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A B S T R A C T   

The northern stock of European sea bass (Dicentrarchus labrax) is a large, high value, slow growing and late 
maturing fish that is an important target species for both commercial and recreational fisheries. Around the UK, 
scientific assessments have shown a rapid eight-year decline in spawning stock biomass since 2010 attributed to 
poor recruitment; this was likely driven by environmental factors and high fishing mortality. Management of the 
stock is informed by scientific assessments in which a population model is fitted to the available data and used to 
forecast the possible consequences of various catch options. However, the model currently used cannot represent 
the spatial distribution of the stock or any effects of environmental variability. One approach that may be used to 
represent the effects of spatial and temporal variation in environmental drivers is with Individual based models 
(IBMs). In IBMs populations are represented by their constituent individuals that interact with their environment 
and each other. The mechanistic nature of IBMs is often advantageous as a management tool for complex systems 
including fisheries. Here we add to an existing IBM to produce a spatio-temporally explicit IBM of the northern 
stock of sea bass in which individual fish respond to local food supply and sea surface temperature. All life stages 
(i.e., pelagic stages, juvenile and mature fish) are modelled and individual fish have their own realistic energy 
budgets driven by observed dynamic maps of phytoplankton density and sea surface temperature. The model is 
calibrated using Approximate Bayesian Computation (ABC). After calibration by ABC the model gives good fits to 
key population parameters including spawning stock biomass. The model provides a mechanistic link between 
observed local food supplies and sea surface temperatures and overall population dynamics. Plots of spatial 
biomass distribution show how the model uses the energy budget to predict spatial and temporal change in sea 
bass biomass distribution in response to environmental variability. Our results indicate that the IBM is a 
promising approach that could be used to support stock assessment with scope for testing a range of spatially and 
temporally explicit management scenarios in addition to testing stock responses to novel environmental change.   

1. Introduction 

The European sea bass (Dicentrarchus labrax) has been an important 
target species for commercial and recreational fishers around the UK for 
more than 50 years, however after decades of exploitation and minimal 

regulation the stock began to rapidly decline in 2010 (Pickett and 
Pawson, 1994; ICES, 2021). The decline continued for eight years and 
was attributed to a combination of poor recruitment and fishing mor-
tality which led to the implementation of emergency management 
measures in 2015 with continuing stringent harvest restrictions to 
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present day (ICES, 2019, 2021). Sea bass are a slow growing, long lived, 
generalist predator with a complex life cycle that includes feeding and 
spawning migrations (Pickett and Pawson, 1994). A further complex 
component of the sea bass life cycle is the recruitment process (i.e., the 
surviving from egg through larval stages to a harvestable fish) which is 
particularly precarious and influenced by many drivers, the result of 
which can be observed as recruitment rates with high levels of inter-
annual variation (Pickett and Pawson, 1994; ICES, 2021). These life 
history components make the building of assessment models for this 
stock particularly challenging. 

The northern sea bass stock is assessed by the International Council 
for the Exploration of the Sea (ICES) using Stock Synthesis 3 (SS3); an 
analytical age - and length-based assessment model optimized for 
tactical management (ICES, 2019). SS3 includes: 1) a population dy-
namics model, which represents growth, mortality, and recruitment; 2) 
an observation model which relates the population dynamics to avail-
able data; and 3) a statistical model which estimates parameters to 
maximise the goodness of fit between population model and data. While 
SS3 is well-suited for use in tactical management, there are important 
strategic questions which it cannot, and is not designed, to answer. First, 
SS3 can include only a crude representation of the spatial distribution of 
the stock using its “multi-area” configuration (Methot and Wetzel, 
2013). For this reason it is limited in its ability to represent the effects of 
spatial management scenarios (e.g., sea bass fishery spatial closures in 
key spawning areas [GOV.UK, 2020]). Second, SS3 does not represent 
the effects of environmental variability on the stock; for this reason it 
cannot make predictions about how the stock will develop against un-
certain climate backdrops, or how climate uncertainty might interact 
with harvesting scenarios e.g., Boyd, Thorpe, et al., 2020. 

Walker et al. (2020) developed an individual-based model for Eu-
ropean sea bass. This model and others like it are widely used to simulate 
the spatial distribution of fish populations (Watkins and Rose, 2017; 
Heinänen et al., 2018; Boyd, Walker, et al., 2020), as well as population 
size and structure (Politikos, Huret and Petitgas, 2015; Boyd, Walker, 
et al., 2020; Bueno-Pardo et al., 2020). In Walker et al. (2020) the stock’s 
spatial distribution results from algorithms that govern the movements 
of the individuals, but the population dynamics component is that of 
SS3. The logical next step is to allow individual vital rates to respond to 
observed local variation in key environmental drivers. To do so one must 
first identify important environmental drivers, and then incorporate 
sub-models that describe the ways in which individuals respond to these 
drivers. 

Prey availability and temperature are two key environmental drivers 
that affect rates of growth and reproduction in sea bass and ultimately 
population dynamics (Pickett and Pawson, 1994). The effects of prey 
availability and temperature on fish are typically modelled using energy 
budgets (sometimes called bioenergetics). Our energy budget approach 
follows an established methodology (Sibly et al., 2013) that has been 
used for a range of species and applications (Sibly et al., 2013; Grimm 
et al., 2014; van der Vaart et al., 2015; Boult et al., 2019; Boyd, Walker, 
et al., 2020; Mintram et al., 2020; Watson et al., 2020). The energy 
budget models describe the acquisition of energy from food in the 
environment and its allocation to maintenance (metabolism), growth, 
reproduction, and energy storage. Rates of acquisition and expenditure 
depend on temperature and body size, and these can be modelled using 
established theoretical relationships. Recently, bioenergetics models 
have been implemented in IBMs which enables extrapolation of the 
individual-level effects of prey availability and temperature (e.g., on 
body size and reproductive output) to the population level (Boyd, 
Walker, et al., 2020). Here we use phytoplankton density and sea surface 
temperature (SST), assessed through remote sensing. Phytoplankton 
density is used as an index of food supply and together with SST drives 
the energy budgets of individual fish. The energy budgets link popula-
tion dynamics to environmental drivers and ultimately outputs the 
population metrics that are used in fisheries management. 

