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Abstract 
The exchange rate disconnect puzzle argues that macroeconomic fundamentals are not able to  
accurately predict exchange rate. Recent studies have shown that the puzzle could be upturned 
if: (i) the dataset is structured in a panel form; (ii) the model is based on the portfolio balance 
theory (PBT); (iii) factor models are employed and (iv) time-varying parameter (TVP) 
regression is used. This study combines these strands of the literature. Essentially, the study 
conjectures that Global Financial Cycle (GFCy), drawing inspiration from PBT, has some 
predictive information content on exchange rate. Using dataset for 25 countries, we produced 
some mixed results. On the whole, the GFCy is able to produce lower forecast error, as 
compared to the benchmark model. However, its effectiveness is dependent upon the regression 
type (TVP vs Panel Fixed Effect); forecast horizons (short vs long); the sample period (early 
vs. late) and measures of GFCy. The results are robust to a number of checks. 
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Introduction 
Exchange rate disconnect puzzle hypothesizes the inability of macroeconomic fundamentals to 
accurately predict exchange rate. This stance comes from the works of Messe and Rogoff 
(1983), which concludes that the exchange rate exhibits a random walk. Succeeding studies, 
spanning over two decades, have found it difficult to upturn this conclusion. However, more 
recent studies have shown that the predictive prowess of macro variables on the exchange rate 
has improved significantly. Various theoretical models have been formulated to forecast 
exchange rate1. The performances of these models have produced mixed findings (see Chinn, 
2011, and Rossi, 2013 for both theoretical and empirical surveys).  

Unlike other theories of exchange rate, the Portfolio Balance Theory (PBT) has recorded 
relatively low patronage, both from the empirical and theoretical perspectives. On a bright side, 
there tends to be consensus as regards the impressive performance of this theory. The 
application of the theory is in two tranches: the international financial adjustment (as pioneered 
by Gourinchas and Rey (2007) and a general approach (see Cushman, 2007). In this study, we 
take a new twist in the application of the PBT. Essentially, the argument we put forth is that 
the Global Financial Cycle (GFCy) is a reliable predictor of exchange rate. The GFCy literature 
hypothesizes that there is high comovement in the capital flow models. This comovement 
explains a large chunk of variations in capital flow models.  Succinctly, monetary fundamentals 
of the developed countries are the major determinants of capitals flows (Rey, 2013). Other 
studies have shown that the variables from the centre economies have high explanatory power 
in the various capital flow models (Sarno et al. 2016; and Barrot and Serven, 2018). Based on 
the foregoing, we hypothesize that GFCy, rather than the individual components of financial 
assets, as postulated by the theory, should be used as the predictor of exchange rate.  

It has been widely acknowledged that one of the causes of the poor performance of the macro 
fundamentals in predicting exchange rate is due to parameter instability (Rossi and 
Sekhposyan, 2011). The ensuing instability is caused by the evolution and often times sudden 
changes in the dynamics of exchange rate, macroeconomic variables and policy actions (Byrne 
et al., 2016).  Interestingly, Rossi (2013) proffer that researchers should exploit such 
instabilities in order to improve the performance of exchange rate predictive models. We add 
a new twist to the issue of instability. We opine that the source of instability is related to capital 
flow dynamics and by extension, the GFCy. Capital flow literature has shown that the dynamics 
of capital flows has changed overtime (Bluedorn et al., 2013; Pagliairi and Hanan, 2017). Of 
the various ways of accounting for instability, this study favours Time-Varying Parameters 
(TVP). Our preference for the latter is due to the peculiarity and nature of the model. Due to 
the fact that the dynamics of capital flows changes, it could imply that the predictive content 
of the variable is dependent upon statistically accounting for the time-varying feature. 

The objective of the study is to examine the out-of-sample prediction of exchange rate using 
GFCy as the predictor in a TVP framework. Broadly, we proffer answers to the inquiry of 
whether GFCy could beat the benchmark models (random walk- with and without drift) in the 
prediction of exchange rate. This objective is pursued using TVP model. The estimated 
parameters is based on information in the likelihood using the Bayesian model.  

                                                           
1 Among which include Taylor rule, Uncovered interest rate parity, monetary models (flexible and stick prices, 
forward-looking models), interest rate differential. 
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This present study makes three major contributions to the literature. First, it joins the list of 
relatively small, but growing, numbers of TVP based studies. As such, we hope to extend on 
the results of Della Corte et al. (2009), Abbate and Marcellino (2014), Byrne et al., (2016) and 
Haskamp (2017). Second, the application of the PBT is another novel contribution. As an 
extension, this is one of the first attempts to use GFCy as a predictor of exchange rate. Third, 
we used four variants of capital flows. This is based on the heterogeneous nature of the variants 
of capital flows on macro-financial series. 

This present paper is similar to some earlier studies in terms of an aspect of our methodology 
(i.e. factor modelling). Relatedly, there are two branches of the literature. The first branch 
extract factors from exchange itself (Engel et al., 2015; Mc-Grevy et al., 2018; Ponomareva et 
al. 2018). The second branch of the literature have extracted factors from other variables asides 
exchange rate. For instance, Kim and Park (2018) extracted factors from over 120 US macro 
fundamentals, while Morales-Arias and Moura (2013) and Ahmed et al. (2016) considered 
expectation risk based factors 

Foreshadowing the results, we show that GFCy is able to produce lower forecast error, as 
compared to the benchmark model. However, its effectiveness is dependent upon the regression 
type (TVP vs Panel Fixed Effect); forecast horizons (short vs long) and the sample period (early 
vs. late). The results are robust to a number of checks. Following this introduction, the rest of 
the study is structured as follows. An overview of the literature is presented in Section 2. The 
mechanics of TVP is presented in Section 3. Data and Methodology are discussed in Section 
4. Empirical results are presented in Section 5. Section 6 concludes the paper, with suggestion 
for future research. 

