid (see row 7 in Figure 3-11 and Figure 3-12), a 

metabolite that contains a resorcinol structure, which has also been a confirmed metabolite of 

alkylresorcinols.241 These are found in wholemeal and cereal products, such as wholemeal 

bread and wheat bran. In assessment of the FFQ data, it was clear that the high metaboliser 

group had habitually higher intakes of wholemeal products than the low metaboliser and 

placebo groups, but again the change between pre- and post-intervention was comparable 

between groups, suggesting that increases of this metabolite in the panel of the high 

metaboliser group was not driven by increased intake of wholemeal foods. Supporting the 

likelihood that increased 3,5-dihyddroxyphenylpropionic acid was derived from blueberry, is 

data from a study which fed raspberry anthocyanins,242 which showed that resorcinol was 

observed as a colonic metabolite of the intervention material. It is conceivable that 3,5-

dihydroxyphenylpropionic acid is converted to resorcinol through further microbial β-oxidation 

and decarboxylation. 

Taken together, the FFQ data indicated that the differences in the metabolite profiles was not 

due to other food sources. This supported the blueberry-derived nature of metabolites in the 

high group and a lack of response to blueberry intake in the low group. The low group scored 

low on both factor 1 and factor 2, which would suggest a low bioavailability of blueberry 

metabolites for these participants in contrast to a high bioavailability for participants in the high 

group. Such inter-individual variability could be influenced by a variety of reasons, such as the 
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transit time through the digestive system, the composition of the microflora, the ability to absorb 

compounds from the gut, and the metabolisation and excretion rate after absorption. For 

example, the individuals in the low group may have less active colonic microbiota, producing 

less microbial metabolites available to absorb, metabolise and excrete via urine. The low 

increase in hippuric acid in the low group, but not in placebo, seems to support this theory.  

Table 3-11. FFQ dietary intake at baseline (0 months) and endpoint (6 months) 

 High (n = 5) Low (n = 3) Full dose (n = 23) Placebo (n = 27) 

 0 mo 6 mo 0 mo 6 mo 0 mo 6 mo 0 mo 6 mo 

ACN 
(mg/d) 

32.1 ± 
27.8 

16.5 ± 7.3 22.2 ± 6.4 26.5 ± 7.4 
16.0 ± 
10.3 

12.5 ± 8.5 
20.1 ± 
12.9 

15.4 ± 
14.5 

Fruits 
(g/d) 

270.7 ± 
176.1 

230.3 ± 
126.6 

132.0 ± 
73.2 

192.0 ± 
111.7 

146.2 ± 
119.2 

130.2 ± 
91.6 

229.9 ± 
113.9 

220.3 ± 
135.7 

Veg 
(g/d) 

279.3 ± 
169.3 

241.9 ± 
114.3 

256.9 ± 
59.7 

311.7 ± 
31.7 

207.7 ± 
103.1 

199.9 ± 
106.8 

266.5 ± 
128.3 

218.7 ± 
88.2 

Red wine 
(g/d) 

90.0 ± 
136.6 

18.0 ± 
21.1 

39.0 ± 
52.7 

24.0 ± 
27.5 

33.6 ± 
42.5 

15.6 ± 
25.3 

32.3 ± 
39.6 

25.0 ± 
63.4 

Coffee 
(g/d) 

236.1 ± 
228.8 

195.4 ± 
255.5 

36.2 ± 
39.2 

76.9 ± 
98.2 

296.3 ± 
299.4 

233.9 ± 
211.1 

363.4 ± 
304.7 

295.1 ± 
237.5 

Tea 
(g/d) 

760.0 ± 
419.5 

627.0 ± 
371.6 

63.3 ± 
109.7 

63.3 ± 
109.7 

494.9 ± 
313.5 

419.8 ± 
260.1 

390.6 ± 
248.9 

324.2 ± 
220.5 

Wholemeal 
(g/d) 

69.0 ± 
45.8 

88.9 ± 
117.5 

31.9 ± 9.3 
43.0 ± 
12.0 

36.3 ± 
26.8 

35.4 ± 
28.7 

-7.9 ± 28.6 
40.8 ± 
31.0 

Energy 
(kcal/d) 

2111.3 ± 
304.6 

2172.1 ± 
668.2 

2330.3 ± 
294.7 

2080.2 ± 
361.6 

2132.4 ± 
590.4 

2057.7 ± 
546.2 

1874.5 ± 
516.9 

1783.9 ± 
456.5 

Carb 
(%energy) 

43.1 ± 2.4 45.7 ± 4.8 41.3 ± 2.8 40.9 ± 4.9 43.0 ± 5.6 41.6 ± 6.0 44.5 ± 5.9 44.6 ± 5.6 

Fat 
(%energy) 

33.7 ± 3.2 32.7 ± 5.8 37.3 ± 3.6 33.9 ± 1.5 35.7 ± 4.0 36.0 ± 4.3 34.5 ± 5.1 33.2 ± 4.1 

Protein 
(%energy) 

19.6 ± 4.3 20.7 ± 5.9 19.2 ± 2.0 21.9 ± 0.3 18.1 ± 3.0 19.3 ± 2.9 17.9 ± 3.1 18.5 ± 3.4 

Values are mean ± SD. Dietary data considered invalid and excluded for n = 4 in the placebo group and n = 2 in the full dose 
group. 0 mo: 0 months (baseline); 6 mo: 6 months (endpoint); ACN: anthocyanins; Veg: vegetables; Wholemeal: wholemeal 
bread and pasta, brown bread, cereal; Carb: carbohydrates 
 

In conclusion to this analysis, the categorisation of individuals in the high group were confirmed 

as high metabolisers in response to blueberry intake, and those in the low group as low 

metabolisers. The following sections examine the metabolites which were common among the 

high group to identify a subset of metabolites which were most likely to relate to a high 

metaboliser profile. In addition, the second aim was to determine their role in mediating 

vascular health. 

 

3.2.2 Determining a preliminary metabolite panel via identification of common 

metabolites 

Identifying common metabolites among high metabolisers 

Common metabolites were defined as such if they ranked within the first ten ranks (20% of 

total metabolites) for absolute change in µmol/24h for at least three of the five participants in 

the high group (Table 3-12). This cut-off was chosen because the first ten pooled ranks 
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represented over 99% of total change and were considered as the most relevant metabolites. 

Interestingly, most of these metabolites were described by factor 2, which was characterised 

by metabolites of likely microbial origin. As there was some evidence for an association 

between factor 2 metabolites with ∆FMD, this could infer that these metabolites were not only 

the ones in greatest abundance, but indeed played a role in mediating potential vascular 

benefits gained from eating blueberries. Especially phenylpropionic acids and 

methoxyphenylacetic acids had the highest loadings on factor 2 and may be of particular 

importance. In addition to the metabolites in the top ten ranks, two more metabolites were 

selected for further investigation: syringic acid and gallic acid, as these were the expected 

initial fragmentation products of the two main anthocyanins in blueberries, malvidin and 

delphinidin. 

Table 3-12. Common metabolites among five participants in the high group 

Shaded rows indicate metabolites which formed the preliminary panel after evaluation of all criteria (see 
text for details). 

Combined 
ranka Metabolite 

Mean change ± 
SD (μmol/24h) nb 

Different 
from 

placebo 

Unequal 
variancesd p (FC)e 

1 Hippuric acid 4098.82 ± 1974.91 5 yes yes 0.003 

2 Benzoic acid 784.37 ± 83.33 5 no no – 

3 3-hydroxyhippuric acid 113.94 ± 65.93 5 yes no 0.148 

4 Benzoic acid-4-sulfate 54.82 ± 64.48 4 no no – 

5 
4-hydroxy-3-
methoxyphenylacetic acid 

11.29 ± 9.24 4 yes no 0.049 

6 4-hydroxyhippuric acid 42.39 ± 39.14 4 yes no 0.320 

7 
3,5-dihydroxyphenylpropionic 
acid 

12.64 ± 10.22 5 no yes 0.003 

8 3-methoxybenzoic acid-4-GlcA 6.09 ± 6.33 3 no no – 

9 
4-hydroxy-3-methoxybenzoic 
acid 

5.36 ± 5.15 3 yes no 0.013 

10 
4-hydroxy-3-
methoxyphenylpropionic acid 

3.46 ± 2.33 3 yes no 0.082 

13 
4-hydroxy-3,5-
dimethoxybenzoic acid 

3.47 ± 3.29 1 yes yes 0.035 

33 3,4,5-trihydroxybenzoic acid 0.61 ± 0.74 0 no no – 
a Combined rank calculated as geometric mean of ranks of the five participants. 

b Number of times the metabolite ranked in the top 10 ranks within the high/high group  
c Metabolite was considered as derived from blueberry if change in metabolite after the intervention was significantly different 
between the blueberry treatment group and placebo at a significance level of 0.001 (see Table 3 in 159) 

d “Yes” denotes greater spread in the blueberry group as tested with the Brown-Forsythe test for the equality of variances 
between blueberry treatment and placebo groups using the median. Variances were considered unequal for p <= 0.2.  
e p value of Welch’s t-test comparing log2 fold change between the high and low group. Only those metabolites were tested 
which passed the previous filtering stages. 

 

The selected metabolites (top ten ranks plus two hydroxybenzoic acids) were then evaluated 

for inclusion in the final panel based on two further criteria:  

(1) their dependence on blueberry intake (Figure 3-13A) as confirmed as a significant 

difference between treatments (full dose versus placebo) in published study data.159  
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(2) the inter-individual variability in metabolism of blueberry polyphenols across all participants 

in the blueberry treatment group (Figure 3-13B): estimated by comparing the spread of change 

between the blueberry and placebo group. If the spread of the data was greater with blueberry 

intake, this was considered as a metabolite particularly prone to inter-individual variability in 

the response to eating blueberries. 

Common metabolites (among the first ten ranks in Table 3-12) were selected for further 

inclusion if either of the two criteria was fulfilled. Using these criteria, the twelve metabolites 

were reduced to eight metabolites (ranks 2, 4, 8, and 33 were neither significantly different 

from the placebo group nor did they display a bigger spread of the data in comparison to the 

placebo group). Of the remaining metabolites, only 3,5-dihydroxyphenylpropionic acid (rank 7) 

was not shown to have significantly changed between treatments. This was selected for 

inclusion on the basis of criterium (2) as it displayed a much greater spread in the blueberry 

group versus placebo (also see Figure 3-13B). 

 

Log2 fold change analysis 

To further narrow down the selection of metabolites, the fold change (FC) between low and 

high groups was compared (Figure 3-14). It was important to look at absolute numbers as well 

as the FC as it was unclear whether the total amount or the fold change in urinary metabolites 

Figure 3-13. Selection criteria for the preliminary metabolite panel 

Example graphs to represent the two criteria used to narrow down the selection of twelve metabolites 
common among high metabolisers to eight metabolites:  
(A) a significant difference in change between full dose (Blueberry (1 cup)) and placebo as a marker of 
blueberry intake 
(B) the difference in spread between full dose (Blueberry (1 cup)) and placebo as a marker of inter-
individual variability in the metabolism of blueberry polyphenols.  
HA: Hippuric acid; 3,5-DiOH-PPA: 3,5-Dihydroxyphenylpropionic acid 
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were better indicators of responding to blueberry intake and metabolism. In addition, as 

mentioned above, many metabolites such as hippuric acid have abundant dietary sources and 

other foods may have dictated high background levels. Hence although the absolute change 

may be large, the FC may be small if baseline and endpoint values were large to begin with. 

FC therefore helped compare the different degrees of change per metabolite in response to 

eating blueberries between the two groups and was used to determine the utility of the 

metabolite in distinguishing between both groups (Welch’s t-test, Table 3-12, column ‘p (FC)’). 

The rationale for this was that if a metabolite significantly differed between the groups in both 

absolute and relative values, we could be more certain of this metabolite being able to 

discriminate between a high and low metaboliser, regardless of whether absolute amount or 

relative change were better predictors of a suspected metabolism phenotype. FC is presented 

as the log2 ratio of endpoint to baseline, which translates to a doubling of the baseline value if 

log2 FC = 1 and a quadrupling if log2 FC = 2. Some values were excluded from the comparison 

due to small, likely unreliable measurements of less than 0.00005 µmol/24h which inflated the 

fold change up to ±1000-fold. A total of 20 values were excluded across 19 metabolites and 

15 participants. Most of these were in the placebo group and none were pertinent to the 

analysis in this paragraph.  

As shown in Figure 3-14, the average log2 FC from baseline to the 6-month endpoint was 

greater for all the selected metabolites in the high metaboliser group, compared with the low 

metaboliser group. In the high group, metabolites varied much less in their log2 FC (range of 

means from 0.6 to 1.8), so in contrast to absolute change, none of the metabolites markedly 

stood out as the one to change the most. This included hippuric acid, which had dominated 

the absolute amount of change, but was not the highest ranking in terms of FC. For the low 

group this meant that despite an increase of a notable amount of over 350 μmol/24h, it only 

increased by 20% in comparison to 220% in the high group. In agreement with low (and 

sometimes negative) absolute change for the low group, the means of log2 FC for the low group 

were mostly around 0 or negative.  
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Despite the small group sizes, there was clear distinction between the two groups (low versus 

high metabolisers) for five of the eight metabolites (hippuric acid, 4-hydroxy-3-

methoxyphenylacetic acid (homovanillic acid), 3,5-dihydroxyphenylpropionic acid, 4-hydroxy-

3-methoxybenzoic acid (vanillic acid)), and 4-hydroxy-3,5-dimethoxybenzoic acid (syringic 

acid). In the case of 4-hydroxyhippuric acid and 3-hydroxyhippuric acid, the distinction was not 

so prominent because the log2 FC varied greatly in the low group, ranging from a 2-fold 

decrease to a 2-fold increase, which overlapped with the high metaboliser group. Because the 

log2 FC for 4-hydroxyhippuric acid was generally smaller in the high group than 3-

hydroxyhippuric acid, the overlap was more pronounced for 4-hydroxyhippuric acid, resulting 

in a higher p value for the group comparison (see Table 3-12). Although log2 FC did not show 

strong support of a significant difference in 3-hydroxyhippuric acid between the high and low 

groups, the absolute change data confirmed 3-hydroxyhippuric acid as one of the major 

metabolites upon blueberry intake, increasing three times as much as 4-hydroxyhippuric acid. 

For this reason, 3-hydroxyhippuric acid remained in the panel, while 4-hydroxyhippuric acid 

was deemed an uncertain candidate to be reconsidered using the next test. A larger sample 

size may have been able to confirm or deny a difference in log2 FC for this metabolite. Similarly, 

the results for the final metabolite, 4-hydroxy-3-methoxy-phenylpropionic (dihydroferulic acid) 

were not entirely conclusive either, however because four of the five individuals clearly 

Figure 3-14. Log2 FC of common metabolites in the high group 

Figure compares the log2 FC in the high and low groups to determine 
the degree of change from baseline to endpoint per group and how well 
the groups can be distinguished by the respective metabolite. The high 
metaboliser group consistently changed to a greater degree and there 
was a clear distinction between the groups for HA, 4-OH-3-OCH-PAA, 
3,5-DiOH-PPA, 4-OH-3-OCH-BA, and 4-OH-3,5-DiOCH-BA. 
HA: Hippuric acid; OH: hydroxyl group; OCH: methoxyl group; PPA: 
phenylpropionic acid; PAA: phenylacetic acid; BA: benzoic acid. 
Datapoints are slightly jittered to show overlaying points. 
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increased nearly over 4-fold, this metabolite remained in the closer selection for the panel as 

well. 

Summary of identifying a preliminary metabolite panel 

In summary, the metabolite profile of a group of individuals identified previously using factor 

analysis was studied more closely. Strong differences in metabolite profiles were observed. 

Because group sizes were small with n = 5 for the high group and n = 3 for the low group, the 

impact of potential confounders on the high/low concentrations of metabolites was evaluated, 

and habitual intake of polyphenol-rich foods in the high and low groups and placebo group 

were compared. No stark differences in intake were found which could explain the observed 

differences in metabolites between the high and low group. In addition, metabolite patterns in 

both groups were compared against the placebo group, which received no blueberries and 

confirmed the good adherence to background diet restrictions which were applicable across 

all intervention groups in the study. This comparison highlighted the blueberry-derived nature 

of the metabolites in the high group. Furthermore, a low increase in hippuric acid, the most 

dominant metabolite, was observed in the low group but not in the placebo group. This seems 

to support the fact that participants in the low group consumed the blueberry powder but were 

less responsive to blueberry intake. In conclusion, the categorisation of individuals in the high 

group were confirmed as high metabolisers in response to blueberry intake, and those in the 

low group as low metabolisers. 

Various criteria were applied to the metabolite profiles and resulted in a selection of eight 

metabolites which increased with intake of blueberry compounds and mostly differentiated well 

between high and low metabolisers within the blueberry treatment group. The criteria used 

were:  

1) establishing the most common and relevant metabolites in the high group using absolute 

change;  

2) assessing whether the absolute change in these metabolites was significantly different in 

the blueberry group compared to the placebo group;  

3) assessing whether the spread of absolute change in the blueberry group was greater than 

in the placebo group, suggesting inter-individual variation in response to blueberry intake; and  

4) comparing the fold change between the high and low groups within the blueberry treatment 

group to ensure a distinction between the two groups.  

These metabolites were hippuric acid, 3-hydroxy hippuric acid, 4-hydroxyhippuric acid, 4-

hydroxy-3-methoxyphenylacetic acid (homovanillic acid), 3,5-dihydroxyphenylpropionic acid, 
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4-hydroxy-3-methoxyphenylpropionic acid (dihydroferulic acid), 4-hydroxy-3-methoxybenzoic 

acid (vanillic acid), and 4-hydroxy-3,5-dimethoxybenzoic acid (syringic acid).  

The majority of metabolites was of microbial origin (phenylpropionic, phenylacetic, and hippuric 

acids). The origin of the two hydroxybenzoic acids could be two-fold. They have previously 

been detected in blueberries 243 and may also be derived from the initial fragmentation of parent 

anthocyanins or emerged through various microbial transformations such as dehydroxylation, 

demethoxylation, and oxidation. The fact that these metabolites, apart from the 

hydroxybenzoic acids, were all part of factor 2 supports that they seem to describe an 

underlying anthocyanin metabolism phenotype, which may point to a certain bacterial 

composition or metabolic activity of the colonic microflora.  

The next section considers the association of these metabolites with ∆FMD in the formation of 

a metabolite panel which is not only descriptive of inter-individual variability to blueberry intake, 

but also associated with cardiovascular benefits. 

 

3.2.3 Refining the metabolite panel by testing its association with ∆FMD 

Formation of a panel by taking the average across the log2 FC of metabolites 

The original hypothesis was that a particular metabolism phenotype which mediates beneficial 

effects received from eating anthocyanin-rich foods exists as a hidden factor. Coming back to 

this hypothesis, a scale from the selected metabolites was generated to represent this latent 

variable. In the first instance, a composite measure was formed from the full selection of 

metabolites identified in the previous section by taking the average across (1) the absolute 

change and (2) the log2 FC. The average of log2 FC was only calculated for those participants 

who had no missing values for any of the selected metabolites in the panel (n = 3 had missing 

values for one or two metabolites). Analog to the factor scores computed in the previous 

section, internal consistency of both averages was determined using Cronbach’s alpha to see 

if one of the averages was more reliable as a composite measure. To remain consistent with 

the idea that a phenotype would drive differential metabolite levels among people receiving the 

same treatment, internal consistency was only estimated within the full dose blueberry group. 