In this study, we extend the model of Walker et al. (2020) 

incorporating a bioenergetics module to account for spatio-temporal 
variation in prey availability and temperature. Information on prey 
availability and temperature are derived from two satellite products: 
chlorophyll concentration, which we use as a proxy for prey availability 
(this is discussed further in the Discussion); and sea surface temperature 
(SST). We estimate five parameters of the bioenergetics model by fitting 
the IBM to individual- and population-level outputs from the latest stock 
assessment. We show that the calibrated model matches the stock 
assessment outputs well, and we show some spatial outputs to demon-
strate how the model links environmental drivers to spatial and tem-
poral distribution of sea bass biomass. Finally, we discuss the potential 
utility of our model for strategic management of the European sea bass 
stock. 

2. Methods 

2.1. Overview 

Here we provide a summary description of the IBM. A full description 
following the ODD (Overview, Design concepts, Details) protocol for 
describing individual- and agent based models (Grimm et al., 2006, 
2010, 2020) is provided in a TRACE (TRAnsparent and Comprehensive 
model Evaludation; Augusiak, Van den Brink, & Grimm, 2014; DeAn-
gelis & Grimm, 2014; Schmolke, Thorbek, DeAngelis, & Grimm, 2010) 
document forming the supplementary material. The IBM is implemented 
in Netlogo version 5.3.1 (Wilensky, 1999). The code and dataset used for 
this research, can be downloaded from https://github.com/eth-cscs/abc 
py-models/tree/master/EcologicalScience/Bass. The model develops 
the approach of Walker et al. (2020) to include energy budgets for in-
dividual fish. The model environment is composed of a grid landscape of 
36 × 38 patches (grid cells), representing the area from 9◦E to 9◦W and 
48◦N to 57.5◦N (Fig. 1). The model uses dynamic patch variables of sea 
surface temperature (SST [shown in blue Fig. 1A]; a key driver of sea 
bass dynamics; Pickett & Pawson, 1994; TRACE Section 8.2 and 10.2). 
SST in the model affects all life processes including ingestion rate, 
maintenance (i.e., metabolic rate), growth (note that this means SST also 
effects the speed at which individuals reach the next life stage), swim-
ming speed and spawning (i.e., reproduction). The model now also in-
cludes a patch variable of phytoplankton density (PHY [shown in orange 
Fig. 1B], derived from chlorophyll concentration using an empirical 
conversion factor; see Discussion and TRACE Sections 8.2 and 10.3 for 
discussion of the role of PHY as a base of the marine food web and the 
basis for energy in our energy budget update. The patches of the model 
environment are categorised depending on location within the envi-
ronment (Fig. 1). Coastal patches are those within an ICES rectangle 
(ICES rectangles/divisions are a fisheries management system that grids 
data for ease of spatial analysis and management measures, for more 
details see ICES statistical rectangles) that intersects land and offshore 
patches are all remaining sea patches. Between February–May any 
offshore patches south of 54◦N with an SST value between 9–15 ◦C are 
assigned as spawning patches (Thompson and Harrop, 1987; Kelley, 
1988; Beraud et al., 2018). Nursery patches are those south of 54◦N 
intersecting land; (Kelley, 1988; Beraud et al., 2018). Patches are also 
assigned an ICES division (each of which comprises many ICES rectan-
gles; 4.b, 4.c, 7.a, 7.d, 7.e or 7.fg) and region (North Sea, English 
Channel, Celtic Sea or Irish Sea). ICES divisions and regions are mutually 
exclusive while patch types are not, as all nursery patches are coastal, 
and all spawning patches are offshore (Fig. 1). 

For simplicity, we assume the population is closed to migration 
outside the model domain. To keep model run times practical the sea 
bass population is modelled with super-individuals (hereafter termed 
individuals) each of which represents many fish with identical state 
variables (Scheffer et al., 1995). Individuals are characterised by; the 
number of fish represented, age, life stage (see Figs. 1 and 2 and sub 
model Transform), length, weight (including structural mass, gonad 
mass and total mass), ingested energy, energy reserves, metabolic rate, 
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location, swimming speed and daily direction changes, spawning trigger 
and counter, mortality rates (natural, commercial inshore/offshore 
fishing mortality and recreational-fishing mortality) and the division 
they have an affinity to feed in. Sea bass variables and processes are 
described further in Section 2.1.2 and full details can be found in the 
TRACE. After an initial spin up (1985–2004), the model runs in daily 
time steps from 1st of January 2004 to the 31st of December 2014, just 
prior to the implementation of emergency management measures in 
2015 (ICES, 2021). In each time step, individuals follow six main pro-
cesses, all constructed from several sub models: ingestion and assimila-
tion, maintenance (i.e., metabolic rate) and reserves, growth, reproduction 
(i.e., spawning), movement, and mortality. Fig. 2 provides a conceptual 
overview of the processes and sub models relevant to the different life 
stages represented in the IBM. In the following sections we give an 
overview of these sub models, highlighting the new energy budget up-
dates and directing the reader towards relevant supplementary mate-
rials (TRACE sections) for further details. 