 

2 Brief Literature Review 
Empirical analyses of this study is based on the adoption of portfolio PBT of exchange rate 
determination. Diverging from the other contemporary studies, we used GFCy as the predictor 
and subject the same to TVP model. As such, this study is in the heart of two influential strands 
of the literature: PBT and TVP. 

 

2.1 Portfolio Balance Theory 
The main cannon of this theory is that exchange rate is determined by the interaction of demand 
and supply of assets in the financial market. In the model build-up, there are three classes of 
assets: domestic money (M), domestic bonds (B) and foreign bonds (F) (see, Branson et al., 
1977; Bisignano and Hoover, 1982; Sarantis, 1987). The Wealth (W) equation of the PBT 
model is therefore defined as thus: 

W M B F � �                                                                                (1) 

Interest rate differential, between domestic and foreign markets, are the main determinants of 
demand for these assets. The demand is homogenous of degree 1 in relation to nominal wealth 
and is mathematically expressed as: 
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ܯ ൌ ݉ሺ݅ǡ כ݅ ൅ οݏ௘ሻܹǡ���������������������݉௜ ൏ Ͳǡ݉௜כାο௦೐ ൏ Ͳ��������������������������������������  (2)  

ܤ ൌ ܾሺ݅ǡ כ݅ ൅ οݏ௘ሻܹǡ���������������������ܾ௜ ൐ Ͳǡ ܾ௜כାο௦೐ ൏ Ͳ��������������������������������������    (3) 

ܨ ൌ ݂ሺ݅ǡ כ݅ ൅ οݏ௘ሻܹǡ��������������������� ௜݂ ൏ Ͳǡ ݂௜כାο௦೐ ൐ Ͳ��������������������������������������   (4)  

Taking the first derivatives of equations (2)-(4) shows that when there is an increase in the rate 
of an asset, this triggers increase in its demand. Since these assets are perfect substitutes (i.e. 
ܾ௜ ൐ ௜݂ and ݂௜כାο௦೐ ൐ ܾ௜כାο௦೐ሻ, increase in domestic wealth will lead to increase in the demand 
domestic assets (bonds) in comparison to foreign assets. 

The empirical studies that had applied the PBT are quite few, an attributable cause could be 
linked to data unavailability for non-monetary assets. However, the existing studies on PBT 
have expanded the frontier of knowledge. These studies can be categorized into two: 
international adjustment-based studies and ³others´. Gourinchas and Rey (2007) made the 
seminal contribution in the international financial adjustment process. The authors show that 
the two identified channels of the adjustment process: trade and valuation, are potential 
predictors of exchange rate. Empirical validation of this claim confirms the hypothesis, as both 
FKDQQHOV�ZHUH�DEOH�WR�SUHGLFW�86¶V�UHDO-effective exchange rate. Alquist ad Chinn (2008) use 
myriad theories of exchange rate, PBT inclusive. Among other things, it was shown that export 
and foreign assets are able to predict bilateral exchange rate, thus validating the results of GR. 
Similarly, Della-Corte et al. (2010) towed the approach of Gourinchas and Rey¶V�PHDVXUH�RI�
financial adjustment. Using bilateral exchange rate between the US dollars and four other major 
currencies (CAD, GBP, JPN and GER), the authors were able to confirm the results of 
Gourinchas and Rey. Lane and Shambaugh (2010) explored the valuation channel of exchange 
rate determination, via currency composition of financial assets and liabilities. Other studies 
that have explored the balance sheet effect of exchange rate (Benetrix et al., 2015; Maggiori et 
al., 2018). 

7KH� ³Other´ type based studies include Cushion (2007) who applied the PBT on the US-
Canadian exchange rate and found that the model is able to beat the benchmark model, in some 
out-of-sample forecast horizon. He acknowledged that the results are not quite satisfactory, but 
are consistent with theoretical underpinnings and are better than fundamental based model. 
Breedon and Vitale (2010) examined the relationship between order flow model of exchange 
rate and assets in the portfolio balance model. They show that, to a large extent, PBT explains 
the intervention of exchange rate. Furthermore, it is pointed out that the transmission 
mechanism of order flow to exchange rate is via the portfolio balance.  

The TVP is one of the popular approaches to accounting for non-linearity and the main cannon 
of the model is that the relationship between exchange rate and macroeconomic fundamentals 
do evolve overtime. This evolution is a form of instability, which has been identified to be an 
important cause of the exchange rate disconnect puzzle. It is opined that the performance of 
exchange rate predictive models would improve if models could account for evolution in the 
estimated parameters. An overview of the literature have shown that the TVP models are able 
to beat the random walk models (Hall et al., 2008; Engel et al., 2008; Molodtsova and Papell, 
2009; Della Corte et al., 2009; Abbate and Marcellino, 2014; Haskamp, 2017). TVP has been 
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modelled in different variants: the traditional Bayesian model (Byrne et al., 2016), Bayesian-
VAR (Della Corte et al., 2009), dynamic Bayesian-VAR (Abbate and Marcellino, 2014). 
Similarly, TVP has been tested using various theories (see Yuksel et al., 2013 for literature 
survey). 