Cronbach’s alpha was close to zero for the average of absolute change (α = 0.06) and much 

higher for the average of log2 FC (α = 0.84), suggesting that using fold change of the 

metabolites for the composite measure was more reliable indicator than absolute change. 

Hence log2 FC was used for all further investigations. 
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Exploring the relationship between the metabolites and ∆FMD 

Next, the relationship between the metabolites and ∆FMD using linear regression was 

assessed. Here, all study participants were used regardless of treatment group, for a total n = 

74 with a maximum of three missing values per metabolite (Table 3-13). As a reminder, the 

three treatment groups were the following: the full dose group received the equivalent of 1 cup 

blueberries per day, the half dose group received the equivalent of ½ cup of blueberries, and 

the placebo group received an anthocyanin-free matched placebo. The rationale for including 

the half dose and placebo at this stage and not before was that if the metabolites truly played 

a role in mediating vascular function, the origin of the metabolites should not matter, i.e., the 

placebo group may have experienced similar benefits if other food sources led to high 

increases in metabolite levels. Moreover, this would indicate a certain transferability of the 

panel to other flavonoid-rich food sources, given that many flavonoids are degraded to a similar 

set of catabolites157. 

The log2 FC of three metabolites (rows 1, 2, and 3 in Table 3-13) was significantly associated 

with ∆FMD, with each doubling of the metabolite in urine predicting a 0.4 to 0.8% increase in 

FMD. Four metabolites were moderately associated with ∆FMD (β-coefficient ≈ 0.3), although 

the effect was not conclusive (rows 4, 5, 6, 7). The final metabolite (row 8) showed the weakest 

and most doubtful correlation. For this reason, a second panel was formed excluding this last 

metabolite, vanillic acid. Of all the metabolites, 4-hydroxyhippuric acid had the strongest 

relationship with ∆FMD. Therefore, it remained in the panel although it had been deemed an 

uncertain candidate in the previous section. 

Table 3-13. Individual regression results for ∆FMD (%) 

Row Metabolite (as independent variable) n β (SE) p 
Constant 

(SE) 

1 4-hydroxyhippuric acid 71 0.79 (0.31) 0.014* 0.48 (0.22)* 

2 3,5-dihydroxyphenylpropionic acid 72 0.44 (0.21) 0.041* 0.37 (0.23) 

3 
4-hydroxy-3-methoxyphenylacetic acid 
(Homovanillic acid) 

74 0.61 (0.31) 0.052 0.47 (0.21)* 

4 
4-hydroxy-3,5-dimethoxybenzoic acid 
(Syringic acid) 

72 0.38 (0.24) 0.125 0.29 (0.25) 

5 
4-hydroxy-3-methoxyphenylpropionic acid 
(Dihydroferulic acid) 

73 0.26 (0.19) 0.172 0.41 (0.23) 

6 Hippuric acid 73 0.32 (0.25) 0.202 0.31 (0.26) 

7 3-Hydroxyhippuric acid 74 0.27 (0.22) 0.224 0.40 (0.23) 

8 
4-hydroxy-3-methoxybenzoic acid 
(Vanillic acid) 

73 0.12 (0.16) 0.463 0.48 (0.22)* 

9 Panel 1 (rows 1 – 8) 71 0.71 (0.32) 0.032* 0.27 (0.24) 

10 Panel 2 (rows 1 2 3 4 5 6 7) 71 0.79 (0.33) 0.020* 0.23 (0.25) 

11 Panel 3 (rows 1 2 3 5 6 7) 72 0.81 (0.33) 0.016* 0.25 (0.24) 

12 Panel 4 (rows 1 2 3) 72 0.93 (0.33) 0.005** 0.37 (0.22) 

13 Panel 5 (rows 2 3 6 7) 74 0.7 (0.31) 0.026* 0.25 (0.24) 

* p < 0.05; ** p < 0.01 
β Coefficients are the unstandardised linear regression slopes of ∆FMD (%) regressed on the log2 FC of the independent 
variables with standard errors in parentheses. Row numbers next to the panels indicate the metabolite row numbers in 
this table to show the composition of each panel. 
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Assessing the relationship between the metabolite panels and ∆FMD 

Panels 1 and 2: 

Both Panels 1 and 2 were similarly tested for an association with ∆FMD (compare rows 9 and 

10 of Table 3-13). The exclusion of vanillic acid strengthened the association, as seen from 

the increased slope and decreased p value. Further candidates for exclusion were considered 

in the following. 

Panel 3: 

Although hippuric acid, 3-hydroxyhippuric acid, and dihydroferulic acid were only moderately 

correlated with ∆FMD, they were identified among the main metabolites after blueberry intake 

and it did not seem sensible to exclude these from the panel.  

Syringic acid was not ranked among the top ten common metabolites and differed from the 

other metabolites by structure and probably also by origin as a direct fragment of malvidin 

glycosides rather than a series of catabolic conversions. The strength of association between 

syringic acid and ∆FMD was comparable to that of the hippuric acid and 3-hydroxyhippuric 

acid and in itself gave no reason to exclude syringic acid from the panel. However, a third 

panel was created excluding syringic acid to test the effect of a panel comprised only of 

microbial and end-stage metabolites (Panel 3, row 11). Panel 3 displayed an even stronger 

association than Panel 2, suggesting that indeed the microbial and end-stage metabolites were 

the main effectors. Nevertheless, the fold change analysis showed that syringic acid increased 

the most relative to baseline and thereby highlighted its status as a blueberry metabolite. Due 

to its direct, albeit not exclusive, link to malvidin, it was seemingly a strong indicator for the 

intake of blueberry anthocyanins in comparison to the other metabolites which may have 

derived from many different flavonoids. Therefore, for future use of this panel as a tool to 

identify high from low metabolisers, it seemed prudent to keep syringic acid in the panel, 

accepting that the association with ∆FMD was marginally weaker. 

Panel 4: 

A trend was becoming apparent that the relationship between the panels and ∆FMD was 

getting stronger the simpler the panels were. A fourth panel (Panel 4, row 12 of Table 3-13) 

was tested, comprised only of the three metabolites which individually had the strongest effects 

on ∆FMD (rows 1, 2, and 3). Indeed, the relationship was even stronger for this panel. Each 

doubling of the panel relative to baseline predicted an almost 1% increase in FMD. While it 
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may seem that this was the best panel so far in terms of simplicity and effectiveness, there are 

a few things to bear in mind:  

• First, although ranked in the top ten for absolute change, two of the three metabolites 

ranked in the lowest ten ranks for fold change and in contrast to the other metabolites 

increased less than half as much relative to baseline. Only the third metabolite, 3,5-

dihydroxyphenylpropionic acid, increased by a comparable amount.  

• Second, the discrimination between a high and low metaboliser was inconclusive for 4-

hydroxyhippuric acid (see Figure 3-14). 

• Third, unfortunately 3,5-dihydroxyphenylpropionic acid also appears to be a biomarker 

for wholewheat and bran 241
, hence while this panel was the simplest of all defined by 

only three metabolites, it was likely too narrow to be a specific marker of blueberry 

anthocyanin intake and even less so be able to distinguish between metaboliser 

profiles. 

Panel 5: 

A final panel was created with only the four microbial metabolites hippuric acid, 3-

hydroxyhippuric acid, 3,5-dihydroxyphenylpropionic acid, and homovanillic acid (Panel 5, row 

13 of Table 3-13). As explained in methods section (see Section 2.5), this was done because 

originally, the entire analysis up to now was performed with all available data including those 

with missed urines and some lower quality ultrasound sequences used to determine FMD 

measurements. The combination of these factors had increased the total number to n = 35 

participants instead of n = 25 participants used in the full dose blueberry group metabolite 

panel analysis. The metabolite panel which resulted from it included only the four metabolites 

named above and was the final panel used for the prospective recruitment for the AMP study 

(see Chapter 5). It is included here to assess validity of its use when a more stringent data 

quality assessment was applied. 

The process of elimination of metabolites used in the initial analysis was similar to the one 

described above with the following differences: 1) the spread of the data was determined 

through a visual inspection and not additionally supported by a statistical test and 2) the 

relationship with ∆FMD was determined in the full dose group only by comparing high and low 

groups as defined by the top and bottom 15% of the metabolites and composite panel, 

respectively. Despite the obvious limitation of having included ten potentially invalid 

observations, the common metabolite analysis and the comparison of the spread between full 

dose and placebo yielded five of the eight metabolites of the preliminary selection found using 

the refined approach (the four metabolites in Panel 5 and 4-hydroxyhippuric acid, Table 3-14). 

The association of each metabolite and the combined panel with ∆FMD was assessed using 
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Pearson correlation and by comparing the high and low groups (n = 6) using the Mann-

Whitney-U test. Although the correlation was moderate, it was significant at a level of 0.1 for 

all metabolites except 3-hydroxyhippuric acid and 4-hydroxyhippuric acid. Excluding either 3- 

or 4-hydroxyhippuric acid from the panel showed that excluding 4-hydroxyhippuric acid had no 

effect on the relationship of the panel with ∆FMD, whereas excluding 3-hydroxyhippuric acid 

did have a small effect. For this reason, a panel of four metabolites was formed, excluding 4-

hydroxyhippuric acid. Table 3-13 clearly showed however, that 4-hydroxyhippuric acid was 

actually the metabolite with the greatest association with ∆FMD. The inclusion of likely invalid 

data and the analysis being underpowered by only testing within the full dose group therefore 

led to the false exclusion of 4-hydroxyhippuric acid in the initial analysis. To test the validity of 

the panel with all invalid or lower quality data removed, the regression analysis of ∆FMD on 

Panel 5 including the half dose and placebo groups is repeated here. The results indicate that 

despite the exclusion of 4-hydroxyhippuric acid, Panel 5 still showed a strong positive 

relationship with ∆FMD, similar to Panel 1 (see row 13 of Table 3-13). 

Table 3-14. Association between ∆FMD and the initial metabolite panel 

 
Correlationa 

(n = 35) 

p value for  
high/low comparisonb 

(n = 6 each) 

Hippuric acid 0.41 (0.017)** 0.126 

Homovanillic acid 0.32 (0.073)* 0.485 

3,5-dihydroxyphenylpropionic acid 0.29 (0.098)* 0.485 

3-Hydroxyhippuric acid 0.21 (0.246) 0.429 

4-Hydroxyhippuric acid 0.09 (0.593) 0.662 

Initial Panel (4-OH-HA excluded) 0.41 (0.017)** 0.045 
a Correlation values are Pearson correlation coefficients with p values in parentheses, n = 35. * p < 0.1; ** p < 0.05 
b Mann-Whitney-U test 

 

A ROC analysis reveals Panel 2 as the best candidate to detect blueberry intake 

To further compare the predictive power of the different panels, a ROC analysis (receiver-

operating characteristic) was performed. A ROC graph helps assess the diagnostic ability of 

binary classifier by determining the true positive rate (TPR, sensitivity) and false positive rate 

(FPR, 1 – specificity) for different thresholds of the classifier. In clinical testing this is often used 

to find the best threshold level specificity for a diagnostic test to identify a disease. Such a 

threshold would have the most appropriate TPR and FPR. A perfect diagnostic test would be 

able to discriminate perfectly between the two states and have a 100% TPR and 0% FPR (all 

true positives and no false positives are identified). In a ROC graph this corresponds to the 

point (0,1) in the top left corner. In contrast if TPR = FPR, then the test has no diagnostic ability 

to discriminate between the classes and is no better than a classification by pure chance. This 

case is represented in the graph by the diagonal line through the origin. Values above this line 
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implicate a better-than-random classification. The area under the curve (AUC) of ROC can be 

used to estimate the overall performance of a classifier, i.e., that it correctly distinguishes 

between the two classes, and also compare different screening tests for their diagnostic ability. 

Generally, the higher the AUC is, the better. A perfect test would have an AUC of 1.0 and a 

test unable to discriminate between classes would have an AUC of 0.5.  

Here, the aim of the analysis was to test the ability of each panel to differentiate between 

‘blueberry treatment’ and ‘placebo’ (expected AUC > 0.5) and which of the panels performed 

the best. As both the full dose and half dose group received blueberries, a one-way ANOVA 

was performed comparing the log2 FC of the panels between all treatment groups to determine 

if the full dose and half dose treatment groups could be treated as one ‘blueberry’ group in the 

context of the ROC analysis (Table 3-15). The results showed that the placebo group was 

highly significantly different from both the half dose and full dose groups with the exception of 

Panel 4, which only reached significance when compared to the full dose group. A dose-

response trend was visible, however the difference between the half dose and full dose groups 

was not significant at a level of 0.05 (adjusted p-values > 0.37).  

Table 3-15. Comparison of mean log2 FC of the metabolite panels by treatment group 

 Placebo (n=24) Blueberry half dose (1/2 cup) (n = 25) Blueberry full dose (1 cup) (n = 25) 

Panel 1 -0.43 [-0.78, 0.56]ac 0.44 [0.22, 0.66] 0.66 [0.41, 0.8] 

Panel 2 -0.38 [-0.7, 0.52]ac 0.48 [0.27, 0.64] 0.71 [0.47, 0.8] 

Panel 3 -0.31 [-0.7, 0.69]ac 0.43 [0.2, 0.68] 0.62 [0.39, 0.74] 

Panel 4 -0.35 [-0.93, 1.06]b 0.14 [-0.12, 0.62] 0.37 [0.13, 0.67] 

Panel 5 -0.31 [-0.78, 0.86]ad 0.47 [0.22, 0.74] 0.66 [0.41, 0.8] 

Values are means with 95% CI in square brackets. Letters denote significant differences between groups, p-values were 
adjusted for multiple comparisons using Tukey method. a = placebo compared with full dose, p < 0.001; b = placebo compared 
with full dose, p < 0.02; c = placebo compared with half dose, p < 0.001; d = placebo compared with half dose, p < 0.002. No 
significant difference at a level of 0.05 between half and placebo group for Panel 4 (all adjusted p values > 0.37). 

 

For this reason, participants from both the full and half dose group were labelled as 1 for 

‘blueberry treatment’ and those who received the placebo were labelled as 0. For every value 

of a panel (the classifier), the true positive and false positive rates were calculated and plotted 

(Figure 3-15). Unfortunately, this analysis could not directly answer whether a panel was 

useful in discriminating between a high and a low metaboliser of blueberry phenolic 

compounds, as no precedent exists to classify people as such. However, Figure 3-12 illustrated 

that the low group had very low changes in most metabolites, not so dissimilar to the placebo 

group. Hence in the extreme sense, assuming low microbial activity and absorption, a low 

metaboliser may even be approximated by the placebo group. The ability of a metabolite panel 

to identify metaboliser phenotypes is therefore likely to be somewhat but not enormously 

weaker to the ability to distinguish between blueberry and placebo intake. 
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 n AUC SE 95% CI 

Panel 1 73 0.84 0.051 [0.74, 0.94] 

Panel 2 73 0.88 0.044 [0.79, 0.97] 

Panel 3 73 0.81 0.059 [0.69, 0.92] 

Panel 4 73 0.65 0.071 [0.51, 0.79] 

Panel 5 73 0.77 0.061 [0.65, 0.89] 
 

Figure 3-15. ROC analysis of the metabolite panels 

A ROC analysis was performed to test the effectiveness of each panel in differentiating between 
blueberry and placebo intake. This was used as an approximation to distinguish between high and low 
metabolisers based on the assumption that low metabolisers experience very low changes in 
metabolites following blueberry intake similar to the placebo group (as illustrated in Figure 3-12). For 
the analysis, the full and half dose groups were pooled and labelled as ‘1’ for blueberry intake. The 
placebo group was labelled as ‘0’. 
Of all panels, Panel 2 was the most successful in correctly classifying individuals as having eaten 
blueberries as indicated by the highest AUC of 0.88. 
TPR = true positive rate; FPR = false positive rate; AUC = area under the curve; SE = standard error; 
CI = confidence interval. 

 

All panels were better than random in classifying individuals as having eaten blueberries. Panel 

4 was the least powerful of all panels to differentiate between the two classes while Panel 2 

was the best. Due to the parsimonious composition of Panel 4 from just three metabolites, the 

result was not entirely unexpected and confirmed that Panel 4 was less specific for blueberry 

intake. The inset table in Figure 3-15 shows that the AUC increased from Panel 4 to Panel 2, 

suggesting that increasing the number of metabolites also increased the ability of the panel to 

discriminate between the classes. Interestingly though, Panel 2 which had excluded vanillic 

acid, performed slightly better than Panel 1 which was comprised of all eight metabolites. 

Hence, vanillic acid not only reduced the association of the metabolite panel with ∆FMD, but 

also reduced the classifying ability of the panel. The margin however was quite small and as 

vanillic acid has been previously reported as one of the main metabolites along with 

homovanillic acid and dihydroferulic acid after intake of anthocyanin-rich bilberries122, a berry 

closely related to blueberries, this metabolite warrants continued investigation in future studies. 

The results from this dataset, however, suggested that Panel 2 was the strongest panel to use 

as a marker of blueberry intake and, in extrapolation, to use as a classifier for high and low 

metaboliser phenotypes. The reduced Panel 5 overall still had an acceptable predicting ability 
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with an AUC of 0.77, demonstrating its usefulness as a screening tool for the AMP study 

(Chapter 5) despite the exclusion of the key metabolite 4-hydroxyhippuric acid. 

Summary of results from testing different metabolite panels 

In summary, five panels were created from the eight metabolites identified as the strongest 

candidates to indicate a high versus low metaboliser phenotype. Each panel was tested for 

their ability to correctly identify the blueberry treatment, signifying its value as a marker of 

blueberry intake. Of the five panels, Panel 2 was selected as the most promising as it showed 

the highest performance in the ROC analysis and therefore was the most likely to be a marker 

of good response to blueberry intake. In addition, this panel was positively associated with 

vascular function as measured by FMD.  

 

3.2.4 Additional exploration of Panel 2 

Panel 2 did not significantly differ between the half and full dose groups 

As seen in Table 3-15, Panel 2 (i.e., the log2 FC of Panel 2) was significantly greater in both 

the half dose and full dose group compared to placebo (p < 0.001 for both comparisons). 

Although the log2 FC was greatest in every panel for the full dose group, this was not 

significantly different from the half dose group for any panel at a significance level of 0.05 (p > 

0.37). In terms of the FMD response, no treatment effect was observed for the half dose 

(Figure 3-16A and B, also see Figure 3 in Curtis et al (2019)159). This implies that the 

equivalent of 1 cup blueberries daily was required to see an effect on endothelial function and 

further suggested that although Panel 2 increased significantly in the half dose in comparison 

to placebo, a threshold level of metabolites was reached with 1 cup blueberries per day, but 

not with ½ cup. This emphasises the potential importance of the change in absolute metabolite 

amounts from baseline, thus the absolute amounts of Panel 2 metabolites at the 6-month 

endpoint were compared between half and full dose using Welch’s t-test (Table 3-16). 