2.1.1. Initialization and spin up 
The model is initialised on 1st of January 1985 and runs with daily 

time steps for a 19-year spin-up period. Thereafter emergent results are 
collected from 1st of January 2004 until 31st of December 2014. During 
the spin up, Numbers-at-age data from the ICES stock assessment 2020 
are used to base the initialized population and then each year new 
agents are introduced from estimates of numbers at age 0 also from the 
stock assessment (numbers at age 0 emerge from the simulation once the 
spin-up period is over). The remote sensing data for SST and PHY for 
2004 is used on repeat for each year in the spin up as it was unavailable 
before this date (for full details of spin up see TRACE section 5). 

2.1.2. Process overview and scheduling 
An overview of the sub models is presented here but for complete 

detail we refer the reader to the relevant TRACE sections. The major 
addition to the model of Walker et al. (2020) are the energy budget 
processes and the sub models; ingestion and assimilation, maintenance (i. 
e., metabolic rate) and reserves, growth and reproduction (i.e., spawning). 
The Eqs. (1-5) that make up the energy budget approach follow an 
established methodology (Sibly et al., 2013) that has subsequently been 
used for a range of species and applications (Sibly et al., 2013; Grimm 
et al., 2014; van der Vaart et al., 2015; Boult et al., 2019; Boyd, Walker, 

Fig. 1. The model interface; Both Sea surface temperature (SST) 
and phytoplankton concentration (PHY) can not be shown 
simultaneously in the model interface so here; A) shows offshore 
patches as blue with dark to light representing increasing SST 
(min and max potential values 0–30 ◦C), and B) shows offshore 
patches as orange with dark to light representing increasing PHY 
(min and max potential values 0–75 g/m2). For both A) and B) 
coastal patches represented in green, nursery patches (also 
coastal) are turquoise. Targets that eggs and larval stages drift 
towards (depending on ICES division affinity) are represented by 
red patches. Agent colour represents life stage (white = eggs, 
black = yolk sacs-larvae and larvae, yellow = juvenile sea bass 
[not all life stages are shown here]). For mature sea bass colour 
shows the affinity to feeding ground. Spawning patches (which 
vary depending on time of year and environmental conditions) 
are shown with a yellow “S”. These remote sensing data are 
updated every 8 days and agents perform all sub models each day 
(see section below 2.1.2).   

Fig. 2. Model overview showing for each life stage the processes occurring on day T. Transformation to the next life stage at the end of the day is a length-based 
process and “sufficient L” refers to a specified body length being reached to transform. For each life stage (egg, yolk-sac larvae, larvae, juvenile, and mature sea bass) 
the sub models are indicated in the order of model execution. Eggs transform to the next life stage after a specified time and from then on transformation is length 
based. Overviews of movement sub models are given on the right (for more details see TRACE section 7). 
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et al., 2020; Mintram et al., 2020; Watson et al., 2020). 
The model proceeds through all sub models in daily time steps. The 

following sub models are executed in the order they are presented. 
Within each sub model, super-individuals and patches are processed in a 
random order as there are no interactions amongst agents (an overview 
can be seen in Fig. 2). Agents age one day each time step and the cohort 
age is increased by one year every 365 time steps. 

Update-patches: New SST and PHY data is assigned to patches, and 
offshore patches update their spawning patch status (though note that 
SST and PHY data only changes every 8 days). 

Natural mortality: The number of fish in each super-individual is 
discounted by its natural mortality rate. Any super-individuals reaching 
the (terminal) age of 30 are removed from the simulation. 

Ingestion and assimilation: All life stages calculate ingestion and 
assimilation except for eggs and egg- sac larvae as these early life stages 
rely on their own energy source rather than feeding (Pickett and Paw-
son, 1994). For the older life stages (larvae, juvenile and mature sea 
bass) the rates of ingestion and assimilation are dictated by size of the 
individual, energy available in the environment, temperature, and 
density dependence (i.e., intraspecific competition for food). The 
assimilated energy (E) is then the energy available for the remainder of 
the energy budget processes (i.e., growth, maintenance, and reproduc-
tion) and is calculated as: 

E = Cmax ∗
(

PHY
H + PHY

)

∗ Mt
2
3 ∗ i ∗

(
1

Mnm
2
3

)

∗ Ep ∗ Ae ∗ Ah (1)  

where Cmax is the maximum consumption of food in relation to body 
size, PHY is the energy value of the patch, H is the half saturation 

constant, Mt is total mass (Note the 2/3 power refers to body surface area 
following Boyd et al., 2018; Kooijman & Metz, 1984), i is importance of 
conspecific density, Mnm is the sum of non-egg biomass in the same 
patch, Ep is the energy in phytoplankton and Ae is the product of 
assimilation efficiency (i.e., the proportion of energy that is absorbed 
from prey) and trophic delay (i.e., how long/how much energy from a 
phytoplankton bloom makes its way through the trophic levels to sea 
bass prey) and Ah is an Arrhenius function (for details see TRACE sec-
tions 7, 8.2, 10.3, and see Table 1 for parameter values). 

Maintenance and reserves: All life stages calculate metabolic rate 
and its energetic cost, except for eggs and egg- sac larvae. Metabolic rate 
is affected by body mass and temperature, and here we calculate field 
metabolic rate as twice the standard metabolic rate (Peters, 1986) and is 
calculated as Mr below: 

Mr = Ao ∗ Mt
3
4 ∗ 2 ∗ Ah (2)  

where Ao is a metabolic rate normalisation, Mt is total mass and Ah is an 
Arrhenius function. Once the energetic cost of maintenance/metabolic 
rate is established it is either paid for directly from assimilated energy or 
if this is insufficient (e.g., reduced feeding available in the winter) then 
energy reserves are added to assimilated energy and metabolic costs are 
taken from this (for details see TRACE sections 7 and see Table 1 for 
parameter values). 