 

3. The Mechanics of Time-Varying Parameters Regression 
It is common knowledge that forecasting exchange rate requires specifying a model where the 
change in exchange rate is a function of the deviation from its implied value. This implies that 
in the short-run, exchange rate deviates from its implied fundamentals (Mark, 1995). 
Mathematically, this is expressed below: 

οݏ௧ା௛ ൌ ௧ߙ� ൅ ௧ܼ௧ߚ ൅ ௧ା௛̱ܰሺͲǡߝ�������������௧ା௛ǡߝ ܴሻ��      (5) 

ܼ௧ ൌ �ȳ௧ െ  ௧            (6)ݏ

It will be observed from equation 5 that subscript t is attached to the parameters �L�H��Į�DQG�ȕ�, 
thus making them change overtime. We follow Stock and Watson (1996) and Rossi (2006) on 
WKH�FRHIILFLHQW¶V� ODZ�RI�PRWLRQ�� ,Q� OLQH�ZLWK�Byrne et al. (2016), we assume that the model 
follows a Random Walk Time-Varying Parameter process and is specified as: 

௧ߚ ൌ ௧ିଵߚ ൅ ߭௧          (7) 

Where ߭௧ is the error term and is expected not to correlate with the ߝ௧ା௛ (as in equation 1). The 
state-space model is the combination of equations 5 and 7, where the former is the measurement 
equation and the latter is the transition equation. 

There are two approaches to estimating state-space models: Bayesian method and Kalman filter 
maximum likelihood approach (Kim and Nelson, 1999). The latter is susceptible to 
accumulation error as a result of evaluation from a very large number of likelihood functions, 
which could bias the estimated parameters. Another related problem is the identification of the 
objective priors of the Kalman filter. Conversely, the Bayesian method is able to effectively 
deal with these identified shortcomings. Hence, this study adopts the Bayesian method to 
estimate the time-varying parameters. Also, we follow the Carter and Kohn (1994) algorithm 
DQG�WKH�*LEEV�VDPSOHU�WR�VLPXODWH�GUDZV�IURP�WKH�SDUDPHWHUV¶�SRVWHULRU�GLVWULEXWLRQ� There are 
three procedures to follow in estimating the model: (i) stimulate priors for unknown 
parameters; (ii) highlight the conditional distributions for the priors; and (iii) draw samples 
from the prior distributions2. 

4 Methodology and Data 
4.1 Methodology 
To recall, the broad objective of this study is to determine the extent to which GFCy could 
predict exchange rate. In essence, GFCy is regarded as the predictor of exchange rate. The first 
stage of the analysis is to construct GFCy, as it is not a readily available variable. There is no 

                                                           
2 Byrne et al. (2016) provide detailed explanations on the priors elicitations and the steps of the algorithm. 
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consensus as regards the measurements of GFCy (Cerutti et al., 2017). However, there tend to 
be unison as regards the approach to measuring it, as most studies have favoured using factor 
modelling (see Cerutti et al., 2017; Barrot and Servens, 2018; Scheubel et al., 2019). Cerutti et 
al. (2017) extracted factors from measurement of capital flows, while Barrot and Servens factor 
loadings are based on macroeconomic and financial variables. Scheubel at al. (2019) 
considered two variants of GFCy: price- and quantity- based. In a simple approach, Rey (2013) 
FDSWXUHV�*)&\�XVLQJ�LQYHVWRUV¶�ULVN�DSSHWLWH��L�H��WKH�9,;�LQGH[� It is important to assert that 
these measures of GFCy have varying effects on the dynamics of capital flows. This study 
seeks to examine the extent to which these various measures of GFCy affects exchange rate 
prediction. 

 
4.1.1 Constructing GFCy (Approach 1) 
This approach is based on the work of Barrot and Servens (2018) who specified a capital flow 
model and captures the regressors into two groups: global and country-specific. This 
categorization is to reflect the dichotomization of the determinants of capital flows in line with 
the seminal papers of Calvo et al. (1996).  

Analytically, the factor model is specified below: 

௜௧ܨܥ ൌ ሺߙ�௜ሻᇱܩ௧ ൅ ሺߚ௜ሻᇱܥ௜௧ ൅  ௜௧�        (8)ߝ

Where CF denotes measures of gross capital inflows for country i at period t. We consider four 
measures of capital flows: Foreign Direct Investment (FDI), Portfolio Investment (PI), bank 
flows (Bank) and Other Investments (OI). ܩ௧ and ܥ௜௧ are the unobserved global common and 
country-specific factors, respectively. ߙ௜ and ߚ௜ are their respective factor loadings. The 
variables associated to the global factors are: (i) global uncertainty, measured by economic 
policy uncertainty, by Baker et al. (2016)3; (ii) global short-term interest rate, proxied by 3-
PRQWKV�WUHDVXU\�ELOOV���LLL��JOREDO�HFRQRPLF�JURZWK��SUR[LHG�E\�WKH�*�¶V�JURZWK�UDWH���LY��JOREDO�
money supply proxied by US M2 growth rate and (v) commodity (Oil-Brent) price. The country 
specific factors are (i) financial openness, measured by the Chin-Ito index; (ii) trade openness 
(sum of the log import and export scaled to log of GDP); (iii) financial depth, measured as the 
credit to the private sector (% of GDP) and (iv) log of consumer price index. 