Interestingly, there was no strong evidence that any of the metabolites was in greater 

abundance in the full dose group than in the half dose group. Hippuric acid and syringic acid 

were the most likely to be in higher abundance in the full dose group, however the data was 

inconclusive (Figure 3-16C and D). In both cases, there was an individual in the full dose 

group who had excreted a much a higher amount than the rest. These participants were part 

of the group which have been identified as high metabolisers in the previous sections and 

further studies of these participants could help uncover the underlying factors that characterise 

high metabolise status. Plausible factors may include differences in microbiome composition, 
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more efficient absorption from the gut or metabolic adaptations which prolong the circulation 

of metabolites.  

 

Table 3-16. Comparison of Panel 2 metabolites (absolute amount measured in 24h urine) at 6 
months between full and half dose 

Metabolite 
n  

(full; 
half) 

Mean  
(full) 

Mean  
(half) 

Mean difference  
[95% CI] 

t 
statistic 

p 
value 

Hippuric acid (25; 25) 3491.28 2749.36 
741.93  

[84.55, 1399.31] 
1.625 0.113 

Syringic acid (25; 25) 1.64 1.05 
0.59  

[0.03, 1.15] 
1.517 0.140 

3,5-Dihydroxyphenylpropionic 
acid 

(25; 25) 9.91 8.50 
1.41  

[-0.96, 3.77] 
0.857 0.396 

4-Hydroxyhippuric acid (25; 25) 59.84 67.27 
-7.43 

[-24.79, 9.94] 
-0.616 0.542 

Dihydroferulic acid (25; 25) 2.79 3.24 
-0.45  

[-1.55, 0.65] 
-0.591 0.557 

3-Hydroxyhippuric acid (25; 25) 135.78 128.73 
7.05  

[-23.89, 37.98] 
0.328 0.744 

Homovanillic acid (25; 25) 18.17 18.81 
-0.64  

[-4.67, 3.38] 
-0.231 0.819 

Mean values are in μmol/24h. Means compared using Welch’s t-test 
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log2 FC(Panel 2) is associated with cGMP 

To further investigate the association with ∆FMD, the effect of log2 FC(Panel 2) on several 

biomarkers related to endothelial function was explored (Table 3-17). These include NO 

availability and cGMP as mediators of vascular smooth muscle cell relaxation and the 

inflammatory markers IL-6, TNF-α, CRP, soluble intercellular adhesion molecule 1 (sICAM-1), 

and soluble vascular cell adhesion molecule 1 (sVCAM-1), which are suspected to be involved 

Figure 3-16. Comparison of treatment groups 

Figures compare the (A) log2 FC of Panel 2, (B) ∆FMD, (C) hippuric acid at six months (endpoint), and 
(D) syringic acid at six months by treatment group (Placebo = 0 blueberries, Half = ½ cup of 
blueberries, Full = 1 cup of blueberries daily). 
Although there was no significant difference in the log2 FC of Panel 2 between the half and full dose 
groups (A), no impact on FMD response was observed in the half dose group (B). This suggested that 
a threshold level of metabolites was reached with 1 cup of blueberries but not with ½ cup. However, 
there was no strong evidence that any of the Panel 2 metabolites was in greater abundance in the full 
dose group than in the half dose group at 6 months (C and D and Table 3-16). 
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in the development of endothelial dysfunction39. Of the indirect markers for NO assessed in 

this study, only nitrite was included because nitrite, but not nitrate, was shown to reflect activity 

of the enzyme which produces NO (endothelial nitric oxide synthase (eNOS)).244 

Table 3-17. Effect of Panel 2 on markers underlying endothelial function 

Dependent variable n β (SE) p constant 

∆cGMP (pmol/ml)a 71 21.62 (8.6) 0.014* -11.36 (4.47)* 

∆Nitrite (μM)a 71 0.13 (0.06) 0.044* -0.04 (0.05) 

∆IL-6 (pg/ml)a 61 0.01 (0.04) 0.803 0.01 (0.04) 

∆TNF-α (pg/ml)b 67 -0.09 (0.06) 0.106 -0.001 (0.04) 

∆CRP (μg/ml)a 71 -0.23 (0.15) 0.136 0.04 (0.09) 

∆sICAM-1 (μg/ml)a 71 0.001 (0.02) 0.951 0.01 (0.01) 

∆sVCAM-1 (μg/ml)a 71 -0.01 (0.02) 0.497 0.01 (0.01) 

* p < 0.05 
a robust regression using an MM-estimator due to presence of outliers 184 
b ordinary least-squares linear regression 
β Coefficients are the unstandardised regression slopes of the dependent variable regressed on the log2 FC of Panel 2 with 
standard errors in parentheses. 

 

A significant positive association was observed between Panel 2 and the change in cyclic GMP 

(cGMP) (β = 21.62, p = 0.014). A positive association was also seen between the panel and 

change in nitrite levels (β = 0.13, p = 0.044), which together with the positive relationship with 

cGMP, could suggest an increased bioavailability of NO with a greater fold-change in Panel 2 

metabolites. The associations for ∆cGMP and ∆nitrite are illustrated in Figure 3-17. There was 

some support for a slight reduction in TNF-α and CRP, although statistically inconclusive. 

However, this finding was in alignment with the previous observation in Section 3.1.6, where 

Figure 3-17. Robust regression analysis of ∆cGMP and ∆nitrite regressed on Panel 2 

Figure shows the association between ∆cGMP and Panel 2 (A) and ∆nitrite and Panel 2 (B). Both 
∆cGMP (β = 21.62, p = 0.014) and ∆nitrite (β = 0.13, p = 0.044) were significantly positively associated 
with Panel 2 at a significance level of 0.05. Taken together, the positive relationships could suggest 
that a greater fold-change in Panel 2 metabolites is aligned with an increased bioavailability of NO. 
cGMP = cyclic guanosine monophosphate; NO = nitric oxide. 



131 
 

high metabolisers seemingly had lower levels of TNF-α, CRP, and IL-6. Conversely, no 

evidence for an effect was observed here for IL-6, sICAM-1, or sVCAM-1. 

3.3 Discussion 

It has been established that a large inter-individual variability in response to flavonoid intake 

exists, meaning individuals are exposed to different circulatory levels of bioactive compounds, 

potentially affecting the magnitude of the health benefit they receive204. Inter-individual 

variability has been observed in randomised controlled trials for a range of dietary flavonoids 

and phenolic compounds, e.g, anthocyanins219,245, flavanones246, flavan-3-ols158, 

isoflavones205, ellagitannins247, and lignans248. In the literature, individuals exhibiting high 

levels of flavonoids and phenolic catabolites following an intervention are sometimes termed 

‘responders’, and those with low levels ‘non-responders’. Whilst the metabolism of some 

flavonoids results in unique catabolites (e.g., equol from isoflavones) which allows a clear-cut 

stratification between participants as producers or non-producers, the metabolites from berries 

are generally small molecule phenolic acids also common to other flavonoids. Therefore, a 

response to berry consumption rather reflects a significant increase in metabolites which are 

already present at baseline249. The underlying hypothesis of the study presented in this chapter 

was that inter-individual variability in response to blueberry anthocyanins mediates the 

potential cardiovascular benefits a person receives from eating blueberries. The aim of the 

assessment was to firstly identify a group of metabolites which may be representative of a 

certain metabolic phenotype (‘metabotype’), then secondly, to identify high metabolisers (i.e., 

responders) and low metabolisers (i.e., non-responders) among those who received the 

blueberry treatment, and finally, to investigate whether the metabotype mediated differential 

clinical responses. 

The key findings from this exploratory analysis were:  

(1) the metabolites appeared to correlate by absorption location;  

(2) there was a differential metabolic response among those who received the full dose 

blueberry treatment;  

(3) an improvement in vascular function (as measured by FMD) to blueberry intake was 

seemingly more associated with colonic microbial phenolic metabolites than metabolites 

absorbed in the small intestine;  

(4) a greater improvement in FMD was observed for high metabolisers versus low 

metabolisers, however this was statistically inconclusive;  
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(5) a metabolite panel which characterised a high metaboliser consisted of seven metabolites 

(4-hydroxyhippuric acid, 3-hydroxyhippuric acid, hippuric acid, syringic acid, homovanillic acid, 

dihydroferulic acid, 3,5-dihydroxyphenylpropionic acid) and was significantly associated with 

change in FMD across the three intervention groups;  

(6) the association of the metabolite panel with FMD was potentially mediated by an increase 

in cGMP levels and NO availability. 

In metabolomics, subgroups of metabolically similar individuals are frequently identified 

through a combination of different multivariate analyses including dimension reduction, 

clustering and classification techniques.186 Commonly, the first step is a dimension reduction 

of many metabolites to a smaller set of variables. The technique used here was exploratory 

factor analysis (EFA), a technique similar to the widely used PCA, but with a fundamental 

distinction. PCA identifies components which are uncorrelated linear composites of the 

observed variables and aims to preserve the maximum variance in the data. It is therefore 

useful if dimension reduction is the only goal. In contrast, EFA uses only the shared variance 

to identify an underlying, unobserved variable which cannot be measured directly. Therefore, 

EFA was specifically chosen, as it was better suited for the interpretation of the metabolite 

pattern based on an underlying factor, which in this case was hypothesised to be a metabolic 

phenotype. 

Using EFA, two factors were extracted. The first factor (factor 1) included cinnamic and benzoic 

acid derivatives and their glucuronide and sulfate conjugates, while the second factor (factor 

2) was comprised of phenylpropionic acids, phenylacetic acids, benzoic acid and hippuric 

acids. As detailed in Section 3.1.4, these factors were postulated to loosely reflect absorption 

location. Many of the factor 1 metabolites, such as ferulic acid and vanillic acid have been 

observed to appear shortly after the ingestion of anthocyanins which is suggestive of 

absorption from the small intestine128. Factor 1 was therefore termed ‘early-stage’ and could 

be considered as a group of metabolites which consisted mainly of dietary phenolic acids (such 

as ferulic acid, chlorogenic acid, and vanillic acid) and in part initial degradation products of 

anthocyanins (such as protocatechuic acid and syringic acid), as well as their phase II 

metabolites (sulfated, glucuronidated, methylated conjugates). A substantial proportion of 

anthocyanins pass the small intestine unchanged (40-85% depending on the sugar moiety) 

and reach the colon unchanged where they are subject to the metabolism of the colonic 

microbiota.130,250,251 This involves deglycosylation, cleavage of the C-ring, dehydroxylation, 

hydrogenation, demethylation, α- and β-oxidation, resulting in various lower molecular weight 

phenolic catabolites derived from the A- and B-rings. Although some microbial transformation 

of metabolites occurs also in the small intestine, the major site of microbial degradation of 

phenolic compounds is in the colon.157 Factor 2 was therefore hypothesised to represent 
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metabolites of colonic microbial origin and termed ‘late-stage’ to reflect the absorption time of 

>5 h after ingestion.128  

The two factors were correlated (r = 0.5) which is likely due to their connection through 

metabolic pathways. Indeed, the classification as early or late should be qualified as multiple 

phenolic acids appear in a biphasic pattern after ingestion of anthocyanins. This can be 

illustrated through a chain of reactions in the colon which includes a progressive shortening of 

the carbon sidechain by the microbiota. Hydroxycinnamic acids, which fall under factor 1, are 

converted to hydroxyphenylpropionic acids (factor 2) through microbial hydrogenation, which 

are in turn progressively converted to hydroxybenzoic acids (factor 1 metabolites) via α- or β-

oxidation.128 Absorbed hydroxybenzoic acids are then glycinated to hydroxyhippuric acids 

(factor 2) and excreted via urine.  

This close relationship between the factors can be further explained by the EFA model itself. 

When conducting the EFA, careful considerations had been made regarding data pre-

treatment. This included pre-grouping the metabolites by chemical structure, which was both 

a strength and a limitation. The grouping was necessary for the model to run (without the 

grouping, the factor analysis did not converge due to the small sample size and large number 

of metabolites), increased the stability of the factor solution by reducing the impact of sample 

size, and identified factors likely representing the general absorption site of metabolites. On 

the other hand, the consequence and limitation was that information regarding the individual 

metabolites was lost. This caused metabolites such as vanillic acid, which was observed to be 

a major urinary metabolite following anthocyanin intake in our study and also in other 

studies,122,123 to be grouped together with minor metabolites such as 2-hydroxy-4-

methoxybenzoic acid, which barely increased following anthocyanin intake. Thus, biological 

inference from the results could only be made in regard to the groups of metabolites. This 

limitation was rectified with a detailed follow-up analysis, investigating the metabolite profiles 

of high and low metaboliser groups identified from a cluster analysis following the EFA, 

discussed further below. 

Importantly, when including change in vascular function as measured by FMD to the factor 

analysis, FMD clearly associated with factor 2 (see Figure 3-6), which implied an association 

between FMD and the abundant colonic metabolites. This is in agreement with the hypothesis 

that lower molecular weight phenolic catabolites are likely the mediators of anthocyanin 

bioactivity rather than their parent compounds123 and was further supported by the fact that in 

our study FMD significantly increased in the full dose group compared with the half and placebo 

groups, but no parent anthocyanins were detected in urine or serum in our study.159 

The FMD association with factor 2 was also observed in a correlation analysis between change 

in FMD and the factor scores (see Figure 3-7). Surprisingly, although in the factor solution FMD 
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did not load on Factor 1 and in fact had a weak negative loading, a mild correlation with FMD 

was observed when excluding a participant who scored very highly on factor 1 (Figure 3-7A). 

This correlation was almost entirely driven by chlorogenic acid, a compound which has been 

linked to vasoactive effects in animal and in vitro studies, possibly by increasing NO 

bioavailability by decreasing oxidative stress,252,253 but which has been associated with 

equivocal findings in human studies. For example, whilst studies in young (mean age 24 

years), healthy, adults have shown acute biphasic increases in FMD at 1 and 5 hours after 

consuming coffee containing 89 or 310 mg doses of chlorogenic acid (increase at 1h: 1.10% 

and 1.34%; increase at 5h: 0.79% and 1.52%)254, these favourable findings were not 

reproduced in older adults (mean age 60 y) with a diverse vascular status.255 Likewise, 8 weeks 

of coffee consumption did not affect FMD in healthy adults with a mean age of 38 y 256.  

In this chapter, a composite measure which quantified the average amount of change across 

grouped metabolites (within a factor) was generated. This assessment showed that factor 2 

metabolites were in much greater abundance than factor 1 metabolites. The absolute amount 

in μmol was 280-fold higher for factor 2 metabolites than factor 1, and the relative increase in 

factor 2 metabolites, compared with baseline levels, was approximately 2-fold greater than for 

factor 1. This was easily explained when considering that most of the anthocyanins pass to the 

colon unchanged and the conversion of factor 1 metabolites towards factor 2 metabolites (for 

example hydroxycinnamic acids to hydroxyphenylpropionic acids and hydroxybenzoic acids to 

hippuric acids). Hippuric acid contributed the majority of the absolute increase of factor 2 

metabolites from baseline, at 90% of the total change observed. The scope of this change was 

in agreement with a raspberry study by Ludwig et al which fed 300 g of berries, containing 292 

μmol anthocyanins, and observed that hippuric acid made up 85% of increase in all 

anthocyanin and phenolic acid derivatives.219  

Hippuric acid is endogenously produced and about 1-2 uM is excreted daily in urine.222 

Because it is likely a common end metabolite of multiple polyphenols257 and can be derived 

from different endogenous and dietary sources, including quinic acid and aromatic amino acids 

in proteins, it is difficult to determine the exact dietary origin. However, a 13C-tracer study has 

confirmed that hippuric acid is indeed a metabolite of anthocyanins123, although the amount 

recovered in urine of 30% of total recovered anthocyanins and phenolic acids was substantially 

lower than observed in our study or in the raspberry study by Ludwig et al mentioned above. 

On the basis of this data, it seems likely that a meaningful proportion of the hippuric acid 

observed in our study may have been from alternative sources. Nevertheless, in the present 

study as well as in the raspberry study, hippuric acid significantly increased with berry intake 

(over and above the placebo group that followed the same dietary guidance and were expected 

to have also metabolised hippuric acid from other sources) and has been proposed as a 
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biomarker for fruit and vegetable intake.240 It therefore still retains value as a marker of intake 

and relative increase especially when compared to a placebo, but is less likely to be informative 

when assessing absolute bioavailability of flavonoids.  

Inter-individual variability in urinary excretion of metabolites was observed for both factors 1 

and 2. Plotting the ranks of the factor composite measures against one another revealed that 

individuals clustered in four groups (see Figure 3-10): (1) a group which excreted limited 

amounts of both factor 1 and factor 2; (2) a group which excreted medium amounts of factor 1 

and limited amounts of factor 2; (3) a group which excreted medium amounts of factor 2 and 

limited amounts of factor 1; (4) a group which excreted high amounts of both factor 1 and 2. 

Those in group (4) were classified as ‘high’ metabolisers, while those in group (1) were 

classified as ‘low’ metabolisers. 

Between-subject variability is affected by the genetic variability in the enzymes, transporters, 

and carrier proteins as well as the gut microbiota involved in the absorption and metabolisation 

of phenolic compounds.204 As the majority of anthocyanins reach the colon intact, the 

differences in metabolisation observed in the present study could partially be ascribed to 

variations in composition of the gut microbiota.  

A bidirectional interaction between the gut microbiota and polyphenols has been observed in 

a few human intervention studies. A probiotic containing Bifidobacterium longum taken daily 

for four weeks significantly increased the bioavailability of flavanone metabolites and phenolic 

acids after consumption of orange juice by 5% and 22%, respectively.258 Notably, these effects 

were only observed after chronic intake, but not acute after ingestion of a single bolus of the 

probiotic. On the other hand, dietary compounds are key factors in the composition of the gut 

microbiota.259 Prebiotic effects, i.e., induction of growth of beneficial bacteria, was observed 

after ingestion of anthocyanins from 272 ml red wine for 20 days.260 Boto-Ordóñez et al 

reported a mean increase of 50% from baseline for Bifidobacterium in the highest tertile of 

change and a significant correlation between increases in Bifidobacterium and four 

anthocyanin metabolites (mean change from baseline in tertile of highest increase of 

Bifidobacterium): 4-hydroxybenzoic acid (18.04 μmol per 24 h), syringic acid (1.37 μmol per 

24 h), p-coumaric acid (2.05 μmol per 24 h), and homovanillic acid (20.28 μmol per 24 h). 

Moreover, there is some evidence that an alteration of the gut microbiota is associated with 

obesity and metabolic syndrome.259 Moreno-Indias et al found that participants with metabolic 

syndrome differed in the gut microbial composition from healthy volunteers at baseline, but not 

after the intervention. Red wine intake for one month increased the levels of beneficial bacteria 

including Bifidobacterium (55% mean increase in log10 copies per gram faeces), Lactobacillus 

(56% increase), Faecalibacterium prausnitzii (36% increase), and Roseburia (28% increase), 

and decreased the numbers of bacteria associated with systemic inflammatory marker LPS 
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(lipopolysaccharide) including Escherichia coli and Enterobacter cloacae (both about 20% 

decrease).261 The authors also reported improvements in biomarkers for metabolic syndrome 

following red wine intake, including blood pressure (-10 mmHg for DBP and SBP), blood 

glucose (-32 mg/dl), HDLC (-15.6 mg/dl), and LPS (-0.17 endotoxin units/ml) which could be 

related to the observed changes in the microbiota. 