Growth: All life stages except eggs calculate their total mass (mass of 
an individual including, if any, fat reserves and gonad mass): 

Mt = a ∗ Lb +
Er
El

+ Gm (3)  

where a and b are Length-mass coefficient values (for details see TRACE 
Section 8.3), Er is how much energy is in reserves, El is the energy 
content of lipid and Gm is mass of gonads. 

Next the maximum possible growth increment (MaxGr) is calculated 
and here we assume individuals under 70 days have a constant 
maximum growth rate (for details see TRACE section 8.3) and those 
older are assumed to follow a von Bertalanffy growth curve: 

MaxGr= {
Gl ∗ Ah, Age < 70 days(

Linf − L
)
∗ (1 − exp(− k/365)) ∗ Ah, Age ≥ 70 days (4)  

where Gl is the slope coefficient of a regression of larval length on age, 
Linf is the asymptotic length of sea bass, L is fish length and k is the 
annual growth constant and Ah is an Arrhenius function. After calcu-
lating the theoretical maximum size increase, the energetic cost of this 
maximum increase is calculated. Eggs do not grow, instead they develop 
and transform into yolk-sac larvae which do not ingest energy and thus 
are assumed to have maximum energy available to grow maximally. 
However once egg-sac larvae have transformed to larvae they begin to 
ingest energy and here larvae, juvenile and mature sea bass only grow 
maximally if there is adequate assimilated energy and update length 
accordingly. If there is not enough assimilated energy, they will grow at 
a suboptimal growth rate (for details see TRACE section 8 and see 
Table 1 for parameter values). 

Calculate-speed: The swimming speed of each fish is calculated 
from its length and SST of the patch (for details see TRACE section 7). 

Transform: In our model we include the full fish life cycle and use 
length-based definitions to distinguish between life stages. In the 
transform sub model if a super-individual meets the criteria (sufficient 
length; see Fig. 2) then it transforms to the next life stage. The life stages 
are egg; yolk-sac larvae; larvae; juvenile sea bass; and mature sea bass. 
When juveniles transition to mature sea bass, they set their coastal 
feeding ground affinity as the ICES division in which they are in at the 
time of exceeding this length requirement (this could be a different di-
vision to the original ICES division target they would have drifted to-
wards when they were in pelagic stages, see TRACE section 8.7). Note 
that at the end of the first spawning migration there is an opportunity to 

Table 1 
Parameter values used in Energy budget equations.  

Parameter Description Value Reference 

a Length-mass 
coefficient (for details 
see TRACE Section 
8.3). 

1.296 ×
10− 5 *0.95 

(Pickett and Pawson, 1994; 
ICES, 2012) 

b Length mass scaling 
exponent. 

2.969 (ICES, 2012) 

Ao Normalizing constant 
for relationship 
between Metabolic 
rate and fish size. 

0.1227808 (Claireaux, 2006;  
Jourdan-Pineau et al., 
2010; Luna-Acosta et al., 
2011; Zupa et al., 2015;  
Peixoto et al., 2016) 

Ae Efficiency of energy 
from phytoplankton to 
fish. 

1.64 × 10− 3 Parameterised with ABC 

Cmax Max ingestion. 0.54 gs per 
gram of fish 

(Lanari, D’Agaro and 
Ballestrazzi, 2002) 

Ef Energy content of 
flesh. 

7 kJ g− 1 (Peters, 1986) 

EGm Sea bass egg mass. 0.96 × 10− 3 

g 
(Cerdá et al., 1994) 

EGpw Potential egg 
production per gram of 
sea bass. 

375,000 (Pickett and Pawson, 
1994) 

El Energy content of lipid. 39.3 kJ g− 1 (Schmidt-Nielsen, 2013) 
Ep Energy content of 

phytoplankton. 
6.02 kJ g− 1 (Annis et al., 2011) 

Fs Energy to synthesise 
flesh. 

3.6 kJ g− 1 (Sibly and Calow, 1986;  
Sibly et al., 2013) 

GL Larval stages growth 
coefficient. 

0.02485 cm 
d− 1 

(Jennings, Jennings and 
Pawson, 1992; Regner and 
Dulčić, 1994) 

H Half saturation 
constant 

4.87 × 10− 1 Parameterised with ABC 

I Importance of density 
on ingestion. 

5.14 ×
10+13 

Parameterised with ABC 

K Annual growth rate 
coefficient. 

0.096699 (ICES, 2012) 

Linf Asymptotic length. 84.55 cm (ICES, 2012)  
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change ICES division affinity which is altered with a probability that can 
be set by the model user. 

Fishing-mortality: For fish that are over the minimum landing sizes 
the number of fish represented by each super-individual is discounted by 
fishing mortality rates from the commercial offshore, commercial 
inshore and recreational fleets (data obtained from ICES stock assess-
ment 2020). 

Movement: Juvenile and mature movement sub models remain 
mostly unchanged from Walker et al., 2020. However, a major addition 
to the model is the full fish life cycle and the inclusion of life stages of 
eggs, yolk sac larvae and larvae. In our update we provide movement 
sub models for these pelagic life stages. 

Spawn-migration: During the months October–May if SST is below 
the 9 ◦C spawning trigger threshold then mature fish move towards 
offshore spawning grounds. 

Feeding-migration: When spawning period is over at the end of 
May each mature fish moves back towards or within its assigned coastal 
feeding ground. 

Local-movement: Each juvenile fish moves randomly within coastal 
patches. Juveniles less than 32 cm (not yet classed as “adolescent”) are 
further constrained to nursery coastal patches. 

Larval stages drift: Each egg, yolk-sac larvae and larva move one 
patch closer to its assigned coastal feeding ground. 