An overview of equation 8 shows that there are three major factors: global, country-specific 
and idiosyncratic factors. This tends OHDG�WR�DQ�LQTXLU\�³ZKLFK�RI�WKHVH�IDFWRUV�VKRXOG�EH�XVHG�
as the predictor?´ In line with Baku (2018), we used the idiosyncratic factor. 

 
4.1.2 Constructing GFCy (Approach 2) 
Cerutti et al. (2017) relied on both dynamic and static factor model to extract factor, based on 
the largest eigenvalue, from the various measures of capital flows. For the dynamic factor 
models, up to two lags of capital flows were used. In an interesting twist, the authors also 
extracted factors from different groups of countries. This is to allow for the possibility that 

                                                           
3 Barrot and Servens (2018) used global risk, proxied by the VIX index. Our decision to use global uncertainty, in 
place of risk, is due to the fact that the risk is later used as a measure of GFCy. 
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factors relevant for the advanced countries might not be the same as those of emerging 
countries. Thus, the three groups captured in the study are advanced, emerging and a mixture 
of advanced and emerging countries. 

4.1.3 Constructing GFCy (Approach 3) 
Rey (2013) and Bruno and Shin (2015) had simply used VIX index4. As such, their measure of 
GFCy does not require construction. 
 
The second stage of our analysis requires specifying the exchange rate predictive model, where 
GFCy is used as the predictor, as shown below: 
 
௜ܵ௧ ൌן�௧�൅ߚ�௧ݕܥܨܩ௜௧ ൅ߝ�௜௧                  (9) 

Where S is the bilateral exchange rate between country i and the United States Dollars (USD). 
S is defined as the number of units of local currency that is equivalent to 1 USD. A section of 
the literature has shown that accounting for the role of macroeconomic fundamentals does 
improve the performance of the predictive model (Salisu et al., 2019). Also, it has become a 
norm to expand the bivariate model to capture other variables relevant for exchange rate 
determination (see Wu and Wang, 2012; Engel et al. 2015; Mc-Grevy et al. 2018). The 
expanded model is specified below:  
௜ܵ௧ ൌן� �൅ݕܥܨܩߚ�௜௧ ൅ ɀܼ௜௧ᇱ  ௜௧                   (10)ߝ�

 
:KHUH�=¶�LV�D�YHFWRU�RI�H[SODQDWRU\�YDULDEOHV��ZKLFK�LQFOXGHV�inflation, money supply, output 
and trade openness.5 
 
4.2 Forecast Implementation and Evaluation 
Our data is divided into two components: in-sample and out-of-sample. The in-sample 
component is updated recursively to estimate the parameters in equation 9 or 10, as the case 
might be. In line with the extant literature, our forecasting horizon captures both the short-run 
horizon (i.e. H = 1 and 4 quarters ahead) and long-run horizon (i.e. H =  8 and 12 quarters 
ahead). The adopted benchmark model is the random walk without drift. 
 
The forecast performance is based on the Root Mean Squared Error (RMSE). In the model set-
up, there are two models: Model 1 (restricted or the random walk model) and Model 2 
(unrestricted or the GFCy model). Theil-U statistics is computed as the model 2/model 1. The 
resulting statistic that is less than unity implies that model 2 has a higher predictive power, 
hence, the GFCy model is able to accurately predict exchange rate. 
 

                                                           
4 VIX is perceived to measure the level of risk averseness of investors. It is calculated as the volatility of the 
Chicago Board Options Exchange. A popular measure of the stock market's expectation of volatility based on 
S&P 500 index. 
5 For the first measure of GFCy, we do not include control variables, as some of the variables were already used 
in the factor modelling. Thus, GFCy is the sole predictor of exchange rate using this method. As a robustness 
check, we include variables such as capital control.  
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The two measures of forecast evaluation adopted are the Clark and West (2007, hereafter, CW) 
and the Diebold and Mariano (1995) and West (1996) [DMW] tests. These tests examine the 
significance of the forecasting model. There is no consensus as regards which of the test is 
superior to the other. For instance, DMW has been found to undersize the forecast errors for 
two nested models (CW). On the flipside, Rogoff and Stavrakeva (2008) proved that CW test 
does not always report the minimum forecast errors, hence suggested that bootstrapping p-
value based tests (i.e. DMW) is superior.  
The CW test shows that sample difference between the forecast errors of two nested model is 
biased in favour of the random walk model. 
 
The procedure for estimating CW is as follows: 
መ݂௧ା௞ ൌ � ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯

ଶ
െ�ቂ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯

ଶ
െ ൫ܩ෠ݕܥܨଵ௧ǡ௧ା௞ െ

ଶ௧ǡ௧ା௞൯ݕܥܨ෠ܩ
ଶ
ቃ                      (11) 

 

Where k is the forecast period; ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯
ଶ
is the squared error for the 

restricted model (i.e model 1), ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯
ଶ
�is the squared error for the 

unrestricted model (i.e. model 2), while ൫ܩ෠ݕܥܨଵ௧ǡ௧ା௞ െ ଶ௧ǡ௧ା௞൯ݕܥܨ෠ܩ
ଶ
 is the adjusted squared 

error due to the introduction of C-:�WR�FRUUHFW�IRU�WKH�QRLVH�DVVRFLDWHG�ZLWK�ODUJHU�PRGHO¶V�
forecast. Thus, the sample average መ݂௧ା௞ is expressed as:  ܴܧܵܯଵ െ�ሺܴܧܵܯଶ െ ݆ܽ݀Ǥ ሻ. Each 
term is computed as:  