Importantly, while the composition of the gut microbiota can be modulated by dietary 

polyphenols, the effect on different people will vary due to variations in the gut microbiota 

between individuals.262 In the present study, it could be speculated that changes to the 

microbiota may plausibly underpin the changes in metabolites in factors 1 and 2 – a hypothesis 

that requires confirmation outside of this thesis. That accepted, it could be hypothesised that 

a participant scoring high on both factors could have experienced an increase in certain 

bacterial species, such as Bifidobacterium and Lactobacillus, and increased microbial activity 

along the entirety of the GI tract, while the gut microbial composition of a low metaboliser may 

be less affected. 

In support of this, the metabolites identified as characteristic of a high metaboliser (i.e., high in 

both factors) included three of the four metabolites which Boto-Ordóñez et al reported to be 

associated with an increase in Bifidobacterium: i.e., 4-hydroxybenzoic acid, syringic acid, and 

homovanillic acid. In the present study, 4-hydroxybenzoic acid was not observed directly as a 

major urinary metabolite, however its glycinated phase II metabolite 4-hydroxyhippuric acid 

was. Also, p-coumaric acid (4-hydroxycinnamic acid) was not observed to be a major 

metabolite in this study, but could potentially have been degraded to 4-hydroxybenzoic acid 

and excreted as hippuric acid. 

In human studies, most metabolites within the high metaboliser profile (i.e., hippuric acid, 4-

hydroxyhippuric acid, 3-hydroxyhippuric acid, syringic acid, homovanillic acid, and 

dihydroferulic acid) have been frequently observed as major metabolites following anthocyanin 

intake.122,123,218,219,225,226,245,263,264 In contrast, 3,5-dihydroxyphenylpropionic acid is reported less 

frequently, however in the cited publications above, this compound was also not assessed. 

Related compounds, however, have been reported. 3,5-dihydroxybenzoic acid was observed 

in urine following anthocyanin intake from elderberries 245 and in vitro fermentation of raspberry 

anthocyanins found a significant accumulation of resorcinol (benzene-1,3-diol)242. This is 

relevant because 3,5-dihydroxyphenylpropioinic acid could potentially be derived from the 

dehydroxylation of the anthocyanin delphinidin, which has a trihydroxylated B- ring265 and 

subsequently converted to 3,5-dihydroxybenzoic acid through microbial β-oxidation and then 

to resorcinol through decarboxylation. 

A positive relationship was observed between change in FMD and the metabolite panel created 

from the metabolites named above. A mechanistic insight for this relationship may be gained 
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from the positive association between the metabolite panel and changes in cGMP as well as 

nitrite. NO bioavailability is a key determinant of endothelial function and arterial vasodilation 

is largely mediated through the NO/cGMP pathway. NO is produced by the endothelial nitric 

oxide synthase (eNOS) in neighbouring endothelial cells. Its downstream effects are mediated 

by cGMP in the vascular smooth muscle cells which include smooth muscle relaxation and 

thereby blood vessel dilation.39 Nitrite, a product of NO metabolism, has been found to reflect 

eNOS activity,244 therefore the increase in nitrite observed in this study could indicate an 

increased NO bioavailability in high metabolisers, which in turn would lead to an elevation in 

cGMP levels and improvement in FMD. These results were in line with another study which 

gave a similar amount of anthocyanins in purified form (320 mg) for 12 weeks.90 The authors 

reported a significant increase in FMD and cGMP in the anthocyanin group compared to 

placebo (2.9% and 15 pmol/ml, respectively), as well as a positive correlation between FMD 

and cGMP (r = 0.428, p < 0.001). In addition, the authors observed in an acute sub-study that 

the effects of anthocyanins on FMD were blocked by the presence of a NOS inhibitor. In the 

same paper they also investigated the effect of anthocyanins on vasorelaxation with and 

without a NOS inhibitor in an in vitro model and in sum concluded that anthocyanins act through 

the NO/cGMP pathway. 

Next to affecting eNOS activity, another possible pathway for an increase in NO bioavailability 

through blueberry anthocyanins is through their antioxidant properties. NO is a highly reactive 

radical which rapidly reacts with reactive oxygen species (ROS) to form peroxynitrite. Thereby 

decreased oxidative stress (i.e., decreased levels of ROS) through inactivation of ROS or 

modulation of enzyme expression and activity increases NO concentration. Kuntz et al 

reported that the consumption of 330 ml of an anthocyanin-rich fruit juice and smoothies.from 

red grapes and bilberries containing 840 and 983 mg anthocyanins improved antioxidant status 

compared to an anthocyanin-low placebo. The authors observed enhanced activities of 

superoxide dismutase by 6% and of catalase by 21%, enzymes involved in the antioxidant 

defence of cells.266 Direct scavenging of ROS has also been shown in in vitro studies for 

anthocyanins as well as phenolic acids, such as syringic acid 267,268. 

Furthermore, there was an indication that the inflammatory markers TNF-α and CRP might be 

inversely associated with the metabolite panel. As both inflammatory markers affect NO 

bioavailability by inhibiting eNOS activity, this could be a further indication that NO 

bioavailability was increased.238,269 Anti-inflammatory effects of anthocyanins have been 

demonstrated in several human studies. Three to four weeks of intervention with an 

anthocyanin-rich product like wine or sweet bing cherries has been reported to reduce CRP 

levels by 20 – 35 % 261,270,271 and is potentially linked to a reduction in plasma levels of LPS 

through an increase in Bifidobacterium, a species which protects the intestinal barrier.261 TNF-
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α plays a key role in the progression of endothelial dysfunction and induces the gene 

expression of pro-inflammatory mediators, such as IL-6 and the cell adhesion molecules 

sICAM-1 and sVCAM-1.238 There are studies which have observed a reduction in these 

markers in response to different doses of anthocyanin supplementation. Zhu et al reported a 

decrease of 11.6% in sVCAM-1 after 12 weeks of 320 mg anthocyanin supplement.90 Barona 

et al fed grape powder containing 35 mg anthocyanins for 30 days and observed a 6% 

reduction in sICAM-1, but no change in sVCAM-1.198 Vugic et al reported a 50% reduction in 

IL-6 in individuals with obesity after supplementing 320 mg anthocyanins for 28 days.272 

However,  not all studies report an effect. Dohadwala et al did not find any impact on sICAM-

1 or CRP in patients with coronary artery disease after four weeks of cranberry juice containing 

94 mg anthocyanins.84 In a study by Stull et al, even a much larger dose of blueberry 

anthocyanins (668 mg) taken daily over six weeks by men and women with obesity did not 

affect inflammatory markers.87 Equally, in our study no association was found between the 

metabolite panel and IL-6, sICAM-1 or sVCAM-1. This could indicate that the improvement in 

endothelial function was independent of significant changes to the inflammatory state and 

more due to increases in NO bioavailability.  

Interestingly, while the metabolite panel in both the half dose group (182 mg anthocyanins in 

½ cup of fresh blueberries) and the full dose group (364 mg anthocyanins in 1 cup of fresh 

blueberries) was significantly greater than placebo, the change in the full dose group was only 

marginally greater than the half dose group. On the other hand, a treatment effect was only 

seen for the full dose group (see Figure 3-16), which implied that a threshold was reached with 

1 cup, but not ½ cup of blueberries. However, at 6 months, none of the individual metabolites 

in the panel were significantly different between half dose and full dose, only hippuric acid and 

syringic acid showed an indication of being more abundant in the full dose group (see Table 

3-16). As discussed earlier, an increase in Bifidobacterium was reported to be associated with 

an increase in syringic acid. It could therefore be that the observed threshold effect was 

localized in the gut, with a higher dosage of anthocyanins inducing a greater modulation of the 

gut microbial composition and thereby impacting on the interaction between the gut and host 

physiology. Further mechanisms which may explain the connection between the modulation 

of the gut microbiota and subsequent health effects could include the involvement of the gut 

microbiota in regulation of metabolic processes such as nutrient absorption, energy storage, 

regulation of cholesterol metabolism and insulin sensitivity, and inflammatory responses.259 

Indeed, a further interesting finding was that one of the clusters (cluster 3, see Figure 3-10D) 

had the lowest FMD response of all clusters although these individuals had excreted higher 

amounts of factor 2 metabolites, which had been observed to be associated with FMD. The 

fact that cluster 3 exhibited a lack of factor 1 metabolites, but not factor 2, may point to other 

aspects of metabolism, such as the composition of the microbiota in the small intestine. This 
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could affect other dietary components absorbed in the small intestine, particularly 

macronutrients such as lipids,232 which may have knock-on effects on metabolic processes 

and vascular function. 

Concluding remarks and outlook 

In this analysis, a group of metabolites was identified which characterised a high metaboliser 

of blueberry anthocyanins and which was associated with an improvement in vascular function. 

Careful considerations regarding data treatment were made to increase the chance of a 

reliable and meaningful result despite the limited sample number which is reflected in the large 

agreement between the results of this study and the major urinary anthocyanin metabolites 

found in other anthocyanin intervention studies. Nevertheless, due to the exploratory nature of 

the study however, this metabolite panel should be considered as putative and the stability of 

the metabolite panel as well as its effect on vascular function should be validated in further 

studies. Also, the population in this study was aged 50 -75, had metabolic syndrome, and was 

predominantly white and male. The transferability of the metaboliser profile determined in this 

study to other age groups, females, other ethnicities and health status remains to be confirmed 

in future studies. Finally, a fairly new realisation is the impact of day-to-day variation in the 

metabolism of flavonoids. Intra-individual variability was recently reported to be mainly driven 

by the gut microbiota273 and should be considered when exploring the existence of 

metabotype. 

To my knowledge, this study was the first assessment of a potential metabotype based on 

anthocyanin metabolites and could provide an exciting premise for future anthocyanin 

interventions. The metabolite panel, which is based on change relative to baseline, could be 

trialled in future studies for prospective recruitment on the basis of metaboliser status, similar 

to studies over the last few decades which have prospectively recruited participants on the 

basis of confirmed equol and urolithins producer statuses. 
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4 Methods pertaining to the assessment of anthocyanin 

metaboliser profile for the AMP study (Chapter 5) 

4.1 Study aims and general study design 

The AMP study was an acute, placebo-controlled, dietary cross-over study in adults with 

overweight or obesity. The principal aim was to test whether differential metaboliser types 

mediated cardiometabolic responses; thus, a primary aim was to prospectively recruit 

participants based on their metabolism profiles following a ‘blueberry challenge’. Subsequently 

an energy-dense test meal was consumed with or without blueberries, and cardiometabolic 

responses assessed over a 48h period. The study aimed to determine to what extent the 

metaboliser profile mediated cardiometabolic effect; both in the postprandial phase, and over 

an extended 48 h period. Previously, a 13C-tracer study showed that anthocyanin metabolites 

remain in circulation up-to 48 h after consumption140, therefore the AMP study aimed to 

establish if the presence of these metabolites had cardiometabolic consequences.  

The AMP study was split into two phases. The general study design is shown in Figure 4-1.  

The first phase, the ‘blueberry challenge’ (see Section 4.2; including challenge regimen and 

anthocyanin and phenolic composition), was a screening phase to confirm anthocyanin 

metaboliser status based on the metabolite panel developed from the retrospective analysis 

of the CIRLCES study data (Chapter 3 and described in detail in Section 3.2.3). For 5 days 

prior to the blueberry challenge, participants were required to adhere to dietary restrictions to 

control the extent to which the background diet (including flavonoids) affected the metabolism 

profile; this was continued throughout the 48h urine sampling period of the ‘challenge’.  

Those assessed as either ‘high-’ or ‘low-metabolisers’ proceeded to the second phase of the 

AMP study, which consisted of a cross-over designed, double-blind, intervention study (with 

random allocation to treatment order). Consistent with the blueberry challenge, participants 

adhered to the same dietary restrictions for a period of 5 days prior to the study assessments 

(and throughout the 48h assessment period). Additionally, all food and drink were provided for 

four-day periods (two days before and two days after the energy-dense meal). In each of the 

two test meal periods, an energy-dense test meal was consumed which was adjusted to an 

individual’s resting BMR (age, sex, and bodyweight component characteristics of the 

calculation) and estimated physical activity level. 50% daily energy requirements were 

provided by the test meal, of which 40% of calories came from fat. The energy-dense meal 

was accompanied by either a blueberry or placebo milkshake (see Section 4.2). Prior to the 

test meal consumption and subsequently for the 48h following, vascular function and a range 
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of cardiometabolic markers were observed. Additionally, extensive biological sampling was 

undertaken, including repeat 24h urine samples (collected for one day before the test meal, 

and the 48h follow-up period) and blood sampling (via a cannula on assessment days in the 

clinic, and fasted blood samples at 24 and 48h timepoints). As shown in Figure 4-1, the two 

assessment periods were separated by a wash-out of at least one week.  

NB: only the blueberry challenge and determination of metaboliser groups is part of this thesis; 

the analysis of the second phase was the topic of another PhD thesis. 

 

4.1.1 Study population 

In total, 121 men and women aged 50 – 80 years completed the blueberry challenge and were 

assessed for metaboliser profile. Participants were recruited through local advertisement and 

GP practice involvement and were: non-smokers, generally healthy, but with overweight or 

obesity (BMI ≥ 25 kg/m2). The study flow is presented in Figure 4-2. 

Eligibility to participate in the study was assessed through 1) the administration of a health and 

lifestyle questionnaire, collected after initial expression of interest to participate, and 2) a fasted 

clinical screening of general health (assessed through clinical chemistry analysis following 

blood sampling), which was conducted at the clinical research facility based at the Quadram 

Institute, Norwich, by study research nurses. Exclusion criteria included existing clinical 

diagnosis of cardiovascular disease, diabetes or cancer (excluding basal-cell carcinoma), as 

well as prescribed hypoglycaemic or anti-hypertensive medication, hormone replacement 

therapy, or the intake of supplements containing flavonoids, nitrate, nitrite or fish oil. 

Figure 4-1. General AMP study design 

The AMP study was an acute, placebo-controlled, dietary cross-over study in adults with overweight 
or obesity. It consisted of two phases: participants were prospectively recruited based on their 
metabolism profiles following the blueberry challenge in phase 1 of the study. In phase 2, an energy-
dense test meal was consumed with or without blueberries, and cardiometabolic responses were 
assessed over a 48h period. 
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The rationale to recruit generally healthy participants who were at least overweight, was 

because body size has been reported to be an indicator for cardiovascular disease risk.274 

There is evidence from population-based studies and human intervention trials that dietary 

flavonoids, and in particular the subclass of anthocyanins, may improve cardiometabolic health 

in terms of reducing risk for hypertension70,108 and T2DM200, reducing arterial stiffness70,84, 

improving insulin sensitivity87,99, increasing HDLC levels89,159, and improving vascular 

function90,91,159 (more details on health effects in the introduction, Section 1.3). Therefore, 

including more anthocyanins in one’s habitual diet may provide a simple strategy to address 

the cardiometabolic comorbidities of both overweight and obesity. 

Data from n = 2 participants was excluded (n = 1 due to violation of dietary restrictions, and n 

= 1 due to intolerance to the milkshake), leaving a sample size of n=119 described in this 

chapter (see Figure 4-2). 

 

 

Figure 4-2. Study flow diagram 

Flowchart shows the recruitment and retention in the study. 
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4.2 Design of the blueberry challenge and intervention drink 

The study flow of the blueberry challenge is shown in Figure 4-3. The blueberry challenge was 

designed to deliver a single dose of blueberries, provided in the form of a milkshake, with the 

anthocyanin metabolite profile assessed from urinary analysis. In broad terms, the metaboliser 

profile was assimilated by comparing the cumulative excretion of urinary metabolites from a 

previously determined metabolite panel for 48h following the blueberry milkshake, versus a 

baseline 24h-urine sample collected prior to milkshake intake. From these data, participants 

were characterised as ‘Low’, ‘Medium’, or ‘High’ metabolisers based on their profile. The 

metabolites and method used to determine metaboliser groups is described below.  

The milkshake contained 36 g of freeze-dried blueberry powder (equivalent to 216 g or 1.5 

cups of fresh blueberries) mixed with 500 g of semi-skimmed milk, providing 382 mg of 

anthocyanins and 1116 mg total phenolic acids. The milkshake was prepared immediately prior 

to consumption in an opaque container and consumed under supervision (in the cross-over 

test meal phase, this was done by an unblinded researcher who did not undertake any 

cardiometabolic assessments). The container was rinsed twice with water to ensure all of the 

intervention product had been consumed. 500 g of semi-skimmed milk was used to dissolve 

the powder to make the drink more palatable and smoother for drinking. The same milkshake 

composition was used within the test meal in the second phase of the study (not covered in 

this thesis). 

The intervention dose for the blueberry challenge (36 g freeze-dried blueberries; providing 382 

mg anthocyanin) was chosen to provide a similar amount of anthocyanins as used in the 

CIRCLES study (i.e., 364 mg anthocyanins, see Section 2.1) as this was the basis for the 

metabolism profile assessment. Consequently, this amount of anthocyanins was anticipated 

to induce a comparable excretion of metabolites as in the CIRCLES study. Of note, the serving 

size was smaller in the CIRCLES study due to differences in anthocyanin abundance between 

the two harvested crops prior to homogenisation as a freeze-dried material. In terms of the 

appropriateness of this anthocyanin dose and potential cardiometabolic responses (in the 

second phase of the AMP study), other single-dose intervention studies have reported vascular 

improvements as measured by FMD with similar doses of anthocyanins. Zhu et al observed in 

hypercholesterolemic men and women with an average BMI of 26.6 kg/m2 an increase in FMD 

from 8.3% at baseline to 11.0% at 1h after intake and 10.1% at 2h after intake of 320 mg 

purified anthocyanin supplement.90 In healthy, slightly leaner men, Rodriguez et al reported 

increases in FMD of similar magnitude (2.4% at 1h, and 1.5% at 2h) following the consumption 

of a blueberry drink containing 310 mg anthocyanins.91  
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As summarised earlier, throughout the blueberry challenge (five days prior and during the 48h 

after blueberry milkshake intake (seven days in total)) participants were instructed to adhere 

to dietary restrictions to a) control the intake of anthocyanins, and b) to reduce the background 

levels of food sources which are metabolised into similar phenolic acids as anthocyanins. The 

dietary restrictions prohibited anthocyanin-rich fruits, vegetables, and beverages or foods 

containing anthocyanins (such as strawberry jam), and extended to other food sources, which 

are commonly consumed and rich in polyphenols (see Table 4-1). As indicated by the Phenol 

Explorer on polyphenol content in foods199, this included, for example, chocolate and tea (rich 

sources of flavan-3-ols); citrus fruits (rich source of flavanones); and coffee (rich source of 

chlorogenic acids). 

Compliance to dietary restrictions in the five days prior to the blueberry milkshake was 

assessed at the clinical research facility on the day of the intervention by a face-to-face 

questionnaire covering all foods on the restriction list. Adherence to dietary restriction during 

the urine collection days was monitored using a 3-day food diary. These were thoroughly 

checked for any foods on the restricted list. Compliance to dietary restrictions was very high; 

only n = 2 participants violated the dietary restrictions, of which n = 1 participant chose to 

repeat the blueberry challenge. 