Reproduction: On the 17th of March mature sea bass calculate their 
potential fecundity and then the energy required to produce this number 
of eggs (MaxR): 

MaxR = Mstr ∗ EGpw ∗ EGm ∗
(
Ef +Fs

)
(5)  

where Mstr is Structural mass of sea bass (i.e., not including any fat re-
serves or gonad mass), EGpw is number of eggs per kg of sea bass (Pickett 
and Pawson, 1994), EGm is the weight of eggs, Ef is the energy in flesh 
and Fs is the cost of synthesising flesh. If there is enough energy to 
produce maximum potential fecundity, then the energy needed to do 
this is deducted from energy reserves and gonad mass and realised 
fecundity are set accordingly. However, if there is not enough energy to 
reach maximum fecundity then energy reserve is set to whatever is left 
after subtracting maintenance costs and gonad mass and realised 
fecundity is set to what is achievable with the limited resources. Once 
calculated for all mature sea bass, a random sample of 10 mature sea 
bass super-individuals spawn (introduce one super-individual into the 
model) which represents as many eggs as determined by total realised 
fecundity of the whole spawning stock divided by 10. The number of 
eggs is therefore based on the cumulative available energy reserves. 
With only 10 individuals spawning the number of super-individuals 
remains consistent for each cohort and 10 new super-individuals 
continue to represent the spatial aspect of the fishery (for details see 
TRACE sections 7, 8.7 and see Table 1 for parameter values). 

2.1.3. Model calibration 
The model contains 25 parameters, and the values were where 

possible taken from literature (see TRACE section 5 and TRACE Table 2). 
Where absolute values of these parameters could not be directly taken 
from the literature, we used a version of Approximate Bayesian 
Computation (ABC) called Simulated Annealing ABC (Albert, Künsch 
and Scheidegger, 2015) as implemented in the Python library ABCpy 
(Dutta et al., 2017). In all, we estimated 5 parameters using ABC: H, half 
saturation constant; AM, adult natural mortality; AE, absorbed energy; 
PM, pelagic mortality; and I, importance of density dependence. This 
method is highly parallelizable, making it an excellent algorithm for use 

by high-performance computers. ABC began by randomly drawing 
values of H, AM, AE, Pm and I from uniform prior distributions (for full 
details of priors see TRACE section 9.4) and ran the IBM with these 
parameter values. Subsequent runs were guided according to how well 
the outputs of previous runs fitted data as indicated by the sum of the 
weighted Euclidean distance between the model outputs and data. The 
data used for parameter calibration was from the sea bass stock assess-
ment model (stock synthesis 3, SS3). These outputs include annual time 
series of spawning stock biomass [SSB], numbers-at-age, and 
weight-at-age. SS3 outputs for SSB and numbers at age are estimated 
annually, however mass at age is simply taken as the stock assessment 
parameters of the von Bertalanffy model. It is necessary to include mass 
at age in the calibration to get a realistic population size structure, and in 
the absence of real data this is the best available guide. The estimated 
posterior means for all five parameters and 95% credible intervals are 
shown in Table 2 together with the prior distributions used. The esti-
mated correlation matrix between parameters is shown in Table 3 and 
the values shown suggest medium to weak correlations between these 
five model parameters, with a maximum of -0.47 between parameters 
PM and AM. 

To quantify the uncertainty in predictions that results from uncer-
tainty in the five calibrated parameters, we ran a posterior predictive 
check by drawing 111 parameter samples from the inferred approximate 
posterior distribution and simulating 111 data sets, each using a 
different parameter sample. From these we obtained posterior predictive 
inter-quartile ranges, and these are shown in Figs. 3-5 to indicate the 
uncertainty in predictions. 

2.1.4. Sensitivity analysis 
The sensitivities of model outputs for SSB and numbers/mass at age 

are shown in Table 4 as percentage change in output for a 10% decrease/ 
increase in the energy budget model parameters of Table 1. The model 
remains robust against most parameters with most sensitivities less than 
10%. The model was most sensitive to changes in length weight 
parameter (b_g). For the full table of sensitivities of number and mass at 
age see TRACE section 12. 

Table 2 
Values for priors, posterior mean and 95% credible intervals for parameters 
obtained by ABCpy. H: half saturation constant, AM: adult natural mortality; AE: 
absorbed energy, PM: pelagic mortality, I: importance of density dependence. 
For rationale for choice of priors see TRACE section 9.4.  

Parameter Priors Posterior 
mean 

95% credible intervals 

H 2.5 × 10− 1,7.5 × 10− 1 4.87 × 10− 1 3.04 × 10− 1, 7.26 × 10− 1 

AM 2.8 × 10− 4,5.9 × 10− 4 4.71 × 10− 4 3.43 × 10− 4, 5.87 × 10− 4 

Ae 0.0, 3 × 10− 3 1.64 × 10− 3 2.51 × 10− 4, 2.88 × 10− 3 

PM 4.5 × 10− 2, 1.35 ×
10− 1 

8.01 × 10− 2 5.76 × 10− 2, 1.02 × 10− 1 

I 2.5 × 10+13,7.5 ×
10+13 

5.14 × 10+13 2.72 × 10+13, 7.39 ×
10+13  

Table 3 
Estimated correlation matrix between the parameters shown in Table 2.  