ଵܧܵܯܴ  ൌ �ܲିଵ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯
ଶ
; 

ଶܧܵܯܴ ൌ �ܲିଵ σ൫ݕܥܨܩ௧ା௞ െ ܥܨ෠ܩ ଵܻ௧ǡ௧ା௞൯
ଶ
; and 

Adj. = ܲିଵ σ൫ܩ෠ݕܥܨଵ௧ǡ௧ା௞ െ ଶ௧ǡ௧ା௞൯ݕܥܨ෠ܩ
ଶ
 

 
Where P is the number of predictions used in computing the averages. In order to 

examine the equality of the forecasting performance between model 1 and 2, the  �መ୲ା୩ is 
regressed on a constant and the resulting t-statistic for a zero coefficient is used to draw 
inference.  
 
4.3 Data 
Empirical analysis is based on 25 advanced and emerging countries for the period 1990Q1 ± 
2014Q4.6 The selected countries are those regarded to have floating exchange regime and 
record substantial amount of capital inflows. Exchange rate is measured in terms of the end-
of-quarters values. Data on VIX, 3-month treasury bills, US money supply are sourced from 
FRED St Louis databank, while capital flows data are from Cerutti et al., (2017). EPU data is 
collected from Baker et al., (2016), while other data specified in the model are sourced from 
the International Financial Statistics (IFS). Taking a cue from Engel et al. (2015), our dataset 

                                                           
6 These countries are Australia, Brazil, Canada, Chile, Costa Rica, Finland, France, Germany, Hungary, Iceland, 
Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Portugal, Romania, South Africa, Spain, 
Sweden, Switzerland and Turkey. 
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is divided into two samples��7KH�ILUVW�VDPSOH��ZKLFK�ZH�FRLQHG�³HDUO\�VDPSOH´�UDQJH�EHWZHHQ 
1990Q1 ± 2007Q1., while the late sample is between 2007Q1-2014Q47. 
 

5. Empirical Results 
The starting point of our analysis is extract the factors. As indicated in section 3 above, two 
measures of GFCy warrant construction. Figure 1 depicts the results of using Barrot and 
Servens (2018) approach, while Figure 2 shows that of Cerutti et al. (2017). 
 
The empirical results are presented in Tables 1 and 2. An overview of the Tables shows the 
three forecast evaluations for each estimated model: Theil U statistics, CW and DMW. The U-
Statistics is the Theil U-statistics, which measures the forecast horizons. The reported statistics 
is the median of the U-statistics for the countries in the sample. The U-Statistics is defined as 
the ratio between RMSE of the GFCy model (i.e. unrestricted model) to RMSE of the 
benchmark or random walk model (i.e. restricted model). The lower this statistic, the better the 
forecasting performance of the model. The CW test evaluates the statistical significance of the 
two nested models (i.e. the restricted and unrestricted). 

Table 1 presents the results of the early sample. There are three main points to deduce from the 
table. First, the performance of the PFE model outweighs that of the TVP model (with the 
exception of the FDI model). This stance is based on the fact that the PFE has lower reported 
median U-statistics, as compared to the TVP model. A section of the literature had reported 
improved performance of the PFE regressions, in contrasts to the random walk model (see 
Engel et al., 2008; Cerra and Saxena, 2010; and Ince, 2014; Engel et al., 2015). Second, the 
predictability performance of the TVP model is more enhanced at the short term forecast 
horizons (i.e. at H = 1 and H = 4). However, the accuracy of the PFE model cuts across both 
the short- and long- term horizons. Third, FDI model is the least accurate model (for both the 
TVP and PFE regressions). While FDI is merely able to correctly predict, at most, 13 countries, 
other models accurately predicted up to 20 countries.  

Results of the statistical checks pose some interesting findings. Essentially, it is shown that the 
statistical significance is dependent upon the test/measure. The bootstrap critical values 
generally show less significance, across the various estimated models. For instance, the TVP 
regressions produce U-statistics less than unity for more than half of the currencies, we find 
maximally 7 currencies with statistical significance. Also, the number of statistical significance 
decreases as the forecasting horizon increases. However, the CW test produces improved 
results. Also, the CW is significant, for at least, the number of currencies whose U-statistics is 
less than unity. These findings partly illustrate the results of Byrne et al. (2016) who showed 
that statistical significance is better illustrated using the CW test. 

 
 
 
 
 
 

                                                           
7 50 percent of the data is used for in-sample, while the balance is meant for out-of-sample forecast. 
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Figure 1: Trend of Factor Loadings Using Approach 1 
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Figure 2: Trend of Factor Loadings Using Approach 2 

 

 

 

 

 

 

 