 

 

Figure 4-3. Design of the blueberry challenge 

The blueberry challenge consisted of five components: a blueberry drink on the day of the study visit; 
a food frequency questionnaire, assessed one week before the study visit (see Section 4.6); dietary 
restrictions spanning from five days before the study visit to two days after; urine collection for three 
days (one day before the blueberry drink and for two days after); and a three-day food diary on the 
urine collection days. 
FFQ: food frequency questionnaire. 
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Table 4-1. Table of dietary restrictions as given to participants 

 Foods to avoid  Alternatives examples 

Any drinks, salads, sandwiches and products (e.g., ready meals, pizza, casserole) containing: 

Fruit 

Berry fruits:  
Blueberries, blackberries, raspberries, cranberries, 
strawberries, black currants, gooseberries, 
elderberries, aronia (chokeberries), acai, 
lingonberries 

Other:  
Cherries, plums, red/purple grapes, citrus fruits 
(oranges, grapefruit, lemon, lime) 

Bananas, apples, green grapes, figs, kiwi, 
melon, pineapple, peaches, avocado, 
pears  

Vegetables 

Red / purple vegetables:  
Beetroot, aubergine, red onion, radishes, red 
cabbage, black/red beans 

Other: Potatoes 

White onion, courgette, peppers, 
tomatoes, peas, sweetcorn, mushrooms, 
green beans, white beans, asparagus 
 
Sweet potato 

Other 
Dark chocolate and milk chocolate 

Foods containing dark or milk chocolate 

White chocolate 

Custard cream, Rich tea biscuits 

Drinks 

Red wine 

Juice/smoothies of fruits and vegetables 
named above 

Drinks flavoured with fruits or vegetables (e.g., 
fruit squash/cordial, fizzy drinks such as 
lemonade, Fanta, Sprite) 

Coffee and Tea (black, green, oolong, fruit and 
herbal teas) 

Drinks containing chocolate (e.g., chocolate 
milk, Ovaltine) 

Water 

White wine 

other alcoholic drinks (e.g., 
lager/cider/spirits) 

Coke, Soda water, Ginger ale 

Milk 

 

 

4.3 Definition of high and low anthocyanin metabolisers 

The urinary metabolites which formed the metabolite panel used to categorise high and low 

metabolisers included hippuric acid, 3-hydroxyhippuric acid, 4-hydroxy-3-methoxyphenylacetic 

acid, and 3,5-dihydroxyphenylpropionic acid.  

These metabolites correspond to Panel 5 described in Section 3.2.3 and were the result of the 

original analysis performed in Chapter 3 with all available data (n = 35). As described in Section 

2.5 in the note to examiners, this panel differed from the final panel presented in Chapter 3 

(i.e. Panel 2 in Section 3.2.3), because the analysis shown in Chapter 3 used a refined 

approach with more stringent data quality assessments applied. This analysis (with n = 25 

instead of n = 35) was performed after the recruitment for the AMP study was already 

completed and Panel 5 implemented. 
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Because the refined analysis resulted in seven metabolites in the final panel, the validity to use 

a metabolite panel formed of only four metabolites was confirmed through the following: 

1) these metabolites were among the most abundant urinary metabolites in the CIRCLES study 

following the blueberry intervention; 

2) the 7-metabolite panel and the 4-metabolite panel strongly correlated (r = 0.90, p < 0.0001); 

and 

3) the 4-metabolite panel had a strong positive relationship with change in FMD even with all 

data of poorer quality removed (β = 0.70, p = 0.026), which was only slightly weaker than the 

7-metabolite panel (β = 0.79, p = 0.020) (see Table 3-13). 

For the AMP study prospective recruitment, the metabolite panel was calculated as the 

average of the log2 fold change (log2 FC) of each metabolite from 0 to 48h. The value at 0h 

equals the amount measured in the urine sample collected from -24 to 0h and the value at 48h 

equals the cumulative amount measured from 0 to 24h and 24 to 48h. An assessment over 48 

h was chosen because previous research has shown that the anthocyanin metabolites 

assessed in this study are elevated over at least a 48 h period in urine following the intake of 

a single dose of anthocyanins.122,123,219 

Based on the results from Chapter 3, high metabolisers were categorised as those in the top 

15 % of the distribution and low metabolisers as those in the bottom 15%. This was because 

the points at which the log2 FC started to deviate from the average was at approximately the 

15th and 85th percentiles (indicated in black in Figure 4-4). The 70% in the middle were 

classified as medium metabolisers. Because of the rolling recruitment to the study, the first 

categorisation was done after at 24 people had completed the blueberry challenge.  
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4.4 Biological sampling and quantification of urinary anthocyanin 

metabolites using LCMS 

To assess metaboliser status, participants were asked to provide 24h pooled urine samples 

on three consecutive days. 24h before the blueberry milkshake provided the baseline 

measurement and two subsequent samples at 0 to 24h and 24 to 48h following the blueberry 

drink. Bacteria in urine may grow and metabolise compounds of interest, such as hippuric acid, 

thereby altering their concentrations.275 Compounds could further degrade over time due to 

oxidation. To prohibit bacterial growth and breakdown of metabolites, the collection containers 

contained 15 g of boric acid (bacteriostatic recommended for urine collections276) and 100 mg 

of ascorbic acid (antioxidant140) as preservatives to prohibit bacterial growth and breakdown of 

metabolites. The first urine sample (-24h to 0h) was received on the day of the blueberry 

milkshake. The +24h and +48h pooled urine samples were handed in on a second visit to the 

facility two days after the milkshake (i.e., the 48h mark). Each urine collection was mixed well, 

and a 10 ml aliquot was centrifuged for 15 min at 1300 rcf at 4 °C. Three aliquots of 500 µl 

each were acidified with 95% formic acid (reagent grade, Sigma Aldrich, Dorset UK) using 32 

µL/mL and stored at -80 °C until analysis. 

The samples were analysed for blueberry anthocyanin metabolites using liquid-

chromatography tandem mass spectrometry (LCMS; the combination of HPLC (high 

performance liquid chromatography) and ESI-MS/MS (tandem mass spectrometry using 

Figure 4-4. Distribution of the CIRCLES metabolite panel 

Figure shows the categorisation of low, medium, and high metabolisers in the CIRCLES study 
by log2 FC of Panel 2 (see Chapter 3). Grouping into low (lower 15%), medium (middle 70%), 
and high (upper 15%) metabolisers is indicated through the dashed lines at the 15th and 85th 
percentiles. Low and high metabolisers are coloured in black, medium in grey. 
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electrospray ionisation) based on a published method developed in our group183 and further 

adaptions made for the CIRCLES study by Dr. Vera van der Velpen (published in Curtis et al 

(2019)159). Due to breakdown of the instrument during the study, sample analysis was 

performed on two different instruments in the same lab. Samples were analysed across seven 

runs, of which five runs (samples of n = 82 participants) were analysed on an Agilent 1200 

HPLC connected to a SCIEX 3200 series Q-trap MS/MS (SCIEX, Warrington, UK); and two 

runs (samples of n = 37 participants) were analysed on a Shimadzu UFLCXR coupled to a 

SCIEX 4000 MS/MS (SCIEX, Warrington, UK).  

Described in the following are the solid phase extraction, external standard curve and LCMS 

methods (including slight adjustments to the method described in Section 2.4), as well as an 

overview of method development and validation of the LCMS method for the second 

instrument.  

Solid phase extraction (SPE) 

100 μl urine were purified using a 96 well SPE plate (Strata™-X Polymeric Reversed Phase, 

microelution 2 mg/Well, Phenomenex, Cheshire, UK). Plates were preconditioned with 200 μl 

of 1% formic acid (reagent grade, Sigma Aldrich, Dorset UK) in methanol (LCMS grade, Fisher 

Scientific, Loughborough, UK) followed by 200 μl 1% formic acid in water (MilliQ grade, 18.2 

MΩ cm−1). Samples were then loaded onto the plate, washed twice with 200 μl 1% formic acid 

in water and drained under gravity. The plate was dried using a vacuum manifold, applying 

first 15 inHg and then 5 inHg for 30 min. Samples were eluted with 1% formic acid in methanol. 

For the elution, the plate was first allowed to soak with the eluent for 5 min before slowly eluting 

by applying mild vacuum (2 - 4 inHg) for 5 minutes. Phlorizin was added after the SPE at 10 

µM final concentration as an internal standard to correct for instrument drift. The final sample 

purified volume was 100 μl. 

External standard curve 

Matrix-matched standard curves with 14 points were prepared from 4x-diluted pooled urine 

(from -24 to 0h urine samples of 10 randomly chosen participants and purified through SPE) 

ranging from 0 to 100 µM except for hippuric acid. Due to the known high concentration of 

hippuric acid, the standard curve ranged from 0 to 2000 µM. Linearity of standard curves 

across the seven runs ranged from 0.954 to 0.999, with 61% of standard curves > 0.993. 

LCMS method Agilent 1200/SCIEX 3200 

The LCMS method (HPLC gradient and parameter settings on the SCIEX 3200 mass 

spectrometer was the same as described in Section 2.4, except that a reduced number of 

analytes was acquired, the internal standard phlorizin was added, and MRM (multiple reaction 
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monitoring) with 50 ms dwell time was used instead of sMRM (scheduled MRM). The 

compound parameters of the relevant analytes were reassessed and individually optimised 

using syringe infusion from purchased standards (Sigma, Dorset, UK). The metabolites were 

identified based on retention time and three to four transitions (see Table 2-1 below and Figure 

4-5A). 

LCMS method on Shimadzu UFLCXR /SCIEX 4000 

Following the SPE, 1 µl of sample was injected onto a Kinetex polyfluorphenol HPLC column 

(2.6µM, 100 x 2.1mm; Phenomenex, Cheshire, UK) at a column temperature of 37°C. The 

HPLC method used a mobile phase of 0.1% formic acid in water and 0.1% formic acid with a 

flow rate between 0.3 and 0.45 ml/min using a stepped gradient from 1% to 99% acetonitrile 

over a total run time of 13 min. The source parameter settings were: curtain gas: 25 psi; ion 

source gas 1: 35 psi; ion source gas 2: 50 psi; ion spray voltage: -4500; temperature: 650°C. 

Compound specific parameters for each analyte were individually optimised using syringe 

infusion from purchased standards (Sigma, Dorset, UK). Metabolite identification was based 

on retention time and two to three transitions (see Table 2-1 below and Figure 4-5B). 
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Method validation for the HPLC-MS/MS method on the Shimadzu/SCIEX 4000 instrument 

The method was validated in terms of precision and accuracy as described in the EMA 

Guideline for Bioanalytical Validation 277.  

Precision (the degree of scatter between repeated measurements) and accuracy (closeness 

of determined value to true value) were assessed using n = 8 urine samples taken from the 

AMP study and spiked with three different concentrations across the quantitative range (low, 

medium, high). The results are shown in Table 4-2. Across the four metabolites average 

precision for the low, medium, and high concentrations were 9.8%, 4.7%, and 3.5% (total range 

2.2 – 15.8 %). Average accuracies were 105.2%, 85.5%, and 80.6% (total range 72.8 – 

117.7%). Generally, the measurement was more precise at high concentrations, and more 

accurate at mid to low concentrations, but was considered acceptable overall. The precision 

of the internal standard phlorizin was also determined with 40 repeated injections across 

different runs and was at 4.4%. 

Figure 4-5. Multiple reaction monitoring (MRM) chromatogram of standard 
compounds for (A) SCIEX 3000 and (B) SCIEX 4000 

Compounds: 1 3-hydroxyhippuric acid; 2 hippuric acid; 3 3,5-dihydroxyphenylpropionic 
acid; 4 4-hydroxy-3-methoxyphenylacetic acid; 5 phlorizin 
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Although the accuracy of three metabolites at mid and high concentrations were slightly below 

the recommended value of 80%, good precision levels showed that the level of accuracy was 

consistent throughout repeated testing at varying concentrations. Because the change to the 

second instrument happened at the beginning of the COVID-19 pandemic, this level of 

accuracy was accepted to progress with the analysis of samples before the laboratory closed. 

Table 4-2. Precision and accuracy of the method used on Shimadzu/SCIEX 4000 system 

Compound 
low  

(µM)a 

medium 
(µM)a 

high  
(µM)a 

Low 
Accuracy 

(Precision) 
in % 

Med 
Accuracy 

(Precision) 
in % 

High 
Accuracy 

(Precision) 
in % 

3,5-dihydroxyphenylpropionic acid 1 37.5 75 84.4 (9.4) 85.5 (3.8) 77.6 (2.5) 

3-hydroxyhippuric acid 10 37.5 75 116 (9.0) 76.4 (4.9) 80 (3.6) 

4-hydroxy-3-methoxyphenylacetic 
acid (homovanillic acid) 

5 37.5 75 117.7 (5.2) 74.8 (2.2) 72.8 (2.9) 

Hippuric acid 200 750 1500 
102.7 
(15.8) 

105.4 (7.7) 92.1 (5.1) 

a Concentration of standard compound spiked into n = 8 random urine samples taken from the AMP study 

 

Data analysis 

Peak areas were identified based on two to four transitions and quantified relative to the most 

abundant transition. SCIEX OS 1.4 software (AB Sciex) was used to determine analyte peak 

areas, which were normalised to the peak area of the internal standard phlorizin, and 

concentrations. The concentrations were adjusted to the background level contained in the 

matrix used to generate the external standard curve, i.e., the quantified values represent the 

amount of metabolite measured above the background present in the matrix (shown in Table 

4-3).  

Table 4-3. Background concentration of metabolites present in the matrix of the standard curve 

Metabolite Concentration (µM) 

3,5-Dihydroxyphenylpropionic acid 2.2 

3-Hydroxyhippuric acid 13.9 

4-Hydroxy-3-methoxyphenylacetic acid  
(homovanillic acid) 

3.0 

Hippuric acid 736.6 

 

Further data processing was handled in Excel. This included adjustment of the concentrations 

to the total volume of the 24h pooled sample, giving the total metabolite amount in μmol/24h 

to account for variations in urine volume between participants. Any metabolites which had a 

detectable peak, but quantified below the blank, were adjusted to the LOD. 

LOD for both instruments was estimated following guidelines from Agilent Technologies 278 

(Table 2-1). A standard close to the expected limit of detection and a blank were injected in 

triplicate. The average area of the blank value was used to subtract the background from each 
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analyte. Using a one-sided t-test, the LOD was then determined as the amount of analyte that 

gives a signal statistically greater than 0 with a known confidence level. The equation used 

was 𝐿𝑂𝐷 =
𝑡 × 𝐶𝑉 × 𝑐𝑠𝑡𝑑

100%
 with t = 0.292 for 2 degrees of freedom and 95% confidence, CV = 

coefficient of variation of the replicate area measurement, and cstd = amount of standard. 

Table 4-4. HPLC-MS/MS identification and LOD of compounds on both instruments (SCIEX 3200 
and SCIEX API 4000) 

  SCIEX 3200 SCIEX 4000 

Compound Mode 
Rt 

(min) 
ion transitions 

(m/z) 
LODa 
(µM) 

Rt 

(min) 
ion transitions 

(m/z) 
LODa 
(µM) 

3,5-Dihydroxyphenylpropionic 
acid 

- 8.4 181/137, 122, 95 0.74 3.9 181/137, 95 0.36 

3-Hydroxyhippuric acid - 5.8 194/150, 148, 93 5.16 2.9 194/150, 93 1.81 

4-Hydroxy-3-
methoxyphenylacetic acid 

- 11.8 
181/137, 166, 122, 
79 

1.72 5.1 181/137, 122, 78 0.20 

Hippuric acid - 7.9 178/134, 132, 77 20.22 3.8 178/134, 77 15.23 

Phlorizinb - 25.4 435/273, 167, 123 ND 8.9 435/273, 167, 123 ND 
a LOD was calculated following guidelines from Agilent Technologies 278 using triplicate measurements and 95% confidence. 
b Phlorizin added as internal standard at 10 µM concentration post-SPE; LOD not determined. 

 

4.5 Assessment of anthropometric measures  

As part of the screening procedures for study participation, anthropometric measures were 

assessed in the fasted state. The clinical screen was conducted within 3 months of the 

blueberry challenge. Participants were measured for weight (kg) and height (m) (average of 

two measurements), and BMI was calculated using the standard equation (kg/m2). 

4.6 Assessment of habitual diet and flavonoid intake 

Dietary intake was assessed using a 131-item validated food frequency questionnaire (FFQ) 

from the EPIC study165, recorded one week before the study visit, in n = 108 participants. 

Assistance with the collation of these data was provided by Dr. Amy Jennings and Veronica 

Bion. Of note, FFQ data was not assessed for n = 11 participants from my dataset. At the time 

of the first phase of FFQ data analysis (mid-February 2020), the blueberry challenge 

assessment had not yet been completed for these volunteers and the plan was to repeat a 

second phase of FFQ analysis in this small sub-set of participants (n=11) after the blueberry 

challenge had been completed. However, the emergence of the COVID-19 pandemic and the 

subsequent shut down of the university resulted in this activity being cancelled, hence the 

missing data. 

In quality assurance steps, dietary data was excluded in the dataset if energy intake was 

deemed implausible (i.e., greater than ± 2 SD from the mean of the ratio of energy intake to 

estimated energy requirement; n = 2) or more than ten food items were left blank (n = 0). 
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Nutrient and flavonoid content was calculated as described by Welch et al 279. Briefly, flavonoid 

values were assigned to each of the foods in the FFQ. The amount of individual compounds 

was determined as the sum of the content in each food of the specified portion size multiplied 

by the frequency of consumption. Flavonoid intakes of the six main subclasses, namely 

anthocyanins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, petunidin), flavanones 

(eriodictyol, hesperitin, naringenin), flavan-3-ols (catechins, epicatechins), flavonols 

(isorhamnetin, kaempferol, myricetin, quercetin), flavones (apigenin, luteolin), and oligomer 

and polymer flavonoids (theaflavins, thearubigins, proanthocyanidins) were derived from the 

flavonoid databases of the US Department of Agriculture (USDA)71,72. This method been 

previously used successfully to estimate flavonoid intakes for association studies98,99. 

4.7 Statistical analysis 

All analysis was performed in Stata 16.0 (Stata Corp, College Station, Texas, USA). Medians 

of metaboliser groups at baseline were compared using quantile regression280. 

For the FFQ data, the difference between the three metaboliser groups were compared using 

the Kruskal-Wallis test, followed up by pairwise comparisons using Dunn’s method. 

The relationship between gender and metaboliser group was assessed using the chi-squared 

test.  

A comparison of the metaboliser groups between the CIRCLES and AMP study was done 

using the Mann-Whitney-U test. 

Sample size calculation 

The main sample size calculation for the AMP study was based on the requirements for the 

principal statistical analysis of phase 2 of the study. A separate consideration was made for 

the minimum sample size requirement for the blueberry challenge to detect a difference 

between low and high metabolisers after blueberry intake. Both are described in the following. 

Minimum sample size requirement for the blueberry challenge: 

The AMP study was the first study to prospectively recruit participants based on the 

metaboliser panel established in Chapter 3 (see also Section 4.3 on the definition of high and 

low metabolisers). As such there was no precedent to estimate the group difference and SD 

following a single exposure to blueberries. As an approximation, the sample size calculation 

was based on the difference in log2 FC in Panel 5 metabolites between the blueberry (1 cup) 

and placebo groups in the CIRCLES study (Section 3.2.3, Table 3-15). Assuming a difference 

of 0.97 between the groups and an SD of 0.94, at a significance level of 0.05 and 80% power, 

the calculation generated a requirement for a sample size of n = 16 per group. Thus, due to 
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the definition of high and low metabolisers as those in the top and bottom 15 % of the 

distribution of the metabolite panel, a minimum of n = 107 participants were required of which 

n = 32 would be assessed as high or low metabolisers. 