- AM Ae PM I 

H 0.19 -0.04 0.06 0.02 
AM  -0.04 -0.47 -0.05 
Ae   0.35 0.17 
PM    0.13  
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3. Results 

To assess the model fits to data, we compare the IBM outputs for SSB 
and numbers/mass at age with outputs from stock synthesis 3 from 2004 
to 2014 (ICES, 2019), as shown in Figs. 3–5. In these figures the black 
points represent the ‘data’, i.e., outputs from stock synthesis 3, and the 
solid red lines/dots are IBM outputs using posterior medians. Uncer-
tainty about these outputs is indicated by ribbons representing posterior 

predictive inter-quartile ranges. 
SSB is the total mass of all fish that are mature (>42 cm). The fit of 

SSB is shown in Fig. 3. The IBM captures the shape of the data well and 
follows the decline in SSB from 2010 suggested by the SS3 data. Mass-at- 
age predictions are assessed by reference to the von Bertalanffy growth 
curve assumed by SS3 (Fig. 4), which assumes no variation year-to-year. 
The model slightly overpredicts mass for ages 0 to 4, and underpredicts 
mass after age 7. The fit of numbers-at-age predictions are shown in 

Table 4 
Sensitivities of SSB, mean mass at age, and numbers at age, to changes in energy budget model parameters of Table 1. Results are presented as % change in output for a 
10% decrease/increase in parameter value relative to values in Table 1 or, for the five fitted parameters, the posterior means shown in Table 2. For mass and numbers at 
age we show the range of values for brevity, for full table see TRACE section 12 and TRACE Table 6.  

Parameter Value Output Variable   
SSB Mass at age Numbers at age   
Decrease Increase Decrease Increase Decrease Increase 

linf 84.55 -9.56 0.79 -21.9,0.8 -12.0,25.7 -2.1,7.5 -10.5,3.6 
K 0.096699 -1.68 10.52 -20.5,2.7 -4.8,21.5 -2.7,12.3 -2.5,11.6 
t0 -0.73 -7.60 -1.53 -16.3,2.0 -14.1,2.7 -1.8,17.1 -2.0,6.6 
Ea 0.5 1.71 -0.45 -10.1,4.0 -9.9,2.8 -1.8,10.8 -2.2,2.0 
EaS 0.1903656 10.13 -0.67 -10.8,4.7 -10.0,7.6 -2.5,7.7 -1.7,3.2 
Cmax 0.54 4.12 6.53 -9.4,7.5 -5.3,6.4 -2.0,13.5 -1.9,10.2 
ep 6.02 -1.27 2.18 -9.8,5.6 -10.8,5.1 -1.6,3.7 -3.0,19.4 
A0 0.1227808 7.09 -2.12 -7.2,9.9 -6.5,3.1 -1.2,10.1 -2.6,7.9 
Ef 7 -11.62 -8.11 -9.3,3.8 -11.6,7.4 -2.3,11.6 -2.3,8.5 
El 39.3 4.52 -6.25 -8.3,3.5 -13.4,2.3 -2.4,2.4 -2.5,14.3 
Ls 14.7 -10.30 0.55 -17.8,5.5 -8.9,2.6 -2.4,9.3 -2.6,8.1 
Fs 3.6 -1.50 0.12 -12.3,2.3 -7.5,3.8 -1.8,14.5 -1.8,11.3 
egg_mass 0.00096 5.58 4.29 -16.7,5.9 -8.7,3.4 -1.5,21.8 -3.4,2.0 
a_g 1.23 £ 10¡5 -5.00 10.66 -17.8,-7.2 2.9,16.0 -1.6,6.7 -2.1,20.4 
b_g 2.969 -61.27 152.43 -72.9,-45.0 29.8,265.7 -57.5,5.3 -1.2,5.8 
eggs_per_bass 375,000 -0.06 -4.45 -11.4,9.4 -22.0,3.9 -1.7,10.5 -2.1,13.9 
Gl 0.02485 3.66 -0.78 -7.8,7.7 -11.2,3.9 -28.2,17.6 -2.1,51.8 
H 4.46 £ 10¡1 0.67 6.65 -5.3,6.1 -5.8,7.4 -2.7,9.7 -3.3,11.7 
AM 4.91 £ 10¡4 -0.89 3.49 -8.9,5.0 -6.8,6.4 -0.7,8.9 -3.3,6.8 
AE 1.57 £ 10¡3 1.52 6.78 -17.5,2.7 -8.4,4.7 -3.4,19.0 -1.8,10.6 
PM 8.42 £ 10¡2 1.18 -1.46 -7.4,3.7 -7.5,4.4 -1.3,71.9 -37.1,2.7 
I 5.20 £ 1013 2.75 5.49 -7.2,4.3 -10.8,4.8 -2.7,2.4 -3.6,5.6  

Fig. 3. Model calibration for Spawning Stock Biomass (SSB) for years 2004–2014. Black dots represent the outputs of SS3; solid red line is the median of the IBM 
posterior predictive distribution; ribbon represents interquartile range. 
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Fig. 5. Model fits to the SS3 data are good for ages 5 and above, and 
reasonably good for all ages. In addition to the calibration plots (Figs, 3, 
4 and 5) we show some spatial model outputs in Fig. 6. These show the 
spatial intra-annual spatial distribution of sea bass biomass; note there is 
also interannual variation which can be seen in the TRACE figure 19. 

4. Discussion 

Here we have presented a spatially explicit individual based model of 
the northern stock of sea bass which has been calibrated and assessed for 

goodness of fit against stock synthesis 3 outputs of SSB and the numbers 
and individual masses of 30 age classes. The model builds on Walker 
et al. (2020), but our addition of individual energy budgets driven by 
phytoplankton density provides a mechanistic link between environ-
mental drivers and fish populations. We also present spatial outputs of 
biomass distribution to demonstrate how the energy budget creates a 
mechanistic link between changes in environmental drivers and pre-
dictions of temporal and spatial distribution of sea bass. The energy 
budget approach follows established methods (Boyd, Walker, et al., 
2020; Mintram et al., 2020; Watson et al., 2020). Our model is intended 

Fig. 5. Model calibration for numbers in 30 age classes for years 2004–2014. N0 = number at age 0, N1 = number at age 1, etc. Black dots represent the outputs of 
SS3; red dots are the median of the IBM posterior predictive distribution; ribbon represents interquartile range. 