-4
-2
0
2
4
6
8

19
90

q1
19

91
q1

19
92

q1
19

93
q1

19
94

q1
19

95
q1

19
96

q1
19

97
q1

19
98

q1
19

99
q1

20
00

q1
20

01
q1

20
02

q1
20

03
q1

20
04

q1
20

05
q1

20
06

q1
20

07
q1

20
08

q1
20

09
q1

20
10

q1
20

11
q1

20
12

q1
20

13
q1

20
14

q1

FDI Factor Loadings

-2

-1

0

1

2

3

4

19
90

q1
19

91
q1

19
92

q1
19

93
q1

19
94

q1
19

95
q1

19
96

q1
19

97
q1

19
98

q1
19

99
q1

20
00

q1
20

01
q1

20
02

q1
20

03
q1

20
04

q1
20

05
q1

20
06

q1
20

07
q1

20
08

q1
20

09
q1

20
10

q1
20

11
q1

20
12

q1
20

13
q1

20
14

q1

Bank Flows factor Loadings

-15
-10

-5
0
5

10
15
20
25
30

19
90

q1
19

91
q1

19
92

q1
19

93
q1

19
94

q1
19

95
q1

19
96

q1
19

97
q1

19
98

q1
19

99
q1

20
00

q1
20

01
q1

20
02

q1
20

03
q1

20
04

q1
20

05
q1

20
06

q1
20

07
q1

20
08

q1
20

09
q1

20
10

q1
20

11
q1

20
12

q1
20

13
q1

20
14

q1

Portfolio Factor Loadings

-4

-2

0

2

4

6

19
90

q1
19

91
q1

19
92

q1
19

93
q1

19
94

q1
19

95
q1

19
96

q1
19

97
q1

19
98

q1
19

99
q1

20
00

q1
20

01
q1

20
02

q1
20

03
q1

20
04

q1
20

05
q1

20
06

q1
20

07
q1

20
08

q1
20

09
q1

20
10

q1
20

11
q1

20
12

q1
20

13
q1

20
14

q1

Other Investment factor Loading



12 
 

Table 1: Early Sample Results 
  Time-Varying Regression Panel Fixed Effect 
Model Statistics H=1 H=4 H=8 H=12 H=1 H=4 H=8 H=12 
FDI U-Stat 0.8542 0.8788 0.9354 1.0152 1.1249 1.1776 1.2574 1.4066 

U<1 11 12 12 13 5 2 1 2 
CW 13 13 18 14 9 9 15 17 
DMW 5 5 3 1 2 2 3 1 

PI U-Stat 0.9854 9.9981 1.0246 1.1466 0.8783 0.8491 0.8561 0.8466 
U<1 18 18 17 16 14 14 14 16 
CW 19 20 22 18 13 14 13 15 
DMW 6 6 4 3 3 2 2 1 

OI U-Stat 0.9658 0.9813 1.0689 1.210 0.8469 0.8511 0.7859 0.7721 
U<1 20 21 19 18 15 15 15 15 
CW 18 17 18 18 23 21 20 24 
DMW 7 8 5 2 4 4 2 0 

BANK U-Stat 1.1596 1.0136 0.9756 0.9613 0.8418 0.8515 0.7805 0.7736 
U<1 17 16 17 17 15 15 15 15 
CW 18 18 19 16 23 21 20 24 
DMW 6 4 2 1 5 5 4 4 

6RXUFH��$XWKRU¶V�&RPSXWDWLRQ 
Note: U-Stat, CW and DMW are the Theil U-Statistics, Clark and West test, and Diebold, Mariano and West test, 
respectively. U<1 implies the number of countries whose forecast error of the restricted model is less than that of 
unrestricted model.  

 

Results of the late sample size are presented in Table 2 below. An overview of the table shows 
that the U statistics is predominantly less than 1 (for both PFE and TVP regressions). This 
implies that irrespective of the regression type, the GFCy model is able to beat the random 
walk model, for a large number of countries. Hence, GFCy is found to be a better predictor of 
exchange rate. A number of studies have shown that factor model based regressions tend to 
have higher prediction accuracy rate as compared to the benchmark model (e.g. Wu and Wang, 
2012; Kavtaradze, 2016 and Mc-Grevy et al., 2018). The value addition this table offers to the 
extant literature is the comparison between TVP and PFE regressions. On the average, the TVP 
regressions produce related smaller forecast error as compared to the PFE statistics. Hence, 
TVP models are better predictor of exchange rates. These findings have been supported by 
previous studies (Della Corte et al., 2009; Abbate and Marcellino, 2014; Haskamp, 2017). 
Expectedly, the forecasting power reduces along forecasting horizons. Another point to note is 
that more countries have lower U statistics in the TVP model, as compared to the PFE model.  
This stance also holds when Tables 1 and 2 are contrasted against each other.  

7DEOH���SUHVHQWV�WKH�UHVXOW�XVLQJ�&HUXWWL¶V�HW�DO���������DSSURDFK� The predictability of the FDI 
model is rather low, as compared to other competing models. For instance, the U-statistics for 
FDI is predominantly in excess of one (for PFE model). Hence, the benchmark model produces 
more reliable forecast. This finding is somewhat intuitive, as FDI flows are long term based, 
while exchange rate is a high frequency series. As such, the predictive information on FDI is 
expected to be low. Contrarily, other types of capital flows have short-term dynamics. In 
comparison to Table 2, this measure of GFCy produces less impressive results, in terms of U-
statistics, number of countries with U<1 and the two measures of the forecast evaluations.  
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Table 2: Late Sample Results 
  Time-Varying Regression Panel Fixed Effect 
Model Statistics H=1 H=4 H=8 H=12 H=1 H=4 H=8 H=12 
FDI U-Stat 0.8651 0.8788 0.9011 0.9325 1.2934 1.1299 1.1278 1.1214 