Sample size calculation for phase 2 of the AMP study 

Phase 2 of the AMP study involved a cross-over intervention design. The primary statistical 

analysis aim of phase 2 was to determine time by treatment effects in two metaboliser groups 

(high and low) for change in %FMD following an energy-dense test meal with or without 

blueberries. A power calculation was performed based on the FMD analysis in the CIRCLES 

study, published in Curtis (2019)159 and used the blueberry and placebo groups as 

approximations for high and low metabolisers. Using a difference of 1.09 %FMD between 

blueberry and placebo intake and an overall population SD of the difference of 1.87, the 

calculation suggested a requirement of n = 35 per group to have 90% power to detect a 

difference between the two groups at a significance level of p = 0.05. To account for dropouts 

between random allocation to treatment and completion of the study, the recruitment aim was 

15% higher, increasing the group size to 41 per group. Thus, the total sample size for phase 2 

of the AMP study was n = 82, of which 70 were required to complete the study. For the 

blueberry challenge, this translated to a total recruitment target of n = 274 due to the definition 

of high and low metabolisers as those in the top and bottom 15 % of the distribution of the 

metabolite panel (see Section 4.3 below). 

Due to the emergence of the COVID-19 pandemic, the study was stopped prematurely. At the 

time of termination, n = 121 completed the blueberry challenge, and n = 26 had completed at 

least one arm of the cross-over trial. 
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5 AMP study – Prospective recruitment by anthocyanin 

metaboliser profile 

5.1 Introduction and study objective 

Although flavonoids, and in particular anthocyanins, have been associated with 

cardiometabolic health benefits, results from randomised controlled trials remain equivocal. 

This may partly be due to the inter-individual variability in response to flavonoid intake, resulting 

in differences in absorption, metabolism and exposure of target tissues to flavonoids and their 

metabolites.  

The study objective of the blueberry challenge was to determine whether individuals could be 

grouped as low, medium, or high metabolisers after a single dose of blueberries using a panel 

of urinary anthocyanin metabolites which was identified in the previous study through an 

exploratory analysis (see Chapter 3). The panel was found to be a set of likely colonic microbial 

metabolites that putatively characterised a high metaboliser of blueberry anthocyanins and 

was associated with an improvement in vascular function. Although these metabolites have 

been observed to be present at a basal level due to endogenous production and other dietary 

sources, the intake of blueberry anthocyanins is expected to increase the urinary excretion of 

these metabolites beyond their basal level. Importantly, however, the metabolite panel 

reflected a chronic intake of blueberry anthocyanins for six months, whereas in this study, its 

transferability to a single exposure is tested. 

5.2 Results  

Baseline data of participants 

In total, n = 119 volunteers provided valid samples after participating in the blueberry challenge 

(n = 2 had invalid data due to violation of dietary restrictions and intolerance to the intervention 

drink). Their baseline characteristics are shown in Table 5-1. The majority of participants were 

male (61%) and average BMI was 29.1 kg/m2.  

Table 5-1 Participant characteristics1 

Characteristic All (n = 119) 

Age (y) 61.8 ± 7.4 

Gender (n (%) female) 46 (39%) 

BMI (kg/m2) 29.1 ± 3.4 
1 Values for are mean ± SD 

 



156 
 

Classification of participants into three distinct groups using the metabolite panel 

The metabolite panel was assessed as the log2 FC from baseline to 48h. Using the 15th and 

85th percentiles as cut-offs, the participants were classified into three distinct groups with n = 

19 in the low group, n = 78 in the medium group, and n = 22 in the high group (see Figure 

5-1A).  

The number of participants in the low and high group were not equal because the analysis was 

spread over seven runs while recruitment and the blueberry challenge were still ongoing. This 

meant that the percentile cut-offs changed with every new plate that was analysed, whereas 

the final 15th and 85th percentiles included all n = 119 participants. These are represented by 

the two dashed lines in Figure 5-1A. Participants, who in earlier analysis runs were classified 

as high or low metabolisers but were grouped as medium in the final analysis, appear in Figure 

5-1A as high or low metaboliser, but between the two dashed lines.  

Figure 5-1A illustrates that the log2 FC ranged from -3.2 to 6.6 across all participants. The 

mean in the low group was 0.1, demonstrating no to very limited change in excretion of 

metabolites over 48h. The medium group had a mean of 1.8, which translates to a 3.5-fold 

increase in urinary metabolites. On average, the high group increased nearly 16-fold in urinary 

metabolites. Across all participants (irrespective of metaboliser group), the mean log2 FC was 

1.93. 
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Figure 5-1B shows the cumulative change of the metabolite panel over time. In both the 

medium and the high group, the excretion of metabolites increased from baseline to 48h, with 

the sharpest increase being in the high group for both timepoints. In contrast, the low group at 

first decreased in excretion of metabolites from 0 to 24h and then returned to baseline level at 

48h.  

The absolute means measured at each time point are given in Table 5-2 per group and for all 

participants. Across the entire sample (‘All’ in Table 5-2), the maximum amount of change from 

baseline was observed at 0 to 24h for all metabolites except for 3,5-dihydroxyphenylpropionic 

acid, which reached a maximum amount at 24 to 48h. As expected, the main metabolite was 

hippuric acid with an average maximum amount of 2222.3 ± 1444.6 μmol/24h at 0 – 24h in 

comparison to 6 – 20 μmol/24h for the other metabolites. Unexpectedly, the excretion of two 

metabolites changed little over time in comparison to the results in the previous chapter and 

other single-dose studies: the maximum difference from baseline for 3,5-dihydroxybenzoic acid 

was 1.3 μmol/24h observed at 24 to 48h (21% increase); for 4-hydroxy-3-methoxyphenylacetic 

acid the maximum difference was 0.6 μmol/24h at 0 to 24h (4% increase). In contrast, de 

Ferrars et al reported a 600% increase for 3,5-dihydroxy benzoic acid within the first three 

Figure 5-1. The distribution of the metabolite panel (log2 FC) at 48h (A) and its change over 
time (B) 

(A) The distribution of the metabolite panel (log2 FC) at 48h. Participants below the 15th percentile (left 
dashed line) were classified as low, while participants above the 85th percentile (right dashed line) 
were classified as high metabolisers. Participants in between were classified as medium. Some 
participants, who were classified as high or low appear between the two dashed lines due to rolling 
recruitment and classification of participants before the analysis of the entire sample of n = 119 had 
been completed. The dashed lines represent the final 15th and 85th percentiles including all n = 119 
participants.  
(B) The log2 FC of the metabolite panel plotted over time by group (low, medium, and high 
metaboliser) as determined in (A). Datapoints show cumulative mean ± SD.  
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hours.245 Part of the discrepancy could be a reflection of differing doses and urine storage 

methods. De Ferrars et al fed 500 mg of anthocyanins from elderberry and did not add any 

preservatives to the collected urine prior to storage, which may have affected the metabolite 

concentration. For 4-hydroxy-3-methoxyphenylacetic acid, Nurmi et al reported a maximal 

increase of 13% at 0 to 24h over a total observation period of 48h.122 Although the increase 

was three times the amount of what was observed in our study, the value is better aligned with 

our findings as the anthocyanin dosage Nurmi et al used was nearly double with 650 mg 

anthocyanins from bilberries and lingonberries. 

Interestingly, the low group had the highest baselines for all metabolites, which may explain 

the lack of response in these metabolites as well as the initial decrease observed at 0 to 24h 

for this group. 

Table 5-2. Urinary excretion of panel metabolites up to 48h after blueberry drink by group 

Group Time 3,5-DiOH-PPA 3-OH-HA 4-OH-3-OCH-PAA HA 

Low  
(n = 19) 

-24 to 0 h 11.0 ± 13.6 31.3 ± 54.1 17.5 ± 11.6 1708.7 ± 1461.0 

0 to 24h 5.4 ± 10.7 18.4 ± 37.0 12.4 ± 9.3 2139.3 ± 1529.8 

24 to 48h 8.5 ± 11.8 15.3 ± 35.5 13.2 ± 10.9 759.3 ± 871.0 

Medium  
(n = 78) 

-24 to 0 h 6.1 ± 10.6 12.3 ± 44.4 16.7 ± 10.0 841.8 ± 1122.6 

0 to 24h 6.4 ± 8.6 17.0 ± 27.1 17.3 ± 12.8 2249.8 ± 1406.2 

24 to 48h 6.3 ± 7.2 14.0 ± 35.3 16.4 ± 10.1 1060.4 ± 1320.1 

High  
(n = 22) 

-24 to 0 h 2.7 ± 4.5 7.5 ± 9.7 12.3 ± 9.0 448.2 ± 896.8 

0 to 24h 6.4 ± 6.3 25.0 ± 24.8 17.4 ± 12.2 2196.5 ± 1568.3 

24 to 48h 11.6 ± 10.8 27.7 ± 35.3 17.6 ± 11.6 1148.0 ± 1573.9 

All 
(n = 119) 

-24 to 0 h 6.3 ± 10.5 14.4 ± 42.5 16.0 ± 10.2 907.5 ± 1198.6 

0 to 24h 6.2 ± 8.5 18.7 ± 28.4 16.6 ± 12.3 2222.3 ± 1444.6 

24 to 48h 7.6 ± 9 16.8 ± 35.4 16.1 ± 10.5 1028.5 ± 1307.2 

Values are mean ± SD in µmol/24h. 3,5-DiOH-PPA: 3,5-dihydroxyphenylpropionic acid; 3-OH-HA: 3-hydroxyhippuric acid; 4-
OH-3-OCH-PAA: 4-hydroxy-3-methoxyphenylacetic acid; HA: Hippuric acid 

 

Comparison of the baseline excretion of individual metabolites by group 

The difference in baseline values between the groups was further evaluated. Because a large 

variability within the groups was indicated through the large SD values in in Table 5-2, the 

medians rather than the means were compared between the groups as a more robust measure 

against extreme values. 

When comparing the median excretion of the individual metabolites at baseline, it was 

confirmed that for three of four metabolites (i.e., 3,5-dihydroxyphenylpropionic acid, 4-hydroxy-

3-methoxyphenylacetic acid, and hippuric acid) the median baseline value was highest in the 

low group and lowest in the high group (Figure 5-2). Using quantile regression (see Table 5-3 

for results), these differences were significant at a level of 0.05 for 3,5-

dihydroxyphenylpropionic acid (p = 0.048) and hippuric acid (p < 0.001), but not 3-
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hydroxyhippuric acid (p = 0.551) or 4-hydroxy-3-methoxyphenylacetic acid (p = 0.307). In a 

pairwise follow-up test with Bonferroni correction for multiple comparisons, the median 

baseline value of the low group was significantly higher than the high group for 3,5-

dihydroxyphenylpropionic acid (p = 0.017) and hippuric acid (p < 0.001). It was also higher in 

the low group in comparison to the medium group for hippuric acid (p = 0.003). The medians 

between the medium and the high group did not differ significantly.  

Furthermore, the large variability was also confirmed through the wide interquartile ranges. 

This was particularly apparent in the low group for 3-hydroxyhippuric acid and hippuric acid 

(metabolites 2 and 4 in Figure 5-2). 

 

Figure 5-2. Median and interquartile range of metabolite amounts at baseline per metaboliser 
group 

Plot shows the median amounts at baseline (-24 to 0 h sample) per metaboliser group. Bars 
represent the interquartile range. Metabolites 1 – 4 are as follows: 1 = 3,5-dihydroxyphenypropionic 
acid; 2 = 3-hydroxyhippuric acid; 3 = 4-hydroxy-3-methoxyphenylacetic acid; 4 = hippuric acid. 
Difference in medians between the three groups was tested using the quantile regression followed by 
pairwise comparison of medians with Bonferroni correction. The medians for metabolites 1 and 4 
were significantly different at a level of 0.05. * p = 0.017 (low versus high); ** p = 0.003 (low versus 
medium) and p < 0.001 (low versus high). 
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Table 5-3. Median and interquartile range at baseline 

Group Baseline 3,5-DiOH-PPA 3-OH-HA 
4-OH-3-OCH-

PAA 
HA 

Low (n = 19) 

median 7.15a 4.43 15.39 1371.36bc 

IQR 0.05 – 15.43 
2.66 – 
45.92 

9.58 – 28.46 794.94 – 2515.66 

Medium (n = 78) 
median 3.26 2.48 14.47 449.89 

IQR 0.2 – 7.43 0.2 – 9.78 10.1 – 20.02 62.5 – 1037.96 

High (n = 22) 
median 0.14 4.43 11.52 5.05 

IQR 0.04 – 3.08 2.66 – 8.33 5.26 – 18.77 2.28 – 471.13 

All (n = 119) 
median 2.98 4.43 14.08 540.84 

IQR 0.17 – 7.65 0.2 – 9.87 9.58 – 20.26 62.5 – 1278.08 

Quantile regression p (trend) 0.007 0.551 0.307 < 0.001 

Values are median and interquartile range in µmol/24h for each metaboliser group. Quantile regression was 
used to compare medians between groups. Significant differences at a level of 0.05 indicated below. 
a p = 0.017 for low versus high 
b p = 0.003 for low versus medium 
c p < 0.001 for low versus high 
3,5-DiOH-PPA: 3,5-dihydroxyphenylpropionic acid; 3-OH-HA: 3-hydroxyhippuric acid; 4-OH-3-OCH-PAA: 4-
hydroxy-3-methoxyphenylacetic acid (homovanillic acid); HA: Hippuric acid 

 

Comparison of habitual food intake by group 

To determine whether habitual intake of certain foods influenced the metaboliser profile, a 

validated food frequency questionnaire which estimates the habitual intake in the last year was 

assessed. The groups were compared for differences in habitual dietary intake of polyphenol-

rich foods and fibre using the Kruskal-Wallis test. Fibre was included as there is strong 

evidence that it is associated with a healthy gut microbiome and may influence bacterial 

derived metabolites through modulation of the microbial diversity and activity.55 

A trend for higher intake in the low group could be observed for several foods and nutrients 

(including fruits, red wine, total flavonoids, and fibre), but only anthocyanins and wholemeal 

intake were significantly different between the groups at a significance level of 0.05 (p = 0.031 

and 0.051). Pairwise follow-up tests showed that for both anthocyanins and wholemeal, the 

habitual intake in the low group was significantly higher than the medium and the high group 

(p for anthocyanins: 0.006 (low versus medium) and 0.013 (low versus high); p for wholemeal: 

0.029 (low versus medium) and 0.008 (low versus high)). There was no statistical difference 

between the medium and the high group (anthocyanins: p = 0.433; wholemeal: 0.146). 
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Table 5-4. FFQ dietary intake data 

 All (104) Low (n = 18) Medium (n = 64) High (n = 22) p 

Energy (kcal) 
2165.7  

(1807.9 – 2448.9) 
2231.2  

(1824.8 – 2420.2) 
2134.1  

(1818.0 – 2437.0) 
2151.3  

(1768.9 – 2477.2) 
0.854 

Protein (% energy) 
18.0  

(16.5 – 19.9) 
18.0  

(16.7 – 19.3) 
18.2  

(16.5 – 20.1) 
17.4  

(15.4 – 19.1) 
0.350 

Fat (% energy) 
15.5  

(14.3 – 16.7) 
14.8 

(13.7 – 15.9) 
15.6  

(14.4 – 16.6) 
15.8  

(15.1 – 16.9) 
0.174 

Carbohydrate (% energy) 
46.2  

(41.9 – 49.7) 
47.6  

(41.3 – 50.2) 
46.6  

(42.3 – 50.3) 
44.7  

(39.3 – 48.3) 
0.374 

Total flavonoids (mg/d) 
838.3  

(623.7 – 1245.1) 
884.8  

(725.4 – 1353.8) 
834.3 

(500.8 – 1245.1) 
844.9  

(732.6 – 1109.9) 
0.34 

Anthocyanins (mg/d) 
20.7  

(13.3 – 30.7) 
27  

(19.3 – 37.8) 
20.5  

(12.6 – 26.4) 
14.7  

(10.2 – 34.2) 
0.031 

Fruits (g/d) 
195.7  

(126.3 – 292.7) 
213.4  

(129.7 – 468.4) 
191  

(115.2 – 282.5) 
189.1  

(142.5 – 275.8) 
0.636 

Vegetables (g/d) 
220.2  

(168.6 – 298.7) 
213.5  

(145.9 – 297.5) 
225.7  

(174.8 – 301.6) 
212.7  

(144.1 – 298.6) 
0.544 

Coffee (g/d) 
475  

(81.4 – 475.0) 
332.5  

(81.4 – 475.0) 
475  

(27.1 – 475.0) 
475  

(190.0 – 475.0) 
0.589 

Tea (g/d) 
475  

(190.0 – 855.0) 
475  

(475.0 – 855.0) 
475  

(149.3 – 855.0) 
475  

(475.0 – 475.0) 
0.371 

Red wine (g/d) 
18  

(0.0 – 57.6) 
55.8  

(9.0 – 99.0) 
18  

(0.0 – 54.0) 
19.8  

(0.0 – 75.4) 
0.200 

Beer (g/d) 
41.4  

(20.7 – 124.3) 
41.4  

(20.7 – 124.3) 
41.4  

(20.7 – 124.3) 
82.9  

(41.4 – 124.3) 
0.426 

Wholemeal (g/d) 
40.5  

(19.3 – 65.5) 
65.2  

(32.9 – 111.1) 
40.7  

(17.7 – 58.6) 
27.9  

(19.3 – 40.7) 
0.051 

Fibre (AOAC) (g/d) 
18.5 

(14.9 – 24.2) 
20.7  

(16.9 – 27.4) 
19.4  

(14.8 – 23.5) 
18.1  

(13.0 – 22.6) 
0.236 

Values are median the with interquartile range in parentheses. Group differences (low, medium, high) tested using Kruskal-
Wallis test. Wholemeal: wholemeal bread and pasta, brown bread, cereal. AOAC: fibre content (non-digestible 
carbohydrates) estimated using the American Association of Analytical Chemists methods; FFQ: food frequency 
questionnaire. 

 

Comparison of the metabolite panel at 24h and 48h 

Previous studies have observed that some anthocyanin metabolites are excreted over at least 

48h, however the majority of metabolites seems to be excreted over the first 24h.122,123,219 The 

metabolite panel at 24h and 48h was compared to examine at which timepoint the classification 

of participants was more reliable. Figure 5-3 shows distribution of the metabolite panel at 24h 

and at 48h. In both graphs (for 24h and 48h), the classification of participants into low, medium, 

and high metabolisers is based on the 15th and 85th percentiles at 48h, which are represented 

by the dashed lines in both graphs. The graph at 48h is the same as in Figure 5-1 and is shown 

here for an easier direct comparison.  