Fig. 4. Model calibration for individual average masses (kg) over years 2004–2014 of 30 age classes. Black dots represent the Bertalanffy growth curve used by SS3; 
red dots are the median of the IBM posterior predictive distribution; ribbon represents interquartile range (which is calculated for each age as the average of the 
yearly interquartile ranges). For model fits of each of the 30 age classes for years 2004–2014 see TRACE section 11. 
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for use by fisheries managers to complement, not replace, current stock 
assessment approaches using SS3. 

A key assumption in our model is that local food density available to 
sea bass can be represented by observed phytoplankton density. Sea bass 
are generalist predators, and their diet is opportunistic, so it is difficult 
to predict what they will be eating at any particular time (Pickett and 
Pawson, 1994). Their food choices could in principle be derived from a 
model of local ecosystems, but this would require many unobservable 
parameters (i.e., what, when and where sea bass are eating and the 
associated uncertainly). We therefore chose instead to make use of 
remote sensing data of phytoplankton blooms which constitute the base 
of the marine food web. There are several problems in attempting to 
estimate how much of the energy present in phytoplankton is feasibly 
available to sea bass. We reason that areas of high phytoplankton den-
sity are likely favourable to all trophic levels; that is, they will correlate 
with high densities of species that directly consume phytoplankton and 
consequently will be attractive to species that prey upon these secondary 
consumers and a continuation of this pattern up the food chain. Further, 
many species in the marine environment (including much of sea bass 
prey) are highly mobile and may move around seeking energy in the 
form of their preferred prey. On the other hand there is likely a delay 
(which we term trophic delay) in time from a large amount of energy 
being present in the form of phytoplankton till it is available to sea bass 
as a range of prey (because prey species increase in biomass through 
individual growth or reproduction). In this model we bypass these 
complexities by using a single parameter absorbed energy to indicate how 
much of the phytoplankton ends up in the fish. Our approach can be 
considered justified by the good fits to the data seen in Figs. 3, 4 and 5. 

Methods of calibrating and evaluating complex models have 
advanced considerably in recent years. Here we used Simulated 
Annealing ABC (SABC [Albert, Künsch and Scheidegger, 2015]) to 
calibrate five model parameters (adult and pelagic mortality rates, 
absorbed energy and two density dependences) that would otherwise be 
extremely difficult to estimate. SABC is much faster and more accurate 
than rejection ABC methods (Dutta et al., 2017) which have previously 
been used to calibrate similar IBMs (e.g., Boult et al., 2018; Boyd, 
Walker, et al., 2020; van der Vaart et al., 2015). 

The model outputs we have presented give insight into how different 

aspects of the model are working. Spawning stock biomass (SSB, Fig. 3) 
is the size of the mature stock, which is the basis for setting legislative 
targets to manage the stock. We see good fits for SSB across the simu-
lation period. We also see good fits to body weights-at-age (Fig. 4) which 
suggests that both the numbers and sizes of the individuals are reason-
able. The numbers and masses in each age class are discussed below. 

The numbers in each age class are shown in Fig. 5. Assessing numbers 
at age rather than total abundance is necessary to avoid the more 
numerous younger fish dominating the model fits. Overall, the dynamic 
model age structure shown in Fig. 5 is a good fit against the SS3 data, 
although some of the goodness of fit may stem from what happens in the 
spin up period. Cohorts born in the spin up period are read in from ICES 
numbers at age data, and their numbers thereafter are only affected by 
two model parameters, natural mortality (AM) and fishing mortality. 

The N0 panel shown in Fig. 5 represents the number of fish that are 
age 0 and no longer in the pelagic stage (defined in our model as an 
individual with age 〈 1 and Length 〉 1.4 cm [Beraud et al., 2018]). 
Predicted N0 fits SS3 data well in some years but in others there are 
significant discrepancies. Discrepancies almost certainly arise from lack 
of realism in our model, —predicting recruitment is famously 
difficult—, but may also arise from errors in the SS3 ‘data’. The SS3 
estimates of the N0 are outputs of a population-dynamics model 
described in the Introduction, and subject to some uncertainty. So the 
discrepancies between our predictions and the SS3 data do not neces-
sarily mean our predictions are wrong. N0 (i.e., the number of N0 in-
dividuals) in our model is an emergent property driven by the number of 
mature fish and their spawning success, which depends on the condition 
of the parents (Mcbride et al., 2015), and early survival. Larger fish with 
higher fat reserves can produce more eggs (i.e., have higher potential 
fecundity) than smaller fish, so the more mature fish there are in the 
simulation, the greater their collective realised fecundity. If the mature 
fish have had access to abundant energy, there is more left to produce 
eggs after the necessary allocation to maintenance and growth. It is 
important to note that the model does not cover quality of eggs though 
there is some evidence that fish that have had access to better nutrition 
may also be able to produce higher quality eggs, which may increase 
larval survival and stock recruitment (Cerdá et al., 1994; Chatzifotis 
et al., 2011). In the model presented the amount of energy to produce 

Fig. 6. Mean daily biomass (tonnes) distribution per quarter for the year 2008. Q1 = 1st January – 31st March, Q2 = 1st April – 30th June, Q3 = 1st July – 30th 
September, Q4 = 1st October – 31st December. Note that no data are currently available with which to compare these results. 
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eggs is also influenced by temperature, since individuals in warmer sea 
temperatures may ingest more energy, grow faster and have higher 
levels of reserves from which to produce eggs. The other major 
contributor to the N0 output is pelagic natural mortality rate. The daily 
pelagic mortality rate 8.01 × 10− 2 is far greater than that of the adult 
mortality parameter in our model 4.71 × 10− 4, so there is a substantial 
payoff to growing faster to escape the pelagic phase earlier. In this way 
the number of larvae that make it through to be juvenile fish (i.e., 
classified as N0) is dependant on their growth rate, which in turn de-
pends on food availability, temperature, and the density of competitors. 