U<1 16 16 15 12 6 7 8 7 
CW 10 13 13 12 21 21 22 22 
DMW 6 7 6 6 0 0 1 1 

PI U-Stat 0.7695 0.7751 0.7216 0.7015 0.8151 0.8689 0.8874  0.8637  
U<1 14 16 16 15 12 11 12 12 
CW 20 20 22 21 21 21 21 21 
DMW 11 13 11 11 1 1 2 1 

OI U-Stat 1.0123 0.9668 0.9463 0.9103 0.9088   
0.9351 

 
0.9509 

0.9745  

U<1 17 17 16 17 11 11 11 10 
CW 21 22 21 19 23 20 19 19 
DMW 18 17 18 16 0 0 1 0 

BANK U-Stat 0.8016 0.8215 0.8139 0.8301 0.9076  0.9332 0.9487  0.9721  
U<1 15 16 15 17 11 11 11 10 
CW 20 22 21 21 23 22 20 20 
DMW 17 16 17 18 2 1 0 1 

See notes in Table 1 

 

Table 3: Factors from Capital Flow measures of GFCy 
  Time-Varying Regression Panel Fixed Effect 
Model Statistics H=1 H=4 H=8 H=12 H=1 H=4 H=8 H=12 
FDI U-Stat 1.0252  1.0361 0.9984 1.0276 1.2351 1.3210 1.0256 1.1206 

U<1 4  4 3 4 6 7 6 6 
CW 9 9 8 7 10 12 11 12 
DMW 6 6 5 4 3 2 0 1 

PI U-Stat 0.8765 0.8985 0.9016 0.9357 2.1125 2.2103 2.2879 2.4015 
U<1 3 3 0 0 5 6 5 5 
CW 9 10 11 9 8 8 6 7 
DMW 2 1 1 1 3 1 2 2 

OI U-Stat 0.9998 0.9785 0.9885 1.0138 0.9663 0.9751 0.9965 1.0686 
U<1 6 6 5 5 6 4 5 5 
CW 10 9 9 7 8 6 5 3 
DMW  3 5 5 2 3 2 2 0 

BANK U-Stat 0.8967 0.9016 0.9153 0.9356 0.9803 0.9963 1.0283 1.1342 
U<1 7 7 7 6 4 4 2 3 
CW 6 6 6 4 8 8 7 6 
DMW 3 1 0 0 2 2 1 0 

See notes in Table 1 

Table 4 presents the results of using VIX as the predictor. A striking finding emanating from 
the table reveals that VIX is unable to predict currencies at the early sample. This result is 
consistent across the forecasting horizons and the regression types (i.e. PFE and TVP). A 
plausible justification to this might be linked to the timing of the sample (i.e. pre-global finance 
crisis). Prior to this crisis, there was relative stability in the trend of VIX. Hypothetically, when 
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VIX is less volatile, it tends to disconnect from exchange rate. This is because less volatility 
would lead to less trading activities, as foreign investors are not motivated to change the 
composition of their portfolios. The late sample shows some promising results. Essentially, it 
is found that VIX is able to predict exchange rate in the TVP regressions and over short time 
period (i.e H= 1 and H=4). These results are quite intuitive. The attendant effect of the crisis 
has shown the ease of contagion. Hence, risk averse investors will redesign their asset portfolio 
to markets that are less volatile. This act of asset transfer will impact on exchange rate (i.e. the 
valuation channel). It is also important to note that the results of factor model induced measure 
of GFCy (i.e. Tables 1 and 2) are, on the average better than those reported in Table 4. In 
essence, the accurate prediction of exchange rate is sensitive the measures of GFCy  

Table 4: VIX as a measure of GFCy 
  Time-Varying Regression Panel Fixed Effect 
Late Statistics H=1 H=4 H=8 H=12 H=1 H=4 H=8 H=12 
Early  U-Stat 1.2643 1.3475 1.4441 1.5243 1.3551 1.4287 1.5699 1.3478 

U<1 4 4 5 4 8 7 7 8 
CW 11 13 15 15 18 16 16 17 
DMW 2 2 0 1 0 0 1 1 

Late U-Stat 0.7851  0.7965 1.0032 0.9879 0.9668 0.9768 1.0005 1.1325 
U<1  10 12 11 13 9 6 4 5 
CW 15 17 14 14 18 16 16 15 
DMW 4 4 3 1 0 0 1 1 

See notes in Table 1 

We conducted a number of robustness checks: (i) regressions based on rolling windows; (ii) 
forecast evaluation based on mean squared error; (iii) change in currency base from US Dollars 
to British Pounds Sterling; (iv) change of benchmark model to random walk with drift; and (v) 
inclusion of control variable (capital control)8 to the first measure of GFCy. The choice of these 
checks is based on the contention in literature. For instance, a section of the literature has 
identified the weakness of rolling window forecasting procedure to breakdown when the 
sample size is small (see Molodtsova and Papell, 2012). Also, Engel et al. (2015) argued that 
it is worth checking for the sensitivities of the estimated results to changes in the currency 
numeri. Similarly (Salisu et al., 2019) concluded that the inclusion of control variables tends 
to improve the performance of forecasting models of financial series.  

Results of these checks are presented in Table 5. Summarizing the Table, our results are robust 
to the first four checks. Although, there might be some minor differences in the number of 
currencies with less than one Theil-U statistics. This does not in any way alter the main position 
of our results. Results of check 5 negatively affect the predictive prowess of the GFCy model. 
These results support theoretical underpinnings, as countries with capital control measures tend 
to record limited capital flows (Straetman et al., 2013). Hence, capital flows will have 
decreased predictive information content for countries with capital control policies. 