At 24h, 76% of participants were already classified in their final groups. Of the 24% which were 

not in their final groups: at 24h, n = 11 were in the medium group, but were classified as low 

at 48h. Further n = 9 were in the low group, but were classified as medium at 48h. N = 5 

participants, which at 24h were grouped as medium or even low in one case (arrows in Figure 

5-3, left graph), strongly increased in excretion of the measured metabolites between 24 and 

48h and were classified as high metabolisers at 48h.  
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Comparison of the metabolite panel at 48h by gender 

Because the low group consisted of uneven numbers of men and women (n = 13 men and n 

= 6 women), while the high group had even numbers of men and women (n = 11 men and n = 

11 women), the association between gender and metaboliser group was assessed. However, 

a chi-square test did not reveal a significant relationship between gender and metaboliser 

group (χ2(2; n = 119) = 1.67, p = 0.435) (see Figure 5-4). 

Figure 5-3. Distribution of the metabolite panel at 24 and 48h 

Graphs show the log2 FC of the metabolite panel against the rank of participants at 24h and 48h. 
Dashed lines show the group cut-offs at the 15th and 85th percentiles (based on distribution of the 
metabolite panel at 48h). The arrows in the left graph point to participants whose urinary metabolites 
strongly increased between 24 – 48h so that they were grouped as ‘high’ at 48h. 
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Comparison of the panel between the CIRCLES and the AMP study at 24h 

To assess how the metabolite response from a single dose of blueberries differed from the 

response after repeated intake for a longer period of time, the log2 FC of the metabolite panel 

in the CIRCLES and the AMP study were compared (Figure 5-5). Because the CIRCLES study 

had only collected urine samples up to 24h, the AMP profile used in this comparison was also 

at the 24h timepoint. Equally, the metabolite panel for the CIRCLES study was calculated for 

the four metabolites assessed in AMP for comparability. Only those participants who received 

the full dose in CIRCLES and thereby a similar amount of anthocyanins were used for this 

comparison. 

Figure 5-5 shows that the mean change in metabolites for the total sample was similar for both 

studies and that per metaboliser group the general direction of the change in metabolites was 

the same between the studies. The magnitude of change, however, was more pronounced in 

the AMP study (i.e., single exposure). The log2 FC in the low group was significantly greater in 

the negative direction for AMP (mean difference = -1.05, p = 0.01, as tested using the Mann-

Whitney-U test), and significantly greater in the positive direction in the high group (mean 

difference = 1.43, p < 0.001). No significant differences were found in the medium group (p = 

0.225) or across the entire sample (p = 0.345). 

Figure 5-4. Boxplot of the metabolite panel (log2 FC) by gender 

Figure shows the distribution of the metabolite panel by gender by group to assess whether gender 
was associated with metaboliser group. No significant effect of gender on metaboliser groups was 
observed (chi-square test χ2(2; n = 119) = 1.67, p = 0.435).  
Metaboliser groups: low, medium, high. Number of men and women per group (group (men; 
women): low (13; 6), medium (49; 29), high (11; 11).  
F = female; M = male. 
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5.3 Discussion 

The aim of the first stage of the AMP study, the blueberry challenge, was to determine the 

metabolism profile of participants following the consumption of a blueberry milkshake. The 

profile was assessed from the excretion of metabolites over 48h in urine using the metabolite 

panel determined through retrospective analysis of a six-month blueberry intervention study 

(Panel 5, Section 3.2.3). The panel was calculated as the average log2 FC from baseline to 

48h of four metabolites (3,5-dihydroxphenylpropionic acid, 3-hydroxyhippuric acid, 4-hydroxy-

3-methoxyphenylacetic acid, and hippuric acid). 

The key finding in this analysis was that the metabolite panel was able to classify participants 

into three distinct groups after consumption of blueberry using the 15th and 85th percentiles as 

group cut-offs. Due to the rolling recruitment of the AMP study, these cut-offs changed as more 

participants were analysed. However, although the first analysis only included n = 24 

participants, and each additional run added about 15 to 30 participants to the sample size, only 

4% of participants were classified differently across all analysis runs. Furthermore, these 

participants were close to the final percentile cut-offs, suggesting that even in small sample 

sizes, the 15th and 85th percentiles appear to be quite accurate. The final 15th and 85th 

percentiles translated into the following thresholds: 0.78 log2 FC for the lower cut-off and 3.26 

Figure 5-5. Comparison of the metabolite between the CIRCLES and AMP study 

Plot shows the mean of the metabolite panel (log2 FC) in the CIRCLES and AMP studies. For 
comparability, the CIRCLES panel was calculated with the four metabolites assessed for the AMP 
study. Equally, because the CIRCLES study had only collected urine samples up to 24h, the AMP 
profile corresponds to the 24h timepoint. Notably, this comparison contrasts a single exposure (AMP) 
with a prolonged daily exposure over six months (CIRCLES). 
Error bars show standard deviation. 
* p = 0.019; ** p < 0.001 (Mann-Whitney-U test). 
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log2 FC for the upper. The total range at 48h varied between -3.2 to 6.6 log2 FC; clearly 

demonstrating a wide variability in response between individuals.  

Each of the three metaboliser groups had distinct profiles (see Figure 5-1B). The high group 

increased the most, with the steepest increases between both timepoints among the three 

groups, while the medium group increased steadily between 0 and 48h. Interestingly, the low 

group initially decreased from 0 to 24h for the metabolite panel before reaching baseline again 

at 48h. These differences in profiles could point to group specific differences in metabolization 

(in the gut and after absorption) and transit time. The fact that the low group increased in 

hippuric acid from 0 to 24h and decreased again between 24 to 48h suggested that they did 

absorb some of the anthocyanin metabolites, however overall, the excretion of metabolites did 

not increase substantially from baseline, which suggests very limited absorption.  

A possible confounding factor to the observed decrease in metabolites in the low group was 

the high baseline levels observed. These were significantly higher in the low group than the 

high group in the case of 3,5-dihydroxyphenylpropionic acid and hippuric acid (see Figure 5-2 

and Table 5-3). A certain level at baseline was expected, based on the findings from the 

previous chapter and knowledge of other sources for the metabolites: Hippuric acid is 

endogenously produced from aromatic amino acids and is a definitive catabolite of many 

polyphenols.123,222,281 It has been suggested as a potential biomarker of fruit and vegetable 

intake240 and in observational studies linking metabolomics with epidemiological data has been 

inversely associated with systolic and diastolic blood pressure (-1.6 and -0.7 mmHg per 3.55 

mmol hippuric acid per 24h)282, BMI283, and reduced odds of developing MetS (odds ratio: 

0.795; p = 0.026)284, with hippuric acid acting as a potential marker of polyphenol intake as 

well as microbial diversity. 3,5-dihydroxyphenylpropionic acid has been reported to be a human 

urinary metabolite of alkylresorcinols found in wholewheat products.241 Although currently not 

experimentally confirmed,  it is not unlikely that 3,5-dihydroxyphenylpropionic acid could also 

be derived from flavonoids with a trihydroxylated B-ring through dehydroxylation at position 4’ 

and microbiotic ring fission to produce a phenylpropionic acid. One of the two main 

anthocyanidins in blueberries, delphinidin, is a trihydroxylated flavonoid.  

Thus, a reason for the higher baseline in the low group in comparison to the high group could 

be a higher intake of polyphenol-containing foods and wholemeal products prior to the study 

visit. The analysis of a food frequency questionnaire revealed that the low group habitually ate 

nearly twice as many anthocyanins (mainly from fruit and red wine) and wholemeal products 

(wholemeal bread, pasta, brown bread, oats, bran) (see Table 5-4) than the high group. 

Throughout the study, participants were asked to adhere to dietary restrictions which mainly 

prohibited the intake of anthocyanin-rich foods. However, participants were allowed to choose 

from other fruits and vegetables, such as apples, white onions, and tomatoes, as well as 
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wholemeal products. It may be that the background diet contributed to increased baseline 

levels in the low group in comparison to the other groups. However, this cannot fully explain 

the decrease observed in the low group following the blueberry milkshake, if the diet was 

comparable between the three assessment days. Nevertheless, for the assessment of an 

anthocyanin metabolic profile in the future, it would be beneficial to ask participants to adhere 

to a low-polyphenol diet (in comparison to a low-anthocyanin diet) to reduce the influence on 

the baseline. Such a low-polyphenol diet might exclude all fruits and vegetables, nuts and 

seeds, wholewheat and other high-fibre products, and beverages (tea, coffee and fruit juices), 

and alcohol (wine, beer, spirits) as done in a study by Ludwig et al 219. 

A further important aspect is the metabolite panel used for the analysis in this chapter. The 

final metabolite panel presented in Chapter 3 consisted of seven metabolites, whereas the 

panel used here was the result of the original analysis and consisted only of four metabolites. 

The metabolites which were not included in this chapter are: syringic acid, dihydroferulic acid, 

and 4-hydroxyhippuric acid. Although berry anthocyanins are metabolised to a set of 

catabolites common among many polyphenols and therefore not unique249, the metabolites 

assessed in this chapter are frequently reported to increase upon blueberry consumption. 

Particularly syringic acid could be of particular value as it is likely (albeit not exclusively) derived 

from malvidin, one of the major anthocyanins in blueberries and in Chapter 3 shown to increase 

the most relative to baseline following blueberry intake. If the metabolite panel is seen as a 

marker of blueberry intake, the ROC analysis in the previous chapter (see Figure 3-15) 

revealed that the reduced panel (four metabolites) was able to correctly predict blueberry 

intake in 77% of cases, while the predicting capability for the full panel (seven metabolites) 

was at 88%. Therefore, using the full panel instead of the reduced panel should increase 

specificity towards blueberry intake and reduce the impact of baseline variation due to other 

foods. 

Another factor to consider is the effect of the food matrix the blueberry anthocyanins were in. 

The freeze-dried blueberry powder was dissolved in 500 g semi-skimmed milk, of which the 

proteins as well as the fat may have had an impact on the bioavailability of anthocyanins. 

Consumption of phenolics in conjunction with milk has been investigated in a few human cross-

over studies with six to twenty participants for different foods and beverages, including 

strawberries285, tea286,287, coffee288, and jujube juice289. Although the beverages used in the 

studies did not necessarily contain anthocyanins, they contained phenolic acids similar to the 

metabolites of anthocyanins or also present in blueberries, and included chlorogenic acids, 

hydroxycinnamic acids and hydroxybenzoic acids. Findings from the studies were equivocal: 

the consumption of 200g strawberries containing 96 mg pelargonidin-3-glucoside with or 

without cream did not significantly reduce the maximum plasma concentration (Cmax) of the 
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anthocyanin, but it did significantly delay the absorption time to reach the peak concentration 

(tmax) by over 1h.285 In contrast, Reddy et al found that catechin absorption from a cup of black 

tea (200 mg catechins) was dampened by 17%, but not delayed.286 This finding was not 

observed by van Het Hof et al, who did not find any impact of milk on the absorption magnitude 

or timing of black tea catechins (dose per tea preparation was 300 mg).287 Similarly, a study 

investigating the impact of milk and sugar plus non-dairy creamer on the bioavailability of 

downstream metabolites of chlorogenic acids (caffeic acid, ferulic acid, and isoferulic acid) 

from coffee containing 332 mg chlorogenic acids, reported no significant impact of milk addition 

to coffee.288 However, the authors observed that sugar and non-dairy creamer delayed tmax of 

the phenolic acids by 45 to 120 minutes. A further study conducted by Zhang et al tested the 

absorption of phenolic acids from jujube juice in the presence of just juice, whole milk, skimmed 

milk, and milk fat.289 This allowed them to consider the impact of milk protein (skimmed milk) 

and milk fat separately. The authors found that only whole milk reduced Cmax by 25 – 35% and 

AUC by 30 – 44% of most phenolic acids, while skimmed milk delayed tmax by about 1 – 1,5h. 

Milk fat by itself did not have a significant impact on the pharmacokinetic parameters. The 

authors concluded that interactions between milk proteins and phenolic acids were the cause 

of the impaired absorption, but added that both milk protein and fat were required for this 

inhibitory effect. It seems that milk proteins may bind phenolic acids in the stomach and could 

thereby delay the transit time through the GI tract, while the fat contained in milk may reduce 

the absorption of phenolic acids. 

The contradictory findings across studies could be due to differences in phenolic compounds 

and the type of milk product used, as the binding of milk proteins to the phenolic compounds 

likely depends on their structure288 and the reduction in absorption and delay in transit time 

seems to mostly rely on the fat content. Due to the use of semi-skimmed milk (i.e., reduced 

fat) for the blueberry milkshake in the present study, it seemed likely that the milk itself had 

little effect on the bioavailability, although it may have slightly delayed absorption time. 

However, due to the collection of 24h pooled urines, a delay in absorption time would not affect 

the results. In sum, based on the above, the milk base of the blueberry drink was not likely the 

cause for a low bioavailability of anthocyanin metabolites in the low group. In this study, a milk-

based drink was chosen to provide the same intervention drink for the blueberry challenge as 

well as the second phase of the study. Future studies assessing an anthocyanin metabolite 

profile may benefit from using a neutral matrix such as water to prevent any doubts of matrix 

effects on absorption and metabolism of the compounds of interest. 

Moreover, gender is thought to potentially influence the bioavailability of flavonoids. While 

some gender-differences in phase I and II metabolism of flavonoids in the liver have been 
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observed, the evidence is limited.150 Likewise, no effect of gender on metaboliser was 

observed in this study (see Figure 5-4). 

The classification into metaboliser groups was designed a priori to be assessed at 48h because 

phenolic metabolites of anthocyanins were observed in urine for over 48h.122,140,219 The 

classification at 24h and 48h was compared to determine if the additional day of urine collection 

had any benefits over a 24h assessment (see Figure 5-3). Although at 24h the majority of 

participants (76%) were classified as they have been at 48h, there were some considerable 

changes to groupings at 48h. The most striking were five participants who at 24h were ranked 

much lower and were grouped as medium and in one case even in the low group. These 

participants significantly increased in the urinary excretion of the metabolite panel and at 48h 

were much higher ranked and classified as high metabolisers. In addition, 20 further 

participants changed groups between 24 and 48h, moving from low to medium or medium to 

low. It seemed therefore that the additional day of urine collection provided information about 

a late increase in metabolite abundance in some participants which would have been missed 

at the 24h timepoint. 

The metabolite panel used in this analysis to determine the metaboliser status was based on 

findings from a chronic study in which participants were repeatedly exposed to a dose of 

blueberries every day for six months (described in Section 2.1). It was unclear whether the 

panel expressed as log2 FC from baseline would be transferable to an acute study due to the 

differences in study design. The comparison can be seen in Figure 5-5. In theory, the 

assessment of metaboliser profile following the consumption of a dose of blueberries should 

be comparable between the chronic and acute studies due to the rapid metabolisation and 

subsequent elimination of anthocyanins and phenolic compounds. This was confirmed in the 

direct comparison of chronic intake (CIRCLES study) and single dose (AMP study), which 

showed that there was no significant difference when comparing the entire sample (see ‘total’ 

in Figure 5-5). However, the magnitude of change was stronger in the low and high groups in 

the AMP study in comparison to the CIRCLES study. These differences could be due to the 

differences in study design. While the dietary restrictions in CIRCLES were similar, the length 

of run-in time was much longer with 21 days versus 5 days in AMP. This may have affected 

the baseline measurement and led to a reduced response in the low group in CIRCLES. 

Furthermore, while the amount of anthocyanins was similar in the CIRCLES and AMP studies, 

differences in serving size (26 and 36 g respectively) may have provided significant differences 

in other components of blueberries such as phenolic acid and fibre content, which may have 

led to the increased response in the high group in AMP. Also, the study population was of 

similar age and weight, however CIRCLES was conducted in participants with metabolic 

syndrome, while participants in AMP were generally healthy. This may have had an impact on 
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the metabolisation and absorption of polyphenols. Finally, the data from CIRCLES was the 

result of daily intake of blueberries for six months, whereas in AMP, participants consumed 

blueberries only once. The long-term intake in CIRCLES would have sustained elevated levels 

of metabolites in the gut and in circulation which could have implications on the long-term 

modulation of the gut microbiome. These implications would not be present in an acute, single-

dose setting. 

As discussed in the previous chapter, the polyphenol dietary interventions may function as 

prebiotics and enhance proliferation of certain bacterial species, such as Bifidobacterium261, 

which was associated with a greater abundance of some anthocyanin metabolites260. Such 

changes in the gut microbial composition in response to dietary interventions can vary highly 

between individuals due to the variability in the gut microbial composition between people and 

is likely affected by the presence and abundance of the bacterial species prior to the 

intervention262. It may therefore be speculated that with or without a prebiotic effect of 

blueberries on the gut microbiota after a single or repeated dose, the relative abundance of 

microbial metabolites may be a reflection of the gut microbial composition pre-intervention and 

differentiate a high from a low metaboliser irrespective of a long-term chronic intake or a single 

acute exposure. 

The results from the chronic CIRCLES study further provided the basis for the calculation of a 

minimum sample size to detect distinct metaboliser groups using the metabolite Panel 5. The 

minimum target of n = 107 was achieved and exceeded, allowing the definition of distinct 

groups. Indeed, it is likely that the original target overestimated the actual required minimum 

sample size due to key differences between the AMP and CIRCLES studies: 

- The estimate for the high metaboliser group used for the sample size calculation was 

derived from the blueberry treatment group and included a mix of high, medium, and 

low metabolisers. This means that this estimate for the high group was likely smaller 

than the actual value. Consequently, the estimate for the group difference between 

high and low was likely smaller, resulting in a greater sample size in the calculation. 

- The urine collection window in CIRCLES was 24h, whereas in the AMP study urine 

was collected up to 48h. As visible from Figure 5-5, the magnitude of change was 

already greater for high metabolisers in the AMP study compared to the CIRCLES 

study and would likely be even greater at 48h. Figure 5-1 shows that while the high 

group continued to increase between 24 and 48h, while the low group did not, further 

driving up the group difference. This means again, that the actual group difference was 

very likely underestimated, resulting in a greater sample size in the calculation. 

- The AMP intervention product, while similar in anthocyanin content to the CIRCLES 

product, contained greater amounts of other phenolic acids, which may cause an 
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increased response in the high metaboliser group in the AMP study and therefore 

potentially a greater group difference.  

In summary, these differences likely led to an underestimation of the difference between high 

and low metaboliser groups and overestimation of the required minimum sample size for the 

AMP study to detect two distinct groups. The mean difference between high and low 

metaboliser groups requires further confirmation in validation and reproducibility studies, 

ideally using the full panel (Panel 2) instead of the reduced panel (Panel 5) to increase 

specificity towards blueberry intake 

Conclusion 

Overall, in this study, participants were classified into three distinct anthocyanin metabolic 

profiles following the intake of a single dose of blueberries using the metabolite panel 

consisting of the four metabolites identified in Section 3.2.3. Those identified as high and low 

metabolisers were prospectively recruited to the cross-over phase of the AMP study, which 

assessed cardiometabolic responses in each group after consumption of a test meal with or 

without blueberries. The outcome of this analysis (Phase 2) will be of great interest and may 

possibly provide some insight whether the grouping by metabolic profile has clinical 

significance.  
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6 General discussion and future perspectives 

This thesis set out to assess the inter-individual variability in response to intake of anthocyanins 

from blueberries and to address the question of whether differential phenotypes for the 

metabolisation of anthocyanins existed and could be characterised based on the urinary 

excretion of a single or a group of metabolites. It also set out to determine the relationship 

between such a urinary metabolite profile and cardiometabolic markers, including vascular 

function. These objectives were addressed in Chapter 3 using retrospective data from a six-

month long intervention study known as the ‘CIRCLES study’, in which participants with 

metabolic syndrome received a daily bolus of 26 g freeze-dried blueberry powder (providing 

364 mg anthocyanins). The final aim of this thesis was to assess whether the same urinary 

metabolite profile could be applied in an ongoing dietary intervention study to prospectively 

recruit individuals as high, medium, or low anthocyanin metabolisers. This objective was 

addressed in Chapter 5, in which participants of the AMP study received a single dose of 

blueberries (providing 382 mg of anthocyanins) as a ‘blueberry challenge’. 