The masses of the individuals in each age class are presented in 
Fig. 4. Although the models provide fairly good fits for younger fish, the 
masses of older fish are underpredicted. Discrepancies between our 
predictions and the SS3 data do not necessarily mean our predictions are 
wrong, because the SS3 ‘data’ are simply outputs of a fitted von Berta-
lanffy growth curve (ICES, 2021). Discrepancies may also arise as a 
result of the spin-up process. During spin up we read in the numbers at 
age 0 estimates from SS3 as is done in the spawning sub models of 
Walker et al. (2020), but afterwards spawning is determined by the 
fishes’ energy budgets, and the two methods differ in when spawning 
takes place. The result is that the IBM age 0 cohort consists of older and 
larger fish than in the SS3 data. As the cohort ages it continues heavier 
for a few years, and this may explain the overpredictions of mass for M0 
– M4 in the first few years of the simulations (see Figure 17 in TRACE 
section 11). The underpredictions of masses of older fish are harder to 
explain but may result from some lack of realism in our representation of 
energy budgets. In our model an individual’s mass depends on its history 
of ingesting energy, and this in turn depends on the energy available in 
the environment, competition from other fish and sea surface temper-
ature and this is what the AE and I parameters hoped to capture. In 
excess of structural mass individuals have the potential to put on weight 
as fat reserves. High reserves result from abundant energy, high SST 
and/or low competition, and eventually allow mature individuals to 
spawn. These processes result in fluctuations in fat reserves that the SS3 
assessment does not capture. 

There are many potential fisheries management applications for the 
IBM we present here. The original model published by Walker et al., 
2020 was designed to complement the SS3 stock assessment and to test 
spatial management scenarios, and the updated model here still retains 
that utility (though note movement sub model limitations discussed 
below). We demonstrate some of the spatial and temporal inter (TRACE 
Figure 19) and intra annual variation utility in Figure 6 where results 
show predictions of variation in the distribution of sea bass. Our energy 
budget additions and the subsequent emergent population dynamics 
that are driven by the environmental drivers make the model a good tool 
to study a range of climate impacts on the stock. Using different climate 
projections the energy budget could capture the effect of temperature on 
life processes of ingestion, metabolic rate, growth and sea bass recruit-
ment (known to be heavily influenced by temperature [Pawson, Pickett 
and Smith, 2005]) and the subsequent impacts of the stock could be 
analysed. Another advantage of the full fish life cycle and closed energy 
budget additions is that changes in condition or number of the spawning 
stock will have consequences on the following year’s recruitment. This 
closed loop facilitates testing of a range of existing and new management 
measures for recreational and commercial fishing (e.g., spatial, and 
temporal closures, changes to total allowable catch/minimum landing 
size, bag limits etc.). 

The model is built in a modular fashion making additions or changes 
to further the model utility achievable. One promising line of work is to 
add other dynamic maps of anthropogenic stressors to the model envi-
ronment. For example, the addition of a soundscape map to which the 
individuals would suffer sublethal effects through reduced ingestion and 
the knock-on effects through the energy budget (Watson et al., 2020) 
would give rise to emergent population effects of anthropogenic noise (a 
similar approach was done for porpoise in a study by Nabe-Nielsen et al., 
2014). In addition, there is scope to update fishing pressure which is 

currently read in from ICES data to a more mechanistic sub model. Sea 
bass are mostly targeted by the under 10 m fleet in the UK (Williams 
et al., 2018) and the small vessels are often most vulnerable to bad 
weather (Sainsbury et al., 2018; Young et al., 2019). An updated fishing 
pressure sub model that responded mechanistically to environmental 
and socio-economic pressures would further develop the model utility to 
fisheries management (e.g., [Jules Dreyfus-León, 1999; Millischer and 
Gascuel, 2006; Bastardie et al., 2010; Bailey et al., 2019; Lindkvist et al., 
2020]). 

We believe that the IBM we present here is a useful tool in its current 
form, however there are some caveats and further opportunities for 
improvement. Firstly, a general critique of individual/agent based 
models is the large amount of data that they require for model param-
eterisation, calibration, and validation (Johnston et al., 2019). To cali-
brate and asses the fits of the model, we use outputs from the sea bass 
SS3 assessment model. The SS3 model takes all the available data from 
surveys and literature to assess the state of the stock (ICES, 2021) and 
outputs modelled ‘data’, so we are fitting the IBM model outputs to 
another model’s outputs. This is suboptimal but in the absence of the 
extensive long-term field data on individuals, outputs from SS3 remain 
the best calibration option and the limited availability of calibration 
data may also explain why the credible intervals remain wide for the five 
parameters fitted with ABC (Table 2). Further detailed spatial distribu-
tion data would also be required to truly validate the spatial and tem-
poral explicit predictions by the model (shown in Fig. 6) Another 
limitation is the movement sub model which remains unchanged from 
Walker et al., 2020. Walker et al., 2020 outline how modern tagging 
methods (Quayle et al., 2009; O’Neill et al., 2018; de Pontual et al., 
2019) could provide data on which a mechanistic movement sub model 
could be built and added to further the spatial utility of the model. To 
conclude we hope that fisheries managers may find the spatial, mech-
anistic, and emergent merits of this IBM a useful complementary tool to 
SS3 with scope for further development to aid the sustainable manage-
ment of northern sea bass stock. 
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