 

 

                                                           
8 Capital control is measured using dummy provided in the Annual Report on Exchange Arrangements and 
Exchange Restrictions (AREAER) 



15 
 

Table 5: Robustness Checks: Does the restricted model outperforms the unrestricted 
model? 

          
  Early Sample Late Sample 
  H=1 H=4 H=8 H=12 H=1 H=4 H=8 H=12 
Check 1 FDI Yes(16) Yes(15) Yes(13) Yes(12) Yes(19) Yes(17) Yes(15) Yes(14) 

PI Yes(17) Yes(17) Yes(14) Yes(13) Yes(18) Yes(16) Yes(12) Yes(10) 
OI Yes(18) Yes(16) Yes(15) Yes(15) Yes(20) Yes(19) Yes(18) Yes(16) 
BANK Yes(15) Yes(14) Yes(14) Yes(12) Yes(17) Yes(17) Yes(16) Yes(14) 

Check 2 FDI Yes(12) Yes(11) Yes(10) Yes(9) Yes(17) Yes(15) Yes(14) Yes(16) 
PI Yes(19) Yes(17) Yes(17) Yes(15) Yes(13) Yes(13) Yes(11) Yes(12) 
OI Yes(17) Yes(16) Yes(14) Yes(12) Yes(16) Yes(15) Yes(14) Yes(13) 
BANK Yes(19) Yes(17) Yes(14) Yes(12) Yes(19) Yes(18) Yes(17) Yes(16) 

Check 3 FDI Yes(14) Yes(14) Yes(13) Yes(11) Yes(18) Yes(17) Yes(16) Yes(14) 
PI Yes(17) Yes(15) Yes(14) Yes(13) Yes(13) Yes(11) Yes(10) Yes(10) 
OI Yes(19) Yes(20) Yes(20) Yes(19) Yes(18) Yes(16) Yes(15) Yes(15) 
BANK Yes(17) Yes(16) Yes(14) Yes(15) Yes(17) Yes(17) Yes(16) Yes(14) 

Check 4 FDI Yes(12) Yes(13) Yes(10) Yes(12) Yes(17) Yes(15) Yes(14) Yes(16) 
PI Yes(19) Yes(17) Yes(17) Yes(15) Yes(11) Yes(11) Yes(13) Yes(12) 
OI Yes(21) Yes(20) Yes(19) Yes(18) Yes(16) Yes(15) Yes(15) Yes(14) 
BANK Yes(19) Yes(17) Yes(15) Yes(12) Yes(19) Yes(18) Yes(17) Yes(17) 

Check 5 FDI Yes(3) No  No No Yes(5) Yes(3) No No 
PI Yes(2) No  No No Yes(4) Yes(2) No  No 
OI No  No No  No No No No No 
BANK Yes(1) No  No No Yes(2) No No No 

 

6. Conclusion 

This study ventures into the exchange rate disconnect premium puzzle, which argues that 
macroeconomic fundamentals are unable to accurately predict exchange rate. This argument 
was first postulated by Meese and Rogoff (1983). However, and more recently, four groups of 
study have shown that the puzzle could be upturn with the application of: (i) portfolio balance 
theory (PBT) of exchange rate (Lane and Shambaugh, 2010; Rey, 2013; Benetrix et al., 2015; 
Maggiori et al., 2018); (ii) factor modelling (Engel et al., 2015; Mc-Grevy et al., 2018); (iii) 
panel data structure (Cerra and Saxena, 2010; Ince, 2014) and time-varying parameter 
regression (Abbate and Marcellino, 2014Byrne, 2016; Haskamp, 2017). Importantly, the 
portfolio balance PBT is viewed from the prism of the global financial cycle (GFCy). This 
present study innovatively combines these strands of the literature. 

The objective of the study is to examine the extent to which GFCy with Time-Varying 
Parameter (TVP) models could predict currencies of 25 selected OECD countries. Analyses 
are based on two sample sizes and four forecast horizons. The TVP results are also contrasted 
with Panel Fixed Effect (PFE). On the whole, these models yield mixed results. In the early 
sample, PFE tends to have lower forecast error as compared to TVP. The accuracy of the TVP 
model is short-termed (i.e when H =1 and 4). However, the exact opposite plays out in the late 
sample size. We also experimented whether these results are sensitive to the measures of the 
GFCy. Thus, two additional measures are employed (VIX and capital flows factor). Results 
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from the VIX model provide better forecast performance (in terms of forecast error) in the late 
sample size. All these results are robust to a number of checks.  

There are two policy implications attributable to these results. First, investors and policymakers 
should take cognisance of portfolio balance theory in the forecast of exchange rate. Simply put, 
reliable exchange rate forecasts could be made using capital flows as the predictor. As such, 
capital flows could be used as a policy tool that can be tweaked to influence exchange rate. 
Second, the performance of the model is short-termed. Hence, investors should be mindful of 
the fact that reliable forecast should not exceed 4-quarters forecast ahead. Analyses in this 
study is limited to 25 countries, with the sample sized skewed to developed/advanced countries. 
A section of the literature has argued that emerging and developing countries are currently 
shaping the dynamics of global capital flows (IMF, 2013; Eichengreen et al., 2017). Based on 
this, an obvious direction for future studies is to replicate this analysis for more emerging and 
developing countries. 
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