Inter-individual variability in response to flavonoid intake relates to differences in the absorption 

and metabolisation of flavonoids between individuals and affects the bioavailability of bioactive 

compounds for the individual. It is thought to be partly responsible for the contradictory 

evidence on health benefits obtained from human clinical trials. As such, there is a well-

established body of research which highlights the importance of addressing this issue in 

research.151,156,202–208 The potential benefits of understanding more about inter-individual 

variability are considered to be wide-ranging, including a greater clarification for effective 

dietary recommendations for flavonoids and other plant bioactives, the potential to apply 

personalised nutritional strategies (unique guidelines tailored to the individual) based on 

response status, improvements in healthy dietary choices, advancement in food technologies 

to enhance bioavailability of polyphenols from foods and supplements, and the creation of 

databases which aggregate knowledge on the metabolism of plant bioactives in humans.290 

Wide inter-individual variability in the response to anthocyanin intake has been reported 

previously in human studies giving a variety of anthocyanin-rich foods and beverages, such as 

a bilberry and lingonberry puree (650 mg anthocyanins)122, 500 mg 13C-labelled cyanidin-3-

glucoside123,140, wild blueberry beverage (350 mg anthocyanins)218, raspberry supplement (182 

mg anthocyanins)219, elderberry extract (500 mg anthocyanins)245, black currant juice (1029 

mg anthocyanins).264 In addition, the major urinary metabolites which are observed in response 

to anthocyanin intake are fairly consistent across literature. Commonly reported major urinary 

metabolites include hippuric acid, 3-hydroxyhippuric acid, 4-hydroxyhippuric acid, vanillic acid, 

homovanillic acid, ferulic acid, and 3,4-Dihydroxyphenylacetic acid. However, no clear clusters 
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of metabolites which might differentiate individuals by their metabolic phenotype have been 

described for anthocyanins. 

In Chapter 3, a mixed approach of multivariate and univariate data analysis was utilized to 

identify an aggregating group of anthocyanin metabolites, which in combination are proposed 

to describe a ‘high metaboliser’, with the expectation that such an individual may benefit more 

from the consumption of anthocyanin-rich blueberries than lower metabolisers. In the first, 

multivariate analysis, an exploratory factor analysis was performed, summarising the 

measured metabolite variables with two new variables (factor scores 1 and 2). Subsequently, 

by plotting the two factor scores against each other, clusters of participants were identified, 

demonstrating the variability in metabolic profiles (see Figure 3-10). Of the four participant 

clusters, two were diametrically opposed in their metabolite profile. It is these two groups that 

were of further interest: those who excreted high amounts of metabolites associated with both 

factors 1 and 2 were classified as high metabolisers and those who excreted limited amounts 

of metabolites associated with both factors were classified as low metabolisers. In the follow-

up, univariate analysis, a detailed comparison of the metabolic profiles of high and low 

metabolisers was conducted. This resulted in a selection of seven metabolites which could be 

used for future research as a marker of a high metaboliser profile (see Table 3-13): 4-

hydroxyhippuric acid, 3-hydroxyhippuric acid, hippuric acid, syringic acid, homovanillic acid (4-

Hydroxy-3-methoxyphenylacetic acid), dihydroferulic acid (4-hydroxy-3-

methoxyphenylpropionic acid), and 3,5-dihydroxyphenylpropionic acid.  

The proposed characterisation of a high metaboliser, using this metabolite panel, is supported 

by the evidence that these metabolites have been frequently observed as the major urinary 

metabolites following anthocyanin intake in other human studies.122,123,218,219,225,226,245,263,264 

Only 3,5-dihydroxyphenylpropionic acid is reported less frequently, however the reason for this 

may be that this compound is less frequently determined in metabolite analyses, including in 

those publications cited. This could be because the six most common anthocyanins have a 

hydroxyl group at the 4’-position of the B-ring, and the heritage of 3,5-

dihydroxyphenylpropionic acid is not obvious. Related compounds, however, have been 

reported. 3,5-dihydroxybenzoic acid was observed as a urinary metabolite in an acute human 

study  following anthocyanin intake from elderberry extract245 and in vitro fermentation of 

raspberry anthocyanins found a significant accumulation of resorcinol (benzene-1,3-diol)242. 

This is relevant because 3,5-dihydroxyphenylpropioinic acid could potentially be derived from 

the dehydroxylation of the anthocyanin delphinidin, which has a trihydroxylated B- ring265 and 

subsequently converted to 3,5-dihydroxybenzoic acid through microbial β-oxidation and then 

to resorcinol through decarboxylation. It should be noted, however, that 3,5-dihydroxybenzoic 

acid and resorcinol may also be derived from the A-ring. As 3,5-dihydroxyphenylpropionic acid 
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may be a metabolite of alkylresorcinols present in wholegrain products,241 this metabolite 

requires additional validation in future studies. 

A key finding in Chapter 3 was that change in FMD, a measure of vascular function, when 

added to the exploratory factor analysis model, was associated with factor 2, but not with factor 

1. On the basis of known metabolic pathways of anthocyanins and other flavonoids, the two 

factors were hypothesised to represent the following: factor 1) ‘early’ metabolites absorbed in 

the small intestine (dietary phenolic acids, initial degradation products, and their phase I and II 

metabolites); and factor 2) ‘late’ metabolites, which were likely low molecular weight products 

of the colonic gut microbial metabolism (see Section 3.1.4). Moreover, when comparing the 

high and low metabolisers from the cluster analysis, i.e., high versus low excretors of factor 1 

and 2 metabolites, the high metaboliser group exhibited a greater increase in FMD than the 

low metabolisers, although the group difference was not statistically significant at a level of 

0.05 (mean difference = 1.85, p = 0.235) (see Figure 3-10D). Together, these findings 

suggested that the change in FMD was aligned with the accumulation of colonic microbial 

metabolites in urine. This result supported the hypothesis that the low molecular weight 

phenolic catabolites play a key role as the bioactive mediators of clinical effects rather than the 

parent compounds123. This result was further supported by the fact that in our study, FMD 

significantly increased with the blueberry treatment after six months in comparison to the 

placebo treatment, but no parent anthocyanins were detected in urine or serum.159 In addition, 

the bioactivity of phenolic metabolites was shown in an in vitro study, in which anthocyanin 

metabolites, but not the parent compounds, reduced palmitate-induced endothelial 

inflammation in human aortic endothelial cells.143 The mixture of metabolites included 

hydroxyhippuric acid, hippuric acid, benzoic acid-4-sulfate, isovanillic acid-3-sulfate, and 

vanillic acid-4-sulfate, and reduced monocyte binding and expression of inflammatory 

chemokines and adhesion molecules, up to 50%. Palmitate-induced endothelial dysfunction in 

aortic segments of mice was also reduced and vasodilation recovered by about 50% when  

aortic segment was treated with the blueberry metabolites. Notably, the experiment was 

performed with metabolites in physiologically relevant concentrations. 

The clinical significance of the metabolic profile was further assessed by creating a composite 

measure of the metabolite panel. The panel was expressed as the average log2 fold change 

from baseline, calculated for all participants in the CIRCLES study irrespective of treatment 

group, i.e., including the full dose group (364 mg anthocyanins per day), the half dose group 

(182 mg anthocyanins per day), and the placebo group (0 mg anthocyanins per day). The 

rationale to include the other treatment groups was that if the metabolites truly played a role in 

mediating vascular function, as speculated in the previous paragraph, the origin of the 

metabolites should not matter, i.e., the placebo group may have experienced similar benefits 
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if other food sources led to high increases in metabolite levels. Moreover, this would indicate 

a certain transferability of the panel to other flavonoid-rich food sources, given that many 

flavonoids are degraded to a similar set of catabolites.157 The log2 fold change of the panel was 

significantly associated with change in FMD as well as change in cGMP and nitrite. Particularly 

the association with cGMP and nitrite could potentially provide some mechanistic insight into 

the bioactivity of the phenolic acids, as vasodilation is largely mediated through the NO/cGMP 

pathway. Nitrite is a product of NO metabolism and through eNOS stimulation and inhibition 

experiments has been found to reflect eNOS activity.244 Therefore, the increase in nitrite 

observed in this study could indicate an increased NO bioavailability in high metabolisers, 

which in turn would lead to an elevation in cGMP levels and improvement in FMD. These 

results were in line with another study which gave a similar amount of bilberry and black currant 

anthocyanins in purified form (320 mg) for 12 weeks.90 The authors reported a significant 

increase in FMD and cGMP in the anthocyanin group compared to placebo (increase from 

baseline by 28.4% and 12.6%, respectively) as well as a positive correlation between change 

in FMD and change in cGMP (r = 0.428, p < 0.001). In addition, the authors observed in an 

acute sub-study that the effects of anthocyanins on FMD were blocked by the presence of a 

NOS inhibitor. Similarly, in the same paper they also found that the effect of anthocyanins on 

vasorelaxation was abolished with a NOS inhibitor in an in vitro model of rat thoracic aortic 

rings, and in sum concluded that anthocyanins act through the NO/cGMP pathway. 

Furthermore, there was an indication that an increase in the panel may be associated with a 

reduction in the inflammatory markers TNF-α and CRP. TNF-α has been linked to a decrease 

in NO bioavailability in two ways: by inhibiting NO synthesis and by promoting the removal of 

NO. TNF-α inhibits eNOS activity, potentially via downregulation of eNOS expression, and 

stimulates ROS production through activation of the NADPH oxidase, which in turn react with 

NO.238 Similarly, CRP also inhibits eNOS function by downregulating eNOS expression and 

mediates uncoupling of eNOS.269 The uncoupling converts eNOS from producing NO to 

producing superoxide radicals, thereby not only is NO bioavailability reduced, but also 

oxidative stress is promoted which contributes to a further reduction of available NO and 

promotes endothelial dysfunction. Therefore, a potential reduction in inflammatory markers 

could point to an increase in NO bioavailability and improvement in endothelial function. 

Importantly, the clinical effects of blueberry consumption may not only be mediated through 

action of phenolic acids after absorption from the gut, but may also be mediated through 

prebiotic effects on the gut microbiota, i.e., proliferation of beneficial bacteria, promoting an 

improved gut health. Clinical effects may therefore also be the result of other (non-

polyphenolic) bacterial-derived bioactive metabolites. Increasing evidence suggests that the 

gut microbiota and their metabolites such as short-chain fatty acids (SCFA, a product of fibre 

fermentation) and lipopolysaccharides (LPS, also called endotoxin) could be linked with 



175 
 

cardiovascular disease.291 SCFA, such as butyrate, are the main energy source for 

colonocytes and are critical for the maintenance of the gut mucosal barrier. A reduction in 

bacterial species which produce butyrate can lead to a dysfunctional gut barrier, leading to 

increased permeability of the gut and increased plasma LPS levels, which trigger inflammatory 

processes. A study in which participants with metabolic syndrome consumed red wine 

polyphenols (272 mL per day) for one month observed an increase in the levels of beneficial 

bacteria including intestinal barrier protectors Bifidobacterium and Lactobacillus (increase by 

50%), and butyrate-producers Faecalibacterium prausnitzii and Roseburia (increase by 36% 

and 28%, respectively).261 They also observed decreased numbers of bacteria associated with 

systemic inflammatory marker LPS (lipopolysaccharide) including Escherichia coli and 

Enterobacter cloacae (decrease by 21% and 23%, respectively). The authors also reported 

significant improvements in biomarkers for metabolic syndrome following red wine intake which 

could be related to the observed changes in the microbiota, including blood pressure (SBP: -

10.5 mmHg; DBP: -9.2 mmHg), blood glucose (-29.7 mg/dl), HDLC (+9.4 mg/dl), and LPS (-

0.17 endotoxin units/ml). Of note, a different study reported that the increase in Bifidobacterium 

after ingestion of anthocyanins from 272 ml red wine for 20 days was associated with increases 

in four anthocyanin metabolites: p-coumaric acid, syringic acid, and in particular homovanillic 

acid and 4-hydroxybenzoic acid.260 In the highest tertile of change in Bifidobacterium 

metabolites significantly increased by 2.05, 1.37, 20.28, and 18.04 μmol/24h, respectively. Two 

of these metabolites (syringic acid and homovanillic acid) were part of the metabolite panel 

identified in Chapter 3. Although 4-hydroxybenzoic acid was not directly part of the panel, its 

glycinated phase II metabolite 4-hydroxyhippuric acid was. Also, p-coumaric acid (4-

hydroxycinnamic acid) was not observed to be a major metabolite in this study, but as Boto-

Ordóñez propose, p-coumaric acid could potentially have been degraded to 4-hydroxybenzoic 

acid and subsequently excreted as 4-hydroxyhippuric acid. 

Chapter 5 describes the first phase of the AMP study, the blueberry challenge, in which the 

urinary metabolite panel identified in Chapter 3 (expressed as the log2 fold change from 

baseline) was used to classify individuals as high, medium, or low metabolisers for the 

prospective recruitment to a subsequent dietary cross-over intervention (phase 2 of the AMP 

study). In contrast to the CIRCLES study, in which participants were exposed to a daily dose 

of blueberries for six months, the blueberry challenge of the AMP study involved a single 

exposure and urine collections at baseline (prior to the blueberry bolus) and for 48h after 

consumption. It should be noted that a reduced version of the metabolite panel with four 

instead of seven metabolites was used on the basis of an initial analysis (see Section 2.5, note 

to examiners for details). The panel presented in Chapter 3 represents the result of a refined 

analysis performed after recruitment to the AMP study was already completed. 
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In contrast to the metabolism of some flavonoids which result in unique microbial metabolites, 

such as equol from the isoflavone daidzein292 or urolithins from ellagitannins247, berry 

anthocyanin metabolites are generally small molecule phenolic acids also common to other 

flavonoids. A metabolic response to the consumption of berry anthocyanins therefore rather 

reflects a significant increase in metabolites which are already present at baseline249 and 

stratification between participants as ‘responders’ and ‘non-responders’ to anthocyanin intake 

is not clear-cut. Hence, in Chapter 5 participants were stratified by taking the 15th and 85th 

percentiles of the distribution of the panel as cut-offs for low, medium, and high metabolisers. 

This resulted in three groups with distinct responses to anthocyanin intake over 48h. The 

steepest increase for the panel was observed for the high group, whereas the low group first 

decreased slightly at 24h and then returned to baseline at 48h. The use of log2 fold change as 

a measure has the advantage of weighting each metabolite in relation to its baseline value 

rather than the absolute amount. This makes metabolites which vary greatly in their abundance 

comparable. For example, mean baseline excretion of hippuric acid was about 50 times more 

abundant than homovanillic acid. The disadvantage, however, is that the log2 FC will become 

very large if the baseline value is small, even when the absolute change from baseline is also 

very small. The method of assessing change from baseline for the stratification of participants 

should therefore be evaluated individually per study due to variability in baselines. For 

example, in the AMP study as well as in the CIRCLES study, the mean baseline value for 

homovanillic acid was similar at 16 µmol/24h. However, Ludwig et al did not detect any 

homovanillic acid in urine at baseline.219 In this case log2 fold change would not be applicable, 

as the logarithm of 0 is undefined. 

Furthermore, a high inter-individual variation for the metabolites was observed at baseline. 

Such a variation is not surprising and in large parts due to differences in the individual genetics, 

gut microbial composition, and environmental factors such as lifestyle and diet.293 A study 

design in which individuals are repeatedly measured in a cross-over design (intervention and 

placebo) can be helpful in accounting for not only inter-individual variation, but intra-individual 

variation by assessing the reproducibility of the metabolic profile after repeated exposures. 

These type of studies are termed ‘N-of-1’ studies and focus on participant-specific factors and 

the variation observed within each participant rather than across participants.293 

In refinement of the current approach, it would be of interest to assess whether the metabotype 

assessed at baseline was still the same after a longer period of time or whether the intervention 

had, for example, influenced the gut microbial composition which then led to changes in the 

metabolic profile. The justification to pursue this line of enquiry is based on a recent 

assessment, where the reproducibility of differences in the gut microbiota was demonstrated 

in a placebo-controlled cross-over study, in which participants consumed pomegranate extract 
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in two different doses (providing 160 mg or 640 mg phenolics).156 In this study, urolithin 

producer metabotype was assessed at the beginning of each intervention period (three times 

in total; at baseline and once after each dose). Three participants, who at baseline were of 

urolithin metabotype 0, changed their metabotype after the second dose to a urolithin 

metabotype A. The authors also assessed the modulation of the gut microbiota through the 

pomegranate extract, focusing on the bacteria relevant for urolithin production. They found that 

those of urolithin metabotype 0 had lower levels of Gordonibacter than the other metabotypes. 

However, the three participants who switched from metabotype 0 to metabotype A presented 

higher baseline levels of Gordonibacter than the other participants who were of metabotype 0. 

The consumption of the higher dose of pomegranate extract in the ‘metabotype 0 responders’ 

was associated with a significant increase in growth of Gordonibacter. 

Of course, of particular interest is the clinical significance of the stratification by metaboliser 

profile. In the AMP study, those who were classified as high or low metabolisers were 

subsequently invited to take part in the second, cross-over phase of the AMP study. The 

outcome of this second phase, which assessed cardiometabolic markers after the consumption 

of a test meal with and without blueberries, will be of great interest and may possibly provide 

some insight whether the grouping by the metabolic profile as assessed in Chapter 5 was 

associated with clinical effects. This analysis is ongoing and not part of this thesis. However, 

from an aligned example from literature, the pomegranate study mentioned above highlighted 

how inter-individual variability in response to flavonoid intervention can clarify a potential 

clinical effect of bioactive phenolics.156 The study showed that the functional stratification by 

urolithin producer metabotypes mediated the beneficial changes observed for blood lipids 

(e.g., reduction in small LDLC and oxidized LDLC). Significant reductions were only observed 

for those of urolithin metabotype B, but not metabotype A (small LDLC: -47%; oxLDLC: -24%). 

However, when viewed across the entire sample irrespective of metabotype, no significant 

effect was observed. 

From a public health perspective, the stratification of participants into high and low 

metabolisers or responders and non-responders begs the question how those who are not 

high metabolisers can benefit from these findings. Determining what factors determine a low 

and high metaboliser status is the essence of future efforts in disentangling inter-individual 

variability. The interplay between gut microbiota and metabolism of polyphenols is clearly 

relevant for the bioavailability and bioactivity of phenolic acids and the health benefits an 

individual receives. Also, for anthocyanins it seems rather well established that microbial 

metabolites are likely the bioactive molecules. However, the clinical significance of a high 

versus low metaboliser of anthocyanins remains to be assessed. How continued habitual 

intake, different doses, and even probiotics may influence the anthocyanin metabolic profile of 
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individuals is an exciting topic for the future, whether to develop personalized nutritional 

strategies or improve the granularity of dietary recommendations for the public. 